WorldWideScience

Sample records for 3d fast low-angle

  1. Ultra-fast low-angle rapid acquisition and relaxation enhancement (UFLARE) in patients with epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, S.H.; Symms, M.R.; Woermann, F.G.; Kendall, B.; Stevens, J.M. [National Society for Epilepsy and Epilepsy Research Group, Chalfont St Peter, Bucks, (United Kingdom); Stepney, A.; Barker, G.J. [Dept. of Clinical Neurology, Univ. College London (United Kingdom); Niendorf, T. [GE Medical Systems, Cardiac- and Neuro-optimized, Leipzig (Germany)

    2001-12-01

    MRI is an important diagnostic tool in patients with epilepsy, but patient motion during long scans may result in image artefacts. We studied the utility of an ultra-fast MR sequence in patients with epilepsy. Ultra-fast low-angle rapid acquisition and relaxation enhancement (UFLARE) images were acquired for 100 consecutive patients and nine control subjects. Scans were compared with routine T2-weighted spin echo images for signal-to-noise ratio, contrast, and conspicuity, followed by a blind review of lesion detectability. UFLARE scans were also acquired for 15 patients who moved during conventional scans. All UFLARE scans had lower signal-to-noise ratios and lower contrast than the T2-weighted images. Compared with T1- and T2-weighted, PD and FLAIR images, 86% of hippocampal sclerosis (HS), 92% of large but only 24% of small white-matter lesions were detected on the blind review of the UFLARE images. Reduced motion artefacts were seen on the UFLARE images in all 15 patients who moved during the conventional scans, and in three patients UFLARE was the only sequence we were able to obtain. Despite the lower lesion detectability for smaller lesions, the use of an ultra-fast MRI sequence such as UFLARE may be very useful in patients who are not able to co-operate during conventional MRI examinations, if a general anaesthetic is to be avoided. (orig.)

  2. Ultra-fast low-angle rapid acquisition and relaxation enhancement (UFLARE) in patients with epilepsy

    International Nuclear Information System (INIS)

    MRI is an important diagnostic tool in patients with epilepsy, but patient motion during long scans may result in image artefacts. We studied the utility of an ultra-fast MR sequence in patients with epilepsy. Ultra-fast low-angle rapid acquisition and relaxation enhancement (UFLARE) images were acquired for 100 consecutive patients and nine control subjects. Scans were compared with routine T2-weighted spin echo images for signal-to-noise ratio, contrast, and conspicuity, followed by a blind review of lesion detectability. UFLARE scans were also acquired for 15 patients who moved during conventional scans. All UFLARE scans had lower signal-to-noise ratios and lower contrast than the T2-weighted images. Compared with T1- and T2-weighted, PD and FLAIR images, 86% of hippocampal sclerosis (HS), 92% of large but only 24% of small white-matter lesions were detected on the blind review of the UFLARE images. Reduced motion artefacts were seen on the UFLARE images in all 15 patients who moved during the conventional scans, and in three patients UFLARE was the only sequence we were able to obtain. Despite the lower lesion detectability for smaller lesions, the use of an ultra-fast MRI sequence such as UFLARE may be very useful in patients who are not able to co-operate during conventional MRI examinations, if a general anaesthetic is to be avoided. (orig.)

  3. FastScript3D - A Companion to Java 3D

    Science.gov (United States)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  4. Lightning fast animation in Element 3D

    CERN Document Server

    Audronis, Ty

    2014-01-01

    An easy-to-follow and all-inclusive guide, in which the underlying principles of 3D animation as well as their importance are explained in detail. The lessons are designed to teach you how to think of 3D animation in such a way that you can troubleshoot any problem, or animate any scene that comes your way.If you are a Digital Artist, Animation Artist, or a Game Programmer and you want to become an expert in Element 3D, this is the book for you. Although there are a lot of basics for beginners in this book, it includes some advanced techniques for both animating in Element 3D, and overcoming i

  5. 3D fast wavelet network model-assisted 3D face recognition

    Science.gov (United States)

    Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.

  6. Fast and precise 3D fluorophore localization by gradient fitting

    Science.gov (United States)

    Ma, Hongqiang; Xu, Jianquan; Jin, Jingyi; Gao, Ying; Lan, Li; Liu, Yang

    2016-02-01

    Astigmatism imaging is widely used to encode the 3D position of fluorophore in single-particle tracking and super-resolution localization microscopy. Here, we present a fast and precise localization algorithm based on gradient fitting to decode the 3D subpixel position of the fluorophore. This algorithm determines the center of the emitter by finding the position with the best-fit gradient direction distribution to the measured point spread function (PSF), and can retrieve the 3D subpixel position of the emitter in a single iteration. Through numerical simulation and experiments with mammalian cells, we demonstrate that our algorithm yields comparable localization precision to the traditional iterative Gaussian function fitting (GF) based method, while exhibits over two orders-of-magnitude faster execution speed. Our algorithm is a promising online reconstruction method for 3D super-resolution microscopy.

  7. Fast Profilometry of 360°Spinning 3D Measurement①

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    A technique of fast 360°spinning 3D measurement is realized.A laser diode used as light source produces 0.5mm wide slit which is projected onto the surface of an object via a groupe of optical lenses.A CCD camera can grab the reflect curve line and its video output is processed by special hardware circuitries.Then the surface height value which the slit directs to will be directly obtained.The spinning table turns one degree each time and totally 360°3D information acquistiton need only 15s.The result and conclusion are presented.

  8. Fast Galerkin BEM for 3D Potential Theory

    Energy Technology Data Exchange (ETDEWEB)

    Nintcheu Fata, Sylvain [ORNL

    2008-01-01

    This paper is concerned with the development of a fast spectral method for solving direct and indirect boundary integral equations in 3D-potential theory. Based on a Galerkin approximation and the Fast Fourier Transform, the proposed method is a generalization of the precorrected-FFT technique to handle not only single-layer potentials but also double-layer potentials and higher-order basis functions. Numerical examples utilizing piecewise linear shape functions are presented to illustrate the performance of the method.

  9. a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud

    Science.gov (United States)

    Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng

    2016-06-01

    This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  10. A fast algorithm for 3D azimuthally anisotropic velocity scan

    KAUST Repository

    Hu, Jingwei

    2014-11-11

    © 2014 European Association of Geoscientists & Engineers. The conventional velocity scan can be computationally expensive for large-scale seismic data sets, particularly when the presence of anisotropy requires multiparameter scanning. We introduce a fast algorithm for 3D azimuthally anisotropic velocity scan by generalizing the previously proposed 2D butterfly algorithm for hyperbolic Radon transforms. To compute semblance in a two-parameter residual moveout domain, the numerical complexity of our algorithm is roughly O(N3logN) as opposed to O(N5) of the straightforward velocity scan, with N being the representative of the number of points in a particular dimension of either data space or parameter space. Synthetic and field data examples demonstrate the superior efficiency of the proposed algorithm.

  11. Research of Fast 3D Imaging Based on Multiple Mode

    Science.gov (United States)

    Chen, Shibing; Yan, Huimin; Ni, Xuxiang; Zhang, Xiuda; Wang, Yu

    2016-02-01

    Three-dimensional (3D) imaging has received increasingly extensive attention and has been widely used currently. Lots of efforts have been put on three-dimensional imaging method and system study, in order to meet fast and high accurate requirement. In this article, we realize a fast and high quality stereo matching algorithm on field programmable gate array (FPGA) using the combination of time-of-flight (TOF) camera and binocular camera. Images captured from the two cameras own a same spatial resolution, letting us use the depth maps taken by the TOF camera to figure initial disparity. Under the constraint of the depth map as the stereo pairs when comes to stereo matching, expected disparity of each pixel is limited within a narrow search range. In the meanwhile, using field programmable gate array (FPGA, altera cyclone IV series) concurrent computing we can configure multi core image matching system, thus doing stereo matching on embedded system. The simulation results demonstrate that it can speed up the process of stereo matching and increase matching reliability and stability, realize embedded calculation, expand application range.

  12. Seismic Wave Amplification in 3D Alluvial Basins: 3D/1D Amplification Ratios from Fast Multipole BEM Simulations

    CERN Document Server

    Fajardo, Kristel C Meza; Chaillat, Stéphanie; Lenti, Luca

    2016-01-01

    In this work, we study seismic wave amplification in alluvial basins having 3D standard geometries through the Fast Multipole Boundary Element Method in the frequency domain. We investigate how much 3D amplification differs from the 1D (horizontal layering) case. Considering incident fields of plane harmonic waves, we examine the relationships between the amplification level and the most relevant physical parameters of the problem (impedance contrast, 3D aspect ratio, vertical and oblique incidence of plane waves). The FMBEM results show that the most important parameters for wave amplification are the impedance contrast and the so-called equivalent shape ratio. Using these two parameters, we derive simple rules to compute the fundamental frequency for various 3D basin shapes and the corresponding 3D/1D amplification factor for 5% damping. Effects on amplification due to 3D basin asymmetry are also studied and incorporated in the derived rules.

  13. 3D RISM theory with fast reciprocal-space electrostatics

    Energy Technology Data Exchange (ETDEWEB)

    Heil, Jochen; Kast, Stefan M., E-mail: stefan.kast@tu-dortmund.de [Physikalische Chemie III, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund (Germany)

    2015-03-21

    The calculation of electrostatic solute-solvent interactions in 3D RISM (“three-dimensional reference interaction site model”) integral equation theory is recast in a form that allows for a computational treatment analogous to the “particle-mesh Ewald” formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems.

  14. Fast vision-based catheter 3D reconstruction

    Science.gov (United States)

    Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D.

    2016-07-01

    Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of  ±0.6 mm and  ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.

  15. Fast 3-d tomographic microwave imaging for breast cancer detection.

    Science.gov (United States)

    Grzegorczyk, Tomasz M; Meaney, Paul M; Kaufman, Peter A; diFlorio-Alexander, Roberta M; Paulsen, Keith D

    2012-08-01

    Microwave breast imaging (using electromagnetic waves of frequencies around 1 GHz) has mostly remained at the research level for the past decade, gaining little clinical acceptance. The major hurdles limiting patient use are both at the hardware level (challenges in collecting accurate and noncorrupted data) and software level (often plagued by unrealistic reconstruction times in the tens of hours). In this paper we report improvements that address both issues. First, the hardware is able to measure signals down to levels compatible with sub-centimeter image resolution while keeping an exam time under 2 min. Second, the software overcomes the enormous time burden and produces similarly accurate images in less than 20 min. The combination of the new hardware and software allows us to produce and report here the first clinical 3-D microwave tomographic images of the breast. Two clinical examples are selected out of 400+ exams conducted at the Dartmouth Hitchcock Medical Center (Lebanon, NH). The first example demonstrates the potential usefulness of our system for breast cancer screening while the second example focuses on therapy monitoring. PMID:22562726

  16. Fast 3D subsurface imaging with stepped-frequency GPR

    Science.gov (United States)

    Masarik, Matthew P.; Burns, Joseph; Thelen, Brian T.; Sutter, Lena

    2015-05-01

    This paper investigates an algorithm for forming 3D images of the subsurface using stepped-frequency GPR data. The algorithm is specifically designed for a handheld GPR and therefore accounts for the irregular sampling pattern in the data and the spatially-variant air-ground interface by estimating an effective "ground-plane" and then registering the data to the plane. The algorithm efficiently solves the 4th-order polynomial for the Snell reflection points using a fully vectorized iterative scheme. The forward operator is implemented efficiently using an accelerated nonuniform FFT (Greengard and Lee, 2004); the adjoint operator is implemented efficiently using an interpolation step coupled with an upsampled FFT. The imaging is done as a linearized version of the full inverse problem, which is regularized using a sparsity constraint to reduce sidelobes and therefore improve image localization. Applying an appropriate sparsity constraint, the algorithm is able to eliminate most the surrounding clutter and sidelobes, while still rendering valuable image properties such as shape and size. The algorithm is applied to simulated data, controlled experimental data (made available by Dr. Waymond Scott, Georgia Institute of Technology), and government-provided data with irregular sampling and air-ground interface.

  17. Temporal-spatial modeling of fast-moving and deforming 3D objects

    Science.gov (United States)

    Wu, Xiaoliang; Wei, Youzhi

    1998-09-01

    This paper gives a brief description of the method and techniques developed for the modeling and reconstruction of fast moving and deforming 3D objects. A new approach using close-range digital terrestrial photogrammetry in conjunction with high speed photography and videography is proposed. A sequential image matching method (SIM) has been developed to automatically process pairs of images taken continuously of any fast moving and deforming 3D objects. Using the SIM technique a temporal-spatial model (TSM) of any fast moving and deforming 3D objects can be developed. The TSM would include a series of reconstructed surface models of the fast moving and deforming 3D object in the form of 3D images. The TSM allows the 3D objects to be visualized and analyzed in sequence. The SIM method, specifically the left-right matching and forward-back matching techniques are presented in the paper. An example is given which deals with the monitoring of a typical blast rock bench in a major open pit mine in Australia. With the SIM approach and the TSM model it is possible to automatically and efficiently reconstruct the 3D images of the blasting process. This reconstruction would otherwise be impossible to achieve using a labor intensive manual processing approach based on 2D images taken from conventional high speed cameras. The case study demonstrates the potential of the SIM approach and the TSM for the automatic identification, tracking and reconstruction of any fast moving and deforming 3D targets.

  18. Fast 3D T1-weighted brain imaging at 3 Tesla with modified 3D FLASH sequence

    International Nuclear Information System (INIS)

    Longitudinal relaxation times (T1) of white and gray matter become close at high magnetic field. Therefore, classical T1 sensitive methods, like spoiled FLASH fail to give a sufficient contrast in human brain imaging at 3 Tesla. An excellent T1 contrast can be achieved at high field by gradient echo imaging with a preparatory inversion pulse. The inversion recovery (IR) preparation can be combined with a fast 2D gradient echo scans. In this paper we present an application of this technique to rapid 3-dimensional imaging. New technique called 3D SIR FLASH was implemented on Burker MSLX system equipped with a 3T, 90 cm horizontal bore magnet working in Centre Hospitalier in Rouffach, France. The new technique was used for comparison of MRI images of healthy volunteers obtained with a traditional 3D imaging. White and gray matter are clearly distinguishable when 3D SIR FLASH is used. The total acquisition time for 128x128x128 image was 5 minutes. Three dimensional visualization with facet representation of surfaces and oblique sections was done off-line on the INDIGO Extreme workstation. New technique is widely used in FORENAP, Centre Hospitalier in Reuffach, Alsace. (author)

  19. Fast implementations of 3D PET reconstruction using vector and parallel programming techniques

    International Nuclear Information System (INIS)

    Computationally intensive techniques that offer potential clinical use have arisen in nuclear medicine. Examples include iterative reconstruction, 3D PET data acquisition and reconstruction, and 3D image volume manipulation including image registration. One obstacle in achieving clinical acceptance of these techniques is the computational time required. This study focuses on methods to reduce the computation time for 3D PET reconstruction through the use of fast computer hardware, vector and parallel programming techniques, and algorithm optimization. The strengths and weaknesses of i860 microprocessor based workstation accelerator boards are investigated in implementations of 3D PET reconstruction

  20. Application of generalized regression neural network on fast 3D reconstruction

    Institute of Scientific and Technical Information of China (English)

    Babakhani Asad; DU Zhi-jiang; SUN Li-ning; Kardan Reza; Mianji A. Fereidoun

    2007-01-01

    In robot-assisted surgery projects,researchers should be able to make fast 3 D reconstruction. Usually 2D images acquired with common diagnostic equipments such as UT, CT and MRI are not enough and complete for an accurate 3D reconstruction. There are some interpolation methods for approximating non value voxels which consume large execution time. A novel algorithm is introduced based on generalized regression neural network (GRNN) which can interpolate unknown voxles fast and reliable. The GRNN interpolation is used to produce new 2D images between each two succeeding ultrasonic images. It is shown that the composition of GRNN with image distance transformation can produce higher quality 3D shapes. The results of this method are compared with other interpolation methods practically. It shows this method can decrease overall time consumption on online 3D reconstruction.

  1. SElf-gated Non-Contrast-Enhanced FUnctional Lung imaging (SENCEFUL) using a quasi-random fast low-angle shot (FLASH) sequence and proton MRI.

    Science.gov (United States)

    Fischer, André; Weick, Stefan; Ritter, Christian O; Beer, Meinrad; Wirth, Clemens; Hebestreit, Helge; Jakob, Peter M; Hahn, Dietbert; Bley, Thorsten; Köstler, Herbert

    2014-08-01

    Obtaining functional information on the human lung is of tremendous interest in the characterization of lung defects and pathologies. However, pulmonary ventilation and perfusion maps usually require contrast agents and the application of electrocardiogram (ECG) triggering and breath holds to generate datasets free of motion artifacts. This work demonstrates the possibility of obtaining highly resolved perfusion-weighted and ventilation-weighted images of the human lung using proton MRI and the SElf-gated Non-Contrast-Enhanced FUnctional Lung imaging (SENCEFUL) technique. The SENCEFUL technique utilizes a two-dimensional fast low-angle shot (FLASH) sequence with quasi-random sampling of phase-encoding (PE) steps for data acquisition. After every readout, a short additional acquisition of the non-phase-encoded direct current (DC) signal necessary for self-gating was added. By sorting the quasi-randomly acquired data according to respiratory and cardiac phase derived from the DC signal, datasets of representative respiratory and cardiac cycles could be accurately reconstructed. By application of the Fourier transform along the temporal dimension, functional maps (perfusion and ventilation) were obtained. These maps were compared with dynamic contrast-enhanced (DCE, perfusion) as well as standard Fourier decomposition (FD, ventilation) reference datasets. All datasets were additionally scored by two experienced radiologists to quantify image quality. In addition, one initial patient examination using SENCEFUL was performed. Functional images of healthy volunteers and a patient diagnosed with hypoplasia of the left pulmonary artery and left-sided pulmonary fibrosis were successfully obtained. Perfusion-weighted images corresponded well to DCE-MRI data; ventilation-weighted images offered a significantly better depiction of the lung periphery compared with standard FD. Furthermore, the SENCEFUL technique hints at a potential clinical relevance by successfully detecting

  2. Fast 3D EM scattering and radiation solvers based on MLFMA

    Institute of Scientific and Technical Information of China (English)

    Hu Jun; Nie Zaiping; Lei Lin; Hu Jie; Gong Xiaodong; Zhao Huapeng

    2008-01-01

    As the fastest integral equation solver to date, the multilevel fast multipole algorithm (MLFMA)has been applied successfully to solve electromagnetic scattering and radiation from 3D electrically large objects.But for very large-scale problems, the storage and CPU time required in MLFMA are still expensive. Fast 3D electromagnetic scattering and radiation solvers are introduced based on MLFMA. A brief review of MLFMA is first given. Then, four fast methods including higher-order MLFMA (HO-MLFMA), fast far field approximation combined with adaptive ray propagation MLFMA (FAFFA-ARP-MLFMA), local MLFMA and parallel MLFMA are introduced. Some typical numerical results demonstrate the efficiency of these fast methods.

  3. Modifications of the PRONTO 3D finite element program tailored to fast burst nuclear reactor design

    International Nuclear Information System (INIS)

    This update discusses modifications of PRONTO 3D tailored to the design of fast burst nuclear reactors. A thermoelastic constitutive model and spatially variant thermal history load were added for this special application. Included are descriptions of the thermoelastic constitutive model and the thermal loading algorithm, two example problems used to benchmark the new capability, a user's guide, and PRONTO 3D input files for the example problems. The results from PRONTO 3D thermoelastic finite element analysis are benchmarked against measured data and finite difference calculations. PRONTO 3D is a three-dimensional transient solid dynamics code for analyzing large deformations of highly non-linear materials subjected to high strain rates. The code modifications are implemented in PRONTO 3D Version 5.3.3. 12 refs., 30 figs., 9 tabs

  4. A fast 3D reconstruction system with a low-cost camera accessory.

    Science.gov (United States)

    Zhang, Yiwei; Gibson, Graham M; Hay, Rebecca; Bowman, Richard W; Padgett, Miles J; Edgar, Matthew P

    2015-06-09

    Photometric stereo is a three dimensional (3D) imaging technique that uses multiple 2D images, obtained from a fixed camera perspective, with different illumination directions. Compared to other 3D imaging methods such as geometry modeling and 3D-scanning, it comes with a number of advantages, such as having a simple and efficient reconstruction routine. In this work, we describe a low-cost accessory to a commercial digital single-lens reflex (DSLR) camera system allowing fast reconstruction of 3D objects using photometric stereo. The accessory consists of four white LED lights fixed to the lens of a commercial DSLR camera and a USB programmable controller board to sequentially control the illumination. 3D images are derived for different objects with varying geometric complexity and results are presented, showing a typical height error of <3 mm for a 50 mm sized object.

  5. Application of COREMELT-3D code at analysis of severe fast reactor accidents

    International Nuclear Information System (INIS)

    The code COREMELT for calculations of initial and transition stages of severe accident is considered. It is used to conduct connected calculations of nonstationary neutronic and thermohydraulic processes in sodium fast reactor core. The code has some versions depending on dimensions of solving problem and consists of thermohydraulic module COREMELT and neutronic module RADAR. Using the code COREMELT-3D connected calculations of core disassembly accidents of ULOF and UTOP type have been conducted for sodium fast reactors safety analysis. The main problem of code COREMELT-3D use is duration of calculation, speeding of the code is possible when calculating algorithms are parallelized

  6. Automatic 3D simulation of crack propagation in consideration of 3D effects and the use of fast boundary element formulations; Automatische 3D-Rissfortschrittssimulation unter Beruecksichtigung von 3D-Effekten und Anwendung schneller Randelementformulierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, K.

    2005-07-15

    This is an important contribution to reliable simulation of stable fatigue crack growth in real 3D problems under complex loads. The nonlinear crack propagation process requires an incremental solution algorithm. Each increment starts with a load analysis of the current crack configuration using the fast dual boundary element method. The potential of this method is more fully utilized with a fast boundary element formulation. Afater this, a real 3D crack propagation criterion is evaluated which is based on experimental findings and is realized within a preditor-corrector method. Finally, the numeric model is generated for the next increment. This generation is made automatically using a local renetworking algorithm. With the crack propagation module thus developed, complex components, e.g. motor car components, can be analyzed fracture-mechanically on a standard PC. (orig.) [German] Die vorliegende Arbeit leistet einen wesentlichen Beitrag zur zuverlaessigen Simulation des stabilen Ermuedungsrisswachstums in realen 3D-Problemen unter komplexen Belastungen. Der nichtlineare Vorgang des Risswachstums erfordert einen inkrementellen Loesungsalgorithmus. In jedem Inkrement wird zunaechst eine Beanspruchungsanalyse der aktuellen Risskonfiguration mit der leistungsstarken dualen Randelementmethode durchgefuehrt. Das Potenzial dieser Methode wird mit einer schnellen Randelementformulierung weiter ausgeschoepft. Anschliessend wird ein echtes 3D-Rissfortschrittskriterium ausgewertet, welches auf experimentellen Erkenntnissen beruht und innerhalb eines Praediktor-Korrektor-Verfahrens realisiert ist. Abschliessend wird das numerische Modell fuer das naechste Inkrement generiert. Diese Generierung erfolgt automatisch mit einem lokalen Neuvernetzungsalgorithmus. Mit dem entwickelten Rissfortschrittsmodul koennen komplexe Bauteile, z.B. aus dem Automobilbau, erfolgreich auf einem Standard-PC bruchmechanisch analysiert werden.

  7. Three Dimensional Fast Exact Euclidean Distance (3D-FEED) Maps

    NARCIS (Netherlands)

    Schouten, Theo E.; Kuppens, Harco C.; Broek, van den Egon L.

    2006-01-01

    In image and video analysis, distance maps are frequently used. They provide the (Euclidean) distance (ED) of background pixels to the nearest object pixel. Recently, the Fast Exact Euclidean Distance (FEED) transformation was launched. In this paper, we present the three dimensional (3D) version of

  8. Fast 3D shape measurement using Fourier transform profilometry without phase unwrapping

    Science.gov (United States)

    Song, Kechen; Hu, Shaopeng; Wen, Xin; Yan, Yunhui

    2016-09-01

    This paper presents a novel, simple, yet fast 3D shape measurement method using Fourier transform profilometry. Different from the conventional Fourier transform profilometry, this proposed method introduces the binocular stereo vision and employs two image pairs (i.e., original image pairs and fringe image pairs) to restructure 3D shape. In this proposed method, instead of phase unwrapping algorithm, a coarse disparity map is adopted as a constraint condition to realize phase matching using wrapped phase. Since the local phase matching and sub-pixel disparity refinement are proposed to obtain high measuring accuracy, high-quality phase is not required. The validity of the proposed method is verified by experiments.

  9. On the major DYN3D developments for fast reactor design and transient analysis

    Energy Technology Data Exchange (ETDEWEB)

    Merk, B.; Kliem, S. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety Div.

    2013-07-01

    Due to the French project ASTRID, the European CP-ESFR project, and the MYRRHA/FASTEF project, the research work on fast reactors has got a new push in Europe. Additionally to this European projects a strong project is growing in Russia based on the lead cooled fast reactor design BREST. Following this trend, the Institute of Resource Ecology at the Helmholtz-Zentrum Dresden-Rossendorf has decided to start several projects dedicated to fast reactor technology, among them the extension of the well validated LWR core simulator DYN3D. The new developments, first validation results, and the next strategic steps for the adaption of the code for the improved simulation of fast reactor cores are presented. (orig.)

  10. Effects of Refocusing Flip Angle Modulation and View Ordering in 3D Fast Spin Echo

    OpenAIRE

    Busse, Reed F.; Brau, Anja C.S.; Vu, Anthony; Michelich, Charles R.; Bayram, Ersin; Kijowski, Richard; Reeder, Scott B; Howard A Rowley

    2008-01-01

    Recent advances have reduced scan time in three-dimensional fast spin echo (3D-FSE) imaging, including very long echo trains through refocusing flip angle (FA) modulation and 2D-accelerated parallel imaging. This work describes a method to modulate refocusing FAs that produces sharp point spread functions (PSFs) from very long echo trains while exercising direct control over minimum, center-k-space, and maximum FAs in order to accommodate the presence of flow and motion, SNR requirements, and...

  11. Fast Probabilistic Fusion of 3d Point Clouds via Occupancy Grids for Scene Classification

    Science.gov (United States)

    Kuhn, Andreas; Huang, Hai; Drauschke, Martin; Mayer, Helmut

    2016-06-01

    High resolution consumer cameras on Unmanned Aerial Vehicles (UAVs) allow for cheap acquisition of highly detailed images, e.g., of urban regions. Via image registration by means of Structure from Motion (SfM) and Multi View Stereo (MVS) the automatic generation of huge amounts of 3D points with a relative accuracy in the centimeter range is possible. Applications such as semantic classification have a need for accurate 3D point clouds, but do not benefit from an extremely high resolution/density. In this paper, we, therefore, propose a fast fusion of high resolution 3D point clouds based on occupancy grids. The result is used for semantic classification. In contrast to state-of-the-art classification methods, we accept a certain percentage of outliers, arguing that they can be considered in the classification process when a per point belief is determined in the fusion process. To this end, we employ an octree-based fusion which allows for the derivation of outlier probabilities. The probabilities give a belief for every 3D point, which is essential for the semantic classification to consider measurement noise. For an example point cloud with half a billion 3D points (cf. Figure 1), we show that our method can reduce runtime as well as improve classification accuracy and offers high scalability for large datasets.

  12. Usefulness of 3D-fast-SPGR MR image for gamma knife radiosurgery planning

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yasushi; Mori, Yoshimasa; Kobayashi, Tatsuya; Koshikawa, Tokiko [Komaki City Hospital, Aichi (Japan)

    2001-12-01

    Optimal stereotactic radiosurgery depends on accurate definition of the target and surrounding structures on neuroimaging. The recently developed 3D-Fast-SPGR magnetic resonance (MR) imaging provides high-resolution images of brain anatomy. We investigated various parameters in 3D-Fast-SPGR images both in experimental phantom studies and in assessment of clinical cases of cerebral arteriovenous malformation (AVM) and trigeminal neuralgia. In addition, we investigated the accuracy of coordinates in 3D-Fast-SPGR images. In phantom study, the signal-to-noise ratio (SNR) was best at TE=minimum full and band width (BW)=16 kHz. Contrast ratio between 1.0 mmol/l gadolinium (Gd) solution (compatible with contrast-enhanced vessels) and 0.2 mmol/l Gd solution (compatible with brain parenchyma) was largest at TE=minimum and band width=32 kHz. However, in clinical images of patients, shorter TE (minimum) more clearly reveals feeding arteries as high-intensity vessels without low-intensity flow voids in the assessment of AVMs and identifies arteries pressing against the trigeminal nerve in trigeminal neurlgia cases. We recommend parameters of TE=minimum, band width=16 kHz, TR=19.5 ms, TE=4.2 ms, and FA=25 degrees for radiosurgery dose planning in cases of AVM or trigeminal neuralgia. We also checked the accuracy of each coordinate obtained on 3D-Fast-SPGR axial images. Around the center of Leksell stereotactic G-frame (x=50-150, y=50-150, z=70-130), the error of x-coordinates was 0.48 {+-}0.12 mm, that of y-coordinates was 0.36{+-}0.1 mm, and that of z-coordinates was 0.62{+-}0.38 mm. The error was minimum at the center (x=100, y=100, and z=100). In conclusion, 3D-Fast-SPGR MR imaging is a fast, non-invasive, accurate imaging method for stereotactic radiosurgery. It provides useful information on vascular and parenchymal brain anatomy for optimal dose planning, especially in cases of AVM and trigeminal neuralgia. We believe that it can be used with confidence as the sole

  13. Usefulness of 3D-fast-SPGR MR image for gamma knife radiosurgery planning

    International Nuclear Information System (INIS)

    Optimal stereotactic radiosurgery depends on accurate definition of the target and surrounding structures on neuroimaging. The recently developed 3D-Fast-SPGR magnetic resonance (MR) imaging provides high-resolution images of brain anatomy. We investigated various parameters in 3D-Fast-SPGR images both in experimental phantom studies and in assessment of clinical cases of cerebral arteriovenous malformation (AVM) and trigeminal neuralgia. In addition, we investigated the accuracy of coordinates in 3D-Fast-SPGR images. In phantom study, the signal-to-noise ratio (SNR) was best at TE=minimum full and band width (BW)=16 kHz. Contrast ratio between 1.0 mmol/l gadolinium (Gd) solution (compatible with contrast-enhanced vessels) and 0.2 mmol/l Gd solution (compatible with brain parenchyma) was largest at TE=minimum and band width=32 kHz. However, in clinical images of patients, shorter TE (minimum) more clearly reveals feeding arteries as high-intensity vessels without low-intensity flow voids in the assessment of AVMs and identifies arteries pressing against the trigeminal nerve in trigeminal neuralgia cases. We recommend parameters of TE=minimum, band width=16 kHz, TR=19.5 ms, TE=4.2 ms, and FA=25 degrees for radiosurgery dose planning in cases of AVM or trigeminal neuralgia. We also checked the accuracy of each coordinate obtained on 3D-Fast-SPGR axial images. Around the center of Leksell stereotactic G-frame (x=50-150, y=50-150, z=70-130), the error of x-coordinates was 0.48 ±0.12 mm, that of y-coordinates was 0.36±0.1 mm, and that of z-coordinates was 0.62±0.38 mm. The error was minimum at the center (x=100, y=100, and z=100). In conclusion, 3D-Fast-SPGR MR imaging is a fast, non-invasive, accurate imaging method for stereotactic radiosurgery. It provides useful information on vascular and parenchymal brain anatomy for optimal dose planning, especially in cases of AVM and trigeminal neuralgia. We believe that it can be used with confidence as the sole imaging

  14. Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements

    Science.gov (United States)

    Singh, Chandan; Saini, Jaswinder Singh

    2016-07-01

    In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.

  15. Application of A Fast Multipole BIEM for Flow Diffraction from A 3D Body

    Institute of Scientific and Technical Information of China (English)

    滕斌; 宁德志

    2004-01-01

    A Fast Multipole Method (FMM) is developed as a numerical approach to the reduction of the computational cost and requirement memory capacity for a large in solving large-scale problems. In this paper it is applied to the boundary integral equation method (BIEM) for current diffraction from arbitrary 3D bodies. The boundary integral equation is discretized by higher order elements, the FMM is applied to avoid the matrix/vector product, and the resulting algebraic equation is solved by the Generalized Conjugate Residual method (GCR). Numerical examination shows that the FMM is more efficient than the direct evaluation method in computational cost and storage of computers.

  16. 3D fast adaptive correlation imaging for large-scale gravity data based on GPU computation

    Science.gov (United States)

    Chen, Z.; Meng, X.; Guo, L.; Liu, G.

    2011-12-01

    In recent years, large scale gravity data sets have been collected and employed to enhance gravity problem-solving abilities of tectonics studies in China. Aiming at the large scale data and the requirement of rapid interpretation, previous authors have carried out a lot of work, including the fast gradient module inversion and Euler deconvolution depth inversion ,3-D physical property inversion using stochastic subspaces and equivalent storage, fast inversion using wavelet transforms and a logarithmic barrier method. So it can be say that 3-D gravity inversion has been greatly improved in the last decade. Many authors added many different kinds of priori information and constraints to deal with nonuniqueness using models composed of a large number of contiguous cells of unknown property and obtained good results. However, due to long computation time, instability and other shortcomings, 3-D physical property inversion has not been widely applied to large-scale data yet. In order to achieve 3-D interpretation with high efficiency and precision for geological and ore bodies and obtain their subsurface distribution, there is an urgent need to find a fast and efficient inversion method for large scale gravity data. As an entirely new geophysical inversion method, 3D correlation has a rapid development thanks to the advantage of requiring no a priori information and demanding small amount of computer memory. This method was proposed to image the distribution of equivalent excess masses of anomalous geological bodies with high resolution both longitudinally and transversely. In order to tranform the equivalence excess masses into real density contrasts, we adopt the adaptive correlation imaging for gravity data. After each 3D correlation imaging, we change the equivalence into density contrasts according to the linear relationship, and then carry out forward gravity calculation for each rectangle cells. Next, we compare the forward gravity data with real data, and

  17. Fast fluid-attenuated inversion-recovery imaging: first experience with a 3D version in epilepsy

    International Nuclear Information System (INIS)

    We developed a 3D version of fast fluid-attenuated inversion-recovery imaging (FLAIR) which provides images with a slice thickness of 1.5 mm. We present our initial experience with 3D fast FLAIR in patients with epilepsy. We compared 3D fast FLAIR (slice thickness 1.5 mm), 2D fast FLAIR (slice thickness 5 mm) and a 3D spoiled GRASS (IRSPGR) sequence (slice thickness 1.5 mm) in 10 patients with lesional epilepsy (head injury 1, hippocampal sclerosis 2, low-grade glioma 2, dysembryoplastic neuroepithelial tumour 2, polymicrogyria 1, perinatal infarct 1 and presumed thrombosed aneurysm 1). Both 2D and 3D fast FLAIR sequences yielded higher conspicuity for lesions than the T1-weighted IRSPGR sequence, except in the patient with polymicrogyria. The extent of the lesion, in particular that of low-grade tumours, was best assessed on 3D fast FLAIR images. 3D fast FLAIR may be a useful additional tool especially for imaging low-grade tumours. (orig.)

  18. Fast computation of scattering from 3D complex structures by MLFMA

    Institute of Scientific and Technical Information of China (English)

    Hu Jun; Nie Zaiping; Que Xiaofeng; Meng Min

    2008-01-01

    This paper introduces the research work on the extension of multilevel fast multipole algorithm (MLFMA) to 3D complex structures including coating object,thin dielectric sheet,composite dielectric and conductor,cavity.The impedance boundary condition is used for scattering from the object coated by thin lossy material.Instead of volume integral equation,surface integral equation is applied in case of thin dielectric sheet through resistive sheet boundary condition.To realize the fast computation of scattering from composite homogeneous dielectric and conductor,the surface integral equation based on equivalence principle is used.Compared with the traditional volume integral equation,the surface integral equation reduces greatly the number of unknowns.To compute conducting cavity with electrically large aperture,an electric field integral equation is applied.Some numerical results are given to demonstrate the validity and accuracy of the present methods.

  19. Fast 3D modeling in complex environments using a single Kinect sensor

    Science.gov (United States)

    Yue, Haosong; Chen, Weihai; Wu, Xingming; Liu, Jingmeng

    2014-02-01

    Three-dimensional (3D) modeling technology has been widely used in inverse engineering, urban planning, robot navigation, and many other applications. How to build a dense model of the environment with limited processing resources is still a challenging topic. A fast 3D modeling algorithm that only uses a single Kinect sensor is proposed in this paper. For every color image captured by Kinect, corner feature extraction is carried out first. Then a spiral search strategy is utilized to select the region of interest (ROI) that contains enough feature corners. Next, the iterative closest point (ICP) method is applied to the points in the ROI to align consecutive data frames. Finally, the analysis of which areas can be walked through by human beings is presented. Comparative experiments with the well-known KinectFusion algorithm have been done and the results demonstrate that the accuracy of the proposed algorithm is the same as KinectFusion but the computing speed is nearly twice of KinectFusion. 3D modeling of two scenes of a public garden and traversable areas analysis in these regions further verified the feasibility of our algorithm.

  20. 3D Fast Automatic Segmentation of Kidney Based on Modified AAM and Random Forest.

    Science.gov (United States)

    Jin, Chao; Shi, Fei; Xiang, Dehui; Jiang, Xueqing; Zhang, Bin; Wang, Ximing; Zhu, Weifang; Gao, Enting; Chen, Xinjian

    2016-06-01

    In this paper, a fully automatic method is proposed to segment the kidney into multiple components: renal cortex, renal column, renal medulla and renal pelvis, in clinical 3D CT abdominal images. The proposed fast automatic segmentation method of kidney consists of two main parts: localization of renal cortex and segmentation of kidney components. In the localization of renal cortex phase, a method which fully combines 3D Generalized Hough Transform (GHT) and 3D Active Appearance Models (AAM) is applied to localize the renal cortex. In the segmentation of kidney components phase, a modified Random Forests (RF) method is proposed to segment the kidney into four components based on the result from localization phase. During the implementation, a multithreading technology is applied to speed up the segmentation process. The proposed method was evaluated on a clinical abdomen CT data set, including 37 contrast-enhanced volume data using leave-one-out strategy. The overall true-positive volume fraction and false-positive volume fraction were 93.15%, 0.37% for renal cortex segmentation; 83.09%, 0.97% for renal column segmentation; 81.92%, 0.55% for renal medulla segmentation; and 80.28%, 0.30% for renal pelvis segmentation, respectively. The average computational time of segmenting kidney into four components took 20 seconds. PMID:26742124

  1. 3D segmentation of medical images using a fast multistage hybrid algorithm

    International Nuclear Information System (INIS)

    In this paper, we propose a fast multistage hybrid algorithm for 3D segmentation of medical images. We first employ a morphological recursive erosion operation to reduce the connectivity between the object to be segmented and its neighborhood; then the fast marching method is used to greatly accelerate the initial propagation of a surface front from the user defined seed structure to a surface close to the desired boundary; a morphological reconstruction method then operates on this surface to achieve an initial segmentation result; and finally morphological recursive dilation is employed to recover any structure lost in the first stage of the algorithm. This approach is tested on 60 CT or MRI images of the brain, heart and urinary system, to demonstrate the robustness of this technique across a variety of imaging modalities and organ systems. The algorithm is also validated against datasets for which ''truth'' is known. These measurements revealed that the algorithm achieved a mean ''similarity index'' of 0.966 across the three organ systems. The execution time for this algorithm, when run on a 550 MHz Dual PIII-based PC runningWindows NT, and extracting the cortex from brain MRIs, the cardiac surface from dynamic CT, and the kidneys from 3D CT, was 38, 46 and 23 s, respectively. (orig.)

  2. Capabilities of a Global 3D MHD Model for Monitoring Extremely Fast CMEs

    Science.gov (United States)

    Wu, C. C.; Plunkett, S. P.; Liou, K.; Socker, D. G.; Wu, S. T.; Wang, Y. M.

    2015-12-01

    Since the start of the space era, spacecraft have recorded many extremely fast coronal mass ejections (CMEs) which have resulted in severe geomagnetic storms. Accurate and timely forecasting of the space weather effects of these events is important for protecting expensive space assets and astronauts and avoiding communications interruptions. Here, we will introduce a newly developed global, three-dimensional (3D) magnetohydrodynamic (MHD) model (G3DMHD). The model takes the solar magnetic field maps at 2.5 solar radii (Rs) and intepolates the solar wind plasma and field out to 18 Rs using the algorithm of Wang and Sheeley (1990, JGR). The output is used as the inner boundary condition for a 3D MHD model. The G3DMHD model is capable of simulating (i) extremely fast CME events with propagation speeds faster than 2500 km/s; and (ii) multiple CME events in sequence or simultaneously. We will demonstrate the simulation results (and comparison with in-situ observation) for the fastest CME in record on 23 July 2012, the shortest transit time in March 1976, and the well-known historic Carrington 1859 event.

