WorldWideScience

Sample records for 3d dual energy

  1. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    Science.gov (United States)

    Malkov, Serghei; Shepherd, John

    2014-02-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  2. Dual Variational Principles for 3-D Navier-Stokes Equations

    Science.gov (United States)

    Liu, G. L.

    Just recently the exact variational principles (VP) of the full 3-D Navier-Stokes equations of viscous flow have been successfully established for the first time by the present author by means of a systematic reversed deduction method via the undetermined function. As a continuation and further development of that - a pair of new dual (reciprocal)VP is generated herein by means of the Friedrichs involutory transformation. These VP have the advantage over the previous ones that they possess apparent physical meaning of energy, providing a new rigorous theoretical basis for the finite element analysis of 3-D viscous flow.

  3. Reconstructing the 3D shape and bone mineral density distribution of the proximal femur from dual-energy X-ray absorptiometry.

    Science.gov (United States)

    Whitmarsh, Tristan; Humbert, Ludovic; De Craene, Mathieu; Del Rio Barquero, Luis M; Frangi, Alejandro F

    2011-12-01

    The accurate diagnosis of osteoporosis has gained increasing importance due to the aging of our society. Areal bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is an established criterion in the diagnosis of osteoporosis. This measure, however, is limited by its two-dimensionality. This work presents a method to reconstruct both the 3D bone shape and 3D BMD distribution of the proximal femur from a single DXA image used in clinical routine. A statistical model of the combined shape and BMD distribution is presented, together with a method for its construction from a set of quantitative computed tomography (QCT) scans. A reconstruction is acquired in an intensity based 3D-2D registration process whereby an instance of the model is found that maximizes the similarity between its projection and the DXA image. Reconstruction experiments were performed on the DXA images of 30 subjects, with a model constructed from a database of QCT scans of 85 subjects. The accuracy was evaluated by comparing the reconstructions with the same subject QCT scans. The method presented here can potentially improve the diagnosis of osteoporosis and fracture risk assessment from the low radiation dose and low cost DXA devices currently used in clinical routine.

  4. Dual readout 3D direct/induced-signals pixel systems

    CERN Document Server

    Parker, Sherwood; Deile, Mario; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Christopher; Kok, Angela; Watts, Stephen

    2008-01-01

    In this paper, 3D-electrode pixel detectors are described, in which the bias electrode systems have additional elements. Adding resistors between the bias supply line and each bias electrode together with a signal electrode readout that can measure pulse heights of both polarities could simultaneously provide lower capacitance and improved spatial resolution in both directions. A separate paper (“Dual-readout—strip/pixel systems”) covers an alternative—pixels with an added strip readout in one direction which could be used with either planar or 3D-electrodes, and could simultaneously provide a fast trigger and significantly increase the spatial resolution in both directions.

  5. Video Coding Using 3D Dual-Tree Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Vetro Anthony

    2007-01-01

    Full Text Available This work investigates the use of the 3D dual-tree discrete wavelet transform (DDWT for video coding. The 3D DDWT is an attractive video representation because it isolates image patterns with different spatial orientations and motion directions and speeds in separate subbands. However, it is an overcomplete transform with 4: 1 redundancy when only real parts are used. We apply the noise-shaping algorithm proposed by Kingsbury to reduce the number of coefficients. To code the remaining significant coefficients, we propose two video codecs. The first one applies separate 3D set partitioning in hierarchical trees (SPIHT on each subset of the DDWT coefficients (each forming a standard isotropic tree. The second codec exploits the correlation between redundant subbands, and codes the subbands jointly. Both codecs do not require motion compensation and provide better performance than the 3D SPIHT codec using the standard DWT, both objectively and subjectively. Furthermore, both codecs provide full scalability in spatial, temporal, and quality dimensions. Besides the standard isotropic decomposition, we propose an anisotropic DDWT, which extends the superiority of the normal DDWT with more directional subbands without adding to the redundancy. This anisotropic structure requires significantly fewer coefficients to represent a video after noise shaping. Finally, we also explore the benefits of combining the 3D DDWT with the standard DWT to capture a wider set of orientations.

  6. Dual multispectral and 3D structured light laparoscope

    Science.gov (United States)

    Clancy, Neil T.; Lin, Jianyu; Arya, Shobhit; Hanna, George B.; Elson, Daniel S.

    2015-03-01

    Intraoperative feedback on tissue function, such as blood volume and oxygenation would be useful to the surgeon in cases where current clinical practice relies on subjective measures, such as identification of ischaemic bowel or tissue viability during anastomosis formation. Also, tissue surface profiling may be used to detect and identify certain pathologies, as well as diagnosing aspects of tissue health such as gut motility. In this paper a dual modality laparoscopic system is presented that combines multispectral reflectance and 3D surface imaging. White light illumination from a xenon source is detected by a laparoscope-mounted fast filter wheel camera to assemble a multispectral image (MSI) cube. Surface shape is then calculated using a spectrally-encoded structured light (SL) pattern detected by the same camera and triangulated using an active stereo technique. Images of porcine small bowel were acquired during open surgery. Tissue reflectance spectra were acquired and blood volume was calculated at each spatial pixel across the bowel wall and mesentery. SL features were segmented and identified using a `normalised cut' algoritm and the colour vector of each spot. Using the 3D geometry defined by the camera coordinate system the multispectral data could be overlaid onto the surface mesh. Dual MSI and SL imaging has the potential to provide augmented views to the surgeon supplying diagnostic information related to blood supply health and organ function. Future work on this system will include filter optimisation to reduce noise in tissue optical property measurement, and minimise spot identification errors in the SL pattern.

  7. Convex relaxation for a 3D spatiotemporal segmentation model using the primal-dual method

    Institute of Scientific and Technical Information of China (English)

    Shi-yan WANG; Hui-min YU

    2012-01-01

    A method based on 3D videos is proposed for multi-target segmentation and tracking with a moving viewing system.A spatiotemporal energy functional is built up to perform motion segmentation and estimation simultaneously.To overcome the limitation of the local minimum problem with the level set method,a convex relaxation method is applied to the 3D spatiotemporal segmentation model.The relaxed convex model is independent of the initial condition.A primal-dual algorithm is used to improve computational efficiency.Several indoor experiments show the validity of the proposed method.

  8. Robust Reconstruction and Generalized Dual Hahn Moments Invariants Extraction for 3D Images

    Science.gov (United States)

    Mesbah, Abderrahim; Zouhri, Amal; El Mallahi, Mostafa; Zenkouar, Khalid; Qjidaa, Hassan

    2017-03-01

    In this paper, we introduce a new set of 3D weighed dual Hahn moments which are orthogonal on a non-uniform lattice and their polynomials are numerically stable to scale, consequent, producing a set of weighted orthonormal polynomials. The dual Hahn is the general case of Tchebichef and Krawtchouk, and the orthogonality of dual Hahn moments eliminates the numerical approximations. The computational aspects and symmetry property of 3D weighed dual Hahn moments are discussed in details. To solve their inability to invariability of large 3D images, which cause to overflow issues, a generalized version of these moments noted 3D generalized weighed dual Hahn moment invariants are presented where whose as linear combination of regular geometric moments. For 3D pattern recognition, a generalized expression of 3D weighted dual Hahn moment invariants, under translation, scaling and rotation transformations, have been proposed where a new set of 3D-GWDHMIs have been provided. In experimental studies, the local and global capability of free and noisy 3D image reconstruction of the 3D-WDHMs has been compared with other orthogonal moments such as 3D Tchebichef and 3D Krawtchouk moments using Princeton Shape Benchmark database. On pattern recognition using the 3D-GWDHMIs like 3D object descriptors, the experimental results confirm that the proposed algorithm is more robust than other orthogonal moments for pattern classification of 3D images with and without noise.

  9. Dual side transparent OLED 3D display using Gabor super-lens

    Science.gov (United States)

    Chestak, Sergey; Kim, Dae-Sik; Cho, Sung-Woo

    2015-03-01

    We devised dual side transparent 3D display using transparent OLED panel and two lenticular arrays. The OLED panel is sandwiched between two parallel confocal lenticular arrays, forming Gabor super-lens. The display provides dual side stereoscopic 3D imaging and floating image of the object, placed behind it. The floating image can be superimposed with the displayed 3D image. The displayed autostereoscopic 3D images are composed of 4 views, each with resolution 64x90 pix.

  10. 3D motion analysis via energy minimization

    Energy Technology Data Exchange (ETDEWEB)

    Wedel, Andreas

    2009-10-16

    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to

  11. 3D modeling of dual wind-up extensional rheometers

    DEFF Research Database (Denmark)

    Yu, Kaijia; Román Marín, José Manuel; Rasmussen, Henrik K.

    2010-01-01

    Fully three-dimensional numerical simulations of a dual wind-up drum rheometer of the Sentmanat Extensional Rheometer (SER; Sentmanat, 2004 [1]) or the Extensional Viscosity Fixture (EVF; Garritano and Berting, 2006 [2]) type have been performed. In the SER and EVF a strip of rectangular shape is...

  12. Dual energy CT

    DEFF Research Database (Denmark)

    Al-Najami, Issam; Drue, Henrik Christian; Steele, Robert

    2017-01-01

    and inaccurate with existing methods. Dual Energy Computed Tomography (DECT) enables qualitative tissue differentiation by simultaneous scanning with different levels of energy. We aimed to assess the feasibility of DECT in quantifying tumor response to neoadjuvant therapy in loco-advanced rectal cancer. METHODS...... to determine the average quantitative parameters; effective-Z, water- and iodine-concentration, Dual Energy Index (DEI), and Dual Energy Ratio (DER). These parameters were compared to the regression in the resection specimen as measured by the pathologist. RESULTS: Changes in the quantitative parameters...

  13. 3D printing technologies for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.; Swart, Benjamin; Shao, Yuyan; Wu, Gang; Zhou, Chi

    2017-10-01

    Fabrication of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limited capability in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale and from nanowatt to megawatt, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, morphology) and structure with enhanced specific energy and power densities. Moreover, the additive manufacturing nature of 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. With the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nanomaterials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focused on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over multiple length scale from

  14. 3D Printed Graphene Based Energy Storage Devices

    Science.gov (United States)

    Foster, Christopher W.; Down, Michael P.; Zhang, Yan; Ji, Xiaobo; Rowley-Neale, Samuel J.; Smith, Graham C.; Kelly, Peter J.; Banks, Craig E.

    2017-03-01

    3D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no further modification/ex-situ curing step. To provide proof-of-concept, these 3D printed electrode architectures are characterised both electrochemically and physicochemically and are advantageously applied as freestanding anodes within Li-ion batteries and as solid-state supercapacitors. These freestanding anodes neglect the requirement for a current collector, thus offering a simplistic and cheaper alternative to traditional Li-ion based setups. Additionally, the ability of these devices’ to electrochemically produce hydrogen via the hydrogen evolution reaction (HER) as an alternative to currently utilised platinum based electrodes (with in electrolysers) is also performed. The 3DE demonstrates an unexpectedly high catalytic activity towards the HER (‑0.46 V vs. SCE) upon the 1000th cycle, such potential is the closest observed to the desired value of platinum at (‑0.25 V vs. SCE). We subsequently suggest that 3D printing of graphene-based conductive filaments allows for the simple fabrication of energy storage devices with bespoke and conceptual designs to be realised.

  15. 3D Printed Graphene Based Energy Storage Devices.

    Science.gov (United States)

    Foster, Christopher W; Down, Michael P; Zhang, Yan; Ji, Xiaobo; Rowley-Neale, Samuel J; Smith, Graham C; Kelly, Peter J; Banks, Craig E

    2017-03-03

    3D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no further modification/ex-situ curing step. To provide proof-of-concept, these 3D printed electrode architectures are characterised both electrochemically and physicochemically and are advantageously applied as freestanding anodes within Li-ion batteries and as solid-state supercapacitors. These freestanding anodes neglect the requirement for a current collector, thus offering a simplistic and cheaper alternative to traditional Li-ion based setups. Additionally, the ability of these devices' to electrochemically produce hydrogen via the hydrogen evolution reaction (HER) as an alternative to currently utilised platinum based electrodes (with in electrolysers) is also performed. The 3DE demonstrates an unexpectedly high catalytic activity towards the HER (-0.46 V vs. SCE) upon the 1000th cycle, such potential is the closest observed to the desired value of platinum at (-0.25 V vs. SCE). We subsequently suggest that 3D printing of graphene-based conductive filaments allows for the simple fabrication of energy storage devices with bespoke and conceptual designs to be realised.

  16. Development of confocal 3D micro-XRF spectrometer with dual Cr-Mo excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kouichi Tsuji [Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 (Japan); PRESTO-JST - Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Kazuhiko Nakano [Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 (Japan)

    2007-05-15

    A new 3D micro-XRF instrument based on a confocal setup using two independent poly-capillary x-ray lenses and two x-ray sources (Cr and Mo targets) was developed. A full poly-capillary x-ray lens was attached to each x-ray tube. Another half poly-capillary lens was attached to a silicon drift x-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The depth resolutions that were evaluated by use of a 10-{mu}m thick Au foil were approximately 90 {mu}m for the x-ray energy of Au L{alpha}. The effects of the dual Cr-Mo x-ray beam excitation were investigated. It was confirmed that the XRF intensity of light elements was increased by applying the Cr-target x-ray tube in a confocal configuration. In the proposed confocal configuration, 3D elemental mapping of the major elements of an amaranth seed was performed nondestructively at ambient air pressure. Each element of the seed showed different mapping images in the different depth layers. (authors)

  17. Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography.

    Science.gov (United States)

    Wang, Y; Ravanfar, M; Zhang, K; Duan, D; Yao, G

    2016-10-01

    Optical polarization tractography (OPT) has recently been applied to map fiber organization in the heart, skeletal muscle, and arterial vessel wall with high resolution. The fiber orientation measured in OPT represents the 2D projected fiber angle in a plane that is perpendicular to the incident light. We report here a dual-angle extension of the OPT technology to measure the actual 3D fiber orientation in tissue. This method was first verified by imaging the murine extensor digitorum muscle placed at various known orientations in space. The accuracy of the method was further studied by analyzing the 3D fiber orientation of the mouse tibialis anterior muscle. Finally we showed that dual-angle OPT successfully revealed the unique 3D "arcade" fiber structure in the bovine articular cartilage.

  18. Calculated surface-energy anomaly in the 3d metals

    DEFF Research Database (Denmark)

    Aldén, M.; Skriver, Hans Lomholt; Mirbt, S.

    1992-01-01

    Local-spin-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method have been used to calculate the surface energy of the 3d metals. The theory explains the variation of the values derived from measurements of the surface tension of liquid metals including...... the pronounced anomaly occurring between vanadium and nickel in terms of a decrease in the d contribution caused by spin polarization....

  19. 3D kinematics using dual quaternions: theory and applications in neuroscience

    Directory of Open Access Journals (Sweden)

    Guillaume eLeclercq

    2013-02-01

    Full Text Available In behavioral neuroscience, many experiments are developed in 1 or 2 spatialdimensions, but when scientists tackle problems in 3-dimensions (3D, theyoften face problems or new challenges. Results obtained for lower dimensionsare not always extendable in 3D. In motor planning of eye, gaze or armmovements, or sensorimotor transformation problems, the 3D kinematics ofexternal (stimuli or internal (body parts must often be considered: howto describe the 3D position and orientation of these objects and link themtogether? We describe how motors (dual quaternions provide a convenientway to describe the 3D kinematics for position only (point transformation orfor combined position and orientation (through line transformation, easilymodeling rotations, translations or screw motions or combinations of these.We also derive expressions for the velocities of points and lines as well as thetransformation velocities. Then, we apply these tools to a motor planningtask for manual tracking and to the modeling of forward and inverse kinematicsof a 7dof 3-link arm to show the interest of dual quaternions as a toolto build models for these kinds of applications.

  20. A dual-layer transducer array for 3-D rectilinear imaging.

    Science.gov (United States)

    Yen, Jesse T; Seo, Chi Hyung; Awad, Samer I; Jeong, Jong S

    2009-01-01

    Very large element counts (16,000-65,000) are required for 2-D arrays for 3-D rectilinear imaging. The difficulties in fabricating and interconnecting 2-D arrays with a large number of elements (>5,000) have limited the development of suitable transducers for 3-D rectilinear imaging. In this paper, we propose an alternative solution to this problem by using a dual-layer transducer array design. This design consists of 2 perpendicular 1-D arrays for clinical 3-D imaging of targets near the transducer. These targets include the breast, carotid artery, and musculoskeletal system. This transducer design reduces the fabrication complexity and the channel count, making 3-D rectilinear imaging more realizable. With this design, an effective N x N 2-D array can be developed using only N transmitters and N receivers. This benefit becomes very significant when N becomes greater than 128, for example. To demonstrate feasibility, we constructed a 4 x 4 cm prototype dual-layer array. The transmit array uses diced PZT-5H elements, and the receive array is a single sheet of undiced P[VDF-TrFE] copolymer. The receive elements are defined by the copper traces on the flexible interconnect circuit. The measured -6 dB fractional bandwidth was 80% with a center frequency of 4.8 MHz. At 5 MHz, the nearest neighbor crosstalk of the PZT array and PVDF array was -30.4 +/- 3.1 dB and -28.8 +/- 3.7 dB, respectively. This dual-layer transducer was interfaced with an Ultrasonix Sonix RP system, and a synthetic aperture 3-D data set was acquired. We then performed offline 3-D beamforming to obtain volumes of nylon wire targets. The theoretical lateral beamwidth was 0.52 mm compared with measured beamwidths of 0.65 mm and 0.67 mm in azimuth and elevation, respectively. Then, 3-D images of an 8 mm diameter anechoic cyst phantom were also acquired.

  1. 7.5 MHz dual-layer transducer array for 3-D rectilinear imaging.

    Science.gov (United States)

    Chen, Yuling; Nguyen, Man; Yen, Jesse T

    2011-07-01

    The difficulties associated with fabrication and interconnection have limited the development of 2-D ultrasound transducer arrays with a large number ofelements (>5000). In previous work, we described a 5 MHz center frequency PZT-P[VDF-TrFE] dual-layer transducer that used two perpendicular 1-D arrays for 3-D rectilinear imaging. This design substantially reduces the channel count as well as fabrication complexity, which makes 3-D imaging more realizable. Higher frequencies (>5 MHz) are more commonly used in clinical applications or imaging targets near transducers, such as the breast, carotid and musculoskeletal tissue. In this paper, we present a 7.5 MHz dual-layer transducer array for 3-D rectilinear imaging. A modified acoustic stack model was designed and fabricated. PZT elements were sub-diced to eliminate lateral coupling. This sub-dicing process made the PZT into a 2-2 composite material, which could help improve transducer sensitivity and bandwidth. Full synthetic-aperture 3-D data sets were acquired by interfacing the transducer with a Verasonics data-acquisition system (VDAS). Offline 3-D beamforming was then performed to obtain volumes of a multiwire phantom and a cyst phantom. The generalized coherence factor (GCF) was applied to improve the contrast of cyst images. The measured -6 dB fractional bandwidth of the transducer was 71% with a center frequency of 7.5 MHz. The measured lateral beamwidths were 0.521 mm and 0.482 mm in azimuth and elevation, respectively, compared with a simulated beamwidth of 0.43 mm.

  2. Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing.

    Science.gov (United States)

    Liu, Yuxiang; Yu, Miao

    2009-08-03

    Optical tweezers provide a versatile tool in biological and physical researches. Optical tweezers based on optical fibers are more flexible and ready to be integrated when compared with those based on microscope objectives. In this paper, the three-dimensional (3D) trapping ability of an inclined dual-fiber optical tweezers is demonstrated. The trapping efficiency with respect to displacement is experimentally calibrated along two dimensions. The system is studied numerically using a modified ray-optics model. The spring constants obtained in the experiment are predicted by simulations. It is found both experimentally and numerically that there is a critical value for the fiber inclination angle to retain the 3D trapping ability. The inclined dual-fiber optical tweezers are demonstrated to be more robust to z-axis misalignment than the counter-propagating fiber optical tweezers, which is a special case of th former when the fiber inclination angle is 90 masculine. This inclined dual-fiber optical tweezers can serve as both a manipulator and a force sensor in integrated systems, such as microfluidic systems and lab-on-a-chip systems.

  3. A 3D printed electromagnetic nonlinear vibration energy harvester

    Science.gov (United States)

    Constantinou, P.; Roy, S.

    2016-09-01

    A 3D printed electromagnetic vibration energy harvester is presented. The motion of the device is in-plane with the excitation vibrations, and this is enabled through the exploitation of a leaf isosceles trapezoidal flexural pivot topology. This topology is ideally suited for systems requiring restricted out-of-plane motion and benefits from being fabricated monolithically. This is achieved by 3D printing the topology with materials having a low flexural modulus. The presented system has a nonlinear softening spring response, as a result of designed magnetic force interactions. A discussion of fatigue performance is presented and it is suggested that whilst fabricating, the raster of the suspension element is printed perpendicular to the flexural direction and that the experienced stress is as low as possible during operation, to ensure longevity. A demonstrated power of ˜25 μW at 0.1 g is achieved and 2.9 mW is demonstrated at 1 g. The corresponding bandwidths reach up-to 4.5 Hz. The system’s corresponding power density of ˜0.48 mW cm-3 and normalised power integral density of 11.9 kg m-3 (at 1 g) are comparable to other in-plane systems found in the literature.

  4. Energy harvesting “3-D knitted spacer” based piezoelectric textiles

    Science.gov (United States)

    Anand, S.; Soin, N.; Shah, T. H.; Siores, E.

    2016-07-01

    The piezoelectric effect in Poly(vinylidene fluoride), PVDF, was discovered over four decades ago and since then, significant work has been carried out aiming at the production of high p-phase fibres and their integration into fabric structures for energy harvesting. However, little work has been done in the area of production of “true piezoelectric fabric structures” based on flexible polymeric materials such as PVDF. In this work, we demonstrate “3-D knitted spacer” technology based all-fibre piezoelectric fabrics as power generators and energy harvesters. The knitted single-structure piezoelectric generator consists of high p-phase (~80%) piezoelectric PVDF monofilaments as the spacer yarn interconnected between silver (Ag) coated polyamide multifilament yarn layers acting as the top and bottom electrodes. The novel and unique textile structure provides an output power density in the range of 1.105.10 gWcm-2 at applied impact pressures in the range of 0.02-0.10 MPa, thus providing significantly higher power outputs and efficiencies over the existing 2-D woven and nonwoven piezoelectric structures. The high energy efficiency, mechanical durability and comfort of the soft, flexible and all-fibre based power generator is highly attractive for a variety of potential applications such as wearable electronic systems and energy harvesters charged from ambient environment or by human movement.

  5. 3D printed 20/30-GHz dual-band offset stepped-reflector antenna

    DEFF Research Database (Denmark)

    Menendez, Laura G.; Kim, Oleksiy S.; Persson, Frank

    2015-01-01

    with a peak directivity of 36.7 dB and 40.4 dB at 20 and 30 GHz, respectively; this corresponds to an aperture efficiency of 61 % and 64 %, respectively. These results demonstrate that 3D printing is a viable manufacturing technology for medium-sized high-frequency antennas.......This paper documents the manufacturing by selective laser sintering of a 20/30 GHz dual-band circularly polarized offset stepped-reflector antenna for K- and Ka-band satellite communication. The manufactured antenna has been measured at the DTU-ESA Spherical Near-Field Antenna Test Facility...

  6. Energy flow in passive and active 3D cochlear model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli; Steele, Charles [Department of Mechanical Engineering, Stanford University, Stanford, California (United States); Puria, Sunil [Department of Mechanical Engineering, Stanford University, Stanford, California (United States); Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California (United States)

    2015-12-31

    Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.

  7. Analytical approach to the D3-brane gravity dual for 3d Yang-Mills theory

    CERN Document Server

    Forkel, Hilmar

    2015-01-01

    The complexity of "top-down" string-dual candidates for strongly-coupled Yang-Mills theories and in particular for QCD almost always prohibits their exact analytical or even comprehensive numerical treatment. This impedes both a thorough quantitative analysis and the development of more realistic gravity duals. To mitigate these impediments, we devise an analytical approach to top-down duals on the basis of controlled, uniformly converging high-accuracy approximations for the normalizable string modes corresponding to gauge-theory states. We demonstrate the potential of this approach in Witten's dual for $3d$ Yang-Mills theory, i.e. in the near-horizon limit of non-extremal $D\\text{3}$-branes, compactified on $S^{1}$. We obtain accurate analytical approximations to the bulk modes which satisfy the boundary conditions exactly. On their basis, analytical results for masses, sizes, pole residues and correlation functions of glueball excitations are derived by spectral methods. These approximations can be systema...

  8. Dual-Extrusion 3D Printing of Anatomical Models for Education.

    Science.gov (United States)

    Smith, Michelle L; Jones, James F X

    2017-09-14

    Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex(3D) flexible filament and polylactic acid (PLA) filament were extruded respectively via a single 0.4 mm nozzle using a Big Builder printer. For each filament, cubes (5 mm(3) ) were printed and analyzed for X, Y, and Z accuracy. The PLA printed cubes resulted in errors averaging just 1.2% across all directions but for FilaFlex(3D) printed cubes the errors were statistically significantly greater (average of 3.2%). As an exemplar, a focus was placed on the muscles, bones and cartilage of upper airway and neck. The resulting single prints combined flexible and hard structures. A single print model of the vocal cords was constructed which permitted movement of the arytenoids on the cricoid cartilage and served to illustrate the action of intrinsic laryngeal muscles. As University libraries become increasingly engaged in offering inexpensive 3D printing services it may soon become common place for both student and educator to access websites, download free models or 3D body parts and only pay the costs of print consumables. Novel models can be manufactured as dissectible, functional multi-layered units and offer rich possibilities for sectional and/or reduced anatomy. This approach can liberate the anatomist from constraints of inflexible hard models or plastinated specimens and engage in the design of class specific models of the future. Anat Sci Educ. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  9. Boosting infrared energy transfer in 3D nanoporous gold antennas.

    Science.gov (United States)

    Garoli, D; Calandrini, E; Bozzola, A; Ortolani, M; Cattarin, S; Barison, S; Toma, A; De Angelis, F

    2017-01-05

    The applications of plasmonics to energy transfer from free-space radiation to molecules are currently limited to the visible region of the electromagnetic spectrum due to the intrinsic optical properties of bulk noble metals that support strong electromagnetic field confinement only close to their plasma frequency in the visible/ultraviolet range. In this work, we show that nanoporous gold can be exploited as a plasmonic material for the mid-infrared region to obtain strong electromagnetic field confinement, co-localized with target molecules into the nanopores and resonant with their vibrational frequency. The effective optical response of the nanoporous metal enables the penetration of optical fields deep into the nanopores, where molecules can be loaded thus achieving a more efficient light-matter coupling if compared to bulk gold. In order to realize plasmonic resonators made of nanoporous gold, we develop a nanofabrication method based on polymeric templates for metal deposition and we obtain antenna arrays resonating at mid-infrared wavelengths selected by design. We then coat the antennas with a thin (3 nm) silica layer acting as the target dielectric layer for optical energy transfer. We study the strength of the light-matter coupling at the vibrational absorption frequency of silica at 1240 cm(-1) through the analysis of the experimental Fano lineshape that is benchmarked against identical structures made of bulk gold. The boost in the optical energy transfer from free-space mid-infrared radiation to molecular vibrations in nanoporous 3D nanoantenna arrays can open new application routes for plasmon-enhanced physical-chemical reactions.

  10. 3D Printing of Biocompatible Acellular Auricular Implant Using Dual Scaled Hydrid Technology Combining Fused Deposition Modeling with Electrospinning

    OpenAIRE

    Rezenda, R; Sabado, M; Kasjanovs, V; Baptista, L.; da Silva, K; Noritomi, P; Sena, F.; Wen, X.; Da Silva, J; Mironov, V.

