WorldWideScience

Sample records for 3d dynamic cell

  1. Brownian nanoimaging of interface dynamics and ligand-receptor binding at cell surfaces in 3-D.

    Science.gov (United States)

    Kuznetsov, Igor R; Evans, Evan A

    2013-04-01

    We describe a method for nanoimaging interfacial dynamics and ligand-receptor binding at surfaces of live cells in 3-D. The imaging probe is a 1-μm diameter glass bead confined by a soft laser trap to create a "cloud" of fluctuating states. Using a facile on-line method of video image analysis, the probe displacements are reported at ~10 ms intervals with bare precisions (±SD) of 4-6 nm along the optical axis (elevation) and 2 nm in the transverse directions. We demonstrate how the Brownian distributions are analyzed to characterize the free energy potential of each small probe in 3-D taking into account the blur effect of its motions during CCD image capture. Then, using the approach to image interactions of a labeled probe with lamellae of leukocytic cells spreading on cover-glass substrates, we show that deformations of the soft distribution in probe elevations provide both a sensitive long-range sensor for defining the steric topography of a cell lamella and a fast telemetry for reporting rare events of probe binding with its surface receptors. Invoking established principles of Brownian physics and statistical thermodynamics, we describe an off-line method of super resolution that improves precision of probe separations from a non-reactive steric boundary to ~1 nm.

  2. Dynamic, large-scale profiling of transcription factor activity from live cells in 3D culture.

    Directory of Open Access Journals (Sweden)

    Michael S Weiss

    Full Text Available BACKGROUND: Extracellular activation of signal transduction pathways and their downstream target transcription factors (TFs are critical regulators of cellular processes and tissue development. The intracellular signaling network is complex, and techniques that quantify the activities of numerous pathways and connect their activities to the resulting phenotype would identify the signals and mechanisms regulating tissue development. The ability to investigate tissue development should capture the dynamic pathway activity and requires an environment that supports cellular organization into structures that mimic in vivo phenotypes. Taken together, our objective was to develop cellular arrays for dynamic, large-scale quantification of TF activity as cells organized into spherical structures within 3D culture. METHODOLOGY/PRINCIPAL FINDINGS: TF-specific and normalization reporter constructs were delivered in parallel to a cellular array containing a well-established breast cancer cell line cultured in Matrigel. Bioluminescence imaging provided a rapid, non-invasive, and sensitive method to quantify luciferase levels, and was applied repeatedly on each sample to monitor dynamic activity. Arrays measuring 28 TFs identified up to 19 active, with 13 factors changing significantly over time. Stimulation of cells with β-estradiol or activin A resulted in differential TF activity profiles evolving from initial stimulation of the ligand. Many TFs changed as expected based on previous reports, yet arrays were able to replicate these results in a single experiment. Additionally, arrays identified TFs that had not previously been linked with activin A. CONCLUSIONS/SIGNIFICANCE: This system provides a method for large-scale, non-invasive, and dynamic quantification of signaling pathway activity as cells organize into structures. The arrays may find utility for investigating mechanisms regulating normal and abnormal tissue growth, biomaterial design, or as a

  3. Quantifying transient 3D dynamical phenomena of single mRNA particles in live yeast cell measurements.

    Science.gov (United States)

    Calderon, Christopher P; Thompson, Michael A; Casolari, Jason M; Paffenroth, Randy C; Moerner, W E

    2013-12-12

    Single-particle tracking (SPT) has been extensively used to obtain information about diffusion and directed motion in a wide range of biological applications. Recently, new methods have appeared for obtaining precise (10s of nm) spatial information in three dimensions (3D) with high temporal resolution (measurements obtained every 4 ms), which promise to more accurately sense the true dynamical behavior in the natural 3D cellular environment. Despite the quantitative 3D tracking information, the range of mathematical methods for extracting information about the underlying system has been limited mostly to mean-squared displacement analysis and other techniques not accounting for complex 3D kinetic interactions. There is a great need for new analysis tools aiming to more fully extract the biological information content from in vivo SPT measurements. High-resolution SPT experimental data has enormous potential to objectively scrutinize various proposed mechanistic schemes arising from theoretical biophysics and cell biology. At the same time, methods for rigorously checking the statistical consistency of both model assumptions and estimated parameters against observed experimental data (i.e., goodness-of-fit tests) have not received great attention. We demonstrate methods enabling (1) estimation of the parameters of 3D stochastic differential equation (SDE) models of the underlying dynamics given only one trajectory; and (2) construction of hypothesis tests checking the consistency of the fitted model with the observed trajectory so that extracted parameters are not overinterpreted (the tools are applicable to linear or nonlinear SDEs calibrated from nonstationary time series data). The approach is demonstrated on high-resolution 3D trajectories of single ARG3 mRNA particles in yeast cells in order to show the power of the methods in detecting signatures of transient directed transport. The methods presented are generally relevant to a wide variety of 2D and 3D SPT

  4. Dynamic 3D cell rearrangements guided by a fibronectin matrix underlie somitogenesis.

    Directory of Open Access Journals (Sweden)

    Gabriel G Martins

    Full Text Available Somites are transient segments formed in a rostro-caudal progression during vertebrate development. In chick embryos, segmentation of a new pair of somites occurs every 90 minutes and involves a mesenchyme-to-epithelium transition of cells from the presomitic mesoderm. Little is known about the cellular rearrangements involved, and, although it is known that the fibronectin extracellular matrix is required, its actual role remains elusive. Using 3D and 4D imaging of somite formation we discovered that somitogenesis consists of a complex choreography of individual cell movements. Epithelialization starts medially with the formation of a transient epithelium of cuboidal cells, followed by cell elongation and reorganization into a pseudostratified epithelium of spindle-shaped epitheloid cells. Mesenchymal cells are then recruited to this medial epithelium through accretion, a phenomenon that spreads to all sides, except the lateral side of the forming somite, which epithelializes by cell elongation and intercalation. Surprisingly, an important contribution to the somite epithelium also comes from the continuous egression of mesenchymal cells from the core into the epithelium via its apical side. Inhibition of fibronectin matrix assembly first slows down the rate, and then halts somite formation, without affecting pseudopodial activity or cell body movements. Rather, cell elongation, centripetal alignment, N-cadherin polarization and egression are impaired, showing that the fibronectin matrix plays a role in polarizing and guiding the exploratory behavior of somitic cells. To our knowledge, this is the first 4D in vivo recording of a full mesenchyme-to-epithelium transition. This approach brought new insights into this event and highlighted the importance of the extracellular matrix as a guiding cue during morphogenesis.

  5. A Novel Flow-Perfusion Bioreactor Supports 3D Dynamic Cell Culture

    Directory of Open Access Journals (Sweden)

    Alexander M. Sailon

    2009-01-01

    Full Text Available Background. Bone engineering requires thicker three-dimensional constructs than the maximum thickness supported by standard cell-culture techniques (2 mm. A flow-perfusion bioreactor was developed to provide chemotransportation to thick (6 mm scaffolds. Methods. Polyurethane scaffolds, seeded with murine preosteoblasts, were loaded into a novel bioreactor. Control scaffolds remained in static culture. Samples were harvested at days 2, 4, 6, and 8 and analyzed for cellular distribution, viability, metabolic activity, and density at the periphery and core. Results. By day 8, static scaffolds had a periphery cell density of 67%±5.0%, while in the core it was 0.3%±0.3%. Flow-perfused scaffolds demonstrated peripheral cell density of 94%±8.3% and core density of 76%±3.1% at day 8. Conclusions. Flow perfusion provides chemotransportation to thick scaffolds. This system may permit high throughput study of 3D tissues in vitro and enable prefabrication of biological constructs large enough to solve clinical problems.

  6. 3D culture for cardiac cells.

    Science.gov (United States)

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  7. Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies

    Science.gov (United States)

    Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.

    2017-01-01

    For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.

  8. Delaunay-Object-Dynamics: cell mechanics with a 3D kinetic and dynamic weighted Delaunay-triangulation.

    Science.gov (United States)

    Meyer-Hermann, Michael

    2008-01-01

    Mathematical methods in Biology are of increasing relevance for understanding the control and the dynamics of biological systems with medical relevance. In particular, agent-based methods turn more and more important because of fast increasing computational power which makes even large systems accessible. An overview of different mathematical methods used in Theoretical Biology is provided and a novel agent-based method for cell mechanics based on Delaunay-triangulations and Voronoi-tessellations is explained in more detail: The Delaunay-Object-Dynamics method. It is claimed that the model combines physically realistic cell mechanics with a reasonable computational load. The power of the approach is illustrated with two examples, avascular tumor growth and genesis of lymphoid tissue in a cell-flow equilibrium.

  9. The reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Bilodid, Yuri; Fridman, Emil; Baier, Silvio; Grahn, Alexander; Gommlich, Andre; Nikitin, Evgeny; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2016-05-15

    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  10. Rendering of 3D Dynamic Virtual Environments

    CERN Document Server

    Catanese, Salvatore; Fiumara, Giacomo; Pagano, Francesco

    2011-01-01

    In this paper we present a framework for the rendering of dynamic 3D virtual environments which can be integrated in the development of videogames. It includes methods to manage sounds and particle effects, paged static geometries, the support of a physics engine and various input systems. It has been designed with a modular structure to allow future expansions. We exploited some open-source state-of-the-art components such as OGRE, PhysX, ParticleUniverse, etc.; all of them have been properly integrated to obtain peculiar physical and environmental effects. The stand-alone version of the application is fully compatible with Direct3D and OpenGL APIs and adopts OpenAL APIs to manage audio cards. Concluding, we devised a showcase demo which reproduces a dynamic 3D environment, including some particular effects: the alternation of day and night infuencing the lighting of the scene, the rendering of terrain, water and vegetation, the reproduction of sounds and atmospheric agents.

  11. 3D blob dynamics in toroidal geometry

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Reiser, Dirk

    . The DIESEL code is an extension of the ESEL code [1]. It solves a simple interchange model in full 3D tokamak geometry, where the toroidal direction is divided into a number of drift planes. On each drift plane the equations are solved in a domain corresponding to the full 2D cross section of the tokamak......In this paper we study the simple case of the dynamics of a density perturbation localized in the edge region of a medium sized tokamak in a full 3D geometry. The 2D evolution of such a perturbation has been studied in details on the low-field side, where the gradient of the magnetic field always...... point radial inward, see e.g. [1-2]. Here, the initial condition is implemented in two very different 3D numerical codes, ATTEMPT [3], and a new developed code, DIESEL (Disk version of ESEL), and the results are compared and discussed in detail. The ATTEMPT code has been employed to study the blob...

  12. INCORPORATING DYNAMIC 3D SIMULATION INTO PRA

    Energy Technology Data Exchange (ETDEWEB)

    Steven R Prescott; Curtis Smith

    2011-07-01

    provide superior results and insights. We also couple the state model with the dynamic 3D simulation analysis representing events (such as flooding) to determine which (if any) components fail. Not only does the simulation take into account any failed items from the state model, but any failures caused by the simulation are incorporated back into the state model and factored into the overall results. Using this method we incorporate accurate 3D simulation results, eliminate static-based PRA issues, and have time ordered failure information.

  13. Dynamic stall and 3D effects

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Thor, S.E. [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    1996-12-01

    The JOULE II project `Dynamic stall and 3D effects` started in January 1994 and was completed in September 1995. The objective of the project has been to increase the understanding of the three-dimensional and unsteady aerodynamics of stall controlled HAWT`s. The objectives have also been to develop `engineering models` suitable for inclusion into aero-elastic codes. The project included the participation of 13 parties within Europe. This paper describes an overview of the work carried out within the project and key results. 3 refs, 4 figs

  14. Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions.

    Science.gov (United States)

    Rath, Subha N; Strobel, Leonie A; Arkudas, Andreas; Beier, Justus P; Maier, Anne-Kathrin; Greil, Peter; Horch, Raymund E; Kneser, Ulrich

    2012-10-01

    In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three-dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long-term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform-sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6 weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live-dead assay, and real-time RT-PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell-seeded scaffold product for applications in regenerative medicine.

  15. A dynamic 3D foot reconstruction system.

    Science.gov (United States)

    Thabet, Ali K; Trucco, Emanuele; Salvi, Joaquim; Wang, Weijie; Abboud, Rami J

    2011-01-01

    Foot problems are varied and range from simple disorders through to complex diseases and joint deformities. Wherever possible, the use of insoles, or orthoses, is preferred over surgery. Current insole design techniques are based on static measurements of the foot, despite the fact that orthoses are prevalently used in dynamic conditions while walking or running. This paper presents the design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion, and its use to show that foot measurements in dynamic conditions differ significantly from their static counterparts. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Engineering and clinical tests were carried out for the validation of the system. The accuracy of the system was found to be 0.34 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.44 mm (static case) and 2.81 mm (dynamic case). Furthermore, a study was performed to compare the effective length of the foot between static and dynamic reconstructions using the 4D system. Results showed an average increase of 9 mm for the dynamic case. This increase is substantial for orthotics design, cannot be captured by a static system, and its subject-specific measurement is crucial for the design of effective foot orthoses.

  16. Dynamic 3D MR-defecography

    Energy Technology Data Exchange (ETDEWEB)

    Ratz, V.; Wech, T.; Schindele, A.; Dierks, A.; Sauer, A.; Reibetanz, J.; Borzi, A.; Bley, T.; Koestler, H.

    2016-09-15

    Epidemiological studies have estimated the incidence of chronic constipation to be up to 27% of the general population. The gold standard to evaluate affected patients is the dynamic entero-colpo-cysto-defecography. In the clinical routine 2 D MR-defecography is also performed, but only one to three 2 D slices at a temporal footprint of about one second are acquired. To improve the detection of lateral localized pathologies, we developed and implemented dynamic 3 D MR-defecography. Each 3 D block consisted of seven slices with an in-plane spatial resolution of 1.3 x 1.3 mm{sup 2} to 2.3 x 2.3 mm{sup 2} and an image update rate between 0.8 s and 1.3 s. We used a fast bSSFP sequence with a modified stack-of-stars sampling scheme for data acquisition and a modified FISTA compressed sensing algorithm to reconstruct the undersampled datasets. We performed a study including 6 patients to optimize the acquisition parameters with respect to image quality.

  17. Dynamical Study of 3D Boson Stars

    Science.gov (United States)

    Choi, Dae-Il; Choptuik, M. W.

    1998-10-01

    We study the dynamical evolution of ``boson stars'' in 3D numerical relativity. Boson stars are equilibrium states of a self-gravitating, complex Klein-Gordon field: a resurgence of interest in scalar fields in the context of astroparticle physics and quantum cosmology has prompted investigation of their dynamics, particularly since they are possible dark matter candidates. In addition, even though any direct physical relevance has yet to be demonstrated, boson star systems provide excellent numerical laboratories in which to study strong gravitational fields. Specifically, the boson star model provides an ideal vehicle with which to implement and evaluate (1) various coordinate conditions in the context of the ADM formalism, and (2) multi-dimensional adaptive mesh refinement techniques which appear crucial for many problems in 3D numerical relativity. We first consider boson stars in the Newtonian regime, where the (numerical) stability of single stars is shown and the interaction of multiple-star-systems is simulated. We also discuss issues which hamper progress towards a stable evolution of general relativistic boson stars, and then show some preliminary results for the general relativistic case.

  18. Dynamics of 3D isolated thermal filaments

    CERN Document Server

    Walkden, N R; Militello, F; Omotani, J T

    2016-01-01

    Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the filament has a significant temperature perturbation compared to its density perturbation: They lead to a strong increase in filament propagation in the bi-normal direction and a significant decrease in net radial propagation. Both effects arise from the temperature dependence of the sheath current which leads to a non-uniform floating potential, with the latter effect supplemented by faster pressure loss. The reduction in radial velocity can only occur when the filament cross-section loses angular symmetry. The behaviour is observed across different filament sizes and suggests that filaments with much larger temperature perturbations than density perturbations are more strongly confined to the near SOL region.

  19. Dynamics of 3D isolated thermal filaments

    Science.gov (United States)

    Walkden, N. R.; Easy, L.; Militello, F.; Omotani, J. T.

    2016-11-01

    Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the pressure perturbation within the filament is supported primarily through a temperature increase as opposed to density: they lead to a strong increase in filament propagation in the bi-normal direction and a significant decrease in net radial propagation. Both effects arise from the temperature dependence of the sheath current which leads to a non-uniform floating potential, with the latter effect supplemented by faster pressure loss. The reduction in radial velocity can only occur when the filament cross-section loses angular symmetry. The behaviour is observed across different filament sizes and suggests that filaments with much larger temperature perturbations than density perturbations are more strongly confined to the near SOL region.

  20. Overall Dynamic Properties of 3-D periodic elastic composites

    CERN Document Server

    Srivastava, Ankit

    2011-01-01

    A method for the homogenization of 3-D periodic elastic composites is presented. It allows for the evaluation of the averaged overall frequency dependent dynamic material constitutive tensors relating the averaged dynamic ?eld variable tensors of velocity, strain, stress, and linear momentum. The formulation is based on micromechanical modeling of a representative unit cell of a composite proposed by Nemat-Nasser & Hori (1993), Nemat-Nasser et. al. (1982) and Mura (1987) and is the 3-D generalization of the 1-D elastodynamic homogenization scheme presented by Nemat-Nasser & Srivastava (2011). We show that for 3-D periodic composites the overall compliance (stiffness) tensor is hermitian, irrespective of whether the corresponding unit cell is geometrically or materially symmetric.Overall mass density is shown to be a tensor and, like the overall compliance tensor, always hermitian. The average strain and linear momentum tensors are, however, coupled and the coupling tensors are shown to be each others'...

  1. 3D Cell Culture in Alginate Hydrogels

    Directory of Open Access Journals (Sweden)

    Therese Andersen

    2015-03-01

    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  2. Comparison of the transcriptomic profile of hepatic human induced pluripotent stem like cells cultured in plates and in a 3D microscale dynamic environment.

    Science.gov (United States)

    Leclerc, Eric; Kimura, Keiichi; Shinohara, Marie; Danoy, Mathieu; Le Gall, Morgane; Kido, Taketomo; Miyajima, Atsushi; Fujii, Teruo; Sakai, Yasuyuki

    2017-01-01

    We have compared the transcriptomic profiles of human induced pluripotent stem cells after their differentiation in hepatocytes like cells in plates and microfluidic biochips. The biochips provided a 3D and dynamic support during the cell differentiation when compared to the 2D static cultures in plates. The microarray have demonstrated the up regulation of important pathway related to liver development and maturation during the culture in biochips. Furthermore, the results of the transcriptomic profile, coupled with immunostaining, and RTqPCR analysis have shown typical biomarkers illustrating the presence of responders of biliary like cells, hepatocytes like cells, and endothelial like cells. However, the overall tissue still presented characteristic of immature and foetal patterns. Nevertheless, the biochip culture provided a specific micro-environment in which a complex multicellular differentiation toward liver could be oriented.

  3. Laser printing of cells into 3D scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ovsianikov, A; Gruene, M; Koch, L; Maiorana, F; Chichkov, B [Nanotechnology Department, Laser Zentrum Hannover eV, Hollerithallee 8, 30419 Hannover (Germany); Pflaum, M; Wilhelmi, M; Haverich, A, E-mail: a.ovsianikov@lzh.d [Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover (Germany)

    2010-03-15

    One of the most promising approaches in tissue engineering is the application of 3D scaffolds, which provide cell support and guidance in the initial tissue formation stage. The porosity of the scaffold and internal pore organization influence cell migration and play a major role in its biodegradation dynamics, nutrient diffusion and mechanical stability. In order to control cell migration and cellular interactions within the scaffold, novel technologies capable of producing 3D structures in accordance with predefined design are required. The two-photon polymerization (2PP) technique, used in this report for the fabrication of scaffolds, allows the realization of arbitrary 3D structures with submicron spatial resolution. Highly porous 3D scaffolds, produced by 2PP of acrylated poly(ethylene glycol), are seeded with cells by means of laser-induced forward transfer (LIFT). In this laser printing approach, a propulsive force, resulting from laser-induced shock wave, is used to propel individual cells or cell groups from a donor substrate towards the receiver substrate. We demonstrate that with this technique printing of multiple cell types into 3D scaffolds is possible. Combination of LIFT and 2PP provides a route for the realization of 3D multicellular tissue constructs and artificial ECM engineered on the microscale.

  4. Dynamic Frames Based Generation of 3D Scenes and Applications

    OpenAIRE

    Kvesić, Anton; Radošević, Danijel; Orehovački, Tihomir

    2015-01-01

    Modern graphic/programming tools like Unity enables the possibility of creating 3D scenes as well as making 3D scene based program applications, including full physical model, motion, sounds, lightning effects etc. This paper deals with the usage of dynamic frames based generator in the automatic generation of 3D scene and related source code. The suggested model enables the possibility to specify features of the 3D scene in a form of textual specification, as well as exporting such features ...

  5. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    Science.gov (United States)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  6. Dynamic 3D echocardiography in virtual reality

    Directory of Open Access Journals (Sweden)

    Simoons Maarten L

    2005-12-01

    Full Text Available Abstract Background This pilot study was performed to evaluate whether virtual reality is applicable for three-dimensional echocardiography and if three-dimensional echocardiographic 'holograms' have the potential to become a clinically useful tool. Methods Three-dimensional echocardiographic data sets from 2 normal subjects and from 4 patients with a mitral valve pathological condition were included in the study. The three-dimensional data sets were acquired with the Philips Sonos 7500 echo-system and transferred to the BARCO (Barco N.V., Kortrijk, Belgium I-space. Ten independent observers assessed the 6 three-dimensional data sets with and without mitral valve pathology. After 10 minutes' instruction in the I-Space, all of the observers could use the virtual pointer that is necessary to create cut planes in the hologram. Results The 10 independent observers correctly assessed the normal and pathological mitral valve in the holograms (analysis time approximately 10 minutes. Conclusion this report shows that dynamic holographic imaging of three-dimensional echocardiographic data is feasible. However, the applicability and use-fullness of this technology in clinical practice is still limited.

  7. Dynamic heterogeneity of DNA methylation and hydroxymethylation in embryonic stem cell populations captured by single-cell 3D high-content analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tajbakhsh, Jian, E-mail: tajbakhshj@cshs.org [Chromatin Biology Laboratory, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Stefanovski, Darko [Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19348 (United States); Tang, George [Chromatin Biology Laboratory, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Wawrowsky, Kolja [Translational Cytomics Group, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Liu, Naiyou; Fair, Jeffrey H. [Department of Surgery and UF Health Comprehensive Transplant Center, University of Florida College of Medicine, Gainesville, FL 32608 (United States)

    2015-03-15

    Cell-surface markers and transcription factors are being used in the assessment of stem cell fate and therapeutic safety, but display significant variability in stem cell cultures. We assessed nuclear patterns of 5-hydroxymethylcytosine (5hmC, associated with pluripotency), a second important epigenetic mark, and its combination with 5-methylcytosine (5mC, associated with differentiation), also in comparison to more established markers of pluripotency (Oct-4) and endodermal differentiation (FoxA2, Sox17) in mouse embryonic stem cells (mESC) over a 10-day differentiation course in vitro: by means of confocal and super-resolution imaging together with 3D high-content analysis, an essential tool in single-cell screening. In summary: 1) We did not measure any significant correlation of putative markers with global 5mC or 5hmC. 2) While average Oct-4 levels stagnated on a cell-population base (0.015 lnIU/day), Sox17 and FoxA2 increased 22-fold and 3-fold faster, respectively (Sox17: 0.343 lnIU/day; FoxA2: 0.046 lnIU/day). In comparison, global DNA methylation levels increased 4-fold faster (0.068 lnIU/day), and global hydroxymethylation declined at 0.046 lnIU/day, both with a better explanation of the temporal profile. 3) This progression was concomitant with the occurrence of distinct nuclear codistribution patterns that represented a heterogeneous spectrum of states in differentiation; converging to three major coexisting 5mC/5hmC phenotypes by day 10: 5hmC{sup +}/5mC{sup −}, 5hmC{sup +}/5mC{sup +}, and 5hmC{sup −}/5mC{sup +} cells. 4) Using optical nanoscopy we could delineate the respective topologies of 5mC/5hmC colocalization in subregions of nuclear DNA: in the majority of 5hmC{sup +}/5mC{sup +} cells 5hmC and 5mC predominantly occupied mutually exclusive territories resembling euchromatic and heterochromatic regions, respectively. Simultaneously, in a smaller subset of cells we observed a tighter colocalization of the two cytosine variants, presumably

  8. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    Science.gov (United States)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  9. Optical 3D shape measurement for dynamic process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    3D shape dynamic measurement is essential to the study of machine vision, hydromechanics, high-speed rotation, deformation of material, stress analysis, deformation in impact, explosion process and biomedicine. in recent years. In this paper,the results of our research, including the theoretical analysis, some feasible methods and relevant verifying experiment results, are compendiously reported. At present, these results have been used in our assembling instruments for 3D shape measurement of dynamic process.

  10. Dynamic contrast-enhanced 3D photoacoustic imaging

    Science.gov (United States)

    Wong, Philip; Kosik, Ivan; Carson, Jeffrey J. L.

    2013-03-01

    Photoacoustic imaging (PAI) is a hybrid imaging modality that integrates the strengths from both optical imaging and acoustic imaging while simultaneously overcoming many of their respective weaknesses. In previous work, we reported on a real-time 3D PAI system comprised of a 32-element hemispherical array of transducers. Using the system, we demonstrated the ability to capture photoacoustic data, reconstruct a 3D photoacoustic image, and display select slices of the 3D image every 1.4 s, where each 3D image resulted from a single laser pulse. The present study aimed to exploit the rapid imaging speed of an upgraded 3D PAI system by evaluating its ability to perform dynamic contrast-enhanced imaging. The contrast dynamics can provide rich datasets that contain insight into perfusion, pharmacokinetics and physiology. We captured a series of 3D PA images of a flow phantom before and during injection of piglet and rabbit blood. Principal component analysis was utilized to classify the data according to its spatiotemporal information. The results suggested that this technique can be used to separate a sequence of 3D PA images into a series of images representative of main features according to spatiotemporal flow dynamics.

  11. Single molecule microscopy in 3D cell cultures and tissues.

    Science.gov (United States)

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.

  12. Critical bifurcation surfaces of 3D discrete dynamics

    Directory of Open Access Journals (Sweden)

    Michael Sonis

    2000-01-01

    Full Text Available This paper deals with the analytical representation of bifurcations of each 3D discrete dynamics depending on the set of bifurcation parameters. The procedure of bifurcation analysis proposed in this paper represents the 3D elaboration and specification of the general algorithm of the n-dimensional linear bifurcation analysis proposed by the author earlier. It is proven that 3D domain of asymptotic stability (attraction of the fixed point for a given 3D discrete dynamics is bounded by three critical bifurcation surfaces: the divergence, flip and flutter surfaces. The analytical construction of these surfaces is achieved with the help of classical Routh–Hurvitz conditions of asymptotic stability. As an application the adjustment process proposed by T. Puu for the Cournot oligopoly model is considered in detail.

  13. 3D particle tracking velocimetry using dynamic discrete tomography

    DEFF Research Database (Denmark)

    Alpers, Andreas; Gritzmann, Peter; Moseev, Dmitry;

    2015-01-01

    Particle tracking velocimetry in 3D is becoming an increasingly important imaging tool in the study of fluid dynamics and combustion as well as plasmas. We introduce a dynamic discrete tomography algorithm for reconstructing particle trajectories from projections. The algorithm is efficient...

  14. An Evaluative Review of Simulated Dynamic Smart 3d Objects

    Science.gov (United States)

    Romeijn, H.; Sheth, F.; Pettit, C. J.

    2012-07-01

    Three-dimensional (3D) modelling of plants can be an asset for creating agricultural based visualisation products. The continuum of 3D plants models ranges from static to dynamic objects, also known as smart 3D objects. There is an increasing requirement for smarter simulated 3D objects that are attributed mathematically and/or from biological inputs. A systematic approach to plant simulation offers significant advantages to applications in agricultural research, particularly in simulating plant behaviour and the influences of external environmental factors. This approach of 3D plant object visualisation is primarily evident from the visualisation of plants using photographed billboarded images, to more advanced procedural models that come closer to simulating realistic virtual plants. However, few programs model physical reactions of plants to external factors and even fewer are able to grow plants based on mathematical and/or biological parameters. In this paper, we undertake an evaluation of plant-based object simulation programs currently available, with a focus upon the components and techniques involved in producing these objects. Through an analytical review process we consider the strengths and weaknesses of several program packages, the features and use of these programs and the possible opportunities in deploying these for creating smart 3D plant-based objects to support agricultural research and natural resource management. In creating smart 3D objects the model needs to be informed by both plant physiology and phenology. Expert knowledge will frame the parameters and procedures that will attribute the object and allow the simulation of dynamic virtual plants. Ultimately, biologically smart 3D virtual plants that react to changes within an environment could be an effective medium to visually represent landscapes and communicate land management scenarios and practices to planners and decision-makers.

  15. Fabrication of Nanostructured Poly-ε-caprolactone 3D Scaffolds for 3D Cell Culture Technology

    KAUST Repository

    Schipani, Rossana

    2015-04-21

    Tissue engineering is receiving tremendous attention due to the necessity to overcome the limitations related to injured or diseased tissues or organs. It is the perfect combination of cells and biomimetic-engineered materials. With the appropriate biochemical factors, it is possible to develop new effective bio-devices that are capable to improve or replace biological functions. Latest developments in microfabrication methods, employing mostly synthetic biomaterials, allow the production of three-dimensional (3D) scaffolds that are able to direct cell-to-cell interactions and specific cellular functions in order to drive tissue regeneration or cell transplantation. The presented work offers a rapid and efficient method of 3D scaffolds fabrication by using optical lithography and micro-molding techniques. Bioresorbable polymer poly-ε-caprolactone (PCL) was the material used thanks to its high biocompatibility and ability to naturally degrade in tissues. 3D PCL substrates show a particular combination in the designed length scale: cylindrical shaped pillars with 10μm diameter, 10μm height, arranged in a hexagonal lattice with spacing of 20μm were obtained. The sidewalls of the pillars were nanostructured by attributing a 3D architecture to the scaffold. The suitability of these devices as cell culture technology supports was evaluated by plating NIH/3T3 mouse embryonic fibroblasts and human Neural Stem Cells (hNSC) on them. Scanning Electron Microscopy (SEM) analysis was carried out in order to examine the micro- and nano-patterns on the surface of the supports. In addition, after seeding of cells, SEM and immunofluorescence characterization of the fabricated systems were performed to check adhesion, growth and proliferation. It was observed that cells grow and develop healthy on the bio-polymeric devices by giving rise to well-interconnected networks. 3D PCL nano-patterned pillared scaffold therefore may have considerable potential as effective tool for

  16. 3D particle tracking velocimetry using dynamic discrete tomography

    CERN Document Server

    Alpers, Andreas; Moseev, Dmitry; Salewski, Mirko

    2013-01-01

    Particle tracking velocimetry in 3D is becoming an increasingly important imaging tool in the study of fluid dynamics, combustion as well as plasmas. We introduce a dynamic discrete tomography algorithm for reconstructing particle trajectories from projections. The algorithm is efficient for data from two projection directions and exact in the sense that it finds a solution consistent with the experimental data. Non-uniqueness of solutions can be detected and solutions can be tracked individually.

  17. 3D particle tracking velocimetry using dynamic discrete tomography

    DEFF Research Database (Denmark)

    Alpers, Andreas; Gritzmann, Peter; Moseev, Dmitry

    2015-01-01

    Particle tracking velocimetry in 3D is becoming an increasingly important imaging tool in the study of fluid dynamics and combustion as well as plasmas. We introduce a dynamic discrete tomography algorithm for reconstructing particle trajectories from projections. The algorithm is efficient...... for data from two projection directions and exact in the sense that it finds a solution consistent with the experimental data. Non-uniqueness of solutions can be detected and solutions can be tracked individually....

  18. "Constructing" the Cell Cycle in 3D

    Science.gov (United States)

    Koc, Isil; Turan, Merve

    2012-01-01

    The cycle of duplication and division, known as the "cell cycle," is the essential mechanism by which all living organisms reproduce. This activity allows students to develop an understanding of the main events that occur during the typical eukaryotic cell cycle mostly in the process of mitotic phase that divides the duplicated genetic material…

  19. Cyto-3D-print to attach mitotic cells.

    Science.gov (United States)

    Castroagudin, Michelle R; Zhai, Yujia; Li, Zhi; Marnell, Michael G; Glavy, Joseph S

    2016-08-01

    The Cyto-3D-print is an adapter that adds cytospin capability to a standard centrifuge. Like standard cytospinning, Cyto-3D-print increases the surface attachment of mitotic cells while giving a higher degree of adaptability to other slide chambers than available commercial devices. The use of Cyto-3D-print is cost effective, safe, and applicable to many slide designs. It is durable enough for repeated use and made of biodegradable materials for environment-friendly disposal.

  20. An Optically Controlled 3D Cell Culturing System

    Directory of Open Access Journals (Sweden)

    Kelly S. Ishii

    2011-01-01

    Full Text Available A novel 3D cell culture system was developed and tested. The cell culture device consists of a microfluidic chamber on an optically absorbing substrate. Cells are suspended in a thermoresponsive hydrogel solution, and optical patterns are utilized to heat the solution, producing localized hydrogel formation around cells of interest. The hydrogel traps only the desired cells in place while also serving as a biocompatible scaffold for supporting the cultivation of cells in 3D. This is demonstrated with the trapping of MDCK II and HeLa cells. The light intensity from the optically induced hydrogel formation does not significantly affect cell viability.

  1. Causal Dynamical Triangulation of 3D Tensor Model

    CERN Document Server

    Kawabe, Hiroshi

    2016-01-01

    We extend the string field theory of the two dimensional (2D) generalized causal dynamical triangulation (GCDT) with the Ishibashi-Kawai (IK-) type interaction formulated by the matrix model, to the three dimensional (3D) model of the surface field theory. Based on the loop gas model, we construct a tensor model for the discretized surface field and then apply it the stochastic quantization method. In the double scaling limit, the model is characterized by two scaling dimensions $D$ and $D_N$, the power indices of the minimal length as the scaling parameter. The continuum GCDT model with the IK-type interaction is realized with the similar restriction in the $D_N$-$D$ space, to the 2D model. The distinct property in the 3D model is that the quantum effect contains the IK-type interaction only, while the ordinary splitting interaction is excluded.

  2. Dynamic 3D computed tomography scanner for vascular imaging

    Science.gov (United States)

    Lee, Mark K.; Holdsworth, David W.; Fenster, Aaron

    2000-04-01

    A 3D dynamic computed-tomography (CT) scanner was developed for imaging objects undergoing periodic motion. The scanner system has high spatial and sufficient temporal resolution to produce quantitative tomographic/volume images of objects such as excised arterial samples perfused under physiological pressure conditions and enables the measurements of the local dynamic elastic modulus (Edyn) of the arteries in the axial and longitudinal directions. The system was comprised of a high resolution modified x-ray image intensifier (XRII) based computed tomographic system and a computer-controlled cardiac flow simulator. A standard NTSC CCD camera with a macro lens was coupled to the electro-optically zoomed XRII to acquire dynamic volumetric images. Through prospective cardiac gating and computer synchronized control, a time-resolved sequence of 20 mm thick high resolution volume images of porcine aortic specimens during one simulated cardiac cycle were obtained. Performance evaluation of the scanners illustrated that tomographic images can be obtained with resolution as high as 3.2 mm-1 with only a 9% decrease in the resolution for objects moving at velocities of 1 cm/s in 2D mode and static spatial resolution of 3.55 mm-1 with only a 14% decrease in the resolution in 3D mode for objects moving at a velocity of 10 cm/s. Application of the system for imaging of intact excised arterial specimens under simulated physiological flow/pressure conditions enabled measurements of the Edyn of the arteries with a precision of +/- kPa for the 3D scanner. Evaluation of the Edyn in the axial and longitudinal direction produced values of 428 +/- 35 kPa and 728 +/- 71 kPa, demonstrating the isotropic and homogeneous viscoelastic nature of the vascular specimens. These values obtained from the Dynamic CT systems were not statistically different (p less than 0.05) from the values obtained by standard uniaxial tensile testing and volumetric measurements.

  3. High dynamic range real-time 3D shape measurement.

    Science.gov (United States)

    Jiang, Chufan; Bell, Tyler; Zhang, Song

    2016-04-04

    This paper proposes a method that can measure high-contrast surfaces in real-time without changing camera exposures. We propose to use 180-degree phase-shifted (or inverted) fringe patterns to complement regular fringe patterns. If not all of the regular patterns are saturated, inverted fringe patterns are used in lieu of original saturated patterns for phase retrieval, and if all of the regular fringe patterns are saturated, both the original and inverted fringe patterns are all used for phase computation to reduce phase error. Experimental results demonstrate that three-dimensional (3D) shape measurement can be achieved in real time by adopting the proposed high dynamic range method.

  4. 3D printing of biomimetic microstructures for cancer cell migration

    Science.gov (United States)

    Huang, Tina Qing; Qu, Xin; Liu, Justin; Chen, Shaochen

    2013-01-01

    To understand the physical behavior and migration of cancer cells, a 3D in vitro micro-chip in hydrogel was created using 3D projection printing. The micro-chip has a honeycomb branched structure, aiming to mimic 3D vascular morphology to test, monitor, and analyze differences in the behavior of cancer cells (i.e. HeLa) vs. non-cancerous cell lines (i.e. 10T1/2). The 3D Projection Printing system can fabricate complex structures in seconds from user-created designs. The fabricated microstructures have three different channel widths of 25, 45, and 120 microns wide to reflect a range of blood vessel diameters. HeLa and 10T1/2 cells seeded within the micro-chip were then analyzed for morphology and cell migration speed. 10T1/2 cells exhibited greater changes in morphology due to channel size width than HeLa cells; however, channel width had a limited effect on 10T1/2 cell migration while HeLa cancer cell migration increased as channel width decreased. This physiologically relevant 3D cancer tissue model has the potential to be a powerful tool for future drug discoveries and cancer migration studies PMID:24150602

  5. Distributed 3D Information Visualization - Towards Integration of the Dynamic 3D Graphics and Web Services

    Science.gov (United States)

    Vucinic, Dean; Deen, Danny; Oanta, Emil; Batarilo, Zvonimir; Lacor, Chris

    This paper focuses on visualization and manipulation of graphical content in distributed network environments. The developed graphical middleware and 3D desktop prototypes were specialized for situational awareness. This research was done in the LArge Scale COllaborative decision support Technology (LASCOT) project, which explored and combined software technologies to support human-centred decision support system for crisis management (earthquake, tsunami, flooding, airplane or oil-tanker incidents, chemical, radio-active or other pollutants spreading, etc.). The performed state-of-the-art review did not identify any publicly available large scale distributed application of this kind. Existing proprietary solutions rely on the conventional technologies and 2D representations. Our challenge was to apply the "latest" available technologies, such Java3D, X3D and SOAP, compatible with average computer graphics hardware. The selected technologies are integrated and we demonstrate: the flow of data, which originates from heterogeneous data sources; interoperability across different operating systems and 3D visual representations to enhance the end-users interactions.

  6. Scaling in Gravitational Clustering, 2D and 3D Dynamics

    CERN Document Server

    Munshi, D; Melott, A L; Schäffer, R

    1999-01-01

    Perturbation Theory (PT) applied to a cosmological density field with Gaussian initial fluctuations suggests a specific hierarchy for the correlation functions when the variance is small. In particular quantitative predictions have been made for the moments and the shape of the one-point probability distribution function (PDF) of the top-hat smoothed density. In this paper we perform a series of systematic checks of these predictions against N-body computations both in 2D and 3D with a wide range of featureless power spectra. In agreement with previous studies, we found that the reconstructed PDF-s work remarkably well down to very low probabilities, even when the variance approaches unity. Our results for 2D reproduce the features for the 3D dynamics. In particular we found that the PT predictions are more accurate for spectra with less power on small scales. The nonlinear regime has been explored with various tools, PDF-s, moments and Void Probability Function (VPF). These studies have been done with unprec...

  7. Modeling tree crown dynamics with 3D partial differential equations.

    Science.gov (United States)

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  8. Modeling Tree Crown Dynamics with 3D Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Robert eBeyer

    2014-07-01

    Full Text Available We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth towards light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  9. Molecular predictors of 3D morphogenesis by breast cancer cell lines in 3D culture.

    Directory of Open Access Journals (Sweden)

    Ju Han

    2010-02-01

    Full Text Available Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype. Next, associations with molecular features were realized through (i differential analysis within each morphological cluster, and (ii regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPARgamma has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPARgamma has been validated through two supporting biological assays.

  10. Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ju; Chang, Hang; Giricz, Orsi; Lee, Genee; Baehner, Frederick; Gray, Joe; Bissell, Mina; Kenny, Paraic; Parvin, Bahram

    2010-02-01

    Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.

  11. Influence of scaffold design on 3D printed cell constructs.

    Science.gov (United States)

    Souness, Auryn; Zamboni, Fernanda; Walker, Gavin M; Collins, Maurice N

    2017-02-14

    Additive manufacturing is currently receiving significant attention in the field of tissue engineering and biomaterial science. The development of precise, affordable 3D printing technologies has provided a new platform for novel research to be undertaken in 3D scaffold design and fabrication. In the past, a number of 3D scaffold designs have been fabricated to investigate the potential of a 3D printed scaffold as a construct which could support cellular life. These studies have shown promising results; however, few studies have utilized a low-cost desktop 3D printing technology as a potential rapid manufacturing route for different scaffold designs. Here six scaffold designs were manufactured using a Fused deposition modeling, a "bottom-up" solid freeform fabrication approach, to determine optimal scaffold architecture for three-dimensional cell growth. The scaffolds, produced from PLA, are coated using pullulan and hyaluronic acid to assess the coating influence on cell proliferation and metabolic rate. Scaffolds are characterized both pre- and postprocessing using water uptake analysis, mechanical testing, and morphological evaluation to study the inter-relationships between the printing process, scaffold design, and scaffold properties. It was found that there were key differences between each scaffold design in terms of porosity, diffusivity, swellability, and compressive strength. An optimal design was chosen based on these physical measurements which were then weighted in accordance to design importance based on literature and utilizing a design matrix technique. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  12. 3D Numerical simulations of vesicle and inextensible capsule dynamics

    OpenAIRE

    2014-01-01

    published in Journal of Computational Physics; International audience; Vesicles are locally-inextensible fluid membranes while inextensible capsules are in addition endowed with in-plane shear elasticity mimicking the cytoskeleton of red blood cells (RBCs). Boundary integral (BI) methods based on the Green's function techniques are used to describe their dynamics, that falls into the category of highly nonlinear and nonlocal dynamics. Numerical solutions raise several obstacles and challenges...

  13. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Tong Luo

    Full Text Available The 3D geometry of individual vascular smooth muscle cells (VSMCs, which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation.A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell's initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9 μm, 4.6±0.6 μm and 6.2±1.8 μm (mean±SD. In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle was found to be 8±7.6° with median as 5.7°.A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function.

  14. Bioimpedance monitoring of 3D cell culturing--complementary electrode configurations for enhanced spatial sensitivity.

    Science.gov (United States)

    Canali, Chiara; Heiskanen, Arto; Muhammad, Haseena Bashir; Høyum, Per; Pettersen, Fred-Johan; Hemmingsen, Mette; Wolff, Anders; Dufva, Martin; Martinsen, Ørjan Grøttem; Emnéus, Jenny

    2015-01-15

    A bioimpedance platform is presented as a promising tool for non-invasive real-time monitoring of the entire process of three-dimensional (3D) cell culturing in a hydrogel scaffold. In this study, the dynamics involved in the whole process of 3D cell culturing, starting from polymerisation of a bare 3D gelatin scaffold, to human mesenchymal stem cell (MSC) encapsulation and proliferation, was monitored over time. The platform consists of a large rectangular culture chamber with four embedded vertical gold plate electrodes that were exploited in two- and three terminal (2T and 3T) measurement configurations. By switching between the different combinations of electrode couples, it was possible to generate a multiplexing-like approach, which allowed for collecting spatially distributed information within the 3D space. Computational finite element (FE) analysis and electrochemical impedance spectroscopic (EIS) characterisation were used to determine the configurations' sensitivity field localisation. The 2T setup gives insight into the interfacial phenomena at both electrode surfaces and covers the central part of the 3D cell culture volume, while the four 3T modes provide focus on the dynamics at the corners of the 3D culture chamber. By combining a number of electrode configurations, complementary spatially distributed information on a large 3D cell culture can be obtained with maximised sensitivity in the entire 3D space. The experimental results show that cell proliferation can be monitored within the tested biomimetic environment, paving the way to further developments in bioimpedance tracking of 3D cell cultures and tissue engineering.

  15. 3D joint dynamics analysis of healthy children's gait

    OpenAIRE

    SAMSON, William; DESROCHES, Guillaume; Cheze, Laurence; Dumas, Raphaël

    2009-01-01

    The 3D joint moments and 2D joint powers have been largely explored in the literature of healthy children's gait, in particular to compare them with pathologic subjects' gait. However, no study reported on 3D joint power in children which could be due to the difficulties in interpreting the results. Recently, the analysis of the 3D angle between the joint moment and the joint angular velocity vectors has been proposed in order to help 3D joint power interpretation. Our hypothesis is that this...

  16. Vortex dynamics in 3D shock-bubble interaction

    Science.gov (United States)

    Hejazialhosseini, Babak; Rossinelli, Diego; Koumoutsakos, Petros

    2013-11-01

    The dynamics of shock-bubble interaction involve an interplay of vortex stretching, dilation, and baroclinic vorticity generation. Here, we quantify the interplay of these contributions through high resolution 3D simulations for several Mach and Atwood numbers. We present a volume rendering of density and vorticity magnitude fields of shock-bubble interaction at M = 3 and air/helium density ratio η = 7.25 to elucidate the evolution of the flow structures. We distinguish the vorticity growth rates due to baroclinicity, stretching, and dilatation at low and high Mach numbers as well as the late time evolution of the circulation. The results demonstrate that a number of analytical models need to be revised in order to predict the late time circulation of shock-bubble interactions at high Mach numbers. To this effect, we propose a simple model for the dependence of the circulation to Mach number and ambient to bubble density ratio for air/helium shock-bubble interactions.

  17. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Frampton, J P; Hynd, M R; Shain, W [Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12210 (United States); Shuler, M L, E-mail: jf7674@albany.edu [Department of Biomedical Engineering, 270 Olin Hall, Cornell University, Ithaca, NY 14850 (United States)

    2011-02-15

    Two-dimensional (2D) culture systems provide useful information about many biological processes. However, some applications including tissue engineering, drug transport studies, and analysis of cell growth and dynamics are better studied using three-dimensional (3D) culture systems. 3D culture systems can potentially offer higher degrees of organization and control of cell growth environments, more physiologically relevant diffusion characteristics, and permit the formation of more extensive 3D networks of cell-cell interactions. A 3D culture system has been developed using alginate as a cell scaffold, capable of maintaining the viability and function of a variety of neural cell types. Alginate was functionalized by the covalent attachment of a variety of whole proteins and peptide epitopes selected to provide sites for cell attachment. Alginate constructs were used to entrap a variety of neural cell types including astroglioma cells, astrocytes, microglia and neurons. Neural cells displayed process outgrowth over time in culture. Cell-seeded scaffolds were characterized in terms of their biochemical and biomechanical properties, effects on seeded neural cells, and suitability for use as 3D neural cell culture models.

  18. Bioimpedance monitoring of 3D cell culturing-Complementary electrode configurations for enhanced spatial sensitivity

    DEFF Research Database (Denmark)

    Canali, Chiara; Heiskanen, Arto; Muhammad, Haseena Bashir

    2015-01-01

    configurations. By switching between the different combinations of electrode couples, it was possible to generate a multiplexing-like approach, which allowed for collecting spatially distributed information within the 3D space. Computational finite element (FE) analysis and electrochemical impedance......A bioimpedance platform is presented as a promising tool for non-invasive real-time monitoring of the entire process of three-dimensional (3D) cell culturing in a hydrogel scaffold. In this study, the dynamics involved in the whole process of 3D cell culturing, starting from polymerisation...... of a bare 3D gelatin scaffold, to human mesenchymal stem cell (MSC) encapsulation and proliferation, was monitored over time. The platform consists of a large rectangular culture chamber with four embedded vertical gold plate electrodes that were exploited in two- and three terminal (2T and 3T) measurement...

  19. 3D visualization of membrane failures in fuel cells

    Science.gov (United States)

    Singh, Yadvinder; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik

    2017-03-01

    Durability issues in fuel cells, due to chemical and mechanical degradation, are potential impediments in their commercialization. Hydrogen leak development across degraded fuel cell membranes is deemed a lifetime-limiting failure mode and potential safety issue that requires thorough characterization for devising effective mitigation strategies. The scope and depth of failure analysis has, however, been limited by the 2D nature of conventional imaging. In the present work, X-ray computed tomography is introduced as a novel, non-destructive technique for 3D failure analysis. Its capability to acquire true 3D images of membrane damage is demonstrated for the very first time. This approach has enabled unique and in-depth analysis resulting in novel findings regarding the membrane degradation mechanism; these are: significant, exclusive membrane fracture development independent of catalyst layers, localized thinning at crack sites, and demonstration of the critical impact of cracks on fuel cell durability. Evidence of crack initiation within the membrane is demonstrated, and a possible new failure mode different from typical mechanical crack development is identified. X-ray computed tomography is hereby established as a breakthrough approach for comprehensive 3D characterization and reliable failure analysis of fuel cell membranes, and could readily be extended to electrolyzers and flow batteries having similar structure.

  20. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography.

    Science.gov (United States)

    Zhang, A Ping; Qu, Xin; Soman, Pranav; Hribar, Kolin C; Lee, Jin W; Chen, Shaochen; He, Sailing

    2012-08-16

    The topographic features of the extracelluar matrix (ECM) lay the foundation for cellular behavior. A novel biofabrication method using a digital-mirror device (DMD), called dynamic optical projection stereolithography (DOPsL) is demonstrated. This robust and versatile platform can generate complex biomimetic scaffolds within seconds. Such 3D scaffolds have promising potentials for studying cell interactions with microenvironments in vitro and in vivo.

  1. 2D- and 3D-culture of cell

    Directory of Open Access Journals (Sweden)

    Khoruzhenko A. I.

    2011-02-01

    Full Text Available The cultivation of mammalian cells in three-dimensional conditions acquires a priority in a variety of biomedical applications. In the areas of toxicology and anticancer drug development it concerns a significant difference of responses to proapoptotic factors of the cells cultured in 2D versus 3D environment. Besides, the clear-cut differences have been found in cell polarity, cytoskeleton structure, distribution of receptors to wide range of hormones, growth factors, etc. in mammalian cells depending on culture conditions. It is resulted in different response of cultured cells to extracellular stimuli. Multicellular spheroids are regarded presently as the most convenient model of solid tumour growth in vitro. The cultivation of thyroid follicles, mammary acini and other structure units, maintaining initial tissue organization, allows studying the behavior, biochemical features and gene profile of differentiated cells. On the other hand, 3D cultures have some limitations in comparison with a well established monolayer culture. The advantages and disadvantages of each type of cultures and their application in biological and medical researches will be discussed in this review

  2. 3D in vitro cell culture models of tube formation

    NARCIS (Netherlands)

    Zegers, M.M.P.

    2014-01-01

    Building the complex architecture of tubular organs is a highly dynamic process that involves cell migration, polarization, shape changes, adhesion to neighboring cells and the extracellular matrix, physicochemical characteristics of the extracellular matrix and reciprocal signaling with the mesench

  3. 3D surface topology guides stem cell adhesion and differentiation.

    Science.gov (United States)

    Viswanathan, Priyalakshmi; Ondeck, Matthew G; Chirasatitsin, Somyot; Ngamkham, Kamolchanok; Reilly, Gwendolen C; Engler, Adam J; Battaglia, Giuseppe

    2015-06-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilizers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors.

  4. 3D-printed external light trap for solar cells.

    Science.gov (United States)

    van Dijk, Lourens; Paetzold, Ulrich W; Blab, Gerhard A; Schropp, Ruud E I; di Vece, Marcel

    2016-05-01

    We present a universally applicable 3D-printed external light trap for enhanced absorption in solar cells. The macroscopic external light trap is placed at the sun-facing surface of the solar cell and retro-reflects the light that would otherwise escape. The light trap consists of a reflective parabolic concentrator placed on top of a reflective cage. Upon placement of the light trap, an improvement of 15% of both the photocurrent and the power conversion efficiency in a thin-film nanocrystalline silicon (nc-Si:H) solar cell is measured. The trapped light traverses the solar cell several times within the reflective cage thereby increasing the total absorption in the cell. Consequently, the trap reduces optical losses and enhances the absorption over the entire spectrum. The components of the light trap are 3D printed and made of smoothened, silver-coated thermoplastic. In contrast to conventional light trapping methods, external light trapping leaves the material quality and the electrical properties of the solar cell unaffected. To explain the theoretical operation of the external light trap, we introduce a model that predicts the absorption enhancement in the solar cell by the external light trap. The corresponding calculated path length enhancement shows good agreement with the empirically derived value from the opto-electrical data of the solar cell. Moreover, we analyze the influence of the angle of incidence on the parasitic absorptance to obtain full understanding of the trap performance. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.

  5. Peptide hydrogels – versatile matrices for 3D cell culture in cancer medicine

    Directory of Open Access Journals (Sweden)

    Peter eWorthington

    2015-04-01

    Full Text Available Traditional two-dimensional (2D cell culture systems have contributed tremendously to our understanding of cancer biology but have significant limitations in mimicking in vivo conditions such as the tumor microenvironment. In vitro, three-dimensional (3D cell culture models represent a more accurate, intermediate platform between simplified 2D culture models and complex and expensive in vivo models. 3D in vitro models can overcome 2D in vitro limitations caused by the oversupply of nutrients, and unphysiological cell-cell and cell-material interactions, and allow for dynamic interactions between cells, stroma, and extracellular matrix. In addition, 3D cultures allow for the development of concentration gradients, including oxygen, metabolites and growth factors, with chemical gradients playing an integral role in many cellular functions ranging from development to signaling in normal epithelia and cancer environments in vivo. Currently, the most common matrices used for 3D culture are biologically derived materials such as matrigel and collagen. However, in recent years, more defined, synthetic materials have become available as scaffolds for 3D culture with the advantage of forming well-defined, designed, tunable materials to control matrix charge, stiffness, porosity, nanostructure, degradability and adhesion properties, in addition to other material and biological properties. One important area of synthetic materials currently available for 3D cell culture are short sequence, self-assembling peptide hydrogels. In addition to the review of recent work towards the control of material, structure, and mechanical properties, we will also discuss the biochemical functionalization of peptide hydrogels and how this functionalization, coupled with desired hydrogel material characteristics, affects tumor cell behavior in 3D culture.

  6. Face recognition based on matching of local features on 3D dynamic range sequences

    Science.gov (United States)

    Echeagaray-Patrón, B. A.; Kober, Vitaly

    2016-09-01

    3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.

  7. DREAM3D simulations of inner-belt dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Gregory Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-26

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of the problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.

  8. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  9. 3D numerical simulations of vesicle and inextensible capsule dynamics

    Science.gov (United States)

    Farutin, Alexander; Biben, Thierry; Misbah, Chaouqi

    2014-10-01

    Vesicles are locally-inextensible fluid membranes, capsules are endowed with in-plane shear elasticity mimicking the cytoskeleton of red blood cells (RBCs), but are extensible, while RBCs are inextensible. We use boundary integral (BI) methods based on the Green function techniques to model and solve numerically their dynamics. We regularize the single layer integral by subtraction of exact identities for the terms involving the normal and the tangential components of the force. The stability and precision of BI calculation is enhanced by taking advantage of additional quadrature nodes located in vertices of an auxiliary mesh, constructed by a standard refinement procedure from the main mesh. We extend the partition of unity technique to boundary integral calculation on triangular meshes. The proposed algorithm offers the same treatment of near-singular integration regardless whether the source and the target points belong to the same surface or not. Bending forces are calculated by using expressions derived from differential geometry. Membrane incompressibility is handled by using two penalization parameters per suspended entity: one for deviation of the global area from prescribed value and another for the sum of squares of local strains defined on each vertex. Extensible or inextensible capsules, a model of RBC, are studied by storing the position in the reference configuration for each vertex. The elastic force is then calculated by direct variation of the elastic energy. Various nonequilibrium physical examples on vesicles and capsules will be presented and the convergence and precision tests highlighted. Overall, a good convergence is observed with numerical error inversely proportional to the number of vertices used for surface discretization, the highest order of convergence allowed by piece-wise linear interpolation of the surface.

  10. Computational Modelling of Piston Ring Dynamics in 3D

    Directory of Open Access Journals (Sweden)

    Dlugoš Jozef

    2014-12-01

    Full Text Available Advanced computational models of a piston assembly based on the level of virtual prototypes require a detailed description of piston ring behaviour. Considering these requirements, the piston rings operate in regimes that cannot, in general, be simplified into an axisymmetric model. The piston and the cylinder liner do not have a perfect round shape, mainly due to machining tolerances and external thermo-mechanical loads. If the ring cannot follow the liner deformations, a local loss of contact occurs resulting in blow-by and increased consumption of lubricant oil in the engine. Current computational models are unable to implement such effects. The paper focuses on the development of a flexible 3D piston ring model based on the Timoshenko beam theory using the multibody system (MBS. The MBS model is compared to the finite element method (FEM solution.

  11. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gartia, Manas Ranjan [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, IL 61801 (United States); Hsiao, Austin; Logan Liu, G [Department of Bioengineering, University of Illinois, Urbana, IL 61801 (United States); Sivaguru, Mayandi [Institute for Genomic Biology, University of Illinois, Urbana, IL 61801 (United States); Chen Yi, E-mail: loganliu@illinois.edu [Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States)

    2011-09-07

    We have created a randomly distributed nanocone substrate on silicon coated with silver for surface-plasmon-enhanced fluorescence detection and 3D cell imaging. Optical characterization of the nanocone substrate showed it can support several plasmonic modes (in the 300-800 nm wavelength range) that can be coupled to a fluorophore on the surface of the substrate, which gives rise to the enhanced fluorescence. Spectral analysis suggests that a nanocone substrate can create more excitons and shorter lifetime in the model fluorophore Rhodamine 6G (R6G) due to plasmon resonance energy transfer from the nanocone substrate to the nearby fluorophore. We observed three-dimensional fluorescence enhancement on our substrate shown from the confocal fluorescence imaging of chinese hamster ovary (CHO) cells grown on the substrate. The fluorescence intensity from the fluorophores bound on the cell membrane was amplified more than 100-fold as compared to that on a glass substrate. We believe that strong scattering within the nanostructured area coupled with random scattering inside the cell resulted in the observed three-dimensional enhancement in fluorescence with higher photostability on the substrate surface.