  3. 3D WKB solution for fast magnetoacoustic wave behaviour around an X-line

    CERN Document Server

    McLaughlin, J A; Regnier, S; Spoors, D L

    2016-01-01

    We study the propagation of a fast magnetoacoustic wave in a 3D magnetic field created from two magnetic dipoles. The magnetic topology contains an X-line. We aim to contribute to the overall understanding of MHD wave propagation within inhomogeneous media, specifically around X-lines. We investigate the linearised, 3D MHD equations under the assumptions of ideal and cold plasma. We utilise the WKB approximation and Charpit's method during our investigation. It is found that the behaviour of the fast magnetoacoustic wave is entirely dictated by the local, inhomogeneous, equilibrium Alfv\\'en speed profile. All parts of the wave experience refraction during propagation, where the magnitude of the refraction effect depends on the location of an individual wave element within the inhomogeneous magnetic field. The X-line, along which the Alfv\\'en speed is identically zero, acts as a focus for the refraction effect. There are two main types of wave behaviour: part of the wave is either trapped by the X-line or esca...

  4. Implementation of Accurate and Fast DNA Cytometry by Confocal Microscopy in 3D

    Directory of Open Access Journals (Sweden)

    Lennert S. Ploeger

    2005-01-01

    Full Text Available Background: DNA cytometry is a powerful method for measuring genomic instability. Standard approaches that measure DNA content of isolated cells may induce selection bias and do not allow interpretation of genomic instability in the context of the tissue. Confocal Laser Scanning Microscopy (CLSM provides the opportunity to perform 3D DNA content measurements on intact cells in thick histological sections. Because the technique is technically challenging and time consuming, only a small number of usually manually selected nuclei were analyzed in different studies, not allowing wide clinical evaluation. The aim of this study was to describe the conditions for accurate and fast 3D CLSM cytometry with a minimum of user interaction to arrive at sufficient throughput for pilot clinical applications. Methods: Nuclear DNA was stained in 14 μm thick tissue sections of normal liver and adrenal stained with either YOYO-1 iodide or TO-PRO-3 iodide. Different pre-treatment strategies were evaluated: boiling in citrate buffer (pH 6.0 followed by RNase application for 1 or 18 hours, or hydrolysis. The image stacks obtained with CLSM at microscope magnifications of ×40 or ×100 were analyzed off-line using in-house developed software for semi-automated 3D fluorescence quantitation. To avoid sectioned nuclei, the top and bottom of the stacks were identified from ZX and YZ projections. As a measure of histogram quality, the coefficient of variation (CV of the diploid peak was assessed. Results: The lowest CV (10.3% was achieved with a protocol without boiling, with 1 hour RNase treatment and TO-PRO-3 iodide staining, and a final image recording at ×60 or ×100 magnifications. A sample size of 300 nuclei was generally achievable. By filtering the set of automatically segmented nuclei based on volume, size and shape, followed by interactive removal of the few remaining faulty objects, a single measurement was completely analyzed in approximately 3 hours

  5. Fast phase-added stereogram algorithm for generation of photorealistic 3D content.

    Science.gov (United States)

    Kang, Hoonjong; Stoykova, Elena; Yoshikawa, Hiroshi

    2016-01-20

    A new phase-added stereogram algorithm for accelerated computation of holograms from a point cloud model is proposed. The algorithm relies on the hologram segmentation, sampling of directional information, and usage of the fast Fourier transform with a finer grid in the spatial frequency domain than is provided by the segment size. The algorithm gives improved quality of reconstruction due to new phase compensation introduced in the segment fringe patterns. The result is finer beam steering leading to high peak intensity and a large peak signal-to-noise ratio in reconstruction. The feasibility of the algorithm is checked by the generation of 3D contents for a color wavefront printer. PMID:26835945

  6. Fast Magnetic Twister and Plasma Perturbations in a 3-D Coronal Arcade

    CERN Document Server

    Murawski, K; Musielak, Z E

    2014-01-01

    We present results of 3-D numerical simulations of a fast magnetic twister excited above a foot-point of the potential solar coronal arcade that is embedded in the solar atmosphere with the initial VAL-IIIC temperature profile, which is smoothly extended into the solar corona. With the use of the FLASH code, we solve 3-D ideal magnetohydrodynamic equations by specifying a twist in the azimuthal component of magnetic field in the solar chromosphere. The imposed perturbation generates torsional Alfv\\'en waves as well as plasma swirls that reach the other foot-point of the arcade and partially reflect back from the transition region. The two vortex channels are evident in the generated twisted flux-tube with a fragmentation near its apex that results from the initial twist as well as from the morphology of the tube. The numerical results are compared to observational data of plasma motions in a solar prominence. The comparison shows that the numerical results and the data qualitatively agree even though the obse...

  7. A Fast Multipole Algorithm with Virtual Cube Partitioning for 3-D Capacitance Extraction

    Institute of Scientific and Technical Information of China (English)

    YANGZhaozhi; WANGZeyi

    2004-01-01

    In this paper a fast indirect boundaryelement method based on the multipole algorithm for capacitance extraction of three-dimensional (3-D) geometries, virtual cube multipole algorithm, is described. First,each 2-D boundary element is regarded as a set of particles with charge rather than a single particle, so the relations between the positions of elements themselves are considered instead of the relations between the center-points of the elements, and a new strategy for cube partitioning is introduced. This strategy overcomes the inadequacy of the methods that associating panels to particles, does not need to break up every panel contained in more than one cube, and has higher speed and precision. Next, a new method is proposed to accelerate the potential integration between the panels that are near to each other. Making good use of the similarity in the 2-D boundary integration,the fast potential integral approach decreases the burden of direct potential computing. Experiments confirm that the algorithm is accurate and has nearly linear computational growth as O(nm), where n is the number of panels and rn is the number of conductors. The new algorithm is implemented and the performance is compared with previous algorithms, such as Fastcap2 of MIT, for k×k bus examples.

  8. Fast 3D Net Expeditions: Tools for Effective Scientific Collaboration on the World Wide Web

    Science.gov (United States)

    Watson, Val; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Two new technologies, the FASTexpedition and Remote FAST, have been developed that provide remote, 3D (three dimensional), high resolution, dynamic, interactive viewing of scientific data. The FASTexpedition permits one to access scientific data from the World Wide Web, take guided expeditions through the data, and continue with self controlled expeditions through the data. Remote FAST permits collaborators at remote sites to simultaneously view an analysis of scientific data being controlled by one of the collaborators. Control can be transferred between sites. These technologies are now being used for remote collaboration in joint university, industry, and NASA projects. Also, NASA Ames Research Center has initiated a project to make scientific data and guided expeditions through the data available as FASTexpeditions on the World Wide Web for educational purposes. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG (Motion Picture Expert Group) movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewers local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit). The advantages of this new technology over using video format are: (1) The visual is much higher in resolution (1280x1024 pixels with 24 bits of color) than typical video format transmitted over the network. (2) The form of the visualization can be controlled interactively (because the viewer is interactively controlling the visualization tool running on his workstation). (3) A rich variety of guided expeditions through the data can be included easily. (4) A capability is provided for other sites to see a visual analysis of one site as the analysis is interactively performed. Control of

  9. Real-time 3D medical structure segmentation using fast evolving active contours

    Science.gov (United States)

    Wang, Xiaotao; Wang, Qiang; Hao, Zhihui; Xu, Kuanhong; Guo, Ping; Ren, Haibing; Jang, Wooyoung; Kim, Jung-bae

    2014-03-01

    Segmentation of 3D medical structures in real-time is an important as well as intractable problem for clinical applications due to the high computation and memory cost. We propose a novel fast evolving active contour model in this paper to reduce the requirements of computation and memory. The basic idea is to evolve the brief represented dynamic contour interface as far as possible per iteration. Our method encodes zero level set via a single unordered list, and evolves the list recursively by adding activated adjacent neighbors to its end, resulting in active parts of the zero level set moves far enough per iteration along with list scanning. To guarantee the robustness of this process, a new approximation of curvature for integer valued level set is proposed as the internal force to penalize the list smoothness and restrain the list continual growth. Besides, list scanning times are also used as an upper hard constraint to control the list growing. Together with the internal force, efficient regional and constrained external forces, whose computations are only performed along the unordered list, are also provided to attract the list toward object boundaries. Specially, our model calculates regional force only in a narrowband outside the zero level set and can efficiently segment multiple regions simultaneously as well as handle the background with multiple components. Compared with state-of-the-art algorithms, our algorithm is one-order of magnitude faster with similar segmentation accuracy and can achieve real-time performance for the segmentation of 3D medical structures on a standard PC.

  10. Fast 3D inversion of airborne gravity-gradiometry data using Lanczos bidiagonalization method

    Science.gov (United States)

    Meng, Zhaohai; Li, Fengting; Zhang, Dailei; Xu, Xuechun; Huang, Danian

    2016-09-01

    We developed a new fast inversion method for to process and interpret airborne gravity gradiometry data, which was based on Lanczos bidiagonalization algorithm. Here, we describe the application of this new 3D gravity gradiometry inversion method to recover a subsurface density distribution model from the airborne measured gravity gradiometry anomalies. For this purpose, the survey area is divided into a large number of rectangular cells with each cell possessing a constant unknown density. It is well known that the solution of large linear gravity gradiometry is an ill-posed problem since using the smoothest inversion method is considerably time consuming. We demonstrate that the Lanczos bidiagonalization method can be an appropriate algorithm to solve a Tikhonov solver time cost function for resolving the large equations within a short time. Lanczos bidiagonalization is designed to make the very large gravity gradiometry forward modeling matrices to become low-rank, which will considerably reduce the running time of the inversion method. We also use a weighted generalized cross validation method to choose the appropriate Tikhonov parameter to improve inversion results. The inversion incorporates a model norm that allows us to attain the smoothing and depth of the solution; in addition, the model norm counteracts the natural decay of the kernels, which concentrate at shallow depths. The method is applied on noise-contaminated synthetic gravity gradiometry data to demonstrate its suitability for large 3D gravity gradiometry data inversion. The airborne gravity gradiometry data from the Vinton Salt Dome, USE, were considered as a case study. The validity of the new method on real data is discussed with reference to the Vinton Dome inversion result. The intermediate density values in the constructed model coincide well with previous results and geological information. This demonstrates the validity of the gravity gradiometry inversion method.

  11. Fast 3D-EM reconstruction using Planograms for stationary planar positron emission mammography camera.

    Science.gov (United States)

    Motta, A; Guerra, A Del; Belcari, N; Moehrs, S; Panetta, D; Righi, S; Valentini, D

    2005-12-01

    At the University of Pisa we are building a PEM prototype, the YAP-PEM camera, consisting of two opposite 6 x 6 x 3 cm3 detector heads of 30 x 30 YAP:Ce finger crystals, 2 x 2 x 30 mm3 each. The camera will be equipped with breast compressors. The acquisition will be stationary. Compared with a whole body PET scanner, a planar Positron Emission Mammography (PEM) camera allows a better, easier and more flexible positioning around the breast in the vicinity of the tumor: this increases the sensitivity and solid angle coverage, and reduces cost. To avoid software rejection of data during the reconstruction, resulting in a reduced sensitivity, we adopted a 3D-EM reconstruction which uses all of the collected Lines Of Response (LORs). This skips the PSF distortion given by data rebinning procedures and/or Fourier methods. The traditional 3D-EM reconstruction requires several times the computation of the LOR-voxel correlation matrix, or probability matrix {p(ij)}; therefore is highly time-consuming. We use the sparse and symmetry properties of the matrix {p(ij)} to perform fast 3D-EM reconstruction. Geometrically, a 3D grid of cubic voxels (FOV) is crossed by several divergent 3D line sets (LORs). The symmetries occur when tracing different LORs produces the same p(ij) value. Parallel LORs of different sets cross the FOV in the same way, and the repetition of p(ij) values depends on the ratio between the tube and voxel sizes. By optimizing this ratio, the occurrence of symmetries is increased. We identify a nucleus of symmetry of LORs: for each set of symmetrical LORs we choose just one LOR to be put in the nucleus, while the others lie outside. All of the possible p(ij) values are obtainable by tracking only the LORs of this nucleus. The coordinates of the voxels of all of the other LORs are given by means of simple translation rules. Before making the reconstruction, we trace the LORs of the nucleus to find the intersecting voxels, whose p(ij) values are computed and

  12. Fast isotropic banding-free bSSFP imaging using 3D dynamically phase-cycled radial bSSFP (3D DYPR-SSFP)

    Energy Technology Data Exchange (ETDEWEB)

    Benkert, Thomas; Blaimer, Martin; Breuer, Felix A. [Research Center Magnetic Resonance Bavaria (MRB), Wuerzburg (Germany); Ehses, Philipp [Tuebingen Univ. (Germany). Dept. of Neuroimaging; Max Planck Institute for Biological Cybernetics, Tuebingen (Germany). High-Field MR Center; Jakob, Peter M. [Research Center Magnetic Resonance Bavaria (MRB), Wuerzburg (Germany); Wuerzburg Univ. (Germany). Dept. of Experimental Physics 5

    2016-05-01

    Aims: Dynamically phase-cycled radial balanced steady-state free precession (DYPR-SSFP) is a method for efficient banding artifact removal in bSSFP imaging. Based on a varying radiofrequency (RF) phase-increment in combination with a radial trajectory, DYPR-SSFP allows obtaining a banding-free image out of a single acquired k-space. The purpose of this work is to present an extension of this technique, enabling fast three-dimensional isotropic banding-free bSSFP imaging. Methods: While banding artifact removal with DYPR-SSFP relies on the applied dynamic phase-cycle, this aspect can lead to artifacts, at least when the number of acquired projections lies below a certain limit. However, by using a 3D radial trajectory with quasi-random view ordering for image acquisition, this problem is intrinsically solved, enabling 3D DYPR-SSFP imaging at or even below the Nyquist criterion. The approach is validated for brain and knee imaging at 3 Tesla. Results: Volumetric, banding-free images were obtained in clinically acceptable scan times with an isotropic resolution up to 0.56 mm. Conclusion: The combination of DYPR-SSFP with a 3D radial trajectory allows banding-free isotropic volumetric bSSFP imaging with no expense of scan time. Therefore, this is a promising candidate for clinical applications such as imaging of cranial nerves or articular cartilage.

  13. Numerical 3D models support two distinct hydrothermal circulation systems at fast spreading ridges

    Science.gov (United States)

    Hasenclever, Jörg; Theissen-Krah, Sonja; Rüpke, Lars

    2013-04-01

    We present 3D numerical calculations of hydrothermal fluid flow at fast spreading ridges. The setup of the 3D models is based our previous 2D studies, in which we have coupled numerical models for crustal accretion and hydrothermal fluid flow. One result of these calculations is a crustal permeability field that leads to a thermal structure in the crust that matches seismic tomography data of the East Pacific Rise (EPR). The 1000°C isotherm obtained from the 2D results is now used as the lower boundary of the 3D model domain, while the upper boundary is a smoothed bathymetry of the EPR. The same permeability field as in the 2D models is used, with the highest permeability at the ridge axis and a decrease with both depth and distance to the ridge. Permeability is also reduced linearly between 600 and 1000°C. Using a newly developed parallel finite element code written in Matlab that solves for thermal evolution, fluid pressure and Darcy flow, we simulate the flow patterns of hydrothermal circulation in a segment of 5000m along-axis, 10000m across-axis and up to 5000m depth. We observe two distinct hydrothermal circulation systems: An on-axis system forming a series of vents with a spacing ranging from 100 to 500m that is recharged by nearby (100-200m) downflows on both sides of the ridge axis. Simultaneously a second system with much broader extensions both laterally and vertically exists off-axis. It is recharged by fluids intruding between 1500m to 5000m off-axis and sampling both upper and lower crust. These fluids are channeled in the deepest and hottest regions with high permeability and migrate up-slope following the 600°C isotherm until reaching the edge of the melt lens. Depending on the width of the melt lens these off-axis fluids either merge with the on-axis hydrothermal system or form separate vents. We observe separate off-axis vent fields if the magma lens half-width exceeds 1000m and confluence of both systems for half-widths smaller than 500m. For

  14. Fast Semantic Segmentation of 3d Point Clouds with Strongly Varying Density

    Science.gov (United States)

    Hackel, Timo; Wegner, Jan D.; Schindler, Konrad

    2016-06-01

    We describe an effective and efficient method for point-wise semantic classification of 3D point clouds. The method can handle unstructured and inhomogeneous point clouds such as those derived from static terrestrial LiDAR or photogammetric reconstruction; and it is computationally efficient, making it possible to process point clouds with many millions of points in a matter of minutes. The key issue, both to cope with strong variations in point density and to bring down computation time, turns out to be careful handling of neighborhood relations. By choosing appropriate definitions of a point's (multi-scale) neighborhood, we obtain a feature set that is both expressive and fast to compute. We evaluate our classification method both on benchmark data from a mobile mapping platform and on a variety of large, terrestrial laser scans with greatly varying point density. The proposed feature set outperforms the state of the art with respect to per-point classification accuracy, while at the same time being much faster to compute.

  15. Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography

    International Nuclear Information System (INIS)

    We investigate fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography for applications in small animal imaging. Our forward model uses a diffusion approximation for optically inhomogeneous tissue, which we solve using a finite element method (FEM). We examine two approaches to incorporating the forward model into the solution of the inverse problem. In a conventional direct calculation approach one computes the full forward model by repeated solution of the FEM problem, once for each potential source location. We describe an alternative on-the-fly approach where one does not explicitly solve for the full forward model. Instead, the solution to the forward problem is included implicitly in the formulation of the inverse problem, and the FEM problem is solved at each iteration for the current image estimate. We evaluate the convergence speeds of several representative iterative algorithms. We compare the computation cost of those two approaches, concluding that the on-the-fly approach can lead to substantial reductions in total cost when combined with a rapidly converging iterative algorithm

  16. A Fast Full Tensor Gravity computation algorithm for High Resolution 3D Geologic Interpretations

    Science.gov (United States)

    Jayaram, V.; Crain, K.; Keller, G. R.

    2011-12-01

    approach on different CPU-GPU system configurations. The algorithm calculates the expected gravity at station locations where the observed gravity and FTG data were acquired. This algorithm can be used for all fast forward model calculations of 3D geologic interpretations for data from airborne, space and submarine gravity, and FTG instrumentation.

  17. Endoscopic MR imaging using 3D-fast SPGR sequence for local staging of rectal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Murano, Akihiko (Tokyo Women' s Medical Coll. (Japan))

    1993-09-01

    In order to stage the degree of infiltration of rectal carcinomas by means of an endorectal surface coil, it is essential to place the coil in the lesion's center. Existing methods are not very precise and are potentially dangerous, because the coil is placed blindly. In this study we staged rectal carcinomas with a prototype MR endoscope jointly developed by Yokogawa Medical and Olympus Optical Co. and a superconductive 1.5-T Signa Advantage system (GE Medical Systems). With the MR endoscope we could locate the lesion and place the coil accurately and safely in its center in all 11 cases examined. In 2 of the 11 cases with severe circumferential stenosis the tip of the coil was inserted into the stenosis and precise MR images were obtained, while a conventional fiberscope could not be advanced past the stenotic site. A 3D-fast SPGR sequence produced 16 2-mm slices in 20 seconds, which showed the bowel wall with a hyperintense mucosa, a hypointense submucosa and muscularis propria of moderate intensity. Tumors presented moderately intense structures which were approximately similar in intensity to the muscularis propria. Advanced tumors were heterogeneous and showed both intermediate intensity and hypointensity. In nine of 11 patients, post-operative pathohistology showed accurate staging of mural invasion of rectal carcinoma using MR endoscopy, while in two invasion was overestimated. In one case of overstimation direct invasion of rectal carcinoma into the vaginal wall was suspected but pathological findings showed only inflammatory adhesion caused by invasion. Although the other case was diagnosed pathologically as a rectal carcinoma invading the muscularis propria, a fibrotic change at the outer margin of tumor invasion was recognized. Our results suggest that this method may be useful in accurately staging the degree of invasion in rectal carcinoma patients. (author).

  18. Algorithms for Fast Computing of the 3D-DCT Transform

    Directory of Open Access Journals (Sweden)

    S. Hanus

    2003-04-01

    Full Text Available The algorithm for video compression based on the Three-DimensionalDiscrete Cosine Transform (3D-DCT is presented. The original algorithmof the 3D-DCT has high time complexity. We propose several enhancementsto the original algorithm and make the calculation of the DCT algorithmfeasible for future real-time video compression.

  19. 3D imaging by fast deconvolution algorithm in short-range UWB radar for concealed weapon detection

    NARCIS (Netherlands)

    Savelyev, T.; Yarovoy, A.

    2013-01-01

    A fast imaging algorithm for real-time use in short-range (ultra-wideband) radar with synthetic or real-array aperture is proposed. The reflected field is presented here as a convolution of the target reflectivity and point spread function (PSF) of the imaging system. To obtain a focused 3D image, t

  20. Fast Susceptibility-Weighted Imaging (SWI) with 3D Short-Axis Propeller (SAP)-EPI

    Science.gov (United States)

    Holdsworth, Samantha J.; Yeom, Kristen W.; Moseley, Michael E.; Skare, S.

    2014-01-01

    Purpose Susceptibility-Weighted Imaging (SWI) in neuroimaging can be challenging due to long scan times of 3D Gradient Recalled Echo (GRE), while faster techniques such as 3D interleaved EPI (iEPI) are prone to motion artifacts. Here we outline and implement a 3D Short-Axis Propeller Echo-Planar Imaging (SAP-EPI) trajectory as a faster, motion-correctable approach for SWI. Methods Experiments were conducted on a 3T MRI system. 3D SAP-EPI, 3D iEPI, and 3D GRE SWI scans were acquired on two volunteers. Controlled motion experiments were conducted to test the motion-correction capability of 3D SAP-EPI. 3D SAP-EPI SWI data were acquired on two pediatric patients as a potential alternative to 2D GRE used clinically. Results 3D GRE images had a better target resolution (0.47 × 0.94 × 2mm, scan time = 5min), iEPI and SAP-EPI images (resolution = 0.94 × 0.94 × 2mm) were acquired in a faster scan time (1:52min) with twice the brain coverage. SAP-EPI showed motion-correction capability and some immunity to undersampling from rejected data. Conclusion While 3D SAP-EPI suffers from some geometric distortion, its short scan time and motion-correction capability suggest that SAP-EPI may be a useful alternative to GRE and iEPI for use in SWI, particularly in uncooperative patients. PMID:24956237

  1. ProteinVista: a fast molecular visualization system using Microsoft Direct3D.

    Science.gov (United States)

    Park, Chan-Yong; Park, Sung-Hee; Park, Soo-Jun; Park, Sun-Hee; Hwang, Chi-Jung

    2008-09-01

    Many tools have been developed to visualize protein and molecular structures. Most high quality protein visualization tools use the OpenGL graphics library as a 3D graphics system. Currently, the performance of recent 3D graphics hardware has rapidly improved. Recent high-performance 3D graphics hardware support Microsoft Direct3D graphics library more than OpenGL and have become very popular in personal computers (PCs). In this paper, a molecular visualization system termed ProteinVista is proposed. ProteinVista is well-designed visualization system using the Microsoft Direct3D graphics library. It provides various visualization styles such as the wireframe, stick, ball and stick, space fill, ribbon, and surface model styles, in addition to display options for 3D visualization. As ProteinVista is optimized for recent 3D graphics hardware platforms and because it uses a geometry instancing technique, its rendering speed is 2.7 times faster compared to other visualization tools.

  2. Fast 3D coronary artery contrast-enhanced magnetic resonance angiography with magnetization transfer contrast, fat suppression and parallel imaging as applied on an anthropomorphic moving heart phantom

    NARCIS (Netherlands)

    Irwan, Roy; Russel, Inis K.; Sijens, Paul E.

    2006-01-01

    A magnetic resonance sequence for high-resolution imaging of coronary arteries in a very short acquisition time is presented. The technique is based on fast low-angle shot and uses fat saturation and magnetization transfer contrast Prepulses to improve image contrast. GeneRalized Autocalibrating Par

  3. A fast rebinning algorithm for 3D positron emission tomography using John's equation

    Science.gov (United States)

    Defrise, Michel; Liu, Xuan

    1999-08-01

    Volume imaging in positron emission tomography (PET) requires the inversion of the three-dimensional (3D) x-ray transform. The usual solution to this problem is based on 3D filtered-backprojection (FBP), but is slow. Alternative methods have been proposed which factor the 3D data into independent 2D data sets corresponding to the 2D Radon transforms of a stack of parallel slices. Each slice is then reconstructed using 2D FBP. These so-called rebinning methods are numerically efficient but are approximate. In this paper a new exact rebinning method is derived by exploiting the fact that the 3D x-ray transform of a function is the solution to the second-order partial differential equation first studied by John. The method is proposed for two sampling schemes, one corresponding to a pair of infinite plane detectors and another one corresponding to a cylindrical multi-ring PET scanner. The new FORE-J algorithm has been implemented for this latter geometry and was compared with the approximate Fourier rebinning algorithm FORE and with another exact rebinning algorithm, FOREX. Results with simulated data demonstrate a significant improvement in accuracy compared to FORE, while the reconstruction time is doubled. Compared to FOREX, the FORE-J algorithm is slightly less accurate but more than three times faster.

  4. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    International Nuclear Information System (INIS)

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades

  5. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    Science.gov (United States)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  6. Implementation of a fast running full core pin power reconstruction method in DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Torres, Armando Miguel [Instituto Nacional de Investigaciones Nucleares, Department of Nuclear Systems, Carretera Mexico – Toluca s/n, La Marquesa, 52750 Ocoyoacac (Mexico); Sanchez-Espinoza, Victor Hugo, E-mail: victor.sanchez@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-vom-Helmhotz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Kliem, Sören; Gommlich, Andre [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany)

    2014-07-01

    Highlights: • New pin power reconstruction (PPR) method for the nodal diffusion code DYN3D. • Flexible PPR method applicable to a single, a group or to all fuel assemblies (square, hex). • Combination of nodal with pin-wise solutions (non-conform geometry). • PPR capabilities shown for REA of a Minicore (REA) PWR whole core. - Abstract: This paper presents a substantial extension of the pin power reconstruction (PPR) method used in the reactor dynamics code DYN3D with the aim to better describe the heterogeneity within the fuel assembly during reactor simulations. The flexibility of the new implemented PPR permits the local spatial refinement of one fuel assembly, of a cluster of fuel assemblies, of a quarter or eight of a core or even of a whole core. The application of PPR in core regions of interest will pave the way for the coupling with sub-channel codes enabling the prediction of local safety parameters. One of the main advantages of considering regions and not only a hot fuel assembly (FA) is the fact that the cross flow within this region can be taken into account by the subchannel code. The implementation of the new PPR method has been tested analysing a rod ejection accident (REA) in a PWR minicore consisting of 3 × 3 FA. Finally, the new capabilities of DNY3D are demonstrated by the analysing a boron dilution transient in a PWR MOX core and the pin power of a VVER-1000 reactor at stationary conditions.

  7. Implementation of a fast running full core pin power reconstruction method in DYN3D

    International Nuclear Information System (INIS)

    Highlights: • New pin power reconstruction (PPR) method for the nodal diffusion code DYN3D. • Flexible PPR method applicable to a single, a group or to all fuel assemblies (square, hex). • Combination of nodal with pin-wise solutions (non-conform geometry). • PPR capabilities shown for REA of a Minicore (REA) PWR whole core. - Abstract: This paper presents a substantial extension of the pin power reconstruction (PPR) method used in the reactor dynamics code DYN3D with the aim to better describe the heterogeneity within the fuel assembly during reactor simulations. The flexibility of the new implemented PPR permits the local spatial refinement of one fuel assembly, of a cluster of fuel assemblies, of a quarter or eight of a core or even of a whole core. The application of PPR in core regions of interest will pave the way for the coupling with sub-channel codes enabling the prediction of local safety parameters. One of the main advantages of considering regions and not only a hot fuel assembly (FA) is the fact that the cross flow within this region can be taken into account by the subchannel code. The implementation of the new PPR method has been tested analysing a rod ejection accident (REA) in a PWR minicore consisting of 3 × 3 FA. Finally, the new capabilities of DNY3D are demonstrated by the analysing a boron dilution transient in a PWR MOX core and the pin power of a VVER-1000 reactor at stationary conditions

  8. Fast imaging of laboratory core floods using 3D compressed sensing RARE MRI.

    Science.gov (United States)

    Ramskill, N P; Bush, I; Sederman, A J; Mantle, M D; Benning, M; Anger, B C; Appel, M; Gladden, L F

    2016-09-01

    Three-dimensional (3D) imaging of the fluid distributions within the rock is essential to enable the unambiguous interpretation of core flooding data. Magnetic resonance imaging (MRI) has been widely used to image fluid saturation in rock cores; however, conventional acquisition strategies are typically too slow to capture the dynamic nature of the displacement processes that are of interest. Using Compressed Sensing (CS), it is possible to reconstruct a near-perfect image from significantly fewer measurements than was previously thought necessary, and this can result in a significant reduction in the image acquisition times. In the present study, a method using the Rapid Acquisition with Relaxation Enhancement (RARE) pulse sequence with CS to provide 3D images of the fluid saturation in rock core samples during laboratory core floods is demonstrated. An objective method using image quality metrics for the determination of the most suitable regularisation functional to be used in the CS reconstructions is reported. It is shown that for the present application, Total Variation outperforms the Haar and Daubechies3 wavelet families in terms of the agreement of their respective CS reconstructions with a fully-sampled reference image. Using the CS-RARE approach, 3D images of the fluid saturation in the rock core have been acquired in 16min. The CS-RARE technique has been applied to image the residual water saturation in the rock during a water-water displacement core flood. With a flow rate corresponding to an interstitial velocity of vi=1.89±0.03ftday(-1), 0.1 pore volumes were injected over the course of each image acquisition, a four-fold reduction when compared to a fully-sampled RARE acquisition. Finally, the 3D CS-RARE technique has been used to image the drainage of dodecane into the water-saturated rock in which the dynamics of the coalescence of discrete clusters of the non-wetting phase are clearly observed. The enhancement in the temporal resolution that has

  9. Fast imaging of laboratory core floods using 3D compressed sensing RARE MRI

    Science.gov (United States)

    Ramskill, N. P.; Bush, I.; Sederman, A. J.; Mantle, M. D.; Benning, M.; Anger, B. C.; Appel, M.; Gladden, L. F.

    2016-09-01

    Three-dimensional (3D) imaging of the fluid distributions within the rock is essential to enable the unambiguous interpretation of core flooding data. Magnetic resonance imaging (MRI) has been widely used to image fluid saturation in rock cores; however, conventional acquisition strategies are typically too slow to capture the dynamic nature of the displacement processes that are of interest. Using Compressed Sensing (CS), it is possible to reconstruct a near-perfect image from significantly fewer measurements than was previously thought necessary, and this can result in a significant reduction in the image acquisition times. In the present study, a method using the Rapid Acquisition with Relaxation Enhancement (RARE) pulse sequence with CS to provide 3D images of the fluid saturation in rock core samples during laboratory core floods is demonstrated. An objective method using image quality metrics for the determination of the most suitable regularisation functional to be used in the CS reconstructions is reported. It is shown that for the present application, Total Variation outperforms the Haar and Daubechies3 wavelet families in terms of the agreement of their respective CS reconstructions with a fully-sampled reference image. Using the CS-RARE approach, 3D images of the fluid saturation in the rock core have been acquired in 16 min. The CS-RARE technique has been applied to image the residual water saturation in the rock during a water-water displacement core flood. With a flow rate corresponding to an interstitial velocity of vi = 1.89 ± 0.03 ft day-1, 0.1 pore volumes were injected over the course of each image acquisition, a four-fold reduction when compared to a fully-sampled RARE acquisition. Finally, the 3D CS-RARE technique has been used to image the drainage of dodecane into the water-saturated rock in which the dynamics of the coalescence of discrete clusters of the non-wetting phase are clearly observed. The enhancement in the temporal resolution

  10. Fast wave current drive modeling using the combined RANT3D and PICES codes

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, E.F.; Murakami, M.; Stallings, D.C. [and others

    1995-07-01

    Two numerical codes are combined to give a theoretical estimate of the current drive and direct electron heating by fast waves launched from phased antenna arrays on the DIII-D tokamak. Results are compared with experiment.

  11. Fast wave current drive modeling using the combined RANT3D and PICES Codes

    Science.gov (United States)

    Jaeger, E. F.; Murakami, M.; Stallings, D. C.; Carter, M. D.; Wang, C. Y.; Galambos, J. D.; Batchelor, D. B.; Baity, F. W.; Bell, G. L.; Wilgen, J. B.; Chiu, S. C.; DeGrassie, J. S.; Forest, C. B.; Kupfer, K.; Petty, C. C.; Pinsker, R. T.; Prater, R.; Lohr, J.; Lee, K. M.

    1996-02-01

    Two numerical codes are combined to give a theoretical estimate of the current drive and direct electron heating by fast waves launched from phased antenna arrays on the DIII-D tokamak. Results are compared with experiment.

  12. Fast myocardial strain estimation from 3D ultrasound through elastic image registration with analytic regularization

    Science.gov (United States)

    Chakraborty, Bidisha; Heyde, Brecht; Alessandrini, Martino; D'hooge, Jan

    2016-04-01

    Image registration techniques using free-form deformation models have shown promising results for 3D myocardial strain estimation from ultrasound. However, the use of this technique has mostly been limited to research institutes due to the high computational demand, which is primarily due to the computational load of the regularization term ensuring spatially smooth cardiac strain estimates. Indeed, this term typically requires evaluating derivatives of the transformation field numerically in each voxel of the image during every iteration of the optimization process. In this paper, we replace this time-consuming step with a closed-form solution directly associated with the transformation field resulting in a speed up factor of ~10-60,000, for a typical 3D B-mode image of 2503 and 5003 voxels, depending upon the size and the parametrization of the transformation field. The performance of the numeric and the analytic solutions was contrasted by computing tracking and strain accuracy on two realistic synthetic 3D cardiac ultrasound sequences, mimicking two ischemic motion patterns. Mean and standard deviation of the displacement errors over the cardiac cycle for the numeric and analytic solutions were 0.68+/-0.40 mm and 0.75+/-0.43 mm respectively. Correlations for the radial, longitudinal and circumferential strain components at end-systole were 0.89, 0.83 and 0.95 versus 0.90, 0.88 and 0.92 for the numeric and analytic regularization respectively. The analytic solution matched the performance of the numeric solution as no statistically significant differences (p>0.05) were found when expressed in terms of bias or limits-of-agreement.

  13. Study on the fast neutron imaging and 3D image reconstruction method with Geant4

    International Nuclear Information System (INIS)

    Detecting the shielded highly enriched nuclear material by fast neutron is very significant for homeland security. With Gean4-based Monte Carlo simulation program developed by our group, the interaction of 14 MeV fast neutrons with highly enriched nuclear material (Highly enriched Uranium) and ordinary materials (lead, iron, and polyethylene) were simulated and the simulation data were analyzed with ROOT. The three-dimensional images of detected materials were obtained by the position and time data of gamma rays produced by the interaction of 14 MeV fast neutron and these materials. The reconstruction results show that the data of gamma rays can be used to reconstruct the three-dimensional imaging of detected materials. Additionally, the relative contrast of reconstructed imaging can be used to distinguish the different materials qualitatively. (authors)

  14. Contrast-Based 3D/2D Registration of the Left Atrium: Fast versus Consistent

    Directory of Open Access Journals (Sweden)

    Matthias Hoffmann

    2016-01-01

    Full Text Available For augmented fluoroscopy during cardiac ablation, a preoperatively acquired 3D model of a patient’s left atrium (LA can be registered to X-ray images recorded during a contrast agent (CA injection. An automatic registration method that works also for small amounts of CA is desired. We propose two similarity measures: The first focuses on edges of the patient anatomy. The second computes a contrast agent distribution estimate (CADE inside the 3D model and rates its consistency with the CA as seen in biplane fluoroscopic images. Moreover, temporal filtering on the obtained registration results of a sequence is applied using a Markov chain framework. Evaluation was performed on 11 well-contrasted clinical angiographic sequences and 10 additional sequences with less CA. For well-contrasted sequences, the error for all 73 frames was 7.9 ± 6.3 mm and it dropped to 4.6 ± 4.0 mm when registering to an automatically selected, well enhanced frame in each sequence. Temporal filtering reduced the error for all frames from 7.9 ± 6.3 mm to 5.7 ± 4.6 mm. The error was typically higher if less CA was used. A combination of both similarity measures outperforms a previously proposed similarity measure. The mean accuracy for well contrasted sequences is in the range of other proposed manual registration methods.

  15. 3D Dynamic Modeling of the Head-Neck Complex for Fast Eye and Head Orientation Movements Research

    Directory of Open Access Journals (Sweden)

    Daniel A. Sierra

    2011-01-01

    Full Text Available A 3D dynamic computer model for the movement of the head-neck complex is presented. It incorporates anatomically correct information about the diverse elements forming the system. The skeleton is considered as a set of interconnected rigid 3D bodies following the Newton-Euler laws of movement. The muscles are modeled using Enderle's linear model, which shows equivalent dynamic characteristics to Loeb's virtual muscle model. The soft tissues, namely, the ligaments, intervertebral disks, and facet joints, are modeled considering their physiological roles and dynamics. In contrast with other head and neck models developed for safety research, the model is aimed to study the neural control of the complex during fast eye and head movements, such as saccades and gaze shifts. In particular, the time-optimal hypothesis and the feedback control ones are discussed.

  16. Fast wave current drive modeling using the combined RANT3D and PICES Codes

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, E.F.; Murakami, M.; Stallings, D.C.; Carter, M.D.; Wang, C.Y.; Galambos, J.D.; Batchelor, D.B.; Baity, F.W.; Bell, G.L.; Wilgen, J.B. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States); Chiu, S.C.; DeGrassie, J.S.; Forest, C.B. [General Atomics, San Diego, California 92186-9784 (United States); Kupfer, K. [ORISE Postdoctoral Fellow at General Atomics, San Diego, California 92186-9784 (United States); Petty, C.C.; Pinsker, R.T.; Prater, R.; Lohr, J. [General Atomics, San Diego, California 92186-9784 (United States); Lee, K.M. [University of California, Los Angeles, California 90024-1597 (United States)

    1996-02-01

    Two numerical codes are combined to give a theoretical estimate of the current drive and direct electron heating by fast waves launched from phased antenna arrays on the DIII-D tokamak. Results are compared with experiment. {copyright} {ital 1996 American Institute of Physics.}

  17. Fast 3D Pattern Synthesis with Polarization and Dynamic Range Ratio Control for Conformal Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Massimiliano Comisso

    2014-01-01

    Full Text Available This paper proposes an iterative algorithm for the 3D synthesis of the electric far-field pattern of a conformal antenna array in the presence of requirements on both the polarization and the dynamic range ratio (DRR of the excitations. Thanks to the use of selectable weights, the algorithm allows a versatile control of the DRR and of the polarization in a given angular region and requires a low CPU time to provide the array excitations. Furthermore, a modified version of the algorithm is developed to enable the optimization of the polarization state by phase-only control. Numerical results are presented to verify the usefulness of the proposed approach for the joint pattern and polarization synthesis of conformal arrays with reduced or even unitary DRR.

  18. Fast 3D Focusing Inversion of Gravity Data Using Reweighted Regularized Lanczos Bidiagonalization Method

    Science.gov (United States)

    Rezaie, Mohammad; Moradzadeh, Ali; Kalate, Ali Nejati; Aghajani, Hamid

    2016-09-01

    Inversion of gravity data is one of the important steps in the interpretation of practical data. One of the most interesting geological frameworks for gravity data inversion is the detection of sharp boundaries between orebody and host rocks. The focusing inversion is able to reconstruct a sharp image of the geological target. This technique can be efficiently applied for the quantitative interpretation of gravity data. In this study, a new reweighted regularized method for the 3D focusing inversion technique based on Lanczos bidiagonalization method is developed. The inversion results of synthetic data show that the new method is faster than common reweighted regularized conjugate gradient method to produce an acceptable solution for focusing inverse problem. The new developed inversion scheme is also applied for inversion of the gravity data collected over the San Nicolas Cu-Zn orebody in Zacatecas State, Mexico. The inversion results indicate a remarkable correlation with the true structure of the orebody that is achieved from drilling data.

  19. Fast Compact Laser Shutter Using a Direct Current Motor and 3D Printing

    CERN Document Server

    Zhang, Grace H; Kawasaki, Akio; Vuletić, Vladan

    2015-01-01

    We present a mechanical laser shutter design that utilizes a DC electric motor to rotate a blade which blocks and unblocks a light beam. The blade and the main body of the shutter are modeled with computer aided design (CAD) and are produced by 3D printing. Rubber flaps are used to limit the blade's range of motion, reducing vibrations and preventing undesirable blade oscillations. At its nominal operating voltage, the shutter achieves a switching speed of (1.22 $\\pm$ 0.02) m/s with 1 ms activation delay and 10 $\\mu$s jitter in its timing performance. The shutter design is simple, easy to replicate, and highly reliable, showing no failure or degradation in performance over more than $10^8$ cycles.

  20. Mapping of the spontaneous deletion in the Ap3d1 gene of mocha mice: fast and reliable genotyping

    Directory of Open Access Journals (Sweden)

    Delenclos Marion

    2008-11-01

    Full Text Available Abstract Background The mocha mouse carries a spontaneous deletion in the Ap3d1 gene, encoding the delta 1 subunit of the adaptor related protein complex 3, (Ap3d1, and subsequently lack the expression of functional AP-3. This leads to a deficiency in vesicle transport and storage, which affects neurotransmitter vesicle turnover and release in the central nervous system. Since the genomic sequence of the Ap3d1 gene of mocha mouse is not known, precise mapping of the deletion as well as reliable genotyping protocols are lacking. Findings We sequenced the Ap3d1 gene (HGNC GeneID: 8943 around the deletion site in the mocha mouse and revealed a 10639 bp deletion covering exon 2 to 6. Subsequently, new PCR primers were designed yielding a reliable genotyping protocol of both newborn and adult tissue. To examine the genotypes further, hippocampal neurons were cultured from mocha and control mice. Patch-clamp recordings showed that mocha neurons had a higher input resistance, and that autaptic EPSC in mocha cultures depressed faster and stronger as compared with control cultures. Conclusion Our study reports the sequence of the deleted part of the Ap3d1 gene in mocha mice, as well as a reliable PCR-based genotyping protocol. We cultured hippocampal neurons from control and mocha mice, and found a difference in input resistance of the neurons, and in the synaptic short-term plasticity of glutamatergic autapses showing a larger synaptic depression than controls. The described procedures may be useful for the future utilization of the mocha mouse as a model of defective vesicle biogenesis. Importantly, as genotyping by eye color is complicated in newborn mice, the designed protocol is so fast and reliable that newborn mice could rapidly be genotyped and hippocampal neurons dissociated and cultured, which is normally best done at P0-P2.