    2013-01-01

    The dual-scaled hydrid scaffold fabrication technology based on combination of 3D printing (fused deposition modeling) and electrospining have been recently introduced. We report here the design, fabrication, mechanical testing, in vitro and in vivo biocompatibility testing of novel auricular implants for treatment microtia fabricated by dual scaled hydbrid scaffold fabrication technology.

  11. 3D Printing of Molecular Potential Energy Surface Models

    Science.gov (United States)

    Lolur, Phalgun; Dawes, Richard

    2014-01-01

    Additive manufacturing, commonly known as 3D printing, is gaining popularity in a variety of applications and has recently become routinely available. Today, 3D printing services are not only found in engineering design labs and through online companies, but also in university libraries offering student access. In addition, affordable options for…

  12. 3D Printing of Molecular Potential Energy Surface Models

    Science.gov (United States)

    Lolur, Phalgun; Dawes, Richard

    2014-01-01

    Additive manufacturing, commonly known as 3D printing, is gaining popularity in a variety of applications and has recently become routinely available. Today, 3D printing services are not only found in engineering design labs and through online companies, but also in university libraries offering student access. In addition, affordable options for…

  13. Dual optimization based prostate zonal segmentation in 3D MR images.

    Science.gov (United States)

    Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron

    2014-05-01

    Efficient and accurate segmentation of the prostate and two of its clinically meaningful sub-regions: the central gland (CG) and peripheral zone (PZ), from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, a novel multi-region segmentation approach is proposed to simultaneously segment the prostate and its two major sub-regions from only a single 3D T2-weighted (T2w) MR image, which makes use of the prior spatial region consistency and incorporates a customized prostate appearance model into the segmentation task. The formulated challenging combinatorial optimization problem is solved by means of convex relaxation, for which a novel spatially continuous max-flow model is introduced as the dual optimization formulation to the studied convex relaxed optimization problem with region consistency constraints. The proposed continuous max-flow model derives an efficient duality-based algorithm that enjoys numerical advantages and can be easily implemented on GPUs. The proposed approach was validated using 18 3D prostate T2w MR images with a body-coil and 25 images with an endo-rectal coil. Experimental results demonstrate that the proposed method is capable of efficiently and accurately extracting both the prostate zones: CG and PZ, and the whole prostate gland from the input 3D prostate MR images, with a mean Dice similarity coefficient (DSC) of 89.3±3.2% for the whole gland (WG), 82.2±3.0% for the CG, and 69.1±6.9% for the PZ in 3D body-coil MR images; 89.2±3.3% for the WG, 83.0±2.4% for the CG, and 70.0±6.5% for the PZ in 3D endo-rectal coil MR images. In addition, the experiments of intra- and inter-observer variability introduced by user initialization indicate a good reproducibility of the proposed approach in terms of volume difference (VD) and coefficient-of-variation (CV) of DSC. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Dual FIB-SEM 3D Imaging and Lattice Boltzmann Modeling of Porosimetry and Multiphase Flow in Chalk

    Science.gov (United States)

    Rinehart, A. J.; Yoon, H.; Dewers, T. A.; Heath, J. E.; Petrusak, R.

    2010-12-01

    Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage. This work was supported by the US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. 3D Tests on Overtopping for SSG Wave Energy Converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Kofoed, Jens Peter

    This report presents the results of the first study based on laboratory tests of the behaviour of the SSG pilot module in 3D wave conditions. This study was recommended already during Phase 2 of the Co-operation agreement between WEVEnergy AS (Norway) and Aalborg University, Department of Civil...

  16. 3-D Biped Robot Walking along Slope with Dual Length Linear Inverted Pendulum Method (DLLIPM

    Directory of Open Access Journals (Sweden)

    Fariz Ali

    2013-11-01

    Full Text Available A new design method to obtain walking parameters for a three-dimensional (3D biped walking along a slope is proposed in this paper. Most research is focused on the walking directions when climbing up or down a slope only. This paper investigates a strategy to realize biped walking along a slope. In conventional methods, the centre of mass (CoM is moved up or down during walking in this situation. This is because the height of the pendulum is kept at the same length on the left and right legs. Thus, extra effort is required in order to bring the CoM up to higher ground. In the proposed method, a different height of pendulum is applied on the left and right legs, which is called a dual length linear inverted pendulum method (DLLIPM. When a different height of pendulum is applied, it is quite difficult to obtain symmetrical and smooth pendulum motions. Furthermore, synchronization between sagittal and lateral planes is not confirmed. Therefore, DLLIPM with a Newton Raphson algorithm is proposed to solve these problems. The walking pattern for both planes is designed systematically and synchronization between them is ensured. As a result, the maximum force fluctuation is reduced with the proposed method.

  17. Design and Fabrication of 3D Electrostatic Energy Harvester

    Directory of Open Access Journals (Sweden)

    V. Janicek

    2012-04-01

    Full Text Available This paper discusses the design of an electrostatic generator, power supply component of the self-powered microsystem, which is able to provide enough energy to power smart sensor chains or if necessary also other electronic monitoring devices. One of the requirements for this analyzer is the mobility, so designing the power supply expects use of an alternative way of getting electricity to power the device, rather than rely on periodic supply of external energy in the form of charging batteries, etc. In this case the most suitable method to use is so-called energy harvesting – a way how to gather energy. This uses the principle of non-electric conversion of energy into electrical energy in the form of converters. The present study describes the topology design of such structures of electrostatic generator. Structure is designed and modeled as a three-dimensional silicon based MEMS. Innovative approach involving the achievement of very low resonant frequency of the structure, while the minimum area of the chip, the ability to work in all 3 axes of coordinate system and ability to be tuned to reach desired parameters proves promising directions of possible further development of this issue. The work includes simulation of electro-mechanical and electrical properties of the structure, description of its behavior in different operating modes and phases of activity. Simulation results were compared with measured values of the produced prototype chip. These results can suggest possible modifications to the proposed structure for further optimization and application environment adaptation.

  18. 3D Printers Can Provide an Added Dimension for Teaching Structure-Energy Relationships

    Science.gov (United States)

    Blauch, David N.; Carroll, Felix A.

    2014-01-01

    A 3D printer is used to prepare a variety of models representing potential energy as a function of two geometric coordinates. These models facilitate the teaching of structure-energy relationships in molecular conformations and in chemical reactions.

  19. 3D Printers Can Provide an Added Dimension for Teaching Structure-Energy Relationships

    Science.gov (United States)

    Blauch, David N.; Carroll, Felix A.

    2014-01-01

    A 3D printer is used to prepare a variety of models representing potential energy as a function of two geometric coordinates. These models facilitate the teaching of structure-energy relationships in molecular conformations and in chemical reactions.

  20. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Kuldeep, Kuldeep; Heiskanen, Arto

    2016-01-01

    to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random...... pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing...

  1. 3D RuO₂ Microsupercapacitors with Remarkable Areal Energy.

    Science.gov (United States)

    Ferris, Anaïs; Garbarino, Sébastien; Guay, Daniel; Pech, David

    2015-11-01

    Large areal capacitance electrodes made of ruthenium oxide on highly porous gold current collectors are realized by an attractive approach. The hybrid structure exhibits a capacitance in excess of 3 F cm(-2) and an areal energy density for all-solid-state microsupercapacitors that is comparable to those of microbatteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 3D-hybrid material design with electron/lithium-ion dual-conductivity for high-performance Li-sulfur batteries

    Science.gov (United States)

    Zhao, Yan; Tan, Rui; Yang, Jie; Wang, Kai; Gao, Rongtan; Liu, Dong; Liu, Yidong; Yang, Jinlong; Pan, Feng

    2017-02-01

    We report a novel 3D-hybrid cathode material with three-dimensional (3D) N-GO/CNT framework to load sulfur (77.6 wt %), and sulfonated polyaniline (SPANI) of coating layer. Used as a cathode material, it possesses a high capacity (1196 mAh g-1@0.3 A g-1@1.6 mg cm-2), excellent charging-discharging rate (680 mAh g-1@7.5 A g-1) and long-life performance (maintaining 71.1% capacity over 450 cycles), which is mainly attributed to the benefits of excellent electronic/Li-ionic dual-conductivity and confinement effect of the 3D-hybrid N-GO/CNT framework coated by self-doping conducting polymer SPANI. Thus, a 3D sulfur cathode modified with electronic/Li-ionic dual-conduction network can significantly enhance the electrochemical performance and stability, and this novel type of material is very promising for commercial applications that require high energy and power density, long life, and excellent abuse tolerance.

  3. Thoracic applications of dual energy.

    Science.gov (United States)

    Remy-Jardin, Martine; Faivre, Jean-Baptiste; Pontana, Francois; Hachulla, Anne-Lise; Tacelli, Nunzia; Santangelo, Teresa; Remy, Jacques

    2010-01-01

    Recent technological advances in multidetector computed tomography (CT) have led to the introduction of dual-source CT, which allows acquisition of CT data at the same energy or at 2 distinct tube voltage settings during a single acquisition. The advantage of the former is improvement of temporal resolution, whereas the latter offers new options for CT imaging, allowing tissue characterization and functional analysis with morphologic evaluation. The most investigated application has been iodine mapping at pulmonary CT angiography. The material decomposition achievable opens up new options for recognizing substances poorly characterized by single-energy CT. Although it is too early to draw definitive conclusions on dual-energy CT applications, this article reviews the results already reported with the first generation of dual-source CT systems.

  4. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Kuldeep, Kuldeep; Heiskanen, Arto

    2016-01-01

    Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention...... to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random...... pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing...

  5. 3D, wideband vibro-impacting-based piezoelectric energy harvester

    Directory of Open Access Journals (Sweden)

    Qiangmo Yu

    2015-04-01

    Full Text Available An impacting-based piezoelectric energy harvester was developed to address the limitations of the existing approaches in single-dimensional operation as well as a narrow working bandwidth. In the harvester, a spiral cylindrical spring rather than the conventional thin cantilever beam was utilized to extract the external vibration with arbitrary directions, which has the capability to impact the surrounding piezoelectric beams to generate electricity. And the introduced vibro-impacting between the spiral cylindrical spring and multi-piezoelectric-beams resulted in not only a three-dimensional response to external vibration, but also a bandwidth-broadening behavior. The experimental results showed that each piezoelectric beam exhibited a maximum bandwidth of 8 Hz and power of 41 μW with acceleration of 1 g (with g=9.8 ms−2 along the z-axis, and corresponding average values of 5 Hz and 45 μW with acceleration of 0.6 g in the x-y plane.

  6. 3D, wideband vibro-impacting-based piezoelectric energy harvester

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qiangmo; Yang, Jin, E-mail: yangjin@cqu.edu.cn; Yue, Xihai; Yang, Aichao; Zhao, Jiangxin; Zhao, Nian; Wen, Yumei; Li, Ping [Department of Optoelectronic Engineering, Research Center of Sensors and Instruments, Chongqing University, Chongqing 400044 (China)

    2015-04-15

    An impacting-based piezoelectric energy harvester was developed to address the limitations of the existing approaches in single-dimensional operation as well as a narrow working bandwidth. In the harvester, a spiral cylindrical spring rather than the conventional thin cantilever beam was utilized to extract the external vibration with arbitrary directions, which has the capability to impact the surrounding piezoelectric beams to generate electricity. And the introduced vibro-impacting between the spiral cylindrical spring and multi-piezoelectric-beams resulted in not only a three-dimensional response to external vibration, but also a bandwidth-broadening behavior. The experimental results showed that each piezoelectric beam exhibited a maximum bandwidth of 8 Hz and power of 41 μW with acceleration of 1 g (with g=9.8 ms{sup −2}) along the z-axis, and corresponding average values of 5 Hz and 45 μW with acceleration of 0.6 g in the x-y plane. .

  7. Hierarchical Fabrication of Engineered Vascularized Bone Biphasic Constructs via Dual 3D Bioprinting: Integrating Regional Bioactive Factors into Architectural Design.

    Science.gov (United States)

    Cui, Haitao; Zhu, Wei; Nowicki, Margaret; Zhou, Xuan; Khademhosseini, Ali; Zhang, Lijie Grace

    2016-09-01

    A biphasic artificial vascularized bone construct with regional bioactive factors is presented using dual 3D bioprinting platform technique, thereby forming a large functional bone grafts with organized vascular networks. Biocompatible mussel-inspired chemistry and "thiol-ene" click reaction are used to regionally immobilize bioactive factors during construct fabrication for modulating or improving cellular events. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Design Novel 3D Nano Architectures for Developing Ultra Fast Thermal Energy Storage Materials

    Science.gov (United States)

    2015-04-30

    AFRL-AFOSR-UK-TR-2015-0036 Design novel 3D nano-architectures for developing ultra fast thermal energy storage materials...ultra fast thermal energy storage materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8655-12-1-2014 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...ANSI Std. Z39.18 FINAL TECHNICAL REPORT Project Title : Design novel 3D nano-architectures for developing ultra fast thermal energy storage

  9. Fabricating a Shell-Core Delayed Release Tablet Using Dual FDM 3D Printing for Patient-Centred Therapy.

    Science.gov (United States)

    Okwuosa, Tochukwu C; Pereira, Beatriz C; Arafat, Basel; Cieszynska, Milena; Isreb, Abdullah; Alhnan, Mohamed A

    2017-02-01

    Individualizing gastric-resistant tablets is associated with major challenges for clinical staff in hospitals and healthcare centres. This work aims to fabricate gastric-resistant 3D printed tablets using dual FDM 3D printing. The gastric-resistant tablets were engineered by employing a range of shell-core designs using polyvinylpyrrolidone (PVP) and methacrylic acid co-polymer for core and shell structures respectively. Filaments for both core and shell were compounded using a twin-screw hot-melt extruder (HME). CAD software was utilized to design a capsule-shaped core with a complementary shell of increasing thicknesses (0.17, 0.35, 0.52, 0.70 or 0.87 mm). The physical form of the drug and its integrity following an FDM 3D printing were assessed using x-ray powder diffractometry (XRPD), thermal analysis and HPLC. A shell thickness ≥0.52 mm was deemed necessary in order to achieve sufficient core protection in the acid medium. The technology proved viable for incorporating different drug candidates; theophylline, budesonide and diclofenac sodium. XRPD indicated the presence of theophylline crystals whilst budesonide and diclofenac sodium remained amorphous in the PVP matrix of the filaments and 3D printed tablets. Fabricated tablets demonstrated gastric resistant properties and a pH responsive drug release pattern in both phosphate and bicarbonate buffers. Despite its relatively limited resolution, FDM 3D printing proved to be a suitable platform for a single-process fabrication of delayed release tablets. This work reveals the potential of dual FDM 3D printing as a unique platform for personalising delayed release tablets to suit an individual patient's needs.

  10. 3D video coding for embedded devices energy efficient algorithms and architectures

    CERN Document Server

    Zatt, Bruno; Bampi, Sergio; Henkel, Jörg

    2013-01-01

    This book shows readers how to develop energy-efficient algorithms and hardware architectures to enable high-definition 3D video coding on resource-constrained embedded devices.  Users of the Multiview Video Coding (MVC) standard face the challenge of exploiting its 3D video-specific coding tools for increasing compression efficiency at the cost of increasing computational complexity and, consequently, the energy consumption.  This book enables readers to reduce the multiview video coding energy consumption through jointly considering the algorithmic and architectural levels.  Coverage includes an introduction to 3D videos and an extensive discussion of the current state-of-the-art of 3D video coding, as well as energy-efficient algorithms for 3D video coding and energy-efficient hardware architecture for 3D video coding.     ·         Discusses challenges related to performance and power in 3D video coding for embedded devices; ·         Describes energy-efficient algorithms for reduci...

  11. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites

    Directory of Open Access Journals (Sweden)

    Marta Invernizzi

    2016-07-01

    Full Text Available Glass (GFR and carbon fiber-reinforced (CFR dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride as hardener and (2,4,6,-tris(dimethylaminomethylphenol as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

  12. A new structure of 3D dual-tree discrete wavelet transforms and applications to video denoising and coding

    Science.gov (United States)

    Shi, Fei; Wang, Beibei; Selesnick, Ivan W.; Wang, Yao

    2006-01-01

    This paper introduces an anisotropic decomposition structure of a recently introduced 3-D dual-tree discrete wavelet transform (DDWT), and explores the applications for video denoising and coding. The 3-D DDWT is an attractive video representation because it isolates motion along different directions in separate subbands, and thus leads to sparse video decompositions. Our previous investigation shows that the 3-D DDWT, compared to the standard discrete wavelet transform (DWT), complies better with the statistical models based on sparse presumptions, and gives better visual and numerical results when used for statistical denoising algorithms. Our research on video compression also shows that even with 4:1 redundancy, the 3-D DDWT needs fewer coefficients to achieve the same coding quality (in PSNR) by applying the iterative projection-based noise shaping scheme proposed by Kingsbury. The proposed anisotropic DDWT extends the superiority of isotropic DDWT with more directional subbands without adding to the redundancy. Unlike the original 3-D DDWT which applies dyadic decomposition along all three directions and produces isotropic frequency spacing, it has a non-uniform tiling of the frequency space. By applying this structure, we can improve the denoising results, and the number of significant coefficients can be reduced further, which is beneficial for video coding.

  13. Progress in 3D Printing of Carbon Materials for Energy-Related Applications.

    Science.gov (United States)

    Fu, Kun; Yao, Yonggang; Dai, Jiaqi; Hu, Liangbing

    2017-03-01

    The additive-manufacturing (AM) technique, known as three-dimensional (3D) printing, has attracted much attention in industry and academia in recent years. 3D printing has been developed for a variety of applications. Printable inks are the most important component for 3D printing, and are related to the materials, the printing method, and the structures of the final 3D-printed products. Carbon materials, due to their good chemical stability and versatile nanostructure, have been widely used in 3D printing for different applications. Good inks are mainly based on volatile solutions having carbon materials as fillers such as graphene oxide (GO), carbon nanotubes (CNT), carbon blacks, and solvent, as well as polymers and other additives. Studies of carbon materials in 3D printing, especially GO-based materials, have been extensively reported for energy-related applications. In these circumstances, understanding the very recent developments of 3D-printed carbon materials and their extended applications to address energy-related challenges and bring new concepts for material designs are becoming urgent and important. Here, recent developments in 3D printing of emerging devices for energy-related applications are reviewed, including energy-storage applications, electronic circuits, and thermal-energy applications at high temperature. To close, a conclusion and outlook are provided, pointing out future designs and developments of 3D-printing technology based on carbon materials for energy-related applications and beyond. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dual array 3D electron cyclotron emission imaging at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Classen, I. G. J., E-mail: I.G.J.Classen@differ.nl; Bogomolov, A. V. [FOM-Institute DIFFER, Dutch Institute for Fundamental Energy Research, 3430 BE Nieuwegein (Netherlands); Domier, C. W.; Luhmann, N. C. [Department of Applied Science, University of California at Davis, Davis, California 95616 (United States); Suttrop, W.; Boom, J. E. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Donné, A. J. H. [FOM-Institute DIFFER, Dutch Institute for Fundamental Energy Research, 3430 BE Nieuwegein (Netherlands); Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)

    2014-11-15

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECEI) at ASDEX Upgrade has been equipped with a second detector array, observing a different toroidal position in the plasma, to enable quasi-3D measurements of the electron temperature. The new system will measure a total of 288 channels, in two 2D arrays, toroidally separated by 40 cm. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle. The majority of the field lines are observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like edge localized mode filaments.

  15. A dual-frequency fringe projection three-dimensional shape measurement system using a DLP 3D projector

    Science.gov (United States)

    Dai, Meiling; Yang, Fujun; Liu, Cong; He, Xiaoyuan

    2017-01-01

    A dual-frequency fringe projection system for three-dimensional (3D) surface shape measurement is proposed in this paper. The system includes two cameras, a DLP 3D projector, and a liquid crystal (LC) shutter glasses. The phase information related to the object height is obtained from the dual-frequency temporal method with 3-step phase-shifting algorithm. By using the DLP 3D projector and LC shutter glasses, 3-step phase-shifting high-frequency and low-frequency fringe patterns are captured only 3 times by the two cameras synchronously. The technique of image registration is applied to low-frequency fringe patterns to guarantee the accuracy of low-frequency phase for high-frequency phase unwrapping. Using the equi-phase coordinate method based on two reference planes, the phase-to-height conversion and non-sinusoidal errors reduction are carried out in one go without any extra operation or measurement time. Experimental results demonstrate that the proposed method effectively improves the measuring speed, and it is valid for measuring surface shapes with multi-steps or discontinuities.

  16. Modelling and analysing 3D buildings with a primal/dual data structure

    NARCIS (Netherlands)

    Boguslawski, P.; Gold, C.; Ledoux, H.

    2011-01-01

    While CityGML permits us to represent 3D city models, its use for applications where spatial analysis and/or real-time modifications are required is limited since at this moment the possibility to store topological relationships between the elements is rather limited and often not exploited. We pres

  17. 3D printed 20/30-GHz dual-band offset stepped-reflector antenna

    DEFF Research Database (Denmark)

    Menendez, Laura G.; Kim, Oleksiy S.; Persson, Frank

    2015-01-01

    with a peak directivity of 36.7 dB and 40.4 dB at 20 and 30 GHz, respectively; this corresponds to an aperture efficiency of 61 % and 64 %, respectively. These results demonstrate that 3D printing is a viable manufacturing technology for medium-sized high-frequency antennas....

  18. Modelling and analysing 3D buildings with a primal/dual data structure

    NARCIS (Netherlands)

    Boguslawski, P.; Gold, C.; Ledoux, H.

    2011-01-01

    While CityGML permits us to represent 3D city models, its use for applications where spatial analysis and/or real-time modifications are required is limited since at this moment the possibility to store topological relationships between the elements is rather limited and often not exploited. We

  19. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Soumyaranjan; Sanger, Kuldeep; Heiskanen, Arto [DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby (Denmark); Trifol, Jon; Szabo, Peter [Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Søltofts Plads, Building 229, DK-2800 Kgs. Lyngby (Denmark); Dufva, Marin; Emnéus, Jenny [DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby (Denmark); Wolff, Anders, E-mail: anders.wolff@nanotech.dtu.dk [DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby (Denmark)

    2016-04-01

    Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention in tissue engineering community. Such scaffolds features primary structured pores which can efficiently enhance nutrient/oxygen supply to the surrounding, in combination with secondary random pores, which give high surface area for cell adhesion and proliferation. Here, we present a new technique to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing parameters. In this study, polydimethylsiloxane and biodegradable poly(ϵ-caprolactone) were used for fabrication. However, we show that this technique is also suitable for other biocompatible/biodegradable polymers. Various physical and mechanical properties of the dual-pore scaffolds were compared with control scaffolds with either only structured or only random pores, fabricated using previously reported methods. The fabricated dual-pore scaffolds supported high cell density, due to the random pores, in combination with uniform cell distribution throughout the scaffold, and higher cell proliferation and viability due to efficient nutrient/oxygen transport through the structured pores. In conclusion, the described fabrication technique is rapid, inexpensive, scalable, and compatible

  20. A 3D Optical Surface Profilometer Using a Dual-Frequency Liquid Crystal-Based Dynamic Fringe Pattern Generator

    Directory of Open Access Journals (Sweden)

    Kyung-Il Joo

    2016-10-01

    Full Text Available We propose a liquid crystal (LC-based 3D optical surface profilometer that can utilize multiple fringe patterns to extract an enhanced 3D surface depth profile. To avoid the optical phase ambiguity and enhance the 3D depth extraction, 16 interference patterns were generated by the LC-based dynamic fringe pattern generator (DFPG using four-step phase shifting and four-step spatial frequency varying schemes. The DFPG had one common slit with an electrically controllable birefringence (ECB LC mode and four switching slits with a twisted nematic LC mode. The spatial frequency of the projected fringe pattern could be controlled by selecting one of the switching slits. In addition, moving fringe patterns were obtainable by applying voltages to the ECB LC layer, which varied the phase difference between the common and the selected switching slits. Notably, the DFPG switching time required to project 16 fringe patterns was minimized by utilizing the dual-frequency modulation of the driving waveform to switch the LC layers. We calculated the phase modulation of the DFPG and reconstructed the depth profile of 3D objects using a discrete Fourier transform method and geometric optical parameters.

  1. Sensor for In-Motion Continuous 3D Shape Measurement Based on Dual Line-Scan Cameras.

    Science.gov (United States)

    Sun, Bo; Zhu, Jigui; Yang, Linghui; Yang, Shourui; Guo, Yin

    2016-11-18

    The acquisition of three-dimensional surface data plays an increasingly important role in the industrial sector. Numerous 3D shape measurement techniques have been developed. However, there are still limitations and challenges in fast measurement of large-scale objects or high-speed moving objects. The innovative line scan technology opens up new potentialities owing to the ultra-high resolution and line rate. To this end, a sensor for in-motion continuous 3D shape measurement based on dual line-scan cameras is presented. In this paper, the principle and structure of the sensor are investigated. The image matching strategy is addressed and the matching error is analyzed. The sensor has been verified by experiments and high-quality results are obtained.

  2. Sensor for In-Motion Continuous 3D Shape Measurement Based on Dual Line-Scan Cameras

    Directory of Open Access Journals (Sweden)

    Bo Sun

    2016-11-01

    Full Text Available The acquisition of three-dimensional surface data plays an increasingly important role in the industrial sector. Numerous 3D shape measurement techniques have been developed. However, there are still limitations and challenges in fast measurement of large-scale objects or high-speed moving objects. The innovative line scan technology opens up new potentialities owing to the ultra-high resolution and line rate. To this end, a sensor for in-motion continuous 3D shape measurement based on dual line-scan cameras is presented. In this paper, the principle and structure of the sensor are investigated. The image matching strategy is addressed and the matching error is analyzed. The sensor has been verified by experiments and high-quality results are obtained.

  3. Energy-based scatter correction for 3-D PET scanners using NaI(T1) detectors.

    Science.gov (United States)

    Adam, L E; Karp, J S; Freifelder, R

    2000-05-01

    Earlier investigations with BGO positron emission tomography (PET) scanners showed that the scatter correction technique based on multiple acquisitions with different energy windows are problematic to implement because of the poor energy resolution of BGO (22%), particularly for whole-body studies. We believe that these methods are likely to work better with NaI(TI) because of the better energy resolution achievable with NaI(TI) detectors (10%). Therefore, we investigate two different choices for the energy window, a low-energy window (LEW) on the Compton spectrum at 400-450 keV, and a high-energy window (HEW) within the photopeak (lower threshold above 511 keV). The results obtained for our three-dimensional (3-D) (septa-less) whole-body scanners [axial field of view (FOV) of 12.8 cm and 25.6 cm] as well as for our 3-D brain scanner (axial FOV of 25.6 cm) show an accurate prediction of the scatter distribution for the estimation of trues method (ETM) using a HEW, leading to a significant reduction of the scatter contamination. The dual-energy window (DEW) technique using a LEW is shown to be intrinsically wrong; in particular, it fails for line source and bar phantom measurements. However, the method is able to produce good results for homogeneous activity distributions. Both methods are easy to implement, are fast, have a low noise propagation, and will be applicable to other PET scanners with good energy resolution and stability, such as hybrid NaI(TI) PET/SPECT dual-head cameras and future PET cameras with GSO or LSO scintillators.

  4. Dual Langmuir-probe array for 3D plasma studies in TORPEX

    Science.gov (United States)

    Baquero-Ruiz, M.; Avino, F.; Chellai, O.; Fasoli, A.; Furno, I.; Jacquier, R.; Manke, F.; Patrick, S.