  12. Parallel implementation of 3D FFT with volumetric decomposition schemes for efficient molecular dynamics simulations

    Science.gov (United States)

    Jung, Jaewoon; Kobayashi, Chigusa; Imamura, Toshiyuki; Sugita, Yuji

    2016-03-01

    Three-dimensional Fast Fourier Transform (3D FFT) plays an important role in a wide variety of computer simulations and data analyses, including molecular dynamics (MD) simulations. In this study, we develop hybrid (MPI+OpenMP) parallelization schemes of 3D FFT based on two new volumetric decompositions, mainly for the particle mesh Ewald (PME) calculation in MD simulations. In one scheme, (1d_Alltoall), five all-to-all communications in one dimension are carried out, and in the other, (2d_Alltoall), one two-dimensional all-to-all communication is combined with two all-to-all communications in one dimension. 2d_Alltoall is similar to the conventional volumetric decomposition scheme. We performed benchmark tests of 3D FFT for the systems with different grid sizes using a large number of processors on the K computer in RIKEN AICS. The two schemes show comparable performances, and are better than existing 3D FFTs. The performances of 1d_Alltoall and 2d_Alltoall depend on the supercomputer network system and number of processors in each dimension. There is enough leeway for users to optimize performance for their conditions. In the PME method, short-range real-space interactions as well as long-range reciprocal-space interactions are calculated. Our volumetric decomposition schemes are particularly useful when used in conjunction with the recently developed midpoint cell method for short-range interactions, due to the same decompositions of real and reciprocal spaces. The 1d_Alltoall scheme of 3D FFT takes 4.7 ms to simulate one MD cycle for a virus system containing more than 1 million atoms using 32,768 cores on the K computer.

  13. 3D photospheric velocity field of a Supergranular cell

    CERN Document Server

    Del Moro, Dario; Berrilli, Francesco

    2007-01-01

    We investigate the plasma flow properties inside a Supergranular (SG) cell, in particular its interaction with small scale magnetic field structures. The SG cell has been identified using the magnetic network (CaII wing brightness) as proxy, applying the TST to high spatial, spectral and temporal resolution observations obtained by IBIS. The full 3D velocity vector field for the SG has been reconstructed at two different photospheric heights. In order to strengthen our findings, we also computed the mean radial flow of the SG by means of cork tracing. We also studied the behaviour of the horizontal and Line of Sight plasma flow cospatial with cluster of bright CaII structures of magnetic origin to better understand the interaction between photospheric convection and small scale magnetic features. The SG cell we investigated seems to be organized with an almost radial flow from its centre to the border. The large scale divergence structure is probably created by a compact region of costant up-flow close to the...

  14. Dynamics of 3D view invariance in monkey inferotemporal cortex.

    Science.gov (United States)

    Ratan Murty, N Apurva; Arun, Sripati P

    2015-04-01

    Rotations in depth are challenging for object vision because features can appear, disappear, be stretched or compressed. Yet we easily recognize objects across views. Are the underlying representations view invariant or dependent? This question has been intensely debated in human vision, but the neuronal representations remain poorly understood. Here, we show that for naturalistic objects, neurons in the monkey inferotemporal (IT) cortex undergo a dynamic transition in time, whereby they are initially sensitive to viewpoint and later encode view-invariant object identity. This transition depended on two aspects of object structure: it was strongest when objects foreshortened strongly across views and were similar to each other. View invariance in IT neurons was present even when objects were reduced to silhouettes, suggesting that it can arise through similarity between external contours of objects across views. Our results elucidate the viewpoint debate by showing that view invariance arises dynamically in IT neurons out of a representation that is initially view dependent.

  15. File list: Pol.ALL.50.Polr3d.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.50.Polr3d.AllCell mm9 RNA polymerase Polr3d All cell types SRX301459,SRX373...04147 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.ALL.50.Polr3d.AllCell.bed ...

  16. File list: Pol.ALL.05.Polr3d.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.05.Polr3d.AllCell mm9 RNA polymerase Polr3d All cell types SRX373040,SRX373...04148 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.ALL.05.Polr3d.AllCell.bed ...

  17. File list: Pol.ALL.10.Polr3d.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.10.Polr3d.AllCell mm9 RNA polymerase Polr3d All cell types SRX373040,SRX301...04147 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.ALL.10.Polr3d.AllCell.bed ...

  18. File list: Pol.ALL.20.Polr3d.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.20.Polr3d.AllCell mm9 RNA polymerase Polr3d All cell types SRX301459,SRX373...73041 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.ALL.20.Polr3d.AllCell.bed ...

  19. Low Complexity Connectivity Driven Dynamic Geometry Compression for 3D Tele-Immersion

    NARCIS (Netherlands)

    Mekuria, R.N.; Bulterman, D.C.A.; Cesar Garcia, P.S.

    2014-01-01

    Geometry based 3D Tele-Immersion is a novel emerging media application that involves on the fly reconstructed 3D mesh geometry. To enable real-time communication of such live reconstructed mesh geometry over a bandwidth limited link, fast dynamic geometry compression is needed. However, most tools a

  20. Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity.

    Science.gov (United States)

    Blaeser, Andreas; Duarte Campos, Daniela Filipa; Puster, Uta; Richtering, Walter; Stevens, Molly M; Fischer, Horst

    2016-02-04

    A microvalve-based bioprinting system for the manufacturing of high-resolution, multimaterial 3D-structures is reported. Applying a straightforward fluid-dynamics model, the shear stress at the nozzle site can precisely be controlled. Using this system, a broad study on how cell viability and proliferation potential are affected by different levels of shear stress is conducted. Complex, multimaterial 3D structures are printed with high resolution. This work pioneers the investigation of shear stress-induced cell damage in 3D bioprinting and might help to comprehend and improve the outcome of cell-printing studies in the future.

  1. Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy

    CERN Document Server

    Park, HyunJoo; Kim, Kyoohyun; Cho, Shin-Hyeong; Lee, Won-Ja; Kim, Youngchan; Lee, SangEun; Park, YongKeun

    2015-01-01

    Babesia microti causes emergency human babesiosis. However, little is known about the alterations in B. microti invaded red blood cells (Bm-RBCs) at the individual cell level. Through quantitative phase imaging techniques based on laser interferometry, we present the simultaneous measurements of structural, chemical, and mechanical modifications in individual mouse Bm-RBCs. 3-D refractive index maps of individual RBCs and in situ parasite vacuoles are imaged, from which total contents and concentration of dry mass are also precisely quantified. In addition, we examine the dynamic membrane fluctuation of Bm-RBCs, which provide information on cell membrane deformability.

  2. Visualization and 3D reconstruction of flame cells of Taenia solium (cestoda.

    Directory of Open Access Journals (Sweden)

    Laura E Valverde-Islas

    Full Text Available BACKGROUND: Flame cells are the terminal cells of protonephridial systems, which are part of the excretory systems of invertebrates. Although the knowledge of their biological role is incomplete, there is a consensus that these cells perform excretion/secretion activities. It has been suggested that the flame cells participate in the maintenance of the osmotic environment that the cestodes require to live inside their hosts. In live Platyhelminthes, by light microscopy, the cells appear beating their flames rapidly and, at the ultrastructural, the cells have a large body enclosing a tuft of cilia. Few studies have been performed to define the localization of the cytoskeletal proteins of these cells, and it is unclear how these proteins are involved in cell function. METHODOLOGY/PRINCIPAL FINDINGS: Parasites of two different developmental stages of T. solium were used: cysticerci recovered from naturally infected pigs and intestinal adults obtained from immunosuppressed and experimentally infected golden hamsters. Hamsters were fed viable cysticerci to recover adult parasites after one month of infection. In the present studies focusing on flame cells of cysticerci tissues was performed. Using several methods such as video, confocal and electron microscopy, in addition to computational analysis for reconstruction and modeling, we have provided a 3D visual rendition of the cytoskeletal architecture of Taenia solium flame cells. CONCLUSIONS/SIGNIFICANCE: We consider that visual representations of cells open a new way for understanding the role of these cells in the excretory systems of Platyhelminths. After reconstruction, the observation of high resolution 3D images allowed for virtual observation of the interior composition of cells. A combination of microscopic images, computational reconstructions and 3D modeling of cells appears to be useful for inferring the cellular dynamics of the flame cell cytoskeleton.

  3. Development of a version of the reactor dynamics code DYN3D applicable for High Temperature Reactors; Entwicklung einer Version des Reaktordynamikcodes DYN3D fuer Hochtemperaturreaktoren. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Ulrich; Apanasevich, Pavel; Baier, Silvio; Duerigen, Susan; Fridman, Emil; Grahn, Alexander; Kliem, Soeren; Merk, Bruno

    2012-07-15

    Based on the reactor dynamics code DYN3D for the simulation of transient processes in Light Water Reactors, a code version DYN3D-HTR for application to graphitemoderated, gas-cooled block-type high temperature reactors has been developed. This development comprises: - the methodical improvement of the 3D steady-state neutron flux calculation for the hexagonal geometry of the HTR fuel element blocks - the development of methods for the generation of homogenised cross section data taking into account the double heterogeneity of the fuel element block structure - the implementation of a 3D model for heat conduction and heat transport in the graphite matrix. The nodal method for neutron flux calculation based on SP3 transport approximation was extended to hexagonal fuel element geometry, where the hexagons are subdivided into triangles, thus the method had finally to be derived for triangular geometry. In triangular geometry, a subsequent subdivision of the hexagonal elements can be considered, and therefore, the effect of systematic mesh refinement can be studied. The algorithm was verified by comparison with Monte Carlo reference solutions, on the node-wise level, as well as also on the pin-wise level. New procedures were developed for the homogenization of the double-heterogeneous fuel element structures. One the one hand, the so-called Reactivity equivalent Physical Transformation (RPT), the two-step homogenization method based on 2D deterministic lattice calculations, was extended to cells with different temperatures of the materials. On the other hand, the progress in development of Monte Carlo methods for spectral calculations, in particular the development of the code SERPENT, opened a new, fully consistent 3D approach, where all details of the structures on fuel particle, fuel compact and fuel block level can be taken into account within one step. Moreover, a 3D heat conduction and heat transport model was integrated into DYN3D to be able to simulate radial

  4. 3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading

    Directory of Open Access Journals (Sweden)

    Freslier Marie

    2011-07-01

    Full Text Available Abstract Background Dynamic three-dimensional (3D deformation of the pelvic bones is a crucial factor in the successful design and longevity of complex orthopaedic oncological implants. The current solutions are often not very promising for the patient; thus it would be interesting to measure the dynamic 3D-deformation of the whole pelvic bone in order to get a more realistic dataset for a better implant design. Therefore we hypothesis if it would be possible to combine a material testing machine with a 3D video motion capturing system, used in clinical gait analysis, to measure the sub millimetre deformation of a whole pelvis specimen. Method A pelvis specimen was placed in a standing position on a material testing machine. Passive reflective markers, traceable by the 3D video motion capturing system, were fixed to the bony surface of the pelvis specimen. While applying a dynamic sinusoidal load the 3D-movement of the markers was recorded by the cameras and afterwards the 3D-deformation of the pelvis specimen was computed. The accuracy of the 3D-movement of the markers was verified with 3D-displacement curve with a step function using a manual driven 3D micro-motion-stage. Results The resulting accuracy of the measurement system depended on the number of cameras tracking a marker. The noise level for a marker seen by two cameras was during the stationary phase of the calibration procedure ± 0.036 mm, and ± 0.022 mm if tracked by 6 cameras. The detectable 3D-movement performed by the 3D-micro-motion-stage was smaller than the noise level of the 3D-video motion capturing system. Therefore the limiting factor of the setup was the noise level, which resulted in a measurement accuracy for the dynamic test setup of ± 0.036 mm. Conclusion This 3D test setup opens new possibilities in dynamic testing of wide range materials, like anatomical specimens, biomaterials, and its combinations. The resulting 3D-deformation dataset can be used for a better

  5. A unified viscous-spring artificial boundary for 3-D static and dynamic applications

    Institute of Scientific and Technical Information of China (English)

    LIU Jingbo; LI Bin

    2005-01-01

    A method to develop unified artificial boundaries for problems coupling static effect and dynamic effect is proposed. Based on the dynamic viscous-spring artificial boundary and the fundamental solution of static problems in elastic half space, a unified viscous-spring artificial boundary for 3-D static and dynamic applications is established.

  6. 3D Printing of Scaffold for Cells Delivery: Advances in Skin Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Deepti Singh

    2016-01-01

    Full Text Available Injury or damage to tissue and organs is a major health problem, resulting in about half of the world’s annual healthcare expenditure every year. Advances in the fields of stem cells (SCs and biomaterials processing have provided a tremendous leap for researchers to manipulate the dynamics between these two, and obtain a skin substitute that can completely heal the wounded areas. Although wound healing needs a coordinated interplay between cells, extracellular proteins and growth factors, the most important players in this process are the endogenous SCs, which activate the repair cascade by recruiting cells from different sites. Extra cellular matrix (ECM proteins are activated by these SCs, which in turn aid in cellular migrations and finally secretion of growth factors that can seal and heal the wounds. The interaction between ECM proteins and SCs helps the skin to sustain the rigors of everyday activity, and in an attempt to attain this level of functionality in artificial three-dimensional (3D constructs, tissue engineered biomaterials are fabricated using more advanced techniques such as bioprinting and laser assisted printing of the organs. This review provides a concise summary of the most recent advances that have been made in the area of polymer bio-fabrication using 3D bio printing used for encapsulating stem cells for skin regeneration. The focus of this review is to describe, in detail, the role of 3D architecture and arrangement of cells within this system that can heal wounds and aid in skin regeneration.

  7. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    Science.gov (United States)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-03-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work.

  8. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Schuetze, Jochen [ANSYS Germany GmbH, Darmstadt (Germany); Frank, Thomas [ANSYS Germany GmbH, Otterfing (Germany); Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)

    2011-07-15

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  9. Gel de plaquetas: arcabouço 3D para cultura celular Platelet gel: 3D scaffold for cell culture

    Directory of Open Access Journals (Sweden)

    Andrei Moroz

    2009-01-01

    Full Text Available INTRODUÇÃO: O reparo tissular é o objetivo final da cirurgia. A cultura celular requer arcabouço mecânico que dê suporte ao crescimento celular e difusão dos nutrientes. O uso do plasma rico em plaquetas (PRP como um arcabouço 3D possui diversas vantagens: é material biológico, de fácil absorção pós-transplante, rico em fatores de crescimento, em especial PDGF- ββ e TGF-β que estimula síntese de matriz extracelular na cartilagem. OBJETIVO: Desenvolver arcabouço 3D à base de PRP. MATERIAIS E MÉTODOS: Duas formas foram idealizadas: Sphere e Carpet. Condições estéreis foram utilizadas. O gel de plaquetas permaneceu em cultura celular, observado diariamente em microscópio invertido. RESULTADOS: Ambos arcabouços obtiveram sucesso, com aspectos positivos e negativos. DISCUSSÃO: A forma Sphere não aderiu ao plástico. Observou-se retração do gel e investigação ao microscópio dificultada devido às áreas opacas no campo visual. A forma Carpet não aderiu ao plástico e apresentou-se translúcida. O tempo de estudo foi de 20 dias. CONCLUSÕES: A produção de um arcabouço 3D PRP foi um sucesso, e trata-se de uma alternativa que necessita ser mais utilizado e investigado para que se consolide em uma rota eficiente e confiável na tecnologia de engenharia tissular, particularmente em cultura de tecido cartilaginoso.INTRODUCTION: Tissue repair has been the ultimate goal of surgery. Cell culture requires a mechanical scaffold that supports cell growth and nutrient diffusion. Using platelet-rich plasma (PRP as a 3D scaffold presents various advantages: it is a biological material, easily absorbed after transplantation, rich in growth factors, in particular, PDGF-ββ and TGF-β that stimulate extracellular matrix synthesis in cartilage culture. OBJECTIVE: To develop a PRP 3D scaffold. Material and METHODS: Two forms were idealized: Sphere and Carpet. Sterile conditions were used. The platelet gel remained in culture

  10. Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix.

    Science.gov (United States)

    Pedersen, John A; Boschetti, Federica; Swartz, Melody A

    2007-01-01

    Interstitial fluid flow has been shown to affect the organization and behavior of cells in 3D environments in vivo and in vitro, yet the forces driving such responses are not clear. Due to the complex architecture of the extracellular matrix (ECM) and the difficulty of measuring fluid flow near cells embedded in it, the levels of shear stress experienced by cells in this environment are typically estimated using bulk-averaged matrix parameters such as hydraulic permeability. While this is useful for estimating average stresses, it cannot yield insight into how local matrix fiber architecture-which is cell-controlled in the immediate pericellular environment-affects the local stresses imposed on the cell surface. To address this, we used computational fluid dynamics to study flow through an idealized mesh constructed of a cubic lattice of fibers simulating a typical in vitro collagen gel. We found that, in such high porosity matrices, the fibers strongly affect the flow fields near the cell, with peak shear stresses up to five times higher than those predicted by the Brinkman equation. We also found that minor remodeling of the fibers near the cell surface had major effects on the shear stress profile on the cell. These findings demonstrate the importance of fiber architecture to the fluid forces on a cell embedded in a 3D matrix, and also show how small modifications in the local ECM can lead to large changes in the mechanical environment of the cell.

  11. On the dynamics of jellyfish locomotion via 3D particle tracking velocimetry

    Science.gov (United States)

    Piper, Matthew; Kim, Jin-Tae; Chamorro, Leonardo P.

    2016-11-01

    The dynamics of jellyfish (Aurelia aurita) locomotion is experimentally studied via 3D particle tracking velocimetry. 3D locations of the bell tip are tracked over 1.5 cycles to describe the jellyfish path. Multiple positions of the jellyfish bell margin are initially tracked in 2D from four independent planes and individually projected in 3D based on the jellyfish path and geometrical properties of the setup. A cubic spline interpolation and the exponentially weighted moving average are used to estimate derived quantities, including velocity and acceleration of the jellyfish locomotion. We will discuss distinctive features of the jellyfish 3D motion at various swimming phases, and will provide insight on the 3D contraction and relaxation in terms of the locomotion, the steadiness of the bell margin eccentricity, and local Reynolds number based on the instantaneous mean diameter of the bell.

  12. Concentric Gel System to Study the Biophysical Role of Matrix Microenvironment on 3D Cell Migration

    Science.gov (United States)

    Kurniawan, Nicholas Agung; Chaudhuri, Parthiv Kant; Lim, Chwee Teck

    2015-01-01

    The ability of cells to migrate is crucial in a wide variety of cell functions throughout life from embryonic development and wound healing to tumor and cancer metastasis. Despite intense research efforts, the basic biochemical and biophysical principles of cell migration are still not fully understood, especially in the physiologically relevant three-dimensional (3D) microenvironments. Here, we describe an in vitro assay designed to allow quantitative examination of 3D cell migration behaviors. The method exploits the cell’s mechanosensing ability and propensity to migrate into previously unoccupied extracellular matrix (ECM). We use the invasion of highly invasive breast cancer cells, MDA-MB-231, in collagen gels as a model system. The spread of cell population and the migration dynamics of individual cells over weeks of culture can be monitored using live-cell imaging and analyzed to extract spatiotemporally-resolved data. Furthermore, the method is easily adaptable for diverse extracellular matrices, thus offering a simple yet powerful way to investigate the role of biophysical factors in the microenvironment on cell migration. PMID:25867104

  13. Investigation of Dynamic Crack Coalescence Using a Gypsum-Like 3D Printing Material

    Science.gov (United States)

    Jiang, Chao; Zhao, Gao-Feng; Zhu, Jianbo; Zhao, Yi-Xin; Shen, Luming

    2016-10-01

    Dynamic crack coalescence attracts great attention in rock mechanics. However, specimen preparation in experimental study is a time-consuming and difficult procedure. In this work, a gypsum-like material by powder bed and inkjet 3D printing technique was applied to produce specimens with preset cracks for split Hopkinson pressure bar (SHPB) test. From micro X-ray CT test, it was found that the 3D printing technique could successfully prepare specimens that contain preset cracks with width of 0.2 mm. Basic mechanical properties of the 3D printing material, i.e., the elastic modulus, the Poisson's ratio, the density, the compressive strength, the indirect tensile strength, and the fracture toughness, were obtained and reported. Unlike 3D printed specimens using polylactic acid, these gypsum-like specimens can produce failure patterns much closer to those observed in classical rock mechanical tests. Finally, the dynamic crack coalescence of the 3D printed specimens with preset cracks were captured using a high-speed camera during SHPB tests. Failure patterns of these 3D printed specimens are similar to the specimens made by Portland cement concrete. Our results indicate that sample preparation by 3D printing is highly competitive due to its quickness in prototyping, precision and flexibility on the geometry, and high material homogeneity.

  14. Platelet gel: 3D scaffold for cell culture

    OpenAIRE

    Andrei Moroz; Renata Aparecida de Camargo Bittencourt; Sérgio Luis Felisbino; Hamilton da Rosa Pereira; Rosana Rossi-Ferreira; Elenice Deffune

    2009-01-01

    INTRODUÇÃO: O reparo tissular é o objetivo final da cirurgia. A cultura celular requer arcabouço mecânico que dê suporte ao crescimento celular e difusão dos nutrientes. O uso do plasma rico em plaquetas (PRP) como um arcabouço 3D possui diversas vantagens: é material biológico, de fácil absorção pós-transplante, rico em fatores de crescimento, em especial PDGF- ββ e TGF-β que estimula síntese de matriz extracelular na cartilagem. OBJETIVO: Desenvolver arcabouço 3D à base de PR...

  15. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    Science.gov (United States)

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  16. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qian [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  17. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

    Science.gov (United States)

    Knowlton, Stephanie; Yu, Chu Hsiang; Ersoy, Fulya; Emadi, Sharareh; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-based desktop 3D printer and a two-step fabrication using an industrial 3D printer based on polyjet technology. This method, compared to conventional fabrication using relatively expensive materials and labor-intensive processes, presents a low-cost, rapid prototyping technique to print functional 3D microfluidic chips. We enhance the capabilities of 3D-printed microfluidic devices by coupling 3D cell encapsulation and spatial patterning within photocrosslinkable gelatin methacryloyl (GelMA). The platform presented here serves as a 3D culture environment for long-term cell culture and growth. Furthermore, we have demonstrated the ability to print complex 3D microfluidic channels to create predictable and controllable fluid flow regimes. Here, we demonstrate the novel use of 3D-printed microfluidic chips as controllable 3D cell culture environments, advancing the applicability of 3D printing to engineering physiological systems for future applications in bioengineering.

  18. Validation of Continuously Tagged MRI for the Measurement of Dynamic 3D Skeletal Muscle Tissue Deformation

    CERN Document Server

    Moerman, Kevin M; Simms, Ciaran K; Lamerichs, Rolf M; Stoker, Jaap; Nederveen, Aart J

    2016-01-01

    A SPAMM tagged MRI methodology is presented allowing continuous (3.3-3.6 Hz) sampling of 3D dynamic soft tissue deformation using non-segmented 3D acquisitions. The 3D deformation is reconstructed by the combination of 3 mutually orthogonal tagging directions, thus requiring only 3 repeated motion cycles. In addition a fully automatic post-processing framework is presented employing Gabor scale-space and filter-bank analysis for tag extrema segmentation and triangulated surface fitting aided by Gabor filter bank derived surface normals. Deformation is derived following tracking of tag surface triplet triangle intersections. The dynamic deformation measurements were validated using indentation tests (~20 mm deep at 12 mm/s) on a silicone gel soft tissue phantom containing contrasting markers which provide a reference measure of deformation. In addition, the techniques were evaluated in-vivo for dynamic skeletal muscle tissue deformation measurement during indentation of the biceps region of the upper arm in a ...

  19. Impact of dimensionality and network disruption on microrheology of cancer cells in 3D environments.

    Directory of Open Access Journals (Sweden)

    Michael Mak

    2014-11-01

    Full Text Available Dimensionality is a fundamental component that can have profound implications on the characteristics of physical systems. In cell biology, however, the majority of studies on cell physical properties, from rheology to force generation to migration, have been performed on 2D substrates, and it is not clear how a more realistic 3D environment influences cell properties. Here, we develop an integrated approach and demonstrate the combination of mitochondria-tracking microrheology, microfluidics, and Brownian dynamics simulations to explore the impact of dimensionality on intracellular mechanics and on the effects of intracellular disruption. Additionally, we consider both passive thermal and active motor-driven processes within the cell and demonstrate through modeling how active internal fluctuations are modulated via dimensionality. Our results demonstrate that metastatic breast cancer cells (MDA-MB-231 exhibit more solid-like internal motions in 3D compared to 2D, and actin network disruption via Cytochalasin D has a more pronounced effect on internal cell fluctuations in 2D. Our computational results and modeling show that motor-induced active stress fluctuations are enhanced in 2D, leading to increased local intracellular particle fluctuations and apparent fluid-like behavior.

  20. Sliding Hydrogels with Mobile Molecular Ligands and Crosslinks as 3D Stem Cell Niche.

    Science.gov (United States)

    Tong, Xinming; Yang, Fan

    2016-09-01

    The development of a sliding hydrogel with mobile crosslinks and biochemical ligands as a 3D stem cell niche is reported. The molecular mobility of this sliding hydrogel allows stem cells to reorganize the surrounding ligands and change their morphology in 3D. Without changing matrix stiffness, sliding hydrogels support efficient stem cell differentiation toward multiple lineages including adipogenesis, chondrogenesis, and osteogenesis.

  1. Static and dynamic stability analysis using 3D-DDA with incision body scheme

    Institute of Scientific and Technical Information of China (English)

    Wang Jianquan; Lin Gao; Liu Jun

    2006-01-01

    Discontinuous deformation analysis (DDA) provides a powerful numerical tool for the analysis of discontinuous media. This method has been widely applied to the 2D analysis of discontinuous deformation. However, it is hindered from analyzing 3D rock engineering problems mainly due to the lack of reliable 3D contact detection algorithms for polyhedra.Contact detection is a key in 3-D DDA analysis. The limitations and advantages of existing contact detection schemes are discussed in this paper, and a new approach, called the incision body (IB), is proposed, taking into account the advantages of the existing methods. A computer code 3DIB, which uses the IB scheme as a 3D contact detection algorithm, was programmed with Visual C++. Static and dynamic stability analysis for three realistic engineering problems has been carried out. Furthermore, the focus is on studying the stability of a gravity dam on jointed rock foundation and dynamic stability of a fractured gravity dam subject to earthquake shaking. The simulation results show that the program 3DIB and incision body scheme are capable of detecting 3D block contacts correctly and hence simulating the open-close and slide process of jointed block masses. In addition, the code 3DIB could provide an effective tool for evaluating the safety of 3D dam structures, which is quite important for engineering problems.

  2. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors.

    Science.gov (United States)

    Sart, Sébastien; Agathos, Spiros N; Li, Yan; Ma, Teng

    2016-01-01

    Human mesenchymal stem cells (hMSCs) have emerged as an important cell type in cell therapy and tissue engineering. In these applications, maintaining the therapeutic properties of hMSCs requires tight control of the culture environments and the structural cell organizations. Bioreactor systems are essential tools to achieve these goals in the clinical-scale expansion and tissue engineering applications. This review summarizes how different bioreactors provide cues to regulate the structure and the chemico-mechanical microenvironment of hMSCs with a focus on 3D organization. In addition to conventional bioreactors, recent advances in microfluidic bioreactors as a novel approach to better control the hMSC microenvironment are also discussed. These advancements highlight the key role of bioreactor systems in preserving hMSC's functional properties by providing dynamic and temporal regulation of in vitro cellular microenvironment.

  3. Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology.

    Science.gov (United States)

    Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio

    2014-06-30

    Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems.

  4. A 3D Hydrodynamic Model for Cytokinesis of Eukaryotic Cells

    Science.gov (United States)

    2014-08-01

    division or binary fission, which is the primary method for reproduction. For eukaryotic cells, it’s called cell mitotic process or mitosis . At the late...of cytokinesis in animal, yeast and plant cells. Experimental observations have provide us with a basic picture of cell mitosis . For eu- karyotic... mitosis and cytokinesis in mammalian cells. 2014 Special Focus on Rho GTPases, page e29770, 2014. [7] Ulrike S. Eggert, Timothy J. Mitchison, and

  5. The optimizations of CGH generation algorithms based on multiple GPUs for 3D dynamic holographic display

    Science.gov (United States)

    Yang, Dan; Liu, Juan; Zhang, Yingxi; Li, Xin; Wang, Yongtian

    2016-10-01

    Holographic display has been considered as a promising display technology. Currently, low-speed generation of holograms with big holographic data is one of crucial bottlenecks for three dimensional (3D) dynamic holographic display. To solve this problem, the acceleration method computation platform is presented based on look-up table point source method. The computer generated holograms (CGHs) acquisition is sped up by offline file loading and inline calculation optimization, where a pure phase CGH with gigabyte data is encoded to record an object with 10 MB sampling data. Both numerical simulation and optical experiment demonstrate that the CGHs with 1920×1080 resolution by the proposed method can be applied to the 3D objects reconstruction with high quality successfully. It is believed that the CGHs with huge data can be generated by the proposed method with high speed for 3D dynamic holographic display in near future.

  6. Introducing a Public Stereoscopic 3D High Dynamic Range (SHDR) Video Database

    Science.gov (United States)

    Banitalebi-Dehkordi, Amin

    2017-03-01

    High dynamic range (HDR) displays and cameras are paving their ways through the consumer market at a rapid growth rate. Thanks to TV and camera manufacturers, HDR systems are now becoming available commercially to end users. This is taking place only a few years after the blooming of 3D video technologies. MPEG/ITU are also actively working towards the standardization of these technologies. However, preliminary research efforts in these video technologies are hammered by the lack of sufficient experimental data. In this paper, we introduce a Stereoscopic 3D HDR database of videos that is made publicly available to the research community. We explain the procedure taken to capture, calibrate, and post-process the videos. In addition, we provide insights on potential use-cases, challenges, and research opportunities, implied by the combination of higher dynamic range of the HDR aspect, and depth impression of the 3D aspect.

  7. Intelligent Autonomous Primary 3D Feature Extraction in Vehicle System Dynamics' Analysis: Theory and Application

    Directory of Open Access Journals (Sweden)

    Annamária R. Várkonyi-Kóczy

    2008-01-01

    Full Text Available 3D model reconstruction plays a very important role in computer vision as wellas in different engineering applications. The determination of the 3D model from multipleimages is of key importance. One of the most important difficulties in autonomous 3Dreconstruction is the (automatic selection of the ‘significant’ points which carryinformation about the shape of the 3D bodies i.e. are characteristic from the model point ofview. Another problem to be solved is the point correspondence matching in differentimages.In this paper a 3D reconstruction technique is introduced, which is capable to determinethe 3D model of a scene without any external (human intervention. The method is based onrecent results of image processing, epipolar geometry, and intelligent and soft techniques.Possible applications of the presented algorithm in vehicle system dynamics are alsopresented. The results can be applied advantageously at other engineering fields, like carcrashanalysis, robot guiding, object recognition, supervision of 3D scenes, etc,. as well.

  8. Trans3D: a free tool for dynamical visualization of EEG activity transmission in the brain.

    Science.gov (United States)

    Blinowski, Grzegorz; Kamiński, Maciej; Wawer, Dariusz

    2014-08-01

    The problem of functional connectivity in the brain is in the focus of attention nowadays, since it is crucial for understanding information processing in the brain. A large repertoire of measures of connectivity have been devised, some of them being capable of estimating time-varying directed connectivity. Hence, there is a need for a dedicated software tool for visualizing the propagation of electrical activity in the brain. To this aim, the Trans3D application was developed. It is an open access tool based on widely available libraries and supporting both Windows XP/Vista/7(™), Linux and Mac environments. Trans3D can create animations of activity propagation between electrodes/sensors, which can be placed by the user on the scalp/cortex of a 3D model of the head. Various interactive graphic functions for manipulating and visualizing components of the 3D model and input data are available. An application of the Trans3D tool has helped to elucidate the dynamics of the phenomena of information processing in motor and cognitive tasks, which otherwise would have been very difficult to observe. Trans3D is available at: http://www.eeg.pl/.

  9. Impedance Spectroscopic Characterisation of Porosity in 3D Cell Culture Scaffolds with Different Channel Networks

    DEFF Research Database (Denmark)

    Canali, Chiara; Mohanty, Soumyaranjan; Heiskanen, Arto

    2015-01-01

    We present the application of electrochemical impedance spectroscopy (EIS) as a method for discriminating between different polydimethylsiloxane (PDMS) scaffolds for three-dimensional (3D) cell cultures. The validity of EIS characterisation for scaffolds having different degree of porosity...... serve as means of single-frequency measurements for fast scaffold characterization combined with in vitro monitoring of 3D cell cultures....

  10. 3D wake dynamics of the VAWT: experimental and numerical investigation

    NARCIS (Netherlands)

    Ferreira, C.; Hofemann, C.; Dixon, K.; Van Kuik, G.A.M.; Van Bussel, G.J.W.

    2010-01-01

    The Vertical Axis Wind Turbine, in its 2D form, is characterized by a complex unsteady aerodynamic flow, including dynamic stall and blade vortex interaction. Adding to this complexity, the 3D flow causes spanwise effects and the presence of trailing vorticity and tip vortices. The objective of the

  11. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    Science.gov (United States)

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  12. Effect of Ductile Agents on the Dynamic Behavior of SiC3D Network Composites

    Science.gov (United States)

    Zhu, Jingbo; Wang, Yangwei; Wang, Fuchi; Fan, Qunbo

    2016-10-01

    Co-continuous SiC ceramic composites using pure aluminum, epoxy, and polyurethane (PU) as ductile agents were developed. The dynamic mechanical behavior and failure mechanisms were investigated experimentally using the split Hopkinson pressure bar (SHPB) method and computationally by finite element (FE) simulations. The results show that the SiC3D/Al composite has the best overall performance in comparison with SiC3D/epoxy and SiC3D/PU composites. FE simulations are generally consistent with experimental data. These simulations provide valuable help in predicting mechanical strength and in interpreting the experimental results and failure mechanisms. They may be combined with micrographs for fracture characterizations of the composites. We found that interactions between the SiC phase and ductile agents under dynamic compression in the SHPB method are complex, and that interfacial condition is an important parameter that determines the mechanical response of SiC3D composites with a characteristic interlocking structure during dynamic compression. However, the effect of the mechanical properties of ductile agents on dynamic behavior of the composites is a second consideration in the production of the composites.

  13. Diagnositc value of 3D-gradient echo dynamic contrast enhanced MRI in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ik; Chung, Soo Young; Park, Hai Jung; Lee, Yul; Chung, Bong Wha; Shim, Jeong Won [Hallym Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-10-01

    To assess the usefulness of 3D-gradient echo dynamic contrast enhanced MRI (3D-DMRI) in the diagnosis of breast cancer and to determine the most useful parameter for this diagnosis. Using a 1.0T MR unit, (Magnetom, Siemens, Erlaugen, Germany), 3D-DMRI (TR/TE=3D30/12) with Gd-DTPA was performed in 38 cases of breast cancer, 22 of fibroadenoma, and in three normal volunteers. We retrospectively evaluated the findings according to the speed on dynamic study and maximal amount of contrast enhancement during the delayed phase;we calculated the contrast index and morphology of the cancers and compared diagnostic accuracy among these three diagnostic parameters. On conventional spin-echo T1-and T2-weighted images, there was no significant difference of signal intensity between benign fibroadenoma and breast carcinoma. Rapid contrast enhancement (within one minute) was noted in 35 breast cancer lesions (92.1%), but relatively low and slow contrast enhancement (after five minutes) was noted in three such lesions (7.9%). Gradual contrast enhancement was noted in 21 lesions of fibroadenoma(95.5%), but a moderate degree of rapid contrast enhancement (from three to five minutes) was noted in the other case (7.9%). of On the delayed enhanced phase of 3D-DMRI, the maximal amount of contrast enhancement showed no significant difference between fibroadenoma and cancer. On 3D-DMRI, an irregular, spiculated border, with high contrast enhancement was noted in all cases of breast cancer, in particular, irregular thick peripheral contrast enhancement with central necrosis was noted 11cases(28.9%). For the diagnosis of breast cancer, 3D-DMRI is a useful technique. Among the diagnostic criteria of speed, maximal amount of contrast enhancement and morphology, morphologic change after contrast enhancement study was the most useful diagnostic parameter.=20.

  14. Sample Preparation Strategies for Mass Spectrometry Imaging of 3D Cell Culture Models

    OpenAIRE

    Ahlf Wheatcraft, Dorothy R.; Liu, Xin; Hummon, Amanda B.

    2014-01-01

    Three dimensional cell cultures are attractive models for biological research. They combine the flexibility and cost-effectiveness of cell culture with some of the spatial and molecular complexity of tissue. For example, many cell lines form 3D structures given appropriate in vitro conditions. Colon cancer cell lines form 3D cell culture spheroids, in vitro mimics of avascular tumor nodules. While immunohistochemistry and other classical imaging methods are popular for monitoring the distribu...

  15. Bipotent mammary stem cells: now in amazing 3D

    NARCIS (Netherlands)

    van Amerongen, R.

    2014-01-01

    For many decades, developmental biologists and cancer researchers alike have been trying to understand the relationship between the basal and luminal cell compartments in the mouse mammary epithelium. Delineating the mammary stem and progenitor cell hierarchy will provide fundamental knowledge of ho

  16. Modulation measuring profilometry with cross grating projection and single shot for dynamic 3D shape measurement

    Science.gov (United States)

    Lu, Mingteng; Su, Xianyu; Cao, Yiping; You, Zhisheng; Zhong, Min

    2016-12-01

    In order to determine Dynamic 3-D shape with vertical measurement mode, a fast modulation measuring profilometry (MMP) with a cross grating projection and single shot is proposed. Unlike the previous methods, in our current projection system, one cross grating is projected by a special projection lens consisting of a common projection lens and a cylindrical lens. Due to the characteristics of cylindrical lens, the image of the vertical component and the horizontal component of the cross grating is separated in the image space, and the measuring range is just the space between the two image planes. Through a beam splitter, the CCD camera can coaxially capture the fringe pattern of the cross grating modulated by the testing object's shape. In one fringe pattern, by applying Fourier transform, filtering and inverse Fourier transform, the modulation corresponding to the vertical and horizontal components of the cross grating can be obtained respectively. Then the 3-D shape of the object can be reconstructed according to the mapping relationship between modulation and height, which was established by calibration process in advance. So the 3-D shape information can be recorded at the same speed of the frame rate of the CCD camera. This paper gives the principle of the proposed method and the set-up for measuring experiment and system calibration. The 3-D shape of a still object and a dynamic process of liquid vortex were measured and reconstructed in the experiments, and the results proved the method's feasibility. The advantage of the proposed method is that only one fringe pattern is needed to extract the modulation distribution and to reconstruct the 3-D shape of the object. Therefore, the proposed method can achieve high speed measurement and vertical measurement without shadow and occlusion. It can be used in the dynamic 3-D shape measurement and vibration analysis.

  17. Biofabrication of cell-loaded 3D spider silk constructs.

    Science.gov (United States)

    Schacht, Kristin; Jüngst, Tomasz; Schweinlin, Matthias; Ewald, Andrea; Groll, Jürgen; Scheibel, Thomas

    2015-02-23

    Biofabrication is an emerging and rapidly expanding field of research in which additive manufacturing techniques in combination with cell printing are exploited to generate hierarchical tissue-like structures. Materials that combine printability with cytocompatibility, so called bioinks, are currently the biggest bottleneck. Since recombinant spider silk proteins are non-immunogenic, cytocompatible, and exhibit physical crosslinking, their potential as a new bioink system was evaluated. Cell-loaded spider silk constructs can be printed by robotic dispensing without the need for crosslinking additives or thickeners for mechanical stabilization. Cells are able to adhere and proliferate with good viability over at least one week in such spider silk scaffolds. Introduction of a cell-binding motif to the spider silk protein further enables fine-tuned control over cell-material interactions. Spider silk hydrogels are thus a highly attractive novel bioink for biofabrication.

  18. Development of 3-D Hydrogel Culture Systems With On-Demand Cell Separation

    OpenAIRE

    Hamilton, Sharon K.; Bloodworth, Nathaniel C.; Massad, Christopher S.; Hammoudi, Taymour M.; Suri, Shalu; Yang, Peter J.; Lu, Hang; Temenoff, Johnna S

    2013-01-01

    Recently there has been an increased interest in the effects of paracrine signaling between groups of cells, particularly in the context of better understanding how stem cells contribute to tissue repair. Most current 3-D co-culture methods lack the ability to effectively separate 2 cell populations after the culture period, which is important for simultaneously analyzing the reciprocal effects of each cell type on the other. Here, we detail the development of a 3-D hydrogel co-culture system...

  19. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  20. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix.

    Science.gov (United States)

    Petrie, Ryan J; Koo, Hyun; Yamada, Kenneth M

    2014-08-29

    Cells use actomyosin contractility to move through three-dimensional (3D) extracellular matrices. Contractility affects the type of protrusions cells use to migrate in 3D, but the mechanisms are unclear. In this work, we found that contractility generated high-pressure lobopodial protrusions in human cells migrating in a 3D matrix. In these cells, the nucleus physically divided the cytoplasm into forward and rear compartments. Actomyosin contractility with the nucleoskeleton-intermediate filament linker protein nesprin-3 pulled the nucleus forward and pressurized the front of the cell. Reducing expression of nesprin-3 decreased and equalized the intracellular pressure. Thus, the nucleus can act as a piston that physically compartmentalizes the cytoplasm and increases the hydrostatic pressure between the nucleus and the leading edge of the cell to drive lamellipodia-independent 3D cell migration.

  1. Label free cell tracking in 3D tissue engineering constructs with high resolution imaging

    Science.gov (United States)

    Smith, W. A.; Lam, K.-P.; Dempsey, K. P.; Mazzocchi-Jones, D.; Richardson, J. B.; Yang, Y.

    2014-02-01

    Within the field of tissue engineering there is an emphasis on studying 3-D live tissue structures. Consequently, to investigate and identify cellular activities and phenotypes in a 3-D environment for all in vitro experiments, including shape, migration/proliferation and axon projection, it is necessary to adopt an optical imaging system that enables monitoring 3-D cellular activities and morphology through the thickness of the construct for an extended culture period without cell labeling. This paper describes a new 3-D tracking algorithm developed for Cell-IQ®, an automated cell imaging platform, which has been equipped with an environmental chamber optimized to enable capturing time-lapse sequences of live cell images over a long-term period without cell labeling. As an integral part of the algorithm, a novel auto-focusing procedure was developed for phase contrast microscopy equipped with 20x and 40x objectives, to provide a more accurate estimation of cell growth/trajectories by allowing 3-D voxels to be computed at high spatiotemporal resolution and cell density. A pilot study was carried out in a phantom system consisting of horizontally aligned nanofiber layers (with precise spacing between them), to mimic features well exemplified in cellular activities of neuronal growth in a 3-D environment. This was followed by detailed investigations concerning axonal projections and dendritic circuitry formation in a 3-D tissue engineering construct. Preliminary work on primary animal neuronal cells in response to chemoattractant and topographic cue within the scaffolds has produced encouraging results.

  2. Dynamical Relaxation of Coronal Magnetic Fields. III. 3D Spiral Nulls

    CERN Document Server

    Fuentes-Fernandez, Jorge

    2012-01-01

    Context: The majority of studies on stressed 3D magnetic null points consider magnetic reconnection driven by an external perturbation, but the formation of a genuine current sheet equilibrium remains poorly understood. This problem has been considered more extensively in two-dimensions, but lacks a generalization into 3D fields. Aims: 3D magnetic nulls are more complex than 2D nulls and the field can take a greater range of magnetic geometries local to the null. Here, we focus on one type and consider the dynamical non-resistive relaxation of 3D spiral nulls with initial spine-aligned current. We aim to provide a valid magnetohydrostatic equilibrium, and describe the electric current accumulations in various cases, involving a finite plasma pressure. Methods: A full MHD code is used, with the resistivity set to zero so that reconnection is not allowed, to run a series of experiments in which a perturbed spiral 3D null point is allowed to relax towards an equilibrium, via real, viscous damping forces. Changes...

  3. Local 3D matrix confinement determines division axis through cell shape.

    Science.gov (United States)

    He, Lijuan; Chen, Weitong; Wu, Pei-Hsun; Jimenez, Angela; Wong, Bin Sheng; San, Angela; Konstantopoulos, Konstantinos; Wirtz, Denis

    2016-02-01

    How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype.

  4. Spontaneous Electroless Galvanic Cell Deposition of 3D Hierarchical and Interlaced S-M-S Heterostructures.

    Science.gov (United States)

    Tan, Chuan Fu; Azmansah, Siti Aishah Bte; Zhu, Hai; Xu, Qing-Hua; Ho, Ghim Wei

    2017-01-01

    One-pot electroless galvanic cell deposition of a 3D hierarchical semiconductor-metal-semiconductor interlaced nanoarray is demonstrated. The fabricated 3D photoanode deviates from the typical planar geometry, and aims to optimize the effective surface area for light harvesting and long-range charge transfer-collection pathways.

  5. 3D tissue formation : the kinetics of human mesenchymal stem cells

    NARCIS (Netherlands)

    Higuera Sierra, Gustavo Andrés

    2010-01-01

    The main thesis in this book proposes that physical phenomena underlies the formation of three-dimensional (3D) tissue. In this thesis, tissue regeneration with mesenchymal stem cells was studied through the law of conservation of mass. MSCs proliferation and 3D tissue formation were explored from 2

  6. Fluid and cell behaviors along a 3D printed alginate/gelatin/fibrin channel.

    Science.gov (United States)

    Xu, Yufan; Wang, Xiaohong

    2015-08-01

    Three-dimensional (3D) cell manipulation is available with the integration of microfluidic technology and rapid prototyping techniques. High-Fidelity (Hi-Fi) constructs hold enormous therapeutic potential for organ manufacturing and regenerative medicine. In the present paper we introduced a quasi-three-dimensional (Q3D) model with parallel biocompatible alginate/gelatin/fibrin hurdles. The behaviors of fluids and cells along the microfluidic channels with various widths were studied. Cells inside the newly designed microfluidic channels attached and grew well. Morphological changes of adipose-derived stem cells (ADSCs) in both two-dimensional (2D) and 3D milieu were found on the printed constructs. Endothelialization occurred with the co-cultures of ADSCs and hepatocytes. This study provides insights into the interactions among fluids, cells and biomaterials, the behaviors of fluids and cells along the microfluidic channels, and the applications of Q3D techniques.

  7. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    Science.gov (United States)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-01-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work. PMID:28262671

  8. Melanoma cells undergo aggressive coalescence in a 3D Matrigel model that is repressed by anti-CD44

    Science.gov (United States)

    Voss, Edward; Kuhl, Spencer; Buchele, Emma C.; Klemme, Michael R.; Russell, Kanoe B.; Ambrose, Joseph; Soll, Benjamin A.; Bossler, Aaron; Milhem, Mohammed; Goldman, Charles

    2017-01-01

    Using unique computer-assisted 3D reconstruction software, it was previously demonstrated that tumorigenic cell lines derived from breast tumors, when seeded in a 3D Matrigel model, grew as clonal aggregates which, after approximately 100 hours, underwent coalescence mediated by specialized cells, eventually forming a highly structured large spheroid. Non-tumorigenic cells did not undergo coalescence. Because histological sections of melanomas forming in patients suggest that melanoma cells migrate and coalesce to form tumors, we tested whether they also underwent coalescence in a 3D Matrigel model. Melanoma cells exiting fragments of three independent melanomas or from secondary cultures derived from them, and cells from the melanoma line HTB-66, all underwent coalescence mediated by specialized cells in the 3D model. Normal melanocytes did not. However, coalescence of melanoma cells differed from that of breast-derived tumorigenic cell lines in that they 1) coalesced immediately, 2) underwent coalescence as individual cells as well as aggregates, 3) underwent coalescence far faster and 4) ultimately formed long, flat, fenestrated aggregates that were extremely dynamic. A screen of 51 purified monoclonal antibodies (mAbs) targeting cell surface-associated molecules revealed that two mAbs, anti-beta 1 integrin/(CD29) and anti-CD44, blocked melanoma cell coalescence. They also blocked coalescence of tumorigenic cells derived from a breast tumor. These results add weight to the commonality of coalescence as a characteristic of tumorigenic cells, as well as the usefulness of the 3D Matrigel model and software for both investigating the mechanisms regulating tumorigenesis and screening for potential anti-tumorigenesis mAbs. PMID:28264026

  9. Nonpolarized signaling reveals two distinct modes of 3D cell migration.

    Science.gov (United States)

    Petrie, Ryan J; Gavara, Núria; Chadwick, Richard S; Yamada, Kenneth M

    2012-04-30

    We search in this paper for context-specific modes of three-dimensional (3D) cell migration using imaging for phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and active Rac1 and Cdc42 in primary fibroblasts migrating within different 3D environments. In 3D collagen, PIP3 and active Rac1 and Cdc42 were targeted to the leading edge, consistent with lamellipodia-based migration. In contrast, elongated cells migrating inside dermal explants and the cell-derived matrix (CDM) formed blunt, cylindrical protrusions, termed lobopodia, and Rac1, Cdc42, and PIP3 signaling was nonpolarized. Reducing RhoA, Rho-associated protein kinase (ROCK), or myosin II activity switched the cells to lamellipodia-based 3D migration. These modes of 3D migration were regulated by matrix physical properties. Specifically, experimentally modifying the elasticity of the CDM or collagen gels established that nonlinear elasticity supported lamellipodia-based migration, whereas linear elasticity switched cells to lobopodia-based migration. Thus, the relative polarization of intracellular signaling identifies two distinct modes of 3D cell migration governed intrinsically by RhoA, ROCK, and myosin II and extrinsically by the elastic behavior of the 3D extracellular matrix.

  10. Design of 3D printed insert for hanging culture of Caco-2 cells.

    Science.gov (United States)

    Shen, Chong; Meng, Qin; Zhang, Guoliang

    2014-12-17

    A Caco-2 cell culture on Transwell, an alternative testing to animal or human testing used in evaluating drug intestinal permeability, incorrectly estimated the absorption of actively transported drugs due to the low expression of membrane transporters. Similarly, three-dimensional (3D) cultures of Caco-2 cells, which have been recommended to be more physiological relevant, were not superior to the Transwell culture in either accuracy or convenience in drug permeability testing. Using rapid 3D printing prototyping techniques, this study proposed a hanging culture of Caco-2 cells that performed with high accuracy in predicting drug permeability in humans. As found, hanging cultured Caco-2 cells formed a confluent monolayer and maintained high cell viability on the 3D printed insert. Compared with the normal culture on Transwell, the Caco-2 cells on the 3D printed insert presented ∼30-100% higher brush border enzyme activity and ∼2-7 folds higher activity of P-glycoprotein/multidrug resistance-associated protein 2 during 21 days of incubation. For the eight membrane transporter substrates, the predictive curve of the 3D printing culture exhibited better linearity (R(2) = 0.92) to the human oral adsorption than that of the Transwell culture (R(2) = 0.84), indicating better prediction by the 3D printing culture. In this regard, the 3D printed insert for hanging culture could be potentially developed as a convenient and low-cost tool for testing drug oral absorption.

  11. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI

    DEFF Research Database (Denmark)

    Rispoli, Vinicius C; Nielsen, Jon; Nayak, Krishna S

    2015-01-01

    approach in regularizing 3D flow fields is evaluated. METHODS: The proposed algorithm incorporates both a Newtonian fluid physics model and a linear PC-MRI signal model. The model equations are solved numerically using a modified CFD algorithm. The numerical solution corresponds to the optimal solution......BACKGROUND: Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid...... dynamics (CFD) calculations. CFD provides arbitrarily high resolution, but its accuracy hinges on model assumptions, while velocity fields measured with PC-MRI generally do not satisfy the equations of fluid dynamics, provide limited resolution, and suffer from partial volume effects. The purpose...

  12. PRONTO3D users` instructions: A transient dynamic code for nonlinear structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Attaway, S.W.; Mello, F.J.; Heinstein, M.W.; Swegle, J.W.; Ratner, J.A. [Sandia National Labs., Albuquerque, NM (United States); Zadoks, R.I. [Univ. of Texas, El Paso, TX (United States)

    1998-06-01

    This report provides an updated set of users` instructions for PRONTO3D. PRONTO3D is a three-dimensional, transient, solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Eight-node, uniform strain, hexahedral elements and four-node, quadrilateral, uniform strain shells are used in the finite element formulation. An adaptive time step control algorithm is used to improve stability and performance in plasticity problems. Hourglass distortions can be eliminated without disturbing the finite element solution using either the Flanagan-Belytschko hourglass control scheme or an assumed strain hourglass control scheme. All constitutive models in PRONTO3D are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. A robust contact algorithm allows for the impact and interaction of deforming contact surfaces of quite general geometry. The Smooth Particle Hydrodynamics method has been embedded into PRONTO3D using the contact algorithm to couple it with the finite element method.

  13. Neural cell 3D microtissue formation is marked by cytokines' up-regulation.

    Directory of Open Access Journals (Sweden)

    Yinzhi Lai

    Full Text Available Cells cultured in three dimensional (3D scaffolds as opposed to traditional two-dimensional (2D substrates have been considered more physiologically relevant based on their superior ability to emulate the in vivo environment. Combined with stem cell technology, 3D cell cultures can provide a promising alternative for use in cell-based assays or biosensors in non-clinical drug discovery studies. To advance 3D culture technology, a case has been made for identifying and validating three-dimensionality biomarkers. With this goal in mind, we conducted a transcriptomic expression comparison among neural progenitor cells cultured on 2D substrates, 3D porous polystyrene scaffolds, and as 3D neurospheres (in vivo surrogate. Up-regulation of cytokines as a group in 3D and neurospheres was observed. A group of 13 cytokines were commonly up-regulated in cells cultured in polystyrene scaffolds and neurospheres, suggesting potential for any or a combination from this list to serve as three-dimensionality biomarkers. These results are supportive of further cytokine identification and validation studies with cells from non-neural tissue.

  14. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models.

    Directory of Open Access Journals (Sweden)

    Cemal Cagatay Bilgin

    Full Text Available BioSig3D is a computational platform for high-content screening of three-dimensional (3D cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i morphogenesis of a panel of human mammary epithelial cell lines (HMEC, and (ii heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation.

  15. 3D printing – a key technology for tailored biomedical cell culture lab ware

    Directory of Open Access Journals (Sweden)

    Schmieder Florian

    2016-09-01

    Full Text Available Today’s 3D printing technologies offer great possibilities for biomedical researchers to create their own specific laboratory equipment. With respect to the generation of ex vivo vascular perfusion systems this will enable new types of products that will embed complex 3D structures possibly coupled with cell loaded scaffolds closely reflecting the in-vivo environment. Moreover this could lead to microfluidic devices that should be available in small numbers of pieces at moderate prices. Here, we will present first results of such 3D printed cell culture systems made from plastics and show their use for scaffold based applications.

  16. Dynamic WIFI-Based Indoor Positioning in 3D Virtual World

    Science.gov (United States)

    Chan, S.; Sohn, G.; Wang, L.; Lee, W.

    2013-11-01

    A web-based system based on the 3DTown project was proposed using Google Earth plug-in that brings information from indoor positioning devices and real-time sensors into an integrated 3D indoor and outdoor virtual world to visualize the dynamics of urban life within the 3D context of a city. We addressed limitation of the 3DTown project with particular emphasis on video surveillance camera used for indoor tracking purposes. The proposed solution was to utilize wireless local area network (WLAN) WiFi as a replacement technology for localizing objects of interest due to the wide spread availability and large coverage area of WiFi in indoor building spaces. Indoor positioning was performed using WiFi without modifying existing building infrastructure or introducing additional access points (AP)s. A hybrid probabilistic approach was used for indoor positioning based on previously recorded WiFi fingerprint database in the Petrie Science and Engineering building at York University. In addition, we have developed a 3D building modeling module that allows for efficient reconstruction of outdoor building models to be integrated with indoor building models; a sensor module for receiving, distributing, and visualizing real-time sensor data; and a web-based visualization module for users to explore the dynamic urban life in a virtual world. In order to solve the problems in the implementation of the proposed system, we introduce approaches for integration of indoor building models with indoor positioning data, as well as real-time sensor information and visualization on the web-based system. In this paper we report the preliminary results of our prototype system, demonstrating the system's capability for implementing a dynamic 3D indoor and outdoor virtual world that is composed of discrete modules connected through pre-determined communication protocols.

  17. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  18. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs.

    Science.gov (United States)

    Kolesky, David B; Truby, Ryan L; Gladman, A Sydney; Busbee, Travis A; Homan, Kimberly A; Lewis, Jennifer A

    2014-05-21

    A new bioprinting method is reported for fabricating 3D tissue constructs replete with vasculature, multiple types of cells, and extracellular matrix. These intricate, heterogeneous structures are created by precisely co-printing multiple materials, known as bioinks, in three dimensions. These 3D micro-engineered environments open new -avenues for drug screening and fundamental studies of wound healing, angiogenesis, and stem-cell niches.

  19. Pico-projector-based optical sectioning microscopy for 3D chlorophyll fluorescence imaging of mesophyll cells

    Science.gov (United States)

    Chen, Szu-Yu; Hsu, Yu John; Yeh, Chia-Hua; Chen, S.-Wei; Chung, Chien-Han

    2015-03-01

    A pico-projector-based optical sectioning microscope (POSM) was constructed using a pico-projector to generate structured illumination patterns. A net rate of 5.8 × 106 pixel/s and sub-micron spatial resolution in three-dimensions (3D) were achieved. Based on the pico-projector’s flexibility in pattern generation, the characteristics of POSM with different modulation periods and at different imaging depths were measured and discussed. With the application of different modulation periods, 3D chlorophyll fluorescence imaging of mesophyll cells was carried out in freshly plucked leaves of four species without sectioning or staining. For each leaf, an average penetration depth of 120 μm was achieved. Increasing the modulation period along with the increment of imaging depth, optical sectioning images can be obtained with a compromise between the axial resolution and signal-to-noise ratio. After ∼30 min imaging on the same area, photodamage was hardly observed. Taking the advantages of high speed and low damages of POSM, the investigation of the dynamic fluorescence responses to temperature changes was performed under three different treatment temperatures. The three embedded blue, green and red light-emitting diode light sources were applied to observe the responses of the leaves with different wavelength excitation.

  20. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering.

    Science.gov (United States)

    Lee, Jin Woo; Choi, Yeong-Jin; Yong, Woon-Jae; Pati, Falguni; Shim, Jin-Hyung; Kang, Kyung Shin; Kang, In-Hye; Park, Jaesung; Cho, Dong-Woo

    2016-01-12

    Several studies have focused on the regeneration of liver tissue in a two-dimensional (2D) planar environment, whereas actual liver tissue is three-dimensional (3D). Cell printing technology has been successfully utilized for building 3D structures; however, the poor mechanical properties of cell-laden hydrogels are a major concern. Here, we demonstrate the printing of a 3D cell-laden construct and its application to liver tissue engineering using 3D cell printing technology through a multi-head tissue/organ building system. Polycaprolactone (PCL) was used as a framework material because of its excellent mechanical properties. Collagen bioink containing three different types of cells-hepatocytes (HCs), human umbilical vein endothelial cells , and human lung fibroblasts--was infused into the canals of a PCL framework to induce the formation of capillary--like networks and liver cell growth. A co-cultured 3D microenvironment of the three types of cells was successfully established and maintained. The vascular formation and functional abilities of HCs (i.e., albumin secretion and urea synthesis) demonstrated that the heterotypic interaction among HCs and nonparenchymal cells increased the survivability and functionality of HCs within the collagen gel. Therefore, our results demonstrate the prospect of using cell printing technology for the creation of heterotypic cellular interaction within a structure for liver tissue engineering.