  1. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca [Département de physique, de génie physique et d’optique et Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie et Axe Oncologie du Centre de recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Binnekamp, Dirk [Integrated Clinical Solutions and Marketing, Philips Healthcare, Veenpluis 4-6, Best 5680 DA (Netherlands)

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  2. 3D Fokker-Planck calculation of combined fast wave/lower hybrid and electron cyclotron current drive in tokamaks

    International Nuclear Information System (INIS)

    In a non-reactor tokamak environment, lower hybrid current drive can be combined with electron cyclotron waves, both (1) to control the radial profile of LH current deposition, and (2) to enhance the current drive efficiency. A related rf synergy is the use of multiple LH spectra for radial profile control as demonstrated in the ASDEX tokamak. In a reactor environment, fast waves provide an appropriate primary current drive system which can penetrate radially to the plasma core, and can be combined with ECCD. We use the CQL3D Fokker-Planck code to study these processes. Modelings of LHCD radial profile control by ''filling the spectral gap'' with EC or with additional LH power are presented. In the reactor environment, a range of cases with combined fast wave and electron cyclotron waves are examined, but no useful synergisms are found

  3. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    Science.gov (United States)

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-01

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.

  4. Suppression law of quantum states in a 3D photonic fast Fourier transform chip

    Science.gov (United States)

    Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio

    2016-01-01

    The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong–Ou–Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms. PMID:26843135

  5. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    Science.gov (United States)

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-01

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions. PMID:26561090

  6. Fast algorithm and numerical simulation for ray-tracing in 3D structure

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Beginning with the method of whole path iterative ray-tracing and according to the positive definiteness of the coefficient matrix of the systems of linear equations,a symmetry block tridiagonai matrix was decomposed into the product of block bidiagonal triangular matrix and its transpose by means of Cholesky decomposition.Then an algorithm for solving systems of block bidiagonal triangular linear equations was given,which is not necessary to treat with the zero elements out of banded systems.A fast algorithm for solving the systems of symmetry block tridiagonal linear equations was deduced,which can quicken the speed of ray-tracing.Finally,the simulation based on this algorithm for ray-tracing in three dimensional media was carried out.Meanwhile,the segmentally-iterative ray-tracing method and banded method for solving the systems of block tridiagonal linear equations were compared in the same model mentioned above.The convergence condition was assumed that the L-2 norm summation for mk,1 and mk,2 in the whole ray path was limited in 10-6.And the calculating speeds of these methods were compared.The results show that the calculating speed of this algorithm is faster than that of conventional method and the calculated results are accurate enough.In addition,its precision can be controlled according to the requirement of ray-tracing.

  7. Fast ray tracing method in 3-D structure and its proof of positive definiteness

    Institute of Scientific and Technical Information of China (English)

    GAO Er-gen; Uk HAN; TENG Ji-wen

    2007-01-01

    Based on Fermat's principle. two-point ray tracing method was studied in three-dimensional structure.By means of first order Taylor's incomplete series expansion(i.e.no expansion to the length of the ray), a symmetry block tridiagonal matrix equation set was deduced.Further,the positive definiteness of coefficient matrix was discussed, and the positive definiteness was accurately proved in a mathematical way. It assured that the algorithm was well-posed. Associated with iterative method, the solution to ray tracing call be got through step-by-step linearized iteration of the nonlinear problem. An algorithm of the whole path iterative ray tracing method in three-dimensional velocity structure was obmined.This method shows a clear and simple as well as explicit computation formula, which makes ray tracing computation easily applicable in practice. The correction vector is obtained through finding the solution to the positive definite block tridiagonal equation set, which ensures the method is robust convergence. This study offers a new kind of feasible and efficient ray tracing method for three dimensional seismic migration and tomography. Meanwhile.it also provides the prerequisite guarantee to design a fast algorithm.

  8. The Atlas3D project - XXVI. HI discs in real and simulated fast and slow rotators

    CERN Document Server

    Serra, Paolo; Krajnovic, Davor; Naab, Thorsten; Oosterloo, Tom; Morganti, Raffaella; Cappellari, Michele; Emsellem, Eric; Young, Lisa M; Blitz, Leo; Davis, Timothy A; Duc, Pierre-Alain; Hirschmann, Michaela; Weijmans, Anne-Marie; Alatalo, Katherine; Bayet, Estelle; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Davies, Roger L; de Zeeuw, P T; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M; Sarzi, Marc; Scott, Nicholas

    2014-01-01

    One quarter of all nearby early-type galaxies (ETGs) outside Virgo host a disc/ring of HI with size from a few to tens of kpc and mass up to ~1e+9 solar masses. Here we investigate whether this HI is related to the presence of a stellar disc within the host making use of the classification of ETGs in fast and slow rotators (FR/SR). We find a large diversity of HI masses and morphologies within both families. Surprisingly, SRs are detected as often, host as much HI and have a similar rate of HI discs/rings as FRs. Accretion of HI is therefore not always linked to the growth of an inner stellar disc. The weak relation between HI and stellar disc is confirmed by their frequent kinematical misalignment in FRs, including cases of polar and counterrotating gas. In SRs the HI is usually polar. This complex picture highlights a diversity of ETG formation histories which may be lost in the relative simplicity of their inner structure and emerges when studying their outer regions. We find that LCDM hydrodynamical simul...

  9. Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies.

    Science.gov (United States)

    Sanz-Requena, Roberto; Moratal, David; García-Sánchez, Diego Ramón; Bodí, Vicente; Rieta, José Joaquín; Sanchis, Juan Manuel

    2007-03-01

    Intravascular ultrasound (IVUS) imaging is used along with X-ray coronary angiography to detect vessel pathologies. Manual analysis of IVUS images is slow and time-consuming and it is not feasible for clinical purposes. A semi-automated method is proposed to generate 3D reconstructions from IVUS video sequences, so that a fast diagnose can be easily done, quantifying plaque length and severity as well as plaque volume of the vessels under study. The methodology described in this work has four steps: a pre-processing of IVUS images, a segmentation of media-adventitia contour, a detection of intima and plaque and a 3D reconstruction of the vessel. Preprocessing is intended to remove noise from the images without blurring the edges. Segmentation of media-adventitia contour is achieved using active contours (snakes). In particular, we use the gradient vector flow (GVF) as external force for the snakes. The detection of lumen border is obtained taking into account gray-level information of the inner part of the previously detected contours. A knowledge-based approach is used to determine which level of gray corresponds statistically to the different regions of interest: intima, plaque and lumen. The catheter region is automatically discarded. An estimate of plaque type is also given. Finally, 3D reconstruction of all detected regions is made. The suitability of this methodology has been verified for the analysis and visualization of plaque length, stenosis severity, automatic detection of the most problematic regions, calculus of plaque volumes and a preliminary estimation of plaque type obtaining for automatic measures of lumen and vessel area an average error smaller than 1mm(2) (equivalent aproximately to 10% of the average measure), for calculus of plaque and lumen volume errors smaller than 0.5mm(3) (equivalent approximately to 20% of the average measure) and for plaque type estimates a mismatch of less than 8% in the analysed frames. PMID:17215103

  10. A Fast 3D Poisson Solver with Longitudinal Periodic and Transverse Open Boundary Conditions for Space-Charge Simulations

    CERN Document Server

    Qiang, Ji

    2016-01-01

    A three-dimensional (3D) Poisson solver with longitudinal periodic and transverse open boundary conditions can have important applications in beam physics of particle accelerators. In this paper, we present a fast efficient method to solve the Poisson equation using a spectral finite-difference method. This method uses a computational domain that contains the charged particle beam only and has a computational complexity of $O(N_u(logN_{mode}))$, where $N_u$ is the total number of unknowns and $N_{mode}$ is the maximum number of longitudinal or azimuthal modes. This saves both the computational time and the memory usage by using an artificial boundary condition in a large extended computational domain.

  11. Fast and memory-efficient LOGISMOS graph search for intraretinal layer segmentation of 3D macular OCT scans

    Science.gov (United States)

    Lee, Kyungmoo; Zhang, Li; Abramoff, Michael D.; Sonka, Milan

    2015-03-01

    Image segmentation is important for quantitative analysis of medical image data. Recently, our research group has introduced a 3-D graph search method which can simultaneously segment optimal interacting surfaces with respect to the cost function in volumetric images. Although it provides excellent segmentation accuracy, it is computationally demanding (both CPU and memory) to simultaneously segment multiple surfaces from large volumetric images. Therefore, we propose a new, fast, and memory-efficient graph search method for intraretinal layer segmentation of 3-D macular optical coherence tomograpy (OCT) scans. The key idea is to reduce the size of a graph by combining the nodes with high costs based on the multiscale approach. The new approach requires significantly less memory and achieves significantly faster processing speeds (p segmentation differences compared to the original graph search method. This paper discusses sub-optimality of this approach and assesses trade-off relationships between decreasing processing speed and increasing segmentation differences from that of the original method as a function of employed scale of the underlying graph construction.

  12. Travel time calculation in regular 3D grid in local and regional scale using fast marching method

    Science.gov (United States)

    Polkowski, M.

    2015-12-01

    Local and regional 3D seismic velocity models of crust and sediments are very important for numerous technics like mantle and core tomography, localization of local and regional events and others. Most of those techniques require calculation of wave travel time through the 3D model. This can be achieved using multiple approaches from simple ray tracing to advanced full waveform calculation. In this study simple and efficient implementation of fast marching method is presented. This method provides more information than ray tracing and is much less complicated than methods like full waveform being the perfect compromise. Presented code is written in C++, well commented and is easy to modify for different types of studies. Additionally performance is widely discussed including possibilities of multithreading and massive parallelism like GPU. Source code will be published in 2016 as it is part of the PhD thesis. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  13. 3D velocity distribution functions of heavy ions and kinetic properties of fast solar wind O6+ at 1 AU

    International Nuclear Information System (INIS)

    The kinetic properties of the solar wind are a result of complex interactions in the solar corona and interplanetary space. So far, observations of Velocity Distribution Functions (VDFs) of solar wind heavy ions have been solely 1D. They are known to exhibit non-thermal features, but because they are 1D projections of the 3D velocity phase space it is difficult to interpret them properly. We have modeled heavy-ion VDFs based on 3D observations of protons and alpha particles from Helios. In the model, the magnetic field vector plays a crucial role by defining the symmetry axis of the VDFs. A thermal anisotropy T parallel /T perpendicularto ≠1 and a beam drifting along the magnetic field vector at a relative speed of approximately the Alfven speed are included. The modeled VDFs are analysed using a virtual detector and then compared with data from the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE). Our observations give evidence for the existence of heavy-ion beams. The projection of these beams can explain observed differential streaming. Especially the rare periods of negative differential streaming correspond to periods in which the magnetic field lines are strongly bend no longer pointing towards Earth but towards the Sun. We present in-situ measurements and derived kinetic properties of fast solar wind O6+ at 1 AU.

  14. HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections

    International Nuclear Information System (INIS)

    We describe a novel method for the robust, rapid, and reliable determination of J couplings in multi-dimensional NMR coupling data, including small couplings from larger proteins. The method, 'High-resolution Iterative Frequency Identification of Couplings' (HIFI-C) is an extension of the adaptive and intelligent data collection approach introduced earlier in HIFI-NMR. HIFI-C collects one or more optimally tilted two-dimensional (2D) planes of a 3D experiment, identifies peaks, and determines couplings with high resolution and precision. The HIFI-C approach, demonstrated here for the 3D quantitative J method, offers vital features that advance the goal of rapid and robust collection of NMR coupling data. (1) Tilted plane residual dipolar couplings (RDC) data are collected adaptively in order to offer an intelligent trade off between data collection time and accuracy. (2) Data from independent planes can provide a statistical measure of reliability for each measured coupling. (3) Fast data collection enables measurements in cases where sample stability is a limiting factor (for example in the presence of an orienting medium required for residual dipolar coupling measurements). (4) For samples that are stable, or in experiments involving relatively stronger couplings, robust data collection enables more reliable determinations of couplings in shorter time, particularly for larger biomolecules. As a proof of principle, we have applied the HIFI-C approach to the 3D quantitative J experiment to determine N-C' RDC values for three proteins ranging from 56 to 159 residues (including a homodimer with 111 residues in each subunit). A number of factors influence the robustness and speed of data collection. These factors include the size of the protein, the experimental set up, and the coupling being measured, among others. To exhibit a lower bound on robustness and the potential for time saving, the measurement of dipolar couplings for the N-C' vector represents a realistic

  15. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jee Young [Dept. of Radiology, Chungang Univ. Hospital, School of Medicine, Chungang Univ. (Korea, Republic of); Yoon, Young Cheol [Dept. of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan Univ. (Korea, Republic of)], e-mail: ycyoon@skku.edu; Jung, Jin Young [Dept. of Radiology, Saint Paul' s Hospital, The Catholic Univ. (Korea, Republic of); Choe, Bong-Keun [Dept. of Preventive Medicine, School of Medicine, Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  16. Medical applications of fast 3D cameras in real-time image-guided radiotherapy (IGRT) of cancer

    Science.gov (United States)

    Li, Shidong; Li, Tuotuo; Geng, Jason

    2013-03-01

    Dynamic volumetric medical imaging (4DMI) has reduced motion artifacts, increased early diagnosis of small mobile tumors, and improved target definition for treatment planning. High speed cameras for video, X-ray, or other forms of sequential imaging allow a live tracking of external or internal movement useful for real-time image-guided radiation therapy (IGRT). However, none of 4DMI can track real-time organ motion and no camera has correlated with 4DMI to show volumetric changes. With a brief review of various IGRT techniques, we propose a fast 3D camera for live-video stereovision, an automatic surface-motion identifier to classify body or respiratory motion, a mechanical model for synchronizing the external surface movement with the internal target displacement by combination use of the real-time stereovision and pre-treatment 4DMI, and dynamic multi-leaf collimation for adaptive aiming the moving target. Our preliminary results demonstrate that the technique is feasible and efficient in IGRT of mobile targets. A clinical trial has been initiated for validation of its spatial and temporal accuracies and dosimetric impact for intensity-modulated RT (IMRT), volumetric-modulated arc therapy (VMAT), and stereotactic body radiotherapy (SBRT) of any mobile tumors. The technique can be extended for surface-guided stereotactic needle insertion in biopsy of small lung nodules.

  17. Gravity data inversion to determine 3D topographycal density contrast of Banten area, Indonesia based on fast Fourier transform

    Science.gov (United States)

    Windhari, Ayuty; Handayani, Gunawan

    2015-04-01

    The 3D inversion gravity anomaly to estimate topographical density using a matlab source code from gridded data provided by Parker Oldenburg algorithm based on fast Fourier transform was computed. We extend and improved the source code of 3DINVERT.M invented by Gomez Ortiz and Agarwal (2005) using the relationship between Fourier transform of the gravity anomaly and the sum of the Fourier transform from the topography density. We gave density contrast between the two media to apply the inversion. FFT routine was implemented to construct amplitude spectrum to the given mean depth. The results were presented as new graphics of inverted topography density, the gravity anomaly due to the inverted topography and the difference between the input gravity data and the computed ones. It terminates when the RMS error is lower than pre-assigned value used as convergence criterion or until maximum of iterations is reached. As an example, we used the matlab program on gravity data of Banten region, Indonesia.

  18. The Atlas3D project - XIX. The hot-gas content of early-type galaxies: fast versus slow rotators

    CERN Document Server

    Sarzi, Marc; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, M; Cappellari, Michele; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2013-01-01

    For early-type galaxies, the ability to sustain a corona of hot, X-ray emitting gas could have played a key role in quenching their star-formation history. Yet, it is still unclear what drives the precise amount of hot gas around these galaxies. By combining photometric and spectroscopic measurements for the early-type galaxies observed during the Atlas3D integral-field survey with measurements of their X-ray luminosity based on X-ray data of both low and high spatial resolution we conclude that the hot-gas content of early-type galaxies can depend on their dynamical structure. Specifically, whereas slow rotators generally have X-ray halos with luminosity L_X,gas and temperature T values that are in line with what is expected if the hot-gas emission is sustained by the thermalisaton of the kinetic energy carried by the stellar-mass loss material, fast rotators tend to display L_X,gas values that fall consistently below the prediction of this model, with similar T values that do not scale with the stellar kine...

  19. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network

    Directory of Open Access Journals (Sweden)

    Trong-Ngoc Le

    2016-01-01

    Full Text Available Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN, which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the “ground truth.” Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively.

  20. Hypocenter relocation using a fast grid search method and a 3-D seismic velocity model for the Sumatra region

    Energy Technology Data Exchange (ETDEWEB)

    Nugroho, Hendro [Study Program of Earth Sciences, Faculty of Earth Sciences and Technology, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia and Meteorological, Climatological, and Geophysical Agency, Jl. Angkasa 1 No. 2, Kemayoran, Jakar (Indonesia); Widiyantoro, Sri [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia); Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technologyc Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia)

    2013-09-09

    Determination of earthquake hypocenter in Indonesia conducted by the Meteorological, Climatological, and Geophysical Agency (MCGA) has still used a 1-D seismic velocity model. In this research, we have applied a Fast Grid Search (FGM) method and a 3-D velocity model resulting from tomographic imaging to relocate earthquakes in the Sumatran region. The data were taken from the MCGA data catalog from 2009 to 2011 comprising of subduction zone and on land fault earthquakes with magnitude greater than 4 Mw. Our preliminary results show some significant changes in the depths of the relocated earthquakes which are in general deeper than the depths of hypocenters from the MCGA data catalog. The residual times resulting from the relocation process are smaller than those prior to the relocation. Encouraged by these results, we will continue to conduct hypocenter relocation for all events from the MCGA data catalog periodically in order to produce a new data catalog with good quality. We hope that the new data catalog will be useful for further studies.

  1. Development and validation of CONV-3D code for calculation of thermal and hydrodynamics of Fast Reactor at the Supercomputer

    International Nuclear Information System (INIS)

    In IBRAE 3D CFD modules (CONV code) for safety analysis of the operated Nuclear Power Plants (NPPs) are developed. These modules are based on the developed algorithms with small scheme diffusion, for which the discrete approximations are constructed with use of finite-volume methods and fully staggered grids. For solving of convection problem the regularized nonlinear monotonic operator-splitting scheme is developed. The Richardson iterative method with iterative Fast Fourier Transformation (FFT) solver for Laplace’s operator as preconditioner is applied for solving pressure equation. Such approach for solving of the elliptical equations with variable coefficients gives multiple acceleration in a comparison with a usual method of conjugate gradients. For modeling of 3D turbulent single-phase flows Quasi DNS approach is used. The CONV code is fully parallelized and highly effective at the high performance computers such as “Chebyshev”, “Lomonosov” (Moscow State University). The developed modules were validated on a series of the well known tests in a wide range of Rayleigh numbers from a range 106-1016 and Reynolds numbers from a range 103-105. The software has been applied to the analysis results of test LIVE-L1 (L1 is aimed at investigating the melt pool and crust behaviour during the stages of air circulation at the outer RPV surface with subsequent flooding of the lower head) and joint analyses on transient molten pool thermal hydraulics in the LIVE facility in the framework of ISTC project. Moreover CONV was validated successfully on a series of the experimental tests as: the blind test on simulation of flows in T-junction (OECD/NEA), ERCOFTAC experiment (world database on turbulent flows) natural convection in the closures under extremely high Rayleigh numbers. In all cases the good coincidence of numerical predictions with experimental data was reached, that specifies a possibility of application of the developed approach for a prediction of CFD

  2. Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology

    Science.gov (United States)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Santhanam, Anand P.; Tankam, Patrice; Rolland, Jannick P.

    2015-10-01

    Fast, robust, nondestructive 3D imaging is needed for characterization of microscopic structures in industrial and clinical applications. A custom micro-electromechanical system (MEMS)-based 2D scanner system was developed to achieve 55 kHz A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) instrument with a novel multilevel GPU architecture for high-speed imaging. GD-OCM yields high-definition volumetric imaging with dynamic depth of focusing through a bio-inspired liquid lens-based microscope design, which has no moving parts and is suitable for use in a manufacturing setting or in a medical environment. A dual-axis MEMS mirror was chosen to replace two single-axis galvanometer mirrors; as a result, the astigmatism caused by the mismatch between the optical pupil and the scanning location was eliminated and a 12x reduction in volume of the scanning system was achieved. Imaging at an invariant resolution of 2 μm was demonstrated throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. The MEMS-based scanner resulted in improved image quality, increased robustness and lighter weight of the system - all factors that are critical for on-field deployment. A custom integrated feedback system consisting of a laser diode and a position-sensing detector was developed to investigate the impact of the resonant frequency of the MEMS and the driving signal of the scanner on the movement of the mirror. Results on the metrology of manufactured materials and characterization of tissue samples with GD-OCM are presented.

  3. Cranial nerve assessment in cavernous sinus tumors with contrast-enhanced 3D fast-imaging employing steady-state acquisition MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Amemiya, Shiori; Aoki, Shigeki; Ohtomo, Kuni [University of Tokyo, Department of Radiology, Graduate School of Medicine, Bunkyo-ku, Tokyo (Japan)

    2009-07-15

    The purpose of this study is to apply contrast-enhanced 3D fast-imaging employing steady-state acquisition (3D-FIESTA) imaging to the evaluation of cranial nerves (CN) in patients with cavernous sinus tumors. Contrast-enhanced 3D-FIESTA images were acquired from ten patients with cavernous sinus tumors with a 3-T unit. In all cases, the trigeminal nerve with tumor involvement was easily identified in the cavernous portions. Although oculomotor and abducens nerves were clearly visualized against the tumor area with intense contrast enhancement, they were hardly identifiable within the area lacking contrast enhancement. The trochlear nerve was visualized in part, but not delineated as a linear structure outside of the lesion. Contrast-enhanced 3D-FIESTA can be useful in the assessment of cranial nerves in and around the cavernous sinus with tumor involvement. (orig.)

  4. MO-G-17A-03: MR-Based Cortical Bone Segmentation for PET Attenuation Correction with a Non-UTE 3D Fast GRE Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Ai, H; Pan, T [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); The University of Texas Graduate School of Biomedical Science, Houston, TX (United States); Hwang, K [GE Healthcare, Houston, TX (United States)

    2014-06-15

    Purpose: To determine the feasibility of identifying cortical bone on MR images with a short-TE 3D fast-GRE sequence for attenuation correction of PET data in PET/MR. Methods: A water-fat-bone phantom was constructed with two pieces of beef shank. MR scans were performed on a 3T MR scanner (GE Discovery™ MR750). A 3D GRE sequence was first employed to measure the level of residual signal in cortical bone (TE{sub 1}/TE{sub 2}/TE{sub 3}=2.2/4.4/6.6ms, TR=20ms, flip angle=25°). For cortical bone segmentation, a 3D fast-GRE sequence (TE/TR=0.7/1.9ms, acquisition voxel size=2.5×2.5×3mm{sup 3}) was implemented along with a 3D Dixon sequence (TE{sub 1}/TE{sub 2}/TR=1.2/2.3/4.0ms, acquisition voxel size=1.25×1.25×3mm{sup 3}) for water/fat imaging. Flip angle (10°), acquisition bandwidth (250kHz), FOV (480×480×144mm{sup 3}) and reconstructed voxel size (0.94×0.94×1.5mm{sup 3}) were kept the same for both sequences. Soft tissue and fat tissue were first segmented on the reconstructed water/fat image. A tissue mask was created by combining the segmented water/fat masks, which was then applied on the fast-GRE image (MRFGRE). A second mask was created to remove the Gibbs artifacts present in regions in close vicinity to the phantom. MRFGRE data was smoothed with a 3D anisotropic diffusion filter for noise reduction, after which cortical bone and air was separated using a threshold determined from the histogram. Results: There is signal in the cortical bone region in the 3D GRE images, indicating the possibility of separating cortical bone and air based on signal intensity from short-TE MR image. The acquisition time for the 3D fast-GRE sequence was 17s, which can be reduced to less than 10s with parallel imaging. The attenuation image created from water-fat-bone segmentation is visually similar compared to reference CT. Conclusion: Cortical bone and air can be separated based on intensity in MR image with a short-TE 3D fast-GRE sequence. Further research is required

  5. MO-G-17A-03: MR-Based Cortical Bone Segmentation for PET Attenuation Correction with a Non-UTE 3D Fast GRE Sequence

    International Nuclear Information System (INIS)

    Purpose: To determine the feasibility of identifying cortical bone on MR images with a short-TE 3D fast-GRE sequence for attenuation correction of PET data in PET/MR. Methods: A water-fat-bone phantom was constructed with two pieces of beef shank. MR scans were performed on a 3T MR scanner (GE Discovery™ MR750). A 3D GRE sequence was first employed to measure the level of residual signal in cortical bone (TE1/TE2/TE3=2.2/4.4/6.6ms, TR=20ms, flip angle=25°). For cortical bone segmentation, a 3D fast-GRE sequence (TE/TR=0.7/1.9ms, acquisition voxel size=2.5×2.5×3mm3) was implemented along with a 3D Dixon sequence (TE1/TE2/TR=1.2/2.3/4.0ms, acquisition voxel size=1.25×1.25×3mm3) for water/fat imaging. Flip angle (10°), acquisition bandwidth (250kHz), FOV (480×480×144mm3) and reconstructed voxel size (0.94×0.94×1.5mm3) were kept the same for both sequences. Soft tissue and fat tissue were first segmented on the reconstructed water/fat image. A tissue mask was created by combining the segmented water/fat masks, which was then applied on the fast-GRE image (MRFGRE). A second mask was created to remove the Gibbs artifacts present in regions in close vicinity to the phantom. MRFGRE data was smoothed with a 3D anisotropic diffusion filter for noise reduction, after which cortical bone and air was separated using a threshold determined from the histogram. Results: There is signal in the cortical bone region in the 3D GRE images, indicating the possibility of separating cortical bone and air based on signal intensity from short-TE MR image. The acquisition time for the 3D fast-GRE sequence was 17s, which can be reduced to less than 10s with parallel imaging. The attenuation image created from water-fat-bone segmentation is visually similar compared to reference CT. Conclusion: Cortical bone and air can be separated based on intensity in MR image with a short-TE 3D fast-GRE sequence. Further research is required to optimize the strategy to reduce Gibbs artifacts

  6. Mapping of the spontaneous deletion in the Ap3d1 gene of mocha mice: fast and reliable genotyping

    OpenAIRE

    Delenclos Marion; Holm Mai; Drasbek Kim; Jensen Kimmo

    2008-01-01

    Abstract Background The mocha mouse carries a spontaneous deletion in the Ap3d1 gene, encoding the delta 1 subunit of the adaptor related protein complex 3, (Ap3d1), and subsequently lack the expression of functional AP-3. This leads to a deficiency in vesicle transport and storage, which affects neurotransmitter vesicle turnover and release in the central nervous system. Since the genomic sequence of the Ap3d1 gene of mocha mouse is not known, precise mapping of the deletion as well as relia...

  7. 3D pyCloudy modelling of bipolar planetary nebulae: evidence for fast fading of the lobes

    OpenAIRE

    Gesicki, K.; Zijlstra, A. A.; C. Morisset

    2015-01-01

    We apply an axially symmetric pseudo-3D photoionization model, pyCloudy, to derive the structures of 6 bipolar nebulae and 2 suggested post-bipolars in a quest to constrain the bipolar planetary nebulae evolution. HST images and VLT/UVES spectroscopy are used for the modelling. The targets are located in the direction of the Galactic bulge. A 3D model structure is used as input to the photoionization code, so as to fit the HST images. Line profiles of different ions constrain the velocity fie...

  8. 3D in the Fast Lane: Render as You Go with the Latest OpenGL Boards.

    Science.gov (United States)

    Sauer, Jeff; Murphy, Sam

    1997-01-01

    NT OpenGL hardware allows modelers and animators to work at relatively inexpensive NT workstations in their own offices or homes previous to shared space and workstation time in expensive studios. Rates seven OpenGL boards and two QuickDraw 3D accelerator boards for Mac users on overall value, wireframe and texture rendering, 2D acceleration, and…

  9. 3D pyCloudy modelling of bipolar planetary nebulae: Evidence for fast fading of the lobes

    Science.gov (United States)

    Gesicki, K.; Zijlstra, A. A.; Morisset, C.

    2016-01-01

    Aims: The origin and evolution of the shapes of bipolar planetary nebulae are poorly understood. We postulate that their history can be traced through their internal velocity fields in a procedure similar to the one well established for spherical objects. Such an analysis requires 3D photoionization and kinematical modelling that is computationally very time consuming. We apply an axially symmetric pseudo-3D photoionization model, pyCloudy, to derive the structures of six bipolar nebulae and two suggested post-bipolars in an attempt to constrain the bipolar planetary nebulae evolution. Methods: HST images and VLT/UVES spectroscopy are used for the modelling. The targets are located in the direction of the Galactic bulge. A 3D model structure is used as input to the photoionization code in order to fit the HST images. Line profiles of different ions constrain the velocity field. The model and associated velocity fields allow us to derive masses, velocities, and ages. Results: The 3D models find much lower ionized masses than required in 1D models: ionized masses are reduced by factors of 2-7. The selected bi-lobed planetary nebulae show a narrow range of ages: the averaged radii and velocities result in values between 1300 and 2000 yr. The lobes are fitted well with velocities that increase linearly with radius. These Hubble-type flows have been found before, and suggest that the lobes form at a defined point in time. The lobes appear to be slightly younger, by ~500 yr, than the main (host) nebulae; they seem to form at an early phase of PN evolution and fade after 1-2 kyr. We find that 30-35% of bulge PNe pass through a bipolar phase. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (proposal 075.D-0104) and HST (program 9356).

  10. 3D pyCloudy modelling of bipolar planetary nebulae: evidence for fast fading of the lobes

    CERN Document Server

    Gesicki, K; Morisset, C

    2016-01-01

    We apply an axially symmetric pseudo-3D photoionization model, pyCloudy, to derive the structures of 6 bipolar nebulae and 2 suggested post-bipolars in a quest to constrain the bipolar planetary nebulae evolution. HST images and VLT/UVES spectroscopy are used for the modelling. The targets are located in the direction of the Galactic bulge. A 3D model structure is used as input to the photoionization code, so as to fit the HST images. Line profiles of different ions constrain the velocity field. The model and associated velocity fields allow us to derive masses, velocities, and ages. The 3D models find much lower ionized masses than required in 1D models: ionized masses are reduced by factors of 2-7. The selected bi-lobed planetary nebulae show a narrow range of ages: the averaged radii and velocities result in values between 1300 and 2000 yr. The lobes are fitted well with velocities linearly increasing with radius. These Hubble-type flows have been found before, and suggest that the lobes form at a defined ...

  11. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    Directory of Open Access Journals (Sweden)

    Pielot Rainer

    2010-01-01

    Full Text Available Abstract Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE, a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  12. Analysis of thorium and uranium fuel cycles in an iso-breeder lead fast reactor using extended-EQL3D procedure

    International Nuclear Information System (INIS)

    Highlights: ► Extension of EQL3D procedure to calculate radio-toxicity and decay heat. ► Characterization of uranium- and thorium-fueled LFR from BOL to equilibrium. ► Safety improvements for a LFR in a closed thorium cycle. ► Advantages of thorium-fueled LFR in terms of decay heat and radio-toxicity generation. ► Safety, decay heat and radio-toxicity concerns for a Th–Pu beginning-of-life core. - Abstract: Use of thorium in fast reactors has typically been considered as a secondary option, mainly thanks to a possible self-sustaining thorium cycle already in thermal reactors and due to the limited breeding capabilities compared to U–Pu in the fast neutron energy range. In recent years nuclear waste management has become more important, and the thorium option has been reconsidered for the claimed potential to burn transuranic waste and the lower build-up of hazardous isotopes in a closed cycle. To ascertain these claims and their limitations, the fuel cycle isotopic inventory, and associated waste radio-toxicity and decay heat, should be quantified and compared to the case of the uranium cycle using realistic core configurations, with complete recycle of all the actinides. Since the transition from uranium to thorium fuel cycles will likely involve a transuranic burning phase, this transition and the challenges that the evolving fuel actinide composition presents, for instance on reactor feedback parameters, should also be analyzed. In the present paper, these issues are investigated based on core physics analysis of the Lead-cooled Fast Reactor ELSY, performed with the fast reactor ERANOS code and the EQL3D procedure allowing full-core characterization of the equilibrium cycle and the transition cycles. In order to compute radio-toxicity and decay heat, EQL3D has been extended by developing a new module, which has been assessed against ORIGEN-S and is presented here. The capability of the EQL3D procedure to treat full-core 3D geometries allowed to

  13. DKE: a fast numerical solver for the 3-D relativistic bounce-averaged electron drift kinetic equation

    Energy Technology Data Exchange (ETDEWEB)

    Decker, J.; Peysson, Y

    2004-12-01

    A new original code for solving the 3-D relativistic and bounce-averaged electron drift kinetic equation is presented. It designed for the current drive problem in tokamak with an arbitrary magnetic equilibrium. This tool allows self-consistent calculations of the bootstrap current in presence of other external current sources. RF current drive for arbitrary type of waves may be used. Several moments of the electron distribution function are determined, like the exact and effective fractions of trapped electrons, the plasma current, absorbed RF power, runaway and magnetic ripple loss rates and non-thermal Bremsstrahlung. Advanced numerical techniques have been used to make it the first fully implicit (reverse time) 3-D solver, particularly well designed for implementation in a chain of code for realistic current drive calculations in high {beta}{sub p} plasmas. All the details of the physics background and the numerical scheme are presented, as well a some examples to illustrate main code capabilities. Several important numerical points are addressed concerning code stability and potential numerical and physical limitations. (authors)

  14. A novel structured dictionary for fast processing of 3D medical images, with application to computed tomography restoration and denoising

    Science.gov (United States)

    Karimi, Davood; Ward, Rabab K.

    2016-03-01

    Sparse representation of signals in learned overcomplete dictionaries has proven to be a powerful tool with applications in denoising, restoration, compression, reconstruction, and more. Recent research has shown that learned overcomplete dictionaries can lead to better results than analytical dictionaries such as wavelets in almost all image processing applications. However, a major disadvantage of these dictionaries is that their learning and usage is very computationally intensive. In particular, finding the sparse representation of a signal in these dictionaries requires solving an optimization problem that leads to very long computational times, especially in 3D image processing. Moreover, the sparse representation found by greedy algorithms is usually sub-optimal. In this paper, we propose a novel two-level dictionary structure that improves the performance and the speed of standard greedy sparse coding methods. The first (i.e., the top) level in our dictionary is a fixed orthonormal basis, whereas the second level includes the atoms that are learned from the training data. We explain how such a dictionary can be learned from the training data and how the sparse representation of a new signal in this dictionary can be computed. As an application, we use the proposed dictionary structure for removing the noise and artifacts in 3D computed tomography (CT) images. Our experiments with real CT images show that the proposed method achieves results that are comparable with standard dictionary-based methods while substantially reducing the computational time.

  15. Fast 3D coronary artery contrast-enhanced magnetic resonance angiography with magnetization transfer contrast, fat suppression and parallel imaging as applied on an anthropomorphic moving heart phantom.

    Science.gov (United States)

    Irwan, Roy; Rüssel, Iris K; Sijens, Paul E

    2006-09-01

    A magnetic resonance sequence for high-resolution imaging of coronary arteries in a very short acquisition time is presented. The technique is based on fast low-angle shot and uses fat saturation and magnetization transfer contrast prepulses to improve image contrast. GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is implemented to shorten acquisition time. The sequence was tested on a moving anthropomorphic silicone heart phantom where the coronary arteries were filled with a gadolinium contrast agent solution, and imaging was performed at varying heart rates using GRAPPA. The clinical relevance of the phantom was validated by comparing the myocardial relaxation times of the phantom's homogeneous silicone cardiac wall to those of humans. Signal-to-noise ratio and contrast-to-noise ratio were higher when parallel imaging was used, possibly benefiting from the acquisition of one partition per heartbeat. Another advantage of parallel imaging for visualizing the coronary arteries is that the entire heart can be imaged within a few breath-holds.

  16. Thermal-Hydraulic Calculation for Simplified Fuel Assembly of Super Fast Reactor Using Two-Fluid Model Analysis Code ACE-3D

    International Nuclear Information System (INIS)

    To evaluate thermal hydraulic characteristics of a fuel assembly of supercritical water-cooled fast reactor (Super Fast Reactor), a simplified fuel assembly was analyzed with a three-dimensional two-fluid model analysis code ACE-3D which has been enhanced by Japan Atomic Energy Agency. In the ACE-3D code, the two-phase flow turbulent model based on the k-ε model were adopted. The analytical geometry simulates a 19-rod fuel assembly, which is a simplified geometry of the 271-rod fuel assembly and includes all three kinds of different subchannel types; (1): adjoining to the channel box, (2): next to type (1), and (3): located inside types (1) and (2). In this calculation, one-twelfth model is adopted as the computational domain taking advantage of symmetry. As the boundary conditions, mass velocity, inlet enthalpy and power per rod are to be the same as the steady state condition of the Super Fast Reactor. Cross-sectional local power distribution in the fuel assembly is set to be flat. Rod surface temperatures take peak values near the top of the rods. Maximum clad surface temperature (MCST) is observed at the position facing to the narrowest gap on the center rod near the outlet and the value is 902 K (629 deg. C). It was confirmed that the predicted MCST satisfies a thermal design criteria to ensure fuel and cladding integrity: the MCST should be less than 650 deg. C. (author)

  17. Development of a novel pixel-level signal processing chain for fast readout 3D integrated CMOS pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Y.; Torheim, O.; Hu-Guo, C. [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France); Degerli, Y. [CEA Saclay, IRFU/SEDI, 91191 Gif-sur-Yvette Cedex (France); Hu, Y., E-mail: yann.hu@iphc.cnrs.fr [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France)

    2013-03-11

    In order to resolve the inherent readout speed limitation of traditional 2D CMOS pixel sensors, operated in rolling shutter readout, a parallel readout architecture has been developed by taking advantage of 3D integration technologies. Since the rows of the pixel array are zero-suppressed simultaneously instead of sequentially, a frame readout time of a few microseconds is expected for coping with high hit rates foreseen in future collider experiments. In order to demonstrate the pixel readout functionality of such a pixel sensor, a 2D proof-of-concept chip including a novel pixel-level signal processing chain was designed and fabricated in a 0.13μm CMOS technology. The functionalities of this chip have been verified through experimental characterization.