    2016-11-01

    We have designed and installed a new Langmuir-probe (LP) array diagnostic to determine basic three-dimensional (3D) features of plasmas in TORPEX. The diagnostic consists of two identical LP arrays, placed on opposite sides of the apparatus, which provide comprehensive coverage of the poloidal cross section at the two different toroidal locations. Cross correlation studies of signals from the arrays provide a basic way to extract 3D information from the plasmas, as experiments show. Moreover, the remarkable signal-to-noise performance of the front-end electronics allows us to follow a different approach in which we combine information from all probes in both arrays to reconstruct elementary 3D plasma structures at each acquisition time step. Then, through data analysis, we track the structures as they evolve in time. The LP arrays include a linear-motion mechanism that can displace radially the probes located on the low field side for experiments that require fine-tuning of the probe locations, and for operational compatibility with the recently installed in-vessel toroidal conductor.

  5. Impulse Turbine with 3D Guide Vanes for Wave Energy Conversion

    Institute of Scientific and Technical Information of China (English)

    Manabu TAKAO; Toshiaki SETOGUCHI; Kenji KANEKO; Shuichi NAGATA

    2006-01-01

    In this study, in order to achieve further improvement of the performance of an impulse turbine with fixed guide vanes for wave energy conversion, the effect of guide vane shape on the performance was investigated by experiment. The investigation was performed by model testing under steady flow condition. As a result, it was found that the efficiency of the turbine with 3D guide vanes are slightly superior to that of the turbine with 2D guide vanes because of the increase of torque by means of 3D guide vane, though pressure drop across the turbine for the 3D case is slightly higher than that for the 2D case.

  6. Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids

    CERN Document Server

    Słomka, Jonasz

    2016-01-01

    Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex-mergers exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present direct analytical and numerical evidence for the existence of a robust inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror-symmetry. We show analytically that self-organized scale selection, a generic feature ...

  7. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.

    Science.gov (United States)

    Mohanty, Soumyaranjan; Sanger, Kuldeep; Heiskanen, Arto; Trifol, Jon; Szabo, Peter; Dufva, Marin; Emnéus, Jenny; Wolff, Anders

    2016-04-01

    Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention in tissue engineering community. Such scaffolds features primary structured pores which can efficiently enhance nutrient/oxygen supply to the surrounding, in combination with secondary random pores, which give high surface area for cell adhesion and proliferation. Here, we present a new technique to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing parameters. In this study, polydimethylsiloxane and biodegradable poly(ϵ-caprolactone) were used for fabrication. However, we show that this technique is also suitable for other biocompatible/biodegradable polymers. Various physical and mechanical properties of the dual-pore scaffolds were compared with control scaffolds with either only structured or only random pores, fabricated using previously reported methods. The fabricated dual-pore scaffolds supported high cell density, due to the random pores, in combination with uniform cell distribution throughout the scaffold, and higher cell proliferation and viability due to efficient nutrient/oxygen transport through the structured pores. In conclusion, the described fabrication technique is rapid, inexpensive, scalable, and compatible

  8. US-CT 3D dual imaging by mutual display of the same sections for depicting minor changes in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hiroyuki, E-mail: fukuhiro1962@hotmail.com [International HIFU Center, Sanmu Medical Center Hospital, Naruto 167, Sanbu-shi, Chiba 289-1326 (Japan); Ito, Ryu; Ohto, Masao; Sakamoto, Akio [International HIFU Center, Sanmu Medical Center Hospital, Naruto 167, Sanbu-shi, Chiba 289-1326 (Japan); Otsuka, Masayuki; Togawa, Akira; Miyazaki, Masaru [Department of General Surgery, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi, Chiba 260-0856 (Japan); Yamagata, Hitoshi [Toshiba Medical Systems Corporation, Otawara 324-0036 (Japan)

    2012-09-15

    The purpose of this study was to evaluate the usefulness of ultrasound-computed tomography (US-CT) 3D dual imaging for the detection of small extranodular growths of hepatocellular carcinoma (HCC). The clinical and pathological profiles of 10 patients with single nodular type HCC with extranodular growth (extranodular growth) who underwent a hepatectomy were evaluated using two-dimensional (2D) ultrasonography (US), three-dimensional (3D) US, 3D computed tomography (CT) and 3D US-CT dual images. Raw 3D data was converted to DICOM (Digital Imaging and Communication in Medicine) data using Echo to CT (Toshiba Medical Systems Corp., Tokyo, Japan), and the 3D DICOM data was directly transferred to the image analysis system (ZioM900, ZIOSOFT Inc., Tokyo, Japan). By inputting the angle number (x, y, z) of the 3D CT volume data into the ZioM900, multiplanar reconstruction (MPR) images of the 3D CT data were displayed in a manner such that they resembled the conventional US images. Eleven extranodular growths were detected pathologically in 10 cases. 2D US was capable of depicting only 2 of the 11 extranodular growths. 3D CT was capable of depicting 4 of the 11 extranodular growths. On the other hand, 3D US was capable of depicting 10 of the 11 extranodular growths, and 3D US-CT dual images, which enable the dual analysis of the CT and US planes, revealed all 11 extranodular growths. In conclusion, US-CT 3D dual imaging may be useful for the detection of small extranodular growths.

  9. A Review on Energy Harvesting Using 3D Printed Fabrics for Wearable Electronics

    Science.gov (United States)

    Gowthaman, Swaminathan; Chidambaram, Gowri Shankar; Rao, Dilli Babu Govardhana; Subramya, Hemakumar Vyudhayagiri; Chandrasekhar, Udhayagiri

    2016-06-01

    Embedding of energy harvesting systems into wearable health and environment monitoring systems, like integration of smart piezoelectric fibers into soldier fabric structures opens up avenues in generating electricity from natural mechanical movements for self-powering of wearable electronics. Emergence of multitudinous of materials and manufacturing technologies has enabled realization of various energy harvesting systems from mechanical movements. The materials and manufacturing related to 3D printing of energy harvesting fabrics are reviewed in this paper. State-of-the-art energy harvesting sources are briefly described following which an in-depth analysis on the materials and 3D printing techniques for energy harvesting fabrics are presented. While tremendous motivation and opportunity exists for wider-scale adoption of 3D printing for this niche area, the success depends on efficient design of three critical factors namely materials, process and structure. The present review discusses on the complex issues of materials selection, modelling and processing of 3D printed fabrics. The paper culminates by presenting a discussion on how future advancements in 3D printing technology might be useful for development of wearable electronics.

  10. Efficient 3D multi-region prostate MRI segmentation using dual optimization.

    Science.gov (United States)

    Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron

    2013-01-01

    Efficient and accurate extraction of the prostate, in particular its clinically meaningful sub-regions from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, we propose a novel multi-region segmentation approach to simultaneously locating the boundaries of the prostate and its two major sub-regions: the central gland and the peripheral zone. The proposed method utilizes the prior knowledge of the spatial region consistency and employs a customized prostate appearance model to simultaneously segment multiple clinically meaningful regions. We solve the resulted challenging combinatorial optimization problem by means of convex relaxation, for which we introduce a novel spatially continuous flow-maximization model and demonstrate its duality to the investigated convex relaxed optimization problem with the region consistency constraint. Moreover, the proposed continuous max-flow model naturally leads to a new and efficient continuous max-flow based algorithm, which enjoys great advantages in numerics and can be readily implemented on GPUs. Experiments using 15 T2-weighted 3D prostate MR images, by inter- and intra-operator variability, demonstrate the promising performance of the proposed approach.

  11. Dual-projection 3D-2D registration for surgical guidance: preclinical evaluation of performance and minimum angular separation

    Science.gov (United States)

    Uneri, A.; Otake, Y.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Gallia, G. L.; Rigamonti, D.; Wolinsky, J.-P.; Gokaslan, Ziya L.; Khanna, A. J.; Siewerdsen, J. H.

    2014-03-01

    An algorithm for 3D-2D registration of CT and x-ray projections has been developed using dual projection views to provide 3D localization with accuracy exceeding that of conventional tracking systems. The registration framework employs a normalized gradient information (NGI) similarity metric and covariance matrix adaptation evolution strategy (CMAES) to solve for the patient pose in 6 degrees of freedom. Registration performance was evaluated in anthropomorphic head and chest phantoms, as well as a human torso cadaver, using C-arm projection views acquired at angular separations (Δ𝜃) ranging 0-178°. Registration accuracy was assessed in terms target registration error (TRE) and compared to that of an electromagnetic tracker. Studies evaluated the influence of C-arm magnification, x-ray dose, and preoperative CT slice thickness on registration accuracy and the minimum angular separation required to achieve TRE ~2 mm. The results indicate that Δ𝜃 as small as 10-20° is adequate to achieve TRE registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers, and manual registration. The studies support potential application to percutaneous spine procedures and intracranial neurosurgery.

  12. 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection.

    Science.gov (United States)

    Inzana, J A; Trombetta, R P; Schwarz, E M; Kates, S L; Awad, H A

    2015-11-04

    Surgical implant-associated bone infections (osteomyelitis) have severe clinical and socioeconomic consequences. Treatment of chronic bone infections often involves antibiotics given systemically and locally to the affected site in poly (methyl methacrylate) (PMMA) bone cement. Given the high antibiotic concentrations required to affect bacteria in biofilm, local delivery is important to achieve high doses at the infection site. PMMA is not suitable to locally-deliver some biofilm-specific antibiotics, including rifampin, due to interference with PMMA polymerisation. To examine the efficacy of localised, combinational antibiotic delivery compared to PMMA standards, we fabricated rifampin- and vancomycin-laden calcium phosphate scaffolds (CPS) by three-dimensional (3D) printing to treat an implant-associated Staphylococcus aureus bone infection in a murine model. All vancomycin- and rifampin-laden CPS treatments significantly reduced the bacterial burden compared with vancomycin-laden PMMA. The bones were bacteria culture negative in 50 % of the mice that received sustained release vancomycin- and rifampin-laden CPS. In contrast, 100 % of the bones treated with vancomycin monotherapy using PMMA or CPS were culture positive. Yet, the monotherapy CPS significantly reduced the bacterial metabolic load following revision compared to PMMA. Biofilm persisted on the fixation hardware, but the infection-induced bone destruction was significantly reduced by local rifampin delivery. These data demonstrate that, despite the challenging implant-retaining infection model, co-delivery of rifampin and vancomycin from 3D printed CPS, which is not possible with PMMA, significantly improved the outcomes of implant-associated osteomyelitis. However, biofilm persistence on the fixation hardware reaffirms the importance of implant exchange or other biofilm eradication strategies to complement local antibiotics.

  13. Continuous-energy eigenvalue sensitivity coefficient calculations in TSUNAMI-3D

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, C. M.; Rearden, B. T. [Oak Ridge National Laboratory, Reactor and Nuclear Systems Division, P.O. Box 2008, Oak Ridge, TN 37831-6170 (United States)

    2013-07-01

    Two methods for calculating eigenvalue sensitivity coefficients in continuous-energy Monte Carlo applications were implemented in the KENO code within the SCALE code package. The methods were used to calculate sensitivity coefficients for several test problems and produced sensitivity coefficients that agreed well with both reference sensitivities and multigroup TSUNAMI-3D sensitivity coefficients. The newly developed CLUTCH method was observed to produce sensitivity coefficients with high figures of merit and a low memory footprint, and both continuous-energy sensitivity methods met or exceeded the accuracy of the multigroup TSUNAMI-3D calculations. (authors)

  14. Single Lens Dual-Aperture 3D Imaging System: Color Modeling

    Science.gov (United States)

    Bae, Sam Y.; Korniski, Ronald; Ream, Allen; Fritz, Eric; Shearn, Michael

    2012-01-01

    In an effort to miniaturize a 3D imaging system, we created two viewpoints in a single objective lens camera. This was accomplished by placing a pair of Complementary Multi-band Bandpass Filters (CMBFs) in the aperture area. Two key characteristics about the CMBFs are that the passbands are staggered so only one viewpoint is opened at a time when a light band matched to that passband is illuminated, and the passbands are positioned throughout the visible spectrum, so each viewpoint can render color by taking RGB spectral images. Each viewpoint takes a different spectral image from the other viewpoint hence yielding a different color image relative to the other. This color mismatch in the two viewpoints could lead to color rivalry, where the human vision system fails to resolve two different colors. The difference will be closer if the number of passbands in a CMBF increases. (However, the number of passbands is constrained by cost and fabrication technique.) In this paper, simulation predicting the color mismatch is reported.

  15. E, B, μ, T phase structure of the D3/D7 holographic dual

    Science.gov (United States)

    Evans, Nick; Gebauer, Astrid; Kim, Keun-Young

    2011-05-01

    The large N mathcal{N} = 4 gauge theory with quenched mathcal{N} = 2 quark matter displays chiral symmetry breaking in the presence of a magnetic field. We previously studied the temperature and chemical potential phase structure of this theory in the grand canonical ensemble-here we, in addition, include the effect of an electric field which acts to counter chiral symmetry breaking by dissociating mesons. We compute using the gravity dual based on the D3/probe-D7 brane system. The theory displays two transition at one of which chiral symmetry is restored. At the other transition density switches on, the mesons of the theory become unstable and a current forms, making it a conductor-insulator transition. Through the temperature, electric field, chemical potential volume (at fixed magnetic field parallel to the electric field) these transitions can coincide or separate at critical points, and be first order or second order. We map out this full phase structure which provides varied computable examples relevant to strongly coupled gauge theories and potentially condensed matter systems.

  16. E, B, \\mu, T Phase Structure of the D3/D7 Holographic Dual

    CERN Document Server

    Evans, Nick; Kim, Keun-Young

    2011-01-01

    The large N_c N=4 gauge theory with quenched N=2 quark matter displays chiral symmetry breaking in the presence of a magnetic field. We previously studied the temperature and chemical potential phase structure of this theory in the grand canonical ensemble - here we, in addition, include the effect of an electric field which acts to counter chiral symmetry breaking by disassociating mesons. We compute using the gravity dual based on the D3/probe-D7 brane system. The theory displays two transition at one of which chiral symmetry is restored. At the other transition density switches on, the mesons of the theory become unstable and a current forms, making it a conductor-insulator transition. Through the temperature, electric field, chemical potential volume (at fixed magnetic field parallel to the electric field) these transitions can coincide or separate at critical points, and be first order or second order. We map out this full phase structure which provides varied computable examples relevant to strongly cou...

  17. Finite-size scaling of interface free energies in the 3d Ising model

    CERN Document Server

    Pepé, M; Forcrand, Ph. de

    2002-01-01

    We perform a study of the universality of the finite size scaling functions of interface free energies in the 3d Ising model. Close to the hot/cold phase transition, we observe very good agreement with the same scaling functions of the 4d SU(2) Yang--Mills theory at the deconfinement phase transition.

  18. Finite-size scaling of interface free energies in the 3d Ising model

    OpenAIRE

    Pepe, M.; de Forcrand, Ph.

    2001-01-01

    We perform a study of the universality of the finite size scaling functions of interface free energies in the 3d Ising model. Close to the hot/cold phase transition, we observe very good agreement with the same scaling functions of the 4d SU(2) Yang--Mills theory at the deconfinement phase transition.

  19. A 3D City Model as User Interface Connected to an Energy Model

    DEFF Research Database (Denmark)

    Kjems, Erik; Østergaard, Poul Alberg

    2014-01-01

    production of the city using sliders and buttons as part of the interface. While the 3D model gives an immediate visual result, a connection to an underlying numerical energy model developed in earlier years at the University delivers a quite precise calculation on all vital data involved in the overall...

  20. Hybrid C-nanotubes/Si 3D nanostructures by one-step growth in a dual-plasma reactor

    Science.gov (United States)

    Toschi, Francesco; Orlanducci, Silvia; Guglielmotti, Valeria; Cianchetta, Ilaria; Magni, Corrado; Terranova, Maria Letizia; Pasquali, Matteo; Tamburri, Emanuela; Matassa, Roberto; Rossi, Marco

    2012-06-01

    Hybrid nanostructures consisting of Si polycrystalline nanocones, with an anemone-like termination coated with C-nanotubes bundles, have been generated on a (1 0 0) Si substrate in a dual mode microwave/radio-frequency plasma reactor. The substrate is both heated and bombarded by energetic H ions during the synthesis process. The nanocones growth is explained considering pull of the growing Si nanocrystalline phase along the lines of the electrical field, likely via a molten/recrystallization mechanism. The one-step building of the achieved complex 3D architectures is described in terms of dynamic competition between Si and C nanotubes growth under the peculiar conditions of kinetically driven processes.

  1. Powering an in-space 3D printer using solar light energy

    Science.gov (United States)

    Leake, Skye; McGuire, Thomas; Parsons, Michael; Hirsch, Michael P.; Straub, Jeremy

    2016-05-01

    This paper describes how a solar power source can enable in-space 3D printing without requiring conversion to electric power and back. A design for an in-space 3D printer is presented, with a particular focus on the power generation system. Then, key benefits are presented and evaluated. Specifically, the approach facilitates the design of a spacecraft that can be built, launched, and operated at very low cost levels. The proposed approach also facilitates easy configuration of the amount of energy that is supplied. Finally, it facilitates easier disposal by removing the heavy metals and radioactive materials required for a nuclear-power solution.

  2. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging.

    Science.gov (United States)

    Schmidgunst, C; Ritter, D; Lang, E

    2007-09-01

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems, (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  3. Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer

    Science.gov (United States)

    Roberts, R. C.; Wu, J.; Hau, N. Y.; Chang, Y. H.; Feng, S. P.; Li, D. C.

    2014-11-01

    This paper reports on a simple 3D metal electrode fabrication technique via inkjet printing onto a thermally contracting shape memory polymer (SMP) substrate. Inkjet printing allows for the direct patterning of structures from metal nanoparticle bearing liquid inks. After deposition, these inks require thermal curing steps to render a stable conductive film. By printing onto a SMP substrate, the metal nanoparticle ink can be cured and substrate shrunk simultaneously to create 3D metal microstructures, forming a large surface area topology well suited for energy applications. Polystyrene SMP shrinkage was characterized in a laboratory oven from 150-240°C, resulting in a size reduction of 1.97-2.58. Silver nanoparticle ink was patterned into electrodes, shrunk, and the topology characterized using scanning electron microscopy. Zinc-Silver Oxide microbatteries were fabricated to demonstrate the 3D electrodes compared to planar references. Characterization was performed using 10M potassium hydroxide electrolyte solution doped with zinc oxide (57g/L). After a 300s oxidation at 3Vdc, the 3D electrode battery demonstrated a 125% increased capacity over the reference cell. Reference cells degraded with longer oxidations, but the 3D electrodes were fully oxidized for 4 hours, and exhibited a capacity of 5.5mA-hr/cm2 with stable metal performance.

  4. Rise time of proton cut-off energy in 2D and 3D PIC simulations

    Science.gov (United States)

    Babaei, J.; Gizzi, L. A.; Londrillo, P.; Mirzanejad, S.; Rovelli, T.; Sinigardi, S.; Turchetti, G.

    2017-04-01

    The Target Normal Sheath Acceleration regime for proton acceleration by laser pulses is experimentally consolidated and fairly well understood. However, uncertainties remain in the analysis of particle-in-cell simulation results. The energy spectrum is exponential with a cut-off, but the maximum energy depends on the simulation time, following different laws in two and three dimensional (2D, 3D) PIC simulations so that the determination of an asymptotic value has some arbitrariness. We propose two empirical laws for the rise time of the cut-off energy in 2D and 3D PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge distribution on the target rear side. The kinetic energy of the protons that we obtain follows two distinct laws, which appear to be nicely satisfied by PIC simulations, for a model target given by a uniform foil plus a contaminant layer that is hydrogen-rich. The laws depend on two parameters: the scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the cut-off energy, obtained by fitting 2D and 3D simulations for the same target and laser pulse configuration, are comparable. This suggests that parametric scans can be performed with 2D simulations since 3D ones are computationally very expensive, delegating their role only to a correspondence check. In this paper, the simulations are carried out with the PIC code ALaDyn by changing the target thickness L and the incidence angle α, with a fixed a0 = 3. A monotonic dependence, on L for normal incidence and on α for fixed L, is found, as in the experimental results for high temporal contrast pulses.

  5. A 3D City Model Used as User-interface for an Energy-system

    DEFF Research Database (Denmark)

    Kjems, Erik

    2011-01-01

    and the overall results after the system has been used at the Bright Green Exhibition connected to the COP15 conference in Copenhagen. This paper presents the empirical findings of the attempt to use a 3D city model as user-interface. The system gave the user the possibility to try out different scenarios...... of combinations of the energy-consumption and energy-production for an entire city. The interface was supposed to help especially nonprofessionals, among them politicians, to better perceive the numbers and graphs adjoining the 3D model in a combined view. Only very few systems have been developed for this kind...... of interaction, why the design guide lines for this development was a mix of believe and trial and error. To minimize the developing time and induce a steeper learning curve, it was obvious to use similar techniques for the different inputs and controls. Though the energy model, behind the visualization, could...

  6. A 3D City Model Used as User-interface for an Energy-System

    DEFF Research Database (Denmark)

    Kjems, Erik; Wen, Wan

    and the overall results after the system has been used at the Bright Green Exhibition connected to the COP15 conference in Copenhagen. This paper presents the empirical findings of the attempt to use a 3D city model as user-interface. The system gave the user the possibility to try out different scenarios...... of combinations of the energy-consumption and energy-production for an entire city. The interface was supposed to help especially nonprofessionals, among them politicians, to better perceive the numbers and graphs adjoining the 3D model in a combined view. Only very few systems have been developed for this kind...... of interaction, why the design guide lines for this development was a mix of believe and trial and error. To minimize the developing time and induce a steeper learning curve, it was obvious to use similar techniques for the different inputs and controls. Though the energy model, behind the visualization, could...

  7. Energy Efficient Run-Time Incremental Mapping for 3-D Networks-on-Chip

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hang Wang; Peng Liu; Mei Yang; Maurizio Palesi; Ying-Tao Jiang; Michael C Huang

    2013-01-01

    3-D Networks-on-Chip (NoC) emerge as a potent solution to address both the interconnection and design complexity problems facing future Multiprocessor System-on-Chips (MPSoCs).Effective run-time mapping on such 3-D NoC-based MPSoCs can be quite challenging,as the arrival order and task graphs of the target applications are typically not known a priori,which can be further complicated by stringent energy requirements for NoC systems.This paper thus presents an energy-aware run-time incremental mapping algorithm (ERIM) for 3-D NoC which can minimize the energy consumption due to the data communications among processor cores,while reducing the fragmentation effect on the incoming applications to be mapped,and simultaneously satisfying the thermal constraints imposed on each incoming application.Specifically,incoming applications are mapped to cuboid tile regions for lower energy consumption of communication and the minimal routing.Fragment tiles due to system fragmentation can be gleaned for better resource utilization.Extensive experiments have been conducted to evaluate the performance of the proposed algorithm ERIM,and the results are compared against the optimal mapping algorithm (branch-and-bound) and two heuristic algorithms (TB and TL).The experiments show that ERIM outperforms TB and TL methods with significant energy saving (more than 10%),much reduced average response time,and improved system utilization.

  8. Electricity Generation with the Novel 3D Electrode from Swim Wastewater in a Dual-chamber Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Lai Mei-Feng

    2016-01-01

    Full Text Available The swine wastewater has the characteristics of high concentration of organic matter, suspended solids and more high ammonia nitrogen, odor, complex pollution ingredient and large emissions. Microbial fuel cells (MFC is an electrochemical and biological systems related to chemical energy into electrical energy. A two-chambered cubic microbial fuel cell was used to evaluate the effect of a novel 3D electrode which made of iron and copper on the electricity generation. The swine wastewater containing total chemical oxygen demand (TCOD 3300±300 mg/L was used as the feedstock in anode chamber, and the potassium ferricyanide was used as electron acceptor in cathode chamber. The MFC reactor was incubated with the initial pH 7.0 in a air-shaker with a temperature (ca. 35°C and 100 rpm in fed-batch mode. A fixed external resistance (R of 100 Ω was connected between the electrodes and the closed circuit potentials of the MFCs were recorded every 2 min. The results show that using iron 3D electrode has the peak electricity generation of 176 mV at the first two day and maintained the stable electricity voltage of 110 mV during the 5th to 15th days. The COD removal efficiency could reach 80%. Using copper 3D electrode only can generate the peak electricity of 33.1 mV and stable electricity of 27 mV with the COD removal efficiency of 70%.

  9. Energy fluctuations and the singularity of specific heat in a 3D Ising model

    Science.gov (United States)

    Kaupuzs, Jevgenijs

    2004-05-01

    We study the energy fluctuations in 3D Ising model near the phase transition point. Specific heat is a relevant quantity which is directly related to the mean squared amplitude of the energy fluctuations in the system. We have made extensive Monte Carlo simulations in 3D Ising model to clarify the character of the singularity of the specific heat Cv based on the finite-size scaling of its maximal values Cvmax depending on the linear size of the lattice L. An original iterative method has been used which automatically finds the pseudocritical temperature corresponding to the maximum of Cv. The simulations made up to L Wolff's cluster algorithm allowed us to verify the possible power-like as well as logarithmic singularity of the specific heat predicted by different theoretical treatments. The most challenging and interesting result we have obtained is that the finite-size scaling of Cvmax in 3D Ising model is well described by a logarithmic rather than power-like ansatz, just like in 2D case. Another modification of our iterative method has been considered to estimate the critical coupling of 3D Ising model from the Binder cumulant data within L ɛ [96; 384]. Furthermore, the critical exponent β has been evaluated from the simulated magnetization data within the range of reduced temperatures t >= 0.000086 and system sizes L <= 410.

  10. A GIS-based 3D online information system for underground energy storage in northern Germany

    Science.gov (United States)

    Nolde, Michael; Malte, Schwanebeck; Ehsan, Biniyaz; Rainer, Duttmann

    2015-04-01

    We would like to present the concept and current state of development of a GIS-based 3D online information system for underground energy storage. Its aim is to support the local authorities through pre-selection of possible sites for thermal, electrical and substantial underground energy storages. Since the extension of renewable energies has become legal requirement in Germany, the underground storing of superfluously produced green energy (such as during a heavy wind event) in the form of compressed air, gas or heated water has become increasingly important. However, the selection of suitable sites is a complex task. The presented information system uses data of geological features such as rock layers, salt domes and faults enriched with attribute data such as rock porosity and permeability. This information is combined with surface data of the existing energy infrastructure, such as locations of wind and biogas stations, powerline arrangement and cable capacity, and energy distribution stations. Furthermore, legal obligations such as protected areas on the surface and current underground mining permissions are used for the process of pre-selecting sites suitable for energy storage. Not only the current situation but also prospective scenarios, such as expected growth in produced amount of energy are incorporated in the system. While the process of pre-selection itself is completely automated, the user has full control of the weighting of the different factors via the web interface. The system is implemented as an online 3D server GIS environment, so that it can easily be utilized in any web browser. The results are visualized online as interactive 3d graphics. The information system is implemented in the Python programming language in combination with current Web standards, and is build using only free and open source software. It is being developed at Kiel University as part of the ANGUS+ project (lead by Prof. Sebastian Bauer) for the federal state of

  11. Implementing a 3D histogram version of the Energy-Test in ROOT

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E.O., E-mail: cohen.erez7@gmail.com [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Reid, I.D., E-mail: ivan.reid@brunel.ac.uk [College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH (United Kingdom); Piasetzky, E., E-mail: eip@tauphy.tau.ac.il [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2016-08-21

    Comparing simulation and data histograms is of interest in nuclear and particle physics experiments; however, the leading three-dimensional histogram comparison tool available in ROOT, the 3D Kolmogorov–Smirnov test, exhibits shortcomings. Throughout the following, we present and discuss the implementation of an alternative comparison test for three-dimensional histograms, based on the Energy-Test by Aslan and Zech. The software package can be found at (http://www-nuclear.tau.ac.il/ecohen/).