  1. 3D dosimetric validation of motion compensation concepts in radiotherapy using an anthropomorphic dynamic lung phantom.

    Science.gov (United States)

    Mann, P; Witte, M; Moser, T; Lang, C; Runz, A; Johnen, W; Berger, M; Biederer, J; Karger, C P

    2017-01-21

    In this study, we developed a new setup for the validation of clinical workflows in adaptive radiation therapy, which combines a dynamic ex vivo porcine lung phantom and three-dimensional (3D) polymer gel dosimetry. The phantom consists of an artificial PMMA-thorax and contains a post mortem explanted porcine lung to which arbitrary breathing patterns can be applied. A lung tumor was simulated using the PAGAT (polyacrylamide gelatin gel fabricated at atmospheric conditions) dosimetry gel, which was evaluated in three dimensions by magnetic resonance imaging (MRI). To avoid bias by reaction with oxygen and other materials, the gel was collocated inside a BAREX(™) container. For calibration purposes, the same containers with eight gel samples were irradiated with doses from 0 to 7 Gy. To test the technical feasibility of the system, a small spherical dose distribution located completely within the gel volume was planned. Dose delivery was performed under static and dynamic conditions of the phantom with and without motion compensation by beam gating. To verify clinical target definition and motion compensation concepts, the entire gel volume was homogeneously irradiated applying adequate margins in case of the static phantom and an additional internal target volume in case of dynamically operated phantom without and with gated beam delivery. MR-evaluation of the gel samples and comparison of the resulting 3D dose distribution with the planned dose distribution revealed a good agreement for the static phantom. In case of the dynamically operated phantom without motion compensation, agreement was very poor while additional application of motion compensation techniques restored the good agreement between measured and planned dose. From these experiments it was concluded that the set up with the dynamic and anthropomorphic lung phantom together with 3D-gel dosimetry provides a valuable and versatile tool for geometrical and dosimetrical validation of motion compensated

  2. 3D-VAS--initial results from computerized visualization of dynamic occlusion.

    Science.gov (United States)

    Ruge, S; Kordass, B

    2008-01-01

    Visualization of the dynamic occlusion is one of the central tasks in both clinical dentistry and dental engineering. Many aspects of dynamic occlusion, such as the interocclusal function in the posterior region, cannot be seen directly clinically and at best can be recorded with contact paper. Therefore, analyses of the dynamic occlusion using mounted models in the articulator are unavoidable in many cases for reproduction of dynamic occlusion. However, the reproduction of dynamic occlusion in the mechanical articulator has clear restrictions inherent to the process, but also caused by biological variability. Virtual articulators can expediently supplement mechanical articulators, since with them it is possible to display in relation to time unusual and extraordinary perspectives, such as sectional images and flowing, sliding contact points. One of the latest developments in the field of virtual articulation is the 3D virtual articulation system module of the Zebris company, D-Isny. By means of a specially developed coupling tray, 3D-scanned rows of teeth can be matched with computerized motion recordings of mandibular function. The software displays the movements of the 3D-scanned rows of teeth not only with jaw motion but also with chewing motion--therefore movements under chewing pressure--in real time and facilitates special analytical methods transcending mechanical occlusion analysis in conventional articulators: This includes displays of the strength of the contact points and surfaces, the occurrence of the contact points in relation to time, sectional images of the dentition, analyses of the interocclusal gap in the occlusal region, etc. This software and its possibilities are described and explained by reference to individual cases.

  3. 3D dosimetric validation of motion compensation concepts in radiotherapy using an anthropomorphic dynamic lung phantom

    Science.gov (United States)

    Mann, P.; Witte, M.; Moser, T.; Lang, C.; Runz, A.; Johnen, W.; Berger, M.; Biederer, J.; Karger, C. P.

    2017-01-01

    In this study, we developed a new setup for the validation of clinical workflows in adaptive radiation therapy, which combines a dynamic ex vivo porcine lung phantom and three-dimensional (3D) polymer gel dosimetry. The phantom consists of an artificial PMMA-thorax and contains a post mortem explanted porcine lung to which arbitrary breathing patterns can be applied. A lung tumor was simulated using the PAGAT (polyacrylamide gelatin gel fabricated at atmospheric conditions) dosimetry gel, which was evaluated in three dimensions by magnetic resonance imaging (MRI). To avoid bias by reaction with oxygen and other materials, the gel was collocated inside a BAREX™ container. For calibration purposes, the same containers with eight gel samples were irradiated with doses from 0 to 7 Gy. To test the technical feasibility of the system, a small spherical dose distribution located completely within the gel volume was planned. Dose delivery was performed under static and dynamic conditions of the phantom with and without motion compensation by beam gating. To verify clinical target definition and motion compensation concepts, the entire gel volume was homogeneously irradiated applying adequate margins in case of the static phantom and an additional internal target volume in case of dynamically operated phantom without and with gated beam delivery. MR-evaluation of the gel samples and comparison of the resulting 3D dose distribution with the planned dose distribution revealed a good agreement for the static phantom. In case of the dynamically operated phantom without motion compensation, agreement was very poor while additional application of motion compensation techniques restored the good agreement between measured and planned dose. From these experiments it was concluded that the set up with the dynamic and anthropomorphic lung phantom together with 3D-gel dosimetry provides a valuable and versatile tool for geometrical and dosimetrical validation of motion compensated

  4. Characterisation of dynamic couplings at lower limb residuum/socket interface using 3D motion capture.

    Science.gov (United States)

    Tang, Jinghua; McGrath, Michael; Laszczak, Piotr; Jiang, Liudi; Bader, Dan L; Moser, David; Zahedi, Saeed

    2015-12-01

    Design and fitting of artificial limbs to lower limb amputees are largely based on the subjective judgement of the prosthetist. Understanding the science of three-dimensional (3D) dynamic coupling at the residuum/socket interface could potentially aid the design and fitting of the socket. A new method has been developed to characterise the 3D dynamic coupling at the residuum/socket interface using 3D motion capture based on a single case study of a trans-femoral amputee. The new model incorporated a Virtual Residuum Segment (VRS) and a Socket Segment (SS) which combined to form the residuum/socket interface. Angular and axial couplings between the two segments were subsequently determined. Results indicated a non-rigid angular coupling in excess of 10° in the quasi-sagittal plane and an axial coupling of between 21 and 35 mm. The corresponding angular couplings of less than 4° and 2° were estimated in the quasi-coronal and quasi-transverse plane, respectively. We propose that the combined experimental and analytical approach adopted in this case study could aid the iterative socket fitting process and could potentially lead to a new socket design.

  5. Disks controlling chaos in a 3D dynamical model for elliptical galaxies

    CERN Document Server

    Zotos, Euaggelos E

    2011-01-01

    A 3D dynamical model with a quasi-homogeneous core and a disk component is used for the chaos control in the central parts of elliptical galaxy. Numerical experiments in the 2D system show a very complicated phase plane with a large chaotic sea, considerable sticky layers and a large number of islands, produced by secondary resonances. When the mass of the disk increases, the chaotic regions decrease gradually, and, finally, a new phase plane with only regular orbits appears. This evolution indicates that disks in elliptical galaxies can act as the chaos controllers. Starting from the results obtained in the 2D system, we locate the regions in the phase space of the 3D system, producing regular and chaotic orbits. For this we introduce and use a new dynamical parameter, the S(w) spectrum, which proves to be useful as a fast indicator and allows us to distinguish the regular motion from chaos in the 3D potentials. Other methods for detecting chaos are also discussed.

  6. Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces.

    Science.gov (United States)

    Pedersen, John A; Lichter, Seth; Swartz, Melody A

    2010-03-22

    Interstitial flow is an important regulator of various cell behaviors both in vitro and in vivo, yet the forces that fluid flow imposes on cells embedded in a 3D extracellular matrix (ECM), and the effects of matrix architecture on those forces, are not well understood. Here, we demonstrate how fiber alignment can affect the shear and pressure forces on the cell and ECM. Using computational fluid dynamics simulations, we show that while the solutions of the Brinkman equation accurately estimate the average fluid shear stress and the drag forces on a cell within a 3D fibrous medium, the distribution of shear stress on the cellular surface as well as the peak shear stresses remain intimately related to the pericellular fiber architecture and cannot be estimated using bulk-averaged properties. We demonstrate that perpendicular fiber alignment of the ECM yields lower shear stress and pressure forces on the cells and higher stresses on the ECM, leading to decreased permeability, while parallel fiber alignment leads to higher stresses on cells and increased permeability, as compared to a cubic lattice arrangement. The Spielman-Goren permeability relationships for fibrous media agreed well with CFD simulations of flow with explicitly considered fibers. These results suggest that the experimentally observed active remodeling of ECM fibers by fibroblasts under interstitial flow to a perpendicular alignment could serve to decrease the shear and drag forces on the cell.

  7. Magnetohydrodynamics dynamical relaxation of coronal magnetic fields. III. 3D spiral nulls

    Science.gov (United States)

    Fuentes-Fernández, J.; Parnell, C. E.

    2012-08-01

    Context. The majority of studies on stressed 3D magnetic null points consider magnetic reconnection driven by an external perturbation, but the formation of a genuine current sheet equilibrium remains poorly understood. This problem has been considered more extensively in two dimensions, but lacks a generalization into 3D fields. Aims: 3D magnetic nulls are more complex than 2D nulls and the field can take a greater range of magnetic geometries local to the null. Here, we focus on one type and consider the dynamical non-resistive relaxation of 3D spiral nulls with initial spine-aligned current. We aim to provide a valid magnetohydrostatic equilibrium, and describe the electric current accumulations in various cases, involving a finite plasma pressure. Methods: A full MHD code was used, with the resistivity set to zero so that reconnection is not allowed, to run a series of experiments in which a perturbed spiral 3D null point was allowed to relax towards an equilibrium via real, viscous damping forces. Changes to the initial plasma pressure and other magnetic parameters were systematically investigated. Results: For the axisymmetric case, the evolution of the field and the plasma is such that it concentrates the current density into two cone-shaped regions along the spine, thus concentrating the twist of the magnetic field around the spine, leaving a radial configuration in the fan plane. The plasma pressure redistributes to maintain the current density accumulations. However, it is found that changes in the initial plasma pressure do not significantly modify the final state. In the cases where the initial magnetic field is not axisymmetric, an infinite-time singularity of current perpendicular to the fan is found at the location of the null.

  8. Measurement of particle trajectories, dynamics, surface adhesion and detachment in near-wall shear flows using 3D velocimetry

    Science.gov (United States)

    Guasto, Jeffrey; Schmidt, Brian; Lawrence, Michael; Breuer, Kenneth

    2007-11-01

    Three-dimensional total internal reflection velocimetry (3D-TIRV) is used to measure the trajectories of fluorescent tracer particles within 200 nm of a wall. Diffusion and shear-induced motion can result in mean velocity measurement errors, and by taking measurements using different particle sizes and sampling times, we quantify these effects and compare with theory. We also use 3D-TIRV to observe and characterize the adhesion, surface rolling and release dynamics of particles that can adhere to the surface through the action of biological binding proteins. Particles coated with P-Selectin are allowed to adhere to and detach from a PSGL-1-coated microchannel surface, modeling the interaction between leukocytes (white blood cells) and blood vessels, respectively. Binding affinities, bond strengths and hydrodynamic interactions are inferred from the trajectory data.

  9. The computer simulation of 3d gas dynamics in a gas centrifuge

    Science.gov (United States)

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there.

  10. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.

    Energy Technology Data Exchange (ETDEWEB)

    Mock, Raymond Cecil

    2007-06-01

    The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

  11. Nonlinear dynamics of Airy-Vortex 3D wave packets: Emission of vortex light waves

    CERN Document Server

    Driben, Rodislav

    2014-01-01

    The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Due to the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and non-zero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse, especially those having small width.

  12. Nonlinear dynamics of Airy-vortex 3D wave packets: emission of vortex light waves.

    Science.gov (United States)

    Driben, Rodislav; Meier, Torsten

    2014-10-01

    The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Because of the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and nonzero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse.

  13. Dynamic Characteristic Analysis of Linear DC Motor by 3D EMCN Considering Input Voltage

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kyung Ho; Yeom, Sang Bu [Changwon National University, Changwon(Korea); Hong, JUNG Pyo; Hur Jin; Kang Do Hyunc [Hanyang University(Seoul Campus), Seoul(Korea)

    2002-02-01

    In order to design the Linear DC Motor (LDM) With improved characteristics, transient and steady state analysis are required. Furthermore, 3D analysis is also needed to analyze the precise characteristics like thrust, time harmonics. This paper deals with the transient and dynamic characteristic analysis if LDM by coupling of external circuit and motion equation using 3D Equivalent Magnetic Circuit Network Method (EMCN). For the three dimensional analysis of electric machine, EMCN is very effective method that ensures high accuracy similar to FEM and short computation time. Also, The modeling by EMCN easily allows the mover to move with respect to the Sartre at each time Also, and the spatial moving step is determined by the solution of the mechanical motion equation and the computed electromagnetic thrust. The results are compared with experimental ones to clarify the usefulness and verify the accuracy of the proposed method. (author). 11 refs., 20 figs., 2 tabs.

  14. Fast isotropic banding-free bSSFP imaging using 3D dynamically phase-cycled radial bSSFP (3D DYPR-SSFP)

    Energy Technology Data Exchange (ETDEWEB)

    Benkert, Thomas; Blaimer, Martin; Breuer, Felix A. [Research Center Magnetic Resonance Bavaria (MRB), Wuerzburg (Germany); Ehses, Philipp [Tuebingen Univ. (Germany). Dept. of Neuroimaging; Max Planck Institute for Biological Cybernetics, Tuebingen (Germany). High-Field MR Center; Jakob, Peter M. [Research Center Magnetic Resonance Bavaria (MRB), Wuerzburg (Germany); Wuerzburg Univ. (Germany). Dept. of Experimental Physics 5

    2016-05-01

    Aims: Dynamically phase-cycled radial balanced steady-state free precession (DYPR-SSFP) is a method for efficient banding artifact removal in bSSFP imaging. Based on a varying radiofrequency (RF) phase-increment in combination with a radial trajectory, DYPR-SSFP allows obtaining a banding-free image out of a single acquired k-space. The purpose of this work is to present an extension of this technique, enabling fast three-dimensional isotropic banding-free bSSFP imaging. Methods: While banding artifact removal with DYPR-SSFP relies on the applied dynamic phase-cycle, this aspect can lead to artifacts, at least when the number of acquired projections lies below a certain limit. However, by using a 3D radial trajectory with quasi-random view ordering for image acquisition, this problem is intrinsically solved, enabling 3D DYPR-SSFP imaging at or even below the Nyquist criterion. The approach is validated for brain and knee imaging at 3 Tesla. Results: Volumetric, banding-free images were obtained in clinically acceptable scan times with an isotropic resolution up to 0.56 mm. Conclusion: The combination of DYPR-SSFP with a 3D radial trajectory allows banding-free isotropic volumetric bSSFP imaging with no expense of scan time. Therefore, this is a promising candidate for clinical applications such as imaging of cranial nerves or articular cartilage.

  15. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy.

    Science.gov (United States)

    Jiang, Huaidong; Song, Changyong; Chen, Chien-Chun; Xu, Rui; Raines, Kevin S; Fahimian, Benjamin P; Lu, Chien-Hung; Lee, Ting-Kuo; Nakashima, Akio; Urano, Jun; Ishikawa, Tetsuya; Tamanoi, Fuyuhiko; Miao, Jianwei

    2010-06-22

    Microscopy has greatly advanced our understanding of biology. Although significant progress has recently been made in optical microscopy to break the diffraction-limit barrier, reliance of such techniques on fluorescent labeling technologies prohibits quantitative 3D imaging of the entire contents of cells. Cryoelectron microscopy can image pleomorphic structures at a resolution of 3-5 nm, but is only applicable to thin or sectioned specimens. Here, we report quantitative 3D imaging of a whole, unstained cell at a resolution of 50-60 nm by X-ray diffraction microscopy. We identified the 3D morphology and structure of cellular organelles including cell wall, vacuole, endoplasmic reticulum, mitochondria, granules, nucleus, and nucleolus inside a yeast spore cell. Furthermore, we observed a 3D structure protruding from the reconstructed yeast spore, suggesting the spore germination process. Using cryogenic technologies, a 3D resolution of 5-10 nm should be achievable by X-ray diffraction microscopy. This work hence paves a way for quantitative 3D imaging of a wide range of biological specimens at nanometer-scale resolutions that are too thick for electron microscopy.

  16. Label-free characterization of white blood cells by measuring 3D refractive index maps

    CERN Document Server

    Yoon, Jonghee; Park, HyunJoo; Choi, Chulhee; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The characterization of white blood cells (WBCs) is crucial for blood analyses and disease diagnoses. However, current standard techniques rely on cell labeling, a process which imposes significant limitations. Here we present three-dimensional (3D) optical measurements and the label-free characterization of mouse WBCs using optical diffraction tomography. 3D refractive index (RI) tomograms of individual WBCs are constructed from multiple two-dimensional quantitative phase images of samples illuminated at various angles of incidence. Measurements of the 3D RI tomogram of WBCs enable the separation of heterogeneous populations of WBCs using quantitative morphological and biochemical information. Time-lapse tomographic measurements also provide the 3D trajectory of micrometer-sized beads ingested by WBCs. These results demonstrate that optical diffraction tomography can be a useful and versatile tool for the study of WBCs.

  17. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels

    Science.gov (United States)

    Lai, Janice H.; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-01

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  18. High sensitivity plasmonic biosensor based on nanoimprinted quasi 3D nanosquares for cell detection

    Science.gov (United States)

    Zhu, Shuyan; Li, Hualin; Yang, Mengsu; Pang, Stella W.

    2016-07-01

    Quasi three-dimensional (3D) plasmonic nanostructures consisting of Au nanosquares on top of SU-8 nanopillars and Au nanoholes on the bottom were developed and fabricated using nanoimprint lithography with simultaneous thermal and UV exposure. These 3D plasmonic nanostructures were used to detect cell concentration of lung cancer A549 cells, retinal pigment epithelial (RPE) cells, and breast cancer MCF-7 cells. Nanoimprint technology has the advantage of producing high uniformity plasmonic nanostructures for such biosensors. Multiple resonance modes were observed in these quasi 3D plasmonic nanostructures. The hybrid coupling of localized surface plasmon resonances and Fabry-Perot cavity modes in the quasi 3D nanostructures resulted in high sensitivity of 496 nm/refractive index unit. The plasmonic resonance peak wavelength and sensitivity could be tuned by varying the Au thickness. Resonance peak shifts for different cells at the same concentration were distinct due to their different cell area and confluency. The cell concentration detection limit covered a large range of 5 × 102 to 1 × 107 cells ml-1 with these new plasmonic nanostructures. They also provide a large resonance peak shift of 51 nm for as little as 0.08 cells mm-2 of RPE cells for high sensitivity cell detection.

  19. Representation and coding of large-scale 3D dynamic maps

    Science.gov (United States)

    Cohen, Robert A.; Tian, Dong; Krivokuća, Maja; Sugimoto, Kazuo; Vetro, Anthony; Wakimoto, Koji; Sekiguchi, Shunichi

    2016-09-01

    combined with depth and color measurements of the surrounding environment. Localization could be achieved with GPS, inertial measurement units (IMU), cameras, or combinations of these and other devices, while the depth measurements could be achieved with time-of-flight, radar or laser scanning systems. The resulting 3D maps, which are composed of 3D point clouds with various attributes, could be used for a variety of applications, including finding your way around indoor spaces, navigating vehicles around a city, space planning, topographical surveying or public surveying of infrastructure and roads, augmented reality, immersive online experiences, and much more. This paper discusses application requirements related to the representation and coding of large-scale 3D dynamic maps. In particular, we address requirements related to different types of acquisition environments, scalability in terms of progressive transmission and efficiently rendering different levels of details, as well as key attributes to be included in the representation. Additionally, an overview of recently developed coding techniques is presented, including an assessment of current performance. Finally, technical challenges and needs for future standardization are discussed.

  20. Obstacle avoidance using predictive vision based on a dynamic 3D world model

    Science.gov (United States)

    Benjamin, D. Paul; Lyons, Damian; Achtemichuk, Tom

    2006-10-01

    We have designed and implemented a fast predictive vision system for a mobile robot based on the principles of active vision. This vision system is part of a larger project to design a comprehensive cognitive architecture for mobile robotics. The vision system represents the robot's environment with a dynamic 3D world model based on a 3D gaming platform (Ogre3D). This world model contains a virtual copy of the robot and its environment, and outputs graphics showing what the virtual robot "sees" in the virtual world; this is what the real robot expects to see in the real world. The vision system compares this output in real time with the visual data. Any large discrepancies are flagged and sent to the robot's cognitive system, which constructs a plan for focusing on the discrepancies and resolving them, e.g. by updating the position of an object or by recognizing a new object. An object is recognized only once; thereafter its observed data are monitored for consistency with the predictions, greatly reducing the cost of scene understanding. We describe the implementation of this vision system and how the robot uses it to locate and avoid obstacles.

  1. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Stadlbauer, Andreas [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany); Salomonowitz, Erich [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); Brenneis, Christian [Landesklinikum St. Poelten, Department of Neurology, St. Poelten (Austria); Ungersboeck, Karl [Landesklinikum St. Poelten, Department of Neurosurgery, St. Poelten (Austria); Riet, Wilma van der [European MRI Consultancy (EMRIC), Strasbourg (France); Buchfelder, Michael; Ganslandt, Oliver [University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany)

    2012-01-15

    To investigate the detectability of CSF flow alterations in the ventricular system of patients with hydrocephalus using time-resolved 3D MR velocity mapping. MR velocity mapping was performed in 21 consecutive hydrocephalus patients and 21 age-matched volunteers using a 3D phase-contrast (PC) sequence. Velocity vectors and particle path lines were calculated for visualisation of flow dynamics. CSF flow was classified as ''hypomotile flow'' if it showed attenuated dynamics and as ''hypermotile flow'' if it showed increased dynamics compared with volunteers. Diagnostic efficacy was compared with routine 2D cine PC-MRI. Seven patients showed hypomotile CSF flow: six had non-communicating hydrocephalus due to aqueductal stenosis. One showed oscillating flow between the lateral ventricles after craniotomy for intracranial haemorrhage. Seven patients showed normal flow: six had hydrocephalus ex vacuo due to brain atrophy. One patient who underwent ventriculostomy 10 years ago showed a flow path through the opening. Seven patients showed hypermotile flow: three had normal pressure hydrocephalus, three had dementia, and in one the diagnosis remained unclear. The diagnostic efficacy of velocity mapping was significantly higher except for that of aqueductal stenosis. Our approach may be useful for diagnosis, therapy planning, and follow-up of different kinds of hydrocephalus. (orig.)

  2. Dynamics of gecko locomotion: a force-measuring array to measure 3D reaction forces.

    Science.gov (United States)

    Dai, Zhendong; Wang, Zhouyi; Ji, Aihong

    2011-03-01

    Measuring the interaction between each foot of an animal and the substrate is one of the most effective ways to understand the dynamics of legged locomotion. Here, a new facility - the force-measuring array (FMA) - was developed and applied to measure 3D reaction forces of geckos on different slope surfaces. The FMA consists of 16 3D sensors with resolution to the mN level. At the same time the locomotion behaviour of geckos freely moving on the FMA was recorded by high speed camera. The reaction forces acting on the gecko's individual feet measured by the FMA and correlated with locomotion behaviour provided enough information to reveal the mechanical and dynamic secrets of gecko locomotion. Moreover, dynamic forces were also measured by a force platform and correlated with locomotion behaviour. The difference between the forces measured by the two methods is discussed. From the results we conclude that FMA is the best way to obtain true reaction forces acting on the gecko's individual feet.

  3. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.

    Science.gov (United States)

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z; Stone, Maureen; Prince, Jerry L

    2014-12-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations.

  4. 3D cell culture to determine in vitro biocompatibility of bioactive glass in association with chitosan.

    Science.gov (United States)

    Bédouin, Y; Pellen Mussi, P; Tricot-Doleux, S; Chauvel-Lebret, D; Auroy, P; Ravalec, X; Oudadesse, H; Perez, F

    2015-01-01

    This study reports the in vitro biocompatibility of a composite biomaterial composed of 46S6 bioactive glass in association with chitosan (CH) by using 3D osteoblast culture of SaOS2. The 46S6 and CH composite (46S6-CH) forms small hydroxyapatite crystals on its surface after only three days immersion in the simulated body fluid. For 2D osteoblast culture, a significant increase in cell proliferation was observed after three days of contact with 46S6 or 46S6-CH-immersed media. After six days, 46S6-CH led to a significant increase in cell proliferation (128%) compared with pure 46S6 (113%) and pure CH (122%). For 3D osteoblast culture, after six days of culture, there was an increase in gene expression of markers of the early osteoblastic differentiation (RUNX2, ALP, COL1A1). Geometric structures corresponding to small apatite clusters were observed by SEM on the surface of the spheroids cultivated with 46S6 or 46S6-CH-immersed media. We showed different cellular responses depending on the 2D and 3D cell culture model. The induction of osteoblast differentiation in the 3D cell culture explained the differences of cell proliferation in contact with 46S6, CH or 46S6-CH-immersed media. This study confirmed that the 3D cell culture model is a very promising tool for in vitro biological evaluation of bone substitutes' properties.

  5. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Taiwan, ROC (China); Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Kuo, Shyh Ming [Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Guei-Sheung [Centre for Eye Research Australia, University of Melbourne (Australia); Chen, Wan-Nan U. [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China); Chuang, Chin-Wen [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Li-Feng, E-mail: liulf@isu.edu.tw [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  6. Highly ordered large-scale neuronal networks of individual cells - toward single cell to 3D nanowire intracellular interfaces.

    Science.gov (United States)

    Kwiat, Moria; Elnathan, Roey; Pevzner, Alexander; Peretz, Asher; Barak, Boaz; Peretz, Hagit; Ducobni, Tamir; Stein, Daniel; Mittelman, Leonid; Ashery, Uri; Patolsky, Fernando

    2012-07-25

    The use of artificial, prepatterned neuronal networks in vitro is a promising approach for studying the development and dynamics of small neural systems in order to understand the basic functionality of neurons and later on of the brain. The present work presents a high fidelity and robust procedure for controlling neuronal growth on substrates such as silicon wafers and glass, enabling us to obtain mature and durable neural networks of individual cells at designed geometries. It offers several advantages compared to other related techniques that have been reported in recent years mainly because of its high yield and reproducibility. The procedure is based on surface chemistry that allows the formation of functional, tailormade neural architectures with a micrometer high-resolution partition, that has the ability to promote or repel cells attachment. The main achievements of this work are deemed to be the creation of a large scale neuronal network at low density down to individual cells, that develop intact typical neurites and synapses without any glia-supportive cells straight from the plating stage and with a relatively long term survival rate, up to 4 weeks. An important application of this method is its use on 3D nanopillars and 3D nanowire-device arrays, enabling not only the cell bodies, but also their neurites to be positioned directly on electrical devices and grow with registration to the recording elements underneath.

  7. Hypoxia Created Human Mesenchymal Stem Cell Sheet for Prevascularized 3D Tissue Construction.

    Science.gov (United States)

    Zhang, Lijun; Xing, Qi; Qian, Zichen; Tahtinen, Mitchell; Zhang, Zhaoqiang; Shearier, Emily; Qi, Shaohai; Zhao, Feng

    2016-02-01

    3D tissue based on human mesenchymal stem cell (hMSC) sheets offers many interesting opportunities for regenerating multiple types of connective tissues. Prevascularizing hMSC sheets with endothelial cells (ECs) will improve 3D tissue performance by supporting cell survival and accelerating integration with host tissue. It is hypothesized that hypoxia cultured hMSC sheets can promote microvessel network formation and preserve stemness of hMSCs. This study investigates the vascularization of hMSC sheets under different oxygen tensions. It is found that the HN condition, in which hMSC sheets formed under physiological hypoxia (2% O2 ) and then cocultured with ECs under normoxia (20% O2 ), enables longer and more branched microvessel network formation. The observation is corroborated by higher levels of angiogenic factors in coculture medium. Additionally, the hypoxic hMSC sheet is more uniform and less defective, which facilitates fabrication of 3D prevascularized tissue construct by layering the prevascularized hMSC sheets and maturing in rotating wall vessel bioreactor. The hMSCs in the 3D construct still maintain multilineage differentiation ability, which indicates the possible application of the 3D construct for various connective tissues regeneration. These results demonstrate that hypoxia created hMSC sheets benefit the microvessel growth and it is feasible to construct 3D prevascularized tissue construct using the prevascularized hMSC sheets.

  8. 3D texture analysis in renal cell carcinoma tissue image grading.

    Science.gov (United States)

    Kim, Tae-Yun; Cho, Nam-Hoon; Jeong, Goo-Bo; Bengtsson, Ewert; Choi, Heung-Kook

    2014-01-01

    One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM) and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system.

  9. 3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading

    Directory of Open Access Journals (Sweden)

    Tae-Yun Kim

    2014-01-01

    Full Text Available One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system.

  10. 3D Dynamics of 4D Topological BF Theory With Boundary

    CERN Document Server

    Amoretti, Andrea; Maggiore, Nicola; Magnoli, Nicodemo

    2012-01-01

    We consider the four dimensional abelian topological BF theory with a planar boundary introduced following the Symanzik's method. We find the most general boundary conditions compatible with the fields equations broken by the boundary. The residual gauge invariance is described by means of two Ward identities which generate an algebra of conserved currents. We interpret this algebra as canonical commutation relations of fields, which we use to construct a three dimensional Lagrangian. As a remarkable by-product, the (unique) boundary condition which we found, can be read as a duality relation between 3D dynamical variables.

  11. 3D Lifetime Tomography Reveals How CdCl 2 Improves Recombination Throughout CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Edward S. [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; PLANT PV, Inc, Alameda CA 94501 USA; Ursprung, Benedikt [PLANT PV, Inc, Alameda CA 94501 USA; Colegrove, Eric [National Renewable Energy Laboratory, Golden CO 80401 USA; Moutinho, Helio R. [National Renewable Energy Laboratory, Golden CO 80401 USA; Borys, Nicholas J. [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; Hardin, Brian E. [PLANT PV, Inc, Alameda CA 94501 USA; Peters, Craig H. [PLANT PV, Inc, Alameda CA 94501 USA; Metzger, Wyatt K. [National Renewable Energy Laboratory, Golden CO 80401 USA; Schuck, P. James [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA

    2016-11-15

    Using two-photon tomography, carrier lifetimes are mapped in polycrystalline CdTe photovoltaic devices. These 3D maps probe subsurface carrier dynamics that are inaccessible with traditional optical techniques. They reveal that CdCl2 treatment of CdTe solar cells suppresses nonradiative recombination and enhances carrier lifetimes throughout the film with substantial improvements particularly near subsurface grain boundaries and the critical buried p-n junction.

  12. Development and validation of a 3-D model to predict knee joint loading during dynamic movement.

    Science.gov (United States)

    McLean, S G; Su, A; van den Bogert, A J

    2003-12-01

    The purpose of this study was to develop a subject-specific 3-D model of the lower extremity to predict neuromuscular control effects on 3-D knee joint loading during movements that can potentially cause injury to the anterior cruciate ligament (ACL) in the knee. The simulation consisted of a forward dynamic 3-D musculoskeletal model of the lower extremity, scaled to represent a specific subject. Inputs of the model were the initial position and velocity of the skeletal elements, and the muscle stimulation patterns. Outputs of the model were movement and ground reaction forces, as well as resultant 3-D forces and moments acting across the knee joint. An optimization method was established to find muscle stimulation patterns that best reproduced the subject's movement and ground reaction forces during a sidestepping task. The optimized model produced movements and forces that were generally within one standard deviation of the measured subject data. Resultant knee joint loading variables extracted from the optimized model were comparable to those reported in the literature. The ability of the model to successfully predict the subject's response to altered initial conditions was quantified and found acceptable for use of the model to investigate the effect of altered neuromuscular control on knee joint loading during sidestepping. Monte Carlo simulations (N = 100,000) using randomly perturbed initial kinematic conditions, based on the subject's variability, resulted in peak anterior force, valgus torque and internal torque values of 378 N, 94 Nm and 71 Nm, respectively, large enough to cause ACL rupture. We conclude that the procedures described in this paper were successful in creating valid simulations of normal movement, and in simulating injuries that are caused by perturbed neuromuscular control.

  13. A 3D Sphere Culture System Containing Functional Polymers for Large-Scale Human Pluripotent Stem Cell Production

    Directory of Open Access Journals (Sweden)

    Tomomi G. Otsuji

    2014-05-01

    Full Text Available Utilizing human pluripotent stem cells (hPSCs in cell-based therapy and drug discovery requires large-scale cell production. However, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard, suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production.

  14. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.

    Science.gov (United States)

    Choi, Yeong-Jin; Kim, Taek Gyoung; Jeong, Jonghyeon; Yi, Hee-Gyeong; Park, Ji Won; Hwang, Woonbong; Cho, Dong-Woo

    2016-10-01

    Engineered skeletal muscle tissues that mimic the structure and function of native muscle have been considered as an alternative strategy for the treatment of various muscular diseases and injuries. Here, it is demonstrated that 3D cell-printing of decellularized skeletal muscle extracellular matrix (mdECM)-based bioink facilitates the fabrication of functional skeletal muscle constructs. The cellular alignment and the shape of the tissue constructs are controlled by 3D cell-printing technology. mdECM bioink provides the 3D cell-printed muscle constructs with a myogenic environment that supports high viability and contractility as well as myotube formation, differentiation, and maturation. More interestingly, the preservation of agrin is confirmed in the mdECM, and significant increases in the formation of acetylcholine receptor clusters are exhibited in the 3D cell-printed muscle constructs. In conclusion, mdECM bioink and 3D cell-printing technology facilitate the mimicking of both the structural and functional properties of native muscle and hold great promise for producing clinically relevant engineered muscle for the treatment of muscular injuries.

  15. Quantification by SIFT-MS of acetaldehyde released by lung cells in a 3D model.

    Science.gov (United States)

    Rutter, Abigail V; Chippendale, Thomas W E; Yang, Ying; Španěl, Patrik; Smith, David; Sulé-Suso, Josep

    2013-01-07

    Our previous studies have shown that both lung cancer cells and non-malignant lung cells release acetaldehyde in vitro. However, data from other laboratories have produced conflicting results. Furthermore, all these studies have been carried out in 2D models which are less physiological cell growth systems when compared to 3D models. Therefore, we have carried out further work on the release of acetaldehyde by lung cells in 3D collagen hydrogels. Lung cancer cells CALU-1 and non-malignant lung cells NL20 were seeded in these hydrogels at different cell concentrations and the release of acetaldehyde was measured with the Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) technique. The data obtained showed that the amount of acetaldehyde released by both cell types grown in a 3D model is higher when compared to that of the same cells grown in 2D models. More importantly, acetaldehyde from the headspace of lung cancer cells could be measured even at a low cell concentration (10(5) cells per hydrogel). The differential of acetaldehyde release could be, depending on the cell concentration, more than 3 fold higher for cancer cells when compared to non-malignant lung cells. This pilot study is the first to study acetaldehyde emission from albeit only two cell types cultured in 3D scaffolds. Clearly, from such limited data the behaviour of other cell types and of tumour cells in vivo cannot be predicted with confidence. Nevertheless, this work represents another step in the search for volatile biomarkers of tumour cells, the ultimate goal of which is to exploit volatile compounds in exhaled breath and other biological fluids as biomarkers of tumours in vivo.

  16. 3D Nanochannel Array Platform for High-throughput Cell Manipulation and Nano-electroporation

    Science.gov (United States)

    Chang, Lingqian

    Electroporation is one of the most common non-viral methods for gene delivery. Recent progress in gene therapy has offered special opportunities to electroporation for in vitro and in vivo applications. However, conventional bulk electroporation (BEP) inevitably causes serious cell damage and stochastic transfection between cells. Microfluidic electroporation (MEP) has been claimed to provide benign single cell transfection for the last decade. Nevertheless, the intracellular transport in both MEP and BEP systems is highly diffusion-dominant, which prevents precise dose control and high uniformity. In this Ph.D. research, we developed a 3D nanochannel-electroporation (3D NEP) platform for mass cell transfection. A silicon-based nanochannel array (3D NEP) chip was designed and fabricated for cell manipulation and electroporation. The chip, designed as Z-directional microchannel - nanochannel array, was fabricated by clean room techniques including projection photolithography and deep reactive-ion etching (DRIE). The fabricated 3D NEP chip is capable of handling 40,000 cells per 1 cm2, up to 1 million per wafer (100 mm diameter). High-throughput cell manipulation technologies were investigated for precise alignment of individual cells to the nanochannel array, a key step for NEP to achieve dose control. We developed three techniques for cell trapping in this work. (1) Magnetic tweezers (MTs) were integrated on the chip to remotely control cells under a programmed magnetic field. (2) A positive dielectrophoresis (pDEP) power system was built as an alternative to trap cells onto the nanochannel array using DEP force. (3) A novel yet simple 'dipping-trap' method was used to rapidly trap cells onto a nanochannel array, aligned by a micro-cap array pattern on the 3D NEP chip, which eventually offered 70 - 90 % trapping efficiency and 90 % specificity. 3D NEP platforms were assembled for cell transfection based on the Si-based nanochannel array chip and cell manipulation

  17. Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone

    Science.gov (United States)

    Pusok, A. E.; Kaus, B.; Popov, A.

    2013-12-01

    The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and

  18. Investigating dynamic stall, 3-D and rotational effects on wind turbine blades by means of an unsteady quasi-3D Navier-Stokes solver

    Energy Technology Data Exchange (ETDEWEB)

    Chaviaropoulos, P.K. [CRES-Center for Renewable Energy Sources, Pikermi Attiki (Greece)

    1997-08-01

    The blade element codes provide surprisingly accurate predictions of the aerodynamic loads provided that they are `fed` with proper lift and drag - incidence curves for the profiles mounted on the rotor blades. The evident question is how one can obtain such data. It is common experience that the use of the mostly available steady two-dimensional profile data may lead to serious discrepancies between measured and simulated loads. Although several correction techniques have been proposed as a remedy during the last years, from simplified dynamic stall models suitably tuned for wind turbines to 3-D correction schemes for profile data, the problem is by no means over-passed. Especially for the three-dimensional effects it seems that part of the difficulty is due to our limited understanding of the physical mechanism which is responsible for the extra loading of the inner part of the blades. Recognizing the importance of the above aspects two relevant Joule projects have been launched, the concluded `Dynamic Stall and 3-D Effects` JOU2-CT93-0345 and the ongoing `VISCWIND` JOR3-CT95-0007 project. Part of the activities in the first and all the activities in the second project are devoted to the identification and quantification of the dynamic stall and three-dimensional effects experienced by the wind turbine blades using Navier-Stokes computations. The contribution of CRES in these two projects is briefly presented in this paper. (EG)

  19. Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction.

    Science.gov (United States)

    Zhao, Li; Fielden, Samuel W; Feng, Xue; Wintermark, Max; Mugler, John P; Meyer, Craig H

    2015-11-01

    Dynamic arterial spin labeling (ASL) MRI measures the perfusion bolus at multiple observation times and yields accurate estimates of cerebral blood flow in the presence of variations in arterial transit time. ASL has intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive signal averaging is typically required, leading to long scan times for dynamic ASL. The goal of this study was to develop an accelerated dynamic ASL method with improved SNR and robustness to motion using a model-based image reconstruction that exploits the inherent sparsity of dynamic ASL data. The first component of this method is a single-shot 3D turbo spin echo spiral pulse sequence accelerated using a combination of parallel imaging and compressed sensing. This pulse sequence was then incorporated into a dynamic pseudo continuous ASL acquisition acquired at multiple observation times, and the resulting images were jointly reconstructed enforcing a model of potential perfusion time courses. Performance of the technique was verified using a numerical phantom and it was validated on normal volunteers on a 3-Tesla scanner. In simulation, a spatial sparsity constraint improved SNR and reduced estimation errors. Combined with a model-based sparsity constraint, the proposed method further improved SNR, reduced estimation error and suppressed motion artifacts. Experimentally, the proposed method resulted in significant improvements, with scan times as short as 20s per time point. These results suggest that the model-based image reconstruction enables rapid dynamic ASL with improved accuracy and robustness.

  20. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Machado, C B [Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (Brazil); Ventura, J M G [Department of Ceramics and Glass Engineering, University of Aveiro (Portugal); Lemos, A F [Department of Ceramics and Glass Engineering, University of Aveiro (Portugal); Ferreira, J M F [Department of Ceramics and Glass Engineering, University of Aveiro (Portugal); Leite, M F [Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (Brazil); Goes, A M [Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (Brazil)

    2007-06-01

    A porous 3D scaffold was developed to support and enhance the differentiation process of mesenchymal stem cells (MSC) into osteoblasts in vitro. The 3D scaffold was made with chitosan, gelatin and chondroitin and it was crosslinked by EDAC. The scaffold physicochemical properties were evaluated. SEM revealed the high porosity and interconnection of pores in the scaffold; rheological measurements show that the scaffold exhibits a characteristic behavior of strong gels. The elastic modulus found in compressive tests of the crosslinked scaffold was about 50 times higher than the non-crosslinked one. After 21 days, the 3D matrix submitted to hydrolytic degradation loses above 40% of its weight. MSC were collected from rat bone marrow and seeded in chitosan-gelatin-chondroitin 3D scaffolds and in 2D culture plates as well. MSC were differentiated into osteoblasts for 21 days. Cell proliferation and alkaline phosphatase activity were followed weekly during the osteogenic process. The osteogenic differentiation of MSC was improved in 3D culture as shown by MTT assay and alkaline phosphatase activity. On the 21st day, bone markers, osteopontin and osteocalcin, were detected by the PCR analysis. This study shows that the chitosan-gelatin-chondroitin 3D structure provides a good environment for the osteogenic process and enhances cellular proliferation.

  1. Pulmonary surfactant expression analysis--role of cell-cell interactions and 3-D tissue-like architecture.

    Science.gov (United States)

    Nandkumar, Maya A; Ashna, U; Thomas, Lynda V; Nair, Prabha D

    2015-03-01

    Surfactant production is important in maintaining alveolar function both in vivo and in vitro, but surfactant expression is the primary property lost by alveolar Type II Pneumocytes in culture and its maintenance is a functional requirement. To develop a functional tissue-like model, the in vivo cell-cell interactions and three dimensional architecture has to be reproduced. To this end, 3D button-shaped synthetic gelatin vinyl acetate (GeVAc) co-polymer scaffold was seeded with different types of lung cells. Functionality of the construct was studied under both static and dynamic conditions. The construct was characterized by Environmental Scanning Electron and fluorescent microscopy, and functionality of the system was analyzed by studying mRNA modulations of all four surfactant genes A, B, C, and D by real time-PCR and varying culture conditions. The scaffold supports alveolar cell adhesion and maintenance of cuboidal morphology, and the alveolar-specific property of surfactant synthesis, which would otherwise be rapidly lost in culture. This is a novel 3D system that expresses all 4 surfactants for a culture duration of 3 weeks.

  2. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    2015-01-01

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the so

  3. Cell volume and geometric parameters determination in living cells using confocal microscopy and 3D reconstruction

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: David Hevia, Aida Rodriguez-Garcia, Marta Alonso-Gervós, Isabel Quirós-González, Henar M Cimadevilla, Carmen Gómez-Cordovés, Rosa M Sainz & Juan C Mayo ### Abstract The protocol reported here describes a simple, easy, fast and reproducible method aimed to know the geometric parameters of living cells based on confocal laser scanning microscopy combined with 3D reconstruction software. Briefly, the method is based on intrinsic fluorescence properties of acridine orange (AO...

  4. A 3D mechanistic model for brittle materials containing evolving flaw distributions under dynamic multiaxial loading

    Science.gov (United States)

    Hu, Guangli; Liu, Junwei; Graham-Brady, Lori; Ramesh, K. T.

    2015-05-01

    We present a validated fully 3D mechanism-based micromechanical constitutive model for brittle solids under dynamic multiaxial loading conditions. Flaw statistics are explicitly incorporated through a defect density, and evolving flaw distributions in both orientation and size. Interactions among cracks are modeled by means of a crack-matrix-effective-medium approach. A tensorial damage parameter is defined based upon the crack length and orientation development under local effective stress fields. At low confining stresses, the wing-cracking mechanism dominates, leading to the degradation of the modulus and peak strength of the material, whereas at high enough confining stresses, the cracking mechanism is completely shut-down and dislocation mechanisms become dominant. The model handles general multiaxial stress states, accounts for evolving internal variables in the form of evolving flaw size and orientation distributions, includes evolving anisotropic damage and irreversible damage strains in a thermodynamically consistent fashion, incorporates rate-dependence through the micromechanics, and includes dynamic bulking based on independent experimental data. Simulation results are discussed and compared with experimental results on one specific structural ceramic, aluminum nitride. We demonstrate that this 3D constitutive model is capable of capturing the general constitutive response of structural ceramics.

  5. Innovative LIDAR 3D Dynamic Measurement System to estimate fruit-tree leaf area.

    Science.gov (United States)

    Sanz-Cortiella, Ricardo; Llorens-Calveras, Jordi; Escolà, Alexandre; Arnó-Satorra, Jaume; Ribes-Dasi, Manel; Masip-Vilalta, Joan; Camp, Ferran; Gràcia-Aguilá, Felip; Solanelles-Batlle, Francesc; Planas-DeMartí, Santiago; Pallejà-Cabré, Tomàs; Palacin-Roca, Jordi; Gregorio-Lopez, Eduard; Del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R

    2011-01-01

    In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.

  6. Innovative LIDAR 3D Dynamic Measurement System to Estimate Fruit-Tree Leaf Area

    Directory of Open Access Journals (Sweden)

    Ignacio Del-Moral-Martínez

    2011-05-01

    Full Text Available In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.

  7. 3D quantitative visualization of altered LV wall thickening dynamics caused by coronary microembolization

    Science.gov (United States)

    Eusemann, Christian D.; Mohlenkamp, Stefan; Ritman, Erik L.; Robb, Richard A.

    2001-05-01

    Regional heart wall dynamics has been shown to be a sensitive indicator of LV wall ischemia. Rates of local LV wall thickening during a cardiac cycle can be measured and illustrated using functional parametric mappings. This display conveys the spatial distribution of dynamic strain in the myocardium and thereby provides a rapid qualitative appreciation of the severity and extent of the ischemic region. 3D reconstructions were obtained in an anesthetized pig from 8 adjacent, shortaxis, slices of the left ventricle imaged with an Electron Beam Computer Tomograph at 11 time points through one complete cardiac cycle. The 3D reconstructions were obtained before and after injection of 100 micrometer microspheres into the Left Anterior Descending (LAD) coronary artery. This injection causes microembolization of LAD artery branches within the heart wall. The image processing involved radially dividing the tomographic images of the myocardium into small subdivisions with color encoding of the local magnitude of regional thickness or regional velocities of LV wall thickening throughout the cardiac cycle. We compared the effectiveness of animation of wall thickness encoded in color versus a static image of computed rate of wall thickness change in color. The location, extent and severity of regional wall akinesis or dyskinesis, as determined from these displays, can then be compared to the region of embolization as indicated by the distribution of altered LV wall perfusion.

  8. Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D

    Energy Technology Data Exchange (ETDEWEB)

    Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.

    2016-01-04

    This paper presents results from an explanatory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered, focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected in the resulting steady-state analyses using NASA's FUN3D CFD software.

  9. Semi-brittle rheology and ice dynamics in DynEarthSol3D

    Science.gov (United States)

    Logan, Liz C.; Lavier, Luc L.; Choi, Eunseo; Tan, Eh; Catania, Ginny A.

    2017-01-01

    We present a semi-brittle rheology and explore its potential for simulating glacier and ice sheet deformation using a numerical model, DynEarthSol3D (DES), in simple, idealized experiments. DES is a finite-element solver for the dynamic and quasi-static simulation of continuous media. The experiments within demonstrate the potential for DES to simulate ice failure and deformation in dynamic regions of glaciers, especially at quickly changing boundaries like glacier termini in contact with the ocean. We explore the effect that different rheological assumptions have on the pattern of flow and failure. We find that the use of a semi-brittle constitutive law is a sufficient material condition to form the characteristic pattern of basal crevasse-aided pinch-and-swell geometry, which is observed globally in floating portions of ice and can often aid in eroding the ice sheet margins in direct contact with oceans.

  10. 3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding

    KAUST Repository

    Boonyasiriwat, Chaiwoot

    2010-10-17

    We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual‐randomization is used to promote the destructive interference of crosstalk noise resulting from blending a large number of common shot gathers into a supergather. We compare our multisource algorithm with various algorithms in a numerical experiment using the 3D SEG/EAGE overthrust model and show that our algorithm provides a higher‐quality velocity tomogram than the other methods that use only monorandomization. This suggests that increasing the degree of randomness in phase encoding should improve the quality of the inversion result.

  11. 3D reconstitution of the patterned neural tube from embryonic stem cells.

    Science.gov (United States)

    Meinhardt, Andrea; Eberle, Dominic; Tazaki, Akira; Ranga, Adrian; Niesche, Marco; Wilsch-Bräuninger, Michaela; Stec, Agnieszka; Schackert, Gabriele; Lutolf, Matthias; Tanaka, Elly M

    2014-12-09

    Inducing organogenesis in 3D culture is an important aspect of stem cell research. Anterior neural structures have been produced from large embryonic stem cell (ESC) aggregates, but the steps involved in patterning such complex structures have been ill defined, as embryoid bodies typically contained many cell types. Here we show that single mouse ESCs directly embedded in Matrigel or defined synthetic matrices under neural induction conditions can clonally form neuroepithelial cysts containing a single lumen in 3D. Untreated cysts were uniformly dorsal and could be ventralized to floor plate (FP). Retinoic acid posteriorized cysts to cervical levels and induced localize FP formation yielding full patterning along the dorsal/ventral (DV) axis. Correct spatial organization of motor neurons, interneurons, and dorsal interneurons along the DV axis was observed. This system serves as a valuable tool for studying morphogen action in 3D and as a source of patterned spinal cord tissue.

  12. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    NARCIS (Netherlands)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated doma

  13. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  14. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation.

    Science.gov (United States)

    Hodneland, Erlend; Kögel, Tanja; Frei, Dominik Michael; Gerdes, Hans-Hermann; Lundervold, Arvid

    2013-08-09

    : The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening.

  15. An Innovative Cell Microincubator for Drug Discovery Based on 3D Silicon Structures

    Directory of Open Access Journals (Sweden)

    Francesca Aredia

    2016-01-01

    Full Text Available We recently employed three-dimensional (3D silicon microstructures (SMSs consisting in arrays of 3 μm-thick silicon walls separated by 50 μm-deep, 5 μm-wide gaps, as microincubators for monitoring the biomechanical properties of tumor cells. They were here applied to investigate the in vitro behavior of HT1080 human fibrosarcoma cells driven to apoptosis by the chemotherapeutic drug Bleomycin. Our results, obtained by fluorescence microscopy, demonstrated that HT1080 cells exhibited a great ability to colonize the narrow gaps. Remarkably, HT1080 cells grown on 3D-SMS, when treated with the DNA damaging agent Bleomycin under conditions leading to apoptosis, tended to shrink, reducing their volume and mimicking the normal behavior of apoptotic cells, and were prone to leave the gaps. Finally, we performed label-free detection of cells adherent to the vertical silicon wall, inside the gap of 3D-SMS, by exploiting optical low coherence reflectometry using infrared, low power radiation. This kind of approach may become a new tool for increasing automation in the drug discovery area. Our results open new perspectives in view of future applications of the 3D-SMS as the core element of a lab-on-a-chip suitable for screening the effect of new molecules potentially able to kill tumor cells.

  16. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    Science.gov (United States)

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images.

  17. Nonequilibrium dynamical phase transition of 3D kinetic Ising/Heisenberg spin system

    Institute of Scientific and Technical Information of China (English)

    Shao Yuan-Zhi; Lai J. K. L.; Shek C. H.; Lin Guang-Ming; Lan Tu

    2004-01-01

    We have studied the nonequilibrium dynamic phase transitions of both three-dimensional (3D) kinetic Ising and Heisenberg spin systems in the presence of a perturbative magnetic field by Monte Carlo simulation. The feature of the phase transition is characterized by studying the distribution of the dynamical order parameter.In the case of anisotropic Ising spin system (ISS), the dynamic transition is discontinuous and continuous under low and high temperatures respectively, which indicates the existence of a tri-critical point (TCP) on the phase boundary separating low-temperature order phase and high-temperature disorder phase. The TCP shifts towards the higher temperature region with the decrease of frequency, I.e. TTCp=1.33×exp(-ω/30.7). In the case of the isotropic Heisenberg spin system (HSS), however, the situation on dynamic phase transition of HSS is quite different from that of ISS in that no stable dynamical phase transition was observed in kinetic HSS after a threshold time. The evolution of magnetization in the HSS driven by a symmetrical external field after a certain duration always tends asymptotically to a disorder state no matter what an initial state the system starts with. The threshold time τ depends upon the amplitude H0,reduced temperature T/TC and the frequency ωas τ=C·ωα·H-β0·(T/TC)-γ.

  18. Modeling spatial distribution of oxygen in 3d culture of islet beta-cells.

    Science.gov (United States)

    McReynolds, John; Wen, Yu; Li, Xiaofei; Guan, Jianjun; Jin, Sha

    2017-01-01

    Three-dimensional (3D) scaffold culture of pancreatic β-cell has been proven to be able to better mimic physiological conditions in the body. However, one critical issue with culturing pancreatic β-cells is that β-cells consume large amounts of oxygen, and hence insufficient oxygen supply in the culture leads to loss of β-cell mass and functions. This becomes more significant when cells are cultured in a 3D scaffold. In this study, in order to understand the effect of oxygen tension inside a cell-laden collagen culture on β-cell proliferation, a culture model with encapsulation of an oxygen-generator was established. The oxygen-generator was made by embedding hydrogen peroxide into nontoxic polydimethylsiloxane to avoid the toxicity of a chemical reaction in the β-cell culture. To examine the effectiveness of the oxygenation enabled 3D culture, the spatial-temporal distribution of oxygen tension inside a scaffold was evaluated by a mathematical modeling approach. Our simulation results indicated that an oxygenation-aided 3D culture would augment the oxygen supply required for the β-cells. Furthermore, we identified that cell seeding density and the capacity of the oxygenator are two critical parameters in the optimization of the culture. Notably, cell-laden scaffold cultures with an in situ oxygen supply significantly improved the β-cells' biological function. These β-cells possess high insulin secretion capacity. The results obtained in this work would provide valuable information for optimizing and encouraging functional β-cell cultures. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:221-228, 2017.

  19. Bioengineered 3D Glial Cell Culture Systems and Applications for Neurodegeneration and Neuroinflammation.

    Science.gov (United States)

    Watson, P Marc D; Kavanagh, Edel; Allenby, Gary; Vassey, Matthew

    2017-02-01

    Neurodegeneration and neuroinflammation are key features in a range of chronic central nervous system (CNS) diseases such as Alzheimer's and Parkinson's disease, as well as acute conditions like stroke and traumatic brain injury, for which there remains significant unmet clinical need. It is now well recognized that current cell culture methodologies are limited in their ability to recapitulate the cellular environment that is present in vivo, and there is a growing body of evidence to show that three-dimensional (3D) culture systems represent a more physiologically accurate model than traditional two-dimensional (2D) cultures. Given the complexity of the environment from which cells originate, and their various cell-cell and cell-matrix interactions, it is important to develop models that can be controlled and reproducible for drug discovery. 3D cell models have now been developed for almost all CNS cell types, including neurons, astrocytes, microglia, and oligodendrocyte cells. This review will highlight a number of current and emerging techniques for the culture of astrocytes and microglia, glial cell types with a critical role in neurodegenerative and neuroinflammatory conditions. We describe recent advances in glial cell culture using electrospun polymers and hydrogel macromolecules, and highlight how these novel culture environments influence astrocyte and microglial phenotypes in vitro, as compared to traditional 2D systems. These models will be explored to illuminate current trends in the techniques used to create 3D environments for application in research and drug discovery focused on astrocytes and microglial cells.

  20. Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation

    Directory of Open Access Journals (Sweden)

    Liang Huang

    2016-08-01

    Full Text Available Single cell manipulation technology has been widely applied in biological fields, such as cell injection/enucleation, cell physiological measurement, and cell imaging. Recently, a biochip platform with a novel configuration of electrodes for cell 3D rotation has been successfully developed by generating rotating electric fields. However, the rotation platform still has two major shortcomings that need to be improved. The primary problem is that there is no on-chip module to facilitate the placement of a single cell into the rotation chamber, which causes very low efficiency in experiment to manually pipette single 10-micron-scale cells into rotation position. Secondly, the cell in the chamber may suffer from unstable rotation, which includes gravity-induced sinking down to the chamber bottom or electric-force-induced on-plane movement. To solve the two problems, in this paper we propose a new microfluidic chip with manipulation capabilities of single cell trap and single cell 3D stable rotation, both on one chip. The new microfluidic chip consists of two parts. The top capture part is based on the least flow resistance principle and is used to capture a single cell and to transport it to the rotation chamber. The bottom rotation part is based on dielectrophoresis (DEP and is used to 3D rotate the single cell in the rotation chamber with enhanced stability. The two parts are aligned and bonded together to form closed channels for microfluidic handling. Using COMSOL simulation and preliminary experiments, we have verified, in principle, the concept of on-chip single cell traps and 3D stable rotation, and identified key parameters for chip structures, microfluidic handling, and electrode configurations. The work has laid a solid foundation for on-going chip fabrication and experiment validation.

  1. New data-driven method from 3D confocal microscopy for calculating phytoplankton cell biovolume.

    Science.gov (United States)

    Roselli, L; Paparella, F; Stanca, E; Basset, A

    2015-06-01

    Confocal laser scanner microscopy coupled with an image analysis system was used to directly determine the shape and calculate the biovolume of phytoplankton organisms by constructing 3D models of cells. The study was performed on Biceratium furca (Ehrenberg) Vanhoeffen, which is one of the most complex-shaped phytoplankton. Traditionally, biovolume is obtained from a standardized set of geometric models based on linear dimensions measured by light microscopy. However, especially in the case of complex-shaped cells, biovolume is affected by very large errors associated with the numerous manual measurements that this entails. We evaluate the accuracy of these traditional methods by comparing the results obtained using geometric models with direct biovolume measurement by image analysis. Our results show cell biovolume measurement based on decomposition into simple geometrical shapes can be highly inaccurate. Although we assume that the most accurate cell shape is obtained by 3D direct biovolume measurement, which is based on voxel counting, the intrinsic uncertainty of this method is explored and assessed. Finally, we implement a data-driven formula-based approach to the calculation of biovolume of this complex-shaped organism. On one hand, the model is obtained from 3D direct calculation. On the other hand, it is based on just two linear dimensions which can easily be measured by hand. This approach has already been used for investigating the complexities of morphology and for determining the 3D structure of cells. It could also represent a novel way to generalize scaling laws for biovolume calculation.

  2. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.