  18. Development of fast patient position verification software using 2D-3D image registration and its clinical experience

    International Nuclear Information System (INIS)

    To improve treatment workflow, we developed a graphic processing unit (GPU)-based patient positional verification software application and integrated it into carbon-ion scanning beam treatment. Here, we evaluated the basic performance of the software. The algorithm provides 2D/3D registration matching using CT and orthogonal X-ray flat panel detector (FPD) images. The participants were 53 patients with tumors of the head and neck, prostate or lung receiving carbon-ion beam treatment. 2D/3D-ITchi-Gime (ITG) calculation accuracy was evaluated in terms of computation time and registration accuracy. Registration calculation was determined using the similarity measurement metrics gradient difference (GD), normalized mutual information (NMI), zero-mean normalized cross-correlation (ZNCC), and their combination. Registration accuracy was dependent on the particular metric used. Representative examples were determined to have target registration error (TRE) = 0.45 ± 0.23 mm and angular error (AE) = 0.35 ± 0.18° with ZNCC + GD for a head and neck tumor; TRE = 0.12 ± 0.07 mm and AE = 0.16 ± 0.07° with ZNCC for a pelvic tumor; and TRE = 1.19 ± 0.78 mm and AE = 0.83 ± 0.61° with ZNCC for lung tumor. Calculation time was less than 7.26 s. The new registration software has been successfully installed and implemented in our treatment process. We expect that it will improve both treatment workflow and treatment accuracy. (author)

  19. The ATLAS3D project - VIII. Modelling the formation and evolution of fast and slow rotator early-type galaxies within ΛCDM

    Science.gov (United States)

    Khochfar, Sadegh; Emsellem, Eric; Serra, Paolo; Bois, Maxime; Alatalo, Katherine; Bacon, R.; Blitz, Leo; Bournaud, Frédéric; Bureau, M.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    2011-10-01

    We propose a simple model for the origin of fast and slow rotator early-type galaxies (ETG) within the hierarchical Λcold dark matter (ΛCDM) scenario, that is based on the assumption that the mass fraction of stellar discs in ETGs is a proxy for the specific angular momentum expressed via λR. Within our model we reproduce the fraction of fast and slow rotators as a function of magnitude in the ATLAS3D survey, assuming that fast-rotating ETGs have at least 10 per cent of their total stellar mass in a disc component. In agreement with ATLAS3D observations we find that slow rotators are predominantly galaxies with M* > 1010.5 M⊙ contributing ˜20 per cent to the overall ETG population. We show in detail that the growth histories of fast and slow rotators are different, supporting the classification of ETGs into these two categories. Slow rotators accrete between ˜50 and 90 per cent of their stellar mass from satellites and their most massive progenitors have on average up to three major mergers during their evolution. Fast rotators in contrast accrete less than 50 per cent and have on average less than one major merger in their past. We find that the underlying physical reason for the different growth histories is the slowing down and ultimately complete shut-down of gas cooling in massive galaxies. Once cooling and associated star formation in disc stop, galaxies grow via infall from satellites. Frequent minor mergers thereby destroy existing stellar discs via violent relaxation and also tend to lower the specific angular momentum of the main stellar body, lowering λR into the slow rotator regime. On average, the last gas-rich major merger interaction in slow rotators happens at z > 1.5, followed by a series of minor mergers. These results support the idea that kinematically decoupled cores (KDC) form during gas-rich major mergers at high z followed by minor mergers, which build-up the outer layers of the remnant, and make remnants that are initially too flat

  20. Atlas and feature based 3D pathway visualization enhancement for skull base pre-operative fast planning from head CT

    Science.gov (United States)

    Aghdasi, Nava; Li, Yangming; Berens, Angelique; Moe, Kris S.; Bly, Randall A.; Hannaford, Blake

    2015-03-01

    Minimally invasive neuroendoscopic surgery provides an alternative to open craniotomy for many skull base lesions. These techniques provides a great benefit to the patient through shorter ICU stays, decreased post-operative pain and quicker return to baseline function. However, density of critical neurovascular structures at the skull base makes planning for these procedures highly complex. Furthermore, additional surgical portals are often used to improve visualization and instrument access, which adds to the complexity of pre-operative planning. Surgical approach planning is currently limited and typically involves review of 2D axial, coronal, and sagittal CT and MRI images. In addition, skull base surgeons manually change the visualization effect to review all possible approaches to the target lesion and achieve an optimal surgical plan. This cumbersome process relies heavily on surgeon experience and it does not allow for 3D visualization. In this paper, we describe a rapid pre-operative planning system for skull base surgery using the following two novel concepts: importance-based highlight and mobile portal. With this innovation, critical areas in the 3D CT model are highlighted based on segmentation results. Mobile portals allow surgeons to review multiple potential entry portals in real-time with improved visualization of critical structures located inside the pathway. To achieve this we used the following methods: (1) novel bone-only atlases were manually generated, (2) orbits and the center of the skull serve as features to quickly pre-align the patient's scan with the atlas, (3) deformable registration technique was used for fine alignment, (4) surgical importance was assigned to each voxel according to a surgical dictionary, and (5) pre-defined transfer function was applied to the processed data to highlight important structures. The proposed idea was fully implemented as independent planning software and additional data are used for verification and

  1. 3D modelling and recognition

    OpenAIRE

    Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie

    2006-01-01

    3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.

  2. Multi-frequency color-marked fringe projection profilometry for fast 3D shape measurement of complex objects.

    Science.gov (United States)

    Jiang, Chao; Jia, Shuhai; Dong, Jun; Bao, Qingchen; Yang, Jia; Lian, Qin; Li, Dichen

    2015-09-21

    We propose a novel multi-frequency color-marked fringe projection profilometry approach to measure the 3D shape of objects with depth discontinuities. A digital micromirror device projector is used to project a color map consisting of a series of different-frequency color-marked fringe patterns onto the target object. We use a chromaticity curve to calculate the color change caused by the height of the object. The related algorithm to measure the height is also described in this paper. To improve the measurement accuracy, a chromaticity curve correction method is presented. This correction method greatly reduces the influence of color fluctuations and measurement error on the chromaticity curve and the calculation of the object height. The simulation and experimental results validate the utility of our method. Our method avoids the conventional phase shifting and unwrapping process, as well as the independent calculation of the object height required by existing techniques. Thus, it can be used to measure complex and dynamic objects with depth discontinuities. These advantages are particularly promising for industrial applications. PMID:26406621

  3. A capacitive DAC with custom 3-D 1-fF MOM unit capacitors optimized for fast-settling routing in high speed SAR ADCs

    Science.gov (United States)

    Chixiao, Chen; Jixuan, Xiang; Huabin, Chen; Jun, Xu; Fan, Ye; Ning, Li; Junyan, Ren

    2015-05-01

    Asynchronous successive approximation register (SAR) analog-to-digital converters (ADC) feature high energy efficiency but medium performance. From the point of view of speed, the key bottleneck is the unit capacitor size. In this paper, a small size three-dimensional (3-D) metal—oxide—metal (MOM) capacitor is proposed. The unit capacitor has a capacitance of 1-fF. It shapes as an umbrella, which is designed for fast settling consideration. A comparison among the proposed capacitor with other 3-D MOM capacitors is also given in the paper. To demonstrate the effectiveness of the MOM capacitor, a 6-b capacitive DAC is implemented in TSMC 1P9M 65 nm LP CMOS technology. The DAC consumes a power dissipation of 0.16 mW at the rate of 100 MS/s, excluding a source-follower based output buffer. Static measurement result shows that INL is less than ±1 LSB and DNL is less than ±0.5 LSB. In addition, a 100 MS/s 9-bit SAR ADC with the proposed 3-D capacitor is simulated.

  4. A capacitive DAC with custom 3-D 1-fF MOM unit capacitors optimized for fast-settling routing in high speed SAR ADCs

    International Nuclear Information System (INIS)

    Asynchronous successive approximation register (SAR) analog-to-digital converters (ADC) feature high energy efficiency but medium performance. From the point of view of speed, the key bottleneck is the unit capacitor size. In this paper, a small size three-dimensional (3-D) metal—oxide—metal (MOM) capacitor is proposed. The unit capacitor has a capacitance of 1-fF. It shapes as an umbrella, which is designed for fast settling consideration. A comparison among the proposed capacitor with other 3-D MOM capacitors is also given in the paper. To demonstrate the effectiveness of the MOM capacitor, a 6-b capacitive DAC is implemented in TSMC 1P9M 65 nm LP CMOS technology. The DAC consumes a power dissipation of 0.16 mW at the rate of 100 MS/s, excluding a source-follower based output buffer. Static measurement result shows that INL is less than ±1 LSB and DNL is less than ±0.5 LSB. In addition, a 100 MS/s 9-bit SAR ADC with the proposed 3-D capacitor is simulated. (paper)

  5. Fast dynamic 3D MR spectroscopic imaging with compressed sensing and multiband excitation pulses for hyperpolarized 13C studies.

    Science.gov (United States)

    Larson, Peder E Z; Hu, Simon; Lustig, Michael; Kerr, Adam B; Nelson, Sarah J; Kurhanewicz, John; Pauly, John M; Vigneron, Daniel B

    2011-03-01

    Hyperpolarized 13C MR spectroscopic imaging can detect not only the uptake of the pre-polarized molecule but also its metabolic products in vivo, thus providing a powerful new method to study cellular metabolism. Imaging the dynamic perfusion and conversion of these metabolites provides additional tissue information but requires methods for efficient hyperpolarization usage and rapid acquisitions. In this work, we have developed a time-resolved 3D MR spectroscopic imaging method for acquiring hyperpolarized 13C data by combining compressed sensing methods for acceleration and multiband excitation pulses to efficiently use the magnetization. This method achieved a 2 sec temporal resolution with full volumetric coverage of a mouse, and metabolites were observed for up to 60 sec following injection of hyperpolarized [1-(13)C]-pyruvate. The compressed sensing acquisition used random phase encode gradient blips to create a novel random undersampling pattern tailored to dynamic MR spectroscopic imaging with sampling incoherency in four (time, frequency, and two spatial) dimensions. The reconstruction was also tailored to dynamic MR spectroscopic imaging by applying a temporal wavelet sparsifying transform to exploit the inherent temporal sparsity. Customized multiband excitation pulses were designed with a lower flip angle for the [1-(13)C]-pyruvate substrate given its higher concentration than its metabolic products ([1-(13)C]-lactate and [1-(13)C]-alanine), thus using less hyperpolarization per excitation. This approach has enabled the monitoring of perfusion and uptake of the pyruvate, and the conversion dynamics to lactate and alanine throughout a volume with high spatial and temporal resolution. PMID:20939089

  6. Automatic localization of target vertebrae in spine surgery using fast CT-to-fluoroscopy (3D-2D) image registration

    Science.gov (United States)

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-02-01

    Localization of target vertebrae is an essential step in minimally invasive spine surgery, with conventional methods relying on "level counting" - i.e., manual counting of vertebrae under fluoroscopy starting from readily identifiable anatomy (e.g., the sacrum). The approach requires an undesirable level of radiation, time, and is prone to counting errors due to the similar appearance of vertebrae in projection images; wrong-level surgery occurs in 1 of every ~3000 cases. This paper proposes a method to automatically localize target vertebrae in x-ray projections using 3D-2D registration between preoperative CT (in which vertebrae are preoperatively labeled) and intraoperative fluoroscopy. The registration uses an intensity-based approach with a gradient-based similarity metric and the CMA-ES algorithm for optimization. Digitally reconstructed radiographs (DRRs) and a robust similarity metric are computed on GPU to accelerate the process. Evaluation in clinical CT data included 5,000 PA and LAT projections randomly perturbed to simulate human variability in setup of mobile intraoperative C-arm. The method demonstrated 100% success for PA view (projection error: 0.42mm) and 99.8% success for LAT view (projection error: 0.37mm). Initial implementation on GPU provided automatic target localization within about 3 sec, with further improvement underway via multi-GPU. The ability to automatically label vertebrae in fluoroscopy promises to streamline surgical workflow, improve patient safety, and reduce wrong-site surgeries, especially in large patients for whom manual methods are time consuming and error prone.

  7. Sensitivity and reproducibility of a new fast 3D segmentation technique for clinical MR-based brain volumetry in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, Carsten; Bellenberg, Barbara; Schimrigk, Sebastian K.; Przuntek, Horst [Ruhr University, Department of Neurology, St. Josef Hospital, Bochum (Germany); Hahn, Horst K.; Rexilius, Jan; Peitgen, Heinz-Otto [MeVis, Center for Medical Diagnostic Systems and Visualization, Bremen (Germany); Schmid, Gebhard; Koester, Odo [Ruhr University, Department of Radiology and Nuclear Medicine, St. Josef Hospital, Bochum (Germany)

    2004-11-01

    Fast, reliable and easy-to-use methods to quantify brain atrophy are of increasing importance in clinical studies on neuro-degenerative diseases. Here, ILAB 4, a new volumetry software that uses a fast semi-automated 3D segmentation of thin-slice T1-weighted 3D MR images based on a modified watershed transform and an automatic histogram analysis was evaluated. It provides the cerebral volumes: whole brain, white matter, gray matter and intracranial cavity. Inter- and intra-rater reliability and scan-rescan reproducibility were excellent in measuring whole brain volumes (coefficients of variation below 0.5%) of volunteers and patients. However, gray and white matter volumes were more susceptible to image quality. High accuracy of the absolute volume results ({+-}5 ml) were shown by phantom and preparation measurements. Analysis times were 6 min for processing of 128 slices. The proposed technique is reliable and highly suitable for quantitative studies of brain atrophy, e.g., in multiple sclerosis. (orig.)

  8. Sensitivity and reproducibility of a new fast 3D segmentation technique for clinical MR-based brain volumetry in multiple sclerosis.

    Science.gov (United States)

    Lukas, Carsten; Hahn, Horst K; Bellenberg, Barbara; Rexilius, Jan; Schmid, Gebhard; Schimrigk, Sebastian K; Przuntek, Horst; Köster, Odo; Peitgen, Heinz-Otto

    2004-11-01

    Fast, reliable and easy-to-use methods to quantify brain atrophy are of increasing importance in clinical studies on neuro-degenerative diseases. Here, ILAB 4, a new volumetry software that uses a fast semi-automated 3D segmentation of thin-slice T1-weighted 3D MR images based on a modified watershed transform and an automatic histogram analysis was evaluated. It provides the cerebral volumes: whole brain, white matter, gray matter and intracranial cavity. Inter- and intra-rater reliability and scan-rescan reproducibility were excellent in measuring whole brain volumes (coefficients of variation below 0.5%) of volunteers and patients. However, gray and white matter volumes were more susceptible to image quality. High accuracy of the absolute volume results (+/-5 ml) were shown by phantom and preparation measurements. Analysis times were 6 min for processing of 128 slices. The proposed technique is reliable and highly suitable for quantitative studies of brain atrophy, e.g., in multiple sclerosis. PMID:15536555

  9. Comparison of open and closed U-Pu equilibrium fuel cycles for Generation-IV fast reactors with the EQL3D procedure

    Energy Technology Data Exchange (ETDEWEB)

    Krepel, Jiri, E-mail: Jiri.Krepel@psi.ch [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Pelloni, Sandro; Mikityuk, Konstantin [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We analyze open and closed fuel cycle of GFR, SFR, and LFR cores by means of ERANOS based EQL3D procedure. Black-Right-Pointing-Pointer Equilibrium of open and closed fuel cycles were compared in terms of their performance and safety parameters. Black-Right-Pointing-Pointer All three cores act in equilibrium closed cycle as iso-breeder and have similar fuel composition. Black-Right-Pointing-Pointer In spite of the same fuel composition the Dopper constants and void reactivities strongly differ between the cores. Black-Right-Pointing-Pointer All three systems seem capable, from neutronics point of view, for the fuel cycle closure. - Abstract: The advanced fast reactors of the fourth generation should enable an indirect burning of poorly fissile {sup 238}U through {sup 239}Pu breeding and recycling of the actinides from their own spent fuel. The recycling or actually the fuel cycle closure can significantly reduce the amount of long-lived radioactive waste and the {sup 238}U burning can multiply the sustainability of the uranium fueled reactors. Regular periodic operation with the fuel recycling converges to an equilibrium cycle. To enable its simulation a numerical tool named equilibrium fuel cycle procedure for fast reactors (EQL3D) was developed in the FAST group of LRS at Paul Scherrer Institut. The procedure is based on the ERANOS code and can be used to yield the description of two basic situations: the equilibrium of an open fuel cycle and the equilibrium of a closed fuel cycle. The goals of the present study are (i) to apply EQL3D to the Gas-cooled Fast Reactor (GFR), Sodium-cooled Fast Reactor (SFR), and Lead-cooled Fast Reactor (LFR), (ii) to simulate and confirm the GFR, SFR, and LFR neutronics capability for closed fuel cycle, and (iii) to evaluate and compare the equilibrium cycle safety and performance parameters. The EQL3D capability enables to characterize the equilibrium cycle for complex reloading patterns

  10. A fast 3D surface reconstruction and volume estimation method for grain storage based on priori model

    Science.gov (United States)

    Liang, Xian-hua; Sun, Wei-dong

    2011-06-01

    Inventory checking is one of the most significant parts for grain reserves, and plays a very important role on the macro-control of food and food security. Simple, fast and accurate method to obtain internal structure information and further to estimate the volume of the grain storage is needed. Here in our developed system, a special designed multi-site laser scanning system is used to acquire the range data clouds of the internal structure of the grain storage. However, due to the seriously uneven distribution of the range data, this data should firstly be preprocessed by an adaptive re-sampling method to reduce the data redundancy as well as noise. Then the range data is segmented and useful features, such as plane and cylinder information, are extracted. With these features a coarse registration between all of these single-site range data is done, and then an Iterative Closest Point (ICP) algorithm is carried out to achieve fine registration. Taking advantage of the structure of the grain storage being well defined and the types of them are limited, a fast automatic registration method based on the priori model is proposed to register the multi-sites range data more efficiently. Then after the integration of the multi-sites range data, the grain surface is finally reconstructed by a delaunay based algorithm and the grain volume is estimated by a numerical integration method. This proposed new method has been applied to two common types of grain storage, and experimental results shown this method is more effective and accurate, and it can also avoids the cumulative effect of errors when registering the overlapped area pair-wisely.

  11. The fast multipole method in the differential algebra framework for the calculation of 3D space charge fields

    Science.gov (United States)

    Zhang, He

    2013-01-01

    The space charge effect is one of the most important collective effects in beam dynamic studies. In many cases, numerical simulations are inevitable in order to get a clear understanding of this effect. The particle-particle interaction algorithms and the article-in-cell algorithms are widely used in space charge effect simulations. But they both have difficulties in dealing with highly correlated beams with abnormal distributions or complicated geometries. We developed a new algorithm to calculate the three dimensional self-field between charged particles by combining the differential algebra (DA) techniques with the fast multi-pole method (FMM). The FMM hierarchically decomposes the whole charged domain into many small regions. For each region it uses multipole expansions to represent the potential/field contributions from the particles far away from the region and then converts the multipole expansions into a local expansion inside the region. The potential/field due to the far away particles is calculated from the expansions and the potential/field due to the nearby particles is calculated from the Coulomb force law. The DA techniques are used in the calculation, translation and converting of the expansions. The new algorithm scales linearly with the total number of particles and it is suitable for any arbitrary charge distribution. Using the DA techniques, we can calculate both the potential/field and its high order derivatives, which will be useful for the purpose of including the space charge effect into transfer maps in the future. We first present the single level FMM, which decomposes the whole domain into boxes of the same size. It works best for charge distributions that are not overly non-uniform. Then we present the multilevel fast multipole algorithm (MLFMA), which decomposes the whole domain into different sized boxes according to the charge density. Finer boxes are generated where the higher charge density exists; thus the algorithm works for any

  12. 一种快速3维无人机航迹规划方法%A Fast 3D Path Planning Method for UAVs

    Institute of Scientific and Technical Information of China (English)

    李时东; 艾青; 刘嵩

    2012-01-01

    无人机三维航迹规划由于规划约束众多,同时面临在巨大的搜索空间中寻优,往往规划速度慢,规划效率低.结合二维规划和高度规划实现三维规划是一种有效提升规划速度的解决方案,在利用Fast M arching Method(FMM)进行二维规划的基础上,采用SparseA—star(SAS)搜索算法进行高度规划,分阶段考虑航迹规划的各种环境约束和机动约束,从而压缩规划空间.实验表明,该方法航迹规划速度快,所得到的三维航迹具有良好的地形跟随能力和避障能力.%3D path planning is always slow and in efficient for there are many constraints to be considered while planning, meanwhile, the path is produced by searching in huge space. It is an efficient scheme to improve path planning speed by combining 2D path planning and height planning. We proposed a fast 3D path planning method' by planning 2D path with Fast Marching Method (FMM) and making height plan- ning using Sparse A-Star (SAS) searching method, where the environment and maneuverability constraints are processed by stages, thereby, the planning space is reduced. Experiments showed that the proposed method generates path quickly, and the obtained path follows terrain and avoids obstacle well.

  13. Validation of 3D Code KATRIN For Fast Neutron Fluence Calculation of VVER-1000 Reactor Pressure Vessel by Ex-Vessel Measurements and Surveillance Specimens Results

    Science.gov (United States)

    Dzhalandinov, A.; Tsofin, V.; Kochkin, V.; Panferov, P.; Timofeev, A.; Reshetnikov, A.; Makhotin, D.; Erak, D.; Voloschenko, A.

    2016-02-01

    Usually the synthesis of two-dimensional and one-dimensional discrete ordinate calculations is used to evaluate neutron fluence on VVER-1000 reactor pressure vessel (RPV) for prognosis of radiation embrittlement. But there are some cases when this approach is not applicable. For example the latest projects of VVER-1000 have upgraded surveillance program. Containers with surveillance specimens are located on the inner surface of RPV with fast neutron flux maximum. Therefore, the synthesis approach is not suitable enough for calculation of local disturbance of neutron field in RPV inner surface behind the surveillance specimens because of their complicated and heterogeneous structure. In some cases the VVER-1000 core loading consists of fuel assemblies with different fuel height and the applicability of synthesis approach is also ambiguous for these fuel cycles. Also, the synthesis approach is not enough correct for the neutron fluence estimation at the RPV area above core top. Because of these reasons only the 3D neutron transport codes seem to be satisfactory for calculation of neutron fluence on the VVER-1000 RPV. The direct 3D calculations are also recommended by modern regulations.

  14. Validation of 3D Code KATRIN For Fast Neutron Fluence Calculation of VVER-1000 Reactor Pressure Vessel by Ex-Vessel Measurements and Surveillance Specimens Results

    Directory of Open Access Journals (Sweden)

    Dzhalandinov A.

    2016-01-01

    Full Text Available Usually the synthesis of two-dimensional and one-dimensional discrete ordinate calculations is used to evaluate neutron fluence on VVER-1000 reactor pressure vessel (RPV for prognosis of radiation embrittlement. But there are some cases when this approach is not applicable. For example the latest projects of VVER-1000 have upgraded surveillance program. Containers with surveillance specimens are located on the inner surface of RPV with fast neutron flux maximum. Therefore, the synthesis approach is not suitable enough for calculation of local disturbance of neutron field in RPV inner surface behind the surveillance specimens because of their complicated and heterogeneous structure. In some cases the VVER-1000 core loading consists of fuel assemblies with different fuel height and the applicability of synthesis approach is also ambiguous for these fuel cycles. Also, the synthesis approach is not enough correct for the neutron fluence estimation at the RPV area above core top. Because of these reasons only the 3D neutron transport codes seem to be satisfactory for calculation of neutron fluence on the VVER-1000 RPV. The direct 3D calculations are also recommended by modern regulations.

  15. pySeismicFMM: Python based travel time calculation in regular 2D and 3D grids in Cartesian and geographic coordinates using Fast Marching Method

    Science.gov (United States)

    Polkowski, Marcin

    2016-04-01

    Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  16. Strong and fast-recovery organic/inorganic hybrid AuNPs-supramolecular gels based on loofah-like 3D networks.

    Science.gov (United States)

    He, Huiwen; Chen, Si; Tong, Xiaoqian; Chen, Yining; Wu, Bozhen; Ma, Meng; Wang, Xiaosong; Wang, Xu

    2016-01-21

    Super strong and fast-recovery organic/inorganic hybrid gold nanoparticle (AuNPs)-supramolecular gels based on a three-dimensional loofah-like nanoscale network self-assembled by polyhedral oligomeric silsesquioxane (POSS) core supramolecular gelators are reported for the first time. Two series of POSS core organic/inorganic hybrid gelators, POSS-BOC-l-Homophenylalanine (POSS-Hpy) and POSS-Boc-Cys(Bzl)-OH (POSS-Cys), with two types of peripherals having different abilities for driving the self-assembly of AuNPs in gels were designed and synthesized, both of which self-assembled into three-dimensional loofah-like nanoscale gel networks producing hybrid physical gels with fast-recovery behaviors. The mechanical properties of the resultant hybrid gels were dramatically increased by as much as 100 times in the system of sulfur containing POSS-Cys gelators without destroying the fast-recovery behaviors, with the addition of AuNPs, which had direct interaction with AuNPs to give S-Au non-covalent driving force to lead AuNPs self-assemble onto the 3D loofah-like network nanofibres in the supramolecular hybrid gel system. However, in the POSS-Hpy gelator system without sulfur, no strong interaction with AuNPs existed and the POSS-Hpy nanocomposites showed no clear changes in morphology, thermal stability or rheological properties, confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), tube-inversion and rotational rheometer measurements. This indicated that the organic/inorganic hybrid gelator POSS-Cys could be applied to the formation of soft materials in which AuNPs were self-assembled and closely arranged into three-dimensional nanoscale networks. This hybrid material has great potential for applications in self-recovery, nano- and micron-scale electronic devices, because it has both a large mechanical strength and a fast-recovery capability. PMID:26568047

  17. A field study of coherent flow structures over low angle dunes: Fraser Estuary, British Columbia

    Science.gov (United States)

    Bradley, R. W.; Hendershot, M. L.; Venditti, J. G.; Kostaschuk, R. A.; Allison, M. A.; Church, M. A.

    2011-12-01

    Aqueous dunes are present in nearly all sand bedded alluvial channels and can significantly influence flow resistance and sediment transport and deposition. The geometry of these bedforms can take on a high angle asymmetrical or low angle symmetrical shape. While advances have been made in understanding the mean and turbulent flow over high angle dunes, far less progress has been made in detailing flow over low angle dunes, commonly observed in large rivers, due to difficulties measuring near the bed and quantifying the turbulence over these bedforms. This field study documents the flow over low angle dunes in the Fraser Estuary, British Columbia, using an acoustic Doppler profiler (aDcp) to measure 3-D flow characteristics and a multi-beam echo sounder (MBES) to provide high-resolution bed topography. Measurements were made over a dune field (~1 km long and ~0.5 wide) through two semi-diurnal tidal cycles during the 2010 freshet. We examine the coupling between the bedform morphology and the generation of coherent flow structures. Bedforms in the dune field range from low-angle symmetric to higher angle asymmetric and vary over tidal cycles; however, none display the classic angle of repose geometry. Mean flow velocity increases on falling tide while it decreases the rising tide. At lower tides, large scale motions caused by topographic forcing emerge on stoss slopes and rise up over the crest producing variations in suspended sediment over the bedforms. Our analysis is intended to contribute insight into what controls the occurrence of low angle bedforms in rivers.

  18. Low angle neutron data acquisition system for molecular biology

    International Nuclear Information System (INIS)

    The low angle spectrometer system utilizing a 2-dimensional position sensitive counter was designed to accommodate a variety of experiments in molecular biology requiring good low angle resolution. Biological structures requiring low angle analysis techniques fall into two groups: non-ordered systems (proteins or protein complexes in solution) and ordered systems with large spacings like muscle, collagen, and membranes. For structural investigations into such systems, data are ideally needed to a low scattering angle of 0.20 at 4.5 A or a minimum Q of 0.005 A-1 (Q = theta . 2π/lambda). Depending on the type of structure, data often extend to the high angle region, say 300. Apart from the low angle requirements, the spectrometer has to have good resolution to resolve diffraction peaks from samples with crystal spacings up to 1000 A or even larger. While it is desirable to build a spectrometer to such scattering conditions, given reactor conditions might not permit this and compromises have to be made between flux, resolution and lowest angle. The low angle spectrometer described here was designed to be used at the HFBR neutron beam pipe working at approximately 4.2 A or at the H4 satellite station working at 2.4 A

  19. The ATLAS3D project - XXV. Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators

    Science.gov (United States)

    Naab, Thorsten; Oser, L.; Emsellem, E.; Cappellari, Michele; Krajnović, D.; McDermid, R. M.; Alatalo, K.; Bayet, E.; Blitz, L.; Bois, M.; Bournaud, F.; Bureau, M.; Crocker, A.; Davies, R. L.; Davis, T. A.; de Zeeuw, P. T.; Duc, P.-A.; Hirschmann, M.; Johansson, P. H.; Khochfar, S.; Kuntschner, H.; Morganti, R.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Ven, G. van de; Weijmans, A.; Young, L. M.

    2014-11-01

    We present a detailed two-dimensional stellar dynamical analysis of a sample of 44 cosmological hydrodynamical simulations of individual central galaxies with stellar masses of 2 × 1010 M⊙ ≲ M* ≲ 6 × 1011 M⊙. Kinematic maps of the stellar line-of-sight velocity, velocity dispersion and higher order Gauss-Hermite moments h3 and h4 are constructed for each central galaxy and for the most massive satellites. The amount of rotation is quantified using the λR-parameter. The velocity, velocity dispersion, h3 and h4 fields of the simulated galaxies show a diversity similar to observed kinematic maps of early-type galaxies in the ATLAS3D survey. This includes fast (regular), slow and misaligned rotation, hot spheroids with embedded cold disc components as well as galaxies with counter-rotating cores or central depressions in the velocity dispersion. We link the present-day kinematic properties to the individual cosmological formation histories of the galaxies. In general, major galaxy mergers have a significant influence on the rotation properties resulting in both a spin-down as well as a spin-up of the merger remnant. Lower mass galaxies with significant (≳18 per cent) in situ formation of stars since z ≈ 2, or with additional gas-rich major mergers - resulting in a spin-up - in their formation history, form elongated (ɛ ˜ 0.45) fast rotators (λR ˜ 0.46) with a clear anticorrelation of h3 and v/σ. An additional formation path for fast rotators includes gas-poor major mergers leading to a spin-up of the remnants (λR ˜ 0.43). This formation path does not result in anticorrelated h3 and v/σ. The formation histories of slow rotators can include late major mergers. If the merger is gas rich, the remnant typically is a less flattened slow rotator with a central dip in the velocity dispersion. If the merger is gas poor, the remnant is very elongated (ɛ ˜ 0.43) and slowly rotating (λR ˜ 0.11). The galaxies most consistent with the rare class of non

  20. Analysis of a Low-Angle Annular Expander Nozzle

    Directory of Open Access Journals (Sweden)

    Kyll Schomberg

    2015-01-01

    Full Text Available An experimental and numerical analysis of a low-angle annular expander nozzle is presented to observe the variance in shock structure within the flow field. A RANS-based axisymmetric numerical model was used to evaluate flow characteristics and the model validated using experimental pressure readings and schlieren images. Results were compared with an equivalent converging-diverging nozzle to determine the capability of the wake region in varying the effective area of a low-angle design. Comparison of schlieren images confirmed that shock closure occurred in the expander nozzle, prohibiting the wake region from affecting the area ratio. The findings show that a low angle of deflection is inherently unable to influence the effective area of an annular supersonic nozzle design.

  1. The ATLA$^{\\rm{3D}}$ project - XXV: Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators

    CERN Document Server

    Naab, T; Emsellem, E; Cappellari, M; Krajnovic, D; McDermid, R M; Alatalo, K; Bayet, E; Blitz, L; Bois, M; Bournaud, F; Bureau, M; Crocker, A; Davies, R L; Davis, T A; de Zeeuw, P T; Duc, P -A; Hirschmann, M; Johansson, P H; Khochfar, S; Kuntschner, H; Morganti, R; Oosterloo, T; Sarzi, M; Scott, N; Serra, P; van de Ven, G; Weijmans, A; Young, L M

    2013-01-01

    We present a detailed two-dimensional stellar dynamical analysis of a sample of 44 cosmological hydrodynamical simulations of individual central galaxies and their satellites. Kinematic maps of the stellar line-of-sight velocity, velocity dispersion, and higher-order Gauss-Hermite moments $h_3$ and $h_4$ are constructed for each central galaxy and for the most massive satellites. The amount of rotation is quantified using the $\\lambda_{\\mathrm{R}}$-parameter. The velocity, velocity dispersion, $h_3$, and $h_4$ fields of the simulated galaxies show a diversity similar to observed kinematic maps of early-type galaxies in the ATLAS$^{\\rm{3D}}$ survey. This includes fast (regular), slow, and misaligned rotation, hot spheroids with embedded cold disk components as well as galaxies with counter-rotating cores or central depressions in the velocity dispersion. We link the present day kinematic properties to the individual cosmological formation histories of the galaxies. In general, major galaxy mergers have a signi...

  2. Effects of Heterogeneities in Strength and Initial Shear Stress on Large Ruptures in a Fast Multi-cycle Earthquake Simulator (RSQSim) and DYNA3D

    Science.gov (United States)

    Stevens, J.; Richards-Dinger, K.; Dieterich, J.; Oglesby, D.

    2008-12-01

    RSQSim is a fast earthquake simulator that produces long (~ 106 event and ~ 104 year) synthetic seismicity catalogs in complex fault systems. It treats the interseismic and nucleation phases of the seismic cycle quasi-statically with an approximate version of rate- and state-dependent friction. The ruptures themselves are quasi-dynamic with slip speeds determined by shear impedance considerations. Validation of coseismic final slip (and therefore stress change) distributions is important for the generation of long catalogs because subsequent events in such simulators need to inherit the proper stress fields. Also, the heterogeneous evolved stress states from long simulations in complex fault systems (resulting from complex large ruptures, ongoing smaller seismicity, and stress interactions within the fault system) may be useful as more realistic inputs to dynamic rupture modelling. If the time evolution of ruptures in RSQSim is also realistic, they may be useful as kinematic sources for seismic hazard ground motion calculations. As part of an effort to validate the quasi-dynamic ruptures in RSQSim, we compare rupture propagation on a variable-strength planar fault in RSQSim to that on a similar fault in DYNA3D (a fully dynamic finite element model employing slip-weakening friction) for single, large, artificially nucleated ruptures. Previous work has shown that on homogeneous planar faults the RSQSim results agreed quantitatively very well with those of DYNA3D. For this comparison, our asperity model consists of multiple rectangular zones of increased normal stress of varying size, location, and amplitude. The heterogeneities produce complex ruptures - the rupture front tends to wrap itself around the barriers and create a burst of energy once it propagates across a barrier. Both codes allow rupture propagation over significant zones of negative stress drop in these asperity regions. Rupture durations, average rupture propagation speeds, and overall slip pattern

  3. Use of Serpent Monte-Carlo code for development of 3D full-core models of Gen-IV fast spectrum reactors and preparation of safety parameters/cross-section data for transient analysis with FAST code system

    International Nuclear Information System (INIS)

    Current work presents a new methodology which uses Serpent Monte-Carlo (MC) code for generating multi-group beginning-of-life (BOL) cross section (XS) database file that is compatible with PARCS 3D reactor core simulator and allows simulation of transients with the FAST code system. The applicability of the methodology was tested on European Sodium-cooled Fast Reactor (ESFR) design with an oxide fuel proposed by CEA (France). The k-effective, power peaking factors and safety parameters (such as Doppler constant, coolant density coefficient, fuel axial expansion coefficient, diagrid expansion coefficients and control rod worth) calculated by PARCS/TRACE were compared with the results of the Serpent MC code. The comparison indicates overall reasonable agreement between conceptually different (deterministic and stochastic) codes. The new development makes it in principle possible to use the Serpent MC code for cross section generation for the PARCS code to perform transient analyses for fast reactors. The advantages and limitations of this methodology are discussed in the paper. (author)

  4. Research on Fast 3D Hand Motion Tracking System%快速的三维人手运动跟踪方法研究

    Institute of Scientific and Technical Information of China (English)

    吕治国; 李焱; 徐昕

    2012-01-01

    三维人手运动跟踪是人机交互领域的一个重要研究方向.提出了一种新的基于模型的三维人手运动跟踪方法,该方法将层次优化嵌入到基于粒子滤波器的跟踪框架中,通过在隐状态空间中对粒子采样来提高粒子滤波器采样效率.首先,提出了采用低维隐状态来描述人手的配置状态,并根据人手的生理运动约束建立人手动态模型;其次,为提高粒子在隐状态空间的采样效率,提出了采用层次遗传优化来快速地在局部寻找好的粒子,并以此作为重要度采样函数修正粒子滤波的采样算法.实验结果表明,该方法可以在人手自遮挡存在时的复杂背景下快速地对人手运动进行跟踪.%3D hand tracking is one of the major research topics in the field of human-computer interaction. We present a novel model-based hand tracking method in this paper, which embeds hierarchical optimization method into the particle-filter-based tracking frames to improve the efficiency of particles sampling from the hidden state space. Firstly, the low dimension hidden state space is introduced to approximately describe the hand configuration state in the original high dimension configuration space, and the dynamic hand model in the hidden state space is presented according to the physiological constraints of hand motion. Secondly, to obtain more efficient particles during tracking, hierarchical genetic optimization method is regarded as the importance sampling function to modify the sampling algorithm of particle-filter. Experiments demonstrate that our approach can have fast tracking performance even under the clutter background when hand part self-occlusion exists.

  5. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  6. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  7. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  8. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  9. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    International Nuclear Information System (INIS)

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm3 volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water

  10. Collisional destruction of fast H(2p), H(3s) and H(3d) hydrogen atoms in collision with He, Ar, H2, N2 and O2

    International Nuclear Information System (INIS)

    In the energy range 5-100 keV the collisional destruction of H(3s), H(3d) and H(2p) atoms in He, Ar, H2, N2 and O2 has been investigated. In the case of 3s and 3d states the measured cross sections which are subject to errors in the range 20-30% are in general agreement with the cross sections predicted by a simple model in which the orbital electron and the proton nuclear core are assumed to act independently on the target. Collisional destruction cross sections for n = 2 and 3 were found to be independent of the l value within the experimental error, typically 20-30%. (author)

  11. The ATLAS3D Project-- VIII: Modelling the Formation and Evolution of Fast and Slow Rotator Early-Type Galaxies within $\\Lambda$CDM

    OpenAIRE

    Khochfar, Sadegh; Emsellem, Eric; Serra, Paolo; Bois, Maxime; Alatalo, Katherine; Bacon, Roland; Blitz, Leo; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Krajnovic, Davor

    2011-01-01

    We propose a simple model for the origin of fast and slow rotator early-type galaxies (ETG) within the hierarchical $\\Lambda$CDM scenario, that is based on the assumption that the mass fraction of stellar discs in ETGs is a proxy for the specific angular momentum expressed via $\\lambda_R$. Within our model we reproduce the fraction of fast and slow rotators as a function of magnitude in the \\atl survey, assuming that fast rotating ETGs have at least 10% of their total stellar mass in a disc c...

  12. Design and Implementation of Fast Embedded 3D Interface Framework%嵌入式快速3D界面框架的设计与实现

    Institute of Scientific and Technical Information of China (English)

    林梅燕; 杨盛国; 彭井花

    2012-01-01

    目前随着嵌入式设备的功能越来越强大,人们对嵌入式的界面和游戏性能的要求也越来越高。但3D界面开发周期长,针对以上问题提出了一个基于嵌入式3D界面的快速开发框架,该嵌入式界面框架已应用在Android Launcher程序实践中,呈现出流畅、实用的3D界面效果,为Android设备的界面差异化、定制化提供了一种途径。%As embedded devices become more powerful,people are more dependent on the performance of the embedded interface and game.Since the 3D interface takes a long development cycle,this paper proposes a rapid development framework based on embedded 3D interface.The embedded interface framework has been used in the program practice of Android Launcher,showing a smooth,practical 3D interface effects.It also provides a way for the Android device interface being differential.

  13. Low-angle X-ray scattering from spices

    Energy Technology Data Exchange (ETDEWEB)

    Desouky, O.S. E-mail: omardesouky@yahoo.com; Ashour, Ahmed H.; Abdullah, Mohamed I.; Elshemey, Wael M

    2002-07-01

    Low-angle scattering of X-rays is characterized by the presence of one or more peaks in the forward direction of scattering. These peaks are due to the interference of photons coherently scattered from the molecules of the medium. Thus these patterns are closely linked to the molecular structure of the investigated medium. In this work, low-angle X-ray scattering (LAXS) profiles of five spices; pimpinella anisum (anise), coriandrum sativum (coriander), cuminum cyminum (cumin), foenculum vulgare (fennel) and nigella sativa (nigella or black cumin) are presented after extensive measurements. It is found that all spices exhibit one characteristic peak at a scattering angle around 10 deg. This is equivalent to a value x=0.0565 A{sup -1}, where x=sin({theta}/2)/{lambda}. The full width at half maximum (FWHM) of this peak is found to be characteristic for each type of the investigated spices. The possibility to detect the irradiation of these spices from their LAXS profiles is also examined after 10, 20, 30 and 40 kGy doses of gamma radiation. Except for anise, coriander and cumin at 40 kGy, there are no detectable deviations from the control samples in the scattering profiles of irradiated samples. These results comply with the recommendations of the FDA (US Food and Drug Administration) which defines 30 kGy as the maximum dose for irradiation of spices. The present technique could be used to detect over-irradiation, which causes damage to the molecular structure of some spices.