  12. Rise time of proton cut-off energy in 2D and 3D PIC simulations

    CERN Document Server

    Babaei, Javad; Londrillo, Pasquale; Mirzanejad, Saeed; Rovelli, Tiziano; Sinigardi, Stefano; Turchetti, Giorgio

    2016-01-01

    The Target Normal Sheath Acceleration (TNSA) regime for proton acceleration by laser pulses is experimentally consolidated and fairly well understood. However, uncertainties remain in the analysis of particle-in-cell (PIC) simulation results. The energy spectrum is exponential with a cut-off, but the maximum energy depends on the simulation time, following different laws in two and three dimensional (2D, 3D) PIC simulations, so that the determination of an asymptotic value has some arbitrariness. We propose two empirical laws for rise time of the cut-off energy in 2D and 3D PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge distribution on the target rear side. The kinetic energy of the protons that we obtain follows two distinct laws, which appear to be nicely satisfied by PIC simulations. The laws depend on two parameters: the scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the cut-off energy, obtained by fitti...

  13. The research of 3D visualization techniques for the test of laser energy distribution

    Science.gov (United States)

    Liu, Lixin; Wang, Bo

    2013-07-01

    In the process of laser transmission in the atmosphere, the complexity and instability of the atmospheric composition that seriously interfere with, even change, the performance of the laser beam. The image of laser energy distribution can be captured and analyzed through infrared CCD and digital image processing technology. The basic features of laser energy density distribution, such as the location and power of the peak point and other basic parameters could be acquired; laser energy density distribution can display in real time continuous multi-frame; the 3D visualization of pseudo-color for laser energy density distribution could be displayed, that reflect the relative size and position of the energy distribution in the different regions of the laser spot, using the VC++, windows APIs and OpenGL programming. The laser energy density distribution can be observed from all angles.

  14. On a consistent finite-strain plate theory based on 3-D energy principle

    CERN Document Server

    Dai, Hui-Hui

    2014-01-01

    This paper derives a finite-strain plate theory consistent with the principle of stationary three-dimensional (3-D) potential energy under general loadings with a third-order error. Staring from the 3-D nonlinear elasticity (with both geometrical and material nonlinearity) and by a series expansion, we deduce a vector plate equation with three unknowns, which exhibits the local force-balance structure. The success relies on using the 3-D field equations and bottom traction condition to derive exact recursion relations for the coefficients. Associated weak formulations are considered, leading to a 2-D virtual work principle. An alternative approach based on a 2-D truncated energy is also provided, which is less consistent than the first plate theory but has the advantage of the existence of a 2-D energy function. As an example, we consider the pure bending problem of a hyperelastic block. The comparison between the analytical plate solution and available exact one shows that the plate theory gives second-order...

  15. Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks.

    Science.gov (United States)

    Komathi, S; Muthuchamy, N; Lee, K-P; Gopalan, A-I

    2016-10-15

    Herein, we fabricated a novel electrochemical-photoelectrochemical (PEC) dual-mode cholesterol biosensor based on graphene (G) sheets interconnected-graphene embedded titanium nanowires (TiO2(G)-NWs) 3D nanostacks (designated as G/Ti(G) 3DNS) by exploiting the beneficial characteristics of G and TiO2-NWs to achieve good selectivity and high sensitivity for cholesterol detection. The G/Ti(G) 3DNS was fabricated by the reaction between functionalized G and TiO2(G)-NWs. Cholesterol oxidase (ChOx) was subsequently immobilized in to G/Ti(G) 3DNS using chitosan (CS) as the binder and the dual mode G/Ti(G) 3DNS/CS/ChOx biosensor was fabricated. The electro-optical properties of the G/Ti(G) 3DNS/CS/ChOx bioelectrode were characterized by cyclic voltammetry and UV-vis diffuse reflection spectroscopy. The cyclic voltammetry of immobilized ChOx showed a pair of well-defined redox peaks indicating direct electron transfer (DET) of ChOx. The amperometric reduction peak current (at -0.05V) linearly increased with increase in cholesterol concentration. The G/Ti(G) 3DNS/CS/ChOx bioelectrode was selective to cholesterol with a remarkable sensitivity (3.82μA/cm(2)mM) and a lower detection limit (6μM). Also, G/Ti(G) 3DNS/CS/ChOx functioned as photoelectrode and exhibited selective detection of cholesterol under a low bias voltage and light irradiation. Kinetic parameters, reproducibility, repeatability, storage stability and effect of temperature and pH were evaluated. We envisage that G/Ti(G) 3DNS with its prospective characteristics, would be a promising material for wide range of biosensing applications.

  16. SCALE 6.2 Continuous-Energy TSUNAMI-3D Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, Christopher M [ORNL; Rearden, Bradley T [ORNL

    2015-01-01

    The TSUNAMI (Tools for Sensitivity and UNcertainty Analysis Methodology Implementation) capabilities within the SCALE code system make use of sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different systems, quantifying computational biases, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved ease of use and fidelity and the desire to extend TSUNAMI analysis to advanced applications have motivated the development of a SCALE 6.2 module for calculating sensitivity coefficients using three-dimensional (3D) continuous-energy (CE) Monte Carlo methods: CE TSUNAMI-3D. This paper provides an overview of the theory, implementation, and capabilities of the CE TSUNAMI-3D sensitivity analysis methods. CE TSUNAMI contains two methods for calculating sensitivity coefficients in eigenvalue sensitivity applications: (1) the Iterated Fission Probability (IFP) method and (2) the Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Track length importance CHaracterization (CLUTCH) method. This work also presents the GEneralized Adjoint Response in Monte Carlo method (GEAR-MC), a first-of-its-kind approach for calculating adjoint-weighted, generalized response sensitivity coefficients—such as flux responses or reaction rate ratios—in CE Monte Carlo applications. The accuracy and efficiency of the CE TSUNAMI-3D eigenvalue sensitivity methods are assessed from a user perspective in a companion publication, and the accuracy and features of the CE TSUNAMI-3D GEAR-MC methods are detailed in this paper.

  17. CONTINUOUS-ENERGY MONTE CARLO METHODS FOR CALCULATING GENERALIZED RESPONSE SENSITIVITIES USING TSUNAMI-3D

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, Christopher M [ORNL; Rearden, Bradley T [ORNL

    2014-01-01

    This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.

  18. A 3D City Model as User Interface Connected to an Energy Model

    DEFF Research Database (Denmark)

    Kjems, Erik; Østergaard, Poul Alberg

    2014-01-01

    Back in 2007 the municipality of Frederikshavn in Northern Jutland in Denmark decided to use only 100% renewable energy for electricity, heat and transport by the year of 2015. Frederikshavn, the largest city in the municipality, was naturally chosen as case city. To be able to verify whether...... production of the city using sliders and buttons as part of the interface. While the 3D model gives an immediate visual result, a connection to an underlying numerical energy model developed in earlier years at the University delivers a quite precise calculation on all vital data involved in the overall...

  19. Enabling Energy-Awareness in the Semantic 3d City Model of Vienna

    Science.gov (United States)

    Agugiaro, G.

    2016-09-01

    This paper presents and discusses the first results regarding selection, analysis, preparation and eventual integration of a number of energy-related datasets, chosen in order to enrich a CityGML-based semantic 3D city model of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. The still-in-development Energy Application Domain Extension (ADE) is a CityGML extension conceived to specifically model, manage and store energy-related features and attributes for buildings. The work presented in this paper is embedded within the European Marie-Curie ITN project "CINERGY, Smart cities with sustainable energy systems", which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban data model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area in Vienna, Austria, and the available data sources, it shows and exemplifies the main data integration issues, the strategies developed to solve them in order to obtain the enriched 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.

  20. Partition functions of 3d $\\hat D$-quivers and their mirror duals from 1d free fermions

    CERN Document Server

    Assel, Benjamin; Felix, Jan

    2015-01-01

    We study the matrix models calculating the sphere partition functions of 3d gauge theories with $\\mathcal{N}=4$ supersymmetry and a quiver structure of a $\\hat D$ Dynkin diagram (where each node is a unitary gauge group). As in the case of necklace ($\\hat A $) quivers, we can map the problem to that of free fermion quantum mechanics whose complicated Hamiltonian we find explicitly. Many of these theories are conjectured to be dual under mirror symmetry to certain unitary linear quivers with extra Sp nodes or antisymmetric hypermultiplets. We show that the free fermion formulations of such mirror pairs are related by a linear symplectic transformation. We then study the large N expansion of the partition function, which as in the case of the $\\hat A$-quivers is given to all orders in 1/N by an Airy function. We simplify the algorithm to calculate the numerical coefficients appearing in the Airy function and evaluate them for a wide class of $\\hat D$-quiver theories.

  1. 3D thermo-hydro-mechanical-migratory coupling model and FEM analyses for dual-porosity medium

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    One kind of 3D coupled thermo-hydro-mechanical-migratory model for saturated-unsaturated dual-porosity medium was established,in which the stress field and the temperature field are single,but the seepage field and the concentration field are double,and the influences of sets,spaces,angles,continuity ratios,stiffness of fractures on the constitutive relationship of the medium can be considered.The relative three-dimensional program of finite element method was also developed.By comparing with the existing computation example,reliability of the model and the program were verified.Taking a hypothetical nuclear waste repository as a calculation example,the radioactive nuclide leak was simulated numerically with both the rock mass and the buffer being unsaturated media,and the temperatures,negative pore pressures,flow velocities,nuclide concentrations and normal stresses in the rock mass were investigated.The results showed that the temperatures,negative pore pressures and nuclide concentrations in the buffer all present nonlinear changes and distributions that even though the saturation degree in porosity is only about 1/9 of that in fracture,the flow velocity of underground water in fracture is about 6 times of that in porosity because the permeability coefficient of fracture is almost four orders higher than that of porosity,and that the regions of stress concentration occur at the vicinity of two sides of the boundary between buffer and disposal pit wall.

  2. Dosimetric Comparison of 3D Tangential Radiotherapy of Post-Lumpectomy Breast at Two Different Energies

    Directory of Open Access Journals (Sweden)

    Robab Anbiaee

    2011-06-01

    Full Text Available Introduction: Radiation therapy following breast conserving surgery is one of the most common procedures performed in any radiation oncology department. A tangential parallel-opposed pair is almost always the technique of choice for this purpose. This technique is often performed based on 3D treatment planning. The aim of this study was to compare 3D treatment planning for two different energies (Cobalt 60 versus 6 MV photon beams in tangential irradiation of breast conserving radiotherapy. In this comparison, homogeneity of isodoses within the breast volume and dose received by lungs were considered. Materials and Methods: In this study, twenty patients with breast cancer treated with conservative surgery were included. A CT scan was performed on selected patients. Three-dimensional treatment planning with 6 MV photon beams was carried out for patients on the  Eclipse 3D treatment planning system (TPS. The volumes receiving lower than 95% (Vol105 (hot areas of the reference dose, and the volume of lung receiving ≥30Gy (Vol≥30Gy were derived from dose volume histograms (DVHs. Dose homogeneity index was calculated as: DHI = 100 – (Vol>105 + Vol

  3. The influence of translational and vibrational energy on the reaction of Cl with CH3D.

    Science.gov (United States)

    Berke, Andrew E; Volpa, Ethan H; Annesley, Christopher J; Crim, F Fleming

    2013-06-14

    The reaction of Cl atoms with CH3D proceeds either by abstraction of hydrogen to produce HCl + CH2D or by abstraction of deuterium to produce DCl + CH3. Using Cl atoms with different amounts of translational energy, produced by photolysis of Cl2 with 309, 355, or 416 nm light, reveals the influence of translational energy on the relative reaction probability for the two channels. These measurements give an estimate of the energy barrier for the reaction for comparison to theory and indicate that tunneling is the dominant reaction mechanism at low collision energies. Adding two quanta of C-H stretching vibration causes the reaction to proceed readily at all collision energies. Detecting the vibrational state of the CH2D product shows that vibrational energy initially in the surviving C-H bond appears as vibrational excitation of the product, an example of spectator behavior in the reaction. The reaction produces both stretch and stretch-bend excited products except at the lowest collision energy. A subtle variation in the reaction probability of the lowest energy rotational states with translational energy may reflect the presence of a van der Waals well in the entrance channel.

  4. Analytical 1-D dual-porosity equivalent solutions to 3-D discrete single-continuum models. Application to karstic spring hydrograph modelling

    CERN Document Server

    Cornaton, F

    2011-01-01

    One dimensional analytical porosity-weighted solutions of the dual-porosity model are derived, providing insights on how to relate exchange and storage coefficients to the volumetric density of the high-permeability medium. It is shown that porosity-weighted storage and exchange coefficients are needed when handling highly heterogeneous systems - such as karstic aquifers - using equivalent dual-porosity models. The sensitivity of these coefficients is illustrated by means of numerical experiments with theoretical karst systems. The presented 1-D dual-porosity analytical model is used to reproduce the hydraulic responses of reference 3-D karst aquifers, modelled by a discrete single-continuum approach. Under various stress conditions, simulation results show the relations between the dual-porosity model coefficients and the structural features of the discrete single-continuum model. The calibration of the equivalent 1-D analytical dual-porosity model on reference hydraulic responses confirms the dependence of ...

  5. A GIS Based 3D Online Decision Assistance System for Underground Energy Storage in Northern Germany

    Science.gov (United States)

    Nolde, M.; Schwanebeck, M.; Biniyaz, E.; Duttmann, R.

    2014-12-01

    We would like to present a GIS-based 3D online decision assistance system for underground energy storage. Its aim is to support the local land use planning authorities through pre-selection of possible sites for thermal, electrical and substantial underground energy storages. Since the extension of renewable energies has become legal requirement in Germany, the underground storing of superfluously produced green energy (such as during a heavy wind event) in the form of compressed air, gas or heated water has become increasingly important. However, the selection of suitable sites is a complex task. The assistance system uses data of geological features such as rock layers, salt caverns and faults enriched with attribute data such as rock porosity and permeability. This information is combined with surface data of the existing energy infrastructure, such as locations of wind and biogas stations, power line arrangement and cable capacity, and energy distribution stations. Furthermore, legal obligations such as protected areas on the surface and current underground mining permissions are used for the decision finding process. Not only the current situation but also prospective scenarios, such as expected growth in produced amount of energy are incorporated in the system. The decision process is carried out via the 'Analytic Hierarchy Process' (AHP) methodology of the 'Multi Object Decision Making' (MODM) approach. While the process itself is completely automated, the user has full control of the weighting of the different factors via the web interface. The system is implemented as an online 3D server GIS environment, with no software needed to be installed on the user side. The results are visualized as interactive 3d graphics. The implementation of the assistance system is based exclusively on free and open source software, and utilizes the 'Python' programming language in combination with current web technologies, such as 'HTML5', 'CSS3' and 'JavaScript'. It is

  6. Building Analysis for Urban Energy Planning Using Key Indicators on Virtual 3d City Models - the Energy Atlas of Berlin

    Science.gov (United States)

    Krüger, A.; Kolbe, T. H.

    2012-07-01

    In the context of increasing greenhouse gas emission and global demographic change with the simultaneous trend to urbanization, it is a big challenge for cities around the world to perform modifications in energy supply chain and building characteristics resulting in reduced energy consumption and carbon dioxide mitigation. Sound knowledge of energy resource demand and supply including its spatial distribution within urban areas is of great importance for planning strategies addressing greater energy efficiency. The understanding of the city as a complex energy system affects several areas of the urban living, e.g. energy supply, urban texture, human lifestyle, and climate protection. With the growing availability of 3D city models around the world based on the standard language and format CityGML, energy system modelling, analysis and simulation can be incorporated into these models. Both domains will profit from that interaction by bringing together official and accurate building models including building geometries, semantics and locations forming a realistic image of the urban structure with systemic energy simulation models. A holistic view on the impacts of energy planning scenarios can be modelled and analyzed including side effects on urban texture and human lifestyle. This paper focuses on the identification, classification, and integration of energy-related key indicators of buildings and neighbourhoods within 3D building models. Consequent application of 3D city models conforming to CityGML serves the purpose of deriving indicators for this topic. These will be set into the context of urban energy planning within the Energy Atlas Berlin. The generation of indicator objects covering the indicator values and related processing information will be presented on the sample scenario estimation of heating energy consumption in buildings and neighbourhoods. In their entirety the key indicators will form an adequate image of the local energy situation for

  7. ENABLING “ENERGY-AWARENESS” IN THE SEMANTIC 3D CITY MODEL OF VIENNA

    Directory of Open Access Journals (Sweden)

    G. Agugiaro

    2016-09-01

    Full Text Available This paper presents and discusses the first results regarding selection, analysis, preparation and eventual integration of a number of energy-related datasets, chosen in order to enrich a CityGML-based semantic 3D city model of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. The still-in-development Energy Application Domain Extension (ADE is a CityGML extension conceived to specifically model, manage and store energy-related features and attributes for buildings. The work presented in this paper is embedded within the European Marie-Curie ITN project “CINERGY, Smart cities with sustainable energy systems”, which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban data model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area in Vienna, Austria, and the available data sources, it shows and exemplifies the main data integration issues, the strategies developed to solve them in order to obtain the enriched 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.

  8. 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries

    Science.gov (United States)

    Hou, Yang; Li, Jianyang; Gao, Xianfeng; Wen, Zhenhai; Yuan, Chris; Chen, Junhong

    2016-04-01

    Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior electrochemical performance, including a large reversible capacity of 1328 mA h g-1 in the first cycle, excellent cycling stability (maintaining a reversible capacity of 647 mA h g-1 at 0.2 C after 300 cycles) with nearly 100% Coulombic efficiency, and a high rate capability of 512 mA h g-1 at 8 C for 30 cycles, which is among the best reported rate capabilities.Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior

  9. Small molecule hydration energy and entropy from 3D-RISM

    Science.gov (United States)

    Johnson, J.; Case, D. A.; Yamazaki, T.; Gusarov, S.; Kovalenko, A.; Luchko, T.

    2016-09-01

    Implicit solvent models offer an attractive way to estimate the effects of a solvent environment on the properties of small or large solutes without the complications of explicit simulations. One common test of accuracy is to compute the free energy of transfer from gas to liquid for a variety of small molecules, since many of these values have been measured. Studies of the temperature dependence of these values (i.e. solvation enthalpies and entropies) can provide additional insights into the performance of implicit solvent models. Here, we show how to compute temperature derivatives of hydration free energies for the 3D-RISM integral equation approach. We have computed hydration free energies of 1123 small drug-like molecules (both neutral and charged). Temperature derivatives were also used to calculate hydration energies and entropies of 74 of these molecules (both neutral and charged) for which experimental data is available. While direct results have rather poor agreement with experiment, we have found that several previously proposed linear hydration free energy correction schemes give good agreement with experiment. These corrections also provide good agreement for hydration energies and entropies though simple extensions are required in some cases.

  10. 3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel

    Science.gov (United States)

    Hayashi, Asuka; Pham, Hang; Iwamoto, Takeshi

    2015-09-01

    Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity) steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT) during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998). It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.

  11. 3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel

    Directory of Open Access Journals (Sweden)

    Hayashi Asuka

    2015-01-01

    Full Text Available Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998. It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.

  12. 3D silicon microdosimetry and RBE study using 12C ion of different energies

    Science.gov (United States)

    Tran, L. T.; Chartier, L.; Bolst, D.; Prokopovich, D.; Guatelli, S.; Petasecca, M.; Lerch, M.; Reinhard, M.; Perevertaylo, V.; Jackson, M.; Matsufuji, N.; Hinde, D.; Dasgupta, M.; Stuchbery, A.; Rosenfeld, A. B.

    2017-02-01

    This paper presents a new version of the 3D mesa “bridge” microdosimeter comprised of an array of 4248 silicon cells fabricated on 10 µm thick silicon-on-insulator substrate. This microdosimeter has been designed to overcome limitations existing in previous generation silicon microdosimeters and it provides well-defined sensitive volumes and high spatial resolution. The charge collection characteristics of the new 3D mesa microdosimeter were investigated using the ANSTO heavy ion microprobe, utilizing 5.5 MeV He2+ ions. Measurement of microdosimetric quantities allowed for the determination of the Relative Biological Effectiveness of 290 MeV/u and 350 MeV/u 12C heavy ion therapy beams at the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. The microdosimetric RBE obtained showed good agreement with the tissue-equivalent proportional counter. Utilizing the high spatial resolution of the SOI microdosimeter, the LET spectra for 70 MeV 12C+6 ions, like those present at the distal edge of 290 and 350 MeV/u beams, were obtained as the ions passed through thin layers of polyethylene film. This microdosimeter can provide useful information about the lineal energy transfer (LET) spectra downstream of the protective layers used for shielding of electronic devices for single event upset prediction.

  13. Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips

    KAUST Repository

    Riaz, Kashif

    2017-05-04

    Electric cell lysis (ECL) is a promising technique to be integrated with portable lab-on-a-chip without lysing agent due to its simplicity and fast processing. ECL is usually limited by the requirements of high power/voltage and costly fabrication. In this paper, we present low-cost 3-D nano-spikes-based ECL (NSP-ECL) chips for efficient cell lysis at low power consumption. Highly ordered High-Aspect-Ratio (HAR). NSP arrays with controllable dimensions were fabricated on commercial aluminum foils through scalable and electrochemical anodization and etching. The optimized multiple pulse protocols with minimized undesirable electrochemical reactions (gas and bubble generation), common on micro parallel-plate ECL chips. Due to the scalability of fabrication process, 3-D NSPs were fabricated on small chips as well as on 4-in wafers. Phase diagram was constructed by defining critical electric field to induce cell lysis and for cell lysis saturation Esat to define non-ECL and ECL regions for different pulse parameters. NSP-ECL chips have achieved excellent cell lysis efficiencies ηlysis (ca 100%) at low applied voltages (2 V), 2~3 orders of magnitude lower than that of conventional systems. The energy consumption of NSP-ECL chips was 0.5-2 mJ/mL, 3~9 orders of magnitude lower as compared with the other methods (5J/mL-540kJ/mL). [2016-0305

  14. Mono or 3D video production for scientific dissemination of nuclear energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Victor Goncalves G.; Mol, Antonio Carlos A.; Biermann, Bruna; Jorge, Carlos Alexandre F., E-mail: mol@ien.gov.b, E-mail: vgoncalves@ien.gov.b, E-mail: calexandre@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Araujo, Tawein [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Belas Artes; Legey, Ana Paula [Universidade Gama Filho (UGF), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    This work presents results of educational videos development, mono or stereo, for scientific dissemination of nuclear energy applications. Nuclear energy span through many important applications for the society, ranging from electrical power generation to nuclear medicine, among others. Thus, the purpose is to disseminate this information for the general public and specially for students. Educational videos consist in a good approach for this purpose, due to the involvement of the public they provide, more than simply text or oral exposition, or even static images presentation. Stereo videos result in even more involvement of the public, besides immersion, the later due to the realism 3D views provide. The video developed in this work deals with explanations of electrical power generation, including nuclear reactor operation, shows the percentage of nuclear source as power generation all over the world, and explains also nuclear energy application in medicine. It is expected all these characteristics provided by the use of video or virtual reality techniques will achieve the purpose of disseminating such important information, regarding the benefits of nuclear energy to the society. (author)

  15. Coronal energy input and dissipation in a solar active region 3D MHD model

    CERN Document Server

    Bourdin, Philippe-A; Peter, Hardi

    2015-01-01

    Context. We have conducted a 3D MHD simulation of the solar corona above an active region in full scale and high resolution, which shows coronal loops, and plasma flows within them, similar to observations. Aims. We want to find the connection between the photospheric energy input by field-line braiding with the coronal energy conversion by Ohmic dissipation of induced currents. Methods. To this end we compare the coronal energy input and dissipation within our simulation domain above different fields of view, e.g. for a small loops system in the active region (AR) core. We also choose an ensemble of field lines to compare, e.g., the magnetic energy input to the heating per particle along these field lines. Results. We find an enhanced Ohmic dissipation of currents in the corona above areas that also have enhanced upwards-directed Poynting flux. These regions coincide with the regions where hot coronal loops within the AR core are observed. The coronal density plays a role in estimating the coronal temperatur...

  16. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion.

    Science.gov (United States)

    Collins, Gillian; Armstrong, Eileen; McNulty, David; O'Hanlon, Sally; Geaney, Hugh; O'Dwyer, Colm

    2016-01-01

    This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic-photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided.

  17. Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing

    Science.gov (United States)

    Zhang, Pu; Heyne, Mary A.; To, Albert C.

    2015-10-01

    We investigate the damping enhancement in a class of biomimetic staggered composites via a combination of design, modeling, and experiment. In total, three kinds of staggered composites are designed by mimicking the structure of bone and nacre. These composite designs are realized by 3D printing a rigid plastic and a viscous elastomer simultaneously. Greatly-enhanced energy dissipation in the designed composites is observed from both the experimental results and theoretical prediction. The designed polymer composites have loss modulus up to ~500 MPa, higher than most of the existing polymers. In addition, their specific loss modulus (up to 0.43 km2/s2) is among the highest of damping materials. The damping enhancement is attributed to the large shear deformation of the viscous soft matrix and the large strengthening effect from the rigid inclusion phase.

  18. Potential energy curves and electronic structure of 3d transition metal hydrides and their cations.

    Science.gov (United States)

    Goel, Satyender; Masunov, Artëm E

    2008-12-07

    We investigate gas-phase neutral and cationic hydrides formed by 3d transition metals from Sc to Cu with density functional theory (DFT) methods. The performance of two exchange-correlation functionals, Boese-Martin for kinetics (BMK) and Tao-Perdew-Staroverov-Scuseria (TPSS), in predicting bond lengths and energetics, electronic structures, dipole moments, and ionization potentials is evaluated in comparison with available experimental data. To ensure a unique self-consistent field (SCF) solution, we use stability analysis, Fermi smearing, and continuity analysis of the potential energy curves. Broken-symmetry approach was adapted in order to get the qualitatively correct description of the bond dissociation. We found that on average BMK predicted values of dissociation energies and ionization potentials are closer to experiment than those obtained with high level wave function theory methods. This agreement deteriorates quickly when the fraction of the Hartree-Fock exchange in DFT functional is decreased. Natural bond orbital (NBO) population analysis was used to describe the details of chemical bonding in the systems studied. The multireference character in the wave function description of the hydrides is reproduced in broken-symmetry DFT description, as evidenced by NBO analysis. We also propose a new scheme to correct for spin contamination arising in broken-symmetry DFT approach. Unlike conventional schemes, our spin correction is introduced for each spin-polarized electron pair individually and therefore is expected to yield more accurate energy values. We derive an expression to extract the energy of the pure singlet state from the energy of the broken-symmetry DFT description of the low spin state and the energies of the high spin states (pentuplet and two spin-contaminated triplets in the case of two spin-polarized electron pairs). The high spin states are build with canonical natural orbitals and do not require SCF convergence.

  19. Integrated canopy, building energy and radiosity model for 3D urban design

    CERN Document Server

    Burdet, Etienne; Morand, Denis; Diab, Youssef

    2014-01-01

    We present an integrated, three dimensional, model of urban canopy, building energy and radiosity, for early stage urban designs and test it on four urban morphologies. All sub-models share a common descriptions of the urban morphology, similar to 3D urban design master plans and have simple parameters. The canopy model is a multilayer model, with a new discrete layer approach that does not rely on simplified geometry such as canyon or regular arrays. The building energy model is a simplified RC equivalent model, with no hypotheses on internal zoning or wall composition. We use the CitySim software for the radiosity model. We study the effects of convexity, the number of buildings and building height, at constant density and thermal characteristics. Our results suggest that careful three dimensional morphology design can reduce heat demand by a factor of 2, especially by improving insolation of lower levels. The most energy efficient morphology in our simulations has both the highest surface/volume ratio and ...