    Science.gov (United States)

    Pati, Falguni; Song, Tae-Ha; Rijal, Girdhari; Jang, Jinah; Kim, Sung Won; Cho, Dong-Woo

    2015-01-01

    3D printing technique is the most sophisticated technique to produce scaffolds with tailorable physical properties. But, these scaffolds often suffer from limited biological functionality as they are typically made from synthetic materials. Cell-laid mineralized ECM was shown to be potential for improving the cellular responses and drive osteogenesis of stem cells. Here, we intend to improve the biological functionality of 3D-printed synthetic scaffolds by ornamenting them with cell-laid mineralized extracellular matrix (ECM) that mimics a bony microenvironment. We developed bone graft substitutes by using 3D printed scaffolds made from a composite of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) and mineralized ECM laid by human nasal inferior turbinate tissue-derived mesenchymal stromal cells (hTMSCs). A rotary flask bioreactor was used to culture hTMSCs on the scaffolds to foster formation of mineralized ECM. A freeze/thaw cycle in hypotonic buffer was used to efficiently decellularize (97% DNA reduction) the ECM-ornamented scaffolds while preserving its main organic and inorganic components. The ECM-ornamented 3D printed scaffolds supported osteoblastic differentiation of newly-seeded hTMSCs by upregulating four typical osteoblastic genes (4-fold higher RUNX2; 3-fold higher ALP; 4-fold higher osteocalcin; and 4-fold higher osteopontin) and increasing calcium deposition compared to bare 3D printed scaffolds. In vivo, in ectopic and orthotopic models in rats, ECM-ornamented scaffolds induced greater bone formation than that of bare scaffolds. These results suggest a valuable method to produce ECM-ornamented 3D printed scaffolds as off-the-shelf bone graft substitutes that combine tunable physical properties with physiological presentation of biological signals.

  3. Description of patellar movement by 3D parameters obtained from dynamic CT acquisition

    Science.gov (United States)

    de Sá Rebelo, Marina; Moreno, Ramon Alfredo; Gobbi, Riccardo Gomes; Camanho, Gilberto Luis; de Ávila, Luiz Francisco Rodrigues; Demange, Marco Kawamura; Pecora, Jose Ricardo; Gutierrez, Marco Antonio

    2014-03-01

    The patellofemoral joint is critical in the biomechanics of the knee. The patellofemoral instability is one condition that generates pain, functional impairment and often requires surgery as part of orthopedic treatment. The analysis of the patellofemoral dynamics has been performed by several medical image modalities. The clinical parameters assessed are mainly based on 2D measurements, such as the patellar tilt angle and the lateral shift among others. Besides, the acquisition protocols are mostly performed with the leg laid static at fixed angles. The use of helical multi slice CT scanner can allow the capture and display of the joint's movement performed actively by the patient. However, the orthopedic applications of this scanner have not yet been standardized or widespread. In this work we present a method to evaluate the biomechanics of the patellofemoral joint during active contraction using multi slice CT images. This approach can greatly improve the analysis of patellar instability by displaying the physiology during muscle contraction. The movement was evaluated by computing its 3D displacements and rotations from different knee angles. The first processing step registered the images in both angles based on the femuŕs position. The transformation matrix of the patella from the images was then calculated, which provided the rotations and translations performed by the patella from its position in the first image to its position in the second image. Analysis of these parameters for all frames provided real 3D information about the patellar displacement.

  4. Planning and Control for Passive Dynamics Based Walking of 3D Biped Robots

    Institute of Scientific and Technical Information of China (English)

    Xiang Luo; Wenlong Xu

    2012-01-01

    Efficient walking is one of the main goals of research on biped robots.Passive Dynamics Based Walking (PDBW) has been proven to be an efficient pattern in numerous previous approaches to 2D biped walking.The goal of this study is to develop a feasible method for the application of PDBW to 3D robots.First a hybrid control method is presented,where a previously proposed two-point-foot walking pattern is employed to generate a PDBW gait in the sagittal plane and,in the frontal plane,a systematic balance control algorithm is applied including online planning of the landing point of the swing leg and feedback control of the stance foot.Then a multi-space planning structure is proposed to implement the proposed method on a 13-link 3D robot.Related kinematics and planning details of the robot are presented.Furthermore,a simulation of the 13-link biped robot verifies that stable and highly efficient walking can be achieved by the proposed control method.In addition,a number of features of the biped walking,including the transient powers and torques of the joints are explored.

  5. A 3D dynamical model of the colliding winds in binary systems

    CERN Document Server

    Parkin, E R

    2008-01-01

    We present a 3D dynamical model of the orbital induced curvature of the wind-wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high resolution images of the so-called ``pinwheel nebulae''. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and Gamma-ray binaries, as well as systems with O-type and Wolf-Rayet stars. As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar m...

  6. Defragmented image based autostereoscopic 3D displays with dynamic eye tracking

    Science.gov (United States)

    Kim, Sung-Kyu; Yoon, Ki-Hyuk; Yoon, Seon Kyu; Ju, Heongkyu

    2015-12-01

    We studied defragmented image based autostereoscopic 3D displays with dynamic eye tracking. Specifically, we examined the impact of parallax barrier (PB) angular orientation on their image quality. The 3D display system required fine adjustment of PB angular orientation with respect to a display panel. This was critical for both image color balancing and minimizing image resolution mismatch between horizontal and vertical directions. For evaluating uniformity of image brightness, we applied optical ray tracing simulations. The simulations took effects of PB orientation misalignment into account. The simulation results were then compared with recorded experimental data. Our optimal simulated system produced significantly enhanced image uniformity at around sweet spots in viewing zones. However this was contradicted by real experimental results. We offer quantitative treatment of illuminance uniformity of view images to estimate misalignment of PB orientation, which could account for brightness non-uniformity observed experimentally. Our study also shows that slight imperfection in the adjustment of PB orientation due to practical restrictions of adjustment accuracy can induce substantial non-uniformity of view images' brightness. We find that image brightness non-uniformity critically depends on misalignment of PB angular orientation, for example, as slight as ≤ 0.01 ° in our system. This reveals that reducing misalignment of PB angular orientation from the order of 10-2 to 10-3 degrees can greatly improve the brightness uniformity.

  7. Estimation of Pulmonary Motion in Healthy Subjects and Patients with Intrathoracic Tumors Using 3D-Dynamic MRI: Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Plathow, Christian; Schoebinger, Max; Meinzer, Heinz Peter [German Cancer Research Center, Heidelberg (Germany); Herth, Felix; Tuengerthal, Siegfried [Clinic of Thoracic Disease, Heidelberg (Germany); Kauczor, Hans Ulrich [University of Heidelberg, Heidelberg (Germany)

    2009-12-15

    To estimate a new technique for quantifying regional lung motion using 3D-MRI in healthy volunteers and to apply the technique in patients with intra- or extrapulmonary tumors. Intraparenchymal lung motion during a whole breathing cycle was quantified in 30 healthy volunteers using 3D-dynamic MRI (FLASH [fast low angle shot] 3D, TRICKS [time-resolved interpolated contrast kinetics]). Qualitative and quantitative vector color maps and cumulative histograms were performed using an introduced semiautomatic algorithm. An analysis of lung motion was performed and correlated with an established 2D-MRI technique for verification. As a proof of concept, the technique was applied in five patients with non-small cell lung cancer (NSCLC) and 5 patients with malignant pleural mesothelioma (MPM). The correlation between intraparenchymal lung motion of the basal lung parts and the 2D-MRI technique was significant (r = 0.89, p < 0.05). Also, the vector color maps quantitatively illustrated regional lung motion in all healthy volunteers. No differences were observed between both hemithoraces, which was verified by cumulative histograms. The patients with NSCLC showed a local lack of lung motion in the area of the tumor. In the patients with MPM, there was global diminished motion of the tumor bearing hemithorax, which improved significantly after chemotherapy (CHT) (assessed by the 2D- and 3D-techniques) (p < 0.01). Using global spirometry, an improvement could also be shown (vital capacity 2.9 {+-} 0.5 versus 3.4 L {+-} 0.6, FEV1 0.9 {+-} 0.2 versus 1.4 {+-} 0.2 L) after CHT, but this improvement was not significant. A 3D-dynamic MRI is able to quantify intraparenchymal lung motion. Local and global parenchymal pathologies can be precisely located and might be a new tool used to quantify even slight changes in lung motion (e.g. in therapy monitoring, follow-up studies or even benign lung diseases)

  8. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways.

    Science.gov (United States)

    DelNero, Peter; Lane, Maureen; Verbridge, Scott S; Kwee, Brian; Kermani, Pouneh; Hempstead, Barbara; Stroock, Abraham; Fischbach, Claudia

    2015-07-01

    Oxygen status and tissue dimensionality are critical determinants of tumor angiogenesis, a hallmark of cancer and an enduring target for therapeutic intervention. However, it is unclear how these microenvironmental conditions interact to promote neovascularization, due in part to a lack of comprehensive, unbiased data sets describing tumor cell gene expression as a function of oxygen levels within three-dimensional (3D) culture. Here, we utilized alginate-based, oxygen-controlled 3D tumor models to study the interdependence of culture context and the hypoxia response. Microarray gene expression analysis of tumor cells cultured in 2D versus 3D under ambient or hypoxic conditions revealed striking interdependence between culture dimensionality and hypoxia response, which was mediated in part by pro-inflammatory signaling pathways. In particular, interleukin-8 (IL-8) emerged as a major player in the microenvironmental regulation of the hypoxia program. Notably, this interaction between dimensionality and oxygen status via IL-8 increased angiogenic sprouting in a 3D endothelial invasion assay. Taken together, our data suggest that pro-inflammatory pathways are critical regulators of tumor hypoxia response within 3D environments that ultimately impact tumor angiogenesis, potentially providing important therapeutic targets. Furthermore, these results highlight the importance of pathologically relevant tissue culture models to study the complex physical and chemical processes by which the cancer microenvironment mediates new vessel formation.

  9. Primed 3D injectable microniches enabling low-dosage cell therapy for critical limb ischemia.

    Science.gov (United States)

    Li, Yaqian; Liu, Wei; Liu, Fei; Zeng, Yang; Zuo, Simin; Feng, Siyu; Qi, Chunxiao; Wang, Bingjie; Yan, Xiaojun; Khademhosseini, Ali; Bai, Jing; Du, Yanan

    2014-09-16

    The promise of cell therapy for repair and restoration of damaged tissues or organs relies on administration of large dose of cells whose healing benefits are still limited and sometimes irreproducible due to uncontrollable cell loss and death at lesion sites. Using a large amount of therapeutic cells increases the costs for cell processing and the risks of side effects. Optimal cell delivery strategies are therefore in urgent need to enhance the specificity, efficacy, and reproducibility of cell therapy leading to minimized cell dosage and side effects. Here, we addressed this unmet need by developing injectable 3D microscale cellular niches (microniches) based on biodegradable gelatin microcryogels (GMs). The microniches are constituted by in vitro priming human adipose-derived mesenchymal stem cells (hMSCs) seeded within GMs resulting in tissue-like ensembles with enriched extracellular matrices and enhanced cell-cell interactions. The primed 3D microniches facilitated cell protection from mechanical insults during injection and in vivo cell retention, survival, and ultimate therapeutic functions in treatment of critical limb ischemia (CLI) in mouse models compared with free cell-based therapy. In particular, 3D microniche-based therapy with 10(5) hMSCs realized better ischemic limb salvage than treatment with 10(6) free-injected hMSCs, the minimum dosage with therapeutic effects for treating CLI in literature. To the best of our knowledge, this is the first convincing demonstration of injectable and primed cell delivery strategy realizing superior therapeutic efficacy for treating CLI with the lowest cell dosage in mouse models. This study offers a widely applicable cell delivery platform technology to boost the healing power of cell regenerative therapy.

  10. Microrheology and ROCK signaling of human endothelial cells embedded in a 3D matrix.

    Science.gov (United States)

    Panorchan, Porntula; Lee, Jerry S H; Kole, Thomas P; Tseng, Yiider; Wirtz, Denis

    2006-11-01

    Cell function is profoundly affected by the geometry of the extracellular environment confining the cell. Whether and how cells plated on a two-dimensional matrix or embedded in a three-dimensional (3D) matrix mechanically sense the dimensionality of their environment is mostly unknown, partly because individual cells in an extended matrix are inaccessible to conventional cell-mechanics probes. Here we develop a functional assay based on multiple particle tracking microrheology coupled with ballistic injection of nanoparticles to measure the local intracellular micromechanical properties of individual cells embedded inside a matrix. With our novel assay, we probe the mechanical properties of the cytoplasm of individual human umbilical vein endothelial cells (HUVECs) embedded in a 3D peptide hydrogel in the presence or absence of vascular endothelial growth factor (VEGF). We found that VEGF treatment, which enhances endothelial migration, increases the compliance and reduces the elasticity of the cytoplasm of HUVECs in a matrix. This VEGF-induced softening response of the cytoplasm is abrogated by specific Rho-kinase (ROCK) inhibition. These results establish combined particle-tracking microrheology and ballistic injection as the first method able to probe the micromechanical properties and mechanical response to agonists and/or drug treatments of individual cells inside a matrix. These results suggest that ROCK plays an essential role in the regulation of the intracellular mechanical response to VEGF of endothelial cells in a 3D matrix.

  11. Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning.

    Science.gov (United States)

    Occhetta, P; Sadr, N; Piraino, F; Redaelli, A; Moretti, M; Rasponi, M

    2013-09-01

    Native tissues are characterized by spatially organized three-dimensional (3D) microscaled units which functionally define cells-cells and cells-extracellular matrix interactions. The ability to engineer biomimetic constructs mimicking these 3D microarchitectures is subject to the control over cell distribution and organization. In the present study we introduce a novel protocol to generate 3D cell laden hydrogel micropatterns with defined size and shape. The method, named photo-mold patterning (PMP), combines hydrogel micromolding within polydimethylsiloxane (PDMS) stamps and photopolymerization through a recently introduced biocompatible ultraviolet (UVA) activated photoinitiator (VA-086). Exploiting PDMS micromolds as geometrical constraints for two methacrylated prepolymers (polyethylene glycol diacrylate and gelatin methacrylate), micrometrically resolved structures were obtained within a 3 min exposure to a low cost and commercially available UVA LED. The PMP was validated both on a continuous cell line (human umbilical vein endothelial cells expressing green fluorescent protein, HUVEC GFP) and on primary human bone marrow stromal cells (BMSCs). HUVEC GFP and BMSCs were exposed to 1.5% w/v VA-086 and UVA light (1 W, 385 nm, distance from sample = 5 cm). Photocrosslinking conditions applied during the PMP did not negatively affect cells viability or specific metabolic activity. Quantitative analyses demonstrated the potentiality of PMP to uniformly embed viable cells within 3D microgels, creating biocompatible and favorable environments for cell proliferation and spreading during a seven days' culture. PMP can thus be considered as a promising and cost effective tool for designing spatially accurate in vitro models and, in perspective, functional constructs.

  12. Isolation, growth, and characterization of human renal epithelial cells using traditional and 3D methods.

    Science.gov (United States)

    Gildea, John J; McGrath, Helen E; Van Sciver, Robert E; Wang, Dora Bigler; Felder, Robin A

    2013-01-01

    The kidney is a highly heterogeneous organ that is responsible for fluid and electrolyte balance. Much interest is focused on determining the function of specific renal epithelial cells in humans, which can only be accomplished through the isolation and growth of nephron segment-specific epithelial cells. However, human renal epithelial cells are notoriously difficult to maintain in culture. This chapter describes the isolation, growth, immortalization, and characterization of the human renal proximal tubule cell. In addition, we describe new paradigms in 3D cell culture which allow the cells to maintain more in vivo-like morphology and function.

  13. Fast 3D Pattern Synthesis with Polarization and Dynamic Range Ratio Control for Conformal Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Massimiliano Comisso

    2014-01-01

    Full Text Available This paper proposes an iterative algorithm for the 3D synthesis of the electric far-field pattern of a conformal antenna array in the presence of requirements on both the polarization and the dynamic range ratio (DRR of the excitations. Thanks to the use of selectable weights, the algorithm allows a versatile control of the DRR and of the polarization in a given angular region and requires a low CPU time to provide the array excitations. Furthermore, a modified version of the algorithm is developed to enable the optimization of the polarization state by phase-only control. Numerical results are presented to verify the usefulness of the proposed approach for the joint pattern and polarization synthesis of conformal arrays with reduced or even unitary DRR.

  14. Development of an environment for 3D visualization of riser dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bernardes Junior, Joao Luiz; Martins, Clovis de Arruda [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica]. E-mails: joao.bernardes@poli.usp.br; cmartins@usp.br

    2006-07-01

    This paper describes the merging of Virtual Reality and Scientific Visualization techniques in the development of Riser View, a multi platform 3D environment for real time, interactive visualization of riser dynamics. Its features, architecture, unusual collision detection algorithm and how up was customized for the project are discussed. Using Open GL through VRK, the software is able to make use of the resources available in most modern Graphics. Acceleration Hardware to improve performance. IUP/LED allows for native loo-and-feel in MS-Windows or Linux platform. The paper discusses conflicts that arise between scientific visualization and aspects such as realism and immersion, and how the visualization is prioritized. (author)

  15. 3D Myocardial Contraction Imaging Based on Dynamic Grid Interpolation: Theory and Simulation Analysis

    Science.gov (United States)

    Bu, Shuhui; Shiina, Tsuyoshi; Yamakawa, Makoto; Takizawa, Hotaka

    Accurate assessment of local myocardial contraction is important for diagnosis of ischemic heart disease, because decreases of myocardial motion often appear in the early stages of the disease. Three-dimensional (3-D) assessment of the stiffness distribution is required for accurate diagnosis of ischemic heart disease. Since myocardium motion occurs radially within the left ventricle wall and the ultrasound beam propagates axially, conventional approaches, such as tissue Doppler imaging and strain-rate imaging techniques, cannot provide us with enough quantitative information about local myocardial contraction. In order to resolve this problem, we propose a novel myocardial contraction imaging system which utilizes the weighted phase gradient method, the extended combined autocorrelation method, and the dynamic grid interpolation (DGI) method. From the simulation results, we conclude that the strain image's accuracy and contrast have been improved by the proposed method.

  16. 3D particle tracking velocimetry using dynamic discrete tomography for plasma physics applications

    DEFF Research Database (Denmark)

    Moseev, Dmitry; Alpers, Andreas; Gritzmann, Peter

    2013-01-01

    3D particle tracking velocimetry (PTV) is a diagnostic technique which is widely used for studying flows, combustion, and plasmas. Current tomographic particle tracking methods are based on the multiplicative algebraic reconstruction technique and used for reconstructing the distribution of multi......-pixel sized particles as greylevel images. Reconstructions obtained by these methods do not necessarily match the experimental data. We propose a new algorithm which can be used for tracking dust particles in tokamaks and stellarators, as well as in low-temperature and complex plasmas. The dynamic discrete...... tomography algorithm is efficient for data from two projection directions and exact. The non-uniqueness can be detected and tracked individually. The algorithm performance is proportional to N3 on average where N is the number of particles in the reconstruction. There is a room for further improvement...

  17. 3D Dynamic Finite Element Analysis of the Nonuniform Residual Stress in Ultrasonic Impact Treatment Process

    Science.gov (United States)

    Hu, Shengsun; Guo, Chaobo; Wang, Dongpo; Wang, Zhijiang

    2016-09-01

    The nonuniform distributions of the residual stress were simulated by a 3D finite element model to analyze the elastic-plastic dynamic ultrasonic impact treatment (UIT) process of multiple impacts on the 2024 aluminum alloy. The evolution of the stress during the impact process was discussed. The successive impacts during the UIT process improve the uniformity of the plastic deformation and decrease the maximum compressive residual stress beneath the former impact indentations. The influences of different controlled parameters, including the initial impact velocity, pin diameter, pin tip, device moving, and offset distances, on the residual stress distributions were analyzed. The influences of the controlled parameters on the residual stress distributions are apparent in the offset direction due to the different surface coverage in different directions. The influences can be used to understand the UIT process and to obtain the desired residual stress by optimizing the controlled parameters.

  18. In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs

    Science.gov (United States)

    Möller, Thomas; Hägg, Daniel; Brantsing, Camilla; Rotter, Nicole; Apelgren, Peter; Lindahl, Anders; Kölby, Lars; Gatenholm, Paul

    2017-01-01

    Background: The three-dimensional (3D) bioprinting technology allows creation of 3D constructs in a layer-by-layer fashion utilizing biologically relevant materials such as biopolymers and cells. The aim of this study is to investigate the use of 3D bioprinting in a clinically relevant setting to evaluate the potential of this technique for in vivo chondrogenesis. Methods: Thirty-six nude mice (Balb-C, female) received a 5- × 5- × 1-mm piece of bioprinted cell-laden nanofibrillated cellulose/alginate construct in a subcutaneous pocket. Four groups of printed constructs were used: (1) human (male) nasal chondrocytes (hNCs), (2) human (female) bone marrow–derived mesenchymal stem cells (hBMSCs), (3) coculture of hNCs and hBMSCs in a 20/80 ratio, and (4) Cell-free scaffolds (blank). After 14, 30, and 60 days, the scaffolds were harvested for histological, immunohistochemical, and mechanical analysis. Results: The constructs had good mechanical properties and keep their structural integrity after 60 days of implantation. For both the hNC constructs and the cocultured constructs, a gradual increase of glycosaminoglycan production and hNC proliferation was observed. However, the cocultured group showed a more pronounced cell proliferation and enhanced deposition of human collagen II demonstrated by immunohistochemical analysis. Conclusions: In vivo chondrogenesis in a 3D bioprinted human cell-laden hydrogel construct has been demonstrated. The trophic role of the hBMSCs in stimulating hNC proliferation and matrix deposition in the coculture group suggests the potential of 3D bioprinting of human cartilage for future application in reconstructive surgery. PMID:28280669

  19. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models

    NARCIS (Netherlands)

    Ricci, C.; Mota, C.M.; Moscato, S.; Alessandro, D' D.; Ugel, S.; Sartoris, S.; Bronte, V.; Boggi, U.; Campani, D.; Funel, N.; Moroni, L.; Danti, S.

    2014-01-01

    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl alcohol

  20. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold.

    Directory of Open Access Journals (Sweden)

    Ken Ye

    Full Text Available Infrapatellar fat pad adipose stem cells (IPFP-ASCs have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.

  1. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    Science.gov (United States)

    Lee, Wonjae; Park, Jon

    2016-07-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  2. Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm

    Science.gov (United States)

    Wang, Minmin; Du, Guangliang; Zhou, Canlin; Zhang, Chaorui; Si, Shuchun; Li, Hui; Lei, Zhenkun; Li, YanJie

    2017-02-01

    Measuring objects with large reflectivity variations across their surface is one of the open challenges in phase measurement profilometry (PMP). Saturated or dark pixels in the deformed fringe patterns captured by the camera will lead to phase fluctuations and errors. Jiang et al. proposed a high dynamic range real-time three-dimensional (3D) shape measurement method (Jiang et al., 2016) [17] that does not require changing camera exposures. Three inverted phase-shifted fringe patterns are used to complement three regular phase-shifted fringe patterns for phase retrieval whenever any of the regular fringe patterns are saturated. Nonetheless, Jiang's method has some drawbacks: (1) the phases of saturated pixels are estimated by different formulas on a case by case basis; in other words, the method lacks a universal formula; (2) it cannot be extended to the four-step phase-shifting algorithm, because inverted fringe patterns are the repetition of regular fringe patterns; (3) for every pixel in the fringe patterns, only three unsaturated intensity values can be chosen for phase demodulation, leaving the other unsaturated ones idle. We propose a method to enhance high dynamic range 3D shape measurement based on a generalized phase-shifting algorithm, which combines the complementary techniques of inverted and regular fringe patterns with a generalized phase-shifting algorithm. Firstly, two sets of complementary phase-shifted fringe patterns, namely the regular and the inverted fringe patterns, are projected and collected. Then, all unsaturated intensity values at the same camera pixel from two sets of fringe patterns are selected and employed to retrieve the phase using a generalized phase-shifting algorithm. Finally, simulations and experiments are conducted to prove the validity of the proposed method. The results are analyzed and compared with those of Jiang's method, demonstrating that our method not only expands the scope of Jiang's method, but also improves

  3. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    Science.gov (United States)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling

  4. 3D culture increases pluripotent gene expression in mesenchymal stem cells through relaxation of cytoskeleton tension.

    Science.gov (United States)

    Zhou, Ying; Chen, Haiyan; Li, Hong; Wu, Yaojiong

    2017-03-09

    Three-dimensional (3D) culture has been shown to improve pluripotent gene expression in mesenchymal stem cells (MSCs), but the underlining mechanisms were poorly understood. Here, we found that the relaxation of cytoskeleton tension of MSCs in 3D culture was critically associated with the expressional up-regulation of Nanog. Cultured in spheroids, MSCs showed decreased integrin-based cell-matrix adhesion but increased cadherin-based cell-cell interaction. Different from that in 2D culture, where MSCs exhibited branched and multiple-directed F-actin stress bundles at the cell edge and strengthened stress fibres transversing the cell body, MSCs cultured in spheroids showed compact cell body, relaxed cytoskeleton tension with very thin cortical actin filament outlining the cell, and increased expression of Nanog along with reduced levels of Suv39h1 (H3K9 methyltransferase) and H3K9me3. Notably, pharmaceutical inhibition of actin polymerization with cytochalasin D or silencing Suv39h1 expression with siRNA in 2D-cultured MSCs elevated the expression of Nanog via H3K9 demethylation. Thus, our data suggest that 3D culture increases the expression of Nanog through the relaxation of actin cytoskeleton, which mediates reduced Suv39h1 and H3K9me3 levels.

  5. Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating

    Science.gov (United States)

    Ghanizadeh Tabriz, Atabak; Mills, Christopher G.; Mullins, John J.; Davies, Jamie A.; Shu, Wenmiao

    2017-01-01

    Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 to 220 µm or multilayered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells). PMID:28286747

  6. Orbital Data Confirms Dynamic Fractal Firework Universe Having 3D-spiral Code

    CERN Document Server

    Savov, E P

    2005-01-01

    The understanding of the universe is confused by the unknown nature of about 95% of its matter, required to confine the motions of space objects in cosmic structures. The proposed self-similar transformations of one all-building basic matter suggest that the universe is dynamic fractal that has 3D-spiral code. Its dynamic fractal elements create unifying force described by equation of the unifying interaction, drawn in the new fundamental dynamic fractal framework. The equation of unifying interaction converges into the inverse square laws and the principle of uncertainty at laboratory scales. It is further confirmed with calculations based on the orbital data of bodies moving around the nucleus of the Milky Way Galaxy, the centers of the Earth and the Sun and also orbiting the 87 Sylvia asteroid. Some of the testable predictions say that 87 Sylvia will have density > 1.2 g/cm2 and variations in gravity force less or comparable to 5.4 x 10exp(-4) m/s2, having space scales less or comparable to 10exp(3) km, wi...

  7. Stochastic microstructure modeling and electrochemical simulation of lithium-ion cell anodes in 3D

    Science.gov (United States)

    Hein, Simon; Feinauer, Julian; Westhoff, Daniel; Manke, Ingo; Schmidt, Volker; Latz, Arnulf

    2016-12-01

    Thermodynamically consistent transport theory is used to compare 3D images of real anode microstructures from lithium-ion batteries to virtual ones created by a parametric stochastic 3D microstructure model. Half-cell simulations in 3D with spatially resolved microstructures at different applied currents show that for low currents the deviations between various electrochemical quantities like current density or overpotential are negligibly small. For larger currents small differences become more pronounced. Qualitative and quantitative differences of these features are discussed with respect to the microstructure and it is shown that the real and virtual structures behave similar during electrochemical simulations. Extensions of the stochastic microstructure model, which overcome small differences in electrochemical behavior, are proposed.

  8. Quantitative data analysis methods for 3D microstructure characterization of Solid Oxide Cells

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley

    The performance of electrochemical ceramic devices such as solid oxide fuel and electrolyser cells depends on the distribution of constituent phases on the micro or nano scale, also known as the microstructure. The microstructure governs key properties such as ion, electron and gas transport...... task of manually delineating structures within each image slice or the quality of manual and automatic segmentation schemes. To solve this, a framework for the automatic segmentation of 3D image data is developed. The technique is based on a level set method and uses numerical approximations to partial...... differential equations to evolve a 3D surface to capture the phase boundaries. Vector fields derived from the experimentally acquired data are used as the driving forces. The framework performs the segmentation in 3D rather than on a slice by slice basis. It naturally supplies sub-voxel accuracy of segmented...

  9. Fabrication of Dye-Sensitized Solar Cells with a 3D Nanostructured Electrode

    Directory of Open Access Journals (Sweden)

    Guo-Yang Chen

    2010-01-01

    Full Text Available A novel Dye-Sensitized Solar Cell (DSSC scheme for better solar conversion efficiency is proposed. The distinctive characteristic of this novel scheme is that the conventional thin film electrode is replaced by a 3D nanostructured indium tin oxide (ITO electrode, which was fabricated using RF magnetron sputtering with an anodic aluminum oxide (AAO template. The template was prepared by immersing the barrier-layer side of an AAO film into a 30 wt% phosphoric acid solution to produce a contrasting surface. RF magnetron sputtering was then used to deposit a 3D nanostructured ITO thin film on the template. The crystallinity and conductivity of the 3D ITO films were further enhanced by annealing. Titanium dioxide nanoparticles were electrophoretically deposited on the 3D ITO film after which the proposed DSSC was formed by filling vacant spaces in the 3D nanostructured ITO electrode with dye. The measured solar conversion efficiency of the device was 0.125%. It presents a 5-fold improvement over that of conventional spin-coated TiO2 film electrode DSSCs.

  10. Investigation of osteoblast cells behavior in polymeric 3D micropatterned scaffolds using digital holographic microscopy.

    Science.gov (United States)

    Mihailescu, M; Popescu, R C; Matei, A; Acasandrei, A; Paun, I A; Dinescu, M

    2014-08-01

    The effect of micropatterned polymeric scaffolds on the features of the cultured cells at different time intervals after seeding was investigated by digital holographic microscopy. Both parallel and perpendicular walls, with different heights, were fabricated using two-photon lithography on photopolymers. The walls were subsequently coated with polypyrrole-based thin films using the matrix assisted pulsed laser evaporation technique. Osteoblast-like cells, MG-63 line, were cultured on these polymeric 3D micropatterned scaffolds. To analyze these scaffolds with/without cultured cells, an inverted digital holographic microscope, which provides 3D images, was used. Information about the samples' refractive indices and heights was obtained from the phase shift introduced in the optical path. Characteristics of cell adhesion, alignment, orientation, and morphology as a function of the wall heights and time from seeding were highlighted.

  11. Computational Graph Model for 3D Cells Tracking in Zebra Fish Datasets

    Science.gov (United States)

    Zhang, Lelin; Xiong, Hongkai; Zhao, Yang; Zhang, Kai; Zhou, Xiaobo

    2007-11-01

    This paper leads to a novel technique for tracking and identification of zebra-fish cells in 3D image sequences, extending graph-based multi-objects tracking algorithm to 3D applications. As raised in previous work of 2D graph-based method, separated cells are modeled as vertices that connected by edges. Then the tracking work is simplified to that of vertices matching between graphs generated from consecutive frames. Graph-based tracking is composed of three steps: graph generation, initial source vertices selection and graph saturation. To satisfy demands in this work separated cell records are segmented from original datasets using 3D level-set algorithms. Besides, advancements are achieved in each of the step including graph regulations, multi restrictions on source vertices and enhanced flow quantifications. Those strategies make a good compensation for graph-based multi-objects tracking method in 2D space. Experiments are carried out in 3D datasets sampled from zebra fish, results of which shows that this enhanced method could be potentially applied to tracking of objects with diverse features.

  12. Thermoforming techniques for manufacturing porous scaffolds for application in 3D cell cultivation.

    Science.gov (United States)

    Borowiec, Justyna; Hampl, Jörg; Gebinoga, Michael; Elsarnagawy, Tarek; Elnakady, Yasser A; Fouad, Hassan; Almajhadi, Fahd; Fernekorn, Uta; Weise, Frank; Singh, Sukhdeep; Elsarnagawy, Dief; Schober, Andreas

    2015-04-01

    Within the scientific community, there is an increasing demand to apply advanced cell cultivation substrates with increased physiological functionalities for studying spatially defined cellular interactions. Porous polymeric scaffolds are utilized for mimicking an organ-like structure or engineering complex tissues and have become a key element for three-dimensional (3D) cell cultivation in the meantime. As a consequence, efficient 3D scaffold fabrication methods play an important role in modern biotechnology. Here, we present a novel thermoforming procedure for manufacturing porous 3D scaffolds from permeable materials. We address the issue of precise thermoforming of porous polymer foils by using multilayer polymer thermoforming technology. This technology offers a new method for structuring porous polymer foils that are otherwise available for non-porous polymers only. We successfully manufactured 3D scaffolds from solvent casted and phase separated polylactic acid (PLA) foils and investigated their biocompatibility and basic cellular performance. The HepG2 cell culture in PLA scaffold has shown enhanced albumin secretion rate in comparison to a previously reported polycarbonate based scaffold with similar geometry.

  13. 3D imaging of Sox2 enhancer clusters in embryonic stem cells.

    Science.gov (United States)

    Liu, Zhe; Legant, Wesley R; Chen, Bi-Chang; Li, Li; Grimm, Jonathan B; Lavis, Luke D; Betzig, Eric; Tjian, Robert

    2014-12-24

    Combinatorial cis-regulatory networks encoded in animal genomes represent the foundational gene expression mechanism for directing cell-fate commitment and maintenance of cell identity by transcription factors (TFs). However, the 3D spatial organization of cis-elements and how such sub-nuclear structures influence TF activity remain poorly understood. Here, we combine lattice light-sheet imaging, single-molecule tracking, numerical simulations, and ChIP-exo mapping to localize and functionally probe Sox2 enhancer-organization in living embryonic stem cells. Sox2 enhancers form 3D-clusters that are segregated from heterochromatin but overlap with a subset of Pol II enriched regions. Sox2 searches for specific binding targets via a 3D-diffusion dominant mode when shuttling long-distances between clusters while chromatin-bound states predominate within individual clusters. Thus, enhancer clustering may reduce global search efficiency but enables rapid local fine-tuning of TF search parameters. Our results suggest an integrated model linking cis-element 3D spatial distribution to local-versus-global target search modalities essential for regulating eukaryotic gene transcription.

  14. Polymer-based mesh as supports for multi-layered 3D cell culture and assays.

    Science.gov (United States)

    Simon, Karen A; Park, Kyeng Min; Mosadegh, Bobak; Subramaniam, Anand Bala; Mazzeo, Aaron D; Ngo, Philip M; Whitesides, George M

    2014-01-01

    Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system-Cells-in-Gels-in-Mesh (CiGiM)-that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells-layer-by-layer-within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis-(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format.

  15. A 3D in vitro bone organ model using human progenitor cells

    Directory of Open Access Journals (Sweden)

    A Papadimitropoulos

    2011-05-01

    Full Text Available Three-dimensional (3D organotypic culture models based on human cells may reduce the use of complex and costly animal models, while gaining clinical relevance. This study aimed at developing a 3D osteoblastic-osteoclastic-endothelial cell co-culture system, as an in vitro model to mimic the process of bone turnover. Osteoprogenitor and endothelial lineage cells were isolated from the stromal vascular fraction (SVF of human adipose tissue, whereas CD14+ osteoclast progenitors were derived from human peripheral blood. Cells were co-cultured within 3D porous ceramic scaffolds using a perfusion-based bioreactor device, in the presence of typical osteoclastogenic factors. After 3 weeks, the scaffolds contained cells with endothelial (2.0 ±0.3%, pre/osteoclastic (14.0 ±1.4% and mesenchymal/osteoblastic (44.0 ±8.4% phenotypes, along with tartrate-resistant acid phosphatase-positive (TRAP+ osteoclastic cells in contact with deposited bone-like matrix. Supernatant analysis demonstrated sustained matrix deposition (by C-terminus procollagen-I propeptides, resorption (by N-terminus collagen-I telopeptides and phosphate levels and osteoclastic activity (by TRAP-5b only when SVF and CD14+ cells were co-cultured. Scanning electron microscopy and magnetic resonance imaging confirmed the pattern of matrix deposition and resorption. The effectiveness of Vitamin D in replacing osteoclastogenic factors indicated a functional osteoblast-osteoclast coupling in the system. The formation of human-origin bone-like tissue, blood vessels and osteoclasts upon ectopic implantation validated the functionality of the developed cell types. The 3D co-culture system and the associated non-invasive analytical tools can be used as an advanced model to capture some aspects of the functional coupling of bone-like matrix deposition and resorption and could be exploited toward the engineering of multi-functional bone substitute implants.

  16. Cell type-specific adaptation of cellular and nuclear volume in micro-engineered 3D environments.

    Science.gov (United States)

    Greiner, Alexandra M; Klein, Franziska; Gudzenko, Tetyana; Richter, Benjamin; Striebel, Thomas; Wundari, Bayu G; Autenrieth, Tatjana J; Wegener, Martin; Franz, Clemens M; Bastmeyer, Martin

    2015-11-01

    Bio-functionalized three-dimensional (3D) structures fabricated by direct laser writing (DLW) are structurally and mechanically well-defined and ideal for systematically investigating the influence of three-dimensionality and substrate stiffness on cell behavior. Here, we show that different fibroblast-like and epithelial cell lines maintain normal proliferation rates and form functional cell-matrix contacts in DLW-fabricated 3D scaffolds of different mechanics and geometry. Furthermore, the molecular composition of cell-matrix contacts forming in these 3D micro-environments and under conventional 2D culture conditions is identical, based on the analysis of several marker proteins (paxillin, phospho-paxillin, phospho-focal adhesion kinase, vinculin, β1-integrin). However, fibroblast-like and epithelial cells differ markedly in the way they adapt their total cell and nuclear volumes in 3D environments. While fibroblast-like cell lines display significantly increased cell and nuclear volumes in 3D substrates compared to 2D substrates, epithelial cells retain similar cell and nuclear volumes in 2D and 3D environments. Despite differential cell volume regulation between fibroblasts and epithelial cells in 3D environments, the nucleus-to-cell (N/C) volume ratios remain constant for all cell types and culture conditions. Thus, changes in cell and nuclear volume during the transition from 2D to 3D environments are strongly cell type-dependent, but independent of scaffold stiffness, while cells maintain the N/C ratio regardless of culture conditions.

  17. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    Science.gov (United States)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  18. 3D cell culture: a review of current approaches and techniques.

    Science.gov (United States)

    Haycock, John W

    2011-01-01

    Cell culture in two dimensions has been routinely and diligently undertaken in thousands of laboratories worldwide for the past four decades. However, the culture of cells in two dimensions is arguably primitive and does not reproduce the anatomy or physiology of a tissue for informative or useful study. Creating a third dimension for cell culture is clearly more relevant, but requires a multidisciplinary approach and multidisciplinary expertise. When entering the third dimension, investigators need to consider the design of scaffolds for supporting the organisation of cells or the use of bioreactors for controlling nutrient and waste product exchange. As 3D culture systems become more mature and relevant to human and animal physiology, the ability to design and develop co-cultures becomes possible as does the ability to integrate stem cells. The primary objectives for developing 3D cell culture systems vary widely - and range from engineering tissues for clinical delivery through to the development of models for drug screening. The intention of this review is to provide a general overview of the common approaches and techniques for designing 3D culture models.

  19. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    Science.gov (United States)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a

  20. 3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control

    Science.gov (United States)

    Chang, Lingqian; Bertani, Paul; Gallego-Perez, Daniel; Yang, Zhaogang; Chen, Feng; Chiang, Chiling; Malkoc, Veysi; Kuang, Tairong; Gao, Keliang; Lee, L. James; Lu, Wu

    2015-12-01

    Of great interest to modern medicine and biomedical research is the ability to inject individual target cells with the desired genes or drug molecules. Some advances in cell electroporation allow for high throughput, high cell viability, or excellent dosage control, yet no platform is available for the combination of all three. In an effort to solve this problem, here we show a ``3D nano-channel electroporation (NEP) chip'' on a silicon platform designed to meet these three criteria. This NEP chip can simultaneously deliver the desired molecules into 40 000 cells per cm2 on the top surface of the device. Each 650 nm pore aligns to a cell and can be used to deliver extremely small biological elements to very large plasmids (>10 kbp). When compared to conventional bulk electroporation (BEP), the NEP chip shows a 20 fold improvement in dosage control and uniformity, while still maintaining high cell viability (>90%) even in cells such as cardiac cells which are characteristically difficult to transfect. This high-throughput 3D NEP system provides an innovative and medically valuable platform with uniform and reliable cellular transfection, allowing for a steady supply of healthy, engineered cells.Of great interest to modern medicine and biomedical research is the ability to inject individual target cells with the desired genes or drug molecules. Some advances in cell electroporation allow for high throughput, high cell viability, or excellent dosage control, yet no platform is available for the combination of all three. In an effort to solve this problem, here we show a ``3D nano-channel electroporation (NEP) chip'' on a silicon platform designed to meet these three criteria. This NEP chip can simultaneously deliver the desired molecules into 40 000 cells per cm2 on the top surface of the device. Each 650 nm pore aligns to a cell and can be used to deliver extremely small biological elements to very large plasmids (>10 kbp). When compared to conventional bulk

  1. A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions.

    Science.gov (United States)

    Podesta, Mark; Persoon, Lucas C G G; Verhaegen, Frank

    2014-10-21

    Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors.The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation fields

  2. Compressible magma/mantle dynamics: 3-D, adaptive simulations in ASPECT

    Science.gov (United States)

    Dannberg, Juliane; Heister, Timo

    2016-12-01

    Melt generation and migration are an important link between surface processes and the thermal and chemical evolution of the Earth's interior. However, their vastly different timescales make it difficult to study mantle convection and melt migration in a unified framework, especially for 3-D global models. And although experiments suggest an increase in melt volume of up to 20 per cent from the depth of melt generation to the surface, previous computations have neglected the individual compressibilities of the solid and the fluid phase. Here, we describe our extension of the finite element mantle convection code ASPECT that adds melt generation and migration. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. Applying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in areas where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. Together with a high-performance, massively parallel implementation, this allows for high-resolution, 3-D, compressible, global mantle convection simulations coupled with melt migration. We evaluate the functionality and potential of this method using a series of benchmarks and model setups, compare results of the compressible and incompressible formulation, and show the effectiveness of adaptive mesh refinement when applied to melt migration. Our model of magma dynamics provides a framework for modelling processes on different scales and investigating links between processes occurring in the deep mantle and melt generation and migration. This approach could prove particularly useful applied to modelling the generation of komatiites or other melts originating in greater depths. The implementation is available in the Open Source ASPECT repository.

  3. The Shock Dynamics of Heterogeneous YSO Jets: 3-D Simulations Meet Multi-Epoch Observations

    CERN Document Server

    Hansen, E C; Hartigan, P; Lebedev, S V

    2016-01-01

    High resolution observations of Young Stellar Object (YSO) jets show them to be composed of many small-scale knots or clumps. In this paper we report results of 3-D numerical simulations designed to study how such clumps interact and create morphologies and kinematic patterns seen in emission line observations. Our simulations focus on clump scale dynamics by imposing velocity differences between spherical, over-dense regions which then lead to the formation of bow shocks as faster clumps overtake slower material. We show that much of the spatial structure apparent in emission line images of jets arises from the dynamics and interactions of these bow shocks. Our simulations show a variety of time-dependent features, including bright knots associated with Mach stems where the shocks intersect, a "frothy" emission structure that arises from the presence of the Non-linear Thin Shell Instability (NTSI) along the surfaces of the bow shocks, and the merging and fragmentation of clumps. Our simulations use a new non...

  4. A digital holography set-up for 3D vortex flow dynamics

    Science.gov (United States)

    Lebon, Benoît; Perret, Gaële; Coëtmellec, Sébastien; Godard, Gilles; Gréhan, Gérard; Lebrun, Denis; Brossard, Jérôme

    2016-06-01

    In the present paper, a digital in-line holography (DIH) set-up, with a converging beam, is used to take three-dimensional (3D) velocity measurements of vortices. The vortices are formed periodically at the edges of a submerged horizontal plate submitted to regular waves. They take the form of vortex filaments that extend from side to side of the channel. They undergo strongly three-dimensional instability mechanisms that remain very complicated to characterize experimentally. The experiments are performed in a 10 × 0.3 × 0.3 m3 wave flume. The DIH set-up is performed using a modulated laser diode emitting at the wavelength of 640 nm and a lensless CCD camera. The beam crosses the channel side to side. To reveal the flow dynamics, 30-μm hydrogen bubbles are generated at the edge of the plate to serve as tracers. Their locations are recorded on the holograms multiple times to access the dynamics of the flow. This method leads to an accuracy in the order of 100 μm on the axial location. Those measurements have been validated with stereo-PIV measurements. A very good agreement is found on time-averaged velocity fields between the two techniques.

  5. 3D Simulations of Helmet Streamer Dynamics and Implications for the Slow Solar Wind

    Science.gov (United States)

    Higginson, Aleida K.; Antiochos, Spiro K.; DeVore, C. R.; Zurbuchen, Thomas H.

    2015-04-01

    The source of the slow solar wind at the Sun is still an issue of intense debate in solar and heliospheric physics. Because the majority of the solar wind observed at Earth is slow wind, understanding its origin is essential for understanding and predicting Earth’s space weather environment. In-situ and remote observations show that, when compared to the fast wind, the slow solar wind corresponds to higher freeze-in temperatures, as indicated by charge-state ratios, and more corona-like elemental abundance ratios. These results indicate that the most likely source for the slow wind is the hot plasma in the closed-field corona, but the release mechanism(s) for the wind from the closed-field regions is far from understood. We perform fully dynamic, 3D MHD simulations in order to the study the opening and closing of the Sun’s magnetic field that leads to the escape of the slow solar wind. In particular, we calculate the dynamics of helmet streamers that are driven by photospheric motions such as supergranular flows. We determine in detail the opening and closing of coronal flux, and discuss the implications of our results for theories of slow wind origin, especially the S-Web model. We also determine observational signatures for the upcoming inner heliosphere missions Solar Orbiter and Solar Probe Plus.This work was supported by the NASA SR&T and TR&T Programs.

  6. Rab3D is critical for secretory granule maturation in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Tanja Kögel

    Full Text Available Neuropeptide- and hormone-containing secretory granules (SGs are synthesized at the trans-Golgi network (TGN as immature secretory granules (ISGs and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs. Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs.

  7. A Method for Sectioning and Immunohistochemical Analysis of Stem Cell-Derived 3-D Organoids.

    Science.gov (United States)

    Wiley, Luke A; Beebe, David C; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2016-05-12

    This unit describes a protocol for embedding, sectioning, and immunocytochemical analysis of pluripotent stem cell-derived 3-D organoids. Specifically, we describe a method to embed iPSC-derived retinal cups in low-melt agarose, acquire thick sections using a vibratome tissue slicer, and perform immunohistochemical analysis. This method includes an approach for antibody labeling that minimizes the amount of antibody needed for individual experiments and that utilizes large-volume washing to increase the signal-to-noise ratio, allowing for clean, high-resolution imaging of developing cell types. The universal methods described can be employed regardless of the type of pluripotent stem cell used and 3-D organoid generated. © 2016 by John Wiley & Sons, Inc.

  8. 3D-printed and CNC milled flow-cells for chemiluminescence detection.

    Science.gov (United States)

    Spilstead, Kara B; Learey, Jessica J; Doeven, Egan H; Barbante, Gregory J; Mohr, Stephan; Barnett, Neil W; Terry, Jessica M; Hall, Robynne M; Francis, Paul S

    2014-08-01

    Herein we explore modern fabrication techniques for the development of chemiluminescence detection flow-cells with features not attainable using the traditional coiled tubing approach. This includes the first 3D-printed chemiluminescence flow-cells, and a milled flow-cell designed to split the analyte stream into two separate detection zones within the same polymer chip. The flow-cells are compared to conventional detection systems using flow injection analysis (FIA) and high performance liquid chromatography (HPLC), with the fast chemiluminescence reactions of an acidic potassium permanganate reagent with morphine and a series of adrenergic phenolic amines.

  9. Melanin Transfer in Human 3D Skin Equivalents Generated Exclusively from Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Karl Gledhill

    Full Text Available The current utility of 3D skin equivalents is limited by the fact that existing models fail to recapitulate the cellular complexity of human skin. They often contain few cell types and no appendages, in part because many cells found in the skin are difficult to isolate from intact tissue and cannot be expanded in culture. Induced pluripotent stem cells (iPSCs present an avenue by which we can overcome this issue due to their ability to be differentiated into multiple cell types in the body and their unlimited growth potential. We previously reported generation of the first human 3D skin equivalents from iPSC-derived fibroblasts and iPSC-derived keratinocytes, demonstrating that iPSCs can provide a foundation for modeling a complex human organ such as skin. Here, we have increased the complexity of this model by including additional iPSC-derived melanocytes. Epidermal melanocytes, which are largely responsible for skin pigmentation, represent the second most numerous cell type found in normal human epidermis and as such represent a logical next addition. We report efficient melanin production from iPSC-derived melanocytes and transfer within an entirely iPSC-derived epidermal-melanin unit and generation of the first functional human 3D skin equivalents made from iPSC-derived fibroblasts, keratinocytes and melanocytes.

  10. Slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow.

    Science.gov (United States)

    Jagannadh, Veerendra Kalyan; Mackenzie, Mark D; Pal, Parama; Kar, Ajoy K; Gorthi, Sai Siva

    2016-09-19

    Three-dimensional cellular imaging techniques have become indispensable tools in biological research and medical diagnostics. Conventional 3D imaging approaches employ focal stack collection to image different planes of the cell. In this work, we present the design and fabrication of a slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow. The approach employs slanted microfluidic channels fabricated in glass using ultrafast laser inscription. The slanted nature of the microfluidic channels ensures that samples come into and go out of focus, as they pass through the microscope imaging field of view. This novel approach enables the collection of focal stacks in a straight-forward and automated manner, even with off-the-shelf microscopes that are not equipped with any motorized translation/rotation sample stages. The presented approach not only simplifies conventional focal stack collection, but also enhances the capabilities of a regular widefield fluorescence microscope to match the features of a sophisticated confocal microscope. We demonstrate the retrieval of sectioned slices of microspheres and cells, with the use of computational algorithms to enhance the signal-to-noise ratio (SNR) in the collected raw images. The retrieved sectioned images have been used to visualize fluorescent microspheres and bovine sperm cell nucleus in 3D while using a regular widefield fluorescence microscope. We have been able to achieve sectioning of approximately 200 slices per cell, which corresponds to a spatial translation of ∼ 15 nm per slice along the optical axis of the microscope.

  11. 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood.

    Science.gov (United States)

    Zheng, Siyang; Lin, Henry K; Lu, Bo; Williams, Anthony; Datar, Ram; Cote, Richard J; Tai, Yu-Chong

    2011-02-01

    Detection of circulating tumor cells has emerged as a promising minimally invasive diagnostic and prognostic tool for patients with metastatic cancers. We report a novel three dimensional microfilter device that can enrich viable circulating tumor cells from blood. This device consists of two layers of parylene membrane with pores and gap precisely defined with photolithography. The positions of the pores are shifted between the top and bottom membranes. The bottom membrane supports captured cells and minimize the stress concentration on cell membrane and sustain cell viability during filtration. Viable cell capture on device was investigated with scanning electron microscopy, confocal microscopy, and immunofluorescent staining using model systems of cultured tumor cells spiked in blood or saline. The paper presents and validates this new 3D microfiltration concept for circulation tumor cell enrichment application. The device provides a highly valuable tool for assessing and characterizing viable enriched circulating tumor cells in both research and clinical settings.

  12. A general approach for time-supersampling of 3D-PIV data by the vortex-in-cell method

    Science.gov (United States)

    Scarano, Fulvio; Schneiders, Jan; Dwight, Richard; Aerospace Engineering/Aerodynamics Team

    2013-11-01

    Advancements of tomographic PIV [1] have led into 3D time-resolved experiments to study the dynamical evolution of 3D turbulent flows [2]. The known bottleneck of Tomo-PIV is the high laser power required to illuminate large volumes in airflows, which becomes critical beyond 10 kHz. Time-super-sampling is an approach to reduce the sampling rate, proven for frozen turbulence where the advection model yields a significant increase of temporal resolution [3]. Instead, in separated flows, the advection principle yields unacceptable distortions. The use of Navier-Stokes numerical calculations with the vortex-in-cell (VIC) method is proposed herein. The assumption is made of inviscid incompressible flow [4]. The spatial-resolution of the data is exploited to increase the temporal resolution. The dynamical evolution of the vorticity and velocity field between subsequent snapshots in the 3D domain is numerically evaluated. The verification with fully time resolved data of a circular jet indicates a substantial increase of temporal resolution. Interestingly, data sampled below the Nyquist limit could be reconstructed faithfully, indicating the potential of VIC in alleviating requirements on PIV measurement rate. Work supported by the European Research Council grant 202887.

  13. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    Energy Technology Data Exchange (ETDEWEB)

    Duru, Kenneth, E-mail: kduru@stanford.edu [Department of Geophysics, Stanford University, Stanford, CA (United States); Dunham, Eric M. [Department of Geophysics, Stanford University, Stanford, CA (United States); Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA (United States)

    2016-01-15

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge–Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture

  14. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.

    Science.gov (United States)

    Zhao, Yu; Li, Yang; Mao, Shuangshuang; Sun, Wei; Yao, Rui

    2015-11-02

    Three-dimensional (3D) cell printing technology has provided a versatile methodology to fabricate cell-laden tissue-like constructs and in vitro tissue/pathological models for tissue engineering, drug testing and screening applications. However, it still remains a challenge to print bioinks with high viscoelasticity to achieve long-term stable structure and maintain high cell survival rate after printing at the same time. In this study, we systematically investigated the influence of 3D cell printing parameters, i.e. composition and concentration of bioink, holding temperature and holding time, on the printability and cell survival rate in microextrusion-based 3D cell printing technology. Rheological measurements were utilized to characterize the viscoelasticity of gelatin-based bioinks. Results demonstrated that the bioink viscoelasticity was increased when increasing the bioink concentration, increasing holding time and decreasing holding temperature below gelation temperature. The decline of cell survival rate after 3D cell printing process was observed when increasing the viscoelasticity of the gelatin-based bioinks. However, different process parameter combinations would result in the similar rheological characteristics and thus showed similar cell survival rate after 3D bioprinting process. On the other hand, bioink viscoelasticity should also reach a certain point to ensure good printability and shape fidelity. At last, we proposed a protocol for 3D bioprinting of temperature-sensitive gelatin-based hydrogel bioinks with both high cell survival rate and good printability. This research would be useful for biofabrication researchers to adjust the 3D bioprinting process parameters quickly and as a referable template for designing new bioinks.

  15. Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models.

    Science.gov (United States)

    Radtke, Andrea L; Herbst-Kralovetz, Melissa M

    2012-04-03

    Cells and tissues in the body experience environmental conditions that influence their architecture, intercellular communications, and overall functions. For in vitro cell culture models to accurately mimic the tissue of interest, the growth environment of the culture is a critical aspect to consider. Commonly used conventional cell culture systems propagate epithelial cells on flat two-dimensional (2-D) impermeable surfaces. Although much has been learned from conventional cell culture systems, many findings are not reproducible in human clinical trials or tissue explants, potentially as a result of the lack of a physiologically relevant microenvironment. Here, we describe a culture system that overcomes many of the culture condition boundaries of 2-D cell cultures, by using the innovative rotating wall vessel (RWV) bioreactor technology. We and others have shown that organotypic RWV-derived models can recapitulate structure, function, and authentic human responses to external stimuli similarly to human explant tissues (1-6). The RWV bioreactor is a suspension culture system that allows for the growth of epithelial cells under low physiological fluid shear conditions. The bioreactors come in two different formats, a high-aspect rotating vessel (HARV) or a slow-turning lateral vessel (STLV), in which they differ by their aeration source. Epithelial cells are added to the bioreactor of choice in combination with porous, collagen-coated microcarrier beads (Figure 1A). The cells utilize the beads as a growth scaffold during the constant free fall in the bioreactor (Figure 1B). The microenvironment provided by the bioreactor allows the cells to form three-dimensional (3-D) aggregates displaying in vivo-like characteristics often not observed under standard 2-D culture conditions (Figure 1D). These characteristics include tight junctions, mucus production, apical/basal orientation, in vivo protein localization, and additional epithelial cell-type specific properties

  16. 3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control.

    Science.gov (United States)

    Chang, Lingqian; Bertani, Paul; Gallego-Perez, Daniel; Yang, Zhaogang; Chen, Feng; Chiang, Chiling; Malkoc, Veysi; Kuang, Tairong; Gao, Keliang; Lee, L James; Lu, Wu

    2016-01-01

    Of great interest to modern medicine and biomedical research is the ability to inject individual target cells with the desired genes or drug molecules. Some advances in cell electroporation allow for high throughput, high cell viability, or excellent dosage control, yet no platform is available for the combination of all three. In an effort to solve this problem, here we show a "3D nano-channel electroporation (NEP) chip" on a silicon platform designed to meet these three criteria. This NEP chip can simultaneously deliver the desired molecules into 40,000 cells per cm(2) on the top surface of the device. Each 650 nm pore aligns to a cell and can be used to deliver extremely small biological elements to very large plasmids (>10 kbp). When compared to conventional bulk electroporation (BEP), the NEP chip shows a 20 fold improvement in dosage control and uniformity, while still maintaining high cell viability (>90%) even in cells such as cardiac cells which are characteristically difficult to transfect. This high-throughput 3D NEP system provides an innovative and medically valuable platform with uniform and reliable cellular transfection, allowing for a steady supply of healthy, engineered cells.

  17. Total 3D imaging of phase objects using defocusing microscopy: application to red blood cells

    CERN Document Server

    Roma, P M S; Amaral, F T; Agero, U; Mesquita, O N

    2014-01-01

    We present Defocusing Microscopy (DM), a bright-field optical microscopy technique able to perform total 3D imaging of transparent objects. By total 3D imaging we mean the determination of the actual shapes of the upper and lower surfaces of a phase object. We propose a new methodology using DM and apply it to red blood cells subject to different osmolality conditions: hypotonic, isotonic and hypertonic solutions. For each situation the shape of the upper and lower cell surface-membranes (lipid bilayer/cytoskeleton) are completely recovered, displaying the deformation of RBCs surfaces due to adhesion on the glass-substrate. The axial resolution of our technique allowed us to image surface-membranes separated by distances as small as 300 nm. Finally, we determine volume, superficial area, sphericity index and RBCs refractive index for each osmotic condition.