  14. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  15. Solid works 3D

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol Yeong

    2004-02-15

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  16. Solid works 3D

    International Nuclear Information System (INIS)

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  17. A Fast Parallel Simulation Code for Interaction between Proto-Planetary Disk and Embedded Proto-Planets: Implementation for 3D Code

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shengtai [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory

    2012-06-14

    We develop a 3D simulation code for interaction between the proto-planetary disk and embedded proto-planets. The protoplanetary disk is treated as a three-dimensional (3D), self-gravitating gas whose motion is described by the locally isothermal Navier-Stokes equations in a spherical coordinate centered on the star. The differential equations for the disk are similar to those given in Kley et al. (2009) with a different gravitational potential that is defined in Nelson et al. (2000). The equations are solved by directional split Godunov method for the inviscid Euler equations plus operator-split method for the viscous source terms. We use a sub-cycling technique for the azimuthal sweep to alleviate the time step restriction. We also extend the FARGO scheme of Masset (2000) and modified in Li et al. (2001) to our 3D code to accelerate the transport in the azimuthal direction. Furthermore, we have implemented a reduced 2D (r, {theta}) and a fully 3D self-gravity solver on our uniform disk grid, which extends our 2D method (Li, Buoni, & Li 2008) to 3D. This solver uses a mode cut-off strategy and combines FFT in the azimuthal direction and direct summation in the radial and meridional direction. An initial axis-symmetric equilibrium disk is generated via iteration between the disk density profile and the 2D disk-self-gravity. We do not need any softening in the disk self-gravity calculation as we have used a shifted grid method (Li et al. 2008) to calculate the potential. The motion of the planet is limited on the mid-plane and the equations are the same as given in D'Angelo et al. (2005), which we adapted to the polar coordinates with a fourth-order Runge-Kutta solver. The disk gravitational force on the planet is assumed to evolve linearly with time between two hydrodynamics time steps. The Planetary potential acting on the disk is calculated accurately with a small softening given by a cubic-spline form (Kley et al. 2009). Since the torque is extremely

  18. Collaborative Project. 3D Radiative Transfer Parameterization Over Mountains/Snow for High-Resolution Climate Models. Fast physics and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Kuo-Nan [Univ. of California, Los Angeles, CA (United States)

    2016-02-09

    Under the support of the aforementioned DOE Grant, we have made two fundamental contributions to atmospheric and climate sciences: (1) Develop an efficient 3-D radiative transfer parameterization for application to intense and intricate inhomogeneous mountain/snow regions. (2) Innovate a stochastic parameterization for light absorption by internally mixed black carbon and dust particles in snow grains for understanding and physical insight into snow albedo reduction in climate models. With reference to item (1), we divided solar fluxes reaching mountain surfaces into five components: direct and diffuse fluxes, direct- and diffuse-reflected fluxes, and coupled mountain-mountain flux. “Exact” 3D Monte Carlo photon tracing computations can then be performed for these solar flux components to compare with those calculated from the conventional plane-parallel (PP) radiative transfer program readily available in climate models. Subsequently, Parameterizations of the deviations of 3D from PP results for five flux components are carried out by means of the multiple linear regression analysis associated with topographic information, including elevation, solar incident angle, sky view factor, and terrain configuration factor. We derived five regression equations with high statistical correlations for flux deviations and successfully incorporated this efficient parameterization into WRF model, which was used as the testbed in connection with the Fu-Liou-Gu PP radiation scheme that has been included in the WRF physics package. Incorporating this 3D parameterization program, we conducted simulations of WRF and CCSM4 to understand and evaluate the mountain/snow effect on snow albedo reduction during seasonal transition and the interannual variability for snowmelt, cloud cover, and precipitation over the Western United States presented in the final report. With reference to item (2), we developed in our previous research a geometric-optics surface-wave approach (GOS) for the

  19. The ATLAS3D Project-- VIII: Modelling the Formation and Evolution of Fast and Slow Rotator Early-Type Galaxies within $\\Lambda$CDM

    CERN Document Server

    Khochfar, Sadegh; Serra, Paolo; Bois, Maxime; Alatalo, Katherine; Bacon, Roland; Blitz, Leo; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M

    2011-01-01

    We propose a simple model for the origin of fast and slow rotator early-type galaxies (ETG) within the hierarchical $\\Lambda$CDM scenario, that is based on the assumption that the mass fraction of stellar discs in ETGs is a proxy for the specific angular momentum expressed via $\\lambda_R$. Within our model we reproduce the fraction of fast and slow rotators as a function of magnitude in the \\atl survey, assuming that fast rotating ETGs have at least 10% of their total stellar mass in a disc component. In agreement with \\atl observations we find that slow rotators are predominantly galaxies with $ M_* > 10^{10.5}$ M$_{\\odot}$ contributing $\\sim 20%$ to the overall ETG population. We show in detail that the growth histories of fast and slow rotators are different, supporting the classification of ETGs into these two categories. Slow rotators accrete between $\\sim 50% -90%$ of their stellar mass from satellites and their most massive progenitors have on average up to 3 major mergers during their evolution. Fast ...

  20. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  1. 3d-3d correspondence revisited

    Science.gov (United States)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  2. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  3. 一种融合纹理的三维图像重建快速实现方法%A Fast Implementation Method of Reconstruction for 3 D Image Combined Texture

    Institute of Scientific and Technical Information of China (English)

    李水平; 吴雨

    2014-01-01

    为了得到完整的三维模型,介绍了一种融合纹理的三维图像重建快速实现方法。通过对不同视角的深度图像的手动粗配准、ICP算法精配准以及全局配准得到这些深度图像的旋转平移矩阵。通过vrippack,三维重建出完整的三维图像,用TextureStitcher对得到的三维图像进行纹理映射,从而实现融合纹理的三维图像的快速重建。文中在论述配准算法主要思想和实现步骤的同时,也用实验验证了方法的可行性与通用性。%In order to get the full 3D model,introduce a fast implementation method of reconstruction for 3D image which contains the texture information. The rotation and translation matrix of these depth images from different perspectives can be calculated through the manual registration,the ICP registration and global registration. Vrippack can reconstruct the full 3D image based on the rotation and translation matrix,the full 3D texture image can be conducted texture mapping by TextureStitcher,so as to implement the 3D texture im-age reconstruction. Also use experiments to verify the feasibility and universality of the method besides describing the main idea of the al-gorithm and the implementation steps of registration.

  4. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  5. Study on Characteristics of 3-D Translating-Pulsating Source Green Function of Deep-Water Havelock Form and Its Fast Integration Method

    Institute of Scientific and Technical Information of China (English)

    XU Yong; DONG Wen-cai

    2011-01-01

    The singularities,oscillatory performances and the contributing factors to the 3-D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field wave-like part,are analyzed systematically.Relative numerical integral methods about the two parts are presented in this paper.An improved method based on LOBATTO rule is used to eliminate singularities caused respectively by infinite discontinuity and jump discontinuous node from the local disturbance part function,which makes the improvement of calculation efficiency and accuracy possible.And variable substitution is applied to remove the singularity existing at the end of the integral interval of the far-field wave-like part function.Two auxiliary techniques such as valid interval calculation and local refinement of integral steps technique in narrow zones near false singularities are applied so as to avoid unnecessary integration of invalid interval and improve integral accordance.Numerical test results have proved the efficiency and accuracy in these integral methods that thus can be applied to calculate hydrodynamic performance of floating structures moving in waves.

  6. An Efficient Framework For Fast Computer Aided Design of Microwave Circuits Based on the Higher-Order 3D Finite-Element Method

    Directory of Open Access Journals (Sweden)

    A. Lamecki

    2014-12-01

    Full Text Available In this paper, an efficient computational framework for the full-wave design by optimization of complex microwave passive devices, such as antennas, filters, and multiplexers, is described. The framework consists of a computational engine, a 3D object modeler, and a graphical user interface. The computational engine, which is based on a finite element method with curvilinear higher-order tetrahedral elements, is coupled with built-in or external gradient-based optimization procedures. For speed, a model order reduction technique is used and the gradient computation is achieved by perturbation with geometry deformation, processed on the level of the individual mesh nodes. To maximize performance, the framework is targeted to multicore CPU architectures and its extended version can also use multiple GPUs. To illustrate the accuracy and high efficiency of the framework, we provide examples of simulations of a dielectric resonator antenna and full-wave design by optimization of two diplexers involving tens of unknowns, and show that the design can be completed within the duration of a few simulations using industry-standard FEM solvers. The accuracy of the design is confirmed by measurements.

  7. The Atlas-3D project - IX. The merger origin of a fast and a slow rotating Early-Type Galaxy revealed with deep optical imaging: first results

    CERN Document Server

    Duc, Pierre-Alain; Serra, Paolo; Michel-Dansac, Leo; Ferriere, Etienne; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M

    2011-01-01

    The mass assembly of galaxies leaves imprints in their outskirts, such as shells and tidal tails. The frequency and properties of such fine structures depend on the main acting mechanisms - secular evolution, minor or major mergers - and on the age of the last substantial accretion event. We use this to constrain the mass assembly history of two apparently relaxed nearby Early-Type Galaxies (ETGs) selected from the Atlas-3D sample, NGC 680 and NGC 5557. Our ultra deep optical images obtained with MegaCam on the Canada-France-Hawaii Telescope reach 29 mag/arcsec^2 in the g-band. They reveal very low-surface brightness (LSB) filamentary structures around these ellipticals. Among them, a gigantic 160 kpc long tail East of NGC 5557 hosts gas-rich star-forming objects. NGC 680 exhibits two major diffuse plumes apparently connected to extended HI tails, as well as a series of arcs and shells. Comparing the outer stellar and gaseous morphology of the two ellipticals with that predicted from models of colliding galax...

  8. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, G.J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  9. 3D quantification of dynamic fluid-fluid interfaces in porous media with fast x-ray microtomography: A comparison with quasi-equilibrium methods

    Science.gov (United States)

    Meisenheimer, D.; Brueck, C. L.; Wildenschild, D.

    2015-12-01

    X-ray microtomography imaging of fluid-fluid interfaces in three-dimensional porous media allows for the testing of thermodynamically derived predictions that seek a unique relationship between capillary pressure, fluid saturation, and specific interfacial area (Pc-Sw-Anw). Previous experimental studies sought to test this functional dependence under quasi-equilibrium conditions (assumed static on the imaging time-scale); however, applying predictive models developed under static conditions for dynamic scenarios can lead to substantial flaws in predicted outcomes. Theory and models developed using dynamic data can be verified using fast x-ray microtomography which allows for the unprecedented measurement of developing interfacial areas, curvatures, and trapping behaviors of fluid phases in three-dimensional systems. We will present results of drainage and imbibition experiments of air and water within a mixture of glass beads. The experiments were performed under both quasi-equilibrium and dynamic conditions at the Advanced Photon Source (APS) at Argonne National Laboratory. Fast x-ray microtomography was achieved by utilizing the high brilliance of the x-ray beam at the APS under pink-beam conditions where the white beam is modified with a 4 mm Al absorber and a 0.8 mrad Pt-coated mirror to eliminate low and high-energy photons, respectively. We present a comparison of the results from the quasi-equilibrium and dynamic experiments in an effort to determine if the Pc-Sw-Anw relationship is comparable under either experimental condition and to add to the discussion on whether the Pc-Sw-Anw relationship is unique as hypothesized by existing theory.

  10. The ATLAS3D project - III. A census of the stellar angular momentum within the effective radius of early-type galaxies: unveiling the distribution of Fast and Slow Rotators

    CERN Document Server

    Emsellem, Eric; Krajnović, Davor; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; van de Ven, Glenn; Weijmans, Anne-Marie; Young, Lisa M

    2011-01-01

    We provide a census of the apparent stellar angular momentum within 1 Re of a volume-limited sample of 260 early-type galaxies (ETGs) in the nearby Universe, using integral-field spectroscopy obtained in the course of the ATLAS3D project. We exploit the LambdaR parameter to characterise the existence of two families of ETGs: Slow Rotators which exhibit complex stellar velocity fields and often include stellar kinematically Distinct Cores (KDCs), and Fast Rotators which have regular velocity fields. Our complete sample of 260 ETGs leads to a new criterion to disentangle Fast and Slow Rotators which now includes a dependency on the apparent ellipticity (Epsilon). It separates the two classes significantly better than the previous prescription, and than a criterion based on V/Sigma: Slow Rotators and Fast Rotators have LambdaR lower and larger than kFSxSQRT(Epsilon), respectively, where kFS=0.31 for measurements made within 1 Re. We show that the vast majority of early-type galaxies are Fast Rotators: these have...

  11. MRI of the anterior talofibular ligament, talar cartilage and os subfibulare: Comparison of isotropic resolution 3D and conventional 2D T2-weighted fast spin-echo sequences at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jisook; Cha, Jang Gyu [Soonchunhyang University Bucheon Hospital, Department of Radiology, Wonmi-gu, Bucheon-si (Korea, Republic of); Lee, Young Koo [Soonchunhyang University Bucheon Hospital, Department of Orthopedics, Wonmi-gu, Bucheon-si (Korea, Republic of); Lee, Bo Ra [Soonchunhyang University Bucheon Hospital, Department of Biomedical Statistics, Wonmi-gu, Bucheon-si (Korea, Republic of); Jeon, Chan Hong [Soonchunhyang University Bucheon Hospital, Division of Rheumatology, Department of Internal Medicine, Wonmi-gu, Bucheon-si (Korea, Republic of)

    2016-07-15

    To determine the accuracy of a three-dimensional (3D) T2-weighted fast spin-echo (FSE) magnetic resonance (MR) sequence compared with two-dimensional (2D) sequence for diagnosing anterior talofibular ligament (ATFL) tears, chondral lesion of the talus (CLT) and os subfibulare/avulsion fracture of the distal fibula (OSF). Thirty-five patients were included, who had undergone ankle MRI with 3D T2-weighted FSE and 2D T2-weighted FSE sequences, as well as subsequent ankle arthroscopy, between November 2013 and July 2014. Each MR imaging sequence was independently scored by two readers retrospectively for the presence of ATFL tears, CLT and OSF. The area under the receiver operating curve (AUC) was compared to determine the discriminatory power of the two image sequences. Interobserver agreement was expressed as unweighted kappa value. Arthroscopic findings confirmed 21 complete tears of the ATFL, 14 partial tears of the ATFL, 17 CLTs and 7 OSFs. There were no significant differences in the diagnoses of ATFL tears (p = 0.074-0.501), CLT (p = 0.090-0.450) and OSF (p = 0.317) obtained from the 2D and 3D sequences by either reader. The interobserver agreement rates between two readers using the 3D T2-weighted FSE sequence versus those obtained with the 2D sequence were substantial (κ = 0.659) versus moderate (κ = 0.553) for ATFL tears, moderate (κ = 0.499) versus substantial (κ = 0.676) for CLT and substantial (κ = 0.621) versus substantial (κ = 0.689) for OSF. Three-dimensional isotropic T2-weighted FSE MRI of the ankle resulted in no statistically significant difference in diagnostic performance compared to two-dimensional T2-weighted FSE MRI in the evaluation of ATFL tears, CLTs and OSFs. (orig.)

  12. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  13. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  14. Feasible voltage-tap based quench detection in a Ag/Bi-2212 coil enabled by fast 3D normal zone propagation

    Science.gov (United States)

    Shen, Tengming; Ye, Liyang; Li, Pei

    2016-08-01

    Small insert solenoids have been built using a commercial Ag/Bi-2212 multifilamentary round wire, insulated with a new thin TiO2–polymer coating insulation (thickness of ∼20 μm versus ∼100 μm for a commonly used mullite braided sleeve insulation), and characterized in a background magnetic field up to 14 T at 4.2 K to explore the high-field performance and quench detection of Bi-2212 magnets. The coil has no visible leakage and no electrical shorts after reaction, and it carries 280 A mm‑2 in a background field of 14 T and generates an additional 1.7 T. A notable result is that, despite normal zones propagating slowly along the conductor, the hot spot temperature upon detection increases only from 40 K to 60 K when the resistive quench detection voltage threshold increases from 0.1 V to 1 V for all operating current density investigated, showing that quench detection using voltage taps is feasible for this coil. This is in strong contrast to a coil we have previously built to the same specifications but from wires insulated with mullite braided sleeve insulation, for which the hot spot temperature upon detection increases from ∼80 K to ∼140 K while increasing the detection voltage threshold from 0.1 V to 1 V, and thus for which quench detection using voltage taps presents significant risks, consistent with the common belief that the effectiveness of quench detection using voltage taps for superconducting magnets built using high-temperature superconductors is seriously compromised by their slow normal zone propagation. This striking difference is ascribed to the fast transverse quench propagation enabled by thin insulation and the improved thermal coupling between conductor turns. This work demonstrates that quench detection for high-temperature superconducting magnets highly depends on the design and construction of the coils such as the insulation materials used and this dependence should be factored into the overall magnet design.

  15. Forensic 3D Scene Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  16. Fast MR Imaging of the Paediatric Abdomen with CAIPIRINHA-Accelerated T1w 3D FLASH and with High-Resolution T2w HASTE: A Study on Image Quality

    Directory of Open Access Journals (Sweden)

    Mengxia Li

    2015-01-01

    Full Text Available The aim of this study was to explore the applicability of fast MR techniques to routine paediatric abdominopelvic MRI at 1.5 Tesla. “Controlled Aliasing in Parallel Imaging Results in Higher Acceleration-” (CAIPIRINHA- accelerated contrast-enhanced-T1w 3D FLASH imaging was compared to standard T1w 2D FLASH imaging with breath-holding in 40 paediatric patients and to respiratory-triggered T1w TSE imaging in 10 sedated young children. In 20 nonsedated patients, we compared T2w TIRM to fat-saturated T2w HASTE imaging. Two observers performed an independent and blinded assessment of overall image quality. Acquisition time was reduced by the factor of 15 with CAIPIRINHA-accelerated T1w FLASH and by 7 with T2w HASTE. With CAIPIRINHA and with HASTE, there were significantly less motion artefacts in nonsedated patients. In sedated patients, respiratory-triggered T1w imaging in general showed better image quality. However, satisfactory image quality was achieved with CAIPIRINHA in two sedated patients where respiratory triggering failed. In summary, fast scanning with CAIPIRINHA and HASTE presents a reliable high quality alternative to standard sequences in paediatric abdominal MRI. Paediatric patients, in particular, benefit greatly from fast image acquisition with less breath-hold cycles or shorter sedation.

  17. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  18. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  19. Herramientas SIG 3D

    Directory of Open Access Journals (Sweden)

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  20. TOWARDS: 3D INTERNET

    OpenAIRE

    Ms. Swapnali R. Ghadge

    2013-01-01

    In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot o...

  1. Bootstrapping 3D fermions

    Science.gov (United States)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  2. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  3. Fabrication of 3D Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  4. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  5. 3D Harmonic Echocardiography:

    NARCIS (Netherlands)

    M.M. Voormolen

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  6. 3D-MR cholangio-angiography

    Energy Technology Data Exchange (ETDEWEB)

    Ohkawa, Shinichi [Isehara Kyohdoh Hospital, Kanagawa (Japan); Hiramatsu, Kyoichi

    1995-04-01

    This report introduces a new 3D-MR cholangio-angiography technique using 3D Fast SE MR cholangiography and 3D phase contrast MR angiography for obstructive jaundice. In all eight cases, dilated biliary tracts as well as portal veins were clearly visualized in the same image. This new technique helped to determine the operability and surgical strategy for cases with obstructive jaundice. It also provided anatomical guidance for surgical procedures. This study suggests that this technique may replace the currently used modalities for obstructive jaundice. (author).

  7. Reconstruction and analysis of shapes from 3D scans

    NARCIS (Netherlands)

    ter Haar, F.B.

    2009-01-01

    In this thesis we use 3D laser range scans for the acquisition, reconstruction, and analysis of 3D shapes. 3D laser range scanning has proven to be a fast and effective way to capture the surface of an object in a computer. Thousands of depth measurements represent a part of the surface geometry as

  8. 3D ultrafast ultrasound imaging in vivo

    International Nuclear Information System (INIS)

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability. (fast track communication)

  9. Massive 3D Supergravity

    CERN Document Server

    Andringa, Roel; de Roo, Mees; Hohm, Olaf; Sezgin, Ergin; Townsend, Paul K

    2009-01-01

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered `massive 3D gravity'. Another is a `new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  10. Massive 3D supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Andringa, Roel; Bergshoeff, Eric A; De Roo, Mees; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: O.Hohm@rug.n, E-mail: sezgin@tamu.ed, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-01-21

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered 'massive 3D gravity'. Another is a 'new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  11. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    ABSTRACT: Lack of productivity in construction is a well known issue. Despite the fact that causes hereof are multiple, the introduction of information technology is a frequently observed response to almost any challenge. ICT in construction is a thoroughly researched matter, however, the current...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  12. Application of a low-angle light scattering technique to cell volume and cell signaling studies on Ehrlich ascite tumor cells

    OpenAIRE

    Zinchenko, Valeriy P.; Lee, Vyacheslav V.; Berezhnov, Alexey V.; Mindukshev, Igor V.; Jenkins, Richard O; Goncharov, Nikolay V.

    2006-01-01

    A method for studying cells based on low-angle light scattering was applied to cell volume and cell signaling studies on Ehrlich ascite tumor cells (EATC). Changes in the volume of EATC were measured in hypotonic medium, as well as after activation with exogenous ATP, ionomycin and thimerosal. Increase of [Ca2+]i under ATP and ionomycin action induced reversible changes of cell volume: fast shrinking was followed by swelling. Thimerosal caused a reversible change in EATC volume with high ampl...

  13. Local orientation measurements in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, D.

    2005-01-01

    The 3 Dimensional X-Ray Diffraction (3DXRD) method is presented and its potentials illustrated by examples. The 3DXRD method is based on diffraction of high energy X-rays and allows fast and nondestructive 3D characterization of the local distribution of crystallographic orientations in the bulk....

  14. Feasibility of 3D harmonic contrast imaging

    NARCIS (Netherlands)

    Voormolen, M.M.; Bouakaz, A.; Krenning, B.J.; Lancée, C.; Cate, ten F.; Jong, de N.

    2004-01-01

    Improved endocardial border delineation with the application of contrast agents should allow for less complex and faster tracing algorithms for left ventricular volume analysis. We developed a fast rotating phased array transducer for 3D imaging of the heart with harmonic capabilities making it suit

  15. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...... shutter is controlled in steps of 100 ps. Camera delay is controlled in steps of 100 ps. Each laser pulse triggers the camera delay and shutter. A 3-D image is constructed from a sequence of 50-100 2-D reflectivity images, where each frame integrates about 700 laser pulses on the CCD. In 50 Hz video mode...... we record a 2-D sequence in a second and process a 3-D image in few seconds. We compare 3-D images with a system performance model....

  16. 3D-printed bioanalytical devices

    Science.gov (United States)

    Bishop, Gregory W.; Satterwhite-Warden, Jennifer E.; Kadimisetty, Karteek; Rusling, James F.

    2016-07-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.

  17. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  18. Low-angle normal faults-low differential stress at mid crustal levels

    Science.gov (United States)

    Power, W. L.

    1985-01-01

    A simple model for frictional slip on pre-existing faults that considers the local stress state near the fault and the effect of non-hydrostatic fluid pressures predicts that low-angle normal faulting is restricted to areas of the crust characterized by low differential stress and nearly lithostatic fluid pressures. The model considers frictional slip on a cohesionless low-angle normal fault governed by the failure criterion tau = mu sub f (sigma (*) sub n) =mu sub f (sigma sub n - P sub f) where tau and sigma sub n are the shear and normal stresses across the fault plane, mu sub f is the static coefficient of friction, and P sub f is the pore fluid pressure. As a first approximation, the model considers a vertical greatest principal compressive stress, sigma sub 1. It is apparent that if slip on low-angle normal faults is governed by the avove frictional failure criterion, slip on the low-angle normal fault occurs only if the least effective principal stress, sigma (*) sub 3 = sigma sub 3 - P sub f, is tensile, whenever tan superscrip -1(mu sub f d, where d is the dip of the fault. If detachment faulting occurs at any significant depth in the crust, P sub f sigma sub 3 is required. In light of this conclusion I allow P sub f to vary as necessary to allow slip on the low-angle normal fault.

  19. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  20. Martian terrain - 3D

    Science.gov (United States)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  1. 3D monitor

    OpenAIRE

    Szkandera, Jan

    2009-01-01

    Tato bakalářská práce se zabývá návrhem a realizací systému, který umožní obraz scény zobrazovaný na ploše vnímat prostorově. Prostorové vnímání 2D obrazové informace je umožněno jednak stereopromítáním a jednak tím, že se obraz mění v závislosti na poloze pozorovatele. Tato práce se zabývá hlavně druhým z těchto problémů. This Bachelor's thesis goal is to design and realize system, which allows user to perceive 2D visual information as three-dimensional. 3D visual preception of 2D image i...

  2. 3D P-wave velocity structure of the deep Galicia rifted margin: A first analysis of the Galicia 3D wide-angle seismic dataset

    Science.gov (United States)

    Bayrakci, Gaye; Minshull, Timothy A.; Davy, Richard G.; Karplus, Marianne S.; Kaeschen, Dirk; Papenberg, Cord; Krabbenhoeft, Anne; Sawyer, Dale; Reston, Timothy J.; Shillington, Donna J.; Ranero, César R.

    2014-05-01

    Galicia 3D, a reflection-refraction and long offset seismic experiment was carried out from May through September 2013, at the Galicia rifted margin (in the northeast Atlantic Ocean, west of Spain) as a collaboration between US, UK, German and Spanish groups. The 3D multichannel seismic acquisition conducted by R/V Marcus Langseth covered a 64 km by 20 km (1280 km2) zone where the main geological features are the Peridotite Ridge (PR), composed of serpentinized peridotite and thought be upper mantle exhumed to the seafloor during rifting, and the S reflector which has been interpreted to be a low angle detachment fault overlain by fault bounded, rotated, continental crustal blocks. In the 3D box, two airgun arrays of 3300 cu.in. were fired alternately (in flip-flop configuration) every 37.5 m. All shots are recorded by 44 short period four component ocean bottom seismometers (OBS) and 26 ocean bottom hydrophones (OBH) deployed and recovered by R/V Poseidon, as well as four 6 km hydrophone streamers with 12.5 m channel spacing towed by R/V Marcus Langseth. We present the preliminary results of the first arrival time tomography study which is carried out with a subset of the wide-angle dataset, in order to generate a 3D P-wave velocity volume for the entire depth sampled by the reflection data. After the relocation of OBSs and OBHs, an automatic first-arrival time picking approach is applied to a subset of the dataset, which comprises more than 5.5 million source-receiver pairs. Then, the first-arrival times are checked visually, in 3-dimensions. The a priori model used for the first-arrival time tomography is built up using information from previous seismic surveys carried out at the Galicia margin (e.g. ISE, 1997). The FAST algorithm of Zelt and Barton (1998) is used for the first-arrival time inversion. The 3D P-wave velocity volume can be used in interpreting the reflection dataset, as a starting point for migration, to quantify the thinning of the crustal layers

  3. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  4. X3D: Extensible 3D Graphics Standard

    OpenAIRE

    Daly, Leonard; Brutzman, Don

    2007-01-01

    The article of record as published may be located at http://dx.doi.org/10.1109/MSP.2007.905889 Extensible 3D (X3D) is the open standard for Web-delivered three-dimensional (3D) graphics. It specifies a declarative geometry definition language, a run-time engine, and an application program interface (API) that provide an interactive, animated, real-time environment for 3D graphics. The X3D specification documents are freely available, the standard can be used without paying any royalties,...

  5. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  6. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  7. Fabrication of 3D Perturbation Target Mould Using Fast Tool Servo System%三维调制靶模板的快速刀具伺服加工技术

    Institute of Scientific and Technical Information of China (English)

    周京博; 黄燕华; 孙涛

    2011-01-01

    3D non-rational symmetrical perturbation target mould was fabricated using fast tool servo ( FTS). The fabrication principle of the perturbation target mould was illustrated and a geometry selection method of diamond cutting tool was put forward which was based on the coordinate transformation technique. Requirements of tool nose radius, rake angle, and clearance angle for turning these surfaces were deducted. A tool nose radius compensation algorithm based on cubic Hermite interpolation was proposed, and the calculating method of interpolation node was also discussed in detail. The simulation result shows that the accuracy of this compensation algorithm is less than 2 nm. Then a sinusoidal grid surface with the wave length of 100 μm and the amplitude of 0. 7 μm in both X and Y directions was fabricated on the self-developed diamond turning machine. White light interferometer was adopted to survey the machined surface, and a 2D contour line was extracted with the profile error of 0. 31 μn and the surface roughness of 13. 3 nm. The measurement results show that the FTS based non-rotational symmetrical turning technique is an effective way to fabricate 3D perturbation target mould.%采用快速刀具伺服技术(FTS)实现了非回转对称三维调制靶模板的精密车削加工.阐明了调制靶模板车削加工的基本原理,并提出一种基于坐标变换的金刚石刀具几何参数选择方法,推导了车削加工此类表面时金刚石刀具刀尖圆弧半径、前角和后角所需满足的条件.基于此提出了一种基于三次Hermite插值的刀尖圆弧半径补偿算法,并详细讨论了插值节点的计算方法.由刀尖圆弧半径补偿仿真结果可以看出,此补偿算法精度优于2 nm.在自行研制的精密金刚石车床上实现了X、y方向上波长均为100μm、幅值均为0.7 μ,m的正弦网格调制结构的加工.采用白光干涉仪对所加工的调制结构进行测量,并提取二维轮廓进

  8. Fast segmentation of 3D-ICT images by symmetric region growing method%利用对称区域生长算法实现三维ICT图像的快速分割

    Institute of Scientific and Technical Information of China (English)

    魏英; 田宝玉; 孙晶晶; 夏云野

    2011-01-01

    Image segmentation has been widely applied in the industrial computed tomography testing(ICT). Along with the ICT scanning mode developing from two-dimension to three-dimension, the computed tomography image analy sis has been changed from two-dimension image to three-dimension image . The traditional image segmentation methods have not kept up with the development yet. A symmetric region growing fast segmentation method is proposed The pa rameters used in the algorithm are computed automatically according to the ICT images. And the choice of the initial seed points doesn't affect the final results. Because this method processes the 3D images and combination the regions slice by slice, the cost of the memory is reduced greatly. The experimental results prove that this method has higher accuracy and computation efficiency than traditional segmentation algorithms.%图像分割作为一种基础的分析手段在工业计算机断层(Industrial Computed Tomography,ICT)检侧中有着广泛的应用.随着CT扫描方式从二维断层扫描向三维立体扫描的发展,对于CT图像的分析也由二维图像处理发展为三维序列图像处理,所以传统的图像分割手段已经不能很好地适应这种需求了.以目前在计算机视觉领域广泛应用的对称区域生长算法为基础,结合CT图像的特点对参数进行了自动选取,提出了适用于CT图像分析的对称区域生长分割算法.该方法不依赖于初始种子点的选择,对所有断层图像进行逐层处理和逐层合并,有效地降低了内存消耗.试验结果表明,该方法不仅分割精度高,而且计算效率也高于传统的分割算法.

  9. 3D multiplexed immunoplasmonics microscopy

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  10. Review: Polymeric-Based 3D Printing for Tissue Engineering

    OpenAIRE

    Wu, Geng-Hsi; Hsu, Shan-hui

    2015-01-01

    Three-dimensional (3D) printing, also referred to as additive manufacturing, is a technology that allows for customized fabrication through computer-aided design. 3D printing has many advantages in the fabrication of tissue engineering scaffolds, including fast fabrication, high precision, and customized production. Suitable scaffolds can be designed and custom-made based on medical images such as those obtained from computed tomography. Many 3D printing methods have been employed for tissue ...

  11. 3D multiplexed immunoplasmonics microscopy.

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  12. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  13. 3D-skannaukseen perehtyminen

    OpenAIRE

    Santaluoto, Olli

    2012-01-01

    Tässä insinöörityössä tarkastellaan erilaisia 3D-skannaustekniikoita ja menetelmiä. Työssä myös kerrotaan esimerkkien avulla eri 3D-skannaustekniikoiden käyttökohteista. 3D-skannaus on Suomessa vielä melko harvinaista, siksi eri tekniikat ja käyttömahdollisuudet ovat monille tuntemattomia. 3D-skanneri on laite, jolla tutkitaan reaalimaailman esineitä tai ympäristöä keräämällä dataa kohteen muodoista. 3D-skannerit ovat hyvin paljon vastaavia tavallisen kameran kanssa. Kuten kameroilla, 3D...

  14. 3D Printing Functional Nanocomposites

    OpenAIRE

    Leong, Yew Juan

    2016-01-01

    3D printing presents the ability of rapid prototyping and rapid manufacturing. Techniques such as stereolithography (SLA) and fused deposition molding (FDM) have been developed and utilized since the inception of 3D printing. In such techniques, polymers represent the most commonly used material for 3D printing due to material properties such as thermo plasticity as well as its ability to be polymerized from monomers. Polymer nanocomposites are polymers with nanomaterials composited into the ...

  15. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  16. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  17. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  18. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  19. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  20. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  1. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen;

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  2. 3D multiplexed immunoplasmonics microscopy

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  3. Elevation estimation for low-angle target based on reflection paths suppression

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the signal processing for metrewave radar,the reflection paths of target echoes can cause severe error in the elevation estimation for the low-angle target tracking.The exact angles of the reflection paths are unknown beforehand,and therefore,the reflection paths can not be suppressed easily.Therefore,in this article,an improved reflection paths suppression approach is presented.A block matrix aggregate is constructed based on the possible angles of the reflection paths.Combined with the beamforming-like processing,a generalized maximum likelihood estimation is derived to optimize the estimation.Moreover,the noise reduction method based on the Toeplitz covariance matrix is used for better performance.This approach is applied to the real data collected by the low-angle tracking radar with 8-channel vertical array.The experiment results show that the reflection effects are reduced and the accuracy of the elevation estimate is improved.

  4. The mechanical paradox of low-angle normal faults: Current understanding and open questions

    OpenAIRE

    Collettini, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia

    2011-01-01

    Low-angle normal faults, LANF, (dip b 30°) have been proposed as key-structures for accommodating crustal Fault mechanics blocks affected by brittle processes. LANF act as preferential channels for fluid flow and in some cases they Seismicity promoted fluid overpressure. Fluid–rock interactions along some detachments favour the development of extension. In contrast, frictional fault reactivation theory predicts that slip on LANF is extremely unlikely: this prediction is consistent with ...

  5. The ATLAS(3D) project : III. A census of the stellar angular momentum within the effective radius of early-type galaxies: unveiling the distribution of fast and slow rotators

    NARCIS (Netherlands)

    Emsellem, Eric; Cappellari, Michele; Krajnovic, Davor; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; van de Ven, Glenn; Weijmans, Anne-Marie; Young, Lisa M.

    2011-01-01

    We provide a census of the apparent stellar angular momentum within one effective radius of a volume-limited sample of 260 early-type galaxies (ETGs) in the nearby Universe, using the integral-field spectroscopy obtained in the course of the ATLAS(3D) project. We exploit the lambda(R) parameter (pre

  6. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  7. 3D Printing for Bricks

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  8. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  9. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  10. PLOT3D user's manual

    Science.gov (United States)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  11. 3-D Video Processing for 3-D TV

    Science.gov (United States)

    Sohn, Kwanghoon; Kim, Hansung; Kim, Yongtae

    One of the most desirable ways of realizing high quality information and telecommunication services has been called "The Sensation of Reality," which can be achieved by visual communication based on 3-D (Three-dimensional) images. These kinds of 3-D imaging systems have revealed potential applications in the fields of education, entertainment, medical surgery, video conferencing, etc. Especially, three-dimensional television (3-D TV) is believed to be the next generation of TV technology. Figure 13.1 shows how TV's display technologies have evolved , and Fig. 13.2 details the evolution of TV broadcasting as forecasted by the ETRI (Electronics and Telecommunications Research Institute). It is clear that 3-D TV broadcasting will be the next development in this field, and realistic broadcasting will soon follow.

  12. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  13. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  14. High-Efficiency Solid-State Dye-Sensitized Solar Cells: Fast Charge Extraction through Self-Assembled 3D Fibrous Network of Crystalline TiO 2 Nanowires

    KAUST Repository

    Tétreault, Nicolas

    2010-12-28

    Herein, we present a novel morphology for solid-state dye-sensitized solar cells based on the simple and straightforward self-assembly of nanorods into a 3D fibrous network of fused single-crystalline anatase nanowires. This architecture offers a high roughness factor, significant light scattering, and up to several orders of magnitude faster electron transport to reach a near-record-breaking conversion efficiency of 4.9%. © 2010 American Chemical Society.

  15. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  16. Tuotekehitysprojekti: 3D-tulostin

    OpenAIRE

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  17. 3D on the internet

    OpenAIRE

    Puntar, Matej

    2012-01-01

    The purpose of this thesis is the presentation of already established and new technologies of displaying 3D content in a web browser. The thesis begins with a short presentation of the history of 3D content available on the internet and its development together with advantages and disadvantages of individual technologies. The latter two are described in detail as well is their use and the differences among them. Special emphasis has been given to WebGL, the newest technology of 3D conte...

  18. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  19. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  20. 基于预条件LANCZOS算法快速实现三维地电场正演计算%Fast Implementation of Forward Modeling of 3 - D Geoelectric Field with Precondition Lanczos Method

    Institute of Scientific and Technical Information of China (English)

    宛新林; 席道瑛

    2009-01-01

    An incomplete Cholesky factorization is used to preconditioning large sparse coefficient matrix in 3-D geoelectric field forward modelling. Coefficient matrix of the new system is an approximate unit matrix. Preconditioned Lanczos algorithm improves stability and convergence of iterative procedures. In the algorithm, as iterative numbers are smaller than dimensions of coefficient matrix, approximation of the exact solution is obtained. Preconditioned Lanczos algorithm is effective in 3-D geoelectric field forward modeling. It makes a foundaiton for 3-D geoelectric inversion.%针对三维地电场正演计算过程中形成的超大规模稀疏线性方程组,采用不完全Cholesky分解方法进行预条件处理,经过条件数改善后形成的新线性方程组的系数矩阵变为一个近似的单位矩阵,再应用Lanczos算法将会提高数值计算的稳定性,加快迭代收敛的速度,通常在迭代次数远小于系数矩阵阶数时就能得到较好精确解的近似值,为下一步的电阻率三维反演计算打下了非常好的基础.

  1. On applicability of the 3D nodal code DYN3D for the analysis of SFR cores

    International Nuclear Information System (INIS)

    DYN3D is an advanced multi-group nodal diffusion code originally developed for the 3D steady-state and transient analysis of the Light Water Reactor (LWR) systems with square and hexagonal fuel assembly geometries. The main objective of this work is to demonstrate the feasibility of using DYN3D for the modeling of Sodium cooled Fast Reactors (SFRs). In this study a prototypic European Sodium Fast Reactor (ESFR) core is simulated by DYN3D using homogenized multi-group cross sections produced with Monte Carlo (MC) reactor physics code Serpent. The results of the full core DYN3D calculations are in a very good agreement with the reference full core Serpent MC solution. (author)

  2. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    traditionel keramisk produktionssammenhæng. Problemstillingen opmuntrede endvidere til i et samarbejde med en programmør at udvikle et 3d digitalt redskab, der er blevet kaldt et digitalt interaktivt formgivningsredskab (DIF). Eksperimentet undersøger interaktive 3d digitale dynamiske systemer, der...... samarbejder med designere fra fagområder som interaktionsdesign og programmering. Afhandlingen peger på et fremtidigt forskningsfelt indenfor generative og responderende digitale systemer til 3d formgivning, der ligeledes inkluderer følesansen. Endvidere er det relevant at forske i, hvordan de RP teknikker...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...

  3. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  4. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  5. Combinatorial 3D Mechanical Metamaterials

    Science.gov (United States)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  6. AI 3D Cybug Gaming

    CERN Document Server

    Ahmed, Zeeshan

    2010-01-01

    In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.

  7. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  8. Low Angle Normal Fault System Controls the Structure Evolution of Baiyun Deepwater Basin and Its Lithosphere Thinning, Northern South China Sea

    Science.gov (United States)

    Zhao, Y.; Ren, J.; Yang, L.

    2015-12-01

    The discovery of the transition area from ~30 km to weakly thinned continental crust (<12 km) in Baiyun deepwater basin, Northern South China Sea leads to two questions: What controls extreme crustal thinning and what is the nature of Baiyun basin. The 3D seismic data newly acquired show that Baiyun basin is an asymmetric half graben mainly controlled by a set of north-dipping normal faults converging in deep. By employing the principle of back-stripping, we estimate the fault dips and slip amount would be in the absence of post-rift sediments and seawater loading. Results show these Middle Eocene faults were extremely active, with a high accumulation horizontal displacement (> 10 km) and an initial very low angle (<7°), followed by a rotated into sub-horizontal. A general scenario for extension of the uppermost continental crust probably includes simultaneous operation of low angle normal fault (F1) as well as parallel arrays of step-faults (domino-faults, f2-f9). Under such a scenario, it shows no obvious extension discrepancy in Baiyun basin. Our results indicate that Baiyun sag preserves information recording the continent thinning before the seafloor spreading, and it could be an abandoned inner rifted basin.

  9. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.;

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections...... with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused...... by a single major allergen, parvalbumin (Cyp c 1) and lipid transfer protein (Pru p 3), respectively. Two approaches are being evaluated for achieving hypoallergenicity, i.e. site-directed mutagenesis and chemical modification. The most promising hypoallergens will be produced under GMP conditions. After pre...

  10. MPML3D: Scripting Agents for the 3D Internet.

    Science.gov (United States)

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru

    2011-05-01

    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  11. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  12. Creating a 3D printer and testing mechanical properties of printed models

    OpenAIRE

    Ceglar, Luka

    2015-01-01

    3D printing is experiencing rapid development in recent years. Due to the favorable price and fast and precise manufacturing, 3D printing is increasingly replacing the production models of the conventional methods. This thesis presents the history of 3D printing and some common technologies used in 3D printing. There are presented characteristics, weaknesses, as well as a general method of operation. In this thesis I present building and use of 3D printer. I made pressure, tension and bend...

  13. 2D/3D Monte Carlo Feature Profile Simulator FPS-3D

    Science.gov (United States)

    Moroz, Paul

    2010-11-01

    Numerical simulation of etching/deposition profiles is important for semiconductor industry, as it allows analysis and prediction of the outcome of materials processing on a micron and sub-micron scale. The difficulty, however, is in making such a simulator a reliable, general, and easy to use tool applicable to different situations, for example, with different ratios of ion to neutral fluxes, different chemistries, different energies of incoming particles, and different angular and energy dependencies for surface reactions, without recompiling the code each time when the parameters change. The FPS-3D simulator [1] does not need recompilation when the features, materials, gases, or plasma are changed -- modifications to input, chemistry, and flux files are enough. The code allows interaction of neutral low-energy species with the surface mono-layer, while considering finite penetration depth into the volume for fast particles and ions. The FPS-3D code can simulate etching and deposition processes, both for 2D and 3D geometries. FPS-3D is using an advanced graphics package from HFS for presenting real-time process and profile evolution. The presentation will discuss the FPS-3D code with examples for different process conditions. The author is thankful to Drs. S.-Y. Kang of TEL TDC and P. Miller of HFS for valuable discussions. [4pt] [1] P. Moroz, URP.00101, GEC, Saratoga, NY, 2009.