  20. Active surface model improvement by energy function optimization for 3D segmentation.

    Science.gov (United States)

    Azimifar, Zohreh; Mohaddesi, Mahsa

    2015-04-01

    This paper proposes an optimized and efficient active surface model by improving the energy functions, searching method, neighborhood definition and resampling criterion. Extracting an accurate surface of the desired object from a number of 3D images using active surface and deformable models plays an important role in computer vision especially medical image processing. Different powerful segmentation algorithms have been suggested to address the limitations associated with the model initialization, poor convergence to surface concavities and slow convergence rate. This paper proposes a method to improve one of the strongest and recent segmentation algorithms, namely the Decoupled Active Surface (DAS) method. We consider a gradient of wavelet edge extracted image and local phase coherence as external energy to extract more information from images and we use curvature integral as internal energy to focus on high curvature region extraction. Similarly, we use resampling of points and a line search for point selection to improve the accuracy of the algorithm. We further employ an estimation of the desired object as an initialization for the active surface model. A number of tests and experiments have been done and the results show the improvements with regards to the extracted surface accuracy and computational time of the presented algorithm compared with the best and recent active surface models.

  1. Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks

    Science.gov (United States)

    Liu, Chun; Xu, Qiang; Shi, Bin; Deng, Shang; Zhu, Honghu

    2017-06-01

    Numerical simulations using the 3D discrete element method can yield mechanical and dynamic behaviors similar to rocks and grains. In the model, rock is represented by bonded elements, which are arranged on a tetrahedral lattice. The conversion formulas between inter-element parameters and rock mechanical properties were derived. By using the formulas, inter-element parameters can be determined according to mechanical properties of model, including Young's modulus, Poisson's ratio, tensile strength (Tu), compressive strength (Cu) and coefficient of internal friction. The energy conversion rules of the model are proposed. Based on the methods, a Matlab code ;MatDEM; was developed. Numerical models of quartzite were used to validate the formulas. The tested mechanical properties of a single unit correspond reasonably well with the values of quartzite. Tested Tu and Cu with multiple elements are lower than the values predicted by the formulas. In the simulation of rock failure processes, mechanical energy conversed between different forms and heat is generated, but the mechanical energy plus heat always remains constant. Variations of breaking heat and frictional heat provide clues of the fracturing and slipping behaviors of the Tu and Cu tests. The model may be applied to a wide range of geological structures that involve breakage at multiple scales, heat generation and dynamic processes.

  2. Probing the equation of state in the AGS energy range with 3-d hydrodynamics

    CERN Document Server

    Arbex, N; Plümer, M L; Weiner, R

    1996-01-01

    The effect of (i) the phase transition between a quark gluon plasma (QGP) and a hadron gas and (ii) the number of resonance degrees of freedom in the hadronic phase on the single inclusive distributions of 16 different types of produced hadrons for Au+Au collisions at AGS energies is studied. We have used an exact numerical solution of the relativistic hydrodynamical equations without free parameters which, because of its 3-d character, constitutes a considerable improvement over the classical Landau solution. Using two different equations of state (eos) - one containing a phase transition from QGP to the Hadronic Phase and two versions of a purely hadronic eos - we find that the first one gives an overall better description of the Au+Au experimental data at AGS energies. We reproduce and analyse measured meson and proton spectra and also make predictions for anti-protons, deltas, anti-deltas and hyperons. The low m_t enhancement in pi- spectra is explained by baryon number conservation and strangeness equili...

  3. Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John [MSNW LLC, Redmond, WA (United States)

    2015-02-01

    modules. The additional energy and switching capability proposed will thus provide for optimal utilization of the liner energy. The following tasks were outlined for the three year effort: (1) Design and assemble the foil liner compression test structure and chamber including the compression bank and test foils [Year 1]. (2) Perform foil liner compression experiments and obtain performance data over a range on liner dimensions and bank parameters [Year 2]. (3) Carry out compression experiments of the FRC plasma to Megagauss fields and measure key fusion parameters [Year 3]. (4) Develop numerical codes and analyze experimental results, and determine the physics and scaling for future work [Year 1-3]. The principle task of the project was to design and assemble the foil liner FRC formation chamber, the full compression test structure and chamber including the compression bank. This task was completed successfully. The second task was to test foils in the test facility constructed in year one and characterize the performance obtained from liner compression. These experimental measurements were then compared with analytical predictions, and numerical code results. The liner testing was completed and compared with both the analytical results as well as the code work performed with the 3D structural dynamics package of ANSYS Metaphysics®. This code is capable of modeling the dynamic behavior of materials well into the non-linear regime (e.g. a bullet hit plate glass). The liner dynamic behavior was found to be remarkably close to that predicted by the 3D structural dynamics results. Incorporating a code that can also include the magnetics and plasma physics has also made significant progress at the UW. The remaining test bed construction and assembly task is was completed, and the FRC formation and merging experiments were carried out as planned. The liner compression of the FRC to Megagauss fields was not performed due to not obtaining a sufficiently long lived FRC during the

  4. Single- and dual energy QCT around acetabular cups in total hip arthroplasty using 3-dimensional segmentation

    DEFF Research Database (Denmark)

    Mussmann, Bo Redder; Andersen, Poul Erik; Torfing, Trine

    Introduction: Bone density measurements around hip implants are challenged by artifacts and the complex anatomy of the acetabulum. We developed 3D segmentation software and used dual energy CT to reduce artifacts. The between-scan agreement and reliability of the software was tested and bone mine...

  5. A New Energy-Based Method for 3-D Finite-Element Nonlinear Flux Linkage computation of Electrical Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2011-01-01

    This paper presents a new method for computation of the nonlinear flux linkage in 3-D finite-element models (FEMs) of electrical machines. Accurate computation of the nonlinear flux linkage in 3-D FEM is not an easy task. Compared to the existing energy-perturbation method, the new technique......-perturbation method. The new method proposed is validated using experimental results on two different permanent magnet machines....

  6. 3D asynchronous particle tracking in single and dual continuum matrix-fractures. Application to nuclear waste storage; Modelisation 3D du transport particulaire asynchrone en simple et double continuum matrice-fractures: application au stockage de dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Lam, M.Ph

    2008-06-15

    This PhD research was conducted as a collaboration between Laboratoire National d'Hydraulique et Environnement (LNHE) from EDF R and D and the Institut de Mecanique des Fluides de Toulouse (IMFT) in the frame of a CIFRE contract. This PhD thesis aims at providing LNHE a reliable numerical model to study the feasibility of a nuclear waste storage in deep geological structures. The main focus of the thesis is put on developing and implementing a Random Walk Particle Method (RWPM) to model contaminant transport in 3D heterogeneous and fractured porous media. In its first part, the report presents the Lagrangian particle tracking method used to model transport in heterogeneous media with a direct high resolution approach. The solute plume is discretized into concentration packets: particles. The model tracks each particle based on a time-explicit displacement algorithm according to an advective component and a diffusive random component. The method is implemented on a hydraulic model discretized on a 3D unstructured tetrahedral finite element mesh. We focus on techniques to overcome problems due to the discontinuous transport parameters and the unstructured mesh. First, we introduce an asynchronous time-stepping approach to deal with the numerical and overshoot errors that occur with conventional RWPM. Then, a filtering method is applied to smooth discontinuous transport parameters (pre-processing). Finally, once the particle displacements are computed, we propose several filtering and sampling methods to obtain concentrations from particle positions (post-processing). Applications of these methods are presented with cases of tracer advection-dispersion in homogeneous and heterogeneous media. For dense fracture networks, direct high resolution methods are very time consuming and need a lot of computational resources. So, as an alternative to the discrete approach, a dual-continuum representation is used, in the second part of the report, to describe the porous

  7. Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John [MSNW LLC, Redmond, WA (United States)

    2015-02-01

    modules. The additional energy and switching capability proposed will thus provide for optimal utilization of the liner energy. The following tasks were outlined for the three year effort: (1) Design and assemble the foil liner compression test structure and chamber including the compression bank and test foils [Year 1]. (2) Perform foil liner compression experiments and obtain performance data over a range on liner dimensions and bank parameters [Year 2]. (3) Carry out compression experiments of the FRC plasma to Megagauss fields and measure key fusion parameters [Year 3]. (4) Develop numerical codes and analyze experimental results, and determine the physics and scaling for future work [Year 1-3]. The principle task of the project was to design and assemble the foil liner FRC formation chamber, the full compression test structure and chamber including the compression bank. This task was completed successfully. The second task was to test foils in the test facility constructed in year one and characterize the performance obtained from liner compression. These experimental measurements were then compared with analytical predictions, and numerical code results. The liner testing was completed and compared with both the analytical results as well as the code work performed with the 3D structural dynamics package of ANSYS Metaphysics®. This code is capable of modeling the dynamic behavior of materials well into the non-linear regime (e.g. a bullet hit plate glass). The liner dynamic behavior was found to be remarkably close to that predicted by the 3D structural dynamics results. Incorporating a code that can also include the magnetics and plasma physics has also made significant progress at the UW. The remaining test bed construction and assembly task is was completed, and the FRC formation and merging experiments were carried out as planned. The liner compression of the FRC to Megagauss fields was not performed due to not obtaining a sufficiently long lived FRC during the

  8. A Dual Function Energy Store

    Directory of Open Access Journals (Sweden)

    Ron Tolmie

    2014-11-01

    Full Text Available Heat can be collected from local energy sources and concentrated into a relatively small volume, and at a useful working temperature, by using a heat pump as the concentrator. That heat can be stored and utilized at a later date for applications like space heating. The process is doing two things at the same time: storing heat and shifting the power demand. The concentration step can be done at night when there is normally a surplus of power and its timing can be directly controlled by the power grid operator to ensure that the power consumption occurs only when adequate power is available. The sources of heat can be the summer air, the heat extracted from buildings by their cooling systems, natural heat from the ground or solar heat, all of which are free, abundant and readily accessible. Such systems can meet the thermal needs of buildings while at the same time stabilizing the grid power demand, thus reducing the need for using fossil-fuelled peaking power generators. The heat pump maintains the temperature of the periphery at the ambient ground temperature so very little energy is lost during storage.

  9. Imaging Properties of 3D Printed Materials: Multi-Energy CT of Filament Polymers.

    Science.gov (United States)

    Shin, James; Sandhu, Ranjit S; Shih, George

    2017-02-06

    Clinical applications of 3D printing are increasingly commonplace, likewise the frequency of inclusion of 3D printed objects on imaging studies. Although there is a general familiarity with the imaging appearance of traditional materials comprising common surgical hardware and medical devices, comparatively less is known regarding the appearance of available 3D printing materials in the consumer market. This work detailing the CT appearance of a selected number of common filament polymer classes is an initial effort to catalog these data, to provide for accurate interpretation of imaging studies incidentally or intentionally including fabricated objects. Furthermore, this information can inform the design of image-realistic tissue-mimicking phantoms for a variety of applications, with clear candidate material analogs for bone, soft tissue, water, and fat attenuation.

  10. Feasibility and evaluation of dual-source transmit 3D imaging of the orbits: Comparison to high-resolution conventional MRI at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Achim, E-mail: achim.seeger@gmx.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Schulze, Maximilian, E-mail: maximilian.schulze@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Schuettauf, Frank, E-mail: fschuettauf@uni-tuebingen.de [University Eye Hospital, Department of Ophthalmology, Eberhard-Karls-University, Schleichstrasse 12, Tübingen 72076 (Germany); Klose, Uwe, E-mail: uwe.klose@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Ernemann, Ulrike, E-mail: ulrike.ernemann@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Hauser, Till-Karsten, E-mail: till-karsten.hauser@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany)

    2015-06-15

    Highlights: • Reduced FOV imaging enables a 3D approach for a very fast assessment of the orbits. • Conventional MRI exhibited higher eSNR values and consecutively higher scores for overall image quality in the subjective readers’ analysis. • All pathologies could be detected compared to high-resolution conventional MRI making 3D pTX SPACE to a potential alternative and fast imaging technique. - Abstract: Purpose: To prospectively compare the image quality and diagnostic performance of orbital MR images obtained by using a dual-source parallel transmission (pTX) 3D sequence (Sampling Perfection with Application optimized Contrasts using different flip angle Evolution, SPACE) with the image quality of conventional high-resolution standard protocol for clinical use in patients at 3T. Materials and methods: After obtaining institutional review board approval and patient consent, 32 patients with clinical indication for orbital MRI were examined using a high-resolution conventional sequences and 3D pTX SPACE sequences. Quantitative measurements, image quality of the healthy orbit, incidence of artifacts, and the subjective diagnostic performance to establish diagnosis was rated. Statistical significance was calculated by using a Student's t-test and nonparametric Wilcoxon signed rank test. Results: Length measurements were comparable in the two techniques, 3D pTX SPACE resulted in significant faster image acquisition with higher spatial resolution and less motion artifacts as well as better delineation of the optic nerve sheath. However, estimated contrast-to-noise and signal-to-noise and overall image quality as well as subjective scores of the conventional TSE imaging were rated significantly higher. The conventional MR sequences were the preferred techniques by the readers. Conclusion: This study demonstrates the feasibility of 3D pTX SPACE of the orbit resulting in a rapid acquisition of isotropic high-resolution images. Although no pathology was

  11. Myocardial perfusion imaging with dual energy CT.

    Science.gov (United States)

    Jin, Kwang Nam; De Cecco, Carlo N; Caruso, Damiano; Tesche, Christian; Spandorfer, Adam; Varga-Szemes, Akos; Schoepf, U Joseph

    2016-10-01

    Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  12. Finite-element discretization of 3D energy-transport equations for semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gadau, Stephan

    2007-07-01

    demonstrated in detail. We compare these new iterations with a standard method that is complemented by a feature to fit in the current context. A further innovation is the computation of solutions in three-dimensional domains, which are still rare. Special attention is paid to applicability of the 3D simulation tools. The programs are designed to have justifiable working complexity. The simulation results of some models of contemporary semiconductor devices are shown and detailed comments on the results are given. Eventually, we make a prospect on future development and enhancements of the models and of the algorithms that we used. (orig.)

  13. Incorporation of the purified epstein barr virus/C3d receptor (CR2) into liposomes and demonstration of its dual ligand binding functions

    Energy Technology Data Exchange (ETDEWEB)

    Mold, C.; Cooper, N.R.; Nemerow, G.R.

    1986-06-01

    The 145-kDA molecule that has been identified as the C3d receptor CR2 was isolated from lysates of Raji cells by affinity chromatography by using the monoclonal antibody (MoAb)HB-5. The purified protein was incorporated into /sup 14/C-phosphatidylcholine liposomes by deoxycholate dialysis followed by flotation on discontinuous sucrose gradients. Incorporation of the receptor was verified by testing the gradient fractions for CR2 by an enzyme-linked immunosorbent assay. Liposomes were shown to be unilamellar vesicles ranging in diameter from 25 to 100 nm by electron microscopy. The external orientation of CR2 in the membranes was demonstrated by immunoelectron microscopy. The functional activities of liposomes containing CR2 and liposomes without protein were compared. CR2 liposomes bound to EC3d, but not to E, and this binding was inhibited by the anti-CR2 MoAb OKB7 and by a MoAb specific for C3d. Control liposomes failed to bind to either E or EC3D. The ability of CR2 to function as a receptor for Epstein Barr virus (EBV) was tested in two ways. First, CR2 liposomes bound to B95-8, a cell line expressing EBV membrane antigens, but not to B95-8 cells treated with the viral DNA polymerase inhibitor phosphonoformic acid. Second, liposomes containing CR2 were shown by ultracentrifugal analyses to bind directly to purified EBV, and this binding was also inhibited by OKB7. Control liposomes did not bind to B95-8 cells or to EBV. These findings show that CR2 purified from detergent extracts of Raji cells can be reconstituted into lipid membranes with maintenance of its dual functions as a receptor for C3d and EBV.

  14. 3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors.

    Science.gov (United States)

    Dong, Kai; Deng, Jianan; Zi, Yunlong; Wang, Yi-Cheng; Xu, Cheng; Zou, Haiyang; Ding, Wenbo; Dai, Yejing; Gu, Bohong; Sun, Baozhong; Wang, Zhong Lin

    2017-08-08

    The development of wearable and large-area energy-harvesting textiles has received intensive attention due to their promising applications in next-generation wearable functional electronics. However, the limited power outputs of conventional textiles have largely hindered their development. Here, in combination with the stainless steel/polyester fiber blended yarn, the polydimethylsiloxane-coated energy-harvesting yarn, and nonconductive binding yarn, a high-power-output textile triboelectric nanogenerator (TENG) with 3D orthogonal woven structure is developed for effective biomechanical energy harvesting and active motion signal tracking. Based on the advanced 3D structural design, the maximum peak power density of 3D textile can reach 263.36 mW m(-2) under the tapping frequency of 3 Hz, which is several times more than that of conventional 2D textile TENGs. Besides, its collected power is capable of lighting up a warning indicator, sustainably charging a commercial capacitor, and powering a smart watch. The 3D textile TENG can also be used as a self-powered active motion sensor to constantly monitor the movement signals of human body. Furthermore, a smart dancing blanket is designed to simultaneously convert biomechanical energy and perceive body movement. This work provides a new direction for multifunctional self-powered textiles with potential applications in wearable electronics, home security, and personalized healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Energy-consistent small-core pseudopotentials for 3d-transition metals adapted to quantum Monte Carlo calculations

    NARCIS (Netherlands)

    Burkatzki, M.; Filippi, Claudia; Dolg, M.

    2008-01-01

    We extend our recently published set of energy-consistent scalar-relativistic Hartree–Fock pseudopotentials by the 3d-transition metal elements, scandium through zinc. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC)

  16. 3D prostate MR-TRUS non-rigid registration using dual optimization with volume-preserving constraint

    Science.gov (United States)

    Qiu, Wu; Yuan, Jing; Fenster, Aaron

    2016-03-01

    We introduce an efficient and novel convex optimization-based approach to the challenging non-rigid registration of 3D prostate magnetic resonance (MR) and transrectal ultrasound (TRUS) images, which incorporates a new volume preserving constraint to essentially improve the accuracy of targeting suspicious regions during the 3D TRUS guided prostate biopsy. Especially, we propose a fast sequential convex optimization scheme to efficiently minimize the employed highly nonlinear image fidelity function using the robust multi-channel modality independent neighborhood descriptor (MIND) across the two modalities of MR and TRUS. The registration accuracy was evaluated using 10 patient images by calculating the target registration error (TRE) using manually identified corresponding intrinsic fiducials in the whole prostate gland. We also compared the MR and TRUS manually segmented prostate surfaces in the registered images in terms of the Dice similarity coefficient (DSC), mean absolute surface distance (MAD), and maximum absolute surface distance (MAXD). Experimental results showed that the proposed method with the introduced volume-preserving prior significantly improves the registration accuracy comparing to the method without the volume-preserving constraint, by yielding an overall mean TRE of 2:0+/-0:7 mm, and an average DSC of 86:5+/-3:5%, MAD of 1:4+/-0:6 mm and MAXD of 6:5+/-3:5 mm.

  17. Development and application of a dual RELAP5-3D-based engineering simulator for ABWR

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.-Y. [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Liang, Thomas K.S. [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)], E-mail: ksliang@alum.mit.edu; Pei, B.S.; Shih, C.K. [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Chiang, S.C.; Wang, L.C. [Department of Nuclear Safety, Taiwan Power Company, 242 Sec. 3, Roosevelt Road, Taipei 10016, Taiwan (China)

    2009-10-15

    For any innovated plant design, the designed paper plant can be converted into a computer as a digital plant with advanced simulation techniques before being constructed into a real plant. A digital plant, namely engineering simulator, can be applied for: (1) verification of system design and system integration, (2) power test simulation, (3) plant transient and accident analyses, (4) plant abnormal and emergency procedure development and verification, (5) design change verification and analysis, etc. An advanced engineering simulator was successfully developed for the LungMen advanced boiling water reactor (ABWR) plant to support various applications before and after commercial operation. This plant specific engineering simulator was developed based on two separate RELAP5-3D modules synchronized on a commercial simulation platform, namely 3-Key Master. On this advanced LungMen plant simulation (ALPS) platform, major plant dynamics were simulated by two separate RELAP5-3D modules, one for reactor system modeling and the other for balance of plant (BOP) system modeling. Moreover, major control systems as well as emergency core cooling system (ECCS) were all simulated in great detail with built-in tasks of this commercial simulation platform. Different from real time calculation on training simulator, precision of engineering calculation is intentionally kept by synchronizing modules based on the most time-consuming one. During synchronization, each module will check its' own converge criteria in each small time advancement. This plant specific advanced ABWR engineering simulator has been successfully applied on: (1) licensing blowdown analysis of feed water line break (FWLB) for containment design; (2) phenomena investigation of low-pressure ECC injection bypass during FWLB; (3) analysis of FW pump performance during power ascending; (4) verification of plant vendor's pre-test calculations of each start-up test.

  18. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    Science.gov (United States)

    Ham, Youngjib

    localization issues of 2D thermal image-based inspection, a new computer vision-based method is presented for automated 3D spatio-thermal modeling of building environments from images and localizing the thermal images into the 3D reconstructed scenes, which helps better characterize the as-is condition of existing buildings in 3D. By using these models, auditors can conduct virtual walk-through in buildings and explore the as-is condition of building geometry and the associated thermal conditions in 3D. Second, to address the challenges in qualitative and subjective interpretation of visual data, a new model-based method is presented to convert the 3D thermal profiles of building environments into their associated energy performance metrics. More specifically, the Energy Performance Augmented Reality (EPAR) models are formed which integrate the actual 3D spatio-thermal models ('as-is') with energy performance benchmarks ('as-designed') in 3D. In the EPAR models, the presence and location of potential energy problems in building environments are inferred based on performance deviations. The as-is thermal resistances of the building assemblies are also calculated at the level of mesh vertex in 3D. Then, based on the historical weather data reflecting energy load for space conditioning, the amount of heat transfer that can be saved by improving the as-is thermal resistances of the defective areas to the recommended level is calculated, and the equivalent energy cost for this saving is estimated. The outcome provides building practitioners with unique information that can facilitate energy efficient retrofit decision-makings. This is a major departure from offhand calculations that are based on historical cost data of industry best practices. Finally, to improve the reliability of BIM-based energy performance modeling and analysis for existing buildings, a new model-based automated method is presented to map actual thermal resistance measurements at the level of 3D vertexes to the

  19. Dual energy CT: New horizon in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Goo, Jin Mo [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  20. Dual-Energy CT: New Horizon in Medical Imaging.

    Science.gov (United States)

    Goo, Hyun Woo; Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  1. Technology development of 3D detectors for high energy physics and medical imaging

    CERN Document Server

    Pellegrini, G

    2003-01-01

    This thesis is concerned with the fabrication, characterisation and simulation of 3D semiconductor detectors. Due to their geometry, these detectors have more efficient charge collection properties than current silicon and gallium arsenide planar detectors. The unit cell of these detectors is hexagonal with a central anode surrounded by six cathode contacts. This geometry gives a uniform electric field with the maximum drift and depletion distance set by electrode spacing, 85m in this project, rather than detector thickness, as in the case of planar detectors (typically 100-300m). This results in lower applied biases (35-40 V in the work of this project) compared to >200 V in typical planar detectors. The reduction in bias offers the possibility of improved detector operation in the presence of bulk radiation damage as lower voltage reduces leakage current which limits the signal to noise ratio and hence the overall detector efficiency. In this work, 3D detectors realised in Si, GaAs and SiC have ...

  2. Dual-energy in mammography: feasibility study

    Science.gov (United States)

    Jafroudi, Hamid; Lo, Shih-Chung B.; Li, Huai; Steller Artz, Dorothy E.; Freedman, Matthew T.; Mun, Seong K.

    1996-04-01

    The purpose of this work is to examine the feasibility of dual-energy techniques to enhance the detection of microcalcifications in digital mammography. The digital mammography system used in this study consists of two different mammography systems; one is the conventional mammography system with molybdenum target and Mo filtration and the other is the clinical version of a low dose x-ray system with tungsten target and aluminum filtration. The low dose system is optimized for screen-film mammography with a highly efficient scatter rejection device built by Fischer Imaging Systems for evaluation at NIH. The system was designed by the University of Southern California based on multiparameter optimization techniques. Prototypes of this system have been constructed and evaluated at the Center for Devices and Radiological Health. The digital radiography system is based on the Fuji 9000 computed radiography (CR) system which uses a storage phosphor imaging plate as the receptor. High resolution plates (HR-V) are used in this study. Dual-energy is one technique to reduce the structured noise associated with the complexity of the background of normal anatomy surrounding a lesion. This can be done by taking the advantage of the x-ray attenuation characteristics of two different structures such as soft tissue and bone in chest radiography. We have applied this technique to the detection of microcalcifications in mammography. The overall system performance based on this technique is evaluated. Results presented are based on the evaluation of phantom images.

  3. Anodized 3D-printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells.

    Science.gov (United States)

    Gulati, Karan; Prideaux, Matthew; Kogawa, Masakazu; Lima-Marques, Luis; Atkins, Gerald J; Findlay, David M; Losic, Dusan

    2016-12-07

    The success of implantation of materials into bone is governed by effective osseointegration, requiring biocompatibility of the material and the attachment and differentiation of osteoblastic cells. To enhance cellular function in response to the implant surface, micro- and nano-scale topography have been suggested as essential. In this study, we present bone implants based on 3D-printed titanium alloy (Ti6Al4V), with a unique dual topography composed of micron-sized spherical particles and vertically aligned titania nanotubes. The implants were prepared by combination of 3D-printing and anodization processes, which are scalable, simple and cost-effective. The osseointegration properties of fabricated implants, examined using human osteoblasts, showed enhanced adhesion of osteoblasts compared with titanium materials commonly used as orthopaedic implants. Gene expression studies at early (day 7) and late (day 21) stages of culture were consistent with the Ti substrates inducing an osteoblast phenotype conducive to effective osseointegration. These implants with the unique combination of micro- and nano-scale topography are proposed as the new generation of multi-functional bone implants, suitable for addressing many orthopaedic challenges, including implant rejection, poor osseointegration, inflammation, drug delivery and bone healing. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Holography of 3d-3d correspondence at large N

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Dongmin [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul, 130-722 (Korea, Republic of); Kim, Nakwoo [Department of Physics and Research Institute of Basic Science, Kyung Hee University,26 Kyungheedaero, Dongdaemun-gu, Seoul, 130-701 (Korea, Republic of); Lee, Sangmin [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul, 130-722 (Korea, Republic of); Center for Theoretical Physics, Department of Physics and Astronomy, College of Liberal Studies,Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2015-04-20

    We study the physics of multiple M5-branes compactified on a hyperbolic 3-manifold. On the one hand, it leads to the 3d-3d correspondence which maps an N=2 superconformal field theory to a pure Chern-Simons theory on the 3-manifold. On the other hand, it leads to a warped AdS{sub 4} geometry in M-theory holographically dual to the superconformal field theory. Combining the holographic duality and the 3d-3d correspondence, we propose a conjecture for the large N limit of the perturbative free energy of a Chern-Simons theory on hyperbolic 3-manifold. The conjecture claims that the tree, one-loop and two-loop terms all share the same N{sup 3} scaling behavior and are proportional to the volume of the 3-manifold, while the three-loop and higher terms are suppressed at large N. Under mild assumptions, we prove the tree and one-loop parts of the conjecture. For the two-loop part, we test the conjecture numerically in a number of examples and find precise agreement. We also confirm the suppression of higher loop terms in a few examples.