  18. Toward a 3D dynamic model of a faulty duplex ball bearing

    Science.gov (United States)

    Kogan, Gideon; Klein, Renata; Kushnirsky, Alex; Bortman, Jacob

    2015-03-01

    Bearings are vital components for safe and proper operation of machinery. Increasing efficiency of bearing diagnostics usually requires training of health and usage monitoring systems via expensive and time-consuming ground calibration tests. The main goal of this research, therefore, is to improve bearing dynamics modeling tools in order to reduce the time and budget needed to implement the health and usage monitoring approach. The proposed three-dimensional ball bearing dynamic model is based on the classic dynamic and kinematic equations. Interactions between the bodies are simulated using non-linear springs combined with dampers described by Hertz-type contact relation. The force friction is simulated using the hyperbolic-tangent function. The model allows simulation of a wide range of mechanical faults. It is validated by comparison to known bearing behavior and to experimental results. The model results are verified by demonstrating numerical convergence. The model results for the two cases of single and duplex angular ball bearings with axial deformation in the outer ring are presented. The qualitative investigation provides insight into bearing dynamics, the sensitivity study generalizes the qualitative findings for similar cases, and the comparison to the test results validates model reliability. The article demonstrates the variety of the cases that the 3D bearing model can simulate and the findings to which it may lead. The research allowed the identification of new patterns generated by single and duplex bearings with axially deformed outer race. It also enlightened the difference between single and duplex bearing manifestation. In the current research the dynamic model enabled better understanding of the physical behavior of the faulted bearings. Therefore, it is expected that the modeling approach has the potential to simplify and improve the development process of diagnostic algorithms. • A deformed outer race of a single axially loaded bearing is

  19. Controlled Positioning of Cells in Biomaterials—Approaches Towards 3D Tissue Printing

    Directory of Open Access Journals (Sweden)

    Sandra Hofmann

    2011-08-01

    Full Text Available Current tissue engineering techniques have various drawbacks: they often incorporate uncontrolled and imprecise scaffold geometries, whereas the current conventional cell seeding techniques result mostly in random cell placement rather than uniform cell distribution. For the successful reconstruction of deficient tissue, new material engineering approaches have to be considered to overcome current limitations. An emerging method to produce complex biological products including cells or extracellular matrices in a controlled manner is a process called bioprinting or biofabrication, which effectively uses principles of rapid prototyping combined with cell-loaded biomaterials, typically hydrogels. 3D tissue printing is an approach to manufacture functional tissue layer-by-layer that could be transplanted in vivo after production. This method is especially advantageous for stem cells since a controlled environment can be created to influence cell growth and differentiation. Using printed tissue for biotechnological and pharmacological needs like in vitro drug-testing may lead to a revolution in the pharmaceutical industry since animal models could be partially replaced by biofabricated tissues mimicking human physiology and pathology. This would not only be a major advancement concerning rising ethical issues but would also have a measureable impact on economical aspects in this industry of today, where animal studies are very labor-intensive and therefore costly. In this review, current controlled material and cell positioning techniques are introduced highlighting approaches towards 3D tissue printing.

  20. Foot roll-over evaluation based on 3D dynamic foot scan.

    Science.gov (United States)

    Samson, William; Van Hamme, Angèle; Sanchez, Stéphane; Chèze, Laurence; Van Sint Jan, Serge; Feipel, Véronique

    2014-01-01

    Foot roll-over is commonly analyzed to evaluate gait pathologies. The current study utilized a dynamic foot scanner (DFS) to analyze foot roll-over. The right feet of ten healthy subjects were assessed during gait trials with a DFS system integrated into a walkway. A foot sole picture was computed by vertically projecting points from the 3D foot shape which were lower than a threshold height of 15 mm. A 'height' value of these projected points was determined; corresponding to the initial vertical coordinates prior to projection. Similar to pedobarographic analysis, the foot sole picture was segmented into anatomical regions of interest (ROIs) to process mean height (average of height data by ROI) and projected surface (area of the projected foot sole by ROI). Results showed that these variables evolved differently to plantar pressure data previously reported in the literature, mainly due to the specificity of each physical quantity (millimeters vs Pascals). Compared to plantar pressure data arising from surface contact by the foot, the current method takes into account the whole plantar aspect of the foot, including the parts that do not make contact with the support surface. The current approach using height data could contribute to a better understanding of specific aspects of foot motion during walking, such as plantar arch height and the windlass mechanism. Results of this study show the underlying method is reliable. Further investigation is required to validate the DFS measurements within a clinical context, prior to implementation into clinical practice.

  1. Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm

    CERN Document Server

    Wang, Minmin; Zhou, Canlin; Zhang, Chaorui; Si, Shuchun; Li, Hui; Lei, Zhenkun; Li, YanJie

    2016-01-01

    It is a challenge for Phase Measurement Profilometry (PMP) to measure objects with a large range of reflectivity variation across the surface. Saturated or dark pixels in the deformed fringe patterns captured by the camera will lead to phase fluctuations and errors. Jiang et al. proposed a high dynamic range real-time 3D shape measurement method without changing camera exposures. Three inverted phase-shifted fringe patterns are used to complement three regular phase-shifted fringe patterns for phase retrieval when any of the regular fringe patterns are saturated. But Jiang's method still has some drawbacks: (1) The phases in saturated pixels are respectively estimated by different formulas for different cases. It is shortage of an universal formula; (2) it cannot be extended to four-step phase-shifting algorithm because inverted fringe patterns are the repetition of regular fringe patterns; (3) only three unsaturated intensity values at every pixel of fringe patterns are chosen for phase demodulation, lying i...

  2. Introducing ZEUS-MP A 3D, Parallel, Multiphysics Code for Astrophysical Fluid Dynamics

    CERN Document Server

    Norman, M L

    2000-01-01

    We describe ZEUS-MP: a Multi-Physics, Massively-Parallel, Message-Passing code for astrophysical fluid dynamics simulations in 3 dimensions. ZEUS-MP is a follow-on to the sequential ZEUS-2D and ZEUS-3D codes developed and disseminated by the Laboratory for Computational Astrophysics (lca.ncsa.uiuc.edu) at NCSA. V1.0 released 1/1/2000 includes the following physics modules: ideal hydrodynamics, ideal MHD, and self-gravity. Future releases will include flux-limited radiation diffusion, thermal heat conduction, two-temperature plasma, and heating and cooling functions. The covariant equations are cast on a moving Eulerian grid with Cartesian, cylindrical, and spherical polar coordinates currently supported. Parallelization is done by domain decomposition and implemented in F77 and MPI. The code is portable across a wide range of platforms from networks of workstations to massively parallel processors. Some parallel performance results are presented as well as an application to turbulent star formation.

  3. Two-phase DNS of evaporating drops with 3D phenomena and contact-line dynamics

    Science.gov (United States)

    Valluri, Prashant; Sáenz, Pedro J.; Sefiane, Khellil; Matar, Omar K.

    2014-11-01

    A novel 3D two-phase model based on the diffuse-interface method is developed to investigate the fully-coupled two-phase dynamics of a sessile drop undergoing evaporation on a heated substrate. General transient advection-diffusion transport equations are implemented to address the conservation of energy and vapour in the gas phase, which also allows the more realistic modelling of interface mass and energy transport based on local conditions. The emphasis of this investigation is on addressing three-dimensional phenomena during evaporation of drops with non-circular contact area. Irregular drops lead to complex interface shapes with intricate contract-angle distributions along the triple line and with a three-dimensional flow which previous axisymmetric approaches cannot show. The versatility of this model also allows the simulation of the more complex case of drops evaporating with a moving contact line. Both constant-angle (CA) and constant-radius (CR) modes of pure evaporation are successfully simulated and validated against experiments. ThermaPOWER project (EU IRSES-PIRSES GA-2011-294905).

  4. Automatic Reconstruction of Fault Networks from Seismicity Catalogs: 3D Optimal Anisotropic Dynamic Clustering

    CERN Document Server

    Ouillon, G; Sornette, D; Ouillon, Guy; Ducorbier, Caroline; Sornette, Didier

    2007-01-01

    We propose a new pattern recognition method that is able to reconstruct the 3D structure of the active part of a fault network using the spatial location of earthquakes. The method is a generalization of the so-called dynamic clustering method, that originally partitions a set of datapoints into clusters, using a global minimization criterion over the spatial inertia of those clusters. The new method improves on it by taking into account the full spatial inertia tensor of each cluster, in order to partition the dataset into fault-like, anisotropic clusters. Given a catalog of seismic events, the output is the optimal set of plane segments that fits the spatial structure of the data. Each plane segment is fully characterized by its location, size and orientation. The main tunable parameter is the accuracy of the earthquake localizations, which fixes the resolution, i.e. the residual variance of the fit. The resolution determines the number of fault segments needed to describe the earthquake catalog, the better...

  5. Dynamical effects of subducting ridges: Insights from 3-D laboratory models

    CERN Document Server

    Martinod, Joseph; Faccenna, Claudio; Labanieh, Shasa; Regard, Vincent; 10.1111/j.1365-246X.2005.02797.x

    2010-01-01

    We model the subduction of buoyant ridges and plateaus to study their effect on slab dynamics. Oceanic ridges parallel to the trench have a stronger effect on the process of subduction because they simultaneously affect a longer trench segment. Large buoyant slab segments sink more slowly into the asthenosphere, and their subduction result in a diminution of the velocity of subduction of the plate. We observe a steeping of the slab below those buoyant anomalies, resulting in smaller radius of curvature of the slab, that augments the energy dissipated in folding the plate and further diminishes the velocity of subduction. When the 3D geometry of a buoyant plateau is modelled, the dip of the slab above the plateau decreases, as a result of the larger velocity of subduction of the dense "normal" oceanic plate on both sides of the plateau. Such a perturbation of the dip of the slab maintains long time after the plateau has been entirely incorporated into the subduction zone. We compare experiments with the presen...

  6. On the unsteady wake dynamics behind a circular disk using fully 3D proper orthogonal decomposition

    Science.gov (United States)

    Yang, Jianzhi; Liu, Minghou; Wu, Guang; Gu, Hailin; Yao, Mengyun

    2017-02-01

    In the present work, the wakes behind a circular disk at various transitional regimes are numerically explored using fully 3D proper orthogonal decomposition (POD). The Reynolds numbers considered in this study (Re = 152, 170, 300 and 3000) cover four transitional states, i.e. the reflectional-symmetry-breaking (RSB) mode, the standing wave (SW) mode, a weakly chaotic state, and a higher-Reynolds-number state. Through analysis of the spatial POD modes at different wake states, it is found that a planar-symmetric vortex shedding mode characterized by the first mode pair is persistent in all the states. When the wake develops into a weakly chaotic state, a new vortex shedding mode characterized by the second mode pair begins to appear and completely forms at the higher-Reynolds-number state of Re = 3000, i.e. planar-symmetry-breaking vortex shedding mode. On the other hand, the coherent structure at Re = 3000 extracted from the first two POD modes shows a good resemblance to the wake configuration in the SW mode, while the coherent structure reconstructed from the first four POD modes shows a good resemblance to the wake configuration in the RSB mode. The present results indicate that the dynamics or flow instabilities observed at transitional RSB and SW modes are still preserved in a higher-Reynolds-number regime.

  7. Dynamics of diachronous back-arc extension: insights from 3D thermo-mechanical analogue experiments

    Science.gov (United States)

    Boutelier, D. A.; Cruden, A. R.

    2013-12-01

    Subduction of an old, dense oceanic lithosphere can lead to rifting and extension of the magmatic arc. Such subduction systems are inherently three-dimensional with significant along-strike variations in the timing and style of deformation and magmatism. Geodynamic models used to explain such variations and associated trench curvature generally ignore the role of the overriding plate and its deformation. 3D thermo-mechanical analogue experiments are used to investigate the kinematics and dynamics of diachronous arc rifting and back-arc basin opening. In the models, horizontal tension increases in the upper plate until the magmatic arc lithosphere fails and back-arc opening occurs via slab rollback. This result corresponds well to previous 2D models of arc rifting and subsequent back-arc opening via trench rollback and the mechanics of retreating slabs in fluid dynamic experiments. However, in our experiments arc failure occurs diachronously, initiating near the model edge due to locally higher temperatures and lower strength and then propagating along strike, producing an arcuate plate boundary. The experiments demonstrate that trench rollback rate is limited by the propagation rate of arc failure. Conversely, slab rollback generates additional horizontal tension in the adjacent magmatic arc lithosphere, which drives along-strike propagation of arc failure. Feedback between the rates of trench rollback and arc failure propagation dictates the geometry of the back-arc basin in plan-view. The shape of the back-arc basin obtained in models fits remarkably well with that of the Mariana basin in the western Pacific. Experiments where the strength of the magmatic arc, or forearc varies along strike or where the negative buoyancy of the subducting plate varies along strike explore further the role of the slab edge and the trench-parallel tensile strength of the retreating forearc block.

  8. Effect of a Material Contrast on a Dynamic Rupture: 3-D

    Science.gov (United States)

    Harris, R. A.; Day, S. M.

    2003-12-01

    We use numerical simulations of spontaneously propagating ruptures to examine the effect of a material contrast on earthquake dynamics. We specifically study the case of a lateral contrast whereby the fault is the boundary between two different rock-types. This scenario was previously studied in two-dimensions by Harris and Day [BSSA, 1997], and Andrews and Ben-Zion [JGR, 1997], in addition to subsequent 2-D studies, but it has not been known if the two-dimensional results are applicable to the real three-dimensional world. The addition of the third dimension implies a transition from pure mode II (i.e., plane-strain) to mixed-mode crack dynamics, which is more complicated since in mode II the shear and normal stresses are coupled whereas in mode III (i.e., anti-plane strain) they are not coupled. We use a slip-weakening fracture criterion and examine the effect on an earthquake rupture of material contrasts of up to 50 percent across the fault zone. We find a surprisingly good agreement between our earlier 2-D results, and our 3-D results for along-strike propagation. We find that the analytical solution presented in Harris and Day [BSSA, 1997] does an excellent job at predicting the bilateral, along-strike rupture velocities for the three-dimensional situation. In contrast, the along-dip propagation behaves much as expected for a purely mode-III rupture, with the rupture velocities up-dip and down-dip showing the expected symmetries.

  9. A new 3-D ray tracing method based on LTI using successive partitioning of cell interfaces and traveltime gradients

    Science.gov (United States)

    Zhang, Dong; Zhang, Ting-Ting; Zhang, Xiao-Lei; Yang, Yan; Hu, Ying; Qin, Qian-Qing

    2013-05-01

    We present a new method of three-dimensional (3-D) seismic ray tracing, based on an improvement to the linear traveltime interpolation (LTI) ray tracing algorithm. This new technique involves two separate steps. The first involves a forward calculation based on the LTI method and the dynamic successive partitioning scheme, which is applied to calculate traveltimes on cell boundaries and assumes a wavefront that expands from the source to all grid nodes in the computational domain. We locate several dynamic successive partition points on a cell's surface, the traveltimes of which can be calculated by linear interpolation between the vertices of the cell's boundary. The second is a backward step that uses Fermat's principle and the fact that the ray path is always perpendicular to the wavefront and follows the negative traveltime gradient. In this process, the first-arriving ray path can be traced from the receiver to the source along the negative traveltime gradient, which can be calculated by reconstructing the continuous traveltime field with cubic B-spline interpolation. This new 3-D ray tracing method is compared with the LTI method and the shortest path method (SPM) through a number of numerical experiments. These comparisons show obvious improvements to computed traveltimes and ray paths, both in precision and computational efficiency.

  10. Simulation of dynamic behaviour of a digital displacement motor using transient 3d computational fluid dynamics analysis

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    A fast rotating 1500 rpm radial piston digital displacement motor connected to a 350 bar high pressure manifold is simulated by means of transient 3D CFD analysis of a single pressure chamber. The analysis includes dynamic piston and valve movement, influencing the boundaries of the fluid domain...... the simulation using layering zones as required by the moving fluid boundaries. The effect of cavitation at low pressures is included by implementing a pressure dependent density, based on an effective bulk modulus model. In addition, pressure dependent oil viscosity is included in the analysis. As a result...... of the CFD analysis, the dynamic response of the pressure chamber and valve movement of a digital displacement motor is presented, along with the total efficiency of a multi-chamber motor at full and partial displacement. Simulation predicts that pressure over- and undershoot may be reduced to a few percent...

  11. High Throughput Studies of Cell Migration in 3D Microtissues Fabricated by a Droplet Microfluidic Chip

    Directory of Open Access Journals (Sweden)

    Xiangchen Che

    2016-05-01

    Full Text Available Arrayed three-dimensional (3D micro-sized tissues with encapsulated cells (microtissues have been fabricated by a droplet microfluidic chip. The extracellular matrix (ECM is a polymerized collagen network. One or multiple breast cancer cells were embedded within the microtissues, which were stored in arrayed microchambers on the same chip without ECM droplet shrinkage over 48 h. The migration trajectory of the cells was recorded by optical microscopy. The migration speed was calculated in the range of 3–6 µm/h. Interestingly, cells in devices filled with a continuous collagen network migrated faster than those where only droplets were arrayed in the chambers. This is likely due to differences in the length scales of the ECM network, as cells embedded in thin collagen slabs also migrate slower than those in thick collagen slabs. In addition to migration, this technical platform can be potentially used to study cancer cell-stromal cell interactions and ECM remodeling in 3D tumor-mimicking environments.

  12. 3D deformation and dynamics of the human cadaver abdomen under seatbelt loading.

    Science.gov (United States)

    Lamielle, Sophie; Vezin, Philippe; Verriest, Jean-Pierre; Petit, Philippe; Trosseille, Xavier; Vallancien, Guy

    2008-11-01

    to be able to compare the load penetration characteristics to the results reported in the literature. The injury outcomes are provided and compared to all the published data. The PMHS sustained MAIS2-3 abdominal injuries in the low speed tests and MAIS2-4 injuries in the high speed tests. Finally, the dynamic 3D deformation of the abdominal wall was reconstructed and is provided for further validation of finite element models of the human abdomen.

  13. Limbal melanocytes support limbal epithelial stem cells in 2D and 3D microenvironments.

    Science.gov (United States)

    Dziasko, Marc A; Tuft, Stephen J; Daniels, Julie T

    2015-09-01

    Human limbal epithelial stem cells (LESCs) are essential for the maintenance of the corneal epithelium of the ocular surface. LESCs are located within limbal crypts between the palisades of Vogt in the limbus; the interface between the peripheral cornea and conjunctiva. The limbal crypts have been proposed as a LESC niche owing to their support of epithelial cells, which can form holoclone colonies in vitro. Closely associated with the limbal crypts is a concentrated population of melanocytes. The anatomical location and close proximity to putative LESC suggests that melanocytes might play a role in maintenance of these stem cells in the niche. The aim of this study was to assess the ability of human limbal melanocytes (hLM) to support the expansion of human limbal epithelial cells (LECs) in vitro as an indicator of functional cell-cell interaction. After observing that hLM co-localize with clusters of compact epithelial cells in the native limbal crypts, hLM were isolated from crypt-rich cadaveric limbal biopsies and used as feeders for the culture of LECs. Interestingly, LECs grown on mitotically active hLM were able to generate large epithelial colonies that contained small and compact cells with morphological stem cell characteristics. Immunocytochemistry revealed that LECs expanded on hLM were positive for the expression of the putative stem cell markers CK15, Bmi-1 and p63α and negative for the marker of terminal cell differentiation CK3. LECs and hLM were finally co-cultured on RAFT (real architecture for 3D tissue) collagen tissue equivalents. In 3D co-cultures, hLM promoted multi-layering of the epithelial sheet in which basal cells were maintained in an undifferentiated state. Taken together, these observations suggest melanocytes could play an important role in the maintenance of LESCs in the native human limbal stem cell niche.

  14. 3D-4D Interlinkage Of B-S Amplitudes Unified View Of QQbar And QQQ Dynamics

    CERN Document Server

    Mitra, A N

    2000-01-01

    This article has a 3-fold objective: i) to provide a panoramic view of several types of 3D vs 4D approaches in Field Theory (Tamm-Dancoff, Bethe Salpeter Equation (BSE), Quasi-potentials, Light-Front Dynamics, etc) for strong interaction dunamics; ii) to focus on the role of the Markov-Yukawa Transversality Principle (MYTP) as a novel paradigm for an exact 3D-4D interlinkage between the corresponding BSE amplitudes; iii) Stress on a closely parallel treatment of $q{\\bar q}$ and qqq BSE's stemming from a common 4-fermion Lagrangian mediated by gluon (vector)-like exchange. The two-way interlinkage offered by MYTP between the 3D and 4D BSE forms via a Lorentz-covariant 3D support to the BS kernel, gives it a unique status which distinguishes it from most other 3D approaches to strong interaction dynamics, which give at most a one-way connection. Two specific types of MYTP which provide 3D support to the BSE kernel, are considered: a) Covariant Instantaneity Ansatz (CIA); b) Covariant LF/NP ansatz (Cov.LF). Both...

  15. 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Yeonhee Kim

    Full Text Available Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes and non-parenchymal (liver sinusoidal endothelial, LSEC cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs were cultured in a layered three-dimensional (3D configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM, which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1 demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism

  16. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Chitcholtan, Kenny, E-mail: kenny.chitcholtan@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Asselin, Eric, E-mail: Eric.Asselin@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Parent, Sophie, E-mail: Sophie.Parent@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Sykes, Peter H., E-mail: peter.sykes@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Evans, John J., E-mail: john.evans@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Centre of Neuroendocrinology and The MacDiarmid Institute of Advanced Materials and Nanotechnology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand)

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  17. Image informatics for studying signal transduction in cells interacting with 3D matrices

    Science.gov (United States)

    Tzeranis, Dimitrios S.; Guo, Jin; Chen, Chengpin; Yannas, Ioannis V.; Wei, Xunbin; So, Peter T. C.

    2014-03-01

    Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of individual components of the SMAD pathway.

  18. Reconstruction of 3D ion beam micro-tomography data for applications in Cell Biology

    Energy Technology Data Exchange (ETDEWEB)

    Habchi, C. [Universite de Bordeaux, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, Gradignan F-33175 (France)], E-mail: habchi@cenbg.in2p3.fr; Nguyen, D.T.; Barberet, Ph. [Universite de Bordeaux, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, Gradignan F-33175 (France); Incerti, S. [CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, Gradignan F-33175 (France); Moretto, Ph. [Universite de Bordeaux, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, Gradignan F-33175 (France); Sakellariou, A. [Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia); Seznec, H. [CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, Gradignan F-33175 (France)

    2009-06-15

    The DISRA (Discrete Image Space Reconstruction Algorithm) reconstruction code, created by A. Sakellariou, was conceived for the ideal case of complete three-dimensional (3D) PIXET (Particle Induced X-ray Emission Tomography) data. This implies two major difficulties for biological samples: first, the long duration of such experiments and second, the subsequent damage that occurs on such fragile specimens. For this reason, the DISRA code was extended at CENBG in order to probe isolated PIXET slices, taking into account the sample structure and mass density provided by 3D STIMT (Scanning Transmission Ion Microscopy Tomography) in the volume of interest. This modified version was tested on a phantom sample and first results on human cancer cells are also presented.

  19. Reconstruction of 3D ion beam micro-tomography data for applications in Cell Biology

    Science.gov (United States)

    Habchi, C.; Nguyen, D. T.; Barberet, Ph.; Incerti, S.; Moretto, Ph.; Sakellariou, A.; Seznec, H.

    2009-06-01

    The DISRA (Discrete Image Space Reconstruction Algorithm) reconstruction code, created by A. Sakellariou, was conceived for the ideal case of complete three-dimensional (3D) PIXET (Particle Induced X-ray Emission Tomography) data. This implies two major difficulties for biological samples: first, the long duration of such experiments and second, the subsequent damage that occurs on such fragile specimens. For this reason, the DISRA code was extended at CENBG in order to probe isolated PIXET slices, taking into account the sample structure and mass density provided by 3D STIMT (Scanning Transmission Ion Microscopy Tomography) in the volume of interest. This modified version was tested on a phantom sample and first results on human cancer cells are also presented.

  20. Flow-through 3D biofuel cell anode for NAD{sup +}-dependent enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, Rosalba A.; Lau, Carolin; Garcia, Kristen E. [Department of Chemical and Nuclear Engineering, Center for Emerging Energy Technologies, University of New Mexico, Albuquerque, NM 87131 (United States); Atanassov, Plamen, E-mail: plamen@unm.ed [Department of Chemical and Nuclear Engineering, Center for Emerging Energy Technologies, University of New Mexico, Albuquerque, NM 87131 (United States)

    2011-02-01

    NAD{sup +}-dependent enzymes require the presence of catalysts for cofactor regeneration in order to be employed in enzymatic biofuel cells. Poly-(methylene green) catalysts have proven to help the oxidation reaction of NADH allowing for the use of such enzymes in electrocatalytic oxidation reactions. In this paper we present the development of 3D anode based on NAD{sup +}-dependent malate dehydrogenase. The 3D material chosen was reticulated vitreous carbon (RVC) which was modified with poly-(MG) for NADH oxidation and it also accommodated the porous immobilization matrix for MDH consisting of MWCNTs embedded in chitosan; allowing for mass transport of the substrate to the electrode. Scanning electron microscopy was used in order to characterize the poly-(MG)-modified RVC, and electrochemical evaluation of the anode was performed.

  1. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Constructs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Cornforth

    2012-03-26

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. Specific aims apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. The project includes research complementary to NASA/HRP space radiation project.

  2. A method for the evaluation of thousands of automated 3D stem cell segmentations.

    Science.gov (United States)

    Bajcsy, P; Simon, M; Florczyk, S J; Simon, C G; Juba, D; Brady, M C

    2015-12-01

    There is no segmentation method that performs perfectly with any dataset in comparison to human segmentation. Evaluation procedures for segmentation algorithms become critical for their selection. The problems associated with segmentation performance evaluations and visual verification of segmentation results are exaggerated when dealing with thousands of three-dimensional (3D) image volumes because of the amount of computation and manual inputs needed. We address the problem of evaluating 3D segmentation performance when segmentation is applied to thousands of confocal microscopy images (z-stacks). Our approach is to incorporate experimental imaging and geometrical criteria, and map them into computationally efficient segmentation algorithms that can be applied to a very large number of z-stacks. This is an alternative approach to considering existing segmentation methods and evaluating most state-of-the-art algorithms. We designed a methodology for 3D segmentation performance characterization that consists of design, evaluation and verification steps. The characterization integrates manual inputs from projected surrogate 'ground truth' of statistically representative samples and from visual inspection into the evaluation. The novelty of the methodology lies in (1) designing candidate segmentation algorithms by mapping imaging and geometrical criteria into algorithmic steps, and constructing plausible segmentation algorithms with respect to the order of algorithmic steps and their parameters, (2) evaluating segmentation accuracy using samples drawn from probability distribution estimates of candidate segmentations and (3) minimizing human labour needed to create surrogate 'truth' by approximating z-stack segmentations with 2D contours from three orthogonal z-stack projections and by developing visual verification tools. We demonstrate the methodology by applying it to a dataset of 1253 mesenchymal stem cells. The cells reside on 10 different types of biomaterial

  3. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    Science.gov (United States)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  4. A novel asymmetric 3D in-vitro assay for the study of tumor cell invasion

    Directory of Open Access Journals (Sweden)

    Neufeld Gera

    2009-11-01

    Full Text Available Abstract Background The induction of tumor cell invasion is an important step in tumor progression. Due to the cost and slowness of in-vivo invasion assays, there is need for quantitative in-vitro invasion assays that mimic as closely as possible the tumor environment and in which conditions can be rigorously controlled. Methods We have established a novel asymmetric 3D in-vitro invasion assay by embedding a monolayer of tumor cells between two layers of collagen. The cells were then allowed to invade the upper and lower layers of collagen. To visualize invading cells the gels were sectioned perpendicular to the monolayer so that after seeding the monolayer appears as a thin line precisely defining the origin of invasion. The number of invading tumor cells, their proliferation rate, the distance they traverse and the direction of invasion could then be determined quantitatively. Results The assay was used to compare the invasive properties of several tumor cell types and the results compare well with those obtained by previously described assays. Lysyl-oxidase like protein-2 (Loxl2 is a potent inducer of invasiveness. Using our assay we show for the first time that inhibition of endogenous Loxl2 expression in several types of tumor cells strongly inhibits their invasiveness. We also took advantage of the asymmetric nature of the assay in order to show that fibronectin enhances the invasiveness of breast cancer cells more potently than laminin. The asymmetric properties of the assay were also used to demonstrate that soluble factors derived from fibroblasts can preferentially attract invading breast cancer cells. Conclusion Our assay displays several advantages over previous invasion assays as it is allows the quantitative analysis of directional invasive behavior of tumor cells in a 3D environment mimicking the tumor microenvironment. It should be particularly useful for the study of the effects of components of the tumor microenvironment on

  5. Tracking immune-related cell responses to drug delivery microparticles in 3D dense collagen matrix.

    Science.gov (United States)

    Obarzanek-Fojt, Magdalena; Curdy, Catherine; Loggia, Nicoletta; Di Lena, Fabio; Grieder, Kathrin; Bitar, Malak; Wick, Peter

    2016-10-01

    Beyond the therapeutic purpose, the impact of drug delivery microparticles on the local tissue and inflammatory responses remains to be further elucidated specifically for reactions mediated by the host immune cells. Such immediate and prolonged reactions may adversely influence the release efficacy and intended therapeutic pathway. The lack of suitable in vitro platforms limits our ability to gain insight into the nature of immune responses at a single cell level. In order to establish an in vitro 3D system mimicking the connective host tissue counterpart, we utilized reproducible, compressed, rat-tail collagen polymerized matrices. THP1 cells (human acute monocytic leukaemia cells) differentiated into macrophage-like cells were chosen as cell model and their functionality was retained in the dense rat-tail collagen matrix. Placebo microparticles were later combined in the immune cell seeded system during collagen polymerization and secreted pro-inflammatory factors: TNFα and IL-8 were used as immune response readout (ELISA). Our data showed an elevated TNFα and IL-8 secretion by macrophage THP1 cells indicating that Placebo microparticles trigger certain immune cell responses under 3D in vivo like conditions. Furthermore, we have shown that the system is sensitive to measure the differences in THP1 macrophage pro-inflammatory responses to Active Pharmaceutical Ingredient (API) microparticles with different API release kinetics. We have successfully developed a tissue-like, advanced, in vitro system enabling selective "readouts" of specific responses of immune-related cells. Such system may provide the basis of an advanced toolbox enabling systemic evaluation and prediction of in vivo microparticle reactions on human immune-related cells.

  6. Vertical Scan (V-SCAN) for 3-D Grid Adaptive Mesh Refinement for an atmospheric Model Dynamical Core

    Science.gov (United States)

    Andronova, N. G.; Vandenberg, D.; Oehmke, R.; Stout, Q. F.; Penner, J. E.

    2009-12-01

    One of the major building blocks of a rigorous representation of cloud evolution in global atmospheric models is a parallel adaptive grid MPI-based communication library (an Adaptive Blocks for Locally Cartesian Topologies library -- ABLCarT), which manages the block-structured data layout, handles ghost cell updates among neighboring blocks and splits a block as refinements occur. The library has several modules that provide a layer of abstraction for adaptive refinement: blocks, which contain individual cells of user data; shells - the global geometry for the problem, including a sphere, reduced sphere, and now a 3D sphere; a load balancer for placement of blocks onto processors; and a communication support layer which encapsulates all data movement. A major performance concern with adaptive mesh refinement is how to represent calculations that have need to be sequenced in a particular order in a direction, such as calculating integrals along a specific path (e.g. atmospheric pressure or geopotential in the vertical dimension). This concern is compounded if the blocks have varying levels of refinement, or are scattered across different processors, as can be the case in parallel computing. In this paper we describe an implementation in ABLCarT of a vertical scan operation, which allows computing along vertical paths in the correct order across blocks transparent to their resolution and processor location. We test this functionality on a 2D and a 3D advection problem, which tests the performance of the model’s dynamics (transport) and physics (sources and sinks) for different model resolutions needed for inclusion of cloud formation.

  7. Longitudinal, label-free, quantitative tracking of cell death and viability in a 3D tumor model with OCT

    Science.gov (United States)

    Jung, Yookyung; Klein, Oliver J.; Wang, Hequn; Evans, Conor L.

    2016-06-01

    Three-dimensional in vitro tumor models are highly useful tools for studying tumor growth and treatment response of malignancies such as ovarian cancer. Existing viability and treatment assessment assays, however, face shortcomings when applied to these large, complex, and heterogeneous culture systems. Optical coherence tomography (OCT) is a noninvasive, label-free, optical imaging technique that can visualize live cells and tissues over time with subcellular resolution and millimeters of optical penetration depth. Here, we show that OCT is capable of carrying out high-content, longitudinal assays of 3D culture treatment response. We demonstrate the usage and capability of OCT for the dynamic monitoring of individual and combination therapeutic regimens in vitro, including both chemotherapy drugs and photodynamic therapy (PDT) for ovarian cancer. OCT was validated against the standard LIVE/DEAD Viability/Cytotoxicity Assay in small tumor spheroid cultures, showing excellent correlation with existing standards. Importantly, OCT was shown to be capable of evaluating 3D spheroid treatment response even when traditional viability assays failed. OCT 3D viability imaging revealed synergy between PDT and the standard-of-care chemotherapeutic carboplatin that evolved over time. We believe the efficacy and accuracy of OCT in vitro drug screening will greatly contribute to the field of cancer treatment and therapy evaluation.

  8. Fabrication of 3-D Reconstituted Organoid Arrays by DNA-Programmed Assembly of Cells (DPAC).

    Science.gov (United States)

    Todhunter, Michael E; Weber, Robert J; Farlow, Justin; Jee, Noel Y; Cerchiari, Alec E; Gartner, Zev J

    2016-09-13

    Tissues are the organizational units of function in metazoan organisms. Tissues comprise an assortment of cellular building blocks, soluble factors, and extracellular matrix (ECM) composed into specific three-dimensional (3-D) structures. The capacity to reconstitute tissues in vitro with the structural complexity observed in vivo is key to understanding processes such as morphogenesis, homeostasis, and disease. In this article, we describe DNA-programmed assembly of cells (DPAC), a method to fabricate viable, functional arrays of organoid-like tissues within 3-D ECM gels. In DPAC, dissociated cells are chemically functionalized with degradable oligonucleotide "Velcro," allowing rapid, specific, and reversible cell adhesion to a two-dimensional (2-D) template patterned with complementary DNA. An iterative assembly process builds up organoids, layer-by-layer, from this initial 2-D template and into the third dimension. Cleavage of the DNA releases the completed array of tissues that are captured and fully embedded in ECM gels for culture and observation. DPAC controls the size, shape, composition, and spatial heterogeneity of organoids and permits positioning of constituent cells with single-cell resolution even within cultures several centimeters long. © 2016 by John Wiley & Sons, Inc.

  9. An Innovative Hybrid 3D Analytic-Numerical Approach for System Level Modelling of PEM Fuel Cells

    Directory of Open Access Journals (Sweden)

    Gregor Tavčar

    2013-10-01

    Full Text Available The PEM fuel cell model presented in this paper is based on modelling species transport and coupling electrochemical reactions to species transport in an innovative way. Species transport is modelled by obtaining a 2D analytic solution for species concentration distribution in the plane perpendicular to the gas-flow and coupling consecutive 2D solutions by means of a 1D numerical gas-flow model. The 2D solution is devised on a jigsaw puzzle of multiple coupled domains which enables the modelling of parallel straight channel fuel cells with realistic geometries. Electrochemical and other nonlinear phenomena are coupled to the species transport by a routine that uses derivative approximation with prediction-iteration. A hybrid 3D analytic-numerical fuel cell model of a laboratory test fuel cell is presented and evaluated against a professional 3D computational fluid dynamic (CFD simulation tool. This comparative evaluation shows very good agreement between results of the presented model and those of the CFD simulation. Furthermore, high accuracy results are achieved at computational times short enough to be suitable for system level simulations. This computational efficiency is owed to the semi-analytic nature of its species transport modelling and to the efficient computational coupling of electrochemical kinetics and species transport.

  10. How the venetian blind percept emerges from the laminar cortical dynamics of 3D vision.

    Science.gov (United States)

    Cao, Yongqiang; Grossberg, Stephen

    2014-01-01

    The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and to show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model proposes how lateral geniculate nucleus (LGN) and hierarchically organized laminar circuits in cortical areas V1, V2, and V4 interact to control processes of 3D boundary formation and surface filling-in that simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in surface representations are integrated into surface-shroud resonances between visual and parietal cortex. Interactions between layers 4, 3B, and 2/3 in V1 and V2 carry out stereopsis and 3D boundary formation. Both binocular and monocular information combine to form 3D boundary and surface representations. Surface contour surface-to-boundary feedback from V2 thin stripes to V2 pale stripes combines computationally complementary boundary and surface formation properties, leading to a single consistent percept, while also eliminating redundant 3D boundaries, and triggering figure-ground perception. False binocular boundary matches are eliminated by Gestalt grouping properties during boundary formation. In particular, a disparity filter, which helps to solve the Correspondence Problem by eliminating false matches, is predicted to be realized as part of the boundary grouping process in layer 2/3 of cortical area V2. The model has been used to simulate the consciously seen 3D surface percepts in 18 psychophysical experiments. These percepts include the Venetian blind effect, Panum's limiting case, contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. These model mechanisms have also simulated properties of 3D neon

  11. Current automated 3D cell detection methods are not a suitable replacement for manual stereologic cell counting

    Directory of Open Access Journals (Sweden)

    Christoph eSchmitz

    2014-05-01

    Full Text Available Stereologic cell counting has had a major impact on the field of neuroscience. A major bottleneck in stereologic cell counting is that the user must manually decide whether or not each cell is counted according to three-dimensional (3D stereologic counting rules by visual inspection within hundreds of microscopic fields-of-view per investigated brain or brain region. Reliance on visual inspection forces stereologic cell counting to be very labor-intensive and time-consuming, and is the main reason why biased, non-stereologic two-dimensional (2D cell counting approaches have remained in widespread use. We present an evaluation of the performance of modern automated cell detection and segmentation algorithms as a potential alternative to the manual approach in stereologic cell counting. The image data used in this study were 3D microscopic images of thick brain tissue sections prepared with a variety of commonly used nuclear and cytoplasmic stains. The evaluation compared the numbers and locations of cells identified unambiguously and counted exhaustively by an expert observer with those found by three automated 3D cell detection algorithms: nuclei segmentation from the FARSIGHT toolkit, nuclei segmentation by 3D multiple level set methods, and the 3D object counter plug-in for ImageJ. Of these methods, FARSIGHT performed best, with true-positive detection rates between 38–99% and false-positive rates from 3.6–82%. The results demonstrate that the current automated methods suffer from lower detection rates and higher false-positive rates than are acceptable for obtaining valid estimates of cell numbers. Thus, at present, stereologic cell counting with manual decision for object inclusion according to unbiased stereologic counting rules remains the only adequate method for unbiased cell quantification in histologic tissue sections.

  12. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    Science.gov (United States)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  13. Fabrication of solution processed 3D nanostructured CuInGaS₂ thin film solar cells.

    Science.gov (United States)

    Chu, Van Ben; Cho, Jin Woo; Park, Se Jin; Hwang, Yun Jeong; Park, Hoo Keun; Do, Young Rag; Min, Byoung Koun

    2014-03-28

    In this study we demonstrate the fabrication of CuInGaS₂ (CIGS) thin film solar cells with a three-dimensional (3D) nanostructure based on indium tin oxide (ITO) nanorod films and precursor solutions (Cu, In and Ga nitrates in alcohol). To obtain solution processed 3D nanostructured CIGS thin film solar cells, two different precursor solutions were applied to complete gap filling in ITO nanorods and achieve the desirable absorber film thickness. Specifically, a coating of precursor solution without polymer binder material was first applied to fill the gap between ITO nanorods followed by deposition of the second precursor solution in the presence of a binder to generate an absorber film thickness of ∼1.3 μm. A solar cell device with a (Al, Ni)/AZO/i-ZnO/CdS/CIGS/ITO nanorod/glass structure was constructed using the CIGS film, and the highest power conversion efficiency was measured to be ∼6.3% at standard irradiation conditions, which was 22.5% higher than the planar type of CIGS solar cell on ITO substrate fabricated using the same precursor solutions.

  14. 3D cut-cell modelling for high-resolution atmospheric simulations

    CERN Document Server

    Yamazaki, H; Nikiforakis, N

    2015-01-01

    With the recent, rapid development of computer technology, the resolution of atmospheric numerical models has increased substantially. As a result, steep gradients in mountainous terrain are now being resolved in high-resolution models. This results in large truncation errors in those models using terrain-following coordinates. In this study, a new 3D Cartesian coordinate non-hydrostatic atmospheric model is developed. A cut-cell representation of topography based on finite-volume discretization is combined with a cell-merging approach, in which small cut-cells are merged with neighboring cells either vertically or horizontally. In addition, a block-structured mesh-refinement technique achieves a variable resolution on the model grid with the finest resolution occurring close to the terrain surface. The model successfully reproduces a flow over a 3D bell-shaped hill that shows a good agreement with the flow predicted by the linear theory. The ability of the model to simulate flows over steep terrain is demons...

  15. Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.

    Science.gov (United States)

    Rimann, Markus; Bono, Epifania; Annaheim, Helene; Bleisch, Matthias; Graf-Hausner, Ursula

    2016-08-01

    Cells grown in 3D are more physiologically relevant than cells cultured in 2D. To use 3D models in substance testing and regenerative medicine, reproducibility and standardization are important. Bioprinting offers not only automated standardizable processes but also the production of complex tissue-like structures in an additive manner. We developed an all-in-one bioprinting solution to produce soft tissue models. The holistic approach included (1) a bioprinter in a sterile environment, (2) a light-induced bioink polymerization unit, (3) a user-friendly software, (4) the capability to print in standard labware for high-throughput screening, (5) cell-compatible inkjet-based printheads, (6) a cell-compatible ready-to-use BioInk, and (7) standard operating procedures. In a proof-of-concept study, skin as a reference soft tissue model was printed. To produce dermal equivalents, primary human dermal fibroblasts were printed in alternating layers with BioInk and cultured for up to 7 weeks. During long-term cultures, the models were remodeled and fully populated with viable and spreaded fibroblasts. Primary human dermal keratinocytes were seeded on top of dermal equivalents, and epidermis-like structures were formed as verified with hematoxylin and eosin staining and immunostaining. However, a fully stratified epidermis was not achieved. Nevertheless, this is one of the first reports of an integrative bioprinting strategy for industrial routine application.

  16. 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells.

    Science.gov (United States)

    Kucukgul, Can; Ozler, S Burce; Inci, Ilyas; Karakas, Ezgi; Irmak, Ster; Gozuacik, Devrim; Taralp, Alpay; Koc, Bahattin

    2015-04-01

    Cardiovascular diseases are the leading cause of deaths throughout the world. Vascular diseases are mostly treated with autografts and blood vessel transplantations. However, traditional grafting methods have several problems including lack of suitable harvest sites, additional surgical costs for harvesting procedure, pain, infection, lack of donors, and even no substitutes at all. Recently, tissue engineering and regenerative medicine approaches are used to regenerate damaged or diseased tissues. Most of the tissue engineering investigations have been based on the cell seeding into scaffolds by providing a suitable environment for cell attachment, proliferation, and differentiation. Because of the challenges such as difficulties in seeding cells spatially, rejection, and inflammation of biomaterials used, the recent tissue engineering studies focus on scaffold-free techniques. In this paper, the development of novel computer aided algorithms and methods are developed for 3D bioprinting of scaffold-free biomimetic macrovascular structures. Computer model mimicking a real human aorta is generated using imaging techniques and the proposed computational algorithms. An optimized three-dimensional bioprinting path planning are developed with the proposed self-supported model. Mouse embryonic fibroblast (MEF) cell aggregates and support structures (hydrogels) are 3D bioprinted layer-by-layer according to the proposed self-supported method to form an aortic tissue construct.

  17. An automated tool for 3D tracking of single molecules in living cells

    Science.gov (United States)

    Gardini, L.; Capitanio, M.; Pavone, F. S.

    2015-07-01

    Recently, tremendous improvements have been achieved in the precision of localization of single fluorescent molecules, allowing localization and tracking of biomolecules at the nm level. Since the behaviour of proteins and biological molecules is tightly influenced by the cell's environment, a growing number of microscopy techniques are moving from in vitro to live cell experiments. Looking at both diffusion and active transportation processes inside a cell requires three-dimensional localization over a few microns range, high SNR images and high temporal resolution (ms order of magnitude). To satisfy these requirements we developed an automated routine that allow 3D tracking of single fluorescent molecules in living cells with nanometer accuracy, by exploiting the properties of the point-spread-function of out-of-focus Quantum Dots bound to the protein of interest.

  18. Construction of 3D micropatterned surfaces with wormlike and superhydrophilic PEG brushes to detect dysfunctional cells.

    Science.gov (United States)

    Hou, Jianwen; Shi, Qiang; Ye, Wei; Fan, Qunfu; Shi, Hengchong; Wong, Shing-Chung; Xu, Xiaodong; Yin, Jinghua

    2014-12-10

    Detection of dysfunctional and apoptotic cells plays an important role in clinical diagnosis and therapy. To develop a portable and user-friendly platform for dysfunctional and aging cell detection, we present a facile method to construct 3D patterns on the surface of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS) with poly(ethylene glycol) brushes. Normal red blood cells (RBCs) and lysed RBCs (dysfunctional cells) are used as model cells. The strategy is based on the fact that poly(ethylene glycol) brushes tend to interact with phosphatidylserine, which is in the inner leaflet of normal cell membranes but becomes exposed in abnormal or apoptotic cell membranes. We demonstrate that varied patterned surfaces can be obtained by selectively patterning atom transfer radical polymerization (ATRP) initiators on the SEBS surface via an aqueous-based method and growing PEG brushes through surface-initiated atom transfer radical polymerization. The relatively high initiator density and polymerization temperature facilitate formation of PEG brushes in high density, which gives brushes worm-like morphology and superhydrophilic property; the tendency of dysfunctional cells adhered on the patterned surfaces is completely different from well-defined arrays of normal cells on the patterned surfaces, providing a facile method to detect dysfunctional cells effectively. The PEG-patterned surfaces are also applicable to detect apoptotic HeLa cells. The simplicity and easy handling of the described technique shows the potential application in microdiagnostic devices.

  19. Assessing Drug Efficacy in a Miniaturized Pancreatic Cancer In Vitro 3D Cell Culture Model.

    Science.gov (United States)

    Shelper, Todd B; Lovitt, Carrie J; Avery, Vicky M

    2016-09-01

    Pancreatic cancer continues to have one of the poorest prognoses among all cancers. The drug discovery efforts for this disease have largely failed, with no significant improvement in survival outcomes for advanced pancreatic cancer patients over the past 20 years. Traditional in vitro cell culture techniques have been used extensively in both basic and early drug discovery; however, these systems offer poor models to assess emerging therapeutics. More predictive cell-based models, which better capture the cellular heterogeneity and complexities of solid pancreatic tumors, are urgently needed not only to improve drug discovery success but also to provide insight into the tumor biology. Pancreatic tumors are characterized by a unique micro-environment that is surrounded by a dense stroma. A complex network of interactions between extracellular matrix (ECM) components and the effects of cell-to-cell contacts may enhance survival pathways within in vivo tumors. This biological and physical complexity is lost in traditional cell monolayer models. To explore the predictive potential of a more complex cellular system, a three-dimensional (3D) micro-tumor assay was evaluated. Efficacy of six current chemotherapeutics was determined against a panel of primary and metastatic pancreatic tumor cell lines in a miniaturized ECM-based 3D cell culture system. Suitability for potential use in high-throughput screening applications was assessed, including ascertaining the effects that miniaturization and automation had on assay robustness. Cellular health was determined by utilizing an indirect population-based metabolic activity assay and a direct imaging-based cell viability assay.

  20. 3D dynamic rupture with anelastic wave propagation using an hp-adaptive Discontinuous Galerkin method

    Science.gov (United States)

    Tago, J.; Cruz-Atienza, V. M.; Etienne, V.; Virieux, J.; Benjemaa, M.; Sanchez-Sesma, F. J.

    2010-12-01

    Simulating any realistic seismic scenario requires incorporating physical basis into the model. Considering both the dynamics of the rupture process and the anelastic attenuation of seismic waves is essential to this purpose and, therefore, we choose to extend the hp-adaptive Discontinuous Galerkin finite-element method to integrate these physical aspects. The 3D elastodynamic equations in an unstructured tetrahedral mesh are solved with a second-order time marching approach in a high-performance computing environment. The first extension incorporates the viscoelastic rheology so that the intrinsic attenuation of the medium is considered in terms of frequency dependent quality factors (Q). On the other hand, the extension related to dynamic rupture is integrated through explicit boundary conditions over the crack surface. For this visco-elastodynamic formulation, we introduce an original discrete scheme that preserves the optimal code performance of the elastodynamic equations. A set of relaxation mechanisms describes the behavior of a generalized Maxwell body. We approximate almost constant Q in a wide frequency range by selecting both suitable relaxation frequencies and anelastic coefficients characterizing these mechanisms. In order to do so, we solve an optimization problem which is critical to minimize the amount of relaxation mechanisms. Two strategies are explored: 1) a least squares method and 2) a genetic algorithm (GA). We found that the improvement provided by the heuristic GA method is negligible. Both optimization strategies yield Q values within the 5% of the target constant Q mechanism. Anelastic functions (i.e. memory variables) are introduced to efficiently evaluate the time convolution terms involved in the constitutive equations and thus to minimize the computational cost. The incorporation of anelastic functions implies new terms with ordinary differential equations in the mathematical formulation. We solve these equations using the same order

  1. IPH-TRIM3D-PCLake: A three-dimensional complex dynamic model for subtropical aquatic ecosystems

    NARCIS (Netherlands)

    Fragoso, C.R.; Nes, van E.H.; Janse, J.H.; Motta Marques, da D.

    2009-01-01

    This paper presents IPH-TRIM3D-PCLake, a three-dimensional complex dynamic model for subtropical aquatic ecosystems. It combines a spatially explicit hydrodynamic model with a water-quality and biotic model of ecological interactions. The software, which is freely available for research purposes, ha

  2. How the Venetian Blind Percept Emergesfrom the Laminar Cortical Dynamics of 3D Vision

    Directory of Open Access Journals (Sweden)

    Stephen eGrossberg

    2014-08-01

    Full Text Available The 3D LAMINART model of 3D vision and figure-ground perception is used to explain and simulate a key example of the Venetian blind effect and show how it is related to other well-known perceptual phenomena such as Panum's limiting case. The model shows how identified neurons that interact in hierarchically organized laminar circuits of the visual cortex can simulate many properties of 3D vision percepts, notably consciously seen surface percepts, which are predicted to arise when filled-in surface representations are integrated into surface-shroud resonances between visual and parietal cortex. The model describes how monocular and binocular oriented filtering interacts with later stages of 3D boundary formation and surface filling-in in the lateral geniculate nucleus (LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model suggests how surface-to-boundary feedback from V2 thin stripes to pale stripes enables computationally complementary boundary and surface formation properties to generate a single consistent percept, eliminate redundant 3D boundaries, and trigger figure-ground perception. The model also shows how false binocular boundary matches may be eliminated by Gestalt grouping properties. In particular, a disparity filter, which helps to solve the Correspondence Problem by eliminating false matches, is predicted to be realized as part of the boundary grouping process in layer 2/3 of cortical area V2. The model has been used to simulate the consciously seen 3D surface percepts in 18 psychophysical experiments. These percepts include the Venetian blind effect, Panum's limiting case, contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, stereopsis with polarity

  3. 3D-seismic observations of Late Pleistocene glacial dynamics on the central West Greenland margin

    Science.gov (United States)

    Hofmann, Julia; Knutz, Paul; Cofaigh, Colm Ó.

    2016-04-01

    Fast-flowing ice streams and outlet glaciers exert a major control on glacial discharge from contemporary and palaeo ice sheets. Improving our understanding of the extent and dynamic behaviour of these palaeo-ice streams is therefore crucial for predictions of the response of ice sheets to present and future climate warming and the associated implications for global sea level. This poster presents results from two 3D-seismic surveys located on the shelf adjoining the Disko Bay trough-mouth fan (TMF), one of the largest glacial outlet systems in Greenland. Located at the seaward terminus of the c. 370 km long cross-shelf Disko Trough, the Disko Bay TMF was generated by highly efficient subglacial sediment delivery onto the continental slopes during repeated ice-stream advances. A variety of submarine glacial landform assemblages are recognised on the seabed reflecting past ice-stream activity presumably related to glacial-interglacial cycles. The 3D-seismic volumes cover the shallow banks located north and south of the Disko Trough. The focus of this study is the seabed and the uppermost stratigraphic interval associated with the Late Stage of TMF development, presumably covering the late Pleistocene (Hofmann et al., submitted). Seabed morphologies include multiple sets of ridges up to 20 m high that extend in NW-SE direction for c. 30 km, and cross-cutting curvilinear furrows with maximum lengths of c. 9 km and average depths of c. 4.5 m. Back-stepping, arcuate scarps facing NW define the shelf break on the northern survey, comprising average widths of c. 4.5 km and incision depths of c. 27.5 m. The large transverse ridge features on the southern survey are likely ice-marginal and are interpreted as terminal moraine ridges recording the existence of a shelf-edge terminating, grounded Late Weichselian ice sheet. The furrows, most prominent on the outer shelf adjoining the shallow banks and partly incising the moraine ridges, are interpreted as iceberg ploughmarks

  4. Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD.

    Science.gov (United States)

    Wan, Wenqiang; Qiao, Wen; Huang, Wenbin; Zhu, Ming; Ye, Yan; Chen, Xiangyu; Chen, Linsen

    2017-01-23

    Limited by the refreshable data volume of commercial spatial light modulator (SLM), electronic holography can hardly provide satisfactory 3D live video. Here we propose a holography based multiview 3D display by separating the phase information of a lightfield from the amplitude information. In this paper, the phase information was recorded by a 5.5-inch 4-view phase plate with a full coverage of pixelated nano-grating arrays. Because only amplitude information need to be updated, the refreshing data volume in a 3D video display was significantly reduced. A 5.5 inch TFT-LCD with a pixel size of 95 μm was used to modulate the amplitude information of a lightfield at a rate of 20 frames per second. To avoid crosstalk between viewing points, the spatial frequency and orientation of each nano-grating in the phase plate was fine tuned. As a result, the transmission light converged to the viewing points. The angular divergence was measured to be 1.02 degrees (FWHM) by average, slightly larger than the diffraction limit of 0.94 degrees. By refreshing the LCD, a series of animated sequential 3D images were dynamically presented at 4 viewing points. The resolution of each view was 640 × 360. Images for each viewing point were well separated and no ghost images were observed. The resolution of the image and the refreshing rate in the 3D dynamic display can be easily improved by employing another SLM. The recoded 3D videos showed the great potential of the proposed holographic 3D display to be used in mobile electronics.

  5. Enabling Flexible Polymer Tandem Solar Cells by 3D Ptychographic Imaging

    DEFF Research Database (Denmark)

    Dam, Henrik Friis; Andersen, Thomas Rieks; Pedersen, Emil Bøje Lind

    2015-01-01

    one after the other by wet processing leaves plenty of room for error and the process development calls for an analytical technique that enables 3D reconstruction of the layer stack with the possibility to probe thickness, density, and chemistry of the individual layers in the stack. The use......The realization of a complete tandem polymer solar cell under ambient conditions using only printing and coating methods on a flexible substrate results in a fully scalable process but also requires accurate control during layer formation to succeed. The serial process where the layers are added...

  6. Tuning 3D Collagen Matrix Stiffness Independently of Collagen Concentration Modulates Endothelial Cell Behavior

    Science.gov (United States)

    Mason, Brooke N.; Starchenko, Alina; Williams, Rebecca M.; Bonassar, Lawrence J.; Reinhart-King, Cynthia A.

    2012-01-01

    Numerous studies have described the effects of matrix stiffening on cell behavior using two dimensional (2D) synthetic surfaces; however less is known about the effects of matrix stiffening on cells embedded in three dimensional (3D) in vivo-like matrices. A primary limitation in investigating the effects of matrix stiffness in 3D is the lack of materials that can be tuned to control stiffness independently of matrix density. Here, we use collagen-based scaffolds where the mechanical properties are tuned using non-enzymatic glycation of the collagen in solution, prior to polymerization. Collagen solutions glycated prior to polymerization result in collagen gels with a 3-fold increase in compressive modulus without significant changes to the collagen architecture. Using these scaffolds, we show that endothelial cell spreading increases with matrix stiffness, as does the number and length of angiogenic sprouts and the overall spheroid outgrowth. Differences in sprout length are maintained even when the receptor for advanced glycation endproducts is inhibited. Our results demonstrate the ability to de-couple matrix stiffness from matrix density and structure in collagen gels, and that increased matrix stiffness results in increased sprouting and outgrowth. PMID:22902816

  7. Order reconstruction phenomena and temperature-driven dynamics in a 3D zenithally bistable device

    KAUST Repository

    Raisch, A.

    2014-07-01

    We model the zenithally bistable device (ZBD) in three dimensions (3D), within the Landau-de Gennes theory, and find three stable static states in 3D without an applied field: the vertically aligned nematic (VAN) state, the hybrid aligned nematic (HAN) state and a third, high-tilt state, which we call the THAN state, with an interior and a surface defect. We recover the order reconstruction (OR) phenomenon around the defects in the HAN and THAN states and the 3D THAN and HAN solutions exhibit stable biaxial cylinders connecting defects on opposite faces of the ZBD device. We demonstrate a two-way temperature-driven switching between high-tilt and low-tilt states through controlled heating and cooling procedures in two dimensions (2D), with no applied fields. © CopyrightEPLA, 2014.

  8. Characterization and modelling of signal dynamics in 3D-DDTC detectors

    Energy Technology Data Exchange (ETDEWEB)

    Zoboli, A., E-mail: zoboli@disi.unitn.i [INFN, Sezione di Padova (Gruppo Collegato di Trento), and Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38050 Povo (Trento) (Italy); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38050 Povo (Trento) (Italy); Bosisio, L. [INFN, Sezione di Trieste, e Dipartimento di Fisica, Universita di Trieste, I-34127 Trieste (Italy); Dalla Betta, G.-F.; Gabos, P. [INFN, Sezione di Padova (Gruppo Collegato di Trento), and Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38050 Povo (Trento) (Italy); Piemonte, C.; Ronchin, S.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi, Via Sommarive, 18, I-38050 Povo (Trento) (Italy)

    2010-05-21

    In the past few years we have developed 3D detector technologies within a collaboration between INFN and FBK-irst aiming at a simplification of the fabrication technology with respect to the original 3D design. These detectors are the object of an increasing interest from the HEP community because of their intrinsic radiation hardness, making them appealing for innermost layers of tracking at the foreseen upgrades of the large hadron collider. In this paper we evaluate the signal shape in response to localized and uniform charge deposition both by solving Ramo's theorem and with the aid of TCAD simulations. Signals observed in 3D diodes, stimulated by lasers at different wavelengths, are compared with simulations results.

  9. A 3D City Model with Dynamic Behaviour Based on Geospatial Managed Objects

    DEFF Research Database (Denmark)

    Kjems, Erik; Kolář, Jan

    2014-01-01

    models with consistent object definitions give us the possibility to avoid troublesome abstractions of reality, and design even complex urban systems fusing information from various sources of data. These systems are difficult to design with the traditional software development approach based on major......One of the major development efforts within the GI Science domain are pointing at real time information coming from geographic referenced features in general. At the same time 3D City models are mostly justified as being objects for visualization purposes rather than constituting the foundation...... of a geographic data representation of the world. The combination of 3D city models and real time information based systems though can provide a whole new setup for data fusion within an urban environment and provide time critical information preserving our limited resources in the most sustainable way. Using 3D...