  14. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  15. Remote 3D Medical Consultation

    Science.gov (United States)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  16. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  17. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  18. 3D Detectors for Synchrotron Applications

    CERN Document Server

    Pennicard, D

    2009-01-01

    3D detectors are a novel variety of photodiode radiation detector, invented by Parker, Kenney and Segal (1997). Instead of having n- and p-type contacts on the front and back surfaces of a silicon substrate, like a standard photodiode, they have columns of doped material passing through the thickness of the silicon. This structure means that the detector can combine a reasonable substrate thickness with a very small electrode spacing, resulting in a low depletion voltage, fast charge collection and low charge sharing. These detectors have a couple of promising applications. Their fast charge collection and low depletion voltage should make them very radiation-tolerant. So, they could be used for future particle physics experiments at the Super Large Hadron Collider (SLHC), where high levels of radiation damage are expected. Also, their low charge sharing means they could potentially improve X-ray diffraction measurements at synchrotrons such as Diamond Light Source. This would allow these experiments, for exa...

  19. 3D Imager and Method for 3D imaging

    NARCIS (Netherlands)

    Kumar, P.; Staszewski, R.; Charbon, E.

    2013-01-01

    3D imager comprising at least one pixel, each pixel comprising a photodetectorfor detecting photon incidence and a time-to-digital converter system configured for referencing said photon incidence to a reference clock, and further comprising a reference clock generator provided for generating the re

  20. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  1. Complex light in 3D printing

    Science.gov (United States)

    Moser, Christophe; Delrot, Paul; Loterie, Damien; Morales Delgado, Edgar; Modestino, Miguel; Psaltis, Demetri

    2016-03-01

    3D printing as a tool to generate complicated shapes from CAD files, on demand, with different materials from plastics to metals, is shortening product development cycles, enabling new design possibilities and can provide a mean to manufacture small volumes cost effectively. There are many technologies for 3D printing and the majority uses light in the process. In one process (Multi-jet modeling, polyjet, printoptical©), a printhead prints layers of ultra-violet curable liquid plastic. Here, each nozzle deposits the material, which is then flooded by a UV curing lamp to harden it. In another process (Stereolithography), a focused UV laser beam provides both the spatial localization and the photo-hardening of the resin. Similarly, laser sintering works with metal powders by locally melting the material point by point and layer by layer. When the laser delivers ultra-fast focused pulses, nonlinear effects polymerize the material with high spatial resolution. In these processes, light is either focused in one spot and the part is made by scanning it or the light is expanded and covers a wide area for photopolymerization. Hence a fairly "simple" light field is used in both cases. Here, we give examples of how "complex light" brings additional level of complexity in 3D printing.

  2. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich;

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  3. Crowded Field 3D Spectroscopy

    CERN Document Server

    Becker, T; Roth, M M; Becker, Thomas; Fabrika, Sergei; Roth, Martin M.

    2003-01-01

    The quantitative spectroscopy of stellar objects in complex environments is mainly limited by the ability of separating the object from the background. Standard slit spectroscopy, restricting the field of view to one dimension, is obviously not the proper technique in general. The emerging Integral Field (3D) technique with spatially resolved spectra of a two-dimensional field of view provides a great potential for applying advanced subtraction methods. In this paper an image reconstruction algorithm to separate point sources and a smooth background is applied to 3D data. Several performance tests demonstrate the photometric quality of the method. The algorithm is applied to real 3D observations of a sample Planetary Nebula in M31, whose spectrum is contaminated by the bright and complex galaxy background. The ability of separating sources is also studied in a crowded stellar field in M33.

  4. 3D-grafiikkamoottori mobiililaitteille

    OpenAIRE

    Vahlman, Lauri

    2014-01-01

    Tässä insinöörityössä käydään läpi mobiililaitteille suunnatun yksinkertaisen 3D-grafiikkamoottorin suunnittelu ja toteutus käyttäen OpenGL ES -rajapintaa. Työssä esitellään grafiikkamoottorin toteutuksessa käytettyjä tekniikoita sekä tutustutaan moottorin rakenteeseen ja toteutuksellisiin yksityiskohtiin. Työn alkupuolella tutustutaan myös modernin 3D-grafiikan yleisiin periaatteisiin ja toimintaan sekä käydään läpi 3D-grafiikkaan liittyviä suorituskykyongelmia. Työn loppupuolella esitel...

  5. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  6. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  7. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  8. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... beamforming. This is achieved partly because synthetic aperture imaging removes the limitation of a fixed transmit focal depth and instead enables dynamic transmit focusing. Lately, the major ultrasound companies have produced ultrasound scanners using 2-D transducer arrays with enough transducer elements...

  9. Synthesis on structure and properties of zinc nanocrystal in high ordered 3D nanostructures

    International Nuclear Information System (INIS)

    The wet impregnation method was employed to prepare ZnO encapsulated in mesoporous silica (ZnO/KIT-6). The prepared ZnO/KIT-6 samples have been studied by X-ray diffraction, transmission electron microscope, and nitrogen adsorption–desorption isotherm. The low angle powder XRD patterns of Calcined ZnO/KIT-6 materials showed a phase that can be indexed to cubic Ia3d. Tem images revealed well ordered cubic 3D nanoporous chennels. The ZnO encapsulated in KIT-6 can be used as light-emitting diodes and ultraviolet nanolasers

  10. Synthesis and characterization of fast-decaying bluish green phosphors of Tb{sup 3+}-doped CaSi{sub 2}O{sub 2}N{sub 2} for 2D/3D plasma display panels

    Energy Technology Data Exchange (ETDEWEB)

    Yang Lixun [Chinese Academy of Sciences, Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, Hefei 230026 (China); Xu Xin, E-mail: xuxin@ustc.edu.cn [Chinese Academy of Sciences, Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, Hefei 230026 (China); Hao Luyuan; Yang Xiufang [Chinese Academy of Sciences, Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, Hefei 230026 (China); Agathopoulos, Simeon [Department of Materials Science and Engineering, University of Ioannina, GR-451 10 Ioannina (Greece)

    2012-06-15

    Oxynitride phosphor powders comprising of CaSi{sub 2}O{sub 2}N{sub 2} doped with Tb{sup 3+} were successfully synthesized using a high-temperature solid-state reaction method. The experimentally determined photoluminescence (PL) properties of the produced phosphors meet the requirements of 2D/3D plasma display panels (PDPs). In particular, under the excitation of vacuum ultraviolet (VUV) synchrotron radiation and ultraviolet (UV) irradiation, emission peaks corresponding to the {sup 5}D{sub 3}{yields}{sup 7}F{sub J} (J=6, 5, 4, 3) and {sup 5}D{sub 4}{yields}{sup 7}F{sub J} (J=6, 5, 4, 3) transitions of Tb{sup 3+} ions were recorded. Monitoring the {sup 5}D{sub 4}{yields}{sup 7}F{sub 5} emission of Tb{sup 3+} at 545 nm, the excitation bands were assigned to the host-related absorption as well as the 4f-5d (fd) and the 4f-4f (ff) transitions of Tb{sup 3+}. The produced phosphors can be efficiently excited at 147 nm, and have an adequately short decay time ({tau}{sub 1/10}=1.14 ms). - Highlights: Black-Right-Pointing-Pointer Tb{sup 3+}-doped CaSi{sub 2}O{sub 2}N{sub 2} was proved to be a candidate for plasma display panels (PDPs). Black-Right-Pointing-Pointer PL and PLE spectra from VUV to visible range of the phosphor were analyzed. Black-Right-Pointing-Pointer The phosphor has an adequately short decay time that is necessary for 3D displays.

  11. PubChem3D: Biologically relevant 3-D similarity

    Directory of Open Access Journals (Sweden)

    Kim Sunghwan

    2011-07-01

    Full Text Available Abstract Background The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive, but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between "active/active" and "active/inactive" spaces? These questions are explored using 734,486 biologically tested chemical structures, 1,389 biological assay data sets, and six different 3-D similarity types utilized by PubChem analysis tools. Results The similarity value distributions of 269.7 billion unique conformer pairs from 734,486 biologically tested compounds (all-against-all from PubChem were utilized to help work towards an answer to the question: what is a biologically meaningful 3-D similarity score? The average and standard deviation for the six similarity measures STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were 0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ± 0.06, and 0.59 ± 0.14, respectively. Considering that this random distribution of biologically tested compounds was constructed using a single theoretical conformer per compound (the "default" conformer provided by PubChem, further study may be necessary using multiple diverse conformers per compound; however, given the breadth of the compound set, the single conformer per compound results may still apply to the case of multi-conformer per compound 3-D similarity value distributions. As such, this work is a critical step, covering a very wide corpus of chemical structures and biological assays, creating a statistical framework to build upon. The second part of this study explored the question of whether it was possible to realize a statistically meaningful 3-D similarity value separation between reputed biological assay "inactives" and "actives". Using the terminology of noninactive-noninactive (NN pairs and the noninactive-inactive (NI pairs to represent comparison of the "active/active" and

  12. 3D Integration for Wireless Multimedia

    Science.gov (United States)

    Kimmich, Georg

    The convergence of mobile phone, internet, mapping, gaming and office automation tools with high quality video and still imaging capture capability is becoming a strong market trend for portable devices. High-density video encode and decode, 3D graphics for gaming, increased application-software complexity and ultra-high-bandwidth 4G modem technologies are driving the CPU performance and memory bandwidth requirements close to the PC segment. These portable multimedia devices are battery operated, which requires the deployment of new low-power-optimized silicon process technologies and ultra-low-power design techniques at system, architecture and device level. Mobile devices also need to comply with stringent silicon-area and package-volume constraints. As for all consumer devices, low production cost and fast time-to-volume production is key for success. This chapter shows how 3D architectures can bring a possible breakthrough to meet the conflicting power, performance and area constraints. Multiple 3D die-stacking partitioning strategies are described and analyzed on their potential to improve the overall system power, performance and cost for specific application scenarios. Requirements and maturity of the basic process-technology bricks including through-silicon via (TSV) and die-to-die attachment techniques are reviewed. Finally, we highlight new challenges which will arise with 3D stacking and an outlook on how they may be addressed: Higher power density will require thermal design considerations, new EDA tools will need to be developed to cope with the integration of heterogeneous technologies and to guarantee signal and power integrity across the die stack. The silicon/wafer test strategies have to be adapted to handle high-density IO arrays, ultra-thin wafers and provide built-in self-test of attached memories. New standards and business models have to be developed to allow cost-efficient assembly and testing of devices from different silicon and technology

  13. EDGE REMOVAL OF 3D POLYGONAL MODEL USING MAYA API

    Directory of Open Access Journals (Sweden)

    SAMEER ARORA

    2010-09-01

    Full Text Available In various applications of computer graphics, 3D polygonal modeling is used, which consists millions of triangular polygon. In this polygon attributes – vertices, edges and faces’ details are to be stored. In order to control the processing time, storing space, and transfer speed, it is often required to reduce the information ofthese polygonal 3D models. In this paper an effort is made to reduce the number of edges. There are various methods to reduce faces and edges of these 3D models. A C++ dynamic link library as Maya Plugin has been created to remove number of edges of 3D triangular polygon model using the Quadric Error Metrics (QEM in MAYA v2010 x64 API. QEM allows fast and accurate geometric simplification of 3D models.

  14. 3D Face Apperance Model

    OpenAIRE

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations

  15. 3D Face Appearance Model

    OpenAIRE

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}

  16. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  17. When Art Meets 3D

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  18. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu;

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  19. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  20. Viewing galaxies in 3D

    CERN Document Server

    Krajnović, Davor

    2016-01-01

    Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.

  1. Priprava 3D modelov za 3D tisk

    OpenAIRE

    Pikovnik, Tomaž

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  2. Post processing of 3D models for 3D printing

    OpenAIRE

    Pikovnik, Tomaž

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  3. 3D Cameras: 3D Computer Vision of Wide Scope

    OpenAIRE

    May, Stefan; Pervoelz, Kai; Surmann, Hartmut

    2007-01-01

    First of all, a short comparison of range sensors and their underlying principles was given. The chapter further focused on 3D cameras. The latest innovations have given a significant improvement for the measurement accuracy, wherefore this technology has attracted attention in the robotics community. This was also the motivation for the examination in this chapter. On this account, several applications were presented, which represents common problems in the domain of autonomous robotics. For...

  4. Target detection for low angle radar based on multi-frequency order-statistics

    Institute of Scientific and Technical Information of China (English)

    Yunhe Cao∗; Shenghua Wang; Yu Wang; Shenghua Zhou

    2015-01-01

    For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec-tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe-rence of the direct and reflected echoes. After receiving al echoes, the multi-frequency samples are arranged in a sort descending ac-cording to the amplitude. Some high amplitude echoes in the same range cel are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Final y, simulation results are presented to verify the effectiveness of the method.

  5. Identification of sub-grains and low angle boundaries beyond the angular resolution of EBSD maps

    Energy Technology Data Exchange (ETDEWEB)

    Germain, L., E-mail: Lionel.germain@univ-lorraine.fr [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, CNRS/Université de Lorraine, F-57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (‘LabEx DAMAS’), Université de Lorraine (France); Kratsch, D. [Laboratoire d' Informatique Théorique et Appliquée (LITA), EA3079, Université de Lorraine, 57045 Metz Cedex 1 (France); Salib, M. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, CNRS/Université de Lorraine, F-57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (‘LabEx DAMAS’), Université de Lorraine (France); Institut Jean Lamour (IJL), SI2M Dept., CNRS UMR 7198, Université de Lorraine, Parc de Saurupt, CS 50840, F-54011 Nancy Cedex (France); Gey, N. [Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR 7239, CNRS/Université de Lorraine, F-57045 Metz (France); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (‘LabEx DAMAS’), Université de Lorraine (France)

    2014-12-15

    A new method called ALGrId (Anti-Leak GRain IDentification) is proposed for the detection of sub-grains beyond the relative angular resolution of Electron Backscatter Diffraction maps. It does not use any additional information such as Kikuchi Pattern Quality map nor need data filtering. It uses a modified Dijkstra algorithm which seeks the continuous set of boundaries having the highest average disorientation angle. - Highlights: • ALGrId is a new method to identify sub-grains and low angle boundaries in EBSD maps. • Unlike classical methods, ALGrId works even beyond the relative angular resolution. • If the orientation noise peaks at 0.7°, ALGrid detects 0.4°-boundaries correctly. • In the same example, the classical algorithm identifies 1.1°-boundaries only.

  6. 基于改进移动立方体的医学图像三维重建算法%Fast marching cubes algorithm for 3D reconstruction for medical images

    Institute of Scientific and Technical Information of China (English)

    高峰; 付忠良

    2013-01-01

    The iso-surface extraction speed is the most important factor which affects the efficiency of the 3D medical image reconstruction algorithm.The authors proposed an improved Marching Cubes (MC) algorithm based on medical image to solve the low speed and organizational separation difficulties in the traditional 3D medical image reconstruction algorithm.First,according to the connectivity principle of human organs,the whole iso-surface could be derived by seed voxels; second,midpoint method instead of linear interpolation method was used to reduce the number of algebraic operations.The experiment results show that this algorithm not only can accelerate the speed of MC algorithm,but also can separate the reconstructed object from the background effectively.%在医学图像三维重建算法中,等值面的抽取速度是影响三维重建效率的重要因素之一.针对传统三维重建算法——移动立方体(MC)在医学图像重建中速度慢、组织分离困难等问题,提出了一种基于医学图像的改进的MC算法.该算法首先基于人体器官的连通性原理,选取种子体元后根据种子体元衍生出整个器官的等值面,从而避免了对无用体元的遍历;其次,使用中值法取代线性插值法计算法向量和等值点坐标,减少了代数运算.实验结果表明:与原始算法相比,改进的算法可以有效分离需要重建器官和背景,并在重建效果相差不大的基础上,算法的执行效率有了较大的提升.

  7. DYNA3D2000*, Explicit 3-D Hydrodynamic FEM Program

    International Nuclear Information System (INIS)

    1 - Description of program or function: DYNA3D2000 is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation. 2 - Method of solution: Discretization of a continuous model transforms partial differential equations into algebraic equations. A numerical solution is then obtained by solving these algebraic equations through a direct time marching scheme. 3 - Restrictions on the complexity of the problem: Recent software improvements have eliminated most of the user identified limitations with dynamic memory allocation and a very large format description that has pushed potential problem sizes beyond the reach of most users. The dominant restrictions remain in code execution speed and robustness, which the developers constantly strive to improve

  8. Low-angle X-ray scattering properties of irradiated spices

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, A.P.G. [Nuclear Instrumentation Laboratory (LIN/COPPE), P. O. Box 68509, 21945-970, Rio de Janeiro RJ (Brazil)], E-mail: delson@lin.ufrj.br; Braz, D. [Nuclear Instrumentation Laboratory (LIN/COPPE), P. O. Box 68509, 21945-970, Rio de Janeiro RJ (Brazil); Barroso, R.C. [Physics Institute (IF/UERJ), University of Rio de Janeiro State, 20550-900 Rio de Janeiro RJ (Brazil); Lopes, R.T. [Nuclear Instrumentation Laboratory (LIN/COPPE), P. O. Box 68509, 21945-970, Rio de Janeiro RJ (Brazil)

    2007-09-21

    The scattering of X-rays at low angles (LAXS) is a technique dominated by the coherent scattering process. One characteristic observation of low-angle coherent scattering is the so-called molecular interference effect, being characterized by the presence of one or more peaks in the forward direction of scattering. In the present study, LAXS profiles from five different spices are carefully measured in order to establish characteristic scattering signatures. Samples of Ceylon cinnamon, cumin, nutmeg, paprika and black pepper were bought in local market in Rio de Janeiro, Brazil. The LAXS patterns were obtained using a Shimadzu DRX 6000 diffractometer in reflection geometry. Coherent scattering patterns are measured for the samples for {theta}=5-35{sup o}. The data were collected in 0.05{sup o} increments every 3 s. In order to evaluate the possible molecular structure changes caused to the irradiation procedure, the signatures obtained for control (non-irradiated) spices were compared with spice samples irradiated with different doses varying from 3 to 40 kGy. The LAXS patterns of all samples were obtained after 30, 60, 90, 120 days to evaluate the effect of storage period. Scattering profiles from spices irradiated with different irradiation doses were obtained and the results compared. For each spice, there is no considerable deviation in shape in function of the irradiation dose. It indicates that the molecular structure of each analyzed spices is preserved considering the dose range chosen. The results show that the molecular structure was found to be stable during storage at the ambient temperature for up to 4 months.

  9. Coherent Flow Structures and Suspension Events over Low-angle Dunes: Fraser River, Canada

    Science.gov (United States)

    Bradley, R. W.; Venditti, J. G.; Kostaschuk, R. A.; Hendershot, M. L.; Allison, M. A.; Church, M. A.

    2012-12-01

    Increasing observations show that dunes with low-angle lee-sides (MBES) while an acoustic Doppler current profiler (aDcp) simultaneously provided flow and suspended sediment measurements over a range of flows through tidal cycles. At high tide, river flow nearly ceases and a salt wedge enters the channel, forcing plumes of salt water towards the surface into the downstream moving fresh water above as the wedge moves upstream over the dunes. The salt wedge persists in the channel causing stratification in water column and one-sided instabilities along the saline-fresh water interface until the late in the falling tide. At low tide, mean velocities peak and force the saline water out of the channel. Flow over the low-angle dunes displays topographically induced flow patterns similar to previously observed over high-angle dunes, but permanent flow separation is notably absent. Sediment-laden kolks emerge as important suspended sediment transport agents during low tide but become more coherent, yet less frequent, structures as the tide begins to rise. Kolks appear to form downstream of dune crests along the shear layer that is likely formed by intermittent flow separation. Kolks also form at the reattachment point and grow over the stoss slope of the dunes. This is consistent with the generation of hairpin vortices formed near the bed that lift into the flow and grow to the surface through an 'autogeneration' mechanism. Persistent downwelling and periodic sweeps at dune crests provide a mechanism for sediment erosion and entrainment while periodic ejection motions or kolks in a zone of persistent upwelling at the lower stoss provide a mechanism sediment suspension. Kolks are estimated to move ~70% of the total sediment in the flow above dunes when they are present in the water column.

  10. Low-angle X-ray scattering properties of irradiated spices

    Science.gov (United States)

    Almeida, A. P. G.; Braz, D.; Barroso, R. C.; Lopes, R. T.

    2007-09-01

    The scattering of X-rays at low angles (LAXS) is a technique dominated by the coherent scattering process. One characteristic observation of low-angle coherent scattering is the so-called molecular interference effect, being characterized by the presence of one or more peaks in the forward direction of scattering. In the present study, LAXS profiles from five different spices are carefully measured in order to establish characteristic scattering signatures. Samples of Ceylon cinnamon, cumin, nutmeg, paprika and black pepper were bought in local market in Rio de Janeiro, Brazil. The LAXS patterns were obtained using a Shimadzu DRX 6000 diffractometer in reflection geometry. Coherent scattering patterns are measured for the samples for θ=5-35°. The data were collected in 0.05° increments every 3 s. In order to evaluate the possible molecular structure changes caused to the irradiation procedure, the signatures obtained for control (non-irradiated) spices were compared with spice samples irradiated with different doses varying from 3 to 40 kGy. The LAXS patterns of all samples were obtained after 30, 60, 90, 120 days to evaluate the effect of storage period. Scattering profiles from spices irradiated with different irradiation doses were obtained and the results compared. For each spice, there is no considerable deviation in shape in function of the irradiation dose. It indicates that the molecular structure of each analyzed spices is preserved considering the dose range chosen. The results show that the molecular structure was found to be stable during storage at the ambient temperature for up to 4 months.

  11. Light Attenuation Method for 3D data acquisition (LAM3D) of bottom particle deposits

    Science.gov (United States)

    Er, Jenn Wei; Law, Adrian W. K.; Adams, E. Eric; Yang, Yang

    2015-11-01

    We have developed a novel experimental technique, Light Attenuation Method for 3D data acquisition (LAM3D), to acquire three-dimensional spatial characteristics and temporal development of bottom particle deposits. The new technique performs data acquisition with higher spatial and temporal resolution than existing approaches with laser and ultrasonic 3D profilers, and is therefore ideal for laboratory investigations with fast varying changes in the sediment bed, such as the developing deposition profile from sediment clouds commonly formed during dredging or land reclamation projects and the dynamic evolution in movable bed processes in rivers. The principle of the technique is based on the analysis of the light attenuation due to multiple light scattering through the particle deposits layer compared to the clear water column. With appropriate calibration, the particles size and distribution thickness can be quantified by the transmitted light spectrum. In the presentation, we will first show our measurement setup with a light panel for calibrated illumination and a system of DSLR cameras for the light capturing. Subsequently, we shall present the experimental results of fast evolving deposition profile of a barge-disposed sediment cloud upon its bottom impact on the sea bed.

  12. 3D Printable Graphene Composite.

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  13. 3-D Relativistic MHD Simulations

    Science.gov (United States)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  14. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  15. [Real time 3D echocardiography

    Science.gov (United States)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  16. Estimation of Pulmonary Motion in Healthy Subjects and Patients with Intrathoracic Tumors Using 3D-Dynamic MRI: Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Plathow, Christian; Schoebinger, Max; Meinzer, Heinz Peter [German Cancer Research Center, Heidelberg (Germany); Herth, Felix; Tuengerthal, Siegfried [Clinic of Thoracic Disease, Heidelberg (Germany); Kauczor, Hans Ulrich [University of Heidelberg, Heidelberg (Germany)

    2009-12-15

    To estimate a new technique for quantifying regional lung motion using 3D-MRI in healthy volunteers and to apply the technique in patients with intra- or extrapulmonary tumors. Intraparenchymal lung motion during a whole breathing cycle was quantified in 30 healthy volunteers using 3D-dynamic MRI (FLASH [fast low angle shot] 3D, TRICKS [time-resolved interpolated contrast kinetics]). Qualitative and quantitative vector color maps and cumulative histograms were performed using an introduced semiautomatic algorithm. An analysis of lung motion was performed and correlated with an established 2D-MRI technique for verification. As a proof of concept, the technique was applied in five patients with non-small cell lung cancer (NSCLC) and 5 patients with malignant pleural mesothelioma (MPM). The correlation between intraparenchymal lung motion of the basal lung parts and the 2D-MRI technique was significant (r = 0.89, p < 0.05). Also, the vector color maps quantitatively illustrated regional lung motion in all healthy volunteers. No differences were observed between both hemithoraces, which was verified by cumulative histograms. The patients with NSCLC showed a local lack of lung motion in the area of the tumor. In the patients with MPM, there was global diminished motion of the tumor bearing hemithorax, which improved significantly after chemotherapy (CHT) (assessed by the 2D- and 3D-techniques) (p < 0.01). Using global spirometry, an improvement could also be shown (vital capacity 2.9 {+-} 0.5 versus 3.4 L {+-} 0.6, FEV1 0.9 {+-} 0.2 versus 1.4 {+-} 0.2 L) after CHT, but this improvement was not significant. A 3D-dynamic MRI is able to quantify intraparenchymal lung motion. Local and global parenchymal pathologies can be precisely located and might be a new tool used to quantify even slight changes in lung motion (e.g. in therapy monitoring, follow-up studies or even benign lung diseases)

  17. Estimation of Pulmonary Motion in Healthy Subjects and Patients with Intrathoracic Tumors Using 3D-Dynamic MRI: Initial Results

    International Nuclear Information System (INIS)

    To estimate a new technique for quantifying regional lung motion using 3D-MRI in healthy volunteers and to apply the technique in patients with intra- or extrapulmonary tumors. Intraparenchymal lung motion during a whole breathing cycle was quantified in 30 healthy volunteers using 3D-dynamic MRI (FLASH [fast low angle shot] 3D, TRICKS [time-resolved interpolated contrast kinetics]). Qualitative and quantitative vector color maps and cumulative histograms were performed using an introduced semiautomatic algorithm. An analysis of lung motion was performed and correlated with an established 2D-MRI technique for verification. As a proof of concept, the technique was applied in five patients with non-small cell lung cancer (NSCLC) and 5 patients with malignant pleural mesothelioma (MPM). The correlation between intraparenchymal lung motion of the basal lung parts and the 2D-MRI technique was significant (r = 0.89, p < 0.05). Also, the vector color maps quantitatively illustrated regional lung motion in all healthy volunteers. No differences were observed between both hemithoraces, which was verified by cumulative histograms. The patients with NSCLC showed a local lack of lung motion in the area of the tumor. In the patients with MPM, there was global diminished motion of the tumor bearing hemithorax, which improved significantly after chemotherapy (CHT) (assessed by the 2D- and 3D-techniques) (p < 0.01). Using global spirometry, an improvement could also be shown (vital capacity 2.9 ± 0.5 versus 3.4 L ± 0.6, FEV1 0.9 ± 0.2 versus 1.4 ± 0.2 L) after CHT, but this improvement was not significant. A 3D-dynamic MRI is able to quantify intraparenchymal lung motion. Local and global parenchymal pathologies can be precisely located and might be a new tool used to quantify even slight changes in lung motion (e.g. in therapy monitoring, follow-up studies or even benign lung diseases)

  18. Glnemo2: Interactive Visualization 3D Program

    Science.gov (United States)

    Lambert, Jean-Charles

    2011-10-01

    Glnemo2 is an interactive 3D visualization program developed in C++ using the OpenGL library and Nokia QT 4.X API. It displays in 3D the particles positions of the different components of an nbody snapshot. It quickly gives a lot of information about the data (shape, density area, formation of structures such as spirals, bars, or peanuts). It allows for in/out zooms, rotations, changes of scale, translations, selection of different groups of particles and plots in different blending colors. It can color particles according to their density or temperature, play with the density threshold, trace orbits, display different time steps, take automatic screenshots to make movies, select particles using the mouse, and fly over a simulation using a given camera path. All these features are accessible from a very intuitive graphic user interface. Glnemo2 supports a wide range of input file formats (Nemo, Gadget 1 and 2, phiGrape, Ramses, list of files, realtime gyrfalcON simulation) which are automatically detected at loading time without user intervention. Glnemo2 uses a plugin mechanism to load the data, so that it is easy to add a new file reader. It's powered by a 3D engine which uses the latest OpenGL technology, such as shaders (glsl), vertex buffer object, frame buffer object, and takes in account the power of the graphic card used in order to accelerate the rendering. With a fast GPU, millions of particles can be rendered in real time. Glnemo2 runs on Linux, Windows (using minGW compiler), and MaxOSX, thanks to the QT4API.

  19. The Dual-Angle Method for Fast, Sensitive T1 Measurement in Vivo with Low-Angle Adiabatic Pulses

    Science.gov (United States)

    Bottomley, P. A.; Ouwerkerk, R.

    A new method for measuring T1 based on a measurement of the ratio, R, of the steady-state partially saturated NMR signals acquired at two fixed low flip angles (calf muscles of eight human volunteers. Calf muscle values of 6 ± 0.5 s for phosphocreatine and around 3.7 ± 0.8 s for the adenosine triphosphates (ATP) were in good agreement with inversion-recovery T1 values and values from the literature. Use of the dual-angle method accelerated T1 measurement time by about fivefold over inversion recovery. The dual-angle method was implemented in a one-dimensional localized surface-coil 31P spectroscopy sequence, producing consistent T1 measurements from phantoms, the calf muscle, and the human liver. 31P T1 values of ATP in the livers of six volunteers were about 0.5 ± 0.1 to 0.6 ± 0.2 s: the total exam times were about 35 minutes per subject. The method is ideally suited to low-sensitivity and/or low-concentration moieties, such as in 31P NMR in vivo, where study-time limitations are critical, and for rapid 1H T1 imaging.

  20. Experimental Observation of Flow Structure and Resistance over High- and Low-angle Dunes

    Science.gov (United States)

    Kwoll, E.; Venditti, J. G.; Bradley, R. W.; Winter, C.

    2015-12-01

    A prominent control on the flow over dunes in sedimentary environments is the slope of the downstream lee-side. While previous work has focused on steep (~30°), asymmetric dunes with permanent flow separation ('high-angle dunes'), little is known about dunes with lower lee-slope angles for which flow separation is absent or intermittent ('low-angle dunes'). Here, we use laboratory experiments to systematically vary and isolate the effect of the dune lee-slope on the turbulent flow field over dunes. Three sets of fixed dunes with lee-slope angles of 10°, 20° and 30° were separately installed in a 15 m long and 1 m wide flume and subjected to flow 0.20 m deep. At present, no clear hydraulic scaling has been demonstrated for low- and high-angle dunes as both dune configurations occur at the same Froude and Reynolds numbers. However, observations indicate that low-angle dunes are more frequent in environments dominated by suspension of bed material. Therefore, we focus on matching the transport stage between field conditions and our experiments using field observations of bedform morphology and flow stage. Measurements consisted of high-frequency, vertical profiles collected with a Laser Doppler Velocimeter (LDV) along one dune-length and Particle Image Velocimetry (PIV) of the flow field. We show that the temporal and spatial occurrence of flow separation decreases with dune lee-slope and may be fully absent for lee-slopes <<10°, only. Velocity gradients in the dune leeside depict a free shear layer downstream of the 30° dunes and a weaker shear layer closer to the bed for the 20° and 10° dunes. The decrease in velocity gradients leads to lower turbulence production for gentle lee-slopes. Consequently, flow resistance of dunes decreases with lee-slope; the transition being non-linear. Over the 10°, 20° and 30° dunes, shear stress is 8%, 33% and 90 % greater than a flat bed, respectively. Our results demonstrate that dune shape plays an important, but often

  1. Fully 3D GPU PET reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.L., E-mail: joaquin@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Cal-Gonzalez, J. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Vaquero, J.J. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Desco, M. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Fully 3D iterative tomographic image reconstruction is computationally very demanding. Graphics Processing Unit (GPU) has been proposed for many years as potential accelerators in complex scientific problems, but it has not been used until the recent advances in the programmability of GPUs that the best available reconstruction codes have started to be implemented to be run on GPUs. This work presents a GPU-based fully 3D PET iterative reconstruction software. This new code may reconstruct sinogram data from several commercially available PET scanners. The most important and time-consuming parts of the code, the forward and backward projection operations, are based on an accurate model of the scanner obtained with the Monte Carlo code PeneloPET and they have been massively parallelized on the GPU. For the PET scanners considered, the GPU-based code is more than 70 times faster than a similar code running on a single core of a fast CPU, obtaining in both cases the same images. The code has been designed to be easily adapted to reconstruct sinograms from any other PET scanner, including scanner prototypes.

  2. 49: 3-D treatment planning. 3

    International Nuclear Information System (INIS)

    For practical 3-D treatment planning, one of the most important perspectives to be used is the 'beam's-eye-view' (BEV), since it displays the relationship of the target volume with the proposed radiation beams. Several BEV features comprise the 3-D planning system U-MPlan, including BEV displays which include contour and shaded solid surfaces of defined anatomy, block entry using joystick and digitizer tablet, automatic block and multi-leaf collimator design, output of block coordinates to hard copy devices, direct output to a computer-controlled block and compensator cutter, use of video digitized radiographs as a backdrop for the BEV graphics, image analysis of digitized films, complete image correlation between BEV-type imaging and CT, MR, PET, etc., and a photon dose calculation algorithm which makes accurate and fast calculations in BEV planes and under blocks. The correlation and use of radiographs and other BEV-type images with CT-type information allows a new degree of precision to be incorporated into radiation therapy planning. 9 refs.; 3 figs

  3. Fully 3D GPU PET reconstruction

    International Nuclear Information System (INIS)

    Fully 3D iterative tomographic image reconstruction is computationally very demanding. Graphics Processing Unit (GPU) has been proposed for many years as potential accelerators in complex scientific problems, but it has not been used until the recent advances in the programmability of GPUs that the best available reconstruction codes have started to be implemented to be run on GPUs. This work presents a GPU-based fully 3D PET iterative reconstruction software. This new code may reconstruct sinogram data from several commercially available PET scanners. The most important and time-consuming parts of the code, the forward and backward projection operations, are based on an accurate model of the scanner obtained with the Monte Carlo code PeneloPET and they have been massively parallelized on the GPU. For the PET scanners considered, the GPU-based code is more than 70 times faster than a similar code running on a single core of a fast CPU, obtaining in both cases the same images. The code has been designed to be easily adapted to reconstruct sinograms from any other PET scanner, including scanner prototypes.

  4. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  5. INGRID, 3-D Mesh Generator for Program DYNA3D and NIKE3D and FACET and TOPAZ3D

    International Nuclear Information System (INIS)

    1 - Description of program or function: INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D (NESC 9909), NIKE3D (NESC 9725), FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The most important new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition. 2 - Method of solution: Geometries are described primarily using the index space notation of the INGEN program (NESC 975) with an additional type of notation, index progression. Index progressions provide a concise and simple method for describing complex structures; the concept was developed to facilitate defining multiple regions in index space. Rather than specifying the minimum and maximum indices for a region, one specifies the progression of indices along the I, J and K directions, respectively. The index progression method allows the analyst to describe most geometries including nodes and elements with roughly the same amount of input as a solids modeler

  6. Tehokas 3D-animaatiotuotanto

    OpenAIRE

    Järvinen, Manu

    2009-01-01

    Opinnäytetyössä tutkittiin tehokasta tapaa toteuttaa minuutin mittainen animaatio Scene.org Awards -tapahtuman avajaisseremoniaan. Kyseinen video toteutettiin osana opinnäytetyötä. Työhön osallistui tekijän lisäksi 3D-mallintaja sekä muusikko. Työkaluina käytettiin pääasiassa Autodesk 3ds Max-, sekä Adobe After Effects- ja Adobe Photoshop -ohjelmia. Opinnäytetyö koostuu animaatioprojektin tuotantoputken ja tiedostonhallintamallin perinpohjaisesta läpikäymisestä sekä sen asian tutkimisesta...

  7. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  8. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  9. How 3-D Movies Work

    Institute of Scientific and Technical Information of China (English)

    吕铁雄

    2011-01-01

    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  10. Gap States at Low-Angle Grain Boundaries in Monolayer Tungsten Diselenide

    KAUST Repository

    Huang, Yu Li

    2016-05-03

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have revealed many novel properties of interest to future device applications. In particular, the presence of grain boundaries (GBs) can significantly influence the material properties of 2D TMDs. However, direct characterization of the electronic properties of the GB defects at the atomic scale remains extremely challenging. In this study, we employ scanning tunneling microscopy and spectroscopy to investigate the atomic and electronic structure of low-angle GBs of monolayer tungsten diselenide (WSe2) with misorientation angles of 3-6°. Butterfly features are observed along the GBs, with the periodicity depending on the misorientation angle. Density functional theory calculations show that these butterfly features correspond to gap states that arise in tetragonal dislocation cores and extend to distorted six-membered rings around the dislocation core. Understanding the nature of GB defects and their influence on transport and other device properties highlights the importance of defect engineering in future 2D device fabrication. © 2016 American Chemical Society.

  11. Positional Awareness Map 3D (PAM3D)

    Science.gov (United States)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  12. Animation of 3D Model of Human Head

    Directory of Open Access Journals (Sweden)

    V. Michalcin

    2007-04-01

    Full Text Available The paper deals with the new algorithm of animation of 3D model of the human head in combination with its global motion. The designed algorithm is very fast and with low calculation requirements, because it does not need the synthesis of the input videosequence for estimation of the animation parameters as well as the parameters of global motion. The used 3D model Candide generates different expressions using its animation units which are controlled by the animation parameters. These ones are estimated on the basis of optical flow without the need of extracting of the feature points in the frames of the input videosequence because they are given by the selected vertices of the animation units of the calibrated 3D model Candide. The established multiple iterations inside the designed animation algorithm of 3D model of the human head between two successive frames significantly improved its accuracy above all for the large motion.

  13. A QUALITY ASSESSMENT METHOD FOR 3D ROAD POLYGON OBJECTS

    Directory of Open Access Journals (Sweden)

    L. Gao

    2015-08-01

    Full Text Available With the development of the economy, the fast and accurate extraction of the city road is significant for GIS data collection and update, remote sensing images interpretation, mapping and spatial database updating etc. 3D GIS has attracted more and more attentions from academics, industries and governments with the increase of requirements for interoperability and integration of different sources of data. The quality of 3D geographic objects is very important for spatial analysis and decision-making. This paper presents a method for the quality assessment of the 3D road polygon objects which is created by integrating 2D Road Polygon data with LiDAR point cloud and other height information such as Spot Height data in Hong Kong Island. The quality of the created 3D road polygon data set is evaluated by the vertical accuracy, geometric and attribute accuracy, connectivity error, undulation error and completeness error and the final results are presented.

  14. 3D Printable Graphene Composite

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  15. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  16. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  17. LOTT RANCH 3D PROJECT

    International Nuclear Information System (INIS)

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  18. The upcoming 3D-printing revolution in microfluidics.

    Science.gov (United States)

    Bhattacharjee, Nirveek; Urrios, Arturo; Kang, Shawn; Folch, Albert

    2016-05-21

    In the last two decades, the vast majority of microfluidic systems have been built in poly(dimethylsiloxane) (PDMS) by soft lithography, a technique based on PDMS micromolding. A long list of key PDMS properties have contributed to the success of soft lithography: PDMS is biocompatible, elastomeric, transparent, gas-permeable, water-impermeable, fairly inexpensive, copyright-free, and rapidly prototyped with high precision using simple procedures. However, the fabrication process typically involves substantial human labor, which tends to make PDMS devices difficult to disseminate outside of research labs, and the layered molding limits the 3D complexity of the devices that can be produced. 3D-printing has recently attracted attention as a way to fabricate microfluidic systems due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. Resins with properties approaching those of PDMS are being developed. Here we review past and recent efforts in 3D-printing of microfluidic systems. We compare the salient features of PDMS molding with those of 3D-printing and we give an overview of the critical barriers that have prevented the adoption of 3D-printing by microfluidic developers, namely resolution, throughput, and resin biocompatibility. We also evaluate the various forces that are persuading researchers to abandon PDMS molding in favor of 3D-printing in growing numbers. PMID:27101171

  19. The upcoming 3D-printing revolution in microfluidics.

    Science.gov (United States)

    Bhattacharjee, Nirveek; Urrios, Arturo; Kang, Shawn; Folch, Albert

    2016-05-21

    In the last two decades, the vast majority of microfluidic systems have been built in poly(dimethylsiloxane) (PDMS) by soft lithography, a technique based on PDMS micromolding. A long list of key PDMS properties have contributed to the success of soft lithography: PDMS is biocompatible, elastomeric, transparent, gas-permeable, water-impermeable, fairly inexpensive, copyright-free, and rapidly prototyped with high precision using simple procedures. However, the fabrication process typically involves substantial human labor, which tends to make PDMS devices difficult to disseminate outside of research labs, and the layered molding limits the 3D complexity of the devices that can be produced. 3D-printing has recently attracted attention as a way to fabricate microfluidic systems due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. Resins with properties approaching those of PDMS are being developed. Here we review past and recent efforts in 3D-printing of microfluidic systems. We compare the salient features of PDMS molding with those of 3D-printing and we give an overview of the critical barriers that have prevented the adoption of 3D-printing by microfluidic developers, namely resolution, throughput, and resin biocompatibility. We also evaluate the various forces that are persuading researchers to abandon PDMS molding in favor of 3D-printing in growing numbers.

  20. 3D Printing of Graphene Aerogels.

    Science.gov (United States)

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (aerogel presents superelastic and high electrical conduction. PMID:26861680

  1. 3D biometrics systems and applications

    CERN Document Server

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  2. 3D -Ray Diffraction Microscopy

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis; Schmidt, Søren; Juul Jensen, Dorte;

    2014-01-01

    Three-dimensional X-ray diffraction (3DXRD) microscopy is a fast and non-destructive structural characterization technique aimed at the study of individual crystalline elements (grains or subgrains) within mm-sized polycrystalline specimens. It is based on two principles: the use of highly...