  5. Development and evaluation of a LOR-based image reconstruction with 3D system response modeling for a PET insert with dual-layer offset crystal design

    Science.gov (United States)

    Zhang, Xuezhu; Stortz, Greg; Sossi, Vesna; Thompson, Christopher J.; Retière, Fabrice; Kozlowski, Piotr; Thiessen, Jonathan D.; Goertzen, Andrew L.

    2013-12-01

    In this study we present a method of 3D system response calculation for analytical computer simulation and statistical image reconstruction for a magnetic resonance imaging (MRI) compatible positron emission tomography (PET) insert system that uses a dual-layer offset (DLO) crystal design. The general analytical system response functions (SRFs) for detector geometric and inter-crystal penetration of coincident crystal pairs are derived first. We implemented a 3D ray-tracing algorithm with 4π sampling for calculating the SRFs of coincident pairs of individual DLO crystals. The determination of which detector blocks are intersected by a gamma ray is made by calculating the intersection of the ray with virtual cylinders with radii just inside the inner surface and just outside the outer-edge of each crystal layer of the detector ring. For efficient ray-tracing computation, the detector block and ray to be traced are then rotated so that the crystals are aligned along the X-axis, facilitating calculation of ray/crystal boundary intersection points. This algorithm can be applied to any system geometry using either single-layer (SL) or multi-layer array design with or without offset crystals. For effective data organization, a direct lines of response (LOR)-based indexed histogram-mode method is also presented in this work. SRF calculation is performed on-the-fly in both forward and back projection procedures during each iteration of image reconstruction, with acceleration through use of eight-fold geometric symmetry and multi-threaded parallel computation. To validate the proposed methods, we performed a series of analytical and Monte Carlo computer simulations for different system geometry and detector designs. The full-width-at-half-maximum of the numerical SRFs in both radial and tangential directions are calculated and compared for various system designs. By inspecting the sinograms obtained for different detector geometries, it can be seen that the DLO crystal

  6. 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage

    Science.gov (United States)

    Ren, Long; Hui, K. N.; Hui, K. S.; Liu, Yundan; Qi, Xiang; Zhong, Jianxin; Du, Yi; Yang, Jianping

    2015-09-01

    New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a high reversible specific capacity of 1100 mAh/g at a current density of 0.1 A/g, outstanding cycling stability and excellent rate performance. Even at a large current density of 20 A/g, the reversible capacity was retained at 300 mAh/g, which is larger than that of most porous carbon-based anodes reported, suggesting it to be a promising candidate for energy storage. The proposed 3D HPGA is expected to provide an important platform that can promote the development of 3D topological porous systems in a range of energy storage and generation fields.

  7. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  8. Energy loss of a heavy particle near 3D charged rotating hairy black hole

    Energy Technology Data Exchange (ETDEWEB)

    Naji, Jalil [Ilam University, Physics Department, P.O.Box 69315-516, Ilam (Iran, Islamic Republic of)

    2014-01-15

    In this paper we consider a charged rotating black hole in three dimensions with a scalar charge and discuss the energy loss of a heavy particle moving near the black-hole horizon. We also study quasi-normal modes and find the dispersion relations. We find that the effect of scalar charge and electric charge increases the energy loss. (orig.)

  9. Energy loss of a heavy particle near 3D charged rotating hairy black hole

    Science.gov (United States)

    Naji, Jalil

    2014-01-01

    In this paper we consider a charged rotating black hole in three dimensions with a scalar charge and discuss the energy loss of a heavy particle moving near the black-hole horizon. We also study quasi-normal modes and find the dispersion relations. We find that the effect of scalar charge and electric charge increases the energy loss.

  10. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy

    Science.gov (United States)

    Zhang, Zhengyang; Lambrev, Petar H.; Wells, Kym L.; Garab, Győző; Tan, Howe-Siang

    2015-07-01

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  11. Benefits of texture analysis of dual energy CT for Computer-Aided pulmonary embolism detection.

    Science.gov (United States)

    Foncubierta-Rodríguez, Antonio; Jiménez del Toro, Óscar Alfonso; Platon, Alexandra; Poletti, Pierre-Alexandre; Müller, Henning; Depeursinge, Adrien

    2013-01-01

    Pulmonary embolism is an avoidable cause of death if treated immediately but delays in diagnosis and treatment lead to an increased risk. Computer-assisted image analysis of both unenhanced and contrast-enhanced computed tomography (CT) have proven useful for diagnosis of pulmonary embolism. Dual energy CT provides additional information over the standard single energy scan by generating four-dimensional (4D) data, in our case with 11 energy levels in 3D. In this paper a 4D texture analysis method capable of detecting pulmonary embolism in dual energy CT is presented. The method uses wavelet-based visual words together with an automatic geodesic-based region of interest detection algorithm to characterize the texture properties of each lung lobe. Results show an increase in performance with respect to the single energy CT analysis, as well as an accuracy gain compared to preliminary work on a small dataset.

  12. A preliminary study of 3D difference scheme with energy dynamic equilibrium

    Institute of Scientific and Technical Information of China (English)

    Chiping Wu; Yongxing Zhang; Zhongzhen Ji; Wenxing Sun; Zede Guo; Weiping Jin

    2005-01-01

    In this paper, a difference scheme with energy dynamic equilibrium (DS-EDE) is presented, which can be used for the simulation of long-term atmosphere and sea motion.Based on three dimensional nonlinear evolution equations for atmosphere and sea motion, a three dimensional compact upwind scheme (CUWS) is constructed, as the basis of the DS-EDE. The DS-EDE satisfies the following condition of energy dynamic equilibrium (EDE): the total work of exter nal forces on the region boundary is equal to the sum of the total effective variation of the kinetic energy and the energy dissipation in the average flow motion and the effective variation of the potential energy per unit time within the region of interest. It really reflects the basic mechanism of the action of external forces and dissipation in atmosphere and sea movement. Therefore, the DS-EDE developed in this paper is a suitable model for simulating long-term atmosphere and sea movement with forcing and dissipation.

  13. RKKY-like contributions to the magnetic anisotropy energy: 3 d adatoms on Pt(111) surface

    Science.gov (United States)

    Bouhassoune, Mohammmed; Dias, Manuel dos Santos; Zimmermann, Bernd; Dederichs, Peter H.; Lounis, Samir

    2016-09-01

    The magnetic anisotropy energy defines the energy barrier that stabilizes a magnetic moment. Utilizing density-functional-theory-based simulations and analytical formulations, we establish that this barrier is strongly modified by long-range contributions very similar to Friedel oscillations and Rudermann-Kittel-Kasuya-Yosida interactions. Thus, oscillations are expected and observed, with different decaying factors and highly anisotropic in realistic materials, which can switch nontrivially the sign of the magnetic anisotropy energy. This behavior is general, and for illustration we address the transition-metal adatoms, Cr, Mn, Fe, and Co deposited on a Pt(111) surface. We explain, in particular, the mechanisms leading to the strong site dependence of the magnetic anisotropy energy observed for Fe adatoms on a Pt(111) surface as revealed previously via first-principles-based simulations and inelastic scanning tunneling spectroscopy [A. A. Khajetoorians et al., Phys. Rev. Lett. 111, 157204 (2013), 10.1103/PhysRevLett.111.157204]. The same mechanisms are probably active for the site dependence of the magnetic anisotropy energy obtained for Fe adatoms on Pd or Rh(111) surfaces and for Co adatoms on a Rh(111) surface [P. Blonski et al., Phys. Rev. B 81, 104426 (2010), 10.1103/PhysRevB.81.104426].

  14. Urban Energy Simulation Based on 3d City Models: a Service-Oriented Approach

    Science.gov (United States)

    Wate, P.; Rodrigues, P.; Duminil, E.; Coors, V.

    2016-09-01

    Recent advancements in technology has led to the development of sophisticated software tools revitalizing growth in different domains. Taking advantage of this trend, urban energy domain have developed several compute intensive physical and data driven models. These models are used in various distinct simulation softwares to simulate the whole life-cycle of energy flow in cities from supply, distribution, conversion, storage and consumption. Since some simulation software target a specific energy system, it is necessary to integrate them to predict present and future urban energy needs. However, a key drawback is that, these tools are not compatible with each other as they use custom or propriety formats. Furthermore, they are designed as desktop applications and cannot be easily integrated with third-party tools (open source or commercial). Thereby, missing out on potential model functionalities which are required for sustainable urban energy management. In this paper, we propose a solution based on Service Oriented Architecture (SOA). Our approach relies on open interfaces to offer flexible integration of modelling and computational functionality as loosely coupled distributed services.

  15. Large N Free Energy of 3d N=4 SCFTs and AdS/CFT

    CERN Document Server

    Assel, Benjamin; Yamazaki, Masahito

    2012-01-01

    We provide a non-trivial check of the AdS_4/CFT_3 correspondence recently proposed in arXiv:1106.4253 by verifying the GKPW relation in the large N limit. The CFT free energy is obtained from the previous works (arXiv:1105.2551, arXiv:1105.4390) on the S^3 partition function for 3-dimensional N=4 SCFT T[SU(N)]. This is matched with the computation of the type IIB action on the corresponding gravity background. We unexpectedly find that the leading behavior of the free energy at large N is 1/2 N^2 ln N. We also extend our results to richer theories and argue that 1/2 N^2 ln N is the maximal free energy at large N in this class of gauge theories.

  16. Chemically tuned linear energy transfer dependent quenching in a deformable, radiochromic 3D dosimeter

    DEFF Research Database (Denmark)

    Høye, Ellen Marie; Skyt, Peter Sandegaard; Balling, Peter

    2017-01-01

    the observed quenching in proton beams. The dependency of dose response on linear energy transfer, as calculated through Monte Carlo simulations of the dosimeter, was investigated in 60 MeV proton beams. We found that the amount of quenching varied with the chemical composition: peak-to-plateau ratios (1cm...... chemical compositions of the dosimeter showed dose-rate dependency; however this was not dependent on the linear energy transfer. Track-structure theory was used to explain the observed quenching effects. In conclusion, this study shows that the silicone-based dosimeter has potential for use in measuring 3...

  17. Stochastic rank correlation: a robust merit function for 2D/3D registration of image data obtained at different energies.

    Science.gov (United States)

    Birkfellner, Wolfgang; Stock, Markus; Figl, Michael; Gendrin, Christelle; Hummel, Johann; Dong, Shuo; Kettenbach, Joachim; Georg, Dietmar; Bergmann, Helmar

    2009-08-01

    In this article, the authors evaluate a merit function for 2D/3D registration called stochastic rank correlation (SRC). SRC is characterized by the fact that differences in image intensity do not influence the registration result; it therefore combines the numerical advantages of cross correlation (CC)-type merit functions with the flexibility of mutual-information-type merit functions. The basic idea is that registration is achieved on a random subset of the image, which allows for an efficient computation of Spearman's rank correlation coefficient. This measure is, by nature, invariant to monotonic intensity transforms in the images under comparison, which renders it an ideal solution for intramodal images acquired at different energy levels as encountered in intrafractional kV imaging in image-guided radiotherapy. Initial evaluation was undertaken using a 2D/3D registration reference image dataset of a cadaver spine. Even with no radiometric calibration, SRC shows a significant improvement in robustness and stability compared to CC. Pattern intensity, another merit function that was evaluated for comparison, gave rather poor results due to its limited convergence range. The time required for SRC with 5% image content compares well to the other merit functions; increasing the image content does not significantly influence the algorithm accuracy. The authors conclude that SRC is a promising measure for 2D/3D registration in IGRT and image-guided therapy in general.

  18. Estimation of Solar Energy on Vertical 3D Building Walls on City Quarter Scale

    Science.gov (United States)

    Jaugsch, F.; Löwner, M.-O.

    2016-10-01

    In urban areas, solar energy is one promising source of renewable energy to achieve the EU parliament's goal of reducing CO2 emissions by 20 % compared to 1990. Although annual radiation on vertical walls is lower than that on roof surfaces, they are larger in area and, therefore may contribute to energy production. On the other hand, the modelling of shadowing effects is cost intensive in an complex urban environment. Here we present a method for the calculation of solar potential on vertical walls for simple 2D maps with additional building height information. We introduced observer point columns that enable a fast decision whether a whole vertical set of observer points is illuminated or not. By the introduction of a maximum shade length, we reduce processing time in ArcGIS. 206,291 points of 130 buildings have been analysed in time steps of 15 minutes resulting in 15 769 pairs of solar angles. Results disprove the potential of vertical walls serving to fill the winter gap of roof mounted solar energy plants. Best wall orientation for the deployment of solar panels are west and east in summer, whereas it is southeast in winter.

  19. ESTIMATION OF SOLAR ENERGY ON VERTICAL 3D BUILDING WALLS ON CITY QUARTER SCALE

    Directory of Open Access Journals (Sweden)

    F. Jaugsch

    2016-10-01

    Full Text Available In urban areas, solar energy is one promising source of renewable energy to achieve the EU parliament’s goal of reducing CO2 emissions by 20 % compared to 1990. Although annual radiation on vertical walls is lower than that on roof surfaces, they are larger in area and, therefore may contribute to energy production. On the other hand, the modelling of shadowing effects is cost intensive in an complex urban environment. Here we present a method for the calculation of solar potential on vertical walls for simple 2D maps with additional building height information. We introduced observer point columns that enable a fast decision whether a whole vertical set of observer points is illuminated or not. By the introduction of a maximum shade length, we reduce processing time in ArcGIS. 206,291 points of 130 buildings have been analysed in time steps of 15 minutes resulting in 15 769 pairs of solar angles. Results disprove the potential of vertical walls serving to fill the winter gap of roof mounted solar energy plants. Best wall orientation for the deployment of solar panels are west and east in summer, whereas it is southeast in winter.

  20. Novel characteristics of energy spectrum for 3D Dirac oscillator analyzed via Lorentz covariant deformed algebra

    Science.gov (United States)

    Betrouche, Malika; Maamache, Mustapha; Choi, Jeong Ryeol

    2013-01-01

    We investigate the Lorentz-covariant deformed algebra for Dirac oscillator problem, which is a generalization of Kempf deformed algebra in 3 + 1 dimension of space-time, where Lorentz symmetry are preserved. The energy spectrum of the system is analyzed by taking advantage of the corresponding wave functions with explicit spin state. We obtained entirely new results from our development based on Kempf algebra in comparison to the studies carried out with the non-Lorentz-covariant deformed one. A novel result of this research is that the quantized relativistic energy of the system in the presence of minimal length cannot grow indefinitely as quantum number n increases, but converges to a finite value, where c is the speed of light and β is a parameter that determines the scale of noncommutativity in space. If we consider the fact that the energy levels of ordinary oscillator is equally spaced, which leads to monotonic growth of quantized energy with the increment of n, this result is very interesting. The physical meaning of this consequence is discussed in detail. PMID:24225900

  1. Novel characteristics of energy spectrum for 3D Dirac oscillator analyzed via Lorentz covariant deformed algebra.

    Science.gov (United States)

    Betrouche, Malika; Maamache, Mustapha; Choi, Jeong Ryeol

    2013-11-14

    We investigate the Lorentz-covariant deformed algebra for Dirac oscillator problem, which is a generalization of Kempf deformed algebra in 3 + 1 dimension of space-time, where Lorentz symmetry are preserved. The energy spectrum of the system is analyzed by taking advantage of the corresponding wave functions with explicit spin state. We obtained entirely new results from our development based on Kempf algebra in comparison to the studies carried out with the non-Lorentz-covariant deformed one. A novel result of this research is that the quantized relativistic energy of the system in the presence of minimal length cannot grow indefinitely as quantum number n increases, but converges to a finite value, where c is the speed of light and β is a parameter that determines the scale of noncommutativity in space. If we consider the fact that the energy levels of ordinary oscillator is equally spaced, which leads to monotonic growth of quantized energy with the increment of n, this result is very interesting. The physical meaning of this consequence is discussed in detail.

  2. HOW TO PINPOINT ENERGY-INEFFICIENT BUILDINGS? AN APPROACH BASED ON THE 3D CITY MODEL OF VIENNA

    Directory of Open Access Journals (Sweden)

    B. Skarbal

    2017-09-01

    Full Text Available This paper describes a methodology to assess the energy performance of residential buildings starting from the semantic 3D city model of Vienna. Space heating, domestic hot water and electricity demand are taken into account. The paper deals with aspects related to urban data modelling, with particular attention to the energy-related topics, and with issues related to interactive data exploration/visualisation and management from a plugin-free web-browser, e.g. based on Cesium, a WebGL virtual globe and map engine. While providing references to existing previous works, only some general and introductory information is given about the data collection, harmonisation and integration process necessary to create the CityGML-based 3D city model, which serves as the central information hub for the different applications developed and described more in detail in this paper. The work aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. The results obtained so far, as well as some comments about their quality and limitations, are presented, together with the discussion regarding the next steps and some planned improvements.

  3. 3D strain engineered self-rolled thin-film architecture for high-energy density lithium-ion batteries

    Science.gov (United States)

    Godbey, Griffin; Gong, Chen; Yu, Cynthia; Blythe, Clayton; Leite, Marina

    Recently, multiple 3D geometries have been implemented into energy storage devices (e . g . nanowire anodes and arrays of interdigitated rods) in order to better accommodate the large volume expansion experienced by the anode during lithiation and to increase the structure energy density. However, most approached structures are difficult to scale up. Here we show how self-rolled thin-films can maintain a high energy density and can potentially accommodate the volume expansion suffered by the anode. The self-rolled tubes are fabricated by physical deposition of the active layers, creating a stress gradient between thin-film stack due to differences in coefficient of thermal expansion. Upon a sacrificial layer removal, the thin-film rolls to relieve this built-in stress. We predict the final dimension of self-rolled battery tubes using known elastic properties of materials commonly used as the active layers of the device. We will discuss an appropriate figure-of-merit that defines how the winding process can ultimately affect the volumetric capacity of 3D self-rolled batteries.

  4. How to Pinpoint Energy-Inefficient Buildings? AN Approach Based on the 3d City Model of Vienna

    Science.gov (United States)

    Skarbal, B.; Peters-Anders, J.; Faizan Malik, A.; Agugiaro, G.

    2017-09-01

    This paper describes a methodology to assess the energy performance of residential buildings starting from the semantic 3D city model of Vienna. Space heating, domestic hot water and electricity demand are taken into account. The paper deals with aspects related to urban data modelling, with particular attention to the energy-related topics, and with issues related to interactive data exploration/visualisation and management from a plugin-free web-browser, e.g. based on Cesium, a WebGL virtual globe and map engine. While providing references to existing previous works, only some general and introductory information is given about the data collection, harmonisation and integration process necessary to create the CityGML-based 3D city model, which serves as the central information hub for the different applications developed and described more in detail in this paper. The work aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. The results obtained so far, as well as some comments about their quality and limitations, are presented, together with the discussion regarding the next steps and some planned improvements.

  5. 3d-4f Metal-Organic Framework with Dual Luminescent Centers That Efficiently Discriminates the Isomer and Homologues of Small Organic Molecules.

    Science.gov (United States)

    Zeng, Guang; Xing, Shanghua; Wang, Xiuru; Yang, Yulin; Ma, Dingxuan; Liang, Hongwei; Gao, Lu; Hua, Jia; Li, Guanghua; Shi, Zhan; Feng, Shouhua

    2016-02-01

    A 3d-4f luminescent metal-organic framework (MOF), [Tb2(Cu8I8)(C12H8NO2)6(H2O)4]·5C4H8O2 (4), and three analogues {[La2(Cu8I8)(C12H8NO2)6(C4H8O2)2(H2O)2]·3C4H8O2·2H2O (1), [Ce2(Cu8I8)(C12H8NO2)6(H2O)4]·5C4H8O2 (2), and [Eu2(Cu8I8)(C12H8NO2)6(H2O)4]·5C4H8O2 (3)}, were self-assembled from copper(I) halide clusters and lanthanide metal ions with an organic linker [3-(pyridin-4-yl)benzoic acid] under solvothermal conditions. Compound 4 with high quantum yield (Φ = 68%) exhibits reversible luminescence behavior, accompanying the removal and recovery of guest molecules (1,4-dioxane). Because of the unique porous structure and dual luminescent centers of compound 4, it can efficiently differentiate benzene series with different sizes and provide readouts in corresponding optical signals. Furthermore, it also can unambiguously discriminate the isomers, homologues, and other small molecules with similar structural motifs from one another. The luminescent color of the MOF sensor in different guest solvents has obvious changes that can be clearly distinguished by the naked eye. This multicolor luminescence originates from emissions of the dual luminescent centers, and the emissions have shifted, enhanced, weakened, or quenched to different degrees.

  6. Holography of 3d-3d correspondence at Large N

    OpenAIRE

    Gang, Dongmin; Kim, Nakwoo; Lee, Sangmin

    2014-01-01

    We study the physics of multiple M5-branes compactified on a hyperbolic 3-manifold. On the one hand, it leads to the 3d-3d correspondence which maps an N = 2 $$ \\mathcal{N}=2 $$ superconformal field theory to a pure Chern-Simons theory on the 3-manifold. On the other hand, it leads to a warped AdS 4 geometry in M-theory holographically dual to the superconformal field theory. Combining the holographic duality and the 3d-3d correspondence, we propose a conjecture for the large N limit of the p...

  7. Dual-Energy CT of Rectal Cancer Specimens

    DEFF Research Database (Denmark)

    Al-Najami, Issam; Beets-Tan, Regina G H; Madsen, Gunvor

    2016-01-01

    BACKGROUND: An accurate method to assess malignant lymph nodes in the mesorectum is needed. Dual-energy CT scans simultaneously with 2 levels of energy and thereby provides information about tissue composition based on the known effective Z value of different tissues. Each point investigated...... is represented by a certain effective Z value, which allows for information on its composition. OBJECTIVE: We wanted to standardize a method for dual-energy scanning of rectal specimens to evaluate the sensitivity and specificity of benign versus malignant lymph node differentiation. Histopathological evaluation...... cancer. MAIN OUTCOME MEASURES: We measured accuracy of differentiating benign from malignant lymph nodes by investigating the following: 1) gadolinium, iodine, and water concentrations in lymph nodes; 2) dual-energy ratio; 3) dual-energy index; and 4) effective Z value. RESULTS: Optimal discriminations...

  8. Coupling Motion and Energy Harvesting of Two Side-by-Side Flexible Plates in a 3D Uniform Flow

    Directory of Open Access Journals (Sweden)

    Dibo Dong

    2016-05-01

    Full Text Available The fluid-structure interaction problems of two side-by-side flexible plates with a finite aspect ratio in a three-dimensional (3D uniform flow are numerically studied. The plates’ motions are entirely passive under the force of surrounding fluid. By changing the aspect ratio and transverse distance, the coupling motions, drag force and energy capture performance are analyzed. The mechanisms underlying the plates’ motion and flow characteristics are discussed systematically. The adopted algorithm is verified and validated by the simulation of flow past a square flexible plate. The results show that the plate’s passive flapping behavior contains transverse and spanwise deformation, and the flapping amplitude is proportional to the aspect ratio. In the side-by-side configuration, three distinct coupling modes of the plates’ motion are identified, including single-plate mode, symmetrical flapping mode and decoupled mode. The plate with a lower aspect ratio may suffer less drag force and capture less bending energy than in the isolated situation. The optimized selection for obtaining higher energy conversion efficiency is the plate flapping in single-plate mode, especially the plate with a higher aspect ratio. The findings of this work provide several new physical insights into the understanding of fish schooling and are expected to inspire the developments of underwater robots or energy harvesters.

  9. Simplification of 3D Graphics for Mobile Devices: Exploring the Trade-off Between Energy Savings and User Perceptions of Visual Quality

    Science.gov (United States)

    Vatjus-Anttila, Jarkko; Koskela, Timo; Lappalainen, Tuomas; Häkkilä, Jonna

    2017-03-01

    3D graphics have quickly become a popular form of media that can also be accessed with today's mobile devices. However, the use of 3D applications with mobile devices is typically a very energy-consuming task due to the processing complexity and the large file size of 3D graphics. As a result, their use may lead to rapid depletion of the limited battery life. In this paper, we investigate how much energy savings can be gained in the transmission and rendering of 3D graphics by simplifying geometry data. In this connection, we also examine users' perceptions on the visual quality of the simplified 3D models. The results of this paper provide new knowledge on the energy savings that can be gained through geometry simplification, as well as on how much the geometry can be simplified before the visual quality of 3D models becomes unacceptable for the mobile users. Based on the results, it can be concluded that geometry simplification can provide significant energy savings for mobile devices without disturbing the users. When geometry simplification is combined with distance based adjustment of detail, up to 52% energy savings were gained in our experiments compared to using only a single high quality 3D model.

  10. Universal properties of 3d O(4) symmetric models: The scaling function of the free energy density and its derivatives

    CERN Document Server

    Karsch, Frithjof

    2011-01-01

    We present direct representations of the scaling functions of the 3d O(4) model which are relevant for comparisons to other models, in particular QCD. This is done in terms of expansions in the scaling variable z=t/h^{1/\\beta\\delta}. The expansions around z=0 and the corresponding asymptotic ones for z --> +/- infty, overlap such that no interpolation is needed. We explicitly present the expansion coefficients which have been determined numerically from data of a previous high statistics simulation of the O(4) model on a three-dimensional lattice of linear extension L=120. This allows to derive smooth representations of the first three derivatives of the scaling function of the free energy density, which determine universal properties of up to sixth order cumulants of net charge fluctuations in QCD.

  11. The interface free energy: Comparison of accurate Monte Carlo results for the 3D Ising model with effective interface models

    CERN Document Server

    Caselle, Michele; Panero, Marco

    2007-01-01

    We provide accurate Monte Carlo results for the free energy of interfaces with periodic boundary conditions in the 3D Ising model. We study a large range of inverse temperatures, allowing to control corrections to scaling. In addition to square interfaces, we study rectangular interfaces for a large range of aspect ratios u=L_1/L_2. Our numerical results are compared with predictions of effective interface models. This comparison verifies clearly the effective Nambu-Goto model up to two-loop order. Our data also allow us to obtain the estimates T_c sigma^-1/2=1.235(2), m_0++ sigma^-1/2=3.037(16) and R_+=f_+ sigma_0^2 =0.387(2), which are more precise than previous ones.

  12. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    Science.gov (United States)

    Podwin, Agnieszka; Dziuban, Jan A.

    2017-10-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO2—a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells.

  13. Energy-consistent small-core pseudopotentials for 3d-transition metals adapted to quantum Monte Carlo calculations.

    Science.gov (United States)

    Burkatzki, M; Filippi, Claudia; Dolg, M

    2008-10-28

    We extend our recently published set of energy-consistent scalar-relativistic Hartree-Fock pseudopotentials by the 3d-transition metal elements, scandium through zinc. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. The pseudopotentials and the accompanying basis sets (VnZ with n=T,Q) are given in standard Gaussian representation and their parameter sets are presented. Coupled cluster, configuration interaction, and QMC studies are carried out for the scandium and titanium atoms and their oxides, demonstrating the good performance of the pseudopotentials. Even though the choice of pseudopotential form is motivated by QMC, these pseudopotentials can also be employed in other quantum chemical approaches.

  14. Dual energy with dual source CT and kVp switching with single source CT: a comparison of dual energy performance

    Science.gov (United States)

    Grasruck, M.; Kappler, S.; Reinwand, M.; Stierstorfer, K.