  10. Multiplexing encoding method for full-color dynamic 3D holographic display.

    Science.gov (United States)

    Xue, Gaolei; Liu, Juan; Li, Xin; Jia, Jia; Zhang, Zhao; Hu, Bin; Wang, Yongtian

    2014-07-28

    The multiplexing encoding method is proposed and demonstrated for reconstructing colorful images accurately by using single phase-only spatial light modulator (SLM). It will encode the light waves at different wavelengths into one pure-phase hologram at the same time based on the analytic formulas. The three-dimensional (3D) images can be reconstructed clearly when the light waves at different wavelengths are incident into the encoding hologram. Numerical simulations and optical experiments for 2D and 3D colorful images are performed. The results show that the colorful reconstructed images with high quality are achieved successfully. The proposed multiplexing method is a simple and fast encoding approach and the size of the system is small and compact. It is expected to be used for realizing full-color 3D holographic display in future.

  11. Dynamic lens and monovision 3D displays to improve viewer comfort

    CERN Document Server

    Johnson, Paul V; Kim, Joowan; Saunter, Christopher D; Love, Gordon D; Banks, Martin S

    2016-01-01

    Stereoscopic 3D (S3D) displays provide an additional sense of depth compared to non-stereoscopic displays by sending slightly different images to the two eyes. But conventional S3D displays do not reproduce all natural depth cues. In particular, focus cues are incorrect causing mismatches between accommodation and vergence: The eyes must accommodate to the display screen to create sharp retinal images even when binocular disparity drives the eyes to converge to other distances. This mismatch causes visual discomfort and reduces visual performance. We propose and assess two new techniques that are designed to reduce the vergence-accommodation conflict and thereby decrease discomfort and increase visual performance. These techniques are much simpler to implement than previous conflict-reducing techniques.

  12. Scaffolds fabricated by 3D two-photon photopolymerization for live cell studies

    Science.gov (United States)

    Teplicky, T.; Cunderlikova, B.; Mateasik, A.; Vincze, A.; Chorvat, D.; Marcek Chorvatova, A.

    2016-12-01

    Design and fabrication of appropriate biocompatible microstructures that ensure fixation and control of experimental conditions for live cell and bacteria observations is an important prerequisite for number of real time experiments. Our approach is to design engineered microfabricated 3D structures for growth of cells in culture without significant modification of their metabolic state. Presented approach is aimed at evaluation of the potential applicability of biocompatible constructs in the biomedical field and thus live cell monitoring in controlled conditions. Design and evaluation of properties of materials and structures with mesoscopic arrangement and their interaction with biological objects is a prerequisite for establishment of physiologically relevant in vitro models of pathologies as well as for development of a new generation of nano / micro / bio-sensors.

  13. AC electric field induced dipole-based on-chip 3D cell rotation.

    Science.gov (United States)

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-01

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  14. One-step fabrication of 3D silver paste electrodes into microfluidic devices for enhanced droplet-based cell sorting

    Directory of Open Access Journals (Sweden)

    Lang Rao

    2015-05-01

    Full Text Available 3D microelectrodes are one-step fabricated into a microfluidic droplet separator by filling conductive silver paste into PDMS microchambers. The advantages of 3D silver paste electrodes in promoting droplet sorting accuracy are systematically demonstrated by theoretical calculation, numerical simulation and experimental validation. The employment of 3D electrodes also helps to decrease the droplet sorting voltage, guaranteeing that cells encapsulated in droplets undergo chip-based sorting processes are at better metabolic status for further potential cellular assays. At last, target droplet containing single cell are selectively sorted out from others by an appropriate electric pulse. This method provides a simple and inexpensive alternative to fabricate 3D electrodes, and it is expected our 3D electrode-integrated microfluidic droplet separator platform can be widely used in single cell operation and analysis.

  15. Accessible bioprinting: adaptation of a low-cost 3D-printer for precise cell placement and stem cell differentiation.

    Science.gov (United States)

    Reid, John A; Mollica, Peter A; Johnson, Garett D; Ogle, Roy C; Bruno, Robert D; Sachs, Patrick C

    2016-06-07

    The precision and repeatability offered by computer-aided design and computer-numerically controlled techniques in biofabrication processes is quickly becoming an industry standard. However, many hurdles still exist before these techniques can be used in research laboratories for cellular and molecular biology applications. Extrusion-based bioprinting systems have been characterized by high development costs, injector clogging, difficulty achieving small cell number deposits, decreased cell viability, and altered cell function post-printing. To circumvent the high-price barrier to entry of conventional bioprinters, we designed and 3D printed components for the adaptation of an inexpensive 'off-the-shelf' commercially available 3D printer. We also demonstrate via goal based computer simulations that the needle geometries of conventional commercially standardized, 'luer-lock' syringe-needle systems cause many of the issues plaguing conventional bioprinters. To address these performance limitations we optimized flow within several microneedle geometries, which revealed a short tapered injector design with minimal cylindrical needle length was ideal to minimize cell strain and accretion. We then experimentally quantified these geometries using pulled glass microcapillary pipettes and our modified, low-cost 3D printer. This systems performance validated our models exhibiting: reduced clogging, single cell print resolution, and maintenance of cell viability without the use of a sacrificial vehicle. Using this system we show the successful printing of human induced pluripotent stem cells (hiPSCs) into Geltrex and note their retention of a pluripotent state 7 d post printing. We also show embryoid body differentiation of hiPSC by injection into differentiation conducive environments, wherein we observed continuous growth, emergence of various evaginations, and post-printing gene expression indicative of the presence of all three germ layers. These data demonstrate an

  16. Segmentation of vascular structures and hematopoietic cells in 3D microscopy images and quantitative analysis

    Science.gov (United States)

    Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.

    2015-03-01

    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.

  17. Multi-cellular 3D human primary liver cell culture elevates metabolic activity under fluidic flow.

    Science.gov (United States)

    Esch, Mandy B; Prot, Jean-Matthieu; Wang, Ying I; Miller, Paula; Llamas-Vidales, Jose Ricardo; Naughton, Brian A; Applegate, Dawn R; Shuler, Michael L

    2015-05-21

    We have developed a low-cost liver cell culture device that creates fluidic flow over a 3D primary liver cell culture that consists of multiple liver cell types, including hepatocytes and non-parenchymal cells (fibroblasts, stellate cells, and Kupffer cells). We tested the performance of the cell culture under fluidic flow for 14 days, finding that hepatocytes produced albumin and urea at elevated levels compared to static cultures. Hepatocytes also responded with induction of P450 (CYP1A1 and CYP3A4) enzyme activity when challenged with P450 inducers, although we did not find significant differences between static and fluidic cultures. Non-parenchymal cells were similarly responsive, producing interleukin 8 (IL-8) when challenged with 10 μM bacterial lipoprotein (LPS). To create the fluidic flow in an inexpensive manner, we used a rocking platform that tilts the cell culture devices at angles between ±12°, resulting in a periodically changing hydrostatic pressure drop between reservoirs and the accompanying periodically changing fluidic flow (average flow rate of 650 μL min(-1), and a maximum shear stress of 0.64 dyne cm(-2)). The increase in metabolic activity is consistent with the hypothesis that, similar to unidirectional fluidic flow, primary liver cell cultures increase their metabolic activity in response to fluidic flow periodically changes direction. Since fluidic flow that changes direction periodically drastically changes the behavior of other cells types that are shear sensitive, our findings support the theory that the increase in hepatic metabolic activity associated with fluidic flow is either activated by mechanisms other than shear sensing (for example increased opportunities for gas and metabolite exchange), or that it follows a shear sensing mechanism that does not depend on the direction of shear. Our mode of device operation allows us to evaluate drugs under fluidic cell culture conditions and at low device manufacturing and operation

  18. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode

    Science.gov (United States)

    Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat

    2013-10-01

    The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible

  19. Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity.

    Science.gov (United States)

    Neves, Sara C; Mota, Carlos; Longoni, Alessia; Barrias, Cristina C; Granja, Pedro L; Moroni, Lorenzo

    2016-05-24

    Additive manufactured three-dimensional (3D) scaffolds with tailored surface topography constitute a clear advantage in tissue regeneration strategies to steer cell behavior. 3D fibrous scaffolds of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer presenting different fiber surface features were successfully fabricated by additive manufacturing combined with wet-spinning, in a single step, without any post-processing. The optimization of the processing parameters, mainly driven by different solvent/non-solvent combinations, led to four distinct scaffold types, with average surface roughness values ranging from 0.071 ± 0.012 μm to 1.950 ± 0.553 μm, average pore sizes in the x- and y-axis between 351.1 ± 33.6 μm and 396.1 ± 32.3 μm, in the z-axis between 36.5 ± 5.3 μm and 70.7 ± 8.8 μm, average fiber diameters between 69.4 ± 6.1 μm and 99.0 ± 9.4 μm, and porosity values ranging from 60.2 ± 0.8% to 71.7 ± 2.6%. Human mesenchymal stromal cells (hMSCs) cultured on these scaffolds adhered, proliferated, and produced endogenous extracellular matrix. The effect of surface roughness and topography on hMSCs differentiation was more evident for cells seeded at lower density, where the percentage of cells in direct contact with the surface was higher compared to more densely seeded scaffolds. Under osteogenic conditions, lower surface roughness values (0.227 ± 0.035 μm) had a synergistic effect on hMSCs behavior, while chondrogenesis was favored on rougher surfaces (1.950 ± 0.553 μm).

  20. Characterization of Porcine Ventral Mesencephalic Precursor Cells following Long-Term Propagation in 3D Culture

    Directory of Open Access Journals (Sweden)

    Pia S. Jensen

    2012-01-01

    Full Text Available The potential use of predifferentiated neural precursor cells for treatment of a neurological disorder like Parkinson’s disease combines stem cell research with previous experimental and clinical transplantation of developing dopaminergic neurons. One current obstacle is, however, the lack of ability to generate dopaminergic neurons after long-term in vitro propagation of the cells. The domestic pig is considered a useful nonprimate large animal model in neuroscience, because of a better resemblance of the larger gyrencephalic pig brain to the human brain than the commonly used brains of smaller rodents. In the present study, porcine embryonic (28–30 days, ventral mesencephalic precursor cells were isolated and propagated as free-floating neural tissue spheres in medium containing epidermal growth factor and fibroblast growth factor 2. For passaging, the tissue spheres were cut into quarters, avoiding mechanical or enzymatic dissociation in order to minimize cellular trauma and preserve intercellular contacts. Spheres were propagated for up to 237 days with analysis of cellular content and differentiation at various time points. Our study provides the first demonstration that porcine ventral mesencephalic precursor cells can be long-term propagated as neural tissue spheres, thereby providing an experimental 3D in vitro model for studies of neural precursor cells, their niche, and differentiation capacity.

  1. 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research.

    Science.gov (United States)

    Fang, Suqin; Yan, Xiaolong; Liao, Hong

    2009-12-01

    Root architecture plays important roles in plant water and nutrient acquisition. However, accurate modeling of the root system that provides a realistic representation of roots in the soil is limited by a lack of appropriate tools for the non-destructive and precise measurement of the root system architecture in situ. Here we describe a root growth system in which the roots grow in a solid gel matrix that was used to reconstruct 3D root architecture in situ and dynamically simulate its changes under various nutrient conditions with a high degree of precision. A 3D laser scanner combined with a transparent gel-based growth system was used to capture 3D images of roots. The root system skeleton was extracted using a skeleton extraction method based on the Hough transformation, and mesh modeling using Ball-B spline was employed. We successfully used this system to reconstruct rice and soybean root architectures and determine their changes under various phosphorus (P) supply conditions. Our results showed that the 3D root architecture parameters that were dynamically calculated based on the skeletonization and simulation of root systems were significantly correlated with the biomass and P content of rice and soybean based on both the simulation system and previous reports. Therefore, this approach provides a novel technique for the study of crop root growth and its adaptive changes to various environmental conditions.

  2. Repercussion of geometric and dynamic constraints on the 3D rendering quality in structurally adaptive multi-view shooting systems

    Science.gov (United States)

    Ali-Bey, Mohamed; Moughamir, Saïd; Manamanni, Noureddine

    2011-12-01

    in this paper a simulator of a multi-view shooting system with parallel optical axes and structurally variable configuration is proposed. The considered system is dedicated to the production of 3D contents for auto-stereoscopic visualization. The global shooting/viewing geometrical process, which is the kernel of this shooting system, is detailed and the different viewing, transformation and capture parameters are then defined. An appropriate perspective projection model is afterward derived to work out a simulator. At first, this latter is used to validate the global geometrical process in the case of a static configuration. Next, the simulator is used to show the limitations of a static configuration of this shooting system type by considering the case of dynamic scenes and then a dynamic scheme is achieved to allow a correct capture of this kind of scenes. After that, the effect of the different geometrical capture parameters on the 3D rendering quality and the necessity or not of their adaptation is studied. Finally, some dynamic effects and their repercussions on the 3D rendering quality of dynamic scenes are analyzed using error images and some image quantization tools. Simulation and experimental results are presented throughout this paper to illustrate the different studied points. Some conclusions and perspectives end the paper. [Figure not available: see fulltext.

  3. A MULTISCALE APPROACH TO THE REPRESENTATION OF 3D IMAGES, WITH APPLICATION TO POLYMER SOLAR CELLS

    Directory of Open Access Journals (Sweden)

    Ralf Thiedmann

    2011-03-01

    Full Text Available A multiscale approach to the description of geometrically complex 3D image data is proposed which distinguishes between morphological features on a ‘macro-scale’ and a ‘micro-scale’. Since our method is mainly tailored to nanostructures observed in composite materials consisting of two different phases, an appropriate binarization of grayscale images is required first. Then, a morphological smoothing is applied to extract the structural information from binarized image data on the ‘macro-scale’. A stochastic algorithm is developed for the morphologically smoothed images whose goal is to find a suitable representation of the macro-scale structure by unions of overlapping spheres. Such representations can be interpreted as marked point patterns. They lead to an enormous reduction of data and allow the application of well-known tools from point-process theory for their analysis and structural modeling. All those voxels which have been ‘misspecified’ by the morphological smoothing and subsequent representation by unions of overlapping spheres are interpreted as ‘micro-scale’ structure. The exemplary data sets considered in this paper are 3D grayscale images of photoactive layers in hybrid solar cells gained by electron tomography. These composite materials consist of two phases: a polymer phase and a zinc oxide phase. The macro-scale structure of the latter is represented by unions of overlapping spheres.

  4. A miniature microbial fuel cell with conducting nanofibers-based 3D porous biofilm

    Science.gov (United States)

    Jiang, Huawei; Halverson, Larry J.; Dong, Liang

    2015-12-01

    Miniature microbial fuel cell (MFC) technology has received growing interest due to its potential applications in high-throughput screening of bacteria and mutants to elucidate mechanisms of electricity generation. This paper reports a novel miniature MFC with an improved output power density and short startup time, utilizing electrospun conducting poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers as a 3D porous anode within a 12 μl anolyte chamber. This device results in 423 μW cm-3 power density based on the volume of the anolyte chamber, using Shewanella oneidensis MR-1 as a model biocatalyst without any optimization of bacterial culture. The device also excels in a startup time of only 1hr. The high conductivity of the electrospun nanofibers makes them suitable for efficient electron transfer. The mean pore size of the conducting nanofibers is several micrometers, which is favorable for bacterial penetration and colonization of surfaces of the nanofibers. We demonstrate that S. oneidensis can fully colonize the interior region of this nanofibers-based porous anode. This work represents a new attempt to explore the use of electrospun PEDOT nanofibers as a 3D anode material for MFCs. The presented miniature MFC potentially will provide a high-sensitivity, high-throughput tool to screen suitable bacterial species and mutant strains for use in large-size MFCs.

  5. Versatile, immersive, creative and dynamic virtual 3-D healthcare learning environments: a review of the literature.

    Science.gov (United States)

    Hansen, Margaret M

    2008-09-01

    The author provides a critical overview of three-dimensional (3-D) virtual worlds and "serious gaming" that are currently being developed and used in healthcare professional education and medicine. The relevance of this e-learning innovation for teaching students and professionals is debatable and variables influencing adoption, such as increased knowledge, self-directed learning, and peer collaboration, by academics, healthcare professionals, and business executives are examined while looking at various Web 2.0/3.0 applications. There is a need for more empirical research in order to unearth the pedagogical outcomes and advantages associated with this e-learning technology. A brief description of Roger's Diffusion of Innovations Theory and Siemens' Connectivism Theory for today's learners is presented as potential underlying pedagogical tenets to support the use of virtual 3-D learning environments in higher education and healthcare.

  6. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells.

    Science.gov (United States)

    Ma, Chaoyan; Leng, Chongqian; Ji, Yixiong; Wei, Xingzhan; Sun, Kuan; Tang, Linlong; Yang, Jun; Luo, Wei; Li, Chaolong; Deng, Yunsheng; Feng, Shuanglong; Shen, Jun; Lu, Shirong; Du, Chunlei; Shi, Haofei

    2016-11-03

    The lifetime and power conversion efficiency are the key issues for the commercialization of perovskite solar cells (PSCs). In this paper, the development of 2D/3D perovskite hybrids (CA2PbI4/MAPbIxCl3-x) was firstly demonstrated to be a reliable method to combine their advantages, and provided a new concept for achieving both stable and efficient PSCs through the hybridization of perovskites. 2D/3D perovskite hybrids afforded significantly-improved moisture stability of films and devices without encapsulation in a high humidity of 63 ± 5%, as compared with the 3D perovskite (MAPbIxCl3-x). The 2D/3D perovskite-hybrid film did not undergo any degradation after 40 days, while the 3D perovskite decomposed completely under the same conditions after 8 days. The 2D/3D perovskite-hybrid device maintained 54% of the original efficiency after 220 hours, whereas the 3D perovskite device lost all the efficiency within only 50 hours. Moreover, the 2D/3D perovskite hybrid achieved comparable device performances (PCE: 13.86%) to the 3D perovskite (PCE: 13.12%) after the optimization of device fabrication conditions.

  7. Modeling and 3-D Simulation of Biofilm Dynamics in Aqueous Environment

    Science.gov (United States)

    Wang, Qi

    2011-11-01

    We present a complex fluid model for biofilms growing in an aqueous environment. The modeling approach represents a new paradigm to develop models for biofilm-environment interaction that can be used to systematically incorporate refined chemical and physiological mechanisms. Special solutions of the model are presented and analyzed. 3-D numerical simulations in aqueous environment with emphasis on biofilm- ambient fluid interaction will be discussed in detail.

  8. Analysis, Modeling and Dynamic Optimization of 3D Time-of-Flight Imaging Systems

    OpenAIRE

    Schmidt, Mirko

    2011-01-01

    The present thesis is concerned with the optimization of 3D Time-of-Flight (ToF) imaging systems. These novel cameras determine range images by actively illuminating a scene and measuring the time until the backscattered light is detected. Depth maps are constructed from multiple raw images. Usually two of such raw images are acquired simultaneously using special correlating sensors. This thesis covers four main contributions: A physical sensor model is presented which enables the analysis a...

  9. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity.

    Directory of Open Access Journals (Sweden)

    Chih-Hao Chang

    Full Text Available Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP techniques. A self-developed 3D printer with laser-aided gelling (LAG process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w. Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity.

  10. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity.

    Science.gov (United States)

    Chang, Chih-Hao; Lin, Chih-Yang; Liu, Fwu-Hsing; Chen, Mark Hung-Chih; Lin, Chun-Pin; Ho, Hong-Nerng; Liao, Yunn-Shiuan

    2015-01-01

    Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP) techniques. A self-developed 3D printer with laser-aided gelling (LAG) process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w). Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity.

  11. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity

    Science.gov (United States)

    Chang, Chih-Hao; Lin, Chih-Yang; Liu, Fwu-Hsing; Chen, Mark Hung-Chih; Lin, Chun-Pin; Ho, Hong-Nerng; Liao, Yunn-Shiuan

    2015-01-01

    Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP) techniques. A self-developed 3D printer with laser-aided gelling (LAG) process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w). Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity. PMID:26618362

  12. A Dynamical Principle For 3D-4D Interlinkage In Salpeter-like Equations

    CERN Document Server

    Mitra, A N

    2001-01-01

    The half-century old Markov-Yukawa Transversality Principle ($MYTP$) which provides a theoretical rationale for the covariant instantaneous approximation ($CIA$) that underlies all Salpeter- like equations, is generalized to a Covariant null-plane Ansatz ($CNPA$). A common characteristic of both formulations is an exact 3D-4D interlinkage of BS amplitudes which provides for a two-tier description, the 3D form for spectroscopy, and the 4D form for transition amplitudes as 4D loop integrals. Some basic applications of $MYTP$ on the covariant null plane (quark mass function, vacuum condensates, and decay constants) are given on the lines of earlier applications of the same under Covariant Instantaneity to such processes. PACS: 03.65.-w ; 03.65.Co ; 11.10.Qr ; 11.10.St Keywords: Markov-Yukawa Transversality Principle ($MYTP$); Salpeter-like eqs; Cov Instantaneity Ansatz ($CIA$); Cov null-plane Ansatz ($CNPA$); 3D-4D interlinkage; Vertex function; 4D loops

  13. Label-free optical detection of cells grown in 3D silicon microstructures.

    Science.gov (United States)

    Merlo, Sabina; Carpignano, Francesca; Silva, Gloria; Aredia, Francesca; Scovassi, A Ivana; Mazzini, Giuliano; Surdo, Salvatore; Barillaro, Giuseppe

    2013-08-21

    We demonstrate high aspect-ratio photonic crystals that could serve as three-dimensional (3D) microincubators for cell culture and also provide label-free optical detection of the cells. The investigated microstructures, fabricated by electrochemical micromachining of standard silicon wafers, consist of periodic arrays of silicon walls separated by narrow deeply etched air-gaps (50 μm high and 5 μm wide) and feature the typical spectral properties of photonic crystals in the wavelength range 1.0-1.7 μm: their spectral reflectivity is characterized by wavelength regions where reflectivity is high (photonic bandgaps), separated by narrow wavelength regions where reflectivity is very low. In this work, we show that the presence of cells, grown inside the gaps, strongly affects light propagation across the photonic crystal and, therefore, its spectral reflectivity. Exploiting a label-free optical detection method, based on a fiberoptic setup, we are able to probe the extension of cells adherent to the vertical silicon walls with a non-invasive direct testing. In particular, the intensity ratio at two wavelengths is the experimental parameter that can be well correlated to the cell spreading on the silicon wall inside the gaps.

  14. Single cell visualization of transcription kinetics variance of highly mobile identical genes using 3D nanoimaging.

    Science.gov (United States)

    Annibale, Paolo; Gratton, Enrico

    2015-03-19

    Multi-cell biochemical assays and single cell fluorescence measurements revealed that the elongation rate of Polymerase II (PolII) in eukaryotes varies largely across different cell types and genes. However, there is not yet a consensus whether intrinsic factors such as the position, local mobility or the engagement by an active molecular mechanism of a genetic locus could be the determinants of the observed heterogeneity. Here by employing high-speed 3D fluorescence nanoimaging techniques we resolve and track at the single cell level multiple, distinct regions of mRNA synthesis within the model system of a large transgene array. We demonstrate that these regions are active transcription sites that release mRNA molecules in the nucleoplasm. Using fluctuation spectroscopy and the phasor analysis approach we were able to extract the local PolII elongation rate at each site as a function of time. We measured a four-fold variation in the average elongation between identical copies of the same gene measured simultaneously within the same cell, demonstrating a correlation between local transcription kinetics and the movement of the transcription site. Together these observations demonstrate that local factors, such as chromatin local mobility and the microenvironment of the transcription site, are an important source of transcription kinetics variability.

  15. Identifying same-cell contours in image stacks: a key step in making 3D reconstructions.

    Science.gov (United States)

    Leung, Tony Kin Shun; Veldhuis, Jim H; Krens, S F Gabby; Heisenberg, C P; Brodland, G Wayne

    2011-02-01

    Identification of contours belonging to the same cell is a crucial step in the analysis of confocal stacks and other image sets in which cell outlines are visible, and it is central to the making of 3D cell reconstructions. When the cells are close packed, the contour grouping problem is more complex than that found in medical imaging, for example, because there are multiple regions of interest, the regions are not separable from each other by an identifiable background and regions cannot be distinguished by intensity differences. Here, we present an algorithm that uses three primary metrics-overlap of contour areas in adjacent images, co-linearity of the centroids of these areas across three images in a stack, and cell taper-to assign cells to groups. Decreasing thresholds are used to successively assign contours whose membership is less obvious. In a final step, remaining contours are assigned to existing groups by setting all thresholds to zero and groups having strong hour-glass shapes are partitioned. When applied to synthetic data from isotropic model aggregates, a curved model epithelium in which the long axes of the cells lie at all possible angles to the transection plane, and a confocal image stack, algorithm assignments were between 97 and 100% accurate in sets having at least four contours per cell. The algorithm is not particularly sensitive to the thresholds used, and a single set of parameters was used for all of the tests. The algorithm, which could be extended to time-lapse data, solves a key problem in the translation of image data into cell information.

  16. 3D differentiation of neural stem cells in macroporous photopolymerizable hydrogel scaffolds.

    Directory of Open Access Journals (Sweden)

    Hang Li

    Full Text Available Neural stem/progenitor cells (NSPCs are the stem cell of the adult central nervous system (CNS. These cells are able to differentiate into the major cell types found in the CNS (neurons, oligodendrocytes, astrocytes, thus NSPCs are the mechanism by which the adult CNS could potentially regenerate after injury or disorder. Microenviromental factors are critical for guiding NSPC differentiation and are thus important for neural tissue engineering. In this study, D-mannitol crystals were mixed with photocrosslinkable methacrylamide chitosan (MAC as a porogen to enhance pore size during hydrogel formation. D-mannitol was admixed to MAC at 5, 10 and 20 wt% D-mannitol per total initial hydrogel weight. D-mannitol crystals were observed to dissolve and leave the scaffold within 1 hr. Quantification of resulting average pore sizes showed that D-mannitol addition resulted in larger average pore size (5 wt%, 4060±160 µm(2, 10 wt%, 6330±1160 µm(2, 20 wt%, 7600±1550 µm(2 compared with controls (0 wt%, 3150±220 µm(2. Oxygen diffusion studies demonstrated that larger average pore area resulted in enhanced oxygen diffusion through scaffolds. Finally, the differentiation responses of NSPCs to phenotypic differentiation conditions were studied for neurons, astrocytes and oligodendrocytes in hydrogels of varied porosity over 14 d. Quantification of total cell numbers at day 7 and 14, showed that cell numbers decreased with increased porosity and over the length of the culture. At day 14 immunohistochemistry quantification for primary cell types demonstrated significant differentiation to the desired cells types, and that total percentages of each cell type was greatest when scaffolds were more porous. These results suggest that larger pore sizes in MAC hydrogels effectively promote NSPC 3D differentiation.

  17. Magnetohydrodynamics dynamical relaxation of coronal magnetic fields. IV. 3D tilted nulls

    Science.gov (United States)

    Fuentes-Fernández, J.; Parnell, C. E.

    2013-06-01

    Context. There are various types of reconnection that may take place at 3D magnetic null points. Each different reconnection scenario must be associated with a particular type of current layer. Aims: A range of current layers may form because the topology of 3D nulls permits currents to form by either twisting the field about the spine of the null or by folding the fan and spine into each other. Additionally, the initial geometry of the field can lead to variations in the currents that are accumulated. Here, we study current accumulations in so-called 3D "tilted" nulls formed by a folding of the spine and fan. A non-zero component of current parallel to the fan is required such that the null's fan plane and spine are not perpendicular. Our aims are to provide valid magnetohydrostatic equilibria and to describe the current accumulations in various cases involving finite plasma pressure. Methods: To create our equilibrium current structures we use a full, non-resistive, magnetohydrodynamic (MHD) code so that no reconnection is allowed. A series of experiments are performed in which a perturbed 3D tilted null relaxes towards an equilibrium via real, viscous damping forces. Changes to the initial plasma pressure and to magnetic parameters are investigated systematically. Results: An initially tilted fan is associated with a non-zero Lorentz force that drives the fan and spine to collapse towards each other, in a similar manner to the collapse of a 2D X-point. In the final equilibrium state for an initially radial null with only the current perpendicular to the spine, the current concentrates along the tilt axis of the fan and in a layer about the null point with a sharp peak at the null itself. The continued growth of this peak indicates that the system is in an asymptotic regime involving an infinite time singularity at the null. When the initial tilt disturbance (current perpendicular to the spine) is combined with a spiral-type disturbance (current parallel to the

  18. Consolidation and dynamics of 3D unsaturated porous seabed under rigid caisson breakwater loaded by hydrostatic pressure and wave

    Institute of Scientific and Technical Information of China (English)

    YE JianHong; JENG DongSheng; CHAN A H C

    2012-01-01

    In this study,based on the dynamic Biot's theory "u-p" approximation,a 3D finite element method (FEM) numerical soil model is developed,in which the Generalized Newmark-β method is adopted to determine the time integration.The developed 3D FEM soil model is a part of the coupled model PORO-WSSI 3D for 3D wave-seabed-marine structures interaction problem,and is validated by the analytical solution proposed by Wang (2000) for a laterally infinite seabed loaded by a uniform force.By adopting the developed 3D soil model,the consolidation of seabed under a caisson breakwater and hydrostatic pressure is investigated.The numerical results show that the caisson breakwater built on seabed has very significant effect on the stresses/displacements fields in the seabed foundation after the transient deformation and primary consolidation are completed.The parametric study indicates that the Young's modulus E of seabed is the most important parameter to affect the settlement of breakwater,and the displacement fields in seabed foundation.Taking the consolidation status as the initial condition,the interaction between ocean wave,caisson breakwater and seabed foundation is briefly investigated.The 3D ocean wave is determined by solving the Navier-Stokes equations with finite volume method (FVM).The numerical results indicate that there is intensive interaction between ocean wave,caisson breakwater and seabed foundation; and the breakwater indeed can effectively block the wave energy propagating to the coastline.

  19. SURVIVAL OF LIVER CELLS, IMMOBILIZED ON 3D-MATRIXES, IN LIVER FAILURE MODEL

    Directory of Open Access Journals (Sweden)

    M. Y. Shagidulin

    2011-01-01

    Full Text Available It was examined a new method for correction of hepatic failure by transplantation of liver support biounit (liver cells, immobilized on biocompatible and biodegradable 3D-matrixes ElastoPOB® into small intestine mesentery. It was determined that after modeling of acute hepatic failure on dogs by 65–70% liver resection and transplantation liver support biounit the restoration of disturbed biochemical indecies (such as total protein, lactate, cytolytic ensymes-ALT, AST, ALP, LDH, fibrinogen, protrombine index and others took place more rapidly on 9–14th day instead of 18th day in control. It was made a preposition about efficiency of the suggested method for correction both acute hepatic failure because even 90 days after transplantation of liver support biounit alive hepatocytes and neogenic plethoric vessels, growing through matrix were revealed. 

  20. Biologic response of inguinal hernia prosthetics: a comparative study of conventional static meshes versus 3D dynamic implants.

    Science.gov (United States)

    Amato, Giuseppe; Romano, Giorgio; Agrusa, Antonino; Marasa, Salvatore; Cocorullo, Gianfranco; Gulotta, Gaspare; Goetze, Thorsten; Puleio, Roberto

    2015-01-01

    Despite improvements in prosthetics and surgical techniques, the rate of complications following inguinal hernia repair remains high. Among these, discomfort and chronic pain have become a source of increasing concern among surgeons. Poor quality of tissue ingrowth, such as thin scar plates or shrinking scars-typical results with conventional static implants and plugs-may contribute to these adverse events. Recently, a new type of 3D dynamically responsive implant was introduced to the market. This device, designed to be placed fixation-free, seems to induce ingrowth of viable and structured tissue instead of regressive fibrotic scarring. To elucidate the differences in biologic response between the conventional static meshes and this 3D dynamically responsive implant, a histological comparison was planned. The aim of this study was to determine the quality of tissue incorporation in both types of implants excised after short, medium, and long periods post-implantation. The results showed large differences in the biologic responses between the two implant types. Histologically, the 3D dynamic implant showed development of tissue elements more similar to natural abdominal wall structures, such as the ingrowth of loose and well-hydrated connective tissue, well-formed vascular structures, elastic fibers, and mature nerves, with negligible or absent inflammatory response. All these characteristics were completely absent in the conventional static implants, where a persistent inflammatory reaction was associated with thin, hardened, and shrunken fibrotic scar formation. Consequently, as herniation is a degenerative process, the 3D dynamic implants, which induce regeneration of the typical groin components, seem to address its pathogenesis.

  1. Self-Organization of Polarized Cerebellar Tissue in 3D Culture of Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Keiko Muguruma

    2015-02-01

    Full Text Available During cerebellar development, the main portion of the cerebellar plate neuroepithelium gives birth to Purkinje cells and interneurons, whereas the rhombic lip, the germinal zone at its dorsal edge, generates granule cells and cerebellar nuclei neurons. However, it remains elusive how these components cooperate to form the intricate cerebellar structure. Here, we found that a polarized cerebellar structure self-organizes in 3D human embryonic stem cell (ESC culture. The self-organized neuroepithelium differentiates into electrophysiologically functional Purkinje cells. The addition of fibroblast growth factor 19 (FGF19 promotes spontaneous generation of dorsoventrally polarized neural-tube-like structures at the level of the cerebellum. Furthermore, addition of SDF1 and FGF19 promotes the generation of a continuous cerebellar plate neuroepithelium with rhombic-lip-like structure at one end and a three-layer cytoarchitecture similar to the embryonic cerebellum. Thus, human-ESC-derived cerebellar progenitors exhibit substantial self-organizing potential for generating a polarized structure reminiscent of the early human cerebellum at the first trimester.

  2. Using Polymer Confinement for Stem Cell Differentiation: 3D Printed vs Molded Scaffolds

    Science.gov (United States)

    Rafailovich, Miriam

    Additive manufacturing technologies are increasingly being used to replace standard extrusion or molding methods in engineering polymeric biomedical implants, which can be further seeded with cells for tissue regeneration. The principal advantage of this new technology is the ability to print directly from a scan and hence produce parts which are an ideal fit for an individual, eliminating much of the sizing and fitting associated with standard manufacturing methods. The question though arises whether devices which may be macroscopically similar, serve identical functions and are produced from the same material, interact in the same manner with cells and living tissue. Here we show that fundamental differences can exist between 3-D printed and extruded scaffolds which can impact stem cell differentiation and lineage selection. We will show how polymer confinement inherent in these methods affect the printed features on multiple length scales. We will also and how the differentiation of stem cells is affected by substrate heterogeneity in both morphological and mechanical features. NSF-Inspire award # 1344267.

  3. A 3D model for PEM fuel cells operated on reformate

    Science.gov (United States)

    Zhou, Tianhong; Liu, Hongtan

    A three-dimensional mathematical model for PEM fuel cells operated on reformate is developed based on our previous established fuel cell model [Int. J. Transport Phenomena 3 (2001) 177], by incorporating the adsorption and oxidation kinetics of CO on platinum surface proposed by Springer et al. [Proceedings of the Electrochemical Society, Montreal, Canada, 1997; J. Electrochem. Soc. 148 (2001) A11]. This model is capable of studying the effect of CO poisoning as well as the hydrogen dilution effect by inert gases. The adsorption and oxidation kinetics of CO on a platinum surface are incorporated in the source terms of the species equations; thus, the basic form of the mathematical equations are the same as those used for PEM fuel cells operated on pure hydrogen. With this model, we can obtain detailed information on the CO poisoning and variation of CO and hydrogen concentrations inside the anode. The results from this 3D model reveal many new phenomena that cannot be obtained from previous 1D or 2D models. Results of the effects of various operating and design parameters, such as anode flow rate, gas diffuser porosity, gas diffuser thickness, and the width of the collector plate shoulder, are also presented. The modeling results demonstrate the value of this model as a design and optimization tool for the anode of PEM fuel cells operating on reformate.

  4. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.

    Science.gov (United States)

    Ouyang, Liliang; Yao, Rui; Zhao, Yu; Sun, Wei

    2016-09-16

    3D cell printing is an emerging technology for fabricating complex cell-laden constructs with precise and pre-designed geometry, structure and composition to overcome the limitations of 2D cell culture and conventional tissue engineering scaffold technology. This technology enables spatial manipulation of cells and biomaterials, also referred to as 'bioink', and thus allows study of cellular interactions in a 3D microenvironment and/or in the formation of functional tissues and organs. Recently, many efforts have been made to develop new bioinks and to apply more cell sources for better biocompatibility and biofunctionality. However, the influences of printing parameters on the shape fidelity of 3D constructs as well as on cell viability after the cell printing process have been poorly characterized. Furthermore, parameter optimization based on a specific cell type might not be suitable for other types of cells, especially cells with high sensibility. In this study, we systematically studied the influence of bioink properties and printing parameters on bioink printability and embryonic stem cell (ESC) viability in the process of extrusion-based cell printing, also known as bioplotting. A novel method was established to determine suitable conditions for bioplotting ESCs to achieve both good printability and high cell viability. The rheological properties of gelatin/alginate bioinks were evaluated to determine the gelation properties under different bioink compositions, printing temperatures and holding times. The bioink printability was characterized by a newly developed semi-quantitative method. The results demonstrated that bioinks with longer gelation times would result in poorer printability. The live/dead assay showed that ESC viability increased with higher printing temperatures and lower gelatin concentrations. Furthermore, an exponential relationship was obtained between ESC viability and induced shear stress. By defining the proper printability and

  5. Development of bioartificial myocardium by electrostimulation of 3D collagen scaffolds seeded with stem cells

    Directory of Open Access Journals (Sweden)

    Alain Carpentier

    2012-06-01

    Full Text Available Electrostimulation (ES can be defined as a safe physical method to induce stem cell differentiation. The aim of this study is to evaluate the effectiveness of ES on bone marrow mesenchymal stem cells (BMSCs seeded in collagen scaffolds in terms of proliferation and differentiation into cardiomyocytes. BMSCs were isolated from Wistar rats and seeded into 3D collagen type 1 templates measuring 25 x 25 x 6 mm. Bipolar in vitro ES was performed during 21 days. Electrical impedance and cell proliferation were measured. Expression of cardiac markers was assessed by immunocytochemistry. Viscoelasticity of collagen matrix was evaluated. Electrical impedance assessments showed a low resistance of 234±41 Ohms which indicates good electrical conductivity of collagen matrix. Cell proliferation at 570 nm as significantly increased in ES groups after seven day (ES 0.129±0.03 vs non-stimulated control matrix 0.06±0.01, P=0.002 and after 21 days, (ES 0.22±0.04 vs control 0.13±0.01, P=0.01. Immunocytochemistry of BMSCs after 21 days ES showed positive staining of cardiac markers, troponin I, connexin 43, sarcomeric alpha-actinin, slow myosin, fast myosin and desmin. Staining for BMSCs marker CD29 after 21 days was negative. Electrostimulation of cell-seeded collagen matrix changed stem cell morphology and bio- chemical characteristics, increasing the expression of cardiac markers. Thus, MSC-derived differentiated cells by electrostimulation grafted in biological scaffolds might result in a convenient tissue engineering source for myocardial diseases.

  6. Development of bioartificial myocardium by electrostimulation of 3D collagen scaffolds seeded with stem cells.

    Science.gov (United States)

    Haneef, Kanwal; Lila, Nermine; Benadda, Samira; Legrand, Fabien; Carpentier, Alain; Chachques, Juan C

    2012-06-01

    Electrostimulation (ES) can be defined as a safe physical method to induce stem cell differentiation. The aim of this study is to evaluate the effectiveness of ES on bone marrow mesenchymal stem cells (BMSCs) seeded in collagen scaffolds in terms of proliferation and differentiation into cardiomyocytes. BMSCs were isolated from Wistar rats and seeded into 3D collagen type 1 templates measuring 25 × 25 × 6 mm. Bipolar in vitro ES was performed during 21 days. Electrical impedance and cell proliferation were measured. Expression of cardiac markers was assessed by immunocytochemistry. Viscoelasticity of collagen matrix was evaluated. Electrical impedance assessments showed a low resistance of 234±41 Ohms which indicates good electrical conductivity of collagen matrix. Cell proliferation at 570 nm as significantly increased in ES groups after seven day (ES 0.129±0.03 vs non-stimulated control matrix 0.06±0.01, P=0.002) and after 21 days, (ES 0.22±0.04 vs control 0.13±0.01, P=0.01). Immunocytoche mistry of BMSCs after 21 days ES showed positive staining of cardiac markers, troponin I, connexin 43, sarcomeric alpha-actinin, slow myosin, fast myosin and desmin. Staining for BMSCs marker CD29 after 21 days was negative. Electrostimulation of cell-seeded collagen matrix changed stem cell morphology and biochemical characteristics, increasing the expression of cardiac markers. Thus, MSC-derived differentiated cells by electrostimulation grafted in biological scaffolds might result in a convenient tissue engineering source for myocardial diseases.

  7. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation.

    Science.gov (United States)

    Zhou, Xuan; Castro, Nathan J; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-09-06

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm(2) intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application.

  8. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation

    Science.gov (United States)

    Zhou, Xuan; Castro, Nathan J.; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm2 intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  9. Generation of Multilayered 3D Structures of HepG2 Cells Using a Bio-printing Technique

    Science.gov (United States)

    Jeon, Hyeryeon; Kang, Kyojin; Park, Su A; Kim, Wan Doo; Paik, Seung Sam; Lee, Sang-Hun; Jeong, Jaemin; Choi, Dongho

    2017-01-01

    Background/Aims Chronic liver disease is a major widespread cause of death, and whole liver transplantation is the only definitive treatment for patients with end-stage liver diseases. However, many problems, including donor shortage, surgical complications and cost, hinder their usage. Recently, tissue-engineering technology provided a potential breakthrough for solving these problems. Three-dimensional (3D) printing technology has been used to mimic tissues and organs suitable for transplantation, but applications for the liver have been rare. Methods A 3D bioprinting system was used to construct 3D printed hepatic structures using alginate. HepG2 cells were cultured on these 3D structures for 3 weeks and examined by fluorescence microscopy, histology and immunohistochemistry. The expression of liver-specific markers was quantified on days 1, 7, 14, and 21. Results The cells grew well on the alginate scaffold, and liver-specific gene expression increased. The cells grew more extensively in 3D culture than two-dimensional culture and exhibited better structural aspects of the liver, indicating that the 3D bioprinting method recapitulates the liver architecture. Conclusions The 3D bioprinting of hepatic structures appears feasible. This technology may become a major tool and provide a bridge between basic science and the clinical challenges for regenerative medicine of the liver. PMID:27559001

  10. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel.

    Science.gov (United States)

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C; Wang, Lin

    2014-11-20

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine.

  11. CARS and SHG microscopy to follow the collagen production in living human corneal fibroblasts and mesenchymal stem cells in fibrin gel 3D cultures

    CERN Document Server

    Mortati, Leonardo; Sassi, Maria Paola

    2011-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is combined with second harmonic generation (SHG) technique in order to follow the early stage of stem cell differentiation within a 3D scaffold. CARS microscopy can detect lipid membranes and droplet compartments in living cells and SHG microscopy enables a strong imaging contrast for molecules with a non-centrosymmetric ordered structure like collagen. One of the first evidence of hMSCs differentiation is the formation of an extracellular matrix (ECM) where the collagen protein is its main component. This work demonstrated the multimodal CARS and SHG microscopy as a powerful non-invasive label free technique to investigate the collagen production dynamic in living cell 3D cultures. Its ability to image the cell morphology and the produced collagen distribution on a long term (4 weeks) experiment allowed to obtain important information about the cell-scaffold interaction and the ECM production. The very low limit reached in detecting collagen has permit...

  12. Heart wall motion analysis by dynamic 3D strain rate imaging from tissue Doppler echocardiography

    Science.gov (United States)

    Hastenteufel, Mark; Wolf, Ivo; de Simone, Raffaele; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2002-04-01

    The knowledge about the complex three-dimensional (3D) heart wall motion pattern, particular in the left ventricle, provides valuable information about potential malfunctions, e.g., myocardial ischemia. Nowadays, echocardiography (cardiac ultrasound) is the predominant technique for evaluation of cardiac function. Beside morphology, tissue velocities can be obtained by Doppler techniques (tissue Doppler imaging, TDI). Strain rate imaging (SRI) is a new technique to diagnose heart vitality. It provides information about the contraction ability of the myocardium. Two-dimensional color Doppler echocardiography is still the most important clinical method for estimation of morphology and function. Two-dimensional methods leads to a lack of information due to the three-dimensional overall nature of the heart movement. Due to this complex three-dimensional motion pattern of the heart, the knowledge about velocity and strain rate distribution over the whole ventricle can provide more valuable diagnostic information about motion disorders. For the assessment of intracardiac blood flow three-dimensional color Doppler has already shown its clinical utility. We have developed methods to produce strain rate images by means of 3D tissue Doppler echocardiography. The tissue Doppler and strain rate images can be visualized and quantified by different methods. The methods are integrated into an interactively usable software environment, making them available in clinical everyday life. Our software provides the physician with a valuable tool for diagnosis of heart wall motion.

  13. Magnetohydrodynamics dynamical relaxation of coronal magnetic fields. IV. 3D tilted nulls

    CERN Document Server

    Fuentes-Fernandez, Jorge

    2013-01-01

    In this paper we study current accumulations in 3D "tilted" nulls formed by a folding of the spine and fan. A non-zero component of current parallel to the fan is required such that the null's fan plane and spine are not perpendicular. Our aims are to provide valid magnetohydrostatic equilibria and to describe the current accumulations in various cases involving finite plasma pressure.To create our equilibrium current structures we use a full, non-resistive, magnetohydrodynamic (MHD) code so that no reconnection is allowed. A series of experiments are performed in which a perturbed 3D tilted null relaxes towards an equilibrium via real, viscous damping forces. Changes to the initial plasma pressure and to magnetic parameters are investigated systematically.An initially tilted fan is associated with a non-zero Lorentz force that drives the fan and spine to collapse towards each other, in a similar manner to the collapse of a 2D X-point. In the final equilibrium state for an initially radial null with only the ...

  14. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models.

    Science.gov (United States)

    Ricci, Claudio; Mota, Carlos; Moscato, Stefania; D'Alessandro, Delfo; Ugel, Stefano; Sartoris, Silvia; Bronte, Vincenzo; Boggi, Ugo; Campani, Daniela; Funel, Niccola; Moroni, Lorenzo; Danti, Serena

    2014-01-01

    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl alcohol)/gelatin (PVA/G) mixture and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer, were obtained via different techniques, namely, emulsion and freeze-drying, compression molding followed by salt leaching, and electrospinning. In this way, primary PDAC cells interfaced with different pore topographies, such as sponge-like pores of different shape and size or nanofiber interspaces. The aim of this study was to investigate the influence played by the scaffold architecture over cancerous cell growth and function. In all scaffolds, primary PDAC cells showed good viability and synthesized tumor-specific metalloproteinases (MMPs) such as MMP-2, and MMP-9. However, only sponge-like pores, obtained via emulsion-based and salt leaching-based techniques allowed for an organized cellular aggregation very similar to the native PDAC morphological structure. Differently, these cell clusters were not observed on PEOT/PBT electrospun scaffolds. MMP-2 and MMP-9, as active enzymes, resulted to be increased in PVA/G and PEOT/PBT sponges, respectively. These findings suggested that spongy scaffolds supported the generation of pancreatic tumor models with enhanced aggressiveness. In conclusion, primary PDAC cells showed diverse behaviors while interacting with different scaffold types that can be potentially exploited to create stage-specific pancreatic cancer models likely to provide new knowledge on the modulation and drug susceptibility of MMPs.

  15. Optimizing fuel cell parts by using 3D screen printed metals

    Energy Technology Data Exchange (ETDEWEB)

    Studnitzky, Thomas [Fraunhofer-Institue for Manufacturing and Advanced Materials, Dresden (Germany). Dept. of Powder Metallurgy and Composite Materials; Strauss, Alexander [Centre for Fuel Cell Technology, Duisburg (Germany). Dept. of Microsystems

    2010-07-01

    Miniature fuel cells have the potential to extend the runtime of various portable applications. In this context, sufficient energy densities have to be achieved within a stack in order to build fuel cell systems competitive to established battery technologies. Metallic bipolar plates composed of stainless steels permit the construction of thin and mechanically robust cells. Moreover the utilisation of the presented manufacturing method enables a new freedom in design of Bipolar Plates and their integrated flow field structures for future improvements of cell efficiency. In this study different miniature PEM fuel cells have been designed and tested. Bases for their construction are micro structured plates composed of 316L stainless steel. This design can include very fine walls down to 60 {mu}m as well as undercuts, which is impossible with other manufacturing methods. These designs were adapted by Fraunhofer IFAM for the screen printing process. As a first result a proof of concept has been established for 3D screen printing as a method for the manufacturing of fuel cell bipolar elements. To this end, a modified screen printing process is used to manufacture 3-dimensional parts layer-on-layer by depositing a suitable metallic powder which is mixed with a binder. The resulting green parts might include closed channels and channel wall thicknesses may reach 80 {mu}m or less. The green parts are debindered and sintered in order to obtain purely metallic structures. The manufactured bipolar plates show promising electric behaviour. In the current state of the project, bipolar plates with undercuts and new materials combinations are in the centre of the investigations. (orig.)

  16. 3D optical simulation formalism OPTOS for textured silicon solar cells.

    Science.gov (United States)

    Tucher, Nico; Eisenlohr, Johannes; Kiefel, Peter; Höhn, Oliver; Hauser, Hubert; Peters, Marius; Müller, Claas; Goldschmidt, Jan Christoph; Bläsi, Benedikt

    2015-11-30

    In this paper we introduce the three-dimensional formulation of the OPTOS formalism, a matrix-based method that allows for the efficient simulation of non-coherent light propagation and absorption in thick textured sheets. As application examples, we calculate the absorptance of solar cells featuring textures on front and rear side with different feature sizes operating in different optical regimes. A discretization of polar and azimuth angle enables a three-dimensional description of systems with arbitrary surface textures. We present redistribution matrices for 3D surface textures, including pyramidal textures, binary crossed gratings and a Lambertian scatterer. The results of the OPTOS simulations for silicon sheets with different combinations of these surfaces are in accordance with both optical measurements and results based on established simulation methods like ray tracing. Using OPTOS, we show that the integration of a diffractive grating at the rear side of a silicon solar cell featuring a pyramidal front side results in absorption close to the Yablonovitch Limit enhancing the photocurrent density by 0.6 mA/cm2 for a 200 µm thick cell.

  17. Dynamics of Mantle Circulation Associated with Slab Window Formation: Insights from 3D Laboratory Models

    Science.gov (United States)

    Guillaume, B.; Funiciello, F.; Moroni, M.; Faccenna, C.; Martinod, J.

    2009-12-01

    Slab window can form either by the intersection of a spreading ridge with a subduction zone or because of internal deformation of the slab that leads to its disruption. The main consequences of this phenomenon are the modifications of the physical, chemical and thermal conditions in the backarc mantle that in turn affect the tectonic and magmatic evolution of the overriding plate. We performed laboratory models of a two-layer linear viscous slab (silicone putty)-upper mantle (glucose syrup) system to quantitatively investigate the pattern of mantle circulation within the slab window (using Feature Tracking image analysis technique) and its influence on the kinematics of the system. Two different geometries have been tested considering a window located (a) at slab edges or (b) within the slab. Kinematic consequences of slab window have been explored to understand the dynamics of the mantle-slab interaction. Configuration (a) implies a reduction of the slab width (W) during subduction and is characterized by toroidal fluxes around the slab edges. The abrupt opening of lateral slab windows produces an acceleration of the trench retreat and subduction velocity, such as 40% for a three-fold width reduction. We interpret this behavior as mostly due to the decrease in the toroidal flow inside subduction windows, scaling with W2. Configuration (b) has been designed to explore the pattern of mantle flow within the window in the case of a laterally constrained subduction system. Slab window, which had a width (Ww) fixed to 15 % of the slab width, opened in the trench-perpendicular direction. It produced the formation of two toroidal mantle cells, centered on the slab midpoint and laterally growing as the slab window enlarged. Particles extruded through the slab window did not mix with particles located in the mantle wedge, the boundary between both reaching distances from the trench up to 3×Ww in the trench-perpendicular direction, and up to 1.5×Ww from the window edge in

  18. Persistent and automatic intraoperative 3D digitization of surfaces under dynamic magnifications of an operating microscope.

    Science.gov (United States)

    Kumar, Ankur N; Miga, Michael I; Pheiffer, Thomas S; Chambless, Lola B; Thompson, Reid C; Dawant, Benoit M

    2015-01-01

    One of the major challenges impeding advancement in image-guided surgical (IGS) systems is the soft-tissue deformation during surgical procedures. These deformations reduce the utility of the patient's preoperative images and may produce inaccuracies in the application of preoperative surgical plans. Solutions to compensate for the tissue deformations include the acquisition of intraoperative tomographic images of the whole organ for direct displacement measurement and techniques that combines intraoperative organ surface measurements with computational biomechanical models to predict subsurface displacements. The later solution has the advantage of being less expensive and amenable to surgical workflow. Several modalities such as textured laser scanners, conoscopic holography, and stereo-pair cameras have been proposed for the intraoperative 3D estimation of organ surfaces to drive patient-specific biomechanical models for the intraoperative update of preoperative images. Though each modality has its respective advantages and disadvantages, stereo-pair camera approaches used within a standard operating microscope is the focus of this article. A new method that permits the automatic and near real-time estimation of 3D surfaces (at 1 Hz) under varying magnifications of the operating microscope is proposed. This method has been evaluated on a CAD phantom object and on full-length neurosurgery video sequences (∼1 h) acquired intraoperatively by the proposed stereovision system. To the best of our knowledge, this type of validation study on full-length brain tumor surgery videos has not been done before. The method for estimating the unknown magnification factor of the operating microscope achieves accuracy within 0.02 of the theoretical value on a CAD phantom and within 0.06 on 4 clinical videos of the entire brain tumor surgery. When compared to a laser range scanner, the proposed method for reconstructing 3D surfaces intraoperatively achieves root mean square

  19. Related pituitary cell lineages develop into interdigitated 3D cell networks.

    Science.gov (United States)

    Budry, Lionel; Lafont, Chrystel; El Yandouzi, Taoufik; Chauvet, Norbert; Conéjero, Geneviève; Drouin, Jacques; Mollard, Patrice

    2011-07-26

    The pituitary gland has long been considered to be a random patchwork of hormone-producing cells. By using pituitary-scale tridimensional imaging for two of the least abundant cell lineages, the corticotropes and gonadotropes, we have now uncovered highly organized and interdigitated cell networks that reflect homotypic and heterotypic interactions between cells. Although newly differentiated corticotrope cells appear on the ventral surface of the gland, they rapidly form homotypic strands of cells that extend from the lateral tips of the anterior pituitary along its ventral surface and into the medial gland. As the corticotrope network is established away from the microvasculature, cell morphology changes from rounded, to polygonal, and finally to cells with long cytoplasmic processes or cytonemes that connect corticotropes to the perivascular space. Gonadotropes differentiate later and are positioned in close proximity to corticotropes and capillaries. Blockade of corticotrope terminal differentiation produced by knockout of the gene encoding the transcription factor Tpit results in smaller gonadotropes within an expanded cell network, particularly in the lateral gland. Thus, pituitary-scale tridimensional imaging reveals highly structured cell networks of unique topology for each pituitary lineage. The sequential development of interdigitated cell networks during organogenesis indicate that extensive cell:cell interactions lead to a highly ordered cell positioning rather than random patchwork.

  20. 3D Simulation of the Gas Dynamics in the Central Parsec of the Galaxy

    CERN Document Server

    Coker, R F

    1998-01-01

    It is thought that many characteristics of the gaseous features within the central parsec of our Galaxy, are associated with the accretion of ambient plasma by a central concentration of mass. Using a 3D hydrodynamical code, we have been simulating this process in order to realistically model the gaseous flows in the center of our Galaxy. In the most recent simulation, we have taken into account the multi-point-like distribution of stellar wind sources, as well as the magnetic heating and radiative cooling of these stellar winds. As expected, we find that the structure of the flow is significantly different from that due to a uniform medium. We also investigate the possibility that Sgr A* is due to a distributed mass concentration instead of the canonical point mass of a black hole. We discuss the physical state of the accreting gas and how our results suggest that Sgr A* is unlikely to be associated with a ``dark cluster''.

  1. Tidal dynamics of the Terminos Lagoon, Mexico: observations and 3D numerical modelling

    Science.gov (United States)

    Contreras Ruiz Esparza, Adolfo; Douillet, Pascal; Zavala-Hidalgo, Jorge

    2014-09-01

    The tidal circulation patterns in the Terminos Lagoon were studied based on the analysis of 1 year of measurements and numerical simulations using a baroclinic 3D hydrodynamic model, the MARS3D. A gauging network was installed consisting of six self-recording pressure-temperature sensors, a tide gauge station and two current profilers, with pressure and temperature sensors moored in the main lagoon inlets. Model simulations were validated against current and sea level observations and were used to analyse the circulation patterns caused by the tidal forcing. The numerical model was forced with eight harmonic components, four diurnal ( K 1, O 1, P 1, Q 1) and four semi-diurnal ( M 2, S 2, N 2, K 2), extracted from the TPX0.7 database. The tidal patterns in the study area vary from mixed, mainly diurnal in the two main inlets of the lagoon, to diurnal in its interior. The tidal residual circulation inside the lagoon is dominated by a cyclonic gyre. The results indicate a net flux from the southwest Ciudad del Carmen inlet (CdC) towards the northeast Puerto Real inlet (PtR) along the southern side of the lagoon and the opposite in the northern side. The results indicate two areas of strong currents in the vicinity of the inlets and weak currents inside the lagoon. The area of strong currents in the vicinity of the CdC inlet is larger than that observed in the PtR inlet. Nevertheless, the current analysis indicates that the highest current speeds, which can reach a magnitude of 1.9 m s-1, occurred in PtR. A further analysis of the tide distortion in the inlets revealed that both passages are ebb dominated.

  2. Modeling tidal dynamics in a mangrove creek catchment in Delft3D

    NARCIS (Netherlands)

    Horstman, E.M.; Dohmen-Janssen, C.M.; Hulscher, S.J.M.H.; Bonneton, P.; Garlan, T.

    2013-01-01

    Modeling tidal dynamics in mangroves is of great use in studying the effects of changes in e.g. vegetation cover or tidal forcing. Process based models, taking into account vegetation drag and turbulence, have not yet been applied to study tidal dynamics in mangrove forests. We compare three differe

  3. Fast, broadband, and high-dynamic range 3-D field strength probe

    NARCIS (Netherlands)

    Leferink, Frank

    2013-01-01

    Electromagnetic fields are conventionally measured using diode detectors or thermocouple detectors. The diode is limited in dynamic range. The dynamic range is important when considering modern pulsed wireless systems with a high peak-average ratio or crest factor. The thermocouple is too slow to me

  4. Thunderstorms in my computer : The effect of visual dynamics and sound in a 3D environment

    NARCIS (Netherlands)

    Houtkamp, J.; Schuurink, E.L.; Toet, A.

    2008-01-01

    We assessed the effects of the addition of dynamic visual elements and sounds to a levee patroller training game on the appraisal of the environment and weather conditions, the engagement of the users and their performance. Results show that the combination of visual dynamics and sounds best conveys

  5. Efficient Numerical Modeling of 3D, Half-Space, Slow-Slip and Quasi-Dynamic Earthquake Ruptures

    Science.gov (United States)

    Bradley, A. M.; Segall, P.