  3. 3D Seismic Reflection Experiment over the Galicia Deep Basin

    Science.gov (United States)

    Sawyer, D. S.; Jordan, B.; Reston, T. J.; Minshull, T. A.; Klaeschen, D.; Ranero, C.; Shillington, D. J.; Morgan, J. K.

    2014-12-01

    In June thru September, 2013, a 3D reflection and a long offset seismic experiment were conducted at the Galicia rifted margin by investigators from the US, UK, Germany, and Spain. The 3D multichannel experiment covered 64 km by 20 km (1280 km2), using the RV Marcus Langseth. Four streamers 6 km long were deployed at 12.5 m hydrophone channel spacing. The streamers were 200 m apart. Two airgun arrays, each 3300 cu in, were fired alternately every 37.5 m, to collectively yield a 400 m wide sail line consisting of 8 CMP lines at 50 m spacing. The long offset seismic experiment included 72 short period OBS's deployed below the 3D reflection survey box. Most of the instruments recorded all the shots from the airgun array shots. The 3D seismic box covered a variety of geologic features. The Peridotite Ridge (PR), is associated with the exhumation of upper mantle rocks to the seafloor during the final stage of the continental separation between the Galicia Bank and the Grand Banks of Newfoundland. The S reflector is present below most of the continental blocks under the deep Galicia basin. S is interpreted to be a low-angle detachment fault formed late in the rifting process, and a number of rotated fault block basins and ranges containing pre and syn-rift sediments. Initial observations from stacked 3D seismic data, and samples of 2D pre-stack time migrated (PSTM) 3D seismic data show that the PR is elevated above the present seafloor in the South and not exposed through the seafloor in the North. The relative smoothness of the PR surface for the entire 20 km N-S contrasts with the more complex, shorter wavelength, faulting of the continental crustal blocks to the east. The PR does not seem to show offsets or any apparent internal structure. The PSTM dip lines show substantial improvement for the structures in the deep sedimentary basin East of the PR. These seem to extend the S reflector somewhat farther to the West. The migrated data show a substantial network of

  4. Towards real-time 3D ultrasound planning and personalized 3D printing for breast HDR brachytherapy treatment

    International Nuclear Information System (INIS)

    Two different end-to-end procedures were tested for real-time planning in breast HDR brachytherapy treatment. Both methods are using a 3D ultrasound (3DUS) system and a freehand catheter optimization algorithm. They were found fast and efficient. We demonstrated a proof-of-concept approach for personalized real-time guidance and planning to breast HDR brachytherapy treatments

  5. 3D Printing of Graphene Aerogels.

    Science.gov (United States)

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  6. Photopolymers in 3D printing applications

    OpenAIRE

    Pandey, Ramji

    2014-01-01

    3D printing is an emerging technology with applications in several areas. The flexibility of the 3D printing system to use variety of materials and create any object makes it an attractive technology. Photopolymers are one of the materials used in 3D printing with potential to make products with better properties. Due to numerous applications of photopolymers and 3D printing technologies, this thesis is written to provide information about the various 3D printing technologies with particul...

  7. Natural fibre composites for 3D Printing

    OpenAIRE

    Pandey, Kapil

    2015-01-01

    3D printing has been common option for prototyping. Not all the materials are suitable for 3D printing. Various studies have been done and still many are ongoing regarding the suitability of the materials for 3D printing. This thesis work discloses the possibility of 3D printing of certain polymer composite materials. The main objective of this thesis work was to study the possibility for 3D printing the polymer composite material composed of natural fibre composite and various different ...

  8. E1 transitions among the levels of the 3d5, 3d44s and 3d44p configurations in Fe IV

    International Nuclear Information System (INIS)

    Two recently published sets of data for oscillator strengths of transitions between fine-structure levels belonging to the 3d5, 3d44s and 3d44p configurations in Fe IV (Nahar and Pradhan 2005 Astron. Astrophys. 437 345; Nahar 2006 Astron. Astrophys. 448 779) show some considerable disagreements for a number of transitions. The former calculation was undertaken using the R-matrix code, in LS coupling followed by a frame transformation to obtain data for individual lines; the latter calculation used the SUPERSTRUCTURE code which provides data for individual lines directly. We discuss these differences in the light of extensive calculations of our own, using the CIV3 code. It becomes apparent that the problem lies in the 2006 calculation, and we offer some quantitative explanation of how this discrepancy has occurred. In some cases at least, it can be attributed to mis-identification of energy level labels. (fast track communication)

  9. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi;

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...... with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described...

  10. 3D Energy Harvester Evaluation

    Directory of Open Access Journals (Sweden)

    V. Janicek

    2013-04-01

    Full Text Available This paper discusses the characterization and evaluation of an MEMS based electrostatic generator, a part of the power supply unit of the self-powered microsystem[1,2,3]. The designed generator is based on electrostatic converter and uses the principle of conversion of non-electric energy into electrical energy by periodical modification of gap between electrodes of a capacitor [4]. The structure is designed and modeled as three-dimensional silicon based MEMS. Innovative approach involving the achievement of very low resonant frequency of the structure (about 100Hz by usage of modified long cantilever spring design, minimum area of the chip, 3D work mode, the ability to be tuned to reach desired parameters, proves promising directions of possible further development.

  11. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  12. Study of human blood and hemocomponents irradiated by low angle x ray scattering (LAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Nivia G. Villela; Barroso, Regina C. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica. Dept. de Fisica Aplicada e Termodinamica], e-mail: nitatag@gmail.com; Mota, Carla L.S.; Almeida, Andre P.; Azeredo, Soraia R.; Braz, Delson [Coordenacao dos Programas de Pos-graduacao em Engenharia (COPPE/UFRJ), RJ (Brazil). Lab. de Instrumentacao Nuclear], e-mail: delson@lin.ufrj.br

    2009-07-01

    Irradiation of blood and blood components is currently practiced in developed and in a few developing countries. The main purpose of this process is the prevention of graft versus host disease in immunodeficient patients. The Food and Drug Administration recommends a dose range of 15 Gy to 25 Gy for these blood components. When x-ray photons are scattered from biological samples, their angular distribution shows one or more peaks in the forward direction of scattering. These peaks are characteristic for the investigated samples. Due to its wide range of biological and medical applications, low-angle x-ray scattering has attracted the attention of many authors. Thus in this present work was studied the possible variations in scattering profiles due to the irradiation when the gender of patients was considered. Fresh blood specimens were obtained from volunteers using vacutainer tubes containing EDTA, at the Dr. Eliel Figueiredo Laboratory, Rio de Janeiro. All the samples were lyophilized for 48 hours in a freeze drier in order to remove the water. The scattering measurements were carried out in e-2e reflection geometry using a powder diffractometer Shimadzu XRD- 6000. The measured characterization parameters for LAXS were associated with epidemiological data (gender). The mean values of the different parameters were compared using the Students's t-test for each characterization parameters. The scattering profiles from plasma and formed elements are characterized by the presence of two peaks in the forward direction of scattering. For epidemiological data (gender) analyzed was not found significant changes in the mostly of characterization parameters (p>0.05). (author)

  13. ORMGEN3D, 3-D Crack Geometry FEM Mesh Generator

    International Nuclear Information System (INIS)

    1 - Description of program or function: ORMGEN3D is a finite element mesh generator for computational fracture mechanics analysis. The program automatically generates a three-dimensional finite element model for six different crack geometries. These geometries include flat plates with straight or curved surface cracks and cylinders with part-through cracks on the outer or inner surface. Mathematical or user-defined crack shapes may be considered. The curved cracks may be semicircular, semi-elliptical, or user-defined. A cladding option is available that allows for either an embedded or penetrating crack in the clad material. 2 - Method of solution: In general, one eighth or one-quarter of the structure is modelled depending on the configuration or option selected. The program generates a core of special wedge or collapsed prism elements at the crack front to introduce the appropriate stress singularity at the crack tip. The remainder of the structure is modelled with conventional 20-node iso-parametric brick elements. Element group I of the finite element model consists of an inner core of special crack tip elements surrounding the crack front enclosed by a single layer of conventional brick elements. Eight element divisions are used in a plane orthogonal to the crack front, while the number of element divisions along the arc length of the crack front is user-specified. The remaining conventional brick elements of the model constitute element group II. 3 - Restrictions on the complexity of the problem: Maxima of 5,500 nodes, 4 layers of clad elements

  14. Kuvaus 3D-tulostamisesta hammastekniikassa

    OpenAIRE

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko

    2013-01-01

    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  15. NIF Ignition Target 3D Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  16. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  17. Eesti 3D jaoks kitsas / Virge Haavasalu

    Index Scriptorium Estoniae

    Haavasalu, Virge

    2009-01-01

    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  18. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  19. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  20. Face Detection with a 3D Model

    OpenAIRE

    Barbu, Adrian; Lay, Nathan; Gramajo, Gary

    2014-01-01

    This paper presents a part-based face detection approach where the spatial relationship between the face parts is represented by a hidden 3D model with six parameters. The computational complexity of the search in the six dimensional pose space is addressed by proposing meaningful 3D pose candidates by image-based regression from detected face keypoint locations. The 3D pose candidates are evaluated using a parameter sensitive classifier based on difference features relative to the 3D pose. A...

  1. 3D Additive Manufacturing Symposium & Workshop

    OpenAIRE

    Unver, Ertu; Taylor, Andrew

    2015-01-01

    The IMI /3M BIC 3D Additive Manufacturing Symposium and Workshop was hosted by 3M Buckley Innovation Centre on March 17th 2015. The event was attended by the major players in precision engineering, 3D additive design and manufacturing: Representatives from EOS, Renishaw, HK 3D Printing IMI Plc Senior Management team, design engineers, programmers and academics from the University of Huddersfield School of Art Design & Architecture, 3M Buckley centre 3D printing management and designers shared...

  2. Forward ramp in 3D

    Science.gov (United States)

    1997-01-01

    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  3. Fast 3-D Tomographic Microwave Imaging for Breast Cancer Detection

    OpenAIRE

    Grzegorczyk, Tomasz M.; Meaney, Paul M.; Kaufman, Peter A.; DiFlorio-Alexander, Roberta M.; Paulsen, Keith D.

    2012-01-01

    Microwave breast imaging (using electromagnetic waves of frequencies around 1 GHz) has mostly remained at the research level for the past decade, gaining little clinical acceptance. The major hurdles limiting patient use are both at the hardware level (challenges in collecting accurate and noncorrupted data) and software level (often plagued by unrealistic reconstruction times in the tens of hours). In this paper we report improvements that address both issues. First, the hardware is able to ...

  4. 3D modelling for multipurpose cadastre

    NARCIS (Netherlands)

    Abduhl Rahman, A.; Van Oosterom, P.J.M.; Hua, T.C.; Sharkawi, K.H.; Duncan, E.E.; Azri, N.; Hassan, M.I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D

  5. Beowulf 3D: a case study

    Science.gov (United States)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  6. 3D Printing and Its Urologic Applications.

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  7. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  8. A 3D surface imaging system for assessing human obesity

    Science.gov (United States)

    Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.

    2009-08-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  9. Semantic 3D object maps for everyday robot manipulation

    CERN Document Server

    Rusu, Radu Bogdan

    2013-01-01

    The book written by Dr. Radu B. Rusu presents a detailed description of 3D Semantic Mapping in the context of mobile robot manipulation. As autonomous robotic platforms get more sophisticated manipulation capabilities, they also need more expressive and comprehensive environment models that include the objects present in the world, together with their position, form, and other semantic aspects, as well as interpretations of these objects with respect to the robot tasks.   The book proposes novel 3D feature representations called Point Feature Histograms (PFH), as well as frameworks for the acquisition and processing of Semantic 3D Object Maps with contributions to robust registration, fast segmentation into regions, and reliable object detection, categorization, and reconstruction. These contributions have been fully implemented and empirically evaluated on different robotic systems, and have been the original kernel to the widely successful open-source project the Point Cloud Library (PCL) -- see http://poi...

  10. Investigating Mobile Stereoscopic 3D Touchscreen Interaction

    OpenAIRE

    Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret

    2013-01-01

    3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...

  11. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard

    2004-01-01

    . In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality......3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest...

  12. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  13. Esiselvitys elintarvikkeiden 3D-tulostamisesta

    OpenAIRE

    Teva, Arno

    2015-01-01

    Opinnäytetyön tavoitteena oli laatia esiselvitys 3D-tulostamisesta elintarvikealalla. 3D-tulostaminen on uusi ja jatkuvasti kehittyvä ala, joka tulee vaikuttamaan myös elintarvikealan kehittymiseen. Työn tarkoituksena oli selvittää elintarvikenäkökulmasta 3D-tulostamiseen liittyviä tekijöitä. Aiheen toimeksiantajana oli Hämeen ammattikorkeakoulu ja kohderyhmänä elintarvikealan Pk-yritykset. Opinnäytetyössä esitellään yleisimpiä 3D-tulostusmenetelmiä ja selvitetään 3D-tulostamista tietokone...

  14. PRIPRAVA MODELOV ZA 3D - TISK

    OpenAIRE

    Črešnik, Igor

    2015-01-01

    V diplomskem delu predstavljamo pripravo modela na 3D-tisk. V prvem delu smo preleteli zgodovino tiska. Predstavili smo tehnologijo 3D-tiska ter različne tehnike tiskanja, ki jih uporabljajo določeni tiskalniki. V nadaljevanju smo pregledali različne tipe 3D-tiskalnikov, ki se uporabljajo za domačo ali komercialno uporabo ter izpostavili njihove prednosti in slabosti. V zadnjem delu diplomskega dela smo na praktičnem primeru 3D-modela hiše prikazali proces priprave modela za 3D-tisk. Pri delu...

  15. 3D-tulostimien tutkiminen painotalolle

    OpenAIRE

    Toivonen, Aleksi

    2014-01-01

    Opinnäytetyön tavoitteena oli perehtyä 3D-tulostamiseen ja tutkia painotaloon sopivia 3D-tulostimia ja 3D-tulostamiseen liittyviä tekniikoita. Opinnäytetyön tavoitteena oli myös pohtia painotalolle mahdollisia 3D-tulostamiseen liittyviä tuotekonsepteja yrityksille ja yksityisille kuluttajille. Painoalan yrityksen tarkoituksena on sijoittaa lähitulevaisuudessa 3D-tulostimeen, joten opinnäytetyö oli ajankohtainen tutkimustyö yritykselle. Opinnäytetyön toimeksiantajana toimi painoalan yritys. ...

  16. BUILDING A HOMEMADE 3D PRINTER

    OpenAIRE

    Tunc, Baran

    2015-01-01

    3D printing has been attracted much attention around the world due to its high potential of new application fields. In this respect, developing and inventing new filament materials for 3D printers or new techniques of 3D printing are the main interest of the many materials scientists. This paper reports a comprehensive overview of 3D printing followed by a summary of my ongoing study of building a composite homemade 3D printer. At this stage of this study, a CNC router was successfully conver...

  17. 3D Printing our future: Now

    OpenAIRE

    Taylor, Andrew; Unver, Ertu

    2015-01-01

    This 3D Printing our Future:Now talk and visual presentation was given to delegates at the IMI 3D Workshop held at 3M Buckley Innovation Centre on 17th March 2015. The event was hosted by 3Mbuckley Innovation Centre for IMI plc a global engineering company, 3M, and leading 3D additive manufacturing technology providers: EOS, Renishaw and HK 3D printing to disseminate and share their experience on the latest 3D additive design and manufacturing technologies available to the engineering an...

  18. 3D toroidal physics: testing the boundaries of symmetry breaking

    Science.gov (United States)

    Spong, Don

    2014-10-01

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE

  19. High-resolution cartilage imaging of the knee at 3 T: Basic evaluation of modern isotropic 3D MR-sequences

    International Nuclear Information System (INIS)

    Purpose: To evaluate qualitative and quantitative image quality parameters of isotropic three-dimensional (3D) cartilage-imaging magnetic resonance (MR)-sequences at 3 T. Materials and methods: The knees of 10 healthy volunteers (mean age, 24.4 ± 5.6 years) were scanned at a 3 T MR scanner with water-excited 3D Fast-Low Angle Shot (FLASH), True Fast Imaging with Steady-state Precession (TrueFISP), Sampling Perfection with Application-optimized Contrast using different flip-angle Evolutions (SPACE) as well as conventional and two individually weighted Double-Echo Steady-State (DESS) sequences. The MR images were evaluated qualitatively and quantitatively (signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), SNR efficiency, CNR efficiency). Quantitative parameters were compared by means of a Tukey-test and sequences were ranked according to SNR/CNR, SNR/CNR efficiency and qualitative image grading. Results: The highest SNR was measured for SPACE (34.0 ± 5.6), the highest CNR/CNR efficiency (cartilage/fluid) for the individually weighted DESS (46.9 ± 18.0/2.18 ± 0.84). SPACE, individually weighted and conventional DESS were ranked best with respect to SNR/CNR and SNR/CNR efficiency. The DESS sequences also performed best in the qualitative evaluation. TrueFISP performed worse, FLASH worst. The individually weighted DESS sequences were generally better than the conventional DESS with the significant increase of cartilage-fluid contrast (46.9 ± 18.0/31.9 ± 11.4 versus 22.0 ± 7.3) as main advantage. Conclusion: Individually weighted DESS is the most promising candidate; all tested sequences performed better than FLASH.

  20. Web-based interactive visualization of 3D video mosaics using X3D standard

    Institute of Scientific and Technical Information of China (English)

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke

    2006-01-01

    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  1. 3D multimodality roadmapping in neuroangiography

    Science.gov (United States)

    Ruijters, Daniel; Babic, Drazenko; Homan, Robert; Mielekamp, Peter; ter Haar Romeny, Bart M.; Suetens, Paul

    2007-03-01

    In this paper we describe a novel approach to using morphological datasets (such as CT or MR) in the minimally invasive image guidance of intra-arterial and intra-venous endovascular devices in neuroangiography interventions. Minimally invasive X-ray angiography procedures rely on the navigation of endovascular devices, such as guide wires and catheters, through human vessels, using C-arm fluoroscopy. While the bone structure may be visible, and the injection of iodine contrast medium allows to guide endovascular devices through the vasculature, the soft-tissue structures remain invisible in the fluoroscopic images. We intend to present a method for the combined visualization of morphological data, a 3D rotational angiography (3DRA) reconstruction and the live fluoroscopy data stream in a single image. The combination of the fluoroscopic image with the 3DRA vessel tree offers the advantage that endovascular devices can be located with respect to the vasculature, without additional contrast injection, while the position of the C-arm geometry can be altered freely. The additional visualization of the morphological data, adds contextual information to the position of endovascular devices. This article addresses the clinical applications, the real-time aspects of the registration algorithms and fast fused visualization of the proposed method.

  2. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  3. RELAP5-3D User Problems

    Energy Technology Data Exchange (ETDEWEB)

    Riemke, Richard Allan

    2002-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  4. 3D laptop for defense applications

    Science.gov (United States)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  5. 3D Chaotic Functions for Image Encryption

    Directory of Open Access Journals (Sweden)

    Pawan N. Khade

    2012-05-01

    Full Text Available This paper proposes the chaotic encryption algorithm based on 3D logistic map, 3D Chebyshev map, and 3D, 2D Arnolds cat map for color image encryption. Here the 2D Arnolds cat map is used for image pixel scrambling and 3D Arnolds cat map is used for R, G, and B component substitution. 3D Chebyshev map is used for key generation and 3D logistic map is used for image scrambling. The use of 3D chaotic functions in the encryption algorithm provide more security by using the, shuffling and substitution to the encrypted image. The Chebyshev map is used for public key encryption and distribution of generated private keys.

  6. Interplay between intrinsic point defects and low-angle grain boundary in bcc tungsten: effects of local stress field

    Science.gov (United States)

    Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Jin, Shuo; Zhou, Hong-Bo; Gao, Fei; Lu, Guang-Hong

    2015-06-01

    We have used molecular statics in conjunction with an embedded atom method to explore the interplay between native point defects (vacancies and self-interstitials (SIAs)) and a low-angle grain boundary (GB) in bcc tungsten. The low-angle GB has biased absorption of SIAs over vacancies. We emphasize the significance of phenomena such as vacancy delocalization and SIA instant absorption around the GB dislocation cores in stabilizing the defect structures. Interstitial loading into the GB can dramatically enhance the interaction strength between the point defects and the GB due to SIA clustering (SIA cloud formation) or SIA vacancy recombination. We propose that the ‘maximum atom displacement’ can complement the ‘vacancy formation energy’ in evaluating unstable vacancy sites. Calculations of point defect migration barriers in the vicinity of GB dislocation cores show that vacancies and SIAs preferentially migrate along the pathways in the planes immediately above and below the core, respectively.

  7. Interplay between intrinsic point defects and low-angle grain boundary in bcc tungsten: effects of local stress field

    International Nuclear Information System (INIS)

    We have used molecular statics in conjunction with an embedded atom method to explore the interplay between native point defects (vacancies and self-interstitials (SIAs)) and a low-angle grain boundary (GB) in bcc tungsten. The low-angle GB has biased absorption of SIAs over vacancies. We emphasize the significance of phenomena such as vacancy delocalization and SIA instant absorption around the GB dislocation cores in stabilizing the defect structures. Interstitial loading into the GB can dramatically enhance the interaction strength between the point defects and the GB due to SIA clustering (SIA cloud formation) or SIA vacancy recombination. We propose that the ‘maximum atom displacement’ can complement the ‘vacancy formation energy’ in evaluating unstable vacancy sites. Calculations of point defect migration barriers in the vicinity of GB dislocation cores show that vacancies and SIAs preferentially migrate along the pathways in the planes immediately above and below the core, respectively. (paper)

  8. Dislocation structures and electrical conduction properties of low angle tilt grain boundaries in LiNbO3

    Science.gov (United States)

    Furushima, Yuho; Nakamura, Atsutomo; Tochigi, Eita; Ikuhara, Yuichi; Toyoura, Kazuaki; Matsunaga, Katsuyuki

    2016-10-01

    Dislocations in crystalline materials constitute unique, atomic-scale, one-dimensional structure and have a potential to induce peculiar physical properties that are not found in the bulk. In this study, we fabricated LiNbO3 bicrystals with low angle tilt grain boundaries and investigated the relationship between the atomic structure of the boundary dislocations and their electrical conduction properties. Observations by using transmission electron microscopy revealed that dislocation structures at the (0001) low angle tilt grain boundaries depend on the tilt angle of the boundaries. Specifically, the characteristic dislocation structures with a large Burgers vector were formed in the boundary with the tilt angle of 2°. It is noteworthy that only the grain boundary of 2° exhibits distinct electrical conductivity after reduction treatment, although LiNbO3 is originally insulating. This unique electrical conductivity is suggested to be due to the characteristic dislocation structures with a large Burgers vector.

  9. Novel 3D Compression Methods for Geometry, Connectivity and Texture

    Science.gov (United States)

    Siddeq, M. M.; Rodrigues, M. A.

    2016-06-01

    A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.

  10. Practical pseudo-3D registration for large tomographic images

    Science.gov (United States)

    Liu, Xuan; Laperre, Kjell; Sasov, Alexander

    2014-09-01

    Image registration is a powerful tool in various tomographic applications. Our main focus is on microCT applications in which samples/animals can be scanned multiple times under different conditions or at different time points. For this purpose, a registration tool capable of handling fairly large volumes has been developed, using a novel pseudo-3D method to achieve fast and interactive registration with simultaneous 3D visualization. To reduce computation complexity in 3D registration, we decompose it into several 2D registrations, which are applied to the orthogonal views (transaxial, sagittal and coronal) sequentially and iteratively. After registration in each view, the next view is retrieved with the new transformation matrix for registration. This reduces the computation complexity significantly. For rigid transform, we only need to search for 3 parameters (2 shifts, 1 rotation) in each of the 3 orthogonal views instead of 6 (3 shifts, 3 rotations) for full 3D volume. In addition, the amount of voxels involved is also significantly reduced. For the proposed pseudo-3D method, image-based registration is employed, with Sum of Square Difference (SSD) as the similarity measure. The searching engine is Powell's conjugate direction method. In this paper, only rigid transform is used. However, it can be extended to affine transform by adding scaling and possibly shearing to the transform model. We have noticed that more information can be used in the 2D registration if Maximum Intensity Projections (MIP) or Parallel Projections (PP) is used instead of the orthogonal views. Also, other similarity measures, such as covariance or mutual information, can be easily incorporated. The initial evaluation on microCT data shows very promising results. Two application examples are shown: dental samples before and after treatment and structural changes in materials before and after compression. Evaluation on registration accuracy between pseudo-3D method and true 3D method has

  11. 3-D Technology Approaches for Biological Ecologies

    Science.gov (United States)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  12. FROM 3D MODEL DATA TO SEMANTICS

    Directory of Open Access Journals (Sweden)

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  13. Automatic 3D video format detection

    Science.gov (United States)

    Zhang, Tao; Wang, Zhe; Zhai, Jiefu; Doyen, Didier

    2011-03-01

    Many 3D formats exist and will probably co-exist for a long time even if 3D standards are today under definition. The support for multiple 3D formats will be important for bringing 3D into home. In this paper, we propose a novel and effective method to detect whether a video is a 3D video or not, and to further identify the exact 3D format. First, we present how to detect those 3D formats that encode a pair of stereo images into a single image. The proposed method detects features and establishes correspondences between features in the left and right view images, and applies the statistics from the distribution of the positional differences between corresponding features to detect the existence of a 3D format and to identify the format. Second, we present how to detect the frame sequential 3D format. In the frame sequential 3D format, the feature points are oscillating from frame to frame. Similarly, the proposed method tracks feature points over consecutive frames, computes the positional differences between features, and makes a detection decision based on whether the features are oscillating. Experiments show the effectiveness of our method.

  14. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    OpenAIRE

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human...

  15. Fat-suppressed three-dimensional fast spoiled gradient-echo MR imaging of articular cartilage degeneration%关节软骨退变磁共振3D-FS-FSPGR 序列成像与病理对照研究

    Institute of Scientific and Technical Information of China (English)

    王成虎; 亓建洪; 王大伟; 张传臣; 贾爱华

    2015-01-01

    目的:评价三维脂肪抑制快速扰相梯度回波(3D-FS-FSPGR)序列对膝关节软骨退变的诊断价值。方法对30例因骨关节炎行全膝关节置换患者的32侧膝关节术前行3D-FS-FSPGR 序列 MRI 成像,按照 Recht 标准对 MRI 图像上的软骨病变程度进行分级。手术医师术中根据 MRI 图像上提示的软骨病变区位置,钻取软骨和软骨下骨组织,获取0~Ⅲ度病变软骨标本各15个,标本切片行 HE 染色,按照 Collins 分级标准进行病理分级,并与 MRI 分级对照分析;甲苯胺蓝和Ⅱ型胶原免疫组化染色,分别观察软骨内蛋白多糖(PG)和Ⅱ型胶原纤维,分析两者的变化,及其与 MRI 图像软骨信号变化的关系。结果病理检查结果:0级16个,Ⅰ级13个,Ⅱ级15个,Ⅲ级16个。以病理分级为标准,3D FS-FSPGR 序列诊断的灵敏度为93.2%,特异度为75%,准确率为88.3%,kappa 值为0.71。关节软骨病理显示:MRI 分级越高软骨之间病理变化越明显;随病变加重,软骨基质破坏愈加严重,PG 随着软骨病变加重,染色深度呈递减关系;Ⅱ型胶原随着软骨病变加重,染色先加深后变浅。结论3D-FS-FSPGR 序列 MRI 能够准确的显示关节软骨病变,反映了软骨病理和生化的变化,具备发现关节软骨早期病变的能力。%Objective To evaluate the diagnostic value of fat-suppressed three-dimensional fast spoiled gradient-echo (3D-FS-FSPGR)MR imaging on articular cartilage degeneration of the knee,using pathology as the reference stand-ard.Methods Thirty patients (32 knees)with knee severe chronic osteoarthritis scheduled for total knee arthro-plasty were imaged on a 1.5-T superconducting magnet with 3D-FS-FSPGR sequence.Then MRI of cartilage lesions was staged by the scheme proposed by Rent.Sixty specimens of articular cartilage,which best demonstrated one car-tilage lesion were obtained corresponding precisely

  16. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it

  17. Low Complexity Connectivity Driven Dynamic Geometry Compression for 3D Tele-Immersion

    NARCIS (Netherlands)

    Mekuria, R.N.; Bulterman, D.C.A.; Cesar Garcia, P.S.

    2014-01-01

    Geometry based 3D Tele-Immersion is a novel emerging media application that involves on the fly reconstructed 3D mesh geometry. To enable real-time communication of such live reconstructed mesh geometry over a bandwidth limited link, fast dynamic geometry compression is needed. However, most tools a

  18. 3D-tulostus : case Printrbot

    OpenAIRE

    Arvekari, Lassi

    2013-01-01

    Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...

  19. Indoor objects and outdoor urban scenes recognition by 3D visual primitives

    DEFF Research Database (Denmark)

    Fu, Junsheng; Kämäräinen, Joni-Kristian; Buch, Anders Glent;

    2014-01-01

    Object detection, recognition and pose estimation in 3D images have gained momentum due to availability of 3D sensors (RGB-D) and increase of large scale 3D data, such as city maps. The most popular approach is to extract and match 3D shape descriptors that encode local scene structure, but omits......, we propose an alternative appearance-driven approach which rst extracts 2D primitives justi ed by Marr's primal sketch, which are \\accumulated" over multiple views and the most stable ones are \\promoted" to 3D visual primitives. The 3D promoted primitives represent both structure and appearance....... For recognition, we propose a fast and eective correspondence matching using random sampling. For quantitative evaluation we construct a semi-synthetic benchmark dataset using a public 3D model dataset of 119 kitchen objects and another benchmark of challenging street-view images from 4 dierent cities...

  20. Single-shot 3D motion picture camera with a dense point cloud

    CERN Document Server

    Willomitzer, Florian

    2016-01-01

    We introduce a method and a 3D-camera for single-shot 3D shape measurement, with unprecedented features: The 3D-camera does not rely on pattern codification and acquires object surfaces at the theoretical limit of the information efficiency: Up to 30% of the available camera pixels display independent (not interpolated) 3D points. The 3D-camera is based on triangulation with two properly positioned cameras and a projected multi-line pattern, in combination with algorithms that solve the ambiguity problem. The projected static line pattern enables 3D-acquisition of fast processes and the take of 3D-motion-pictures. The depth resolution is at its physical limit, defined by electronic noise and speckle noise. The requisite low cost technology is simple.

  1. Spatial data modelling for 3D GIS

    CERN Document Server

    Abdul-Rahman, Alias

    2007-01-01

    This book covers fundamental aspects of spatial data modelling specifically on the aspect of three-dimensional (3D) modelling and structuring. Realisation of ""true"" 3D GIS spatial system needs a lot of effort, and the process is taking place in various research centres and universities in some countries. The development of spatial data modelling for 3D objects is the focus of this book.

  2. Compression of 3D models with NURBS

    OpenAIRE

    Santa Cruz Ducci, Diego; Ebrahimi, Touradj

    2005-01-01

    With recent progress in computing, algorithmics and telecommunications, 3D models are increasingly used in various multimedia applications. Examples include visualization, gaming, entertainment and virtual reality. In the multimedia domain 3D models have been traditionally represented as polygonal meshes. This piecewise planar representation can be thought of as the analogy of bitmap images for 3D surfaces. As bitmap images, they enjoy great flexibility and are particularly well suited to des...

  3. Extraordinary 3D Surface Materials: A practice based exhibition of 3D learning artefacts and prototypes.

    OpenAIRE

    Taylor, Andrew; Harris, Joanne; Unver, Ertu; Lewis, Linda

    2011-01-01

    A collection of 3D prototyped research learning artefacts were exhibited at Surface Design Show 2011. The artefacts on display provided tacit evidence of the 3D concept modelling and reflective learning experiences of a final year BA (Hons) Surface Design for Fashion & Interiors student group using 3D polygon modelling software and additive prototyping technologies (3D Printing) for the first time. The student authored project blog http://extraordinary-3d-materials.blogspot.co.uk/ documen...

  4. 3D modelling for multipurpose cadastre

    OpenAIRE

    Abduhl Rahman, A.; P. J. M. Van Oosterom; T. C. Hua; Sharkawi, K.H.; E. E. Duncan; Azri, N.; Hassan, M. I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D cadastre since more and more related agencies attempt to develop or embed 3D components into the MPC. We also intend to describe the initiative by Malaysian national mapping and cadastral agency (...

  5. Getting started in 3D with Maya

    CERN Document Server

    Watkins, Adam

    2012-01-01

    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  6. Can 3D Printing change your business?

    OpenAIRE

    Unver, Ertu

    2013-01-01

    This presentation is given to businesses / companies with an interest in 3D Printing and Additive Manufacturing in West Yorkshire, UK Organised by the Calderdale and Kirklees Manufacturing Alliance. http://www.ckma.co.uk/ by Dr Ertu Unver Senior Lecturer / Product Design / MA 3D Digital Design / University of Huddersfield Location : 3M BIC, Date : 11th April, Time : 5.30 – 8pm Additive manufacturing or 3D printing is a process of making a three-dimensional (3D) objects from...

  7. A 3d game in python

    OpenAIRE

    Xu, Minghui

    2014-01-01

    3D game has widely been accepted and loved by many game players. More and more different kinds of 3D games were developed to feed people’s needs. The most common programming language for development of 3D game is C++ nowadays. Python is a high-level scripting language. It is simple and clear. The concise syntax could speed up the development cycle. This project was to develop a 3D game using only Python. The game is about how a cat lives in the street. In order to live, the player need...

  8. Virtual Realization using 3D Password

    Directory of Open Access Journals (Sweden)

    A.B.Gadicha

    2012-03-01

    Full Text Available Current authentication systems suffer from many weaknesses. Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed; however, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. In this paper, we present and evaluate our contribution, i.e., the 3D password. The 3D password is a multifactor authentication scheme. To be authenticated, we present a 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space.

  9. Calibration for 3D Structured Light Measurement

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.

  10. Dimensional accuracy of 3D printed vertebra

    Science.gov (United States)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  11. 3D Printing Making the Digital Real .

    OpenAIRE

    Miss Prachi More

    2013-01-01

    3D printing is quickly expanding field, with the popularity and uses for 3D printers growing every day. 3D printing can be used to prototype, create replacement parts, and is even versatile enough to print prostheses and medical implants. It will have a growing impact on our world, as more and more people gain access to these amazing machines.[1] In this article, we would like to attempt to give an introduction of the technology. 3Dimensions printing is a method of converting a virtual 3D mod...

  12. 3D-tulostuksen viipalointiohjelmien vertailu

    OpenAIRE

    Virolainen, Ville

    2015-01-01

    Opinnäytetyön tavoitteena on selventää 3D-tulostamisen prosessia yksityisen käyttäjän näkökulmasta sekä luoda testitulostuksia, joiden perusteella pystytään vertailemaan prosessissa käytettävien viipalointiohjelmien toimintaa keskenään. Työssä perehdytään aluksi 3D-tulostuksen teoriataustaan, jonka jälkeen suoritetaan 3D-tulostimella testitulostukset käyttäen kolmea eri viipalointiohjelmaa. 3D-tulostamisella tarkoitetaan prosessia, jonka tarkoituksena on luoda kolmiulotteinen objekti käyt...

  13. Illustrating Mathematics using 3D Printers

    OpenAIRE

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  14. BIM tietomalli ja 3D-tulostus

    OpenAIRE

    Myllykoski, Joonas; Palonen, Teemu

    2015-01-01

    Tämän opinnäytetyön tavoitteena oli selvittää miten Tekla Structures ohjelmalla luotu 3D-malli saadaan tulostettua koulun 3D-tulostimella sekä tutkittiin voidaanko Tekla Structuresin ominaisuuksia hyödyntää 3D-tulostamisessa ja miten tulostus onnistuu autocadilla. Selvitimme myös mahdollisia 3D-tulostusteknologian sovelluksia tulevaisuuden rakennustuotannossa ja sen näkymiä rakennusteollisuudessa sekä erilaisia tulostus menetelmiä joita voitaisiin mahdollisesti hyödyntää rakennusteollisuudess...

  15. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    Science.gov (United States)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  16. An aerial 3D printing test mission

    Science.gov (United States)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  17. Immersive 3D Geovisualization in Higher Education

    Science.gov (United States)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  18. Perception of detail in 3D images

    NARCIS (Netherlands)

    Heyndrickx, I.; Kaptein, R.

    2009-01-01

    A lot of current 3D displays suffer from the fact that their spatial resolution is lower compared to their 2D counterparts. One reason for this is that the multiple views needed to generate 3D are often spatially multiplexed. Besides this, imperfect separation of the left- and right-eye view leads t

  19. Parametrizable cameras for 3D computational steering

    NARCIS (Netherlands)

    Mulder, J.D.; Wijk, J.J. van

    1997-01-01

    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  20. 3D Cadastre modelling in Russia

    NARCIS (Netherlands)

    Vandysheva, N.; Tikhonov, V.; Van Oosterom, P.J.M.; Stoter, J.E.; Ploeger, H.D.; Wouters, R.; Penkov, V.

    2011-01-01

    The paper presents the on-going project on 3D cadastre modelling in Russia. The aim of this project is to provide guidance in the development of a prototype and to create favourable legal and institutional conditions for the introduction of 3D cadastre modelling in Russia based on experience of the

  1. Recognition of 3D facial expression dynamics

    NARCIS (Netherlands)

    Sandbach, G.; Zafeiriou, S.; Pantic, Maja; Rueckert, D.

    2012-01-01

    In this paper we propose a method that exploits 3D motion-based features between frames of 3D facial geometry sequences for dynamic facial expression recognition. An expressive sequence is modelled to contain an onset followed by an apex and an offset. Feature selection methods are applied in order

  2. 3-D structures of planetary nebulae

    CERN Document Server

    Steffen, Wolfgang

    2016-01-01

    Recent advances in the 3-D reconstruction of planetary nebulae are reviewed. We include not only results for 3-D reconstructions, but also the current techniques in terms of general methods and software. In order to obtain more accurate reconstructions, we suggest to extend the widely used assumption of homologous nebula expansion to map spectroscopically measured velocity to position along the line of sight.

  3. 3D, or Not to Be?

    Science.gov (United States)

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  4. 3D Printed Block Copolymer Nanostructures

    Science.gov (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  5. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  6. 3D Printing. What's the Harm?

    Science.gov (United States)

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  7. Multiway calibration in 3D QSAR

    NARCIS (Netherlands)

    Nilsson, J; de Jong, Sietse; Smilde, A

    1997-01-01

    We have introduced multilinear PLS in 3D QSAR and applied it to GRID descriptors from a set of benzamides with affinity to the dopamine D-3 receptor subtype, synthesized as potential drugs against schizophrenia. The key issue in 3D QSAR modelling is to obtain a predictive model that is easy to inter

  8. Limited Feedback for 3D Massive MIMO under 3D-UMa and 3D-UMi Scenarios

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available For three-dimensional (3D massive MIMO utilizing the uniform rectangular array (URA in the base station (BS, we propose a limited feedback transmission scheme in which the channel state information (CSI feedback operations for horizontal domain and vertical domain are separate. Compared to the traditional feedback scheme, the scheme can reduce the feedback overhead, code word index search complexity, and storage requirement. Also, based on the zenith of departure angle (ZoD distribution in 3D-Urban Macro Cell (3D-UMa and 3D-Urban Micro Cell (3D-UMi scenarios, we propose the angle quantization codebook for vertical domain, while the codebook of long term evolution-advanced (LTE-Advanced is still adopted in horizontal domain to preserve compatibility with the LTE-Advanced. Based on the angle quantization codebook, the subsampled 3-bit DFT codebook is designed for vertical domain. The system-level simulation results reveal that, to compromise the feedback overhead and system performance, 2-bit codebook for 3D-UMa scenario and 3-bit codebook for 3D-UMi scenario can meet requirements in vertical domain. The feedback period for vertical domain can also be extended appropriately to reduce the feedback overhead.

  9. Density-Based 3D Shape Descriptors

    Directory of Open Access Journals (Sweden)

    Schmitt Francis

    2007-01-01

    Full Text Available We propose a novel probabilistic framework for the extraction of density-based 3D shape descriptors using kernel density estimation. Our descriptors are derived from the probability density functions (pdf of local surface features characterizing the 3D object geometry. Assuming that the shape of the 3D object is represented as a mesh consisting of triangles with arbitrary size and shape, we provide efficient means to approximate the moments of geometric features on a triangle basis. Our framework produces a number of 3D shape descriptors that prove to be quite discriminative in retrieval applications. We test our descriptors and compare them with several other histogram-based methods on two 3D model databases, Princeton Shape Benchmark and Sculpteur, which are fundamentally different in semantic content and mesh quality. Experimental results show that our methodology not only improves the performance of existing descriptors, but also provides a rigorous framework to advance and to test new ones.

  10. Maintaining and troubleshooting your 3D printer

    CERN Document Server

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  11. 3D-grafiikka ja pelimoottorit

    OpenAIRE

    Sillanpää, Otto

    2014-01-01

    Tässä opinnäytetyössä tutkitaan miten 3D-mallit saadaan sellaiseen muotoon, että ne olisivat käytettävissä eri pelimoottoreissa. Tutkimuksen tarkoituksena on selvittää, miten luodaan 3D-malleja pelimoottoreihin, sekä miten 3D-mallinnusohjelmat ja pelimoottorit eroavat toisistaan, kun käsitellään 3D-malleja. Tässä työssä pelimoottoreina toimivat Valven Source sekä Epic Gamesin Unreal Engine 3. 3D-mallinnusohjelmista käytössä olivat Autodeskin 3ds Max 2014 ja Blender Foundationin Blender 2.7...