    2009-02-01

    Stimulated by the introduction of clinical dual source CT, the interest in dual energy methods has been increasing in the past years. Whereas the potential of material decomposition by dual energy methods is known since the early 1980ies, the realization of dual energy methods is a wide field of today's research. Energy separation can be achieved with energy selective detectors or by varying X-ray source spectra. This paper focuses on dual energy techniques with varying X-ray spectra. These can be provided by dual source CT devices, operated with different kVp settings on each tube. Excellent spectral separation is the key property for use in clinical routine. The drawback of higher cost for two tubes and two detectors leads to an alternative realization, where a single source CT yields different spectra by fast kVp switching from reading to reading. This provides access to dual-energy methods in single source CT. However, this technique comes with some intrinsic limitations. The maximum X-ray flux is reduced in comparison to the dual source system. The kVp rise and fall time between each reading reduces the spectral separation. In comparison to dual source CT, for a constant number of projections per energy spectrum the temporal resolution is reduced; a reasonable trade of between reduced numbers of projection and limited temporal resolution has to be found. The overall dual energy performance is the guiding line for our investigations. We present simulations and measurements which benchmark both solutions in terms of spectral behavior, especially of spectral separation.

  15. Postmortem validation of breast density using dual-energy mammography

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A. [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.

  16. Cerebral artery evaluation of dual energy CT angiography with dual source CT

    Institute of Scientific and Technical Information of China (English)

    MA Rui; LIU Cheng; DENG Kai; SONG Shao-juan; WANG Dao-ping; HUANG Ling

    2010-01-01

    Background Conventional computed tomography angiography (CTA) is time consuming, user-dependent and has poor image quality in skull base region. This study assessed the feasibility of a new method, dual energy CTA for depicting the cerebral artery.Methods Phantom scan was done with head CTA sequences on dual source CT and 64 spiral CT for radiation dose calculation. Dual energy CTA was done with dual source CT on 36 patients who were suspected of having cerebral vascular disease. Three series axial images in 0.75 mm thick, 0.4 mm increment were acquired, which were named with 80 kV, 140 kV and merged images; 80 kV and 140 kV images were transferred into dual energy software, and maximum intensity projection (MIP) image was generated quickly by dual energy bone remove (DEBR group); merged images were transferred into In Space software to acquire MIP image through manual conventional bone remove (CoBR group). Post processing time and reading time were compared. Image qualities of the two groups were compared, mainly focusing on skull base segments of internal carotid artery and bone subtraction. ANOVA and SNK tests were applied for radiation dose comparison. Student's t test and Wilcoxon rank sum test were applied for assessing differences between data for significance. Cohen's kappa was used for interobserver agreement. Results Radiation dose of phantom scan showed dual energy CTA was between digital bone subtraction and conventional CTA. The post processing time and reading time were much shorter in DEBR than CoBR, and image quality in skull base was much higher in DEBR than CoBR (P0.5). Interobserver agreement for all vessel segments was excellent (kappa=0.97). Conclusions Dual energy CTA is a reliable, new modality for depicting cerebral artery, overcoming the limitation of conventional CTA in the skull base region. It can save much time in post processing and reading than conventional CTA.

  17. The scaling functions of the free energy density and its derivatives for the 3d O(4) model

    CERN Document Server

    Engels, Juergen

    2011-01-01

    We derive direct representations of the scaling functions of the 3d O(4) model which are relevant for comparisons to other models, in particular QCD. This is done in terms of expansions in the scaling variable z= t/h^{1/Delta}. The expansions around z=0 and the corresponding asymptotic ones for z --> +- infinity overlap such that no interpolation is needed. The expansion coefficients are determined numerically from the data of a previous high statistics simulation of the O(4) model on a three-dimensional lattice of linear extension L=120. From the scaling function of the magnetization we calculate the leading asymptotic coefficients of the scaling function of the free energy density. As a result we obtain the universal amplitude ratio A^+/A^-=1.84(4) for the specific heat. Comparing the scaling function of the energy density to the data we find the non-singular part of the energy density epsilon_{ns}(T) with high precision and at the same time excellent scaling properties.

  18. Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester.

    Science.gov (United States)

    Hu, Youfan; Yang, Jin; Jing, Qingshen; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin

    2013-11-26

    An unstable mechanical structure that can self-balance when perturbed is a superior choice for vibration energy harvesting and vibration detection. In this work, a suspended 3D spiral structure is integrated with a triboelectric nanogenerator (TENG) for energy harvesting and sensor applications. The newly designed vertical contact-separation mode TENG has a wide working bandwidth of 30 Hz in low-frequency range with a maximum output power density of 2.76 W/m(2) on a load of 6 MΩ. The position of an in-plane vibration source was identified by placing TENGs at multiple positions as multichannel, self-powered active sensors, and the location of the vibration source was determined with an error less than 6%. The magnitude of the vibration is also measured by the output voltage and current signal of the TENG. By integrating the TENG inside a buoy ball, wave energy harvesting at water surface has been demonstrated and used for lighting illumination light, which shows great potential applications in marine science and environmental/infrastructure monitoring.

  19. 面向通信能耗的3D NoC映射研究%Research on Mapping 3D Network on Chip for Communication Energy-Aware

    Institute of Scientific and Technical Information of China (English)

    李东生; 刘琪

    2012-01-01

    对于传统的平面结构,三维片上网络(3D NoC)具有更好的集成度和性能,在单芯片内部可以集成更多的处理器核.3D NoC作为2D NoC的结构拓展,在性能提高和低功耗设计方面更具优越性,成为多核系统芯片结构的主流架构.映射就是应用某种算法寻找一种最优方案,将通信任务图的子任务分配到NoC的资源节点上,保证NoC的通信能耗最小.参照2D NoC的研究方法,提出了针对3D网格NoC的通信能耗模型,采用蚁群算法实现了面向通信能耗的NoC映射.实验结果表明,面向不同网络规模的3D网格NoC平台,蚁群映射同随机映射相比,通信能耗降低可以达23%~42%.%Comparing with the traditional planar structure, 3D NoC has the better performance and integrated density. It can be integrated with large numbers of cores in a single chip. As 2D NoC structure extension, 3D NoC can improve performance and reduce energy. It is becoming a main solution for big multi-core system chips. Mapping means to search for an optimal solution applying some algorithms, and assigns the tasks of the communication task graph to the NoC resource nodes to ensure the minimum of NoC communication power consumption. The energy-aware model of 3D Mesh NoC was presented based on the research of the 2D NoC, and the ant colony algorithm to achieve NoC mapping. Experiment results show that, comparing with the random mapping, the communication power consumption of ant mapping with different sizes of the 3D Mesh NoC platform, has decreased considerably about 23%-42% .

  20. Rationally Designed Graphene-Nanotube 3D Architectures with a Seamless Nodal Junction for Efficient Energy Conversion and Storage

    Science.gov (United States)

    2015-09-04

    have indicated that 3D carbon architectures, particularly a 3D pillared structure, consisting of parallel graphene layers supported by vertically...building blocks. A few groups have tried to prepare multilayered 3D graphene- CNT pillared structures (3–7). However, most of the reported prepa- ration... copper wire under 1000°C with meth- ane as the carbon source and used as the counter electrode while the CNT fiber was obtained by dry spinning from

  1. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations

    Science.gov (United States)

    Freniere, Cole; Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.

  2. Hierarchical 3D ZnIn2S4/graphene nano-heterostructures: their in situ fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries.

    Science.gov (United States)

    Kale, Sayali B; Kalubarme, Ramchandra S; Mahadadalkar, Manjiri A; Jadhav, Harsharaj S; Bhirud, Ashwini P; Ambekar, Jalinder D; Park, Chan-Jin; Kale, Bharat B

    2015-12-21

    Hierarchical 3D ZnIn2S4/graphene (ZnIn2S4/Gr) nano-heterostructures were successfully synthesized using an in-situ hydrothermal method. The dual functionality of these nano-heterostructures i.e. for solar hydrogen production and lithium ion batteries has been demonstrated for the first time. The ZnIn2S4/Gr nano-heterostructures were optimized by varying the concentrations of graphene for utmost hydrogen production. An inspection of the structure shows the existence of layered hexagonal ZnIn2S4 wrapped in graphene. The reduction of graphene oxide (GO) to graphene was confirmed by Raman and XPS analyses. The morphological analysis demonstrated that ultrathin ZnIn2S4 nanopetals are dispersed on graphene sheets. The optical study reveals the extended absorption edge to the visible region due to the presence of graphene and hence is used as a photocatalyst to transform H2S into eco-friendly hydrogen using solar light. The ZnIn2S4/Gr nano-heterostructure that is comprised of graphene and ZnIn2S4 in a weight ratio of 1 : 99 exhibits enhanced photocatalytically stable hydrogen production i.e. ∼6365 μmole h(-1) under visible light irradiation using just 0.2 g of nano-heterostructure, which is much higher as compared to bare hierarchical 3D ZnIn2S4. The heightened photocatalytic activity is attributed to the enhanced charge carrier separation due to graphene which acts as an excellent electron collector and transporter. Furthermore, the usage of nano-heterostructures and pristine ZnIn2S4 as anodes in lithium ion batteries confers the charge capacities of 590 and 320 mA h g(-1) after 220 cycles as compared to their initial reversible capacities of 645 and 523 mA h g(-1), respectively. These nano-heterostructures show high reversible capacity, excellent cycling stability, and high-rate capability indicating their potential as promising anode materials for LIBs. The excellent performance is due to the nanostructuring of ZnIn2S4 and the presence of a graphene layer, which

  3. 3D position of radiation sources using an automated gamma camera and ML algorithm with energy-dependent response functions

    Science.gov (United States)

    Lee, Wonho; Wehe, David

    2004-09-01

    Portable γ-ray imaging systems operating from 100keV to 3MeV are used in nuclear medicine, astrophysics and industrial applications. 2D images of γ-rays are common in many fields using radiation-detection systems (Appl. Opt. 17 (3) (1978) 337; IEEE Trans. Nucl. Sci. Ns- 31 (1984) 771; IEEE Trans. Nucl. Sci. NS- 44 (3) (1997) 911). In this work, the 3D position of a radiation source is determined by a portable gamma-ray imaging system. 2D gamma-ray images were obtained from different positions of the gamma camera and the third dimension, the distance between the detector and the radiation source, was calculated using triangulation. The imaging system consists of a 4×4 array of CsI(Tl) detectors coupled to photodiode detectors that are mounted on an automated table which can precisely position the angular axis of the camera. Lead shields the detector array from the background radiation. Additionally, a CCD camera is attached to the top of the gamma camera and provides coincident 2D visual information. The inferred distances from the center of the two measurement points and a radiation source had less than a 3% error within a range of 3m. The radiation image from the gamma camera and the visual image from CCD camera are superimposed into one combined image using a maximum-likelihood (ML) algorithm to make the image more precise. The response functions for the ML algorithm depend on the energy of incident radiation, and are obtained from both experiments and simulations. The energy-dependent response functions are shown to yield better imaging performance compared with the fixed energy response function commonly used previously.

  4. Dual-energy subtraction radiography of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Asaga, Taro; Masuzawa, Chihiro; Kawahara, Satoru; Motohashi, Hisahiko; Okamoto, Takashi; Tamura, Nobuo

    1988-06-01

    Dual-energy projection radiography was applied to breast examination. To perform the dual-energy subtraction radiography using a digital radiography unit, high and low-energy exposures were made at an appropriate time interval under differing X-ray exposure conditions. Dual-energy subtraction radiography was performed in 41 cancer patients in whom the tumor shadow was equivocal or the border of cancer infiltration was not clearly demonstrated by compression mammography, and 15 patients with benign diseases such as fibrocystic disease, cyst and fibroadenoma. In 21 cases out of the 41 cancer patients, the dual-energy subtraction radiography clearly visualized the malignant tumor shadows and the border of cancer infiltration and the daughter nodules by removing the shadows of normal mammary gland. On the other hand, beign diseases such as fibrocystic disease and cyst could be diagnosed as such, because the tumor shadow and the irregularly concentrated image of mammary gland disappeared by the dual-energy subtraction. These results suggest that this new technique will be useful in examination of breast masses.

  5. Advanced material separation technique based on dual energy CT scanning

    Science.gov (United States)

    Zamyatin, Alexander A.; Natarajan, Anusha; Zou, Yu

    2009-02-01

    We propose a method for material separation using dual energy data. Our method is suitable to separation of three or more materials. In this work we describe our method and show results of numerical simulation and with real dual-energy data of a head phantom. The proposed method of constructing the material separation map consists of the following steps: Data-domain dual energy decomposition - Vector plot - Density plot - Clustering - Color assignment. Density plots are introduced to allow automatic cluster separation. We use special image processing methods, including Gaussian decomposition, to improve the accuracy of material separation. We also propose using the HSL color model for better visualization and to bring a new dimension in material separation display. We study applications of bone removal and virtual contrast removal. Evaluation shows improved accuracy compared to standard methods.

  6. Dual absorptive model and np elastic scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-e-Aleem

    1980-06-01

    The most recent measurements of the angular distribution and total cross-sections in np elastic scattering at high energies from 70 to 400 GeV/c have been fitted by using the dual absorptive model. Comparison has also been made with the Kane-Siedl model and the simple Regge pole model.

  7. A step towards on-chip biochemical energy cascade of microorganisms: carbon dioxide generation induced by ethanol fermentation in 3D printed modular lab-on-a-chip

    Science.gov (United States)

    Podwin, A.; Kubicki, W.; Adamski, K.; Walczak, R.; Dziuban, J. A.

    2016-11-01

    The concept of biochemical energy cascade of microorganisms towards oxygen generation in 3D printed lab-on-a-chip has been presented. In this work, carbon dioxide - a product of ethanol fermentation of yeasts has been utilized to enable light-initialized photosynthesis of euglenas and as a result of their metabolic transitions produce pure oxygen.

  8. Dual-energy perfusion-CT of pancreatic adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Klauß, M., E-mail: miriam.klauss@med.uni-heidelberg.de [University of Heidelberg, Dpt. of Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Stiller, W., E-mail: wolfram.stiller@med.uni-heidelberg.de [University of Heidelberg, Dpt. of Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Pahn, G., E-mail: gregor.pahn@med.uni-heidelberg.de [University of Heidelberg, Dpt. of Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Fritz, F., E-mail: franzi.fritz@cegug.org [University of Heidelberg, Dpt. of Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Kieser, M., E-mail: meinhard.kieser@med.uni-heidelberg.de [University of Heidelberg, Inst. of Medical Biometry and Informatics, Im Neuenheimer Feld 305, 69120 Heidelberg (Germany); Werner, J., E-mail: jens.werner@med.uni-heidelberg.de [University of Heidelberg, Dpt. of Surgery, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Kauczor, H.U., E-mail: hans-ulrich.kauczor@med.uni-heidelberg.de [University of Heidelberg, Dpt. of Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Grenacher, L., E-mail: lars.grenacher@med.uni-heidelberg.de [University of Heidelberg, Dpt. of Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany)

    2013-02-15

    Purpose: To evaluate the feasibility of dual-energy CT (DECT)-perfusion of pancreatic carcinomas for assessing the differences in perfusion, permeability and blood volume of healthy pancreatic tissue and histopathologically confirmed solid pancreatic carcinoma. Materials and methods: 24 patients with histologically proven pancreatic carcinoma were examined prospectively with a 64-slice dual source CT using a dynamic sequence of 34 dual-energy (DE) acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). 80 kV{sub p}, 140 kV{sub p}, and weighted average (linearly blended M0.3) 120 kV{sub p}-equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool (Body-PCT, Siemens Medical Solutions, Erlangen, Germany) for estimating perfusion, permeability, and blood volume values. Color-coded parameter maps were generated. Results: In all 24 patients dual-energy CT-perfusion was. All carcinomas could be identified in the color-coded perfusion maps. Calculated perfusion, permeability and blood volume values were significantly lower in pancreatic carcinomas compared to healthy pancreatic tissue. Weighted average 120 kV{sub p}-equivalent perfusion-, permeability- and blood volume-values determined from DE image data were 0.27 ± 0.04 min{sup −1} vs. 0.91 ± 0.04 min{sup −1} (p < 0.0001), 0.5 ± 0.07 *0.5 min{sup −1} vs. 0.67 ± 0.05 *0.5 min{sup −1} (p = 0.06) and 0.49 ± 0.07 min{sup −1} vs. 1.28 ± 0.11 min{sup −1} (p < 0.0001). Compared with 80 and 140 kV{sub p} the standard deviations of the kV{sub p}120 kV{sub p}-equivalent values were manifestly smaller. Conclusion: Dual-energy CT-perfusion of the pancreas is feasible. The use of DECT improves the accuracy of CT-perfusion of the pancreas by fully exploiting the advantages of enhanced iodine contrast at 80 kV{sub p} in combination with the noise reduction at 140 kV{sub p}. Therefore using dual-energy perfusion data could improve the delineation

  9. Liquid-type cathode enabled by 3D sponge-like carbon nanotubes for high energy density and long cycling life of Li-S batteries.

    Science.gov (United States)

    Pu, Xiong; Yang, Gang; Yu, Choongho

    2014-11-26

    High energy density and long-term stability of Li-S batteries are achieved by employing a 3D sponge-like carbon nanotube cathode and a liquid-type polysulfide catholyte. Carbon nanotubes not only provide excellent electron pathways and polysulfide reservoirs, but they can also be used as a standalone cathode without current collectors, which greatly alleviates problems arising from insulating sulfur and polysulfide shuttles as well as remarkably increasing the energy density.

  10. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  11. Single/Dual-Polarized Infrared Rectenna for Solar Energy Harvesting

    Directory of Open Access Journals (Sweden)

    S. H. Zainud-Deen

    2016-05-01

    Full Text Available Single and dual linearly-polarized receiving mode nanoantennas are designed for solar energy harvesting at 28.3 THz. The infrared rectennas are used to harvest the solar energy and converting it to electrical energy.  The proposed infrared rectenna is a thin dipole made of gold and printed on a silicon dioxide substrate. Different shapes of the dipole arms have been investigated for maximum collected energy. The two poles of the dipole have been determined in a rectangular, circular and rhombus shapes. The rectenna dipole is used to concentrate the electromagnetic energy into a small localized area at the inner tips of the gap between the dipole arms. The dimensions of the different dipole shapes are optimized for maximum near electric field intensity at a frequency of 28.3 THz. A Metal Insulator Metal (MIM diode is incorporated with the nanoantenna dipole to rectify the received energy. The receiving efficiency of the solar energy collector with integrated MIM diode has been investigated. A dual-polarized, four arms, rhombus shaped nanoantenna dipole for solar energy harvesting has been designed and optimized for 28.3 THz applications.

  12. Dual Energy Method for Breast Imaging: A Simulation Study

    Directory of Open Access Journals (Sweden)

    V. Koukou

    2015-01-01

    Full Text Available Dual energy methods can suppress the contrast between adipose and glandular tissues in the breast and therefore enhance the visibility of calcifications. In this study, a dual energy method based on analytical modeling was developed for the detection of minimum microcalcification thickness. To this aim, a modified radiographic X-ray unit was considered, in order to overcome the limited kVp range of mammographic units used in previous DE studies, combined with a high resolution CMOS sensor (pixel size of 22.5 μm for improved resolution. Various filter materials were examined based on their K-absorption edge. Hydroxyapatite (HAp was used to simulate microcalcifications. The contrast to noise ratio (CNRtc of the subtracted images was calculated for both monoenergetic and polyenergetic X-ray beams. The optimum monoenergetic pair was 23/58 keV for the low and high energy, respectively, resulting in a minimum detectable microcalcification thickness of 100 μm. In the polyenergetic X-ray study, the optimal spectral combination was 40/70 kVp filtered with 100 μm cadmium and 1000 μm copper, respectively. In this case, the minimum detectable microcalcification thickness was 150 μm. The proposed dual energy method provides improved microcalcification detectability in breast imaging with mean glandular dose values within acceptable levels.

  13. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  14. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  15. "How to" incorporate dual-energy imaging into a high volume abdominal imaging practice.

    Science.gov (United States)

    Tamm, Eric P; Le, Ott; Liu, Xinming; Layman, Rick R; Cody, Dianna D; Bhosale, Priya R

    2017-03-01

    Dual-energy CT imaging has many potential uses in abdominal imaging. It also has unique requirements for protocol creation depending on the dual-energy scanning technique that is being utilized. It also generates several new types of images which can increase the complexity of image creation and image interpretation. The purpose of this article is to review, for rapid switching and dual-source dual-energy platforms, methods for creating dual-energy protocols, different approaches for efficiently creating dual-energy images, and an approach to navigating and using dual-energy images at the reading station all using the example of a pancreatic multiphasic protocol. It will also review the three most commonly used types of dual-energy images: "workhorse" 120kVp surrogate images (including blended polychromatic and 70 keV monochromatic), high contrast images (e.g., low energy monochromatic and iodine material decomposition images), and virtual unenhanced images. Recent developments, such as the ability to create automatically on the scanner the most common dual-energy images types, namely new "Mono+" images for the DSDECT (dual-source dual-energy CT) platform will also be addressed. Finally, an approach to image interpretation using automated "hanging protocols" will also be covered. Successful dual-energy implementation in a high volume practice requires careful attention to each of these steps of scanning, image creation, and image interpretation.

  16. Dual-Cell HSDPA for Network Energy Saving

    DEFF Research Database (Denmark)

    Micallef, Gilbert

    2010-01-01

    consumption. This paper proposes an energy saving feature that exploits variations in network traffic. Based on the individual load of each sector, the feature determines if the secondary carrier is detrimental for reaching some pre-set minimum requirements. Each sector is allowed to switch off one......The increasing demand for mobile broadband is pushing existing 3G networks closer to their capacity limit. Additional carriers together with new HSPA features (HSPA+) are expected to provide the next necessary boost in network capacity. One specific feature in HSPA+ is referred to as Dual......-Cell HSDPA (or Dual-Carrier HSDPA). This feature allows for a single user to be simultaneously scheduled over two carriers, effectively doubling its achievable data rate. The addition of a secondary carrier will require additional radio equipment at the base station site, increasing the overall energy...

  17. Anatomical decomposition in dual energy chest digital tomosynthesis

    Science.gov (United States)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Lung cancer is the leading cause of cancer death worldwide and the early diagnosis of lung cancer has recently become more important. For early screening lung cancer, computed tomography (CT) has been used as a gold standard for early diagnosis of lung cancer [1]. The major advantage of CT is that it is not susceptible to the problem of misdiagnosis caused by anatomical overlapping while CT has extremely high radiation dose and cost compared to chest radiography. Chest digital tomosynthesis (CDT) is a recently introduced new modality for lung cancer screening with relatively low radiation dose compared to CT [2] and also showing high sensitivity and specificity to prevent anatomical overlapping occurred in chest radiography. Dual energy material decomposition method has been proposed for better detection of pulmonary nodules as means of reducing the anatomical noise [3]. In this study, possibility of material decomposition in CDT was tested by simulation study and actual experiment using prototype CDT. Furthermore organ absorbed dose and effective dose were compared with single energy CDT. The Gate v6 (Geant4 application for tomographic emission), and TASMIP (Tungsten anode spectral model using the interpolating polynomial) code were used for simulation study and simulated cylinder shape phantom consisted of 4 inner beads which were filled with spine, rib, muscle and lung equivalent materials. The patient dose was estimated by PCXMC 1.5 Monte Carlo simulation tool [4]. The tomosynthesis scan was performed with a linear movement and 21 projection images were obtained over 30 degree of angular range with 1.5° degree of angular interval. The proto type CDT system has same geometry with simulation study and composed of E7869X (Toshiba, Japan) x-ray tube and FDX3543RPW (Toshiba, Japan) detector. The result images showed that reconstructed with dual energy clearly visualize lung filed by removing unnecessary bony structure. Furthermore, dual energy CDT could enhance

  18. Simultaneous dual-energy X-ray stereo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mokso, Rajmund, E-mail: rajmund.mokso@psi.ch [Paul Scherrer Institute, Swiss Light Source, CH 5232 Villigen (Switzerland); Oberta, Peter [Institute of Physics of the Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 1999/2, Praha 8 (Czech Republic); Rigaku Innovative Technologies Europe s.r.o., Novodvorska 994, Praha 4 (Czech Republic)

    2015-06-26

    A Laue–Bragg geometry is introduced for splitting an X-ray beam and tuning each of the two branches to selected wavelength. Stereoscopic and dual-energy imaging was performed with this system. Dual-energy or K-edge imaging is used to enhance contrast between two or more materials in an object and is routinely realised by acquiring two separate X-ray images each at different X-ray wavelength. On a broadband synchrotron source an imaging system to acquire the two images simultaneously was realised. The single-shot approach allows dual-energy and stereo imaging to be applied to dynamic systems. Using a Laue–Bragg crystal splitting scheme, the X-ray beam was split into two and the two beam branches could be easily tuned to either the same or to two different wavelengths. Due to the crystals’ mutual position, the two beam branches intercept each other under a non-zero angle and create a stereoscopic setup.

  19. Predicting the binding free energy of the inclusion process of 2-hydroxypropyl-β-cyclodextrin and small molecules by means of the MM/3D-RISM method

    Science.gov (United States)

    Sugita, Masatake; Hirata, Fumio

    2016-09-01

    A protocol to calculate the binding free energy of a host-guest system is proposed based on the MM/3D-RISM method, taking cyclodextrin derivatives and their ligands as model systems. The protocol involves the procedure to identify the most probable binding mode (MPBM) of receptors and ligands by means of the umbrella sampling method. The binding free energies calculated by the MM/3D-RISM method for the complexes of the seven ligands with the MPBM of the cyclodextrin, and with the fluctuated structures around it, are in agreement with the corresponding experimental data in a semi-quantitative manner. It suggests that the protocol proposed here is promising for predicting the binding affinity of a small ligand to a relatively rigid receptor such as cyclodextrin.

  20. Large $N$ matrix models for 3d ${\\cal N}=2$ theories: twisted index, free energy and black holes

    CERN Document Server

    Hosseini, Seyed Morteza

    2016-01-01

    We provide general formulae for the topologically twisted index of a general three-dimensional ${\\cal N}\\geq 2$ gauge theory with an M-theory or massive type IIA dual in the large $N$ limit. The index is defined as the supersymmetric path integral of the theory on $S^2\\times S^1$ in the presence of background magnetic fluxes for the R- and global symmetries and it is conjectured to reproduce the entropy of magnetically charged static BPS AdS$_4$ black holes. For a class of theories with an M-theory dual, we show that the logarithm of the index scales indeed as $N^{3/2}$ (and $N^{5/3}$ in the massive type IIA case). We find an intriguing relation with the (apparently unrelated) large $N$ limit of the partition function on $S^3$. We also provide a universal formula for extracting the index from the large $N$ partition function on $S^3$ and its derivatives and point out its analogy with the attractor mechanism for AdS black holes.

  1. Large N matrix models for 3d {N} = 2 theories: twisted index, free energy and black holes

    Science.gov (United States)

    Hosseini, Seyed Morteza; Zaffaroni, Alberto

    2016-08-01

    We provide general formulae for the topologically twisted index of a general three-dimensional {N} ≥ 2 gauge theory with an M-theory or massive type IIA dual in the large N limit. The index is defined as the supersymmetric path integral of the theory on S 2 × S 1 in the presence of background magnetic fluxes for the R- and global symmetries and it is conjectured to reproduce the entropy of magnetically charged static BPS AdS4 black holes. For a class of theories with an M-theory dual, we show that the logarithm of the index scales indeed as N 3/2 (and N 5/3 in the massive type IIA case). We find an intriguing relation with the (apparently unrelated) large N limit of the partition function on S 3. We also provide a universal formula for extracting the index from the large N partition function on S 3 and its derivatives and point out its analogy with the attractor mechanism for AdS black holes.