    2011-12-01

    Motivated by the hypothesis that dilatancy plays a critical role in faulting in subduction zones, we are developing FDRA2 (Fault Dynamics with the Radiation-damping Approximation), a software package to simulate three-dimensional quasi-dynamic faulting that includes rate-state friction, thermal pressurization, and dilatancy (following Segall and Rice [1995]) in a finite-width shear zone. This work builds on the two-dimensional simulations performed by FDRA1 (Bradley and Segall [AGU 2010], Segall and Bradley [submitted]). These simulations show that at lower background effective normal stress (\\bar σ), slow slip events occur spontaneously, whereas at higher \\bar σ , slip is inertially limited. At intermediate \\bar σ , dynamic events are followed by quiescent periods and then long durations of repeating slow slip events. Models with depth-dependent properties produce sequences similar to those observed in Cascadia. Like FDRA1, FDRA2 solves partial differential equations in pressure and temperature on profiles normal to the fault. The diffusion equations are discretized in space using finite differences on a nonuniform mesh having greater density near the fault. The full system of equations is a semiexplicit index-1 differential algebraic equation (DAE) in slip, slip rate, state, fault zone porosity, pressure, and temperature. We integrate state, porosity, and slip explicitly; solve the momentum balance equation on the fault for slip rate; and integrate pressure and temperature implicitly. Adaptive time steps are limited by accuracy and the stability criterion governing explicit integration of hyperbolic, but not the more stringent one governing parabolic, PDE. To compute elasticity in a 3D half-space, FDRA2 compresses the large, dense matrix arising from the boundary element method using an H-matrix. The work to perform a matrix-vector product scales almost linearly, rather than quadratically, in the number of fault cells. A new technique to relate the error

  6. Scaffolds for 3D in vitro culture of neural lineage cells.

    Science.gov (United States)

    Murphy, Ashley R; Laslett, Andrew; O'Brien, Carmel M; Cameron, Neil R

    2017-03-01

    Understanding how neurodegenerative disorders develop is not only a key challenge for researchers but also for the wider society, given the rapidly aging populations in developed countries. Advances in this field require new tools with which to recreate neural tissue in vitro and produce realistic disease models. This in turn requires robust and reliable systems for performing 3D in vitro culture of neural lineage cells. This review provides a state of the art update on three-dimensional culture systems for in vitro development of neural tissue, employing a wide range of scaffold types including hydrogels, solid porous polymers, fibrous materials and decellularised tissues as well as microfluidic devices and lab-on-a-chip systems. To provide some context with in vivo development of the central nervous system (CNS), we also provide a brief overview of the neural stem cell niche, neural development and neural differentiation in vitro. We conclude with a discussion of future directions for this exciting and important field of biomaterials research.

  7. Heritable Genetic Changes in Cells Recovered From Irradiated 3D Tissue Contracts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cornforth, Michael N. [The University of Texas Medical Branch at Galveston, TX (United States)

    2013-05-03

    Combining contemporary cytogenetic methods with DNA CGH microarray technology and chromosome flow-sorting increases substantially the ability to resolve exchange breakpoints associated with interstitial deletions and translocations, allowing the consequences of radiation damage to be directly measured at low doses, while also providing valuable insights into molecular mechanisms of misrepair processes that, in turn, identify appropriate biophysical models of risk at low doses. The aims of this work apply to cells recovered from 3D tissue constructs of human skin and, for the purpose of comparison, the same cells irradiated in traditional 2D cultures. These aims are: to analyze by multi-flour fluorescence in situ hybridization (mFISH) the chromosomes in clonal descendents of individual human fibroblasts that were previously irradiated; to examine irradiated clones from Aim 1 for submicroscopic deletions by subjecting their DNA to comparative genomic hybridization (CGH) microarray analysis; and to flow-sort aberrant chromosomes from clones containing stable radiation-induced translocations and map the breakpoints to within an average resolution of 100 kb using the technique of 'array painting'.

  8. The Interactorium: visualising proteins, complexes and interaction networks in a virtual 3-D cell.

    Science.gov (United States)

    Widjaja, Yose Y; Pang, Chi Nam Ignatius; Li, Simone S; Wilkins, Marc R; Lambert, Tim D

    2009-12-01

    Here, we describe the Interactorium, a tool in which a Virtual Cell is used as the context for the seamless visualisation of the yeast protein interaction network, protein complexes and protein 3-D structures. The tool has been designed to display very complex networks of up to 40 000 proteins or 6000 multiprotein complexes and has a series of toolboxes and menus to allow real-time data manipulation and control the manner in which data are displayed. It incorporates new algorithms that reduce the complexity of the visualisation by the generation of putative new complexes from existing data and by the reduction of edges through the use of protein "twins" when they occur in multiple locations. Since the Interactorium permits multi-level viewing of the molecular biology of the cell, it is a considerable advance over existing approaches. We illustrate its use for Saccharomyces cerevisiae but note that it will also be useful for the analysis of data from simpler prokaryotes and higher eukaryotes, including humans. The Interactorium is available for download at http://www.interactorium.net.

  9. Using the UM dynamical cores to reproduce idealised 3D flows

    CERN Document Server

    Mayne, N J; Acreman, David M; Smith, Chris; Wood, Nigel; Amundsen, David Skålid; Thuburn, John; Jackson, David R

    2013-01-01

    We demonstrate that both the current (New Dynamics), and next generation (ENDGame) dynamical cores of the UK Met Office global circulation model, the UM, reproduce consistently, the long-term, large-scale flows found in several published idealised tests. The cases presented are the Held-Suarez test, a simplified model of Earth (including a stratosphere), and a hypothetical tidally locked Earth. Furthermore, we show that using simplifications to the dynamical equations, which are expected to be justified for the physical domains and flow regimes we have studied, and which are supported by the ENDGame dynamical core, also produces matching long-term, large-scale flows. Finally, we present evidence for differences in the detail of the planetary flows and circulations resulting from improvements in the ENDGame formulation over New Dynamics.

  10. Simulation and Analysis of Dynamic Characteristics of3D Assembly Circuit Module with Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    黄春跃; 周德俭; 黄红艳

    2004-01-01

    Based on the modal analysis theory and by using the dynamics finite element analysis model of a three-dimensional assembly circuit module, dynamic characteristics of circuit module have been studied, including both natural characteristics analysis and dynamic responses analysis. Using a subspace method, modal analysis is first carried out. The first 6 orders of natural frequencies and vibration modes are obtained. Influence of the number of the Z-shaped metal slices on dynamic characteristics of the entire structure is also studied.Harmonic response analysis is then conducted. The steady-state response when the circuit module is subjected to harmonic excitation is determined. A curve of the response values against frequencies is obtained. As a result, the optimal number of Z-shaped metal slices can be determined, and it can be assured that the three-dimensional assembly circuit module has good performance in terms of the dynamic characteristics.

  11. The performance of 3-D graphite doped anodes in microbial electrolysis cells

    Science.gov (United States)

    Yasri, Nael G.; Nakhla, George

    2017-02-01

    This study investigated the use of granular activated carbon (GAC) as high surface area 3-dimensional (3-D) anode in MECs systems. The interfacial anodes' charge transfer resistance of the doped GAC did not impact the overall performance of MECs. Based on our finding, the 3-D anode packed with GAC-doped with nonconductive calcium sulfide (CaS) outperformed the more conductive iron (II) sulfide (FeS), magnetite (Fe3O4), or GAC without doping. The results showed higher current densities for 3-D CaS (40.1 A/m3), as compared with 3-D FeS (34.4 A/m3), 3-D Fe3O4 (29.8 A/m3), and 3-D GAC (23.1 A/m3). The higher current density in the 3-D CaS translated to higher coulombic efficiency (96.7%), hydrogen yield (3.6 mol H2/mol acetate), and attached biomass per anode mass (54.01 mg COD biomass/g GAC). Although the 3-D MEC achieved similar hydrogen yield, hydrogen recovery efficiency, and COD removal rate to a conventional sandwich type MEC, the current density, coulombic efficiency, and overall energy efficiency were higher.

  12. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells.

    Science.gov (United States)

    Liu, Yuhang; Mu, Cheng; Jiang, Kui; Zhao, Jingbo; Li, Yunke; Zhang, Lu; Li, Zhengke; Lai, Joshua Yuk Lin; Hu, Huawei; Ma, Tingxuan; Hu, Rongrong; Yu, Demei; Huang, Xuhui; Tang, Ben Zhong; Yan, He

    2015-02-01

    A tetraphenylethylene core-based small molecular acceptor with a unique 3D molecular structure is developed. Bulk-heterojunction blend films with a small feature size (≈20 nm) are obtained, which lead to non-fullerene organic solar cells (OSCs) with 5.5% power conversion efficiency. The work provides a new molecular design approach to efficient non-fullerene OSCs based on 3D-structured small-molecule acceptors.

  13. Geocadabra Construction Box: A dynamic geometry interface within a 3D visualization teaching-learning trajectory for elementary learners

    Directory of Open Access Journals (Sweden)

    Jacqueline Sack

    2013-07-01

    Full Text Available This study focuses on the integration of a 3-D dynamic geometry interface to enhance the 3-D visualization capacity of 8-9-year-old children who attend an after-school program. Each year, all third grade children, who attend a dual-language urban elementary school, are invited to participate, typically beginning with 20-25 participants. The program runs for one hour per week for the duration of the academic year. The research team (a university researcher and one or more classroom teachers uses design research principles (Cobb, et al., 2003 to develop and refine teaching-learning trajectories for the program. They use socially mediated instructional strategies, constantly challenging learners to find multiple solutions and explanations to a wide variety ofspatial problems. Learners work with figures made from wooden cubes, 2-D pictures that resemble these figures, and with iconic representations (such as top-view numeric or top, side and front plane views that do not directly resemble the figures. Through the integration of Geocadabra (Lecluse, 2005, the 3-D dynamic digital interface, learners move easily among the different representations and then can mentally abstract properties of these figures. They were able to visualize and accurately enumerate cubes of a complex 2-D conventional picture, but were also able to determine multiple solutions for given sets of front, side and top view diagrams, which do not always correlate with only one 3-D solution. With the current curricular focus on predominantly symbolic numeration, systematic integration of visualization, even as a representation tool for number work, into the elementary curriculum is problematic.

  14. Integrating Dynamic Data and Sensors with Semantic 3D City Models in the Context of Smart Cities

    Science.gov (United States)

    Chaturvedi, K.; Kolbe, T. H.

    2016-10-01

    Smart cities provide effective integration of human, physical and digital systems operating in the built environment. The advancements in city and landscape models, sensor web technologies, and simulation methods play a significant role in city analyses and improving quality of life of citizens and governance of cities. Semantic 3D city models can provide substantial benefits and can become a central information backbone for smart city infrastructures. However, current generation semantic 3D city models are static in nature and do not support dynamic properties and sensor observations. In this paper, we propose a new concept called Dynamizer allowing to represent highly dynamic data and providing a method for injecting dynamic variations of city object properties into the static representation. The approach also provides direct capability to model complex patterns based on statistics and general rules and also, real-time sensor observations. The concept is implemented as an Application Domain Extension for the CityGML standard. However, it could also be applied to other GML-based application schemas including the European INSPIRE data themes and national standards for topography and cadasters like the British Ordnance Survey Mastermap or the German cadaster standard ALKIS.

  15. DYNAMICAL ANALYSIS OF A 3-D CHAOTIC SYSTEM WITH ONLY TWO QUADRATIC NONLINEARITIES

    Institute of Scientific and Technical Information of China (English)

    Zeraoulia ELHADJ

    2008-01-01

    The paper reports the dynamical study of a three-dimensional quadratic autonomous chaotic system with only two quadratic nonlinearities, which is a special case of the so-called conjugate Lü system. Basic properties of this system are analyzed by means of Lyapunov exponent spectrum and bifurcation diagram. The analysis shows that the system has complex dynamics with some interesting characteristics in which there are several periodic regions, but each of them has quite different periodic orbits.

  16. Trehalose effectiveness as a cryoprotectant in 2D and 3D cell cultures of human embryonic kidney cells.

    Science.gov (United States)

    Hara, Jared; Tottori, Jordan; Anders, Megan; Dadhwal, Smritee; Asuri, Prashanth; Mobed-Miremadi, Maryam

    2017-05-01

    Post cryopreservation viability of human embryonic kidney (HEK) cells under two-dimensional (2D) and three-dimensional (3D) culture conditions was studied using trehalose as the sole cryoprotective agent. An L9 (3(4)) Taguchi design was used to optimize the cryoprotection cocktail seeding process prior to slow-freezing with the specific aim of maximizing cell viability measured 7 days post thaw, using the combinatorial cell viability and in-vitro cytotoxicity WST assay. At low (200 mM) and medium (800 mM) levels of trehalose concentration, encapsulation in alginate offered a greater protection to cryopreservation. However, at the highest trehalose concentration (1200 mM) and in the absence of the pre-incubation step, there was no statistical difference at the 95% CI (p = 0.0212) between the viability of the HEK cells under 2D and 3D culture conditions estimated to be 17.9 ± 4.6% and 14.0 ± 3.6%, respectively. A parallel comparison between cryoprotective agents conducted at the optimal levels of the L9 study, using trehalose, dimethylsulfoxide and glycerol in alginate microcapsules yielded a viability of 36.0 ± 7.4% for trehalose, in average 75% higher than the results associated with the other two cell membrane-permeating compounds. In summary, the effectiveness of trehalose has been demonstrated by the fact that 3D cell cultures can readily be equilibrated with trehalose before cryopreservation, thus mitigating the cytotoxic effects of glycerol and dimethylsulfoxide.

  17. Dynamical system of scalar field from 2-dimension to 3-D and its cosmological implications

    Science.gov (United States)

    Fang, Wei; Tu, Hong; Huang, Jiasheng; Shu, Chenggang

    2016-09-01

    We give the three-dimensional dynamical autonomous systems for most of the popular scalar field dark energy models including (phantom) quintessence, (phantom) tachyon, K-essence, and general non-canonical scalar field models, change the dynamical variables from variables (x, y, λ ) to observable related variables (w_{φ }, Ω _{φ }, λ ), and show the intimate relationships between those scalar fields that the three-dimensional system of K-essence can reduce to (phantom) tachyon, general non-canonical scalar field can reduce to (phantom) quintessence and K-essence can also reduce to (phantom) quintessence for some special cases. For the applications of the three-dimensional dynamical systems, we investigate several special cases and give the exactly dynamical solutions in detail. In the end of this paper, we argue that it is more convenient and also has more physical meaning to express the differential equations of dynamical systems in (w_{φ }, Ω _{φ }, λ ) instead of variables (x, y, λ ) and to investigate the dynamical system in three dimensions instead of two dimensions. We also raise a question about the possibility of the chaotic behavior in the spatially flat single scalar field FRW cosmological models in the presence of ordinary matter.

  18. Dynamical system of scalar field from 2-dimension to 3-D and its cosmological implications

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Wei [Shanghai Normal University, Department of Physics, Shanghai (China); The Shanghai Key Lab for Astrophysics, Shanghai (China); Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Tu, Hong [Shanghai Normal University, Department of Physics, Shanghai (China); The Shanghai Key Lab for Astrophysics, Shanghai (China); Huang, Jiasheng [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Shu, Chenggang [The Shanghai Key Lab for Astrophysics, Shanghai (China)

    2016-09-15

    We give the three-dimensional dynamical autonomous systems for most of the popular scalar field dark energy models including (phantom) quintessence, (phantom) tachyon, K-essence, and general non-canonical scalar field models, change the dynamical variables from variables (x, y, λ) to observable related variables (w{sub φ}, Ω{sub φ}, λ), and show the intimate relationships between those scalar fields that the three-dimensional system of K-essence can reduce to (phantom) tachyon, general non-canonical scalar field can reduce to (phantom) quintessence and K-essence can also reduce to (phantom) quintessence for some special cases. For the applications of the three-dimensional dynamical systems, we investigate several special cases and give the exactly dynamical solutions in detail. In the end of this paper, we argue that it is more convenient and also has more physical meaning to express the differential equations of dynamical systems in (w{sub φ}, Ω{sub φ}, λ) instead of variables (x, y, λ) and to investigate the dynamical system in three dimensions instead of two dimensions. We also raise a question about the possibility of the chaotic behavior in the spatially flat single scalar field FRW cosmological models in the presence of ordinary matter. (orig.)

  19. Local and cluster critical dynamics of the 3d random-site Ising model

    Science.gov (United States)

    Ivaneyko, D.; Ilnytskyi, J.; Berche, B.; Holovatch, Yu.

    2006-10-01

    We present the results of Monte Carlo simulations for the critical dynamics of the three-dimensional site-diluted quenched Ising model. Three different dynamics are considered, these correspond to the local update Metropolis scheme as well as to the Swendsen-Wang and Wolff cluster algorithms. The lattice sizes of L=10-96 are analysed by a finite-size-scaling technique. The site dilution concentration p=0.85 was chosen to minimize the correction-to-scaling effects. We calculate numerical values of the dynamical critical exponents for the integrated and exponential autocorrelation times for energy and magnetization. As expected, cluster algorithms are characterized by lower values of dynamical critical exponent than the local one: also in the case of dilution critical slowing down is more pronounced for the Metropolis algorithm. However, the striking feature of our estimates is that they suggest that dilution leads to decrease of the dynamical critical exponent for the cluster algorithms. This phenomenon is quite opposite to the local dynamics, where dilution enhances critical slowing down.

  20. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix.

    Science.gov (United States)

    Ma, Yufei; Ji, Yuan; Huang, Guoyou; Ling, Kai; Zhang, Xiaohui; Xu, Feng

    2015-12-22

    Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue.

  1. Simplified 3D model of a PWR reactor vessel using fluid dynamics code ANSYS CFX computational; Modelo simplificado 3D de la vasija de un reactor PWR mediante el codigo de dinamica de fluidos computacional ANSYS CFX

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.; Miro, R.; Barrachina, T.; Verdu, G.

    2011-07-01

    This paper presents the results from the calculation of the steady state simulation with model of CFD (computational fluid dynamic) operating under conditions of operation at full power (Hot Full Power). Development and the CFD model results show the usefulness of these codes for calculating 3D of the variable thermohydraulics of these reactors.

  2. 3D Dynamical Modeling of Wind Accretion in Cyg X-3

    CERN Document Server

    Okazaki, Atsuo T

    2014-01-01

    Cyg X-3 is a high mass X-ray binary consisting of a Wolf-Rayet star and a compact object in a very short orbital period of 4.8h. The only confirmed microquasar with high energy gamma-ray emission, Cyg X-3 provides a unique opportunity to study the relationship between the accretion power and the power in high energy emission. Because of a compact orbit and a slow Wolf-Rayet wind, the flow structure around the compact object is thought to be strongly affected by the orbital motion, details of which can be obtained only by numerical simulations. In this paper, we report on the results from 3D hydrodynamic simulations of the wind accretion in Cyg X-3. For simplicity we adopt an anti-gravity-like force that emulates the radiative acceleration consistent with the beta-velocity wind. Due to the rapid orbital motion, the flow around the compact object has large density gradients. As a result, the accretion rate onto the compact object is significantly lower than that of the Bondi-Hoyle-Lyttleton rate. We also calcul...

  3. Intersegmental dynamics of 3D upper arm and forearm longitudinal axis rotations during baseball pitching.

    Science.gov (United States)

    Naito, Kozo; Takagi, Hiroyasu; Yamada, Norimasa; Hashimoto, Shinichi; Maruyama, Takeo

    2014-12-01

    The shoulder internal rotation (IR) and forearm pronation (PR) are important elements for baseball pitching, however, how rapid rotations of IR and PR are produced by muscular torques and inter-segmental forces is not clear. The aim of this study is to clarify how IR and PR angular velocities are maximized, depending on muscular torque and interactive torque effects, and gain a detailed knowledge about inter-segmental interaction within a multi-joint linked chain. The throwing movements of eight collegiate baseball pitchers were recorded by a motion capture system, and induced-acceleration analysis was used to assess the respective contributions of the muscular (MUS) and interactive torques associated with gyroscopic moment (GYR), and Coriolis (COR) and centrifugal forces (CEN) to maximum angular velocities of IR (MIRV) and PR (MPRV). The results showed that the contribution of MUS account for 98.0% of MIRV, while that contribution to MPRV was indicated as negative (-48.1%). It was shown that MPRV depends primarily on the interactive torques associated with GYR and CEN, but the effects of GYR, COR and CEN on MIRV are negligible. In conclusion, rapid PR motion during pitching is created by passive-effect, and is likely a natural movement which arises from 3D throwing movement. Applying the current analysis to IR and PR motions is helpful in providing the implications for improving performance and considering conditioning methods for pitchers.

  4. Dynamic 3-D chemical agent cloud mapping using a sensor constellation deployed on mobile platforms

    Science.gov (United States)

    Cosofret, Bogdan R.; Konno, Daisei; Rossi, David; Marinelli, William J.; Seem, Pete

    2014-05-01

    The need for standoff detection technology to provide early Chem-Bio (CB) threat warning is well documented. Much of the information obtained by a single passive sensor is limited to bearing and angular extent of the threat cloud. In order to obtain absolute geo-location, range to threat, 3-D extent and detailed composition of the chemical threat, fusion of information from multiple passive sensors is needed. A capability that provides on-the-move chemical cloud characterization is key to the development of real-time Battlespace Awareness. We have developed, implemented and tested algorithms and hardware to perform the fusion of information obtained from two mobile LWIR passive hyperspectral sensors. The implementation of the capability is driven by current Nuclear, Biological and Chemical Reconnaissance Vehicle operational tactics and represents a mission focused alternative of the already demonstrated 5-sensor static Range Test Validation System (RTVS).1 The new capability consists of hardware for sensor pointing and attitude information which is made available for streaming and aggregation as part of the data fusion process for threat characterization. Cloud information is generated using 2-sensor data ingested into a suite of triangulation and tomographic reconstruction algorithms. The approaches are amenable to using a limited number of viewing projections and unfavorable sensor geometries resulting from mobile operation. In this paper we describe the system architecture and present an analysis of results obtained during the initial testing of the system at Dugway Proving Ground during BioWeek 2013.

  5. Introducing zeus-mp: a 3d, parallel, multiphysics code for astrophysical fluid dynamics

    Directory of Open Access Journals (Sweden)

    Michael L. Norman

    2000-01-01

    Full Text Available Describimos ZEUS-MP: un c odigo Multi-F sica, Masivamente-Paralelo, Pasa-Mensajes para simulaciones tridimensionales de din amica de uidos astrof sicos. ZEUS-MP es la continuaci on de los c odigos ZEUS-2D y ZEUS-3D, desarrollados y diseminados por el Laboratorio de Astrof sica Computacional (lca.ncsa.uiuc.edu del NCSA. La versi on V1.0, liberada el 1/1/2000, contiene los siguientes m odulos: hidrodin amica ideal, MHD ideal y auto-gravedad. Las pr oximas versiones tendr an difusi on radiativa de ujo limitado, conducci on de calor, plasma de dos temperaturas y funciones de enfriamiento y calentamiento. Las ecuaciones covariantes est an avanzadas en una malla Euleriana m ovil en coordenadas Cartesianas, cil ndricas y polares esf ericas. La paralelizaci on es hecha por descomposici on del dominio y est a implementada en F77 y MPI. El c odigo es portable en un amplio rango de plataformas, desde redes de estaciones de trabajo hasta procesadores de paralelismo masivo. Se presentan algunos resultados de la e ciencia en paralelo junto con una aplicaci on a formaci on estelar turbulenta.

  6. Dynamics near the subcritical transition of the 3D Couette flow I: Below threshold case

    CERN Document Server

    Bedrossian, Jacob; Masmoudi, Nader

    2015-01-01

    We study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number $\\textbf{Re}$. We prove that for sufficiently regular initial data of size $\\epsilon \\leq c_0\\textbf{Re}^{-1}$ for some universal $c_0 > 0$, the solution is global, remains within $O(c_0)$ of the Couette flow in $L^2$, and returns to the Couette flow as $t \\rightarrow \\infty$. For times $t \\gtrsim \\textbf{Re}^{1/3}$, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of "2.5 dimensional" streamwise-independent solutions referred to as streaks. Our analysis contains perturbations that experience a transient growth of kinetic energy from $O(\\textbf{Re}^{-1})$ to $O(c_0)$ due to the algebraic linear instability known as the lift-up effect. Furthermore, solutions can exhibit a direct cascade of energy to small scales. The behavior is very different from the 2D Couette flow, in which stability is independ...

  7. The 1999 Izmit, Turkey, earthquake: A 3D dynamic stress transfer model of intraearthquake triggering

    Science.gov (United States)

    Harris, R.A.; Dolan, J.F.; Hartleb, R.; Day, S.M.

    2002-01-01

    Before the August 1999 Izmit (Kocaeli), Turkey, earthquake, theoretical studies of earthquake ruptures and geological observations had provided estimates of how far an earthquake might jump to get to a neighboring fault. Both numerical simulations and geological observations suggested that 5 km might be the upper limit if there were no transfer faults. The Izmit earthquake appears to have followed these expectations. It did not jump across any step-over wider than 5 km and was instead stopped by a narrower step-over at its eastern end and possibly by a stress shadow caused by a historic large earthquake at its western end. Our 3D spontaneous rupture simulations of the 1999 Izmit earthquake provide two new insights: (1) the west- to east-striking fault segments of this part of the North Anatolian fault are oriented so as to be low-stress faults and (2) the easternmost segment involved in the August 1999 rupture may be dipping. An interesting feature of the Izmit earthquake is that a 5-km-long gap in surface rupture and an adjacent 25° restraining bend in the fault zone did not stop the earthquake. The latter observation is a warning that significant fault bends in strike-slip faults may not arrest future earthquakes.

  8. A Bio-Acoustic Levitational (BAL) Assembly Method for Engineering of Multilayered, 3D Brain-Like Constructs, Using Human Embryonic Stem Cell Derived Neuro-Progenitors.

    Science.gov (United States)

    Bouyer, Charlène; Chen, Pu; Güven, Sinan; Demirtaş, Tuğrul Tolga; Nieland, Thomas J F; Padilla, Frédéric; Demirci, Utkan

    2016-01-06

    A bio-acoustic levitational assembly method for engineering of multilayered, 3D brainlike constructs is presented. Acoustic radiation forces are used to levitate neuroprogenitors derived from human embryonic stem cells in 3D multilayered fibrin tissue constructs. The neuro-progenitor cells are subsequently differentiated in neural cells, resulting in a 3D neuronal construct with inter and intralayer neurite elongations.

  9. Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture.

    Science.gov (United States)

    Moreno, Edinson Lucumi; Hachi, Siham; Hemmer, Kathrin; Trietsch, Sebastiaan J; Baumuratov, Aidos S; Hankemeier, Thomas; Vulto, Paul; Schwamborn, Jens C; Fleming, Ronan M T

    2015-06-07

    A hallmark of Parkinson's disease is the progressive loss of nigrostriatal dopaminergic neurons. We derived human neuroepithelial cells from induced pluripotent stem cells and successfully differentiated them into dopaminergic neurons within phase-guided, three-dimensional microfluidic cell culture bioreactors. After 30 days of differentiation within the microfluidic bioreactors, in situ morphological, immunocytochemical and calcium imaging confirmed the presence of dopaminergic neurons that were spontaneously electrophysiologically active, a characteristic feature of nigrostriatal dopaminergic neurons in vivo. Differentiation was as efficient as in macroscopic culture, with up to 19% of differentiated neurons immunoreactive for tyrosine hydroxylase, the penultimate enzyme in the synthesis of dopamine. This new microfluidic cell culture model integrates the latest innovations in developmental biology and microfluidic cell culture to generate a biologically realistic and economically efficient route to personalised drug discovery for Parkinson's disease.

  10. Dynamics of 3D Timoshenko gyroelastic beams with large attitude changes for the gyros

    Science.gov (United States)

    Hassanpour, Soroosh; Heppler, G. R.

    2016-01-01

    This work is concerned with the theoretical development of dynamic equations for undamped gyroelastic beams which are dynamic systems with continuous inertia, elasticity, and gyricity. Assuming unrestricted or large attitude changes for the axes of the gyros and utilizing generalized Hooke's law, Duleau torsion theory, and Timoshenko bending theory, the energy expressions and equations of motion for the gyroelastic beams in three-dimensional space are derived. The so-obtained comprehensive gyroelastic beam model is compared against earlier gyroelastic beam models developed using Euler-Bernoulli beam models and is used to study the dynamics of gyroelastic beams through numerical examples. It is shown that there are significant differences between the developed unrestricted Timoshenko gyroelastic beam model and the previously derived zero-order restricted Euler-Bernoulli gyroelastic beam models. These differences are more pronounced in the short beam and transverse gyricity cases.

  11. Response of microscale cell/matrix constructs to successive force application in a 3D environment

    Science.gov (United States)

    Liu, Alan; Chen, Christopher; Reich, Daniel

    2014-03-01

    Mechanical dilation of arteries by pulsatile blood flow is directly opposed by coordinated contraction of a band of smooth muscle tissue that envelops the vessels. This mechanical adaptation of smooth muscle cells to external loading is a critical feature of normal blood vessel function. While most previous studies on biomechanical systems have focused on single cells or large excised tissue, we utilize a device to apply forces to engineered smooth muscle microtissues. This device consists of arrayed pairs of elastomeric micro-cantilevers capable of magnetic actuation. Tissues are formed through self-assembly following the introduction of cell-infused collagen gel to the array. With this system, we are able to dynamically stretch and relax these sub-millimeter sized tissues. The timing and magnitude of the force application can be precisely controlled and thus can be used to mimic a wide range of physiological behavior. In particular, we will discuss results that show that the interval between successive force applications mediates the both the subsequent mechanical and active dynamics of the cell/matrix composite system. Understanding this process will lead to better understanding of the interplay between cell and extracellular matrix responses to mechanical stimulus at a novel length scale.

  12. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    Energy Technology Data Exchange (ETDEWEB)

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I. [VNIIEF (Russian Federation)] [and others

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.

  13. Constraining the Absolute Orientation of Eta Carinae's Binary Orbit: A 3-D Dynamical Model for the Broad [Fe III] Emission

    CERN Document Server

    Madura, Thomas I; Owocki, Stanley P; Groh, Jose H; Okazaki, Atsuo T; Russell, Christopher M P

    2011-01-01

    We present a three-dimensional (3-D) dynamical model for the broad [Fe III] emission observed in Eta Carinae using the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). This model is based on full 3-D Smoothed Particle Hydrodynamics (SPH) simulations of Eta Car's binary colliding winds. Radiative transfer codes are used to generate synthetic spectro-images of [Fe III] emission line structures at various observed orbital phases and STIS slit position angles (PAs). Through a parameter study that varies the orbital inclination i, the PA {\\theta} that the orbital plane projection of the line-of-sight makes with the apastron side of the semi-major axis, and the PA on the sky of the orbital axis, we are able, for the first time, to tightly constrain the absolute 3-D orientation of the binary orbit. To simultaneously reproduce the blue-shifted emission arcs observed at orbital phase 0.976, STIS slit PA = +38 degrees, and the temporal variations in emission seen at negative slit PAs, the binary ...

  14. Dynamic tracking of a deformable tissue based on 3D-2D MR-US image registration

    Science.gov (United States)

    Marami, Bahram; Sirouspour, Shahin; Fenster, Aaron; Capson, David W.

    2014-03-01

    Real-time registration of pre-operative magnetic resonance (MR) or computed tomography (CT) images with intra-operative Ultrasound (US) images can be a valuable tool in image-guided therapies and interventions. This paper presents an automatic method for dynamically tracking the deformation of a soft tissue based on registering pre-operative three-dimensional (3D) MR images to intra-operative two-dimensional (2D) US images. The registration algorithm is based on concepts in state estimation where a dynamic finite element (FE)- based linear elastic deformation model correlates the imaging data in the spatial and temporal domains. A Kalman-like filtering process estimates the unknown deformation states of the soft tissue using the deformation model and a measure of error between the predicted and the observed intra-operative imaging data. The error is computed based on an intensity-based distance metric, namely, modality independent neighborhood descriptor (MIND), and no segmentation or feature extraction from images is required. The performance of the proposed method is evaluated by dynamically deforming 3D pre-operative MR images of a breast phantom tissue based on real-time 2D images obtained from an US probe. Experimental results on different registration scenarios showed that deformation tracking converges in a few iterations. The average target registration error on the plane of 2D US images for manually selected fiducial points was between 0.3 and 1.5 mm depending on the size of deformation.

  15. NPSNET: Real-Time 3D Ground-Based Vehicle Dynamics

    Science.gov (United States)

    1992-03-01

    Meriam et.al., 86]1. Motion is produced by a simplified simulation of dynamics, that describes the linear and angular accelerations of a rigid body in...from the definition of the mass center as covered in statics, is given by 6 mr = Emir, (Eq. 2.1) where the total mass M = Emi [ Meriam et. al., 86]. At...Jurewicz, T., "A Real Time Autonomous Underwater Vehicle Dynamic Simulator," M.S. Thesis, Naval Postgraduate School, Monterey, CA., June 1989 [ Meriam et. al

  16. Mesenchymal stem cells enhance ovarian cancer cell infiltration through IL6 secretion in an amniochorionic membrane based 3D model

    Directory of Open Access Journals (Sweden)

    Touboul Cyril

    2013-01-01

    Full Text Available Abstract Background The early peritoneal invasion of epithelial ovarian cancer (EOC by tumoral aggregates presents in ascites is a major concern. The role of the microenvironment seems to be important in this process but the lack of adequate models to study cellular interactions between cancer cells and stromal cells does not allow to uncover the molecular pathways involved. Our goal was to study the interactions between ovarian cancer cells (OCC and mesenchymal stem cells (MSC using a 3D model. Methods We used millimetric pieces of amniochorionic membrane - referred to as amniotic membrane scaffold (AMS - to create 3D peritoneal nodules mimicking EOC early invasion. We were able to measure the distribution and the depth of infiltration using confocal microsopy. We extracted MSC from the amniochorionic membrane using the markers CD34-, CD45-, CD73+, CD90+, CD105+ and CD29+ at the Fluorescence Activated Cell Sorting (FACS analysis. We used transwell and wound healing tests to test OCC migration and invasion in vitro. Results Here we show that OCC tumors were located in regions rich in MSC (70%. The tumors infiltrated deeper within AMS in regions rich in MSC (p Conclusions The use of tridimensional models using AMS could be a useful tool to decipher early molecular events in ovarian cancer metastasis. Cytokine inhibitors interrupting the cross-talk between OCCs and MSCs such as IL6 should be investigated as a new therapeutic approach in ovarian cancer.

  17. Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells.

    Science.gov (United States)

    Qiu, Hua-Jun; Guan, Yongxin; Luo, Pan; Wang, Yu

    2017-03-15

    Graphene shows great potential in biosensing and bioelectronics. To facilitate graphene's applications and enhance its performance, recently, three-dimensional (3D) graphene-based materials especially free-standing porous graphene with tunable pore size and void space, have attracted increasing attention for bio-related applications owing to their special features. 3D graphene usually shows the following merits such as an interconnected porous network, a high electronic conductivity, a large active surface area, good chemical/thermal stability and can be more easily handled compared with dispersed graphene sheets. With modified surface properties, graphene can also be bio-friendly. These properties make 3D graphene a perfect candidate as high-performance electrode materials in bioelectronics devices. In this review, we discuss recent advance in fabricating monolithic 3D graphene and their applications in biosensing and biofuel cells.

  18. Prospective use of the 3D printing technology for the microstructural engineering of Solid Oxide Fuel Cell components

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Rodriguez, E. M.; Acosta-Mora, P.; Mendez-Ramos, J.; Borges Chinea, E.; Esparza Ferrera, P.; Canales-Vazquez, J.; Nunez, P.; Ruiz-Morales, J.

    2014-07-01

    A cost-effective micro-manufacturing process to accurately build 3D microstructures for their prospective use in the fabrication of Solid Oxide Fuel Cells components has been tested. The 3D printing method, based on the stereo lithography, allows solidifying layer by layer a dispersion of ceramic material in a liquid photosensitive organic monomer. A simple projector, a computer-controlled z-stage and a few PowerPoint slides may be used for the fabrication of a wide range of complex 3D microstructures in few minutes. In this work, 3D ceramic microstructures based on the yttria-stabilized zirconia (YSZ) were successfully fabricated. The micro structured ceramic components produced were stable after sintering at 1400 degree centigrade for 4 h. Impedance measurements show that the fabrication process does not have any detrimental effect on the electrical properties of the structured material. (Author)

  19. 3D Case Studies of Monitoring Dynamic Structural Tests using Long Exposure Imagery

    Science.gov (United States)

    McCarthy, D. M. J.; Chandler, J. H.; Palmeri, A.

    2014-06-01

    Structural health monitoring uses non-destructive testing programmes to detect long-term degradation phenomena in civil engineering structures. Structural testing may also be carried out to assess a structure's integrity following a potentially damaging event. Such investigations are increasingly carried out with vibration techniques, in which the structural response to artificial or natural excitations is recorded and analysed from a number of monitoring locations. Photogrammetry is of particular interest here since a very high number of monitoring locations can be measured using just a few images. To achieve the necessary imaging frequency to capture the vibration, it has been necessary to reduce the image resolution at the cost of spatial measurement accuracy. Even specialist sensors are limited by a compromise between sensor resolution and imaging frequency. To alleviate this compromise, a different approach has been developed and is described in this paper. Instead of using high-speed imaging to capture the instantaneous position at each epoch, long-exposure images are instead used, in which the localised image of the object becomes blurred. The approach has been extended to create 3D displacement vectors for each target point via multiple camera locations, which allows the simultaneous detection of transverse and torsional mode shapes. The proposed approach is frequency invariant allowing monitoring of higher modal frequencies irrespective of a sampling frequency. Since there is no requirement for imaging frequency, a higher image resolution is possible for the most accurate spatial measurement. The results of a small scale laboratory test using off-the-shelf consumer cameras are demonstrated. A larger experiment also demonstrates the scalability of the approach.

  20. An impedance method for spatial sensing of 3D cell constructs – towards applications in tissue engineering

    DEFF Research Database (Denmark)

    Canali, Chiara; Mazzoni, Chiara; Larsen, Layla Bashir

    2015-01-01

    ) cells were encapsulated in gelatin to form artificial 3D cell constructs and detected when placed in different positions inside large gelatin scaffolds. Taken together, these results open new perspectives for impedance-based sensing technologies for non-invasive monitoring in tissue engineering...

  1. Development of dynamic 3-D surface profilometry using stroboscopic interferometric measurement and vertical scanning techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K-C [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chen, L-C [Graduate Institute of Automation Technology, National Taipei University of Technology, 1 Sec. 3 Chung-Hsiao East Rd, Taipei, 106, Taiwan (China); Lin, C-D [Department of Mechanical Engineering, National Taiwan University, 1, Sec. 4 Roosevelt Rd, Taipei, Taiwan (China); Chang, Calvin C [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Kuo, C-F [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China); Chou, J-T [Industrial Technology Research Institute, Centre for Measurement Standards, 321 Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan, 300 (China)

    2005-01-01

    The main objective of this technical advance is to provide a single optical interferometric framework and methodology to be capable of delivering both nano-scale static and dynamic surface profilometry. Microscopic interferometry is a powerful technique for static and dynamic characterization of micro (opto) electromechanical systems (M (O) EMS). In view of this need, a microscopic prototype based on white-light stroboscopic interferometry and the white light vertical scanning principle, was developed to achieve dynamic full-field profilometry and characterization of MEMS devices. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterization of dynamic behaviours of the device. The full-field second-mode vibration at a vibratory frequency of 68.60 kHz can be fully characterized and 3-5 nm of vertical measurement resolution as well as tens of micrometers of vertical measurement range can be easily achieved.

  2. Constraining the Absolute Orientation of eta Carinae's Binary Orbit: A 3-D Dynamical Model for the Broad [Fe III] Emission

    Science.gov (United States)

    Madura, T. I.; Gull, T. R.; Owocki, S. P.; Groh, J. H.; Okazaki, A. T.; Russell, C. M. P.

    2011-01-01

    We present a three-dimensional (3-D) dynamical model for the broad [Fe III] emission observed in Eta Carinae using the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). This model is based on full 3-D Smoothed Particle Hydrodynamics (SPH) simulations of Eta Car's binary colliding winds. Radiative transfer codes are used to generate synthetic spectro-images of [Fe III] emission line structures at various observed orbital phases and STIS slit position angles (PAs). Through a parameter study that varies the orbital inclination i, the PA(theta) that the orbital plane projection of the line-of-sight makes with the apastron side of the semi-major axis, and the PA on the sky of the orbital axis, we are able, for the first time, to tightly constrain the absolute 3-D orientation of the binary orbit. To simultaneously reproduce the blue-shifted emission arcs observed at orbital phase 0.976, STIS slit PA = +38deg, and the temporal variations in emission seen at negative slit PAs, the binary needs to have an i approx. = 130deg to 145deg, Theta approx. = -15deg to +30deg, and an orbital axis projected on the sky at a P A approx. = 302deg to 327deg east of north. This represents a system with an orbital axis that is closely aligned with the inferred polar axis of the Homunculus nebula, in 3-D. The companion star, Eta(sub B), thus orbits clockwise on the sky and is on the observer's side of the system at apastron. This orientation has important implications for theories for the formation of the Homunculus and helps lay the groundwork for orbital modeling to determine the stellar masses.

  3. 3D-SSF: A bio-inspired approach for dynamic multi-subject clustering of white matter tracts.

    Science.gov (United States)

    Chekir, A; Hassas, S; Descoteaux, M; Côté, M; Garyfallidis, E; Oulebsir-Boumghar, F

    2017-01-27

    There is growing interest in the study of white matter (WM) variation across subjects, and in particular the analysis of specific WM bundles, to better understand brain development and aging, as well as to improve early detection of some diseases. Several WM multi-subject clustering methods have been proposed to study WM bundles. These methods aim to overcome the complexity of the problem, which includes the huge size of the WM tractography datasets generated from multiple subjects, the existence of various streamlines with different positions, lengths and geometric forms, as well as the presence of outliers. However, the current methods are not sufficiently flexible to address all of these constraints. Here we introduce a novel dynamic multi-subject clustering framework based on a distributed multiagent implementation of the Multiple Species Flocking model, that we name 3D-Streamlines Stream Flocking (3D-SSF). Specifically, we consider streamlines from different subjects as data streams, and each streamline is assigned to a mobile agent. Agents work together following flocking rules in order to form a flock. Thanks to a similarity function, the agents that are associated with similar streamlines form a flock, whereas the agents that are associated with dissimilar streamlines are considered outliers. We use various experiments performed on noisy synthetic and real human brain data to validate 3D-SSF and demonstrate that it is more efficient and robust to outliers compared to other classical approaches. 3D-SSF is able to extract WM bundles at a population level, while considering WM variation across subjects and eliminating outlier streamlines.

  4. A novel 3D fibril force assay implicates src in tumor cell force generation in collagen networks.

    Directory of Open Access Journals (Sweden)

    Robert J Polackwich

    Full Text Available New insight into the biomechanics of cancer cell motility in 3D extracellular matrix (ECM environments would significantly enhance our understanding of aggressive cancers and help identify new targets for intervention. While several methods for measuring the forces involved in cell-matrix interactions have been developed, previous to this study none have been able to measure forces in a fibrillar environment. We have developed a novel assay for simultaneously measuring cell mechanotransduction and motility in 3D fibrillar environments. The assay consists of a controlled-density fibrillar collagen gel atop a controlled-stiffness polyacrylamide (PAA surface. Forces generated by living cells and their migration in the 3D collagen gel were measured with the 3D motion of tracer beads within the PAA layer. Here, this 3D fibril force assay is used to study the role of the invasion-associated protein kinase Src in mechanotransduction and motility. Src expression and activation are linked with proliferation, invasion, and metastasis, and have been shown to be required in 2D for invadopodia membranes to direct and mediate invasion. Breast cancer cell line MDA-MD-231 was stably transfected with GFP-tagged constitutively active Src or wild-type Src. In 3D fibrillar collagen matrices we found that, relative to wild-type Src, constitutively active Src: 1 increased the strength of cell-induced forces on the ECM, 2 did not significantly change migration speed, and 3 increased both the duration and the length, but not the number, of long membrane protrusions. Taken together, these results support the hypothesis that Src controls invasion by controlling the ability of the cell to form long lasting cellular protrusions to enable penetration through tissue barriers, in addition to its role in promoting invadopodia matrix-degrading activity.

  5. Ex vivo 2D and 3D HSV-2 infection model using human normal vaginal epithelial cells.

    Science.gov (United States)

    Zhu, Yaqi; Yang, Yan; Guo, Juanjuan; Dai, Ying; Ye, Lina; Qiu, Jianbin; Zeng, Zhihong; Wu, Xiaoting; Xing, Yanmei; Long, Xiang; Wu, Xufeng; Ye, Lin; Wang, Shubin; Li, Hui

    2017-01-27

    Herpes simplex virus type 2 (HSV-2) infects human genital mucosa and establishes life-long latent infection. It is unmet need to establish a human cell-based microphysiological system for virus biology and anti-viral drug discovery. One of barriers is lacking of culture system of normal epithelial cells in vitro over decades. In this study, we established human normal vaginal epithelial cell (HNVEC) culture using co-culture system. HNVEC cells were then propagated rapidly and stably in a defined culture condition. HNVEC cells exhibited a normal diploid karyotype and formed the well-defined and polarized spheres in matrigel three-dimension (3D) culture, while malignant cells (HeLa) formed disorganized and nonpolar solid spheres. HNVEC cells had a normal cellular response to DNA damage and had no transforming property using soft agar assays. HNVEC expressed epithelial marker cytokeratin 14 (CK14) and p63, but not cytokeratin 18 (CK18). Next, we reconstructed HNVEC-derived 3D vaginal epithelium using air-liquid interface (ALI) culture. This 3D vaginal epithelium has the basal and apical layers with expression of epithelial markers as its originated human vaginal tissue. Finally, we established an HSV-2 infection model based on the reconstructed 3D vaginal epithelium. After inoculation of HSV-2 (G strain) at apical layer of the reconstructed 3D vaginal epithelium, we observed obvious pathological effects gradually spreading from the apical layer to basal layer with expression of a viral protein. Thus, we established an ex vivo 2D and 3D HSV-2 infection model that can be used for HSV-2 virology and anti-viral drug discovery.

  6. 3D shoulder kinematics for static vs dynamic and passive vs active testing conditions.

    Science.gov (United States)

    Robert-Lachaine, Xavier; Allard, Paul; Godbout, Véronique; Begon, Mickael

    2015-09-18

    Shoulder motion analysis provides clinicians with references of normal joint rotations. Shoulder joints orientations assessment is often based on series of static positions, while clinicians perform either passive or active tests and exercises mostly in dynamic. These conditions of motion could modify joint coordination and lead to discrepancies with the established references. Hence, the objective was to evaluate the influence of static vs dynamic and passive vs active testing conditions on shoulder joints orientations. Twenty asymptomatic subjects setup with 45 markers on the upper limb and trunk were tracked by an optoelectronic system. Static positions (30°, 60°, 90° and 120° of thoracohumeral elevation) and dynamic motion both in active condition and passively mobilised by an examiner were executed. Three-dimensional sternoclavicular, acromioclavicular, scapulothoracic and glenohumeral joint angles (12 in total) representing the distal segment orientation relative to the proximal segment orientation were estimated using a shoulder kinematical chain model. Separate four-way repeated measures ANOVA were applied on the 12 joint angles with factors of static vs dynamic, passive vs active, thoracohumeral elevation angle (30°, 60°, 90° and 120°) and plane of elevation (frontal and sagittal). Scapulothoracic lateral rotation progressed more during arm elevation in static than in dynamic gaining 4.2° more, and also in passive than in active by 6.6°. Glenohumeral elevation increased more during arm elevation in active than in passive by 4.4°. Shoulder joints orientations are affected by the testing conditions, which should be taken into consideration for data acquisition, inter-study comparison or clinical applications.

  7. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels.

    Science.gov (United States)

    Rutz, Alexandra L; Hyland, Kelly E; Jakus, Adam E; Burghardt, Wesley R; Shah, Ramille N

    2015-03-04

    A multimaterial bio-ink method using polyethylene glycol crosslinking is presented for expanding the biomaterial palette required for 3D bioprinting of more mimetic and customizable tissue and organ constructs. Lightly crosslinked, soft hydrogels are produced from precursor solutions of various materials and 3D printed. Rheological and biological characterizations are presented, and the promise of this new bio-ink synthesis strategy is discussed.

  8. Variable Quality Compression of Fluid Dynamical Data Sets Using a 3D DCT Technique

    Science.gov (United States)

    Loddoch, A.; Schmalzl, J.

    2005-12-01

    In this work we present a data compression scheme that is especially suited for the compression of data sets resulting from computational fluid dynamics (CFD). By adopting the concept of the JPEG compression standard and extending the approach of Schmalzl (Schmalzl, J. Using standard image compression algorithms to store data from computational fluid dynamics. Computers and Geosciences, 29, 10211031, 2003) we employ a three-dimensional discrete cosine transform of the data. The resulting frequency components are rearranged, quantized and finally stored using Huffman-encoding and standard variable length integer codes. The compression ratio and also the introduced loss of accuracy can be adjusted by means of two compression parameters to give the desired compression profile. Using the proposed technique compression ratios of more than 60:1 are possible with an mean error of the compressed data of less than 0.1%.

  9. Foot deformation during walking: differences between static and dynamic 3D foot morphology in developing feet.

    Science.gov (United States)

    Barisch-Fritz, Bettina; Schmeltzpfenning, Timo; Plank, Clemens; Grau, Stefan

    2014-01-01

    The complex functions of feet require a specific composition, which is progressively achieved by developmental processes. This development should take place without being affected by footwear. The aim of this study is to evaluate differences between static and dynamic foot morphology in developing feet. Feet of 2554 participants (6-16 years) were recorded using a new scanner system (DynaScan4D). Each foot was recorded in static half and full weight-bearing and during walking. Several foot measures corresponding to those used in last construction were calculated. The differences were identified by one-way ANOVA and paired Student's t-test. Static and dynamic values of each foot measure must be considered to improve the fit of footwear. In particular, footwear must account for the increase of forefoot width and the decrease of midfoot girth. Furthermore, the toe box should have a more rounded shape. The findings are important for the construction of footwear for developing feet.

  10. 3-D finite element computation and dynamic modal analysis on ultrasonic vibration systems

    Institute of Scientific and Technical Information of China (English)

    倪金刚; 张学仁; 聂景旭(Department of Jet Propulsion 405; Beijing University of Aeronautics and Astronautics; Beijing 100083; China)

    1996-01-01

    Stress and modal analyses are performed on an ultrasonic vibration system by means of a 3-dimensional finite element computation and dynamic modal analysis code "Algor" The system consists of an edge-cracked specimen linked elastically with one or two amplifying horns which come into resonant longitudinal vibration at 20kHz.Operating principle of the ultrasonic fatigue machines and experimental procedures for ultrasonic fatigue crack growth studies are briefly presented.

  11. Pre-impact fall detection system using dynamic threshold and 3D bounding box

    Science.gov (United States)

    Otanasap, Nuth; Boonbrahm, Poonpong

    2017-02-01

    Fall prevention and detection system have to subjugate many challenges in order to develop an efficient those system. Some of the difficult problems are obtrusion, occlusion and overlay in vision based system. Other associated issues are privacy, cost, noise, computation complexity and definition of threshold values. Estimating human motion using vision based usually involves with partial overlay, caused either by direction of view point between objects or body parts and camera, and these issues have to be taken into consideration. This paper proposes the use of dynamic threshold based and bounding box posture analysis method with multiple Kinect cameras setting for human posture analysis and fall detection. The proposed work only uses two Kinect cameras for acquiring distributed values and differentiating activities between normal and falls. If the peak value of head velocity is greater than the dynamic threshold value, bounding box posture analysis will be used to confirm fall occurrence. Furthermore, information captured by multiple Kinect placed in right angle will address the skeleton overlay problem due to single Kinect. This work contributes on the fusion of multiple Kinect based skeletons, based on dynamic threshold and bounding box posture analysis which is the only research work reported so far.

  12. Haptic perception of force magnitude and its relation to postural arm dynamics in 3D.

    Science.gov (United States)

    van Beek, Femke E; Bergmann Tiest, Wouter M; Mugge, Winfred; Kappers, Astrid M L

    2015-12-08

    In a previous study, we found the perception of force magnitude to be anisotropic in the horizontal plane. In the current study, we investigated this anisotropy in three dimensional space. In addition, we tested our previous hypothesis that the perceptual anisotropy was directly related to anisotropies in arm dynamics. In experiment 1, static force magnitude perception was studied using a free magnitude estimation paradigm. This experiment revealed a significant and consistent anisotropy in force magnitude perception, with forces exerted perpendicular to the line between hand and shoulder being perceived as 50% larger than forces exerted along this line. In experiment 2, postural arm dynamics were measured using stochastic position perturbations exerted by a haptic device and quantified through system identification. By fitting a mass-damper-spring model to the data, the stiffness, damping and inertia parameters could be characterized in all the directions in which perception was also measured. These results show that none of the arm dynamics parameters were oriented either exactly perpendicular or parallel to the perceptual anisotropy. This means that endpoint stiffness, damping or inertia alone cannot explain the consistent anisotropy in force magnitude perception.

  13. 3D shape measurement of objects with high dynamic range of surface reflectivity.

    Science.gov (United States)

    Liu, Gui-hua; Liu, Xian-Yong; Feng, Quan-Yuan

    2011-08-10

    This paper presents a method that allows a conventional dual-camera structured light system to directly acquire the three-dimensional shape of the whole surface of an object with high dynamic range of surface reflectivity. To reduce the degradation in area-based correlation caused by specular highlights and diffused darkness, we first disregard these highly specular and dark pixels. Then, to solve this problem and further obtain unmatched area data, this binocular vision system was also used as two camera-projector monocular systems operated from different viewing angles at the same time to fill in missing data of the binocular reconstruction. This method involves producing measurable images by integrating such techniques as multiple exposures and high dynamic range imaging to ensure the capture of high-quality phase of each point. An image-segmentation technique was also introduced to distinguish which monocular system is suitable to reconstruct a certain lost point accurately. Our experiments demonstrate that these techniques extended the measurable areas on the high dynamic range of surface reflectivity such as specular objects or scenes with high contrast to the whole projector-illuminated field.

  14. A New Crank Arm-Based Load Cell for the 3D Analysis of the Force Applied by a Cyclist

    Directory of Open Access Journals (Sweden)

    Alexandre Balbinot

    2014-12-01

    Full Text Available This report describes a new crank arm-based force platform designed to evaluate the three-dimensional force applied to the pedals by cyclists in real conditions. The force platform was designed to be fitted on a conventional competition bicycle crankset while data is transmitted wirelessly through a BluetoothTM module and also stored on a SD card. A 3D solid model is created in the SolidWorks (Dassault Systèmes SOLIDWORKS Corp. to analyze the static and dynamic characteristics of the crank arm by using the finite elements technique. Each crankset arm is used as a load cell based on strain gauges configured as three Wheatstone bridges. The signals are conditioned on a printed circuit board attached directly to the structure. The load cell showed a maximum nonlinearity error between 0.36% and 0.61% and a maximum uncertainty of 2.3% referred to the sensitivity of each channel. A roller trainer equipped with an optical encoder was also developed, allowing the measurement of the wheel’s instantaneous velocity.

  15. A new crank arm-based load cell for the 3D analysis of the force applied by a cyclist.

    Science.gov (United States)

    Balbinot, Alexandre; Milani, Cleiton; Nascimento, Jussan da Silva Bahia

    2014-12-03

    This report describes a new crank arm-based force platform designed to evaluate the three-dimensional force applied to the pedals by cyclists in real conditions. The force platform was designed to be fitted on a conventional competition bicycle crankset while data is transmitted wirelessly through a Bluetooth™ module and also stored on a SD card. A 3D solid model is created in the SolidWorks (Dassault Systèmes SOLIDWORKS Corp.) to analyze the static and dynamic characteristics of the crank arm by using the finite elements technique. Each crankset arm is used as a load cell based on strain gauges configured as three Wheatstone bridges. The signals are conditioned on a printed circuit board attached directly to the structure. The load cell showed a maximum nonlinearity error between 0.36% and 0.61% and a maximum uncertainty of 2.3% referred to the sensitivity of each channel. A roller trainer equipped with an optical encoder was also developed, allowing the measurement of the wheel's instantaneous velocity.

  16. Dynamical History Of The Local Group In ΛCDM slowromancapii@ - Including External Perturbers In 3D

    Science.gov (United States)

    Banik, Indranil; Zhao, Hongsheng

    2017-01-01

    We attempt to fit the observed radial velocities (RVs) of ˜ 30 Local Group (LG) galaxies using a 3D dynamical model of it and its immediate environment within the context of the standard cosmological paradigm, ΛCDM. This extends and confirms the basic results of our previous axisymmetric investigation of the LG (MNRAS, 459, 2237). We find that there remains a tendency for observed RVs to exceed those predicted by our best-fitting model. The typical mismatch is slightly higher than in our 2D model, with a root mean square value of ˜ 50 km/s. Our main finding is that including the 3D distribution of massive perturbing dark matter halos is unlikely to help greatly with the high velocity galaxy problem. Nonetheless, the 2D and 3D results differ in several other ways such as which galaxies' RVs are most problematic and the preferred values of parameters common to both models. The anomalously high RVs of several LG dwarfs may be better explained if the Milky Way (MW) and Andromeda (M31) were once moving much faster than in our models. This would allow LG dwarfs to gain very high RVs via gravitational slingshot encounters with a massive fast-moving galaxy. Such a scenario is possible in some modified gravity theories, especially those which require the MW and M31 to have previously undergone a close flyby. In a ΛCDM context, however, this scenario is not feasible as the resulting dynamical friction would cause a rapid merger.

  17. NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure.

    Directory of Open Access Journals (Sweden)

    Xiao-hua Lei

    Full Text Available The skin is susceptible to different injuries and diseases. One major obstacle in skin tissue engineering is how to develop functional three-dimensional (3D substitute for damaged skin. Previous studies have proved a 3D dynamic simulated microgravity (SMG culture system as a "stimulatory" environment for the proliferation and differentiation of stem cells. Here, we employed the NASA-approved rotary bioreactor to investigate the proliferation and differentiation of human epidermal stem cells (hEpSCs. hEpSCs were isolated from children foreskins and enriched by collecting epidermal stem cell colonies. Cytodex-3 micro-carriers and hEpSCs were co-cultured in the rotary bioreactor and 6-well dish for 15 days. The result showed that hEpSCs cultured in rotary bioreactor exhibited enhanced proliferation and viability surpassing those cultured in static conditions. Additionally, immunostaining analysis confirmed higher percentage of ki67 positive cells in rotary bioreactor compared with the static culture. In contrast, comparing with static culture, cells in the rotary bioreactor displayed a low expression of involucrin at day 10. Histological analysis revealed that cells cultured in rotary bioreactor aggregated on the micro-carriers and formed multilayer 3D epidermis structures. In conclusion, our research suggests that NASA-approved rotary bioreactor can support the proliferation of hEpSCs and provide a strategy to form multilayer epidermis structure.