  12. 6D Interpretation of 3D Gravity

    CERN Document Server

    Herfray, Yannick; Scarinci, Carlos

    2016-01-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern-Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any SU(2) invariant closed 3-form in the total space of the principal SU(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  13. In-Situ Low-Angle Cross Sectioning: Bevel Slope Flattening due to Self-Alignment Effects

    OpenAIRE

    Scheithauer, Uwe

    2015-01-01

    Low-angle cross sections are produced inside an Auger microprobe using the equipped depth profile ion sputter gun. Simply the sample is partly covered by a mask. Utilizing the edge of this mask the sample is sputtered with ions. Due to the shading of the mask a cross section is produced in the sample. The slope of this cross section is considerably shallower than given by the geometrical setup. This is attributed to self-alignment effects, which are due to missing sputter cascades in the tran...

  14. Diverse Pseudotachylites Associated with the Whipple Detachment Fault: Implications for Seismogenesis on Low-Angle Normal Faults

    Science.gov (United States)

    Gentry, E.; Behr, W. M.; Wafforn, S.

    2014-12-01

    The Whipple detachment fault in E. California is a classic example of a large-displacement (~40 km), low-angle normal fault formed during Miocene Basin and Range extension. The footwall of this fault exhibits a range of mid-crustal rocks deformed near the brittle-ductile transition, including mylonites, cataclasites, and pseudotachylites, which provide insight into mid-crustal rheology from steady-state to seismic strain rates. Here we focus on a diverse array of pseudotachylites discovered in the Whipple footwall that have not been previously described. We examine the structural contexts, morphologies, and compositions of the pseudotachylites and discuss their implications for seismogenesis on continental low-angle normal faults. Veins that we interpret to be pseudotachylites occur as planar, anastomosing, and reservoir-like injections found along the margins of dikes, along mini-detachments kinematically linked to the Whipple fault, and within a few tens of centimeters below the silicified, erosionally resistant "microbreccia ledge" of the main detachment. The orientations of the vein generation surfaces are dominantly shallowly E-dipping, subparallel to the detachment fault itself; some occur on higher angle normal faults that sole into low angle shear zones. Veins were not found cutting the microbreccia ledge itself, suggesting that comminution and silicification post-dates pseudotachylite formation. In thin section, the veins exhibit a range in composition and degree of preservation. Some contain lath-shaped spherulites, others contain opaque, microcrystalline matrices with relict flow banding and embayed, primarily quartz clasts. Some pseudotachylite veins grade into cataclasites at their margins, suggesting cataclasis was precursory to vein formation, whereas others cut pristine mylonites with no evidence of earlier brittle deformation. Those that cut pristine mylonites contain clasts with dynamically recrystallized quartz grains with diameters of 5-7

  15. The psychology of the 3D experience

    Science.gov (United States)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  16. 3D Visualization Development of SIUE Campus

    Science.gov (United States)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  17. Research and development of fringe projection-based methods in 3D shape reconstruction

    Institute of Scientific and Technical Information of China (English)

    WU Lu-shen; PENG Qing-jin

    2006-01-01

    This paper discusses current research and development of fringe projection-based techniques. A system based on Fourier transform profilometry (FTP) is proposed for three-dimensional (3D) shape recovery. The system improves the method of phase unwrapping to gain accurate 3D shapes of objects. The method uses a region-growing algorithm for the path prediction guided by the quality map to increase the recovering accuracy and provides a fast and simple tool for 3D shape recovery. The shape measurement and data recovery are integrated to offer a new method of 3D modelling. Examples are presented to verify the feasibility of the proposed method.

  18. DATA PROCESSING TECHNOLOGY OF AIRBORNE 3D IMAGE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Airborne 3D image which integrates GPS,attitude measurement unit (AMU),sca nning laser rangefinder (SLR) and spectral scanner has been developed successful ly.The spectral scanner and SLR use the same optical system which ensures laser point to match pixel seamlessly.The distinctive advantage of 3D image is that it can produce geo_referenced images and DSM (digital surface models) images wi thout any ground control points (GCPs).It is no longer necessary to sur vey GCPs and with some softwares the data can be processed and produce digital s urface models (DSM) and geo_referenced images in quasi_real_time,therefore,the efficiency of 3 D image is 10~100 times higher than that of traditional approaches.The process ing procedure involves decomposing and checking the raw data,processing GPS dat a,calculating the positions of laser sample points,producing geo_referenced im age,producing DSM and mosaicing strips.  The principle of 3D image is first introduced in this paper,and then we focus on the fast processing technique and algorithm.The flight tests and processed r esults show that the processing technique is feasible and can meet the requireme nt of quasi_real_time applications.

  19. Semi- and virtual 3D dosimetry in clinical practice

    DEFF Research Database (Denmark)

    Korreman, S. S.

    2013-01-01

    In this review, 3D dosimetry is divided in three categories; "true" 3D, semi-3D and virtual 3D. Virtual 3D involves the use of measurement arrays either before or after beam entry in the patient/phantom, whereas semi-3D involves use of measurement arrays in phantoms mimicking the patient. True 3D...

  20. 3D facial expression modeling for recognition

    Science.gov (United States)

    Lu, Xiaoguang; Jain, Anil K.; Dass, Sarat C.

    2005-03-01

    Current two-dimensional image based face recognition systems encounter difficulties with large variations in facial appearance due to the pose, illumination and expression changes. Utilizing 3D information of human faces is promising for handling the pose and lighting variations. While the 3D shape of a face does not change due to head pose (rigid) and lighting changes, it is not invariant to the non-rigid facial movement and evolution, such as expressions and aging effect. We propose a facial surface matching framework to match multiview facial scans to a 3D face model, where the (non-rigid) expression deformation is explicitly modeled for each subject, resulting in a person-specific deformation model. The thin plate spline (TPS) is applied to model the deformation based on the facial landmarks. The deformation is applied to the 3D neutral expression face model to synthesize the corresponding expression. Both the neutral and the synthesized 3D surface models are used to match a test scan. The surface registration and matching between a test scan and a 3D model are achieved by a modified Iterative Closest Point (ICP) algorithm. Preliminary experimental results demonstrate that the proposed expression modeling and recognition-by-synthesis schemes improve the 3D matching accuracy.

  1. Medical 3D Printing for the Radiologist.

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.

  2. Digital relief generation from 3D models

    Science.gov (United States)

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian

    2016-09-01

    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  3. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    DEFF Research Database (Denmark)

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah;

    2014-01-01

    objects. In this research, the authors propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA......) or Hilbert mappings, in this research, they extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested for single object, nearest neighbor and range search queries using a CityGML dataset of 1,000 building blocks and the results...... are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a sub-interval of the ([0,1]) interval to the corresponding...

  4. 3D Reconstruction Technique for Tomographic PIV

    Institute of Scientific and Technical Information of China (English)

    姜楠; 包全; 杨绍琼

    2015-01-01

    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  5. Extra Dimensions: 3D in PDF Documentation

    International Nuclear Information System (INIS)

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.

  6. Creep and locking of a low-angle normal fault: Insights from the Altotiberina fault in the Northern Apennines (Italy)

    Science.gov (United States)

    Anderlini, L.; Serpelloni, E.; Belardinelli, M. E.

    2016-05-01

    While low-angle normal faults have been recognized worldwide from geological studies, whether these structures are active or capable of generating big earthquakes is still debated. We provide new constraints on the role and modes of the Altotiberina fault (ATF) in accommodating extension in the Northern Apennines. We model GPS velocities to study block kinematics, faults slip rates and interseismic coupling of the ATF, which is active and accounts, with its antithetic fault, for a large part of the observed chain normal 3 mm/yr tectonic extension. A wide portion of the ATF creeps at the long-term slip rate (1.7 ± 0.3 mm/yr), but the shallow locked portions are compatible with M > 6.5 earthquakes. We suggest that positive stress accumulation due to ATF creep is most likely released by more favorable oriented splay faults, whose rupture may propagate downdip along low-angle normal fault surface and reduce the probability of occurrence of a seismic rupture of the shallower locked portion.

  7. An Improved Version of TOPAZ 3D

    CERN Document Server

    Krasnykh, Anatoly K

    2003-01-01

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results.

  8. A high capacity 3D steganography algorithm.

    Science.gov (United States)

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  9. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  10. Matching Feature Points in 3D World

    OpenAIRE

    Avdiu, Blerta

    2012-01-01

    This thesis work deals with the most actual topic in Computer Vision field which is scene understanding and this using matching of 3D feature point images. The objective is to make use of Saab’s latest breakthrough in extraction of 3D feature points, to identify the best alignment of at least two 3D feature point images. The thesis gives a theoretical overview of the latest algorithms used for feature detection, description and matching. The work continues with a brief description of the simu...

  11. Computer Modelling of 3D Geological Surface

    CERN Document Server

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  12. General Concept of 3D SLAM

    OpenAIRE

    Zhang, Peter; Millos, Evangelous; Gu, Jason

    2009-01-01

    This chapter established an approach to solve the full 3D SLAM problem, applied to an underwater environment. First, a general approach to the 3D SLAM problem was presented, which included the models in 3D case, data association and estimation algorithm. For an underwater mobile robot, a new measurement system was designed for large area's globally-consistent SLAM: buoys for long-range estimation, and camera for short-range estimation and map building. Globally-consistent results could be obt...

  13. The reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Bilodid, Yuri; Fridman, Emil; Baier, Silvio; Grahn, Alexander; Gommlich, Andre; Nikitin, Evgeny; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2016-05-15

    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  14. 3D background aerodynamics using CFD

    DEFF Research Database (Denmark)

    Sørensen, Niels N.

    2002-01-01

    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...... most sections shows clear evidence of 3D radial pumping, with increased lift compared to 2D values. In contrast to earlier investigated airfoils a very limited impact on the drag values are observed....

  15. 3D tulostus - digitaalisesta mallista esineeksi

    OpenAIRE

    Muurinen, Kimmo

    2013-01-01

    Tässä opinnäytetyössä esitellään 3D tulostuksen tekniikka ja materiaaleja, suunnitellaan ja tuotetaan esimerkkikappaleen digitaalinen malli, sekä tulostetaan muovinen esine digi-taalisen mallin pohjalta. Työn tavoitteena on perehdyttää lukija prosessiin, jossa itse tuotettu digitaalinen malli tulostetaan käyttäen harrastajakäyttöön tarkoitettua edullista 3D tulostinta. Esimerkkikappaleen eri osien mallinnusprosessi näytetään kokonaisuudessaan ja kerro-taan perusteita 3D mallinnuksesta...

  16. Automatic balancing of 3D models

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...

  17. An Improved Version of TOPAZ 3D

    International Nuclear Information System (INIS)

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results

  18. FIT3D: Fitting optical spectra

    Science.gov (United States)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosales-Ortega, F. F.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

    2016-09-01

    FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.

  19. FUN3D Manual: 12.5

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  20. FUN3D Manual: 13.0

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  1. FUN3D Manual: 12.9

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  2. FUN3D Manual: 12.4

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  3. 3D grafika a hry

    OpenAIRE

    Vataščinová, Lenka

    2016-01-01

    In my bachelor thesis, I am going to introduce the topic of 3D graphics in the game environment. Firstly, I will provide a brief introduction of history of 3D graphics in general, but with the emphasis on history of game industry in particular. Next, I will present 3D graphics of RPG games in particular, and I will analyse the graphical side of digital work production. The main contribution of this thesis is provided in the practical part, which deals with creation of an environment for an an...

  4. 3-D Human Modeling and Animation

    CERN Document Server

    Ratner, Peter

    2012-01-01

    3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea

  5. 3D face modeling, analysis and recognition

    CERN Document Server

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  6. The reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  7. 3D-hahmojen toteutus mobiilipeliin

    OpenAIRE

    Kemppainen, Matti

    2012-01-01

    Mobiilipelien suosio on kasvanut räjähdysmäisesti viime vuosina älypuhelinten kehittymisen myötä. Tässä opinnäytetyössä selvitetään kolmiulotteisen pelihahmon toteutusprosessi mobiilipeliin. Lisäksi pohditaan maksullisten ja ilmaisten ohjelmien eroja toteutuksessa. Pelihahmojen toteutus perustuu mobiilipeliprojektiin peliyrityksessä, jossa työskentelin graafikkona. Ohjelmien vertailussa on mukana 3D Studio Max, Blender 3D, Photoshop ja GIMP. Käytännön osuudessa käydään läpi 3D-pelihahmon...

  8. 3D Printing of Octacalcium Phosphate Bone Substitutes.

    Science.gov (United States)

    Komlev, Vladimir S; Popov, Vladimir K; Mironov, Anton V; Fedotov, Alexander Yu; Teterina, Anastasia Yu; Smirnov, Igor V; Bozo, Ilya Y; Rybko, Vera A; Deev, Roman V

    2015-01-01

    Biocompatible calcium phosphate ceramic grafts are able of supporting new bone formation in appropriate environment. The major limitation of these materials usage for medical implants is the absence of accessible methods for their patient-specific fabrication. 3D printing methodology is an excellent approach to overcome the limitation supporting effective and fast fabrication of individual complex bone substitutes. Here, we proposed a relatively simple route for 3D printing of octacalcium phosphates (OCP) in complexly shaped structures by the combination of inkjet printing with post-treatment methodology. The printed OCP blocks were further implanted in the developed cranial bone defect followed by histological evaluation. The obtained result confirmed the potential of the developed OCP bone substitutes, which allowed 2.5-time reducing of defect's diameter at 6.5 months in a region where native bone repair is extremely inefficient.

  9. Rapidly 3D Texture Reconstruction Based on Oblique Photography

    Directory of Open Access Journals (Sweden)

    ZHANG Chunsen

    2015-07-01

    Full Text Available This paper proposes a city texture fast reconstruction method based on aerial tilt image for reconstruction of three-dimensional city model. Based on the photogrammetry and computer vision theory and using the city building digital surface model obtained by prior treatment, through collinear equation calculation geometric projection of object and image space, to obtain the three-dimensional information and texture information of the structure and through certain the optimal algorithm selecting the optimal texture on the surface of the object, realize automatic extraction of the building side texture and occlusion handling of the dense building texture. The real image texture reconstruction results show that: the method to the 3D city model texture reconstruction has the characteristics of high degree of automation, vivid effect and low cost and provides a means of effective implementation for rapid and widespread real texture rapid reconstruction of city 3D model.

  10. 3D printing of octacalcium phosphate bone substitutes

    Directory of Open Access Journals (Sweden)

    Vladimir S. Komlev

    2015-06-01

    Full Text Available Biocompatible calcium phosphate ceramic grafts are able of supporting new bone formation in appropriate environment. The major limitation of these materials usage for medical implants is the absence of accessible methods for their patient-specific fabrication. 3D printing methodology is an excellent approach to overcome the limitation supporting effective and fast fabrication of individual complex bone substitutes. Here we proposed a relatively simple route for 3D printing of octacalcium phosphates in complexly shaped structures by the combination of inkjet printing with post-treatment methodology. The printed octacalcium phosphate blocks were further implanted in the developed cranial bone defect followed by histological evaluation. The obtained result confirmed the potential of the developed octacalcium phosphates bone substitutes, which allowed 2.5-time reducing of defect’s diameter at 6.5 months in a region where native bone repair is extremely inefficient.

  11. Ultrafast superpixel segmentation of large 3D medical datasets

    Science.gov (United States)

    Leblond, Antoine; Kauffmann, Claude

    2016-03-01

    Even with recent hardware improvements, superpixel segmentation of large 3D medical images at interactive speed (cohesive, the fast Thread Group Shared Memory can be used and reused through a Gauss-Seidel like acceleration. The work unit partitioning scheme will however vary on odd- and even-numbered iterations to reduce convergence barriers. Synchronization will be ensured by an 8-step 3D variant of the traditional Red Black Ordering scheme. An attack model and early termination will also be described and implemented as additional acceleration techniques. Using our hybrid framework and typical operating parameters, we were able to compute the superpixels of a high-resolution 512x512x512 aortic angioCT scan in 283 ms using a AMD R9 290X GPU. We achieved a 22.3X speed-up factor compared to the published reference GPU implementation.

  12. The 3D Object Mediator : Handling 3D Models on Internet

    NARCIS (Netherlands)

    Kok, A.J.F.; Lawick van Pabst, J. van; Afsarmanesh, H.

    1997-01-01

    The 3D Object MEdiator (3DOME 3) offers two services for handling 3D models: a modelshop and a renderfarm. These services can be consulted through the Internet. The modelshop meets the demands for brokerage of geometric descriptions of 3D models. People who create geometric models of objects can sup

  13. XML3D and Xflow: combining declarative 3D for the Web with generic data flows.

    Science.gov (United States)

    Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp

    2013-01-01

    Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing. PMID:24808080

  14. 3D presentatie van geluid in de cockpit [3D sound presentation in the cockpit

    NARCIS (Netherlands)

    Bronkhorst, A.W.

    2003-01-01

    A.W. Bronkhorst, 3D-presentatie van geluid in de cockpit 1 Using virtual acoustics, sound can be presented from virtual sources located in the 3D space around the listener. This 3D sound has interesting applications in the cockpit. Sounds can be used to convey directional information, and interferen

  15. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Science.gov (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  16. Analysis of information for cerebrovascular disorders obtained by 3D MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kohki [Tokyo Univ. (Japan). Inst. of Medical Science; Yoshioka, Naoki; Watanabe, Fumio; Shiono, Takahiro; Sugishita, Morihiro; Umino, Kazunori

    1995-12-01

    Recently, it becomes easy to analyze information obtained by 3D MR imaging due to remarkable progress of fast MR imaging technique and analysis tool. Six patients suffered from aphasia (4 cerebral infarctions and 2 bleedings) were performed 3D MR imaging (3D FLASH-TR/TE/flip angle; 20-50 msec/6-10 msec/20-30 degrees) and their volume information were analyzed by multiple projection reconstruction (MPR), surface rendering 3D reconstruction, and volume rendering 3D reconstruction using Volume Design PRO (Medical Design Co., Ltd.). Four of them were diagnosed as Broca`s aphasia clinically and their lesions could be detected around the cortices of the left inferior frontal gyrus. Another 2 patients were diagnosed as Wernicke`s aphasia and the lesions could be detected around the cortices of the left supramarginal gyrus. This technique for 3D volume analyses would provide quite exact locational information about cerebral cortical lesions. (author).

  17. Eyes on the Earth 3D

    Science.gov (United States)

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  18. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  19. 3D-FPA Hybridization Improvements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  20. Copper Electrodeposition for 3D Integration

    CERN Document Server

    Beica, Rozalia; Ritzdorf, Tom

    2008-01-01

    Two dimensional (2D) integration has been the traditional approach for IC integration. Due to increasing demands for providing electronic devices with superior performance and functionality in more efficient and compact packages, has driven the semiconductor industry to develop more advanced packaging technologies. Three-dimensional (3D) approaches address both miniaturization and integration required for advanced and portable electronic products. Vertical integration proved to be essential in achieving a greater integration flexibility of disparate technologies, reason for which a general trend of transition from 2D to 3D integration is currently being observed in the industry. 3D chip integration using through silicon via (TSV) copper is considered one of the most advanced technologies among all different types of 3D packaging technologies. Copper electrodeposition is one of technologies that enable the formation of TSV structures. Because of its well-known application for copper damascene, it was believed ...

  1. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars;

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  2. 3DSEM: A 3D microscopy dataset.

    Science.gov (United States)

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Holz, Jessica D; Owen, Heather A; Yu, Zeyun

    2016-03-01

    The Scanning Electron Microscope (SEM) as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. PMID:26779561

  3. 3DSEM: A 3D microscopy dataset

    Directory of Open Access Journals (Sweden)

    Ahmad P. Tafti

    2016-03-01

    Full Text Available The Scanning Electron Microscope (SEM as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples.

  4. 3D Visualization of Recent Sumatra Earthquake

    Science.gov (United States)

    Nayak, Atul; Kilb, Debi

    2005-04-01

    Scientists and visualization experts at the Scripps Institution of Oceanography have created an interactive three-dimensional visualization of the 28 March 2005 magnitude 8.7 earthquake in Sumatra. The visualization shows the earthquake's hypocenter and aftershocks recorded until 29 March 2005, and compares it with the location of the 26 December 2004 magnitude 9 event and the consequent seismicity in that region. The 3D visualization was created using the Fledermaus software developed by Interactive Visualization Systems (http://www.ivs.unb.ca/) and stored as a ``scene'' file. To view this visualization, viewers need to download and install the free viewer program iView3D (http://www.ivs3d.com/products/iview3d).

  5. 3D VISUALIZATION FOR VIRTUAL MUSEUM DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Skamantzari

    2016-06-01

    Full Text Available The interest in the development of virtual museums is nowadays rising rapidly. During the last decades there have been numerous efforts concerning the 3D digitization of cultural heritage and the development of virtual museums, digital libraries and serious games. The realistic result has always been the main concern and a real challenge when it comes to 3D modelling of monuments, artifacts and especially sculptures. This paper implements, investigates and evaluates the results of the photogrammetric methods and 3D surveys that were used for the development of a virtual museum. Moreover, the decisions, the actions, the methodology and the main elements that this kind of application should include and take into consideration are described and analysed. It is believed that the outcomes of this application will be useful to researchers who are planning to develop and further improve the attempts made on virtual museums and mass production of 3D models.

  6. Cubical Cohomology Ring of 3D Photographs

    CERN Document Server

    Gonzalez-Diaz, Rocio; Medrano, Belen; 10.1002/ima.20271

    2011-01-01

    Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex $Q$ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, $\\partial Q$ by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information.

  7. Networked 3D Virtual Museum System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Virtual heritage has become increasingly important in the conservation, preservation, and interpretation of our cultural and natural history. Moreover, rapid advances in digital technologies in recent years offer virtual heritage new direction. This paper introduces our approach toward a networked 3D virtual museum system, especially, how to model, manage, present virtual heritages and furthermore how to use computer network for the share of virtual heritage in the networked virtual environment. This paper first addresses a 3D acquisition and processing technique for virtual heritage modeling and shows some illustrative examples. Then, this paper describes a management of virtual heritage assets that are composed by various rich media. This paper introduces our schemes to present the virtual heritages, which include 3D virtual heritage browser system, CAVE system, and immersive VR theater. Finally, this paper presents the new direction of networked 3D virtual museum of which main idea is remote guide of the virtual heritage using the mixed reality technique.

  8. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  9. Tvorba 3D modelů

    OpenAIRE

    Musálek, Martin

    2014-01-01

    Práce řeší 3D rekonstrukci objektu pomocí metody nasvícení vzorem. Projektor nasvěcuje měřený objekt definovaným vzorem a dvojice kamer z něj snímá body. Podstavec s objektem se otáčí, a během více měření je objekt sejmut z více úhlů. Body jsou identifikovány z naměřených snímků, transformovány na 3D pomocí stereovidění, spojeny do 3D modelu a zobrazeny. Thesis solves 3D reconstruction of an object by method of lighting by pattern. A projector lights the measured object by defined pattern ...

  10. 3D Maps Representation Using GNG

    Directory of Open Access Journals (Sweden)

    Vicente Morell

    2014-01-01

    Full Text Available Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.

  11. Advanced 3D Object Identification System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...

  12. Measuring Visual Closeness of 3-D Models

    KAUST Repository

    Morales, Jose A.

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  13. Transportstromen verschuiven door toepassing 3-D

    NARCIS (Netherlands)

    Janssen, G.R.

    2014-01-01

    3-D printing is aan een gestage opmars bezig.ln een paar jaar tijd is er een miljardenmarkt ontstaan die exponentieel groeit. TNO deed onderzoek naar de impact van deze ontwikkelingen op supply chains.

  14. Pentingnya Pengetahuan Anatomi untuk 3D Artist

    Directory of Open Access Journals (Sweden)

    Anton Sugito Kurniawan

    2011-03-01

    Full Text Available No matter how far the current technological advances, anatomical knowledge will still be needed as a basis for making a good character design. Understanding anatomy will help us in the placement of the articulation of muscles and joints, thus more realistic modeling of 3d characters will be achieved in the form and movement. As a 3d character artist, anatomy should be able to inform in every aspect of our work. Each 3D/CG (Computer Graphics-artist needs to know how to use software applications, but what differentiates a 3d artist with a computer operator is an artistic vision and understanding of the basic shape of the human body. Artistic vision could not easily be taught, but a CG-artist may study it on their own from which so many reference sources may help understand and deepen their knowledge of anatomy.

  15. Embedding 3D into multipurpose cadastre

    OpenAIRE

    A. A. Rahman; T. C. Hua; P. J. M. Van Oosterom

    2011-01-01

    There is no doubt that the cadastral map provides a useful entrance to information in a land parcel based information system. However, such information system could be made more meaningful and useful if it can be extended for multiple usages with multi data layers, and in three-dimensions (3D). Currently, many national mapping and cadastral agencies (NMCAs) and users deal with complex situations, and we believe that 3D could enhance the understanding of the situations better. This paper descr...

  16. Luovasta konseptisuunnittelusta 3D-mainoselokuvaan

    OpenAIRE

    Salo, Suvi

    2015-01-01

    Insinöörityön tavoite oli luoda 3D-mainoselokuva myynnin tueksi ja nostaa esiin IT-alan yrityksen ja sen yksikön tuottamien palveluiden laajuutta ja yrityksen tapaa tuottaa tulostuspalvelua. Toteutettu mainoselokuva on tarkoitettu julkaistavaksi verkossa yrityksen omalla Youtube-kanavalla ja verkkosivuilla. 3D-mainoselokuvan suunnittelussa käytettiin luovan konseptisuunnittelun keinoja jalostaa tarina kohderyhmälähtöiseksi. Aluksi selvitettiin asiakasrajapinnan haastattelujen avulla kohde...

  17. 3D printing: technology and processing

    OpenAIRE

    Kurinov, Ilya

    2016-01-01

    The objective of the research was to improve the process of 3D printing on the laboratory machine. In the study processes of designing, printing and post-print-ing treatment were improved. The study was commissioned by Mikko Ruotsalainen, head of the laboratory. The data was collected during the test work. All the basic information about 3D printing was taken from the Internet or library. As the results of the project higher model accuracy, solutions for post-printing treatment, printin...

  18. The Idaho Virtualization Laboratory 3D Pipeline

    Directory of Open Access Journals (Sweden)

    Nicholas A. Holmer

    2014-05-01

    Full Text Available Three dimensional (3D virtualization and visualization is an important component of industry, art, museum curation and cultural heritage, yet the step by step process of 3D virtualization has been little discussed. Here we review the Idaho Virtualization Laboratory’s (IVL process of virtualizing a cultural heritage item (artifact from start to finish. Each step is thoroughly explained and illustrated including how the object and its metadata are digitally preserved and ultimately distributed to the world.

  19. 3D Printing for Tissue Engineering

    OpenAIRE

    Richards, Dylan Jack; Tan, Yu; Jia, Jia; Yao, Hai; Mei, Ying

    2013-01-01

    Tissue engineering aims to fabricate functional tissue for applications in regenerative medicine and drug testing. More recently, 3D printing has shown great promise in tissue fabrication with a structural control from micro- to macro-scale by using a layer-by-layer approach. Whether through scaffold-based or scaffold-free approaches, the standard for 3D printed tissue engineering constructs is to provide a biomimetic structural environment that facilitates tissue formation and promotes host ...

  20. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  1. LandSIM3D: modellazione in real time 3D di dati geografici

    OpenAIRE

    Lambo Srl Lambo Srl

    2009-01-01

    LandSIM3D: realtime 3D modelling of geographic dataLandSIM3D allows to model in 3D an existing landscape in a few hours only and geo-referenced offering great landscape analysis and understanding tools. 3D projects can then be inserted into the existing landscape with ease and precision. The project alternatives and impact can then be visualized and studied into their immediate environmental. The complex evolution of the landscape in the future can also be simulated and the landscape model ca...

  2. ASSESSING 3D PHOTOGRAMMETRY TECHNIQUES IN CRANIOMETRICS

    Directory of Open Access Journals (Sweden)

    M. C. Moshobane

    2016-06-01

    Full Text Available Morphometrics (the measurement of morphological features has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc® three-dimensional (3D modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis and Antarctic fur seal (Arctocephalus gazella skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model’s accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  3. Assessing 3d Photogrammetry Techniques in Craniometrics

    Science.gov (United States)

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  4. Modelling and inversion of 3D complex kinematic data; Modelisation et inversion de donnees cinematiques complexes en 3D

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, R.

    1997-10-27

    Reflection tomography can determine velocity models containing lateral velocity variations and reflectors of arbitrary shapes; in order to access the kinematic data, a 3D zero offset approach to the SMART (Sequential Migration Aided Reflection Tomography) method, an original method of migration velocity analysis, is adopted. The approach involves interpreting kinematic data in the post-stack depth migrated cube and then de-migrating the horizons by two-point ray-tracing. A fast and robust two-point ray-tracer is developed, which can recover multi-valued kinematic data from complex geological structures. An original formulation for 3D reflection tomography is proposed, which can reliably take into account multivalued travel times

  5. Aortic valve and ascending aortic root modeling from 3D and 3D+t CT

    Science.gov (United States)

    Grbic, Saša; Ionasec, Razvan I.; Zäuner, Dominik; Zheng, Yefeng; Georgescu, Bogdan; Comaniciu, Dorin

    2010-02-01

    Aortic valve disorders are the most frequent form of valvular heart disorders (VHD) affecting nearly 3% of the global population. A large fraction among them are aortic root diseases, such as aortic root aneurysm, often requiring surgical procedures (valve-sparing) as a treatment. Visual non-invasive assessment techniques could assist during pre-selection of adequate patients, planning procedures and afterward evaluation of the same. However state of the art approaches try to model a rather short part of the aortic root, insufficient to assist the physician during intervention planning. In this paper we propose a novel approach for morphological and functional quantification of both the aortic valve and the ascending aortic root. A novel physiological shape model is introduced, consisting of the aortic valve root, leaflets and the ascending aortic root. The model parameters are hierarchically estimated using robust and fast learning-based methods. Experiments performed on 63 CT sequences (630 Volumes) and 20 single phase CT volumes demonstrated an accuracy of 1.45mm and an performance of 30 seconds (3D+t) for this approach. To the best of our knowledge this is the first time a complete model of the aortic valve (including leaflets) and the ascending aortic root, estimated from CT, has been proposed.

  6. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    Science.gov (United States)

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  7. RAG-3D: a search tool for RNA 3D substructures.

    Science.gov (United States)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-10-30

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D-a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool-designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  8. 3D-mallien muokkaus 3D-tulostamista varten CAD-ohjelmilla

    OpenAIRE

    Lehtimäki, Jarmo

    2013-01-01

    Insinöörityössäni käsitellään 3D-mallien tulostamista ja erityisesti 3D-mallien mallintamista niin, että kappaleiden valmistaminen 3D-tulostimella onnistuisi mahdollisimman hyvin. Työ tehtiin Prohoc Oy:lle, joka sijaitsee Vaasassa. 3D-tulostuspalveluun tuli jatkuvasti 3D-malleja, joiden tulostuksessa oli ongelmia. Työssäni tutkin näiden ongelmien syntyä ja tein ohjeita eri 3D-mallinnusohjelmille, joiden tarkoituksena on auttaa tekemään helpommin tulostettavia 3D-malleja. Työhön kuului myös et...

  9. Investigation of the feasability for 3D synthetic aperture imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2003-01-01

    This paper investigates the feasibility of implementing real-time synthetic aperture 3D imaging on the experimental system developed at the Center for Fast Ultrasound Imaging using a 2D transducer array. The target array is a fully populated 32 × 32 3 MHz array with a half wavelength pitch....... The elements of the array are grouped in blocks of 16 × 8, which can simultaneously be accessed by the 128 channels of the scanner. Using 8-to-1 high-voltage analog multiplexors, any group of 16 × 8 elements can be accessed. Simulations are done using Field II using parameters from a 32 x 32 elements...

  10. Thin slice three dimentional (3D reconstruction versus CT 3D reconstruction of human breast cancer

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2013-01-01

    Full Text Available Background & objectives: With improvement in the early diagnosis of breast cancer, breast conserving therapy (BCT is being increasingly used. Precise preoperative evaluation of the incision margin is, therefore, very important. Utilizing three dimentional (3D images in a preoperative evaluation for breast conserving surgery has considerable significance, but the currently 3D CT scan reconstruction commonly used has problems in accurately displaying breast cancer. Thin slice 3D reconstruction is also widely used now to delineate organs and tissues of breast cancers. This study was aimed to compare 3D CT with thin slice 3D reconstruction in breast cancer patients to find a better technique for accurate evaluation of breast cancer. Methods: A total of 16-slice spiral CT scans and 3D reconstructions were performed on 15 breast cancer patients. All patients had been treated with modified radical mastectomy; 2D and 3D images of breast and tumours were obtained. The specimens were fixed and sliced at 2 mm thickness to obtain serial thin slice images, and reconstructed using 3D DOCTOR software to gain 3D images. Results: Compared with 2D CT images, thin slice images showed more clearly the morphological characteristics of tumour, breast tissues and the margins of different tissues in each slice. After 3D reconstruction, the tumour shapes obtained by the two reconstruction methods were basically the same, but the thin slice 3D reconstruction showed the tumour margins more clearly. Interpretation & conclusions: Compared with 3D CT reconstruction, thin slice 3D reconstruction of breast tumour gave clearer images, which could provide guidance for the observation and application of CT 3D reconstructed images and contribute to the accurate evaluation of tumours using CT imaging technology.

  11. 3D-PRINTING OF BUILD OBJECTS

    Directory of Open Access Journals (Sweden)

    SAVYTSKYI M. V.

    2016-03-01

    Full Text Available Raising of problem. Today, in all spheres of our life we can constate the permanent search for new, modern methods and technologies that meet the principles of sustainable development. New approaches need to be, on the one hand more effective in terms of conservation of exhaustible resources of our planet, have minimal impact on the environment and on the other hand to ensure a higher quality of the final product. Construction is not exception. One of the new promising technology is the technology of 3D -printing of individual structures and buildings in general. 3Dprinting - is the process of real object recreating on the model of 3D. Unlike conventional printer which prints information on a sheet of paper, 3D-printer allows you to display three-dimensional information, i.e. creates certain physical objects. Currently, 3D-printer finds its application in many areas of production: machine building elements, a variety of layouts, interior elements, various items. But due to the fact that this technology is fairly new, it requires the creation of detailed and accurate technologies, efficient equipment and materials, and development of common vocabulary and regulatory framework in this field. Research Aim. The analysis of existing methods of creating physical objects using 3D-printing and the improvement of technology and equipment for the printing of buildings and structures. Conclusion. 3D-printers building is a new generation of equipment for the construction of buildings, structures, and structural elements. A variety of building printing technics opens up wide range of opportunities in the construction industry. At this stage, printers design allows to create low-rise buildings of different configurations with different mortars. The scientific novelty of this work is to develop proposals to improve the thermal insulation properties of constructed 3D-printing objects and technological equipment. The list of key terms and notions of construction

  12. PLOT3D Export Tool for Tecplot

    Science.gov (United States)

    Alter, Stephen

    2010-01-01

    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  13. Characterization of thin-film multilayers using magnetization curves and modeling of low-angle X-ray diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M. [Emory & Henry College, VA (United States); Chaiken, A.; Michel, R.P. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    We have characterized thin-film multilayers grown by ion-beam sputtering using magnetization curves and modeling of low-angle x-ray diffraction data. In our films, we use ferromagnetic layer = Co, Fe, and NiFe and spacer layer = Si, Ge, FeSi{sub 2}, and CoSi{sub 2}. We have studied the effects of (1) deposition conditions; (2) thickness of layers; (3) different layer materials; and (4) annealing. We find higher magnetization in films grown at 1000V rather than 500V and in films with spacer layers of 50{angstrom} rather than 100{angstrom}. We find higher coercivity in films with cobalt grown on germanium rather than silicon, metal grown on gold underlayers rather than on glass substrates, and when using thinner spacer layers. Finally, modeling reveals that films grown with disilicide layers are more thermally stable than films grown with silicon spacer layers.

  14. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    International Nuclear Information System (INIS)

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies. (paper)

  15. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    Science.gov (United States)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  16. Ductile deformation, boudinage and low angle normal faults. An overview of the structural variability at present-day rifted margins

    Science.gov (United States)

    Clerc, Camille; Jolivet, Laurent; Ringenbach, Jean-Claude; Ballard, Jean-François

    2016-04-01

    High quality industrial seismic profiles acquired along most of the world's passive margins present stunningly increased resolution that leads to unravel an unexpected variety of structures. An important benefit of the increased resolution of recent seismic profiles is that they provide an unprecedented access to the processes occurring in the middle and lower continental crust. We present a series of so far unreleased profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear and low angle detachment faulting. The lower crust in passive margins appears much more intensely deformed than usually represented. At the foot of both magma-rich and magma-poor margins, we observe clear indications of ductile deformation of the deep continental crust along large-scale shallow dipping shear zones. These shear zones generally show a top-to-the-continent sense of shear consistent with the activity of overlying continentward dipping normal faults observed in the upper crust. This pattern is responsible for a migration of the deformation and associated sedimentation and/or volcanic activity toward the ocean. In some cases, low angle shear zones define an anastomosed pattern that delineates boudin-like structures. The interboudins areas seem to localize the maximum of deformation. The lower crust is intensely boudinaged and the geometry of those boudins seems to control the position and dip of upper crustal normal faults. We present some of the most striking examples (Uruguay, West Africa, Barents sea…) and discuss their implications for the time-temperature-subsidence history of the margins.

  17. A Role of Low-angle Thrust Fault for the Occurrence of rain-induced Rockslides in an Accretionary Complex

    Science.gov (United States)

    Arai, N.; Chigira, M.

    2015-12-01

    Recently, extreme weather related to global warming occurs frequently all over the world; there have been many record-setting rainfall events. Accordingly, potential of rain-induced rockslides increases. Examples of recent rain-induced rock avalanches with tens or more than a hundred of fatalities are a rockslide in Shiaolin village, Taiwan by 2009 Typhoon Morakot, and rockslides induced by 2011 typhoon Talas in Japan. However, the method to predict potential sites of rockslides is not established. Geological causes of rockslides are site specific and they must be clarified for each case. 2011 Typhoon Talas induced more than 50 rockslides in the outer belt of the Southwest Japan, where is underlain by Cretaceous - lower Miocene accretionary complexes. We performed thorough geological mapping in the Akatani area, where two huge rockslides occurred with volumes of 2 million and 8 million m3 respectively. As a result, we found that these two rockslides had their sliding surfaces along a low-angle-thrust with a dip of 29°~40° extending more than 5 km, which fault we name Kawarabi-thrust. This thrust has a fracture zone of 6.0 m in the maximum width, composed of clayey fault breccia with a few layers of black gouges. These fault materials are very weak and impermeable, so the fracture zone is expected to prevent the groundwater filtration and build up the pore pressure. This thrust had been exposed along the riversides at the foot of the two rockslides, which suggests that the slopes on the thrust had been destabilized by the undercutting of long-term river incision. The destabilization induced gravitational slope deformation with small scarps before the catastrophic failure. Our finding suggests that locating a large-scale low-angle-thrust is essentially important to predict potential sites of catastrophic rockslides as well as interpreting the internal structure of gravitationally deformed slopes.

  18. The importance of 3D dosimetry

    International Nuclear Information System (INIS)

    Radiation therapy has been getting progressively more complex for the past 20 years. Early radiation therapy techniques needed only basic dosimetry equipment; motorized water phantoms, ionization chambers, and basic radiographic film techniques. As intensity modulated radiation therapy and image guided therapy came into widespread practice, medical physicists were challenged with developing effective and efficient dose measurement techniques. The complex 3-dimensional (3D) nature of the dose distributions that were being delivered demanded the development of more quantitative and more thorough methods for dose measurement. The quality assurance vendors developed a wide array of multidetector arrays that have been enormously useful for measuring and characterizing dose distributions, and these have been made especially useful with the advent of 3D dose calculation systems based on the array measurements, as well as measurements made using film and portal imagers. Other vendors have been providing 3D calculations based on data from the linear accelerator or the record and verify system, providing thorough evaluation of the dose but lacking quality assurance (QA) of the dose delivery process, including machine calibration. The current state of 3D dosimetry is one of a state of flux. The vendors and professional associations are trying to determine the optimal balance between thorough QA, labor efficiency, and quantitation. This balance will take some time to reach, but a necessary component will be the 3D measurement and independent calculation of delivered radiation therapy dose distributions

  19. Magnetic Properties of 3D Printed Toroids

    Science.gov (United States)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  20. 3D analysis methods - Study and seminar

    International Nuclear Information System (INIS)

    The first part of the report results from a study that was performed as a Nordic co-operation activity with active participation from Studsvik Scandpower and Westinghouse Atom in Sweden, and VTT in Finland. The purpose of the study was to identify and investigate the effects rising from using the 3D transient com-puter codes in BWR safety analysis, and their influence on the transient analysis methodology. One of the main questions involves the critical power ratio (CPR) calculation methodology. The present way, where the CPR calculation is per-formed with a separate hot channel calculation, can be artificially conservative. In the investigated cases, no dramatic minimum CPR effect coming from the 3D calculation is apparent. Some cases show some decrease in the transient change of minimum CPR with the 3D calculation, which confirms the general thinking that the 1D calculation is conservative. On the other hand, the observed effect on neutron flux behaviour is quite large. In a slower transient the 3D effect might be stronger. The second part of the report is a summary of a related seminar that was held on the 3D analysis methods. The seminar was sponsored by the Reactor Safety part (NKS-R) of the Nordic Nuclear Safety Research Programme (NKS). (au)