  18. KMOS3D: Dynamical Constraints on the Mass Budget in Early Star-forming Disks

    Science.gov (United States)

    Wuyts, Stijn; Förster Schreiber, Natascha M.; Wisnioski, Emily; Genzel, Reinhard; Burkert, Andreas; Bandara, Kaushala; Beifiori, Alessandra; Belli, Sirio; Bender, Ralf; Brammer, Gabriel B.; Chan, Jeffrey; Davies, Ric; Fossati, Matteo; Galametz, Audrey; Kulkarni, Sandesh K.; Lang, Philipp; Lutz, Dieter; Mendel, J. Trevor; Momcheva, Ivelina G.; Naab, Thorsten; Nelson, Erica J.; Saglia, Roberto P.; Seitz, Stella; Tacconi, Linda J.; Tadaki, Ken-ichi; Übler, Hannah; van Dokkum, Pieter G.; Wilman, David J.; Wuyts, Eva

    2016-11-01

    We exploit deep integral-field spectroscopic observations with KMOS/Very Large Telescope of 240 star-forming disks at 0.6\\lt z\\lt 2.6 to dynamically constrain their mass budget. Our sample consists of massive (≳ {10}9.8 {M}⊙ ) galaxies with sizes {R}e≳ 2 {kpc}. By contrasting the observed velocity and dispersion profiles with dynamical models, we find that on average the stellar content contributes {32}-7+8 % of the total dynamical mass, with a significant spread among galaxies (68th percentile range {f}{star}˜ 18 % {--}62 % ). Including molecular gas as inferred from CO- and dust-based scaling relations, the estimated baryonic mass adds up to {56}-12+17 % of the total for the typical galaxy in our sample, reaching ˜ 90 % at z\\gt 2. We conclude that baryons make up most of the mass within the disk regions of high-redshift star-forming disk galaxies, with typical disks at z\\gt 2 being strongly baryon-dominated within R e . Substantial object-to-object variations in both stellar and baryonic mass fractions are observed among the galaxies in our sample, larger than what can be accounted for by the formal uncertainties in their respective measurements. In both cases, the mass fractions correlate most strongly with measures of surface density. High-{{{Σ }}}{star} galaxies feature stellar mass fractions closer to unity, and systems with high inferred gas or baryonic surface densities leave less room for additional mass components other than stars and molecular gas. Our findings can be interpreted as more extended disks probing further (and more compact disks probing less far) into the dark matter halos that host them. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 092.A-0091, 093.A-0079, 094.A-0217, 095.A-0047, and 096.A-0025.

  19. Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE

    Science.gov (United States)

    Carmona, Guillaume; Perera, Upamali; Gillett, Cheryl; Naba, Alexandra; Law, Ah-Lai; Sharma, Ved P.; Wang, Jian; Wyckoff, Jeffrey; Balsamo, Michele; Mosis, Fuad; De Piano, Mario; Monypenny, James; Woodman, Natalie; McConnell, Russell E.; Mouneimne, Ghassan; Van Hemelrijck, Mieke; Cao, Yihai; Condeelis, John; Hynes, Richard O.; Gertler, Frank B.; Krause, Matthias

    2016-01-01

    Cancer invasion is a hallmark of metastasis. The mesenchymal mode of cancer cell invasion is mediated by elongated membrane protrusions driven by the assembly of branched F-actin networks. How deregulation of actin regulators promotes cancer cell invasion is still enigmatic. We report that increased expression and membrane localization of the actin regulator Lamellipodin correlates with reduced metastasis-free survival and poor prognosis in breast cancer patients. In agreement we find that Lamellipodin depletion reduced lung metastasis in an orthotopic mouse breast cancer model. Invasive 3D cancer cell migration as well as invadopodia formation, and matrix degradation were impaired upon Lamellipodin depletion. Mechanistically, we show that Lamellipodin promotes invasive 3D cancer cell migration via both actin-elongating Ena/VASP proteins and the Scar/WAVE complex, which stimulates actin branching. In contrast, Lamellipodin interaction with Scar/WAVE but not Ena/VASP is required for random 2D cell migration. We identify a phosphorylation-dependent mechanism that regulates selective recruitment of these effectors to Lamellipodin: Abl-mediated Lamellipodin phosphorylation promotes its association with both Scar/WAVE and Ena/VASP, while Src-dependent phosphorylation enhances binding to Scar/WAVE but not Ena/VASP. Through these selective, regulated interactions Lamellipodin mediates directional sensing of EGF gradients and invasive 3D migration of breast cancer cells. Our findings imply that increased Lamellipodin levels enhance Ena/VASP and Scar/WAVE activities at the plasma membrane to promote 3D invasion and metastasis. PMID:26996666

  20. Revealing plot scale heterogeneity in soil moisture dynamics under contrasting vegetation assemblages using 3D electrical resistivity tomography (ERT) surveys

    Science.gov (United States)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2016-04-01

    Soil moisture is a fundamental component of the water cycle that influences many hydrological processes, such as flooding, solute transport, biogeochemical processes, and land-atmosphere interactions. The relationship between vegetation and soil moisture is complex and reciprocal. Soil moisture may affect vegetation distribution due to its function as the primary source of water, in turn the structure of vegetation canopies regulate water partitioning into interception, throughfall and steam flow. Such spatial differences in inputs, together with complex patterns of water uptake from distributed root networks can create marked heterogeneity in soil moisture dynamics at small scales. Traditional methods of monitoring soil moisture have revolved around limited point measurements, but improved geophysical techniques have facilitated a trend towards more spatially distributed measurements to help understand this heterogeneity. Here, we present a study using 3D ERT surveys in a 3.2km upland catchment in the Scottish Highlands where increasing afforestation (for climate change adaptation, biofuels and conservation) has the potential to increase interception losses and reduce soil moisture storage. The study combined 3D surveys, traditional point measurements and laboratory analysis of soil cores to assess the plot scale soil moisture dynamics in podzolic soils under forest stands of 15m high Scots pine (Pinus sylvestris) and adjacent non-forest plots dominated by heather (Calluna vulgaris) shrubs (water content in the soils below. These results are important as the point to potential water stresses with planned increased afforestation which may be compounded by climate change projections of decreasing precipitation during the growing season.

  1. Development of 3D in vitro platform technology to engineer mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Hosseinkhani H

    2012-06-01

    Full Text Available Hossein Hosseinkhani,1 Po-Da Hong,1 Dah-Shyong Yu,2 Yi-Ru Chen,3 Diana Ickowicz,4 Ira-Yudovin Farber,4 Abraham J Domb41Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (TAIWANTECH, 2Nanomedicine Research Center, National Defense Medical Center, Taipei, Taiwan, 3Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, 4Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, IsraelAbstract: This study aims to develop a three-dimensional in vitro culture system to genetically engineer mesenchymal stem cells (MSC to express bone morphogenic protein-2. We employed nanofabrication technologies borrowed from the spinning industry, such as electrospinning, to mass-produce identical building blocks in a variety of shapes and sizes to fabricate electrospun nanofiber sheets comprised of composites of poly (glycolic acid and collagen. Homogenous nanoparticles of cationic biodegradable natural polymer were formed by simple mixing of an aqueous solution of plasmid DNA encoded bone morphogenic protein-2 with the same volume of cationic polysaccharide, dextran-spermine. Rat bone marrow MSC were cultured on electrospun nanofiber sheets comprised of composites of poly (glycolic acid and collagen prior to the incorporation of the nanoparticles into the nanofiber sheets. Bone morphogenic protein-2 was significantly detected in MSC cultured on nanofiber sheets incorporated with nanoparticles after 2 days compared with MSC cultured on nanofiber sheets incorporated with naked plasmid DNA. We conclude that the incorporation of nanoparticles into nanofiber sheets is a very promising strategy to genetically engineer MSC and can be used for further applications in regenerative medicine therapy.Keywords: 3D culture, nanoparticles, nanofibers, polycations, tissue engineering

  2. 3D mapping of buried underworld infrastructure using dynamic Bayesian network based multi-sensory image data fusion

    Science.gov (United States)

    Dutta, Ritaban; Cohn, Anthony G.; Muggleton, Jen M.

    2013-05-01

    The successful operation of buried infrastructure within urban environments is fundamental to the conservation of modern living standards. In this paper a novel multi-sensor image fusion framework has been proposed and investigated using dynamic Bayesian network for automatic detection of buried underworld infrastructure. Experimental multi-sensors images were acquired for a known buried plastic water pipe using Vibro-acoustic sensor based location methods and Ground Penetrating Radar imaging system. Computationally intelligent conventional image processing techniques were used to process three types of sensory images. Independently extracted depth and location information from different images regarding the target pipe were fused together using dynamic Bayesian network to predict the maximum probable location and depth of the pipe. The outcome from this study was very encouraging as it was able to detect the target pipe with high accuracy compared with the currently existing pipe survey map. The approach was also applied successfully to produce a best probable 3D buried asset map.

  3. A preliminary study of 3D difference scheme with energy dynamic equilibrium

    Institute of Scientific and Technical Information of China (English)

    Chiping Wu; Yongxing Zhang; Zhongzhen Ji; Wenxing Sun; Zede Guo; Weiping Jin

    2005-01-01

    In this paper, a difference scheme with energy dynamic equilibrium (DS-EDE) is presented, which can be used for the simulation of long-term atmosphere and sea motion.Based on three dimensional nonlinear evolution equations for atmosphere and sea motion, a three dimensional compact upwind scheme (CUWS) is constructed, as the basis of the DS-EDE. The DS-EDE satisfies the following condition of energy dynamic equilibrium (EDE): the total work of exter nal forces on the region boundary is equal to the sum of the total effective variation of the kinetic energy and the energy dissipation in the average flow motion and the effective variation of the potential energy per unit time within the region of interest. It really reflects the basic mechanism of the action of external forces and dissipation in atmosphere and sea movement. Therefore, the DS-EDE developed in this paper is a suitable model for simulating long-term atmosphere and sea movement with forcing and dissipation.

  4. MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Dário [CENTRA, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Charbonneau, Paul [Départment de Physique, Université de Montréal, C.P. 6128, Centre-ville, Montréal, QC H3C 3J7 (Canada); Miesch, Mark, E-mail: dariopassos@ist.utl.pt [High Altitude Observatory, NCAR, Boulder CO 80301-2252 (United States)

    2015-02-10

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.

  5. 3D radiative hydrodynamic simulations of protostellar collapse with H-C-O dynamical chemistry

    CERN Document Server

    Dzyurkevich, Natalia; Lesaffre, Pierre; Semenov, Dimitry

    2016-01-01

    Combining the co-evolving chemistry, hydrodynamics and radiative transfer is an important step for star formation studies. It allows both a better link to observations and a self-consistent monitoring of the magnetic dissipation in the collapsing core. Our aim is to follow a chemo-dynamical evolution of collapsing dense cores with a reduced gas-grain chemical network. We present the results of radiative hydrodynamic (RHD) simulations of 1 M$_\\odot$ isolated dense core collapse. The physical setup includes RHD and dynamical evolution of a chemical network. To perform those simulations, we merged the multi-dimensional adaptive-mesh-refinement code RAMSES and the thermo-chemistry Paris-Durham shock code. We simulate the formation of the first hydro-static core (FHSC) and the co-evolution of 56 species describing mainly H-C-O chemistry. Accurate benchmarking is performed, testing the reduced chemical network against a well-establiched complex network. We show that by using a compact set of reactions, one can matc...

  6. The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures

    Directory of Open Access Journals (Sweden)

    Soto Ana M

    2010-06-01

    Full Text Available Abstract Background Stromal-epithelial interactions mediate breast development, and the initiation and progression of breast cancer. In the present study, we developed 3-dimensional (3D in vitro models to study breast cancer tissue organization and the role of the microenvironment in phenotypic determination. Methods The human breast cancer MCF7 cells were grown alone or co-cultured with primary human breast fibroblasts. Cells were embedded in matrices containing either type I collagen or a combination of reconstituted basement membrane proteins and type I collagen. The cultures were carried out for up to 6 weeks. For every time point (1-6 weeks, the gels were fixed and processed for histology, and whole-mounted for confocal microscopy evaluation. The epithelial structures were characterized utilizing immunohistochemical techniques; their area and proliferation index were measured using computerized morphometric analysis. Statistical differences between groups were analyzed by ANOVA, Dunnett's T3 post-hoc test and chi-square. Results Most of the MCF7 cells grown alone within a collagen matrix died during the first two weeks; those that survived organized into large, round and solid clusters. The presence of fibroblasts in collagen gels reduced MCF7 cell death, induced cell polarity, and the formation of round and elongated epithelial structures containing a lumen. The addition of reconstituted basement membrane to collagen gels by itself had also survival and organizational effects on the MCF7 cells. Regardless of the presence of fibroblasts, the MCF7 cells both polarized and formed a lumen. The addition of fibroblasts to the gel containing reconstituted basement membrane and collagen induced the formation of elongated structures. Conclusions Our results indicate that a matrix containing both type I collagen and reconstituted basement membrane, and the presence of normal breast fibroblasts constitute the minimal permissive microenvironment to

  7. Dynamic 3D shape of the plantar surface of the foot using coded structured light: a technical report

    KAUST Repository

    Thabet, Ali Kassem

    2014-01-23

    Background The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Methods Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days. Results The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case). Conclusion The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environments.

  8. Multiplex profiling of cellular invasion in 3D cell culture models.

    Directory of Open Access Journals (Sweden)

    Gerald Burgstaller

    Full Text Available To-date, most invasion or migration assays use a modified Boyden chamber-like design to assess migration as single-cell or scratch assays on coated or uncoated planar plastic surfaces. Here, we describe a 96-well microplate-based, high-content, three-dimensional cell culture assay capable of assessing invasion dynamics and molecular signatures thereof. On applying our invasion assay, we were able to demonstrate significant effects on the invasion capacity of fibroblast cell lines, as well as primary lung fibroblasts. Administration of epidermal growth factor resulted in a substantial increase of cellular invasion, thus making this technique suitable for high-throughput pharmacological screening of novel compounds regulating invasive and migratory pathways of primary cells. Our assay also correlates cellular invasiveness to molecular events. Thus, we argue of having developed a powerful and versatile toolbox for an extensive profiling of invasive cells in a 96-well format. This will have a major impact on research in disease areas like fibrosis, metastatic cancers, or chronic inflammatory states.

  9. Solvent-modified dynamic porosity in chiral 3D kagome frameworks.

    Science.gov (United States)

    Keene, Tony D; Rankine, Damien; Evans, Jack D; Southon, Peter D; Kepert, Cameron J; Aitken, Jade B; Sumby, Christopher J; Doonan, Christian J

    2013-06-14

    Dynamically porous metal-organic frameworks (MOFs) with a chiral quartz-based structure have been synthesized from the multidentate ligand 2,2'-dihydroxybiphenyl-4,4'-dicarboxylate (H2diol). Compounds [Ni(II)(H2diol)(S)2]·xS (where S = DMF or DEF) show marked changes in 77 K N2 uptake between partially desolvated [Ni(II)(H2diol)(S)2] (only the pore solvent is removed) and fully desolvated [Ni(II)(H2diol)] forms. Furthermore, [Ni(II)(H2diol)(DMF)2] displays additional solvent-dependent porosity through the rotation of DMF molecules attached to the axial coordination sites of the Ni(II) centre. A unique feature of the four coordinate Ni(II) centre in [Ni(II)(H2diol)] is the dynamic response to its chemical environment. Exposure of [Ni(II)(H2diol)] to H2O and MeOH vapour leads to coordination of both axial sites of the Ni centres and to the generation of a solvated framework, whereas exposure to EtOH, DMF, acetone, and MeCN does not lead to any change in metal coordination or structure metrics. MeOH vapour adsorption was able to be tracked by time-dependent magnetometry as the solvated and desolvated structures have different magnetic moments. Solvated and desolvated forms of the MOF show remarkable differences in their thermal expansivities; [Ni(II)(H2diol)(DMF)2]·DMF displays marked positive thermal expansion (PTE) in the c-axis, yet near to zero thermal expansion, between 90 and 450 K, is observed for [Ni(II)(H2diol)]. These new MOF architectures demonstrate a dynamic structural and colourimetric response to selected adsorbates via a unique mechanism that involves a reversible change in the coordination environment of the metal centre. These coordination changes are mediated throughout the MOF by rotational mobility about the biaryl bond of the ligand.

  10. Morphology and dynamics of solar prominences from 3D MHD simulations

    CERN Document Server

    Terradas, J; Luna, M; Oliver, R; Ballester, J L

    2014-01-01

    In this paper we present a numerical study of the time evolution of solar prominences embedded in sheared magnetic arcades. The prominence is represented by a density enhancement in a background stratified atmosphere and is connected to the photosphere through the magnetic field. By solving the ideal magnetohydrodynamic (MHD) equations in three dimensions we study the dynamics for a range of parameters representative of real prominences. Depending on the parameters considered, we find prominences that are suspended above the photosphere, i.e., detached prominences, but also configurations resembling curtain or hedgerow prominences whose material continuously connects to the photosphere. The plasma$-\\beta$ is an important parameter that determines the shape of the structure. In many cases magnetic Rayleigh-Taylor (MRT) instabilities and oscillatory phenomena develop. Fingers and plumes are generated, affecting the whole prominence body and producing vertical structures in an essentially horizontal magnetic fie...

  11. Dynamics of Gravitational Waves in 3D Formulations, Methods, and Tests

    CERN Document Server

    Anninos, P; Seidel, E; Suen, W M; Tobias, M; Anninos, Peter; Masso, Joan; Seidel, Edward; Suen, Wai-Mo; Tobias, Malcolm

    1997-01-01

    The dynamics of gravitational waves is investigated in full 3+1 dimensional numerical relativity, emphasizing the difficulties that one might encounter in numerical evolutions, particularly those arising from non-linearities and gauge degrees of freedom. Using gravitational waves with amplitudes low enough that one has a good understanding of the physics involved, but large enough to enable non-linear effects to emerge, we study the coupling between numerical errors, coordinate effects, and the nonlinearities of the theory. We discuss the various strategies used in identifying specific features of the evolution. We show the importance of the flexibility of being able to use different numerical schemes, different slicing conditions, different formulations of the Einstein equations (standard ADM vs. first order hyperbolic), and different sets of equations (linearized vs. full Einstein equations). A non-linear scalar field equation is presented which captures some properties of the full Einstein equations, and h...

  12. MORPHOLOGY AND DYNAMICS OF SOLAR PROMINENCES FROM 3D MHD SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Terradas, J.; Soler, R.; Oliver, R.; Ballester, J. L. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Luna, M., E-mail: jaume.terradas@uib.es [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain)

    2015-01-20

    In this paper we present a numerical study of the time evolution of solar prominences embedded in sheared magnetic arcades. The prominence is represented by a density enhancement in a background-stratified atmosphere and is connected to the photosphere through the magnetic field. By solving the ideal magnetohydrodynamic equations in three dimensions, we study the dynamics for a range of parameters representative of real prominences. Depending on the parameters considered, we find prominences that are suspended above the photosphere, i.e., detached prominences, but also configurations resembling curtain or hedgerow prominences whose material continuously connects to the photosphere. The plasma-β is an important parameter that determines the shape of the structure. In many cases magnetic Rayleigh-Taylor instabilities and oscillatory phenomena develop. Fingers and plumes are generated, affecting the whole prominence body and producing vertical structures in an essentially horizontal magnetic field. However, magnetic shear is able to reduce or even to suppress this instability.

  13. Sustained PDGF-BB release from PHBHHx loaded nanoparticles in 3D hydrogel/stem cell model.

    Science.gov (United States)

    Dong, Cui-Ling; Webb, William R; Peng, Qiang; Tang, James Z; Forsyth, Nicholas R; Chen, Guo-Qiang; El Haj, Alicia J

    2015-01-01

    This study aimed to design a growth factor loaded copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx) nanoparticles containing 3D collagen matrix to achieve growth factor sustained release for long-term stimulation of human mesenchymal stem cells (hMSCs) proliferation/differentiation for tissue engineer application. Platelet-derived growth factor-BB (PDGF-BB), which is known to enhance hMSCs proliferation in human serum, was selected as a model growth factor, and biodegradable copolyester of PHBHHx was chosen to be the sustained release vehicle. PDGF-BB phospholipid complex encapsulated PHBHHx nanoparticles were fabricated, and their effect on hMSCs proliferation was investigated via assays of CCK-8 and live-dead staining to cells inoculated in 2D tissue culture plates and 3D collagen gel scaffolds, respectively. The resulting spherical PHBHHx nanoparticles were stable in terms of their mean particle size, polydispersity index and zeta potential before and after lyophilization. In vitro study revealed a sustained release of PDGF-BB with a low burst release. Furthermore, sustained released PDGF-BB was revealed to significantly promote hMSCs proliferation in both cell monolayer and cell seeded 3D collagen scaffolds inoculated in serum-free media. Therefore, the 3D collagen matrices with locally sustained release growth factor nanoparticles hold promise to be used for stem cell tissue engineering.

  14. The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Danilevicius, Paulius; Georgiadi, Leoni [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion (Greece); Pateman, Christopher J.; Claeyssens, Frederik [Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); Chatzinikolaidou, Maria, E-mail: mchatzin@materials.uoc.gr [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion (Greece); Department of Materials Science and Technology, University of Crete, PO Box 2208, 71303 Heraklion (Greece); Farsari, Maria, E-mail: mfarsari@iesl.forth.gr [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion (Greece)

    2015-05-01

    Highlights: • We studied the porosity of laser-made 3D scaffolds on MC3T3-E1 pre-osteoblastic cells. • We made polylactide 3D scaffolds with pores 25–110 μm. - Abstract: The aim of this study is to demonstrate the accuracy required for the investigation of the role of solid scaffolds’ porosity in cell proliferation. We therefore present a qualitative investigation into the effect of porosity on MC3T3-E1 pre-osteoblastic cell ingrowth of three-dimensional (3D) scaffolds fabricated by direct femtosecond laser writing. The material we used is a purpose made photosensitive pre-polymer based on polylactide. We designed and fabricated complex, geometry-controlled 3D scaffolds with pore sizes ranging from 25 to 110 μm, representing porosities 70%, 82%, 86%, and 90%. The 70% porosity scaffolds did not support cell growth initially and in the long term. For the other porosities, we found a strong adhesion of the pre-osteoblastic cells from the first hours after seeding and a remarkable proliferation increase after 3 weeks and up to 8 weeks. The 86% porosity scaffolds exhibited a higher efficiency compared to 82% and 90%. In addition, bulk material degradation studies showed that the employed, highly-acrylated polylactide is degradable. These findings support the potential use of the proposed material and the scaffold fabrication technique in bone tissue engineering.

  15. Increased extracellular matrix density decreases MCF10A breast cell acinus formation in 3D culture conditions.

    Science.gov (United States)

    Lance, Amanda; Yang, Chih-Chao; Swamydas, Muthulekha; Dean, Delphine; Deitch, Sandy; Burg, Karen J L; Dréau, Didier

    2016-01-01

    The extracellular matrix (ECM) contributes to the generation and dynamic of normal breast tissue, in particular to the generation of polarized acinar and ductal structures. In vitro 3D culture conditions, including variations in the composition of the ECM, have been shown to directly influence the formation and organization of acinus-like and duct-like structures. Furthermore, the density of the ECM appears to also play a role in the normal mammary tissue and tumour formation. Here we show that the density of the ECM directly influences the number, organization and function of breast acini. Briefly, non-malignant human breast MCF10A cells were incubated in increasing densities of a Matrigel®-collagen I matrix. Elastic moduli near and distant to the acinus structures were measured by atomic force microscopy, and the number of acinus structures was determined. Immunochemistry was used to investigate the expression levels of E-cadherin, laminin, matrix metalloproteinase-14 and ß-casein in MCF10A cells. The modulus of the ECM was significantly increased near the acinus structures and the number of acinus structures decreased with the increase in Matrigel-collagen I density. As evaluated by the expression of laminin, the organization of the acinus structures present was altered as the density of the ECM increased. Increases in both E-cadherin and MMP14 expression by MCF10A cells as ECM density increased were also observed. In contrast, MCF10A cells expressed lower ß-casein levels as the ECM density increased. Taken together, these observations highlight the key role of ECM density in modulating the number, organization and function of breast acini.

  16. Visualization of Mesenchymal Stromal Cells in 2Dand 3D-Cultures by Scanning Electron Microscopy with Lanthanide Contrasting.

    Science.gov (United States)

    Novikov, I A; Vakhrushev, I V; Antonov, E N; Yarygin, K N; Subbot, A M

    2017-02-01

    Mesenchymal stromal cells from deciduous teeth in 2D- and 3D-cultures on culture plastic, silicate glass, porous polystyrene, and experimental polylactoglycolide matrices were visualized by scanning electron microscopy with lanthanide contrasting. Supravital staining of cell cultures with a lanthanide-based dye (neodymium chloride) preserved normal cell morphology and allowed assessment of the matrix properties of the carriers. The developed approach can be used for the development of biomaterials for tissue engineering.

  17. Dynamic rupture modeling of the 2011 M9 Tohoku earthquake with an unstructured 3D spectral element method

    Science.gov (United States)

    Galvez, P.; Ampuero, J. P.; Dalguer, L. A.; Nissen-Meyer, T.

    2011-12-01

    On March 11th 2011, a Mw 9 earthquake stroke Japan causing 28000 victims and triggering a devastating tsunami that caused severe damage along the Japanese coast. The exceptional amount of data recorded by this earthquake, with thousands of sensors located all over Japan, provides a great opportunity for seismologist and engineers to investigate in detail the rupture process in order to better understand the physics of this type of earthquakes and their associated effects, like tsunamis. Here we investigate, by means of dynamic rupture simulations, a plausible mechanism to explain key observations about the rupture process of the 2011 M9 Tohoku earthquake, including the spatial complementarity between high and low frequency aspects of slip (e.g, Simons et al, Science 2011, Meng et al, GRL 2011). To model the dynamic rupture of this event, we use a realistic non-planar fault geometry of the megathrust interface, using the unstructured 3D spectral element open source code SPECFEM3D-SESAME, in which we recently implemented the dynamic fault boundary conditions. This implementation follows the principles introduced by Ampuero (2002) and Kaneko et al. (2008) and involves encapsulated modules plugged into the code. Our current implementation provides the possibility of modeling dynamic rupture for multiple, non-planar faults governed by slip-weakening friction. We successfully verified the code in several SCEC benchmarks, including a 3D problem with branched faults, as well as modeling the rupture of subduction megathrust with a splay fault, finding results comparable to published results. Our first set of simulations is aimed at testing if the diversity of rupture phenomena during the 2011 M9 Tohoku earthquake (see Ampuero et al in this session) can be overall reproduced by assuming the most basic friction law, linear slip-weakening friction, but prescribing a spatially heterogeneous distribution of the critical slip weakening distance Dc and initial fault stresses. Our

  18. Preparation of 3D electrode microarrays of multi-walled carbon nanotubes/nafion nanocomposites for microfluidic biofuel cells.

    Science.gov (United States)

    Choi, Jin Ho; Kim, Young Ho; Choi, Sung Deuk; Kim, Gyu Man

    2014-12-01

    Three-dimensional (3D) electrode microarrays with multi-walled carbon nanotubes (MWCNTs) reinforced Nafion nanocomposites were prepared for microfluidic biofuel cells. The oxidized MWCNTs (ox-MWCNTs) were prepared using chemical reactions with 60% nitric acid solution with pristine MWCNTs at 120 degrees C for 12 hrs with a nitrogen gas flow environment. Ox-MWCNTs in the range of 1 to 20 wt.% based on the Nafion polymer weight were reinforced to Nafion nanocomposites by solution casting. The micro-porous structure of the ox-MWCNTs reinforced Nafion nanocomposites was prepared by plasma etching for 5 to 20 min. The 10 wt.% ox-MWCNTs reinforced Nafion nanocomposite produced stable micro-porous structures of 3D electrodes by 10 min plasma etching. Micro-scale 3D structures of MWCNTs reinforced Nafion nanocomposites in a diameter range of 47 to 300 μm were prepared by the micro-stencil assisted casting. To characterize the 3D electrode microarrays, the physical geometry and the reinforced MWCNT dispersion in the nanocomposite structure were examined using a scanning electron microscope (SEM) and an optical microscope. Thermal property measurements of the ox-MWCNTs reinforced Nafion nanocomposites with 10 min of plasma etching, and without plasma etching were made. Both showed stable thermal properties over 300 degrees C. The proposed 3D electrode microarray of MWCNT/Nafion nanocomposites with micro-porous structures can be applied to miniaturized fuel cell devices.

  19. A molecular dynamics implementation of the 3D Mercedes-Benz water model

    Science.gov (United States)

    Hynninen, T.; Dias, C. L.; Mkrtchyan, A.; Heinonen, V.; Karttunen, M.; Foster, A. S.; Ala-Nissila, T.

    2012-02-01

    The three-dimensional Mercedes-Benz model was recently introduced to account for the structural and thermodynamic properties of water. It treats water molecules as point-like particles with four dangling bonds in tetrahedral coordination, representing H-bonds of water. Its conceptual simplicity renders the model attractive in studies where complex behaviors emerge from H-bond interactions in water, e.g., the hydrophobic effect. A molecular dynamics (MD) implementation of the model is non-trivial and we outline here the mathematical framework of its force-field. Useful routines written in modern Fortran are also provided. This open source code is free and can easily be modified to account for different physical context. The provided code allows both serial and MPI-parallelized execution. Program summaryProgram title: CASHEW (Coarse Approach Simulator for Hydrogen-bonding Effects in Water) Catalogue identifier: AEKM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 20 501 No. of bytes in distributed program, including test data, etc.: 551 044 Distribution format: tar.gz Programming language: Fortran 90 Computer: Program has been tested on desktop workstations and a Cray XT4/XT5 supercomputer. Operating system: Linux, Unix, OS X Has the code been vectorized or parallelized?: The code has been parallelized using MPI. RAM: Depends on size of system, about 5 MB for 1500 molecules. Classification: 7.7 External routines: A random number generator, Mersenne Twister ( http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/VERSIONS/FORTRAN/mt95.f90), is used. A copy of the code is included in the distribution. Nature of problem: Molecular dynamics simulation of a new geometric water model. Solution method: New force-field for

  20. Comparison of predicting drag methods using computational fluid dynamics in 2d/3d viscous flow

    Institute of Scientific and Technical Information of China (English)

    ZHU; ZiQiang; WANG; XiaoLu; LIU; Jie; LIU; Zhou

    2007-01-01

    As a result of the necessity of aircraft engineering design and the progress of computational fluid dynamics (CFD), techniques of accurately predicting aerodynamic drag are being increasingly explored. According to the momentum balance, the drag can be represented by an integral over a cross-flow plane (called wake integration method) at an arbitrary distance behind the configuration. A formulation to reduce the size of the wake cross plane region required for calculating the drag is developed by using cutoff parameters of vorticity and entropy. This increases the calculation accuracy and decreases the computation time required. Numerical experiments are made to obtain the threshold values of these cutoff parameters. The wake integration method is applied to predict drags of some examples including airfoil, a variety of wings and wing-body combination. Numerical results are compared with those of traditional surface integration method, showing that the predicting drag values with the wake integration method are closer to the experimental data. The results also show that drag prediction within engineering accuracy is possible by using CFD and the numerical drag optimization of complex aircraft configurations is possible, too.

  1. Capturing the 3D Motion of an Infalling Galaxy via Fluid Dynamics

    Science.gov (United States)

    Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul E. J.; Roediger, Elke; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.

    2017-01-01

    The Fornax Cluster is the nearest (≤slant 20 Mpc) galaxy cluster in the southern sky. NGC 1404 is a bright elliptical galaxy falling through the intracluster medium (ICM) of the Fornax Cluster. The sharp leading edge of NGC 1404 forms a classical “cold front” that separates 0.6 keV dense interstellar medium and 1.5 keV diffuse ICM. We measure the angular pressure variation along the cold front using a very deep (670 ks) Chandra X-ray observation. We are taking the classical approach—using stagnation pressure to determine a substructure’s speed—to the next level by not only deriving a general speed but also directionality, which yields the complete velocity field as well as the distance of the substructure directly from the pressure distribution. We find a hydrodynamic model consistent with the pressure jump along NGC 1404's atmosphere measured in multiple directions. The best-fit model gives an inclination of 33° and a Mach number of 1.3 for the infall of NGC 1404, in agreement with complementary measurements of the motion of NGC 1404. Our study demonstrates the successful treatment of a highly ionized ICM as ideal fluid flow, in support of the hypothesis that magnetic pressure is not dynamically important over most of the virial region of galaxy clusters.

  2. Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Anna C Luca

    Full Text Available Three-dimensional (3D tumor cell cultures grown in laminin-rich-extracellular matrix (lrECM are considered to reflect human tumors more realistic as compared to cells grown as monolayer on plastic. Here, we systematically investigated the impact of ECM on phenotype, gene expression, EGFR signaling pathway, and on EGFR inhibition in commonly used colorectal cancer (CRC cell lines. LrECM on-top (3D culture assays were performed with the CRC cell lines SW-480, HT-29, DLD-1, LOVO, CACO-2, COLO-205 and COLO-206F. Morphology of lrECM cultivated CRC cell lines was determined by phase contrast and confocal laser scanning fluorescence microscopy. Proliferation of cells was examined by MTT assay, invasive capacity of the cell lines was assayed using Matrigel-coated Boyden chambers, and migratory activity was determined employing the Fence assay. Differential gene expression was analyzed at the transcriptional level by the Agilent array platform. EGFR was inhibited by using the specific small molecule inhibitor AG1478. A specific spheroid growth pattern was observed for all investigated CRC cell lines. DLD-1, HT-29 and SW-480 and CACO-2 exhibited a clear solid tumor cell formation, while LOVO, COLO-205 and COLO-206F were characterized by forming grape-like structures. Although the occurrence of a spheroid morphology did not correlate with an altered migratory, invasive, or proliferative capacity of CRC cell lines, gene expression was clearly altered in cells grown on lrECM as compared to 2D cultures. Interestingly, in KRAS wild-type cell lines, inhibition of EGFR was less effective in lrECM (3D cultures as compared to 2D cell cultures. Thus, comparing both 2D and 3D cell culture models, our data support the influence of the ECM on cancer growth. Compared to conventional 2D cell culture, the lrECM (3D cell culture model offers the opportunity to investigate permanent CRC cell lines under more physiological conditions, i.e. in the context of molecular

  3. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan; Krebs, Alice; Christian, Sven; Prinz, Florian; Osterland, Marc; Golfier, Sven; Räse, Sebastian [Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin (Germany); Ansari, Nariman [Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt (Germany); Esner, Milan; Bickle, Marc [Max Planck Institute of Molecular Cell Biology and Genetics, High-Throughput Technology Development Studio (TDS), Dresden (Germany); Pampaloni, Francesco; Mattheyer, Christian; Stelzer, Ernst H. [Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt (Germany); Parczyk, Karsten; Prechtl, Stefan [Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin (Germany); Steigemann, Patrick, E-mail: Patrick.Steigemann@bayer.com [Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin (Germany)

    2014-04-15

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions. - Highlights: • Establishment of a novel method for 3D cell culture based high-content screening. • First reported high

  4. The 3D Dynamical Structure of the Supernova-Driven Interstellar Medium

    Science.gov (United States)

    Avillez, M. A.; Ballesteros-Paredes, J.; Mac Low, M.-M.

    2000-05-01

    Large scale modelling of the interstellar gas in the disk and halo has been carried out with a three-dimensional hydrodynamical code that uses adapted mesh refinement combined with message passing interface calls. The model includes a gravitational field provided by the stars in the disk, an ideal-gas equation of state, and an approximation for the cooling curve, assuming collisional ionization equilibrium. Supernovae are set up both isolated and in associations, in a manner compatible with observations. Once disrupted by the explosions, the disk never returns to its initial state, regardless of the initial vertical distribution of the disk gas, provided enough supernovae occur. Instead a thin HI disk forms in the Galactic plane, and, above and below, a thick inhomogeneous gas disk forms, with scale heights in HI of 500 pc and in HII of 1 kpc. The upper parts of the thick HII disk form the disk-halo interface, where a large scale fountain is set up by hot ionized gas escaping in a turbulent convective flow. The calculations also show the formation of HI clouds in both the disk and halo. These are dynamical objects with a two-phase structure composed of a cold core surrounded by warmer gas. The disk is populated by worms, bubbles, superbubbles and chimneys. Chimneys in the simulations have widths of approximately 120 pc. They inject high temperature gas directly from the Galactic disk into the halo, breaking through the warm neutral and ionized layers that compose the thick disk. Mushroom-shaped structures are also seen in the simulations, as have recently been observed. We identify them as tracers of buoyant flow in the thick disk

  5. Determination of Drug Toxicity Using 3D Spheroids Constructed From an Immortal Human Hepatocyte Cell Line

    DEFF Research Database (Denmark)

    Fey, S. J.; Wrzesinski, Krzysztof

    2012-01-01

    , diclofenac, metformin, phenformin, and valproic acid) to LD50 data (mg compound/mg cellular protein) showed that the variation in LD50 values was generally less than that suggested by the original LC50 data. Toxicological analysis of these six compounds in 3D spheroid culture (either published or presented...

  6. Electric field-controlled directed migration of neural progenitor cells in 2D and 3D environments.

    Science.gov (United States)

    Meng, Xiaoting; Li, Wenfei; Young, Fraser; Gao, Runchi; Chalmers, Laura; Zhao, Min; Song, Bing

    2012-02-16

    Endogenous electric fields (EFs) occur naturally in vivo and play a critical role during tissue/organ development and regeneration, including that of the central nervous system(1,2). These endogenous EFs are generated by cellular regulation of ionic transport combined with the electrical resistance of cells and tissues. It has been reported that applied EF treatment can promote functional repair of spinal cord injuries in animals and humans(3,4). In particular, EF-directed cell migration has been demonstrated in a wide variety of cell types(5,6), including neural progenitor cells (NPCs)(7,8). Application of direct current (DC) EFs is not a commonly available technique in most laboratories. We have described detailed protocols for the application of DC EFs to cell and tissue cultures previously(5,11). Here we present a video demonstration of standard methods based on a calculated field strength to set up 2D and 3D environments for NPCs, and to investigate cellular responses to EF stimulation in both single cell growth conditions in 2D, and the organotypic spinal cord slice in 3D. The spinal cordslice is an ideal recipient tissue for studying NPC ex vivo behaviours, post-transplantation, because the cytoarchitectonic tissue organization is well preserved within these cultures(9,10). Additionally, this ex vivo model also allows procedures that are not technically feasible to track cells in vivo using time-lapse recording at the single cell level. It is critically essential to evaluate cell behaviours in not only a 2D environment, but also in a 3D organotypic condition which mimicks the in vivo environment. This system will allow high-resolution imaging using cover glass-based dishes in tissue or organ culture with 3D tracking of single cell migration in vitro and ex vivo and can be an intermediate step before moving onto in vivo paradigms.

  7. Combined dynamic contrast-enhancement and serial 3D-subtraction analysis in magnetic resonance imaging of osteoid osteomas

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, T. von; Winkler, P. [Klinikum Stuttgart Olgahospital, Department of Paediatric Radiology, Stuttgart (Germany); Langendoerfer, M.; Fernandez, F.F. [Klinikum Stuttgart Olgahospital, Department of Paediatric Orthopaedics, Stuttgart (Germany)

    2009-10-15

    The purpose of this study was to retrospectively correlate the results of dynamic contrast-enhanced magnetic resonance imaging (MRI) with histological and clinical diagnoses in patients with osteoid osteomas. Fifty-four patients with the MR diagnosis of osteoid osteoma were studied. MRI (1.5 Tesla) consisted of thin-section STIR sequences, dynamic 3D T1 gradient echo sequences during application of contrast material, and high-resolution postcontrast T1 spin echo sequences with fat saturation (maximum voxel size 0.6 x 0.6 x 3.0 mm). Evaluation was focused on serial image subtraction during the early phase after contrast injection and on time-intensity curves. The surrounding edema was helpful in finding the nidus in each lesion. In 49 of 54 patients (90.7%), the diagnosis of osteoid osteoma was certain or highly probable (sensitivity 1.0, positive predictive value 0.91). A total of 38 of 54 osteoid osteomas were histologically proven. Five MRI diagnoses were regarded as false positives. A similar proportion has been reported for computed tomography. Tailored high-resolution MR examinations with dynamic contrast enhancement can reliably diagnose osteoid osteomas and exactly localize the nidus without radiation exposure. We propose a stepwise approach with STIR sequences, dynamic contrast-enhanced scanning, and high-resolution postcontrast T1 spin echo sequences with fat saturation. (orig.)

  8. Enabling Lorentz boosted frame particle-in-cell simulations of laser wakefield acceleration in quasi-3D geometry

    Science.gov (United States)

    Yu, Peicheng; Xu, Xinlu; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Li, Fei; Meyers, Michael D.; An, Weiming; Tsung, Frank S.; Decyk, Viktor K.; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.

    2016-07-01

    When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at βb c towards the laser, which can lead to a computational speedup of ∼ γb2 = (1 - βb2)-1. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional (3D) problems with the computational loads on the order of two dimensional r - z simulations. Here, we describe a method to combine the speedups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that significantly mitigates the Numerical Cerenkov Instability (NCI) which inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simulations. In addition, based on the space-time distribution of the LWFA data in the lab and boosted frame, we propose to use a moving window to follow the drifting plasma, instead of following the laser driver as is done in the LWFA lab frame simulations, in order to further reduce the computational loads. We describe the details of how the NCI is mitigated for the quasi-3D geometry, the setups for simulations which combine the Lorentz boosted frame, quasi-3D geometry, and the use of a moving window, and compare the results from these simulations against their corresponding lab frame cases. Good agreement is obtained among these sample simulations, particularly when there is no self-trapping, which demonstrates it is possible to combine the Lorentz boosted frame and the quasi-3D algorithms when modeling LWFA. We also discuss the preliminary speedups achieved in these sample simulations.

  9. Advanced 3D Poisson solvers and particle-in-cell methods for accelerator modeling

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, David B; McCorquodale, Peter; Colella, Phillip [Lawrence Berkeley National Lab, Applied Numerical Algorithms Group, SciDAC Applied Differential Equations Center (United States)

    2005-01-01

    We seek to improve on the conventional FFT-based algorithms for solving the Poisson equation with infinite-domain (open) boundary conditions for large problems in accelerator modeling and related areas. In particular, improvements in both accuracy and performance are possible by combining several technologies: the method of local corrections (MLC); the James algorithm; and adaptive mesh refinement (AMR). The MLC enables the parallelization (by domain decomposition) of problems with large domains and many grid points. This improves on the FFT-based Poisson solvers typically used as it doesn't require the all-to-all communication pattern that parallel 3d FFT algorithms require, which tends to be a performance bottleneck on current (and foreseeable) parallel computers. In initial tests, good scalability up to 1000 processors has been demonstrated for our new MLC solver. An essential component of our approach is a new version of the James algorithm for infinite-domain boundary conditions for the case of three dimensions. By using a simplified version of the fast multipole method in the boundary-to-boundary potential calculation, we improve on the performance of the Hockney algorithm typically used by reducing the number of grid points by a factor of 8, and the CPU costs by a factor of 3. This is particularly important for large problems where computer memory limits are a consideration. The MLC allows for the use of adaptive mesh refinement, which reduces the number of grid points and increases the accuracy in the Poisson solution. This improves on the uniform grid methods typically used in PIC codes, particularly in beam problems where the halo is large. Also, the number of particles per cell can be controlled more closely with adaptivity than with a uniform grid. To use AMR with particles is more complicated than using uniform grids. It affects depositing particles on the non-uniform grid, reassigning particles when the adaptive grid changes and maintaining the

  10. Vortex dynamics in the near-wake of tabs with various geometries using 2D and 3D PIV

    Science.gov (United States)

    Pagan-Vazquez, Axy; Khovalyg, Dolaana; Marsh, Charles; Hamed, Ali M.; Chamorro, Leonardo P.

    2016-11-01

    The vortex dynamics and turbulence statistics in the near-wake of rectangular, trapezoidal, triangular, and ellipsoidal tabs were studied in a refractive-index-matching channel at Re = 2000 and 13000, based on the tab height. The tabs share the same bulk dimensions including a 17 mm height, a 28 mm base width, and a 24.5o angle. 3D PIV was used to study the mean flow and dominant large-scale vortices, while high-spatial resolution planar PIV was used to quantify high-order statistics. The results show the coexistence of counter-rotating vortex pair (CVP) and hairpin structures. These vortices exhibit distinctive topology and strength across Re and tab geometry. The CVP is a steady structure that grows in strength over a significantly longer distance at the low Re due to the lower turbulence levels and the delayed shedding of the hairpin vortices. These features at the low Re are associated with the presence of K-H instability that develops over three tab heights. The interaction between the hairpins and CVP is measured in 3D for the first time and shows complex coexistence. Although the CVP suffers deformation and splitting at times, it maintains its presence and leads to significant spanwise and wall-normal flows.

  11. Characterization of 3D filament dynamics in a MAST SOL flux tube geometry

    Science.gov (United States)

    Walkden, N. R.; Dudson, B. D.; Fishpool, G.

    2013-10-01

    Non-linear simulations of filament propagation in a realistic MAST SOL flux tube geometry using the BOUT++ fluid modelling framework show an isolation of the dynamics of the filament in the divertor region from the midplane region due to three features of the magnetic geometry; the variation of magnetic curvature along the field line, the expansion of the flux tube and strong magnetic shear. Of the three effects, the latter two lead to a midplane ballooning feature of the filament, whilst the former leads to a ballooning around the X-points. In simulations containing all three effects the filament is observed to balloon at the midplane, suggesting that the role of curvature variation is sub-dominant to the flux expansion and magnetic shear. The magnitudes of these effects are all strongest near the X-point which leads to the formation of parallel density gradients. The filaments simulated, which represent filaments in MAST, are identified as resistive ballooning, meaning that their motion is inertially limited, not sheath limited. Parallel density gradients can drive the filament towards a Boltzmann response when the collisionalityof the plasma is low. The results here show that the formation of parallel density gradients is a natural and inevitable consequence of a realistic magnetic geometry and therefore the transition to the Boltzmann response is a consequence of the use of realistic magnetic geometry and does not require initializing specifically varying background profiles as in slab simulations. The filaments studied here are stable to the linear resistive drift-wave instability but are subject to the non-linear effects associated with the Boltzmann response, particularly Boltzmann spinning. The Boltzmann response causes the filament to spin on an axis. In later stages of its evolution a non-linear turbulent state develops where the vorticity evolves into a turbulent eddy field on the same length scale as the parallel current. The transition from interchange

  12. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair.

    Science.gov (United States)

    Hsieh, Fu-Yu; Lin, Hsin-Hua; Hsu, Shan-Hui

    2015-12-01

    The 3D bioprinting technology serves as a powerful tool for building tissue in the field of tissue engineering. Traditional 3D printing methods involve the use of heat, toxic organic solvents, or toxic photoinitiators for fabrication of synthetic scaffolds. In this study, two thermoresponsive water-based biodegradable polyurethane dispersions (PU1 and PU2) were synthesized which may form gel near 37 °C without any crosslinker. The stiffness of the hydrogel could be easily fine-tuned by the solid content of the dispersion. Neural stem cells (NSCs) were embedded into the polyurethane dispersions before gelation. The dispersions containing NSCs were subsequently printed and maintained at 37 °C. The NSCs in 25-30% PU2 hydrogels (∼680-2400 Pa) had excellent proliferation and differentiation but not in 25-30% PU1 hydrogels. Moreover, NSC-laden 25-30% PU2 hydrogels injected into the zebrafish embryo neural injury model could rescue the function of impaired nervous system. However, NSC-laden 25-30% PU1 hydrogels only showed a minor repair effect in the zebrafish model. In addition, the function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed NSC-laden 25% PU2 constructs. Therefore, the newly developed 3D bioprinting technique involving NSCs embedded in the thermoresponsive biodegradable polyurethane ink offers new possibilities for future applications of 3D bioprinting in neural tissue engineering.

  13. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability.

    Science.gov (United States)

    Billiet, Thomas; Gevaert, Elien; De Schryver, Thomas; Cornelissen, Maria; Dubruel, Peter

    2014-01-01

    In the present study, we report on the combined efforts of material chemistry, engineering and biology as a systemic approach for the fabrication of high viability 3D printed macroporous gelatin methacrylamide constructs. First, we propose the use and optimization of VA-086 as a photo-initiator with enhanced biocompatibility compared to the conventional Irgacure 2959. Second, a parametric study on the printing of gelatins was performed in order to characterize and compare construct architectures. Hereby, the influence of the hydrogel building block concentration, the printing temperature, the printing pressure, the printing speed, and the cell density were analyzed in depth. As a result, scaffolds could be designed having a 100% interconnected pore network in the gelatin concentration range of 10-20 w/v%. In the last part, the fabrication of cell-laden scaffolds was studied, whereby the application for tissue engineering was tested by encapsulation of the hepatocarcinoma cell line (HepG2). Printing pressure and needle shape was revealed to impact the overall cell viability. Mechanically stable cell-laden gelatin methacrylamide scaffolds with high cell viability (>97%) could be printed.

  14. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology.

    Science.gov (United States)

    Campbell, Jonathan J; Davidenko, Natalia; Caffarel, Maria M; Cameron, Ruth E; Watson, Christine J

    2011-01-01

    Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM) in three dimensional (3D) space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA) scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM) hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.

  15. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology.

    Directory of Open Access Journals (Sweden)

    Jonathan J Campbell

    Full Text Available Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM in three dimensional (3D space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.

  16. Using Parameters of Dynamic Pulse Function for 3d Modeling in LOD3 Based on Random Textures

    Science.gov (United States)

    Alizadehashrafi, B.

    2015-12-01

    The pulse function (PF) is a technique based on procedural preprocessing system to generate a computerized virtual photo of the façade with in a fixed size square(Alizadehashrafi et al., 2009, Musliman et al., 2010). Dynamic Pulse Function (DPF) is an enhanced version of PF which can create the final photo, proportional to real geometry. This can avoid distortion while projecting the computerized photo on the generated 3D model(Alizadehashrafi and Rahman, 2013). The challenging issue that might be handled for having 3D model in LoD3 rather than LOD2, is the final aim that have been achieved in this paper. In the technique based DPF the geometries of the windows and doors are saved in an XML file schema which does not have any connections with the 3D model in LoD2 and CityGML format. In this research the parameters of Dynamic Pulse Functions are utilized via Ruby programming language in SketchUp Trimble to generate (exact position and deepness) the windows and doors automatically in LoD3 based on the same concept of DPF. The advantage of this technique is automatic generation of huge number of similar geometries e.g. windows by utilizing parameters of DPF along with defining entities and window layers. In case of converting the SKP file to CityGML via FME software or CityGML plugins the 3D model contains the semantic database about the entities and window layers which can connect the CityGML to MySQL(Alizadehashrafi and Baig, 2014). The concept behind DPF, is to use logical operations to project the texture on the background image which is dynamically proportional to real geometry. The process of projection is based on two vertical and horizontal dynamic pulses starting from upper-left corner of the background wall in down and right directions respectively based on image coordinate system. The logical one/zero on the intersections of two vertical and horizontal dynamic pulses projects/does not project the texture on the background image. It is possible to define

  17. Non-linear dynamic analyses of 3D masonry structures by means of a homogenized rigid body and spring model (HRBSM)

    Science.gov (United States)

    Bertolesi, Elisa; Milani, Gabriele; Casolo, Siro

    2016-12-01

    A simple homogenized rigid body and spring model (HRBSM) is presented and applied for the non-linear dynamic analysis of 3D masonry structures. The approach, previously developed by the authors for the modeling of in-plane loaded walls is herein extended to real 3D buildings subjected to in- and out-of-plane deformation modes. The elementary cell is discretized by means of three-noded plane stress elements and non-linear interfaces. At a structural level, the non-linear analyses are performed replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage (RBSM) by means of which both in and out of plane mechanisms are allowed. All the simulations here presented are performed using the commercial software Abaqus. In order to validate the proposed model for the analyses of full scale structures subjected to seismic actions, two different examples are critically discussed, namely a church façade and an in-scale masonry building, both subjected to dynamic excitation. The results obtained are compared with experimental or numerical results available in literature.

  18. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions.

    Science.gov (United States)

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan; Krebs, Alice; Christian, Sven; Prinz, Florian; Osterland, Marc; Golfier, Sven; Räse, Sebastian; Ansari, Nariman; Esner, Milan; Bickle, Marc; Pampaloni, Francesco; Mattheyer, Christian; Stelzer, Ernst H; Parczyk, Karsten; Prechtl, Stefan; Steigemann, Patrick

    2014-04-15

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions.

  19. The effect of rheological approximations on the dynamics and topography in 3D subduction-collision models

    Science.gov (United States)

    Pusok, Adina E.; Kaus, Boris J. P.; Popov, Anton A.

    2016-04-01

    Most of the major mountain belts and orogenic plateaus are found within the overlying plate of active or fossil subduction and/or collision zones. Moreover, they evolve differently from one another as the result of specific combinations of surface and mantle processes. These differences arise for several reasons, such as different rheological properties, different amounts of regional isostatic compensation, and different mechanisms by which forces are applied to the convergent plates. Previous 3D geodynamic models of subduction/collision processes have used various rheological approximations, making numerical results difficult to compare, since there is no clear image on the extent of these approximations on the dynamics. Here, we employ the code LaMEM to perform high-resolution long-term 3D simulations of subduction/continental collision in an integrated lithospheric and upper-mantle scale model. We test the effect of rheological approximations on mantle and lithosphere dynamics in a geometrically simplified model setup that resembles a tectonic map of the India-Asia collision zone. We use the "sticky-air" approach to allow for the development of topography and the dynamics of subduction and collision is entirely driven by slab-pull (i.e. "free subduction"). The models exhibit a wide range of behaviours depending on the rheological law employed: from linear to temperature-dependent visco-elasto-plastic rheology that takes into account both diffusion and dislocation creep. For example, we find that slab dynamics varies drastically between end member models: in viscous approximations, slab detachment is slow following a viscous thinning, while for a non-linear visco-elasto-plastic rheology, slab detachment is relatively fast, inducing strong mantle flow in the slab window. We also examine the stress states in the subducting and overriding plates and topography evolution in the upper plate, and we discuss the implications on lithosphere dynamics at convergent margins

  20. Identifying cell and molecular stress after radiation in a three-dimensional (3-D) model of oral mucositis

    Energy Technology Data Exchange (ETDEWEB)

    Lambros, Maria Polikandritou, E-mail: mlambros@westernu.edu [Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766 (United States); Parsa, Cyrus [Department of Clinical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766 (United States); Mulamalla, HariChandana [Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766 (United States); Orlando, Robert [Department of Clinical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766 (United States); Lau, Bernard [Center for Advancement of Drug Research and Evaluation (CADRE), Western University of Health Sciences, Pomona, CA 91766 (United States); Huang, Ying [Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766 (United States); Center for Advancement of Drug Research and Evaluation (CADRE), Western University of Health Sciences, Pomona, CA 91766 (United States); Pon, Doreen [Department of Pharmacy Practice and Administration, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766 (United States); Chow, Moses [Department of Pharmacy Practice and Administration, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766 (United States); Center for Advancement of Drug Research and Evaluation (CADRE), Western University of Health Sciences, Pomona, CA 91766 (United States)

    2011-02-04

    Research highlights: {yields} We irradiated a 3-D human oral cell culture of keratinocytes and fibroblasts with 12 and 2 Gy. {yields} 6 h after irradiation the histopathology and apoptosis of the 3-D culture were evaluated. Microarrays were used to assess the gene expression in the irradiated 3-D tissue. {yields} 12 Gy induced significant histopathologic changes and cellular apoptosis. {yields} 12 Gy significantly affected genes of the NF-kB pathway, inflammatory cytokines and DAMPs. -- Abstract: Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinely be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage and this

  1. FEM modeling for 3D dynamic analysis of deep-ocean mining pipeline and its experimental verification

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    3D dynamic analysis models of 1000 m deep-ocean mining pipeline, including steel lift pipe, pump, buffer and flexible hose, were established by finite element method (FEM). The coupling effect of steel lift pipe and flexible hose, and main external loads of pipeline were considered in the models, such as gravity, buoyancy, hydrodynamic forces, internal and external fluid pressures, concentrated suspension buoyancy on the flexible hose, torsional moment and axial force induced by pump working.Some relevant FEM models and solution techniques were developed, according to various 3D transient behaviors of integrated deep-ocean mining pipeline, including towing motions of track-keeping operation and launch process of pipeline. Meanwhile, an experimental verification system in towing water tank that had similar characteristics of designed mining pipeline was developed to verify the accuracy of the FEM models and dynamic simulation. The experiment results show that the experimental records and simulation results of stress of pipe are coincided. Based on the further simulations of 1 000 m deep-ocean mining pipeline, the simulation results show that, to form configuration of a saddle shape, the total concentrated suspension buoyancy of flexible hose should be 95%-105% of the gravity of flexible hose in water, the first suspension point occupies 1/3 of the total buoyancy, and the second suspension point occupies 2/3 of the total buoyancy. When towing velocity of mining system is less than 0.5 m/s, the towing track of buffer is coincided with the setting route of ship on the whole and the configuration of flexible hose is also kept well.

  2. Role of nanotopography in the development of tissue engineered 3D organs and tissues using mesenchymal stem cells.

    Science.gov (United States)

    Salmasi, Shima; Kalaskar, Deepak M; Yoon, Wai-Weng; Blunn, Gordon W; Seifalian, Alexander M

    2015-03-26

    Recent regenerative medicine and tissue engineering strategies (using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional (3D) organs, such as bone, skin, liver, kidney and ear, using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nano-surface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.

  3. 3D Plant Cell Architecture of Arabidopsis thaliana (Brassicaceae Using Focused Ion Beam–Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Bhawana

    2014-06-01

    Full Text Available Premise of the study: Focused ion beam–scanning electron microscopy (FIB-SEM combines the ability to sequentially mill the sample surface and obtain SEM images that can be used to create 3D renderings with micron-level resolution. We have applied FIB-SEM to study Arabidopsis cell architecture. The goal was to determine the efficacy of this technique in plant tissue and cellular studies and to demonstrate its usefulness in studying cell and organelle architecture and distribution. Methods: Seed aleurone, leaf mesophyll, stem cortex, root cortex, and petal lamina from Arabidopsis were fixed and embedded for electron microscopy using protocols developed for animal tissues and modified for use with plant cells. Each sample was sectioned using the FIB and imaged with SEM. These serial images were assembled to produce 3D renderings of each cell type. Results: Organelles such as nuclei and chloroplasts were easily identifiable, and other structures such as endoplasmic reticula, lipid bodies, and starch grains were distinguishable in each tissue. Discussion: The application of FIB-SEM produced 3D renderings of five plant cell types and offered unique views of their shapes and internal content. These results demonstrate the usefulness of FIB-SEM for organelle distribution and cell architecture studies.

  4. 3D Dynamics of the Near-Surface Layer of the Ocean in the Presence of Freshwater Influx

    Science.gov (United States)

    Dean, C.; Soloviev, A.

    2015-12-01

    Freshwater inflow due to convective rains or river runoff produces lenses of freshened water in the near surface layer of the ocean. These lenses are localized in space and typically involve both salinity and temperature anomalies. Due to significant density anomalies, strong pressure gradients develop, which result in lateral spreading of freshwater lenses in a form resembling gravity currents. Gravity currents inherently involve three-dimensional dynamics. The gravity current head can include the Kelvin-Helmholtz billows with vertical density inversions. In this work, we have conducted a series of numerical experiments using com