  2. Soft tissue discrimination ex vivo by dual energy computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zachrisson, H., E-mail: helene.zachrisson@lio.s [Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping University Hospital, SE-581 85 Linkoeping (Sweden); Clinical Physiology, Department of Medical and Health Sciences (IMH), Linkoeping University, Linkoeping University Hospital, SE-581 85 Linkoeping (Sweden); Engstroem, E. [Clinical Physiology, Department of Medical and Health Sciences (IMH), Linkoeping University, Linkoeping University Hospital, SE-581 85 Linkoeping (Sweden); Engvall, J.; Wigstroem, L. [Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping University Hospital, SE-581 85 Linkoeping (Sweden); Clinical Physiology, Department of Medical and Health Sciences (IMH), Linkoeping University, Linkoeping University Hospital, SE-581 85 Linkoeping (Sweden); Smedby, O.; Persson, A. [Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping University Hospital, SE-581 85 Linkoeping (Sweden); Radiology, Department of Medical and Health Sciences (IMH), Linkoeping University, Linkoeping University Hospital, SE-581 85 Linkoeping (Sweden)

    2010-08-15

    Purpose: Dual Energy Computed Tomography (DECT) may provide additional information about the chemical composition of tissues compared to examination with a single X-ray energy. The aim of this in vitro study was to test whether combining two energies may significantly improve the detection of soft tissue components commonly present in arterial plaques. Methods: Tissue samples of myocardial and psoas muscle, venous and arterial thrombus as well as fat from different locations were scanned using a SOMATOM Definition Dual Source CT system (Siemens AG, Medical Solutions, Forchheim, Germany) with simultaneous tube voltages of 140 and 80 kV. The attenuation (Hounsfield units, HU) at 80 and 140 kV was measured in representative regions of interest, and the association between measured HU values and tissue types was tested with logistic regression. Results: The combination of two energy levels (80 and 140 kV) significantly improved (p < 0.001) the ability to correctly classify venous thrombus vs arterial thrombus, myocardium or psoas; arterial thrombus vs myocardium or psoas; myocardium vs psoas; as well as the differentiation between fat tissue from various locations. Single energy alone was sufficient for distinguishing fat from other tissues. Conclusion: DECT offers significantly improved in vitro differentiation between soft tissues occurring in plaques. If this corresponds to better tissue discrimination in vivo needs to be clarified in future studies.

  3. Robust solution procedure for the discrete energy-averaged model on the calculation of 3D hysteretic magnetization and magnetostriction of iron–gallium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tari, H., E-mail: tari.1@osu.edu; Scheidler, J.J., E-mail: scheidler.8@osu.edu; Dapino, M.J., E-mail: dapino.1@osu.edu

    2015-06-15

    A reformulation of the Discrete Energy-Averaged model for the calculation of 3D hysteretic magnetization and magnetostriction of iron-gallium (Galfenol) alloys is presented in this paper. An analytical solution procedure based on an eigenvalue decomposition is developed. This procedure avoids the singularities present in the existing approximate solution by offering multiple local minimum energy directions for each easy crystallographic direction. This improved robustness is crucial for use in finite element codes. Analytical simplifications of the 3D model to 2D and 1D applications are also presented. In particular, the 1D model requires calculation for only one easy direction, while all six easy directions must be considered for general applications. Compared to the approximate solution procedure, it is shown that the resulting robustness comes at no expense for 1D applications, but requires almost twice the computational effort for 3D applications. To find model parameters, we employ the average of the hysteretic data, rather than anhysteretic curves, which would require additional measurements. An efficient optimization routine is developed that retains the dimensionality of the prior art. The routine decouples the parameters into exclusive sets, some of which are found directly through a fast preprocessing step to improve accuracy and computational efficiency. The effectiveness of the model is verified by comparison with existing measurement data. - Highlights: • The discrete energy-averaged model for Galfenol is reformulated. • An analytical solution for 3D magnetostriction and magnetization is developed from eigenvalue decomposition. • Improved robustness is achieved. • An efficient optimization routine is developed to identify parameters from averaged hysteresis curves. • The effectiveness of the model is demonstrated against experimental data.

  4. Unconventional energy resources in a crowded subsurface: Reducing uncertainty and developing a separation zone concept for resource estimation and deep 3D subsurface planning using legacy mining data.

    Science.gov (United States)

    Monaghan, Alison A

    2017-12-01

    Over significant areas of the UK and western Europe, anthropogenic alteration of the subsurface by mining of coal has occurred beneath highly populated areas which are now considering a multiplicity of 'low carbon' unconventional energy resources including shale gas and oil, coal bed methane, geothermal energy and energy storage. To enable decision making on the 3D planning, licensing and extraction of these resources requires reduced uncertainty around complex geology and hydrogeological and geomechanical processes. An exemplar from the Carboniferous of central Scotland, UK, illustrates how, in areas lacking hydrocarbon well production data and 3D seismic surveys, legacy coal mine plans and associated boreholes provide valuable data that can be used to reduce the uncertainty around geometry and faulting of subsurface energy resources. However, legacy coal mines also limit unconventional resource volumes since mines and associated shafts alter the stress and hydrogeochemical state of the subsurface, commonly forming pathways to the surface. To reduce the risk of subsurface connections between energy resources, an example of an adapted methodology is described for shale gas/oil resource estimation to include a vertical separation or 'stand-off' zone between the deepest mine workings, to ensure the hydraulic fracturing required for shale resource production would not intersect legacy coal mines. Whilst the size of such separation zones requires further work, developing the concept of 3D spatial separation and planning is key to utilising the crowded subsurface energy system, whilst mitigating against resource sterilisation and environmental impacts, and could play a role in positively informing public and policy debate. Copyright © 2017 British Geological Survey, a component institute of NERC. Published by Elsevier B.V. All rights reserved.

  5. Transition between quasi 2 and 3D behaviour of the binding energy of screened excitons in semiconductor quantum well structures

    CERN Document Server

    Vazquez, G J; Reyes, J A; Lee, J; Spector, H N

    2003-01-01

    We have calculated the binding energy of screened excitons in a semiconducting quantum well structure as a function of screening parameter and the width of the quantum well using variational wave functions to obtain upper bounds for the energy. The binding energy decreases with increasing values of the screening parameter and with increasing well width. However, as long as the well width is narrow enough so the electrons and holes occupy their lowest-energy subbands, the exciton remains bound even for large values of the screening parameter whenever the electron gas remains nondegenerate. (Author)

  6. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  7. 2D-3D Transition for Cationic and Anionic Gold Clusters: A Kinetic Energy Density Functional Study

    DEFF Research Database (Denmark)

    Ferrighi, Lara; Hammer, Bjørk; Madsen, Georg

    2009-01-01

    gradient enhancement. Moreover, we show how MGGAs, in contrast to generalize gradient approximations with smaller gradient enhancements, avoid overestimating the bond energies by combining the information contained in the reduced gradient and the kinetic energy. This allows MGGAs to treat differently...

  8. 3D visualization of TiO2 nanocrystals in mesoporous nanocomposite using energy filtered transmission electron microscopy tomography

    DEFF Research Database (Denmark)

    Gondo, Takashi; Kasama, Takeshi; Kaneko, Kenji

    2014-01-01

    within pores in the case of use of deposition-precipitation method due to extreme low iso-electric point (IEP) of silica (∼2). Therefore, TiO2 nanocrystals (IEP 6-8) were then introduced to anchor AuNPs [3].In this study, EFTEM tomography was applied to examine the effectiveness of TiO2 for Au......NPs. Materials and methodAu/TiO2-SBA-15 was embedded into epoxy resin for electron microscopy and microtomed to about 30 nm thickness. EFTEM-tomography was operated at 120 kV and using Ti-L ionization edge via three-window method. Prior to EFTEM, STEM-HAADF tomography was also carried out for visualizing Au......NPs and for comparison. Result and discussionFigure 1 shows 3D-volume of AuNPs and TiO2 nanocrystals from EFTEM-tomography. TiO2 nanocrystals in the porous material were successfully visualized using EFTEM -tomography, and local relationship between AuNPs and TiO2 nanocrystals were revealed. A large number of TiO2...

  9. Dictionary-based image denoising for dual energy computed tomography

    Science.gov (United States)

    Mechlem, Korbinian; Allner, Sebastian; Mei, Kai; Pfeiffer, Franz; Noël, Peter B.

    2016-03-01

    Compared to conventional computed tomography (CT), dual energy CT allows for improved material decomposition by conducting measurements at two distinct energy spectra. Since radiation exposure is a major concern in clinical CT, there is a need for tools to reduce the noise level in images while preserving diagnostic information. One way to achieve this goal is the application of image-based denoising algorithms after an analytical reconstruction has been performed. We have developed a modified dictionary denoising algorithm for dual energy CT aimed at exploiting the high spatial correlation between between images obtained from different energy spectra. Both the low-and high energy image are partitioned into small patches which are subsequently normalized. Combined patches with improved signal-to-noise ratio are formed by a weighted addition of corresponding normalized patches from both images. Assuming that corresponding low-and high energy image patches are related by a linear transformation, the signal in both patches is added coherently while noise is neglected. Conventional dictionary denoising is then performed on the combined patches. Compared to conventional dictionary denoising and bilateral filtering, our algorithm achieved superior performance in terms of qualitative and quantitative image quality measures. We demonstrate, in simulation studies, that this approach can produce 2d-histograms of the high- and low-energy reconstruction which are characterized by significantly improved material features and separation. Moreover, in comparison to other approaches that attempt denoising without simultaneously using both energy signals, superior similarity to the ground truth can be found with our proposed algorithm.

  10. Investigation of the 2p_{32}-3d_{52} line emission of Au;{53+}-Au;{69+} for diagnosing high energy density plasmas.

    Science.gov (United States)

    Brown, G V; Hansen, S B; Träbert, E; Beiersdorfer, P; Widmann, K; Chen, H; Chung, H K; Clementson, J H T; Gu, M F; Thorn, D B

    2008-06-01

    Measurements of the L -shell emission of highly charged gold ions were made under controlled laboratory conditions using the SuperEBIT electron beam ion trap, allowing detailed spectral observations of lines from Fe-like Au53+ through Ne-like Au69+ . Using atomic data from the Flexible Atomic Code, we have identified strong 3d_{52}-->2p_{32} emission features that can be used to diagnose the charge state distribution in high energy density plasmas, such as those found in the laser entrance hole of hot hohlraum radiation sources. We provide collisional-radiative calculations of the average ion charge Z as a function of temperature and density, which can be used to relate charge state distributions inferred from 3d_{52}-->2p_{32} emission features to plasma conditions, and investigate the effects of plasma density on calculated L -shell Au emission spectra.

  11. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field.

  12. PVAL breast phantom for dual energy calcification detection

    Science.gov (United States)

    Koukou, V.; Martini, N.; Velissarakos, K.; Gkremos, D.; Fountzoula, C.; Bakas, A.; Michail, C.; Kandarakis, I.; Fountos, G.

    2015-09-01

    Microcalcifications are the main indicator for breast cancer. Dual energy imaging can enhance the detectability of calcifications by suppressing the tissue background. Two digital images are obtained using two different spectra, for the low- and high-energy respectively, and a weighted subtracted image is produced. In this study, a dual energy method for the detection of the minimum breast microcalcification thickness was developed. The used integrated prototype system consisted of a modified tungsten anode X-ray tube combined with a high resolution CMOS sensor. The breast equivalent phantom used was an elastically compressible gel of polyvinyl alcohol (PVAL). Hydroxyapatite was used to simulate microcalcifications with thicknesses ranging from 50 to 500 μm. The custom made phantom was irradiated with 40kVp and 70kVp. Tungsten (W) anode spectra filtered with 100μm Cadmium and 1000pm Copper, for the low- and high-energy, respectively. Microcalcifications with thicknesses 300μm or higher can be detected with mean glandular dose (MGD) of 1.62mGy.

  13. Dual energy computer tomography. Objectve dosimetry, image quality and dose efficiency; Dual Energy Computertomographie. Objektive Dosimetrie, Bildqualitaet und Dosiseffizienz

    Energy Technology Data Exchange (ETDEWEB)

    Schenzle, Jan Christian

    2012-05-24

    The aim of the present studies was an objective reflection of newly developed methods of modern imaging techniques concerning radiation exposure to the human body. Dual Source computed tomography has opened up a broad variety of new diagnostic possibilities. Using two X-ray sources with an angular offset of about 90 in a single gantry, images with a high spatiotemporal resolution can be achieved, for example in patients suffering acute chest pain. The Dual Energy Mode is based on the acquisition of two data sets with two different X-ray spectra which make it possible to identify certain substances with different spectral properties like bone, iodine or other organic material. [6-17] There is no doubt that this technical innovation will make an essential contribution to clinical diagnostics, but it remained to be proven that there is no additional dose. An anthropomorphic Phantom and thermoluminiscent detectors were used to objectively quantify the radiation dose resulting from the different examination protocols. For Dual Energy CT examinations, it was possible to verify dose neutrality in combination with comparable image quality and even improved contrast to noise ratio. Nowadays, this protocol is used in clinical routine examinations, e.g. for the evaluation of pulmonary embolism. A milestone in dose reduction was reached with modern triple rule out protocols. Causes of acute chest pain such as heart attack, pulmonary embolism or aortic rupture can be differentiated in a single examination with a high precision and a fractional amount of dose compared to conventional methods.

  14. Optical and electrochemical dual channel sensing of Cu2 + using functionalized furo[2,3-d]pyrimidines-2,4[1H,3H]-diones

    Science.gov (United States)

    Kumar, Manoj; Kumawat, Lokesh Kumar; Bhatt, Priyanka; Jha, Anjali; Agarwal, Shilpi; Sharma, Anuj; Gupta, Vinod Kumar

    2017-06-01

    Owing to their easy accessibility and high degree of structural and functional diversity, many multicomponent reactions (MCRs) have been a rich source of conjugate π-systems, functionalised chromophores (or fluorophore) and redox active molecules. Despite their high explorative potential and practical benefits, only a few MCR products have been so far investigated for their metal sensing abilities. In the present report, two furopyrimidinones (FPys) based molecular systems have been synthesized by [4 + 1] cycloaddition based MCR sequence. Designed chemosensors displayed optic (absorption spectra) as well as electroanalytical (ion selective electrode) response toward Cu2 + ion in solution and membrane phase respectively (dual channel sensing). Different aspects of both the sensing phenomena such as selectivity, association constants, detection limit, membrane composition etc. were studied in detail using UV-Vis spectroscopy, NMR titration and cell assembly. Both the compounds showed excellent performance characteristics such as high selectivity, acceptable affinity and low detection limits (10- 7 M) in both sensing assays with potential utility in the area of sample monitoring.

  15. A simulation study of microwave field effects on a 3D orthorhombic lattice of rotating dipoles: short-range potential energy variation

    Science.gov (United States)

    Kapranov, Sergey V.; Kouzaev, Guennadi A.

    2016-05-01

    Variation of the short-range potential energy of interaction of nearest dipoles in a three-dimensional (3D) orthorhombic lattice exposed to microwave electric fields is studied by means of the Langevin dynamics simulations. The global increase of the mean potential energy is typical for all the frequencies and intensities at lower temperatures, whereas separate potential energy peaks or peak chains are observed at intermediate temperatures. A simple statistical model proposed to account for the temperature dependence of the field intensity for potential energy peaks suggests the concerted collective rotation of the dipoles. The temperature dependence of the peak frequency is explained using a combination of the one-dimensional Kramers and the resonant activation theories applied to the field-driven collective rotation, with the nearly degenerate angular coordinates of the dipoles being used as a single effective coordinate.

  16. Dual energy CT in patients with polycystic kidney disease

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, Nikolaus; Reiser, Maximilian F.; Graser, Anno [University of Munich, Department of Clinical Radiology, Munich (Germany); Staehler, Michael [University of Munich, Department of Urology, Munich (Germany); Siegert, Sabine [University of Munich, Department of Pathology, Munich (Germany)

    2012-10-15

    To evaluate the diagnostic efficacy of dual source-dual energy CT (DECT) in the detection of neoplasia in patients with polycystic kidney disease (PKD). A total of 21 patients with PKD underwent DECT on a dual source system, using kVp settings of Sn140/100 or 140/80. Colour-coded iodine maps and virtual unenhanced images were used to determine enhancement within cysts and to differentiate haemorrhagic from simple cysts. A cut-off of 15 HU was used as a threshold for malignancy. In patients with malignancy, histopathology was the gold standard; otherwise, patients underwent follow-up imaging for 150-908 days. On the basis of measured enhancement, 13 enhancing masses were seen in 4 patients (12 renal cell cancers and 1 adenoma); follow-up imaging showed no malignancy in 18 patients. Cysts did not enhance by more than 15 HU, whereas masses showed a mean enhancement of 45 (25-123) HU. Average radiation exposure was 9.6 mSv for the biphasic protocol and 5.8 mSv for DECT only. DECT greatly facilitates the detection of malignancy in patients with polycystic kidney disease, at the same time reducing radiation exposure by omission of a true unenhanced phase. (orig.)

  17. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor.

    Science.gov (United States)

    Li, Xiuhan; Lin, Zong-Hong; Cheng, Gang; Wen, Xiaonan; Liu, Ying; Niu, Simiao; Wang, Zhong Lin

    2014-10-28

    In the past years, scientists have shown that development of a power suit is no longer a dream by integrating the piezoelectric nanogenerator (PENG) or triboelectric nanogenerator (TENG) with commercial carbon fiber cloth. However, there is still no design applying those two kinds of NG together to collect the mechanical energy more efficiently. In this paper, we demonstrate a fiber-based hybrid nanogenerator (FBHNG) composed of TENG and PENG to collect the mechanical energy in the environment. The FBHNG is three-dimensional and can harvest the energy from all directions. The TENG is positioned in the core and covered with PENG as a coaxial core/shell structure. The PENG design here not only enhances the collection efficiency of mechanical energy by a single carbon fiber but also generates electric output when the TENG is not working. We also show the potential that the FBHNG can be weaved into a smart cloth to harvest the mechanical energy from human motions and act as a self-powered strain sensor. The instantaneous output power density of TENG and PENG can achieve 42.6 and 10.2 mW/m(2), respectively. And the rectified output of FBHNG has been applied to charge the commercial capacitor and drive light-emitting diodes, which are also designed as a self-powered alert system.

  18. Dual-Readout Calorimetry for High-Quality Energy

    CERN Multimedia

    During the past seven years, the DREAM collaboration has systematically investigated all factors that determine and limit the precision with which the properties of hadrons and jets can be measured in calorimeters. Using simultaneous detection of the deposited energy and the Cerenkov light produced in hadronic shower development ${(dual}$ ${readout}$), the fluctuations in the electromagnetic shower fraction could be measured event by event their effects on signal linearity, response function and energy resolution eliminated. Detailed measurement of the time structure of the signals made it possible to measure the contirbutions of nuclear evaporation neutrons to the signals and thus reduce the effects of fluctuations in "invisible energy". We are now embarking on the construction of a full-scale calorimeter which incorporates all these elements and which should make it possible to measure the four-vectors of both electrons, hadrons and jets with very high precision, in an instrument that can be simply calibrat...

  19. Comparison of Monte Carlo results for the 3D Ising interface tension and interface energy with (extrapolated) series expansions

    CERN Document Server

    Hasenbusch, M

    1994-01-01

    We compare Monte Carlo results for the interface tension and interface energy of the 3-dimensional Ising model with Pad\\'e and inhomogeneous differential approximants of the low temperature series that was recently extended by Arisue to $17^{\\rm th}$ order in $u=\\exp(-4\\beta)$. The series is expected to suffer from the roughening singularity at $u\\approx 0.196$. The comparison with the Monte Carlo data shows that the Pad\\'e and inhomogeneous differential approximants fail to improve the truncated series result of the interface tension and the interface energy in the region around the roughening transition. The Monte Carlo data show that the specific heat displays a peak in the smooth phase. Neither the truncated series nor the Pad\\'e approximants find this peak. We also compare Monte Carlo data for the energy of the ASOS model with the corresponding low temperature series that we extended to order $u^{12}$.

  20. Suspension criteria for dual energy X ray absorptiometry.

    Science.gov (United States)

    McLean, I D

    2013-02-01

    The use of dual-energy X-ray absorptiometry (DXA) units primarily for the assessment of fracture risk and in the diagnosis of osteoporosis is ubiquitous in Europe and ever-expanding in its implementation worldwide. DXA is known for its reported low radiation dose and precision in the determination of bone mineral density. However, the use of simple suspension criteria, as proposed in the new EC report RP-162, will identify units that are unfit for useful and safe diagnosis. Such suspension levels, however, are not a substitute for regular maintenance, quality control testing and optimisation of clinical outcomes.

  1. Features of dual-energy X-ray computed tomography

    Science.gov (United States)

    Torikoshi, M.; Tsunoo, T.; Ohno, Y.; Endo, M.; Natsuhori, M.; Kakizaki, T.; Ito, N.; Uesugi, K.; Yagi, N.

    2005-08-01

    We proposed dual-energy X-ray CT for direct measurement of electron densities to make treatment planning for heavy ion radiotherapy more accurate. The accuracy was proved to be about 1% using synchrotron radiation in previous experiments carried out at SPring-8 and PF-AR. The electron densities of some porcine organs were measured in this method at SPring-8, and compared with data of ICRU Report. Besides, the atomic number of the object is also obtained as a byproduct. Comparing the CT-number given in conventional CT scanning is an important information. Images of the electron density and atomic number may give new information to medical diagnosis.

  2. 3D-DXA: Assessing the Femoral Shape, the Trabecular Macrostructure and the Cortex in 3D from DXA images.

    Science.gov (United States)

    Humbert, Ludovic; Martelli, Yves; Fonolla, Roger; Steghofer, Martin; Di Gregorio, Silvana; Malouf, Jorge; Romera, Jordi; Barquero, Luis Miguel Del Rio

    2017-01-01

    The 3D distribution of the cortical and trabecular bone mass in the proximal femur is a critical component in determining fracture resistance that is not taken into account in clinical routine Dual-energy X-ray Absorptiometry (DXA) examination. In this paper, a statistical shape and appearance model together with a 3D-2D registration approach are used to model the femoral shape and bone density distribution in 3D from an anteroposterior DXA projection. A model-based algorithm is subsequently used to segment the cortex and build a 3D map of the cortical thickness and density. Measurements characterising the geometry and density distribution were computed for various regions of interest in both cortical and trabecular compartments. Models and measurements provided by the "3D-DXA" software algorithm were evaluated using a database of 157 study subjects, by comparing 3D-DXA analyses (using DXA scanners from three manufacturers) with measurements performed by Quantitative Computed Tomography (QCT). The mean point-to-surface distance between 3D-DXA and QCT femoral shapes was 0.93 mm. The mean absolute error between cortical thickness and density estimates measured by 3D-DXA and QCT was 0.33 mm and 72 mg/cm(3). Correlation coefficients (R) between the 3D-DXA and QCT measurements were 0.86, 0.93, and 0.95 for the volumetric bone mineral density at the trabecular, cortical, and integral compartments respectively, and 0.91 for the mean cortical thickness. 3D-DXA provides a detailed analysis of the proximal femur, including a separate assessment of the cortical layer and trabecular macrostructure, which could potentially improve osteoporosis management while maintaining DXA as the standard routine modality.

  3. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  4. 3D non-contrast-enhanced ECG-gated MR angiography of the lower extremities with dual-source radiofrequency transmission at 3.0 T: Intraindividual comparison with contrast-enhanced MR angiography in PAOD patients.

    Science.gov (United States)

    Rasper, Michael; Wildgruber, Moritz; Settles, Marcus; Eckstein, Hans-Henning; Zimmermann, Alexander; Reeps, Christian; Rummeny, Ernst J; Huber, Armin M

    2016-09-01

    To compare prospectively image quality and diagnostic confidence of flow-sensitive 3D turbo spin echo (TSE)-based non-contrast-enhanced MR angiography (NE-MRA) at 3.0 T using dual-source radiofrequency (RF) transmission with contrast-enhanced MRA (CE-MRA) in patients with peripheral arterial occlusive disease (PAOD). After consent was obtained, 35 patients (mean age 69.1 ± 10.6 years) with PAOD stage II-IV underwent NE-MRA followed by CE-MRA. Signal-to-noise ratio and contrast-to-noise ratio were calculated. Subjective image quality was independently assessed by two radiologists and stenosis scoring was performed in 875 arterial segments. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for stenosis classification were calculated using CE-MRA as a reference method. Diagnostic agreement with CE-MRA was evaluated with Cohen's kappa statistics. NE-MRA provided high objective and subjective image quality at all levels of the arterial tree. Sensitivity and specificity for the detection of relevant stenosis was 91 % and 89 %, respectively; the NPV was 96 % and the PPV 78 %. There was good concordance between CE-MRA and NE-MRA in stenosis scoring. 3D electrocardiography (ECG)-gated TSE NE-MRA with patient-adaptive dual-source RF transmission at 3.0 T is a promising alternative for PAOD patients with contraindications for gadolinium-based contrast agents. It offers high sensitivity and NPV values in the detection of clinically relevant arterial stenosis. • Flow-sensitive TSE NE-MRA is a promising technique for PAOD evaluation. • Diagnostic accuracy is comparable to contrast-enhanced MRA. • NE-MRA eliminates the risk of NSF in patients with renal insufficiency. • Costs arising from the use of contrast agents can be avoided.

  5. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, The Perelman School of Medicine, Philadelphia, PA (United States); McCullough, William P. [University of Virginia Health System, Department of Radiology and Medical Imaging, Charlottesville, VA (United States); Mecca, Patricia [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2016-11-15

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash {sup registered} CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI{sub vol}) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality by

  6. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  7. Molecular thermodynamics of trifluoroethanol-induced helix formation: analysis of the solvation structure and free energy by the 3D-RISM theory.

    Science.gov (United States)

    Imai, Takashi; Kovalenko, Andriy; Hirata, Fumio; Kidera, Akinori

    2009-06-01

    It has been shown that trifluoroethanol (TFE) induces helical structure in peptides and proteins. The molecular mechanism is, however, still not completely elucidated. In this study, the TFE effects on the solvation structure and on the free energy change associated with the helix-coil transition of a polypeptide are analyzed by using the three-dimensional reference interaction site model (3D-RISM) molecular theory of solvation. The theoretical result shows that TFE preferentially solvates at low concentrations around 30 vol% both for the helix and coil structures. However, the characteristic preferential solvation is not as significant in the TFE-induced helix stabilization as generally considered. It is also found that the overall energy contributes to the free energy difference more substantially than the solvation entropy.

  8. Dual-Readout Calorimetry for High-Quality Energy Measurements

    CERN Document Server

    Wigmans, R

    2010-01-01

    During the past seven years, the DREAM Collaboration has systematically investigated all factors that determine and limit the precision with which the properties of hadrons and jets can be measured in calorimeters. Using simultaneous detection of the deposited energy and the Cerenkov light produced in hadronic shower development (dual readout), the fluctuations in the electromagnetic shower fraction could be measured event by event and their effects on signal linearity, response function and energy resolution eliminated. Detailed measurement of the time structure of the signals made it possible to measure the contributions of nuclear evaporation to the signals and thus reduce the effects of fluctuations in “invisible energy”. We are now embarking on the construction of a full-scale calorimeter which incorporates all these elements and which should make it possible to measure the four-vectors of both electrons, hadrons and jets with very high precision, in an instrument that can be simply calibrated with e...

  9. Energy transfer and dual cascade in kinetic magnetized plasma turbulence.

    Science.gov (United States)

    Plunk, G G; Tatsuno, T

    2011-04-22

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  10. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  11. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    Energy Technology Data Exchange (ETDEWEB)

    Strait, E. J. [General Atomics, San Diego, CA (United States); Park, J. -K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Marmar, E. S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ahn, J. -W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Berkery, J. W. [Columbia Univ., New York, NY (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Canik, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. M. [General Atomics, San Diego, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kim, K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); King, J. D. [General Atomics, San Diego, CA (United States); Lanctot, M. J. [General Atomics, San Diego, CA (United States); Lazerson, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, Y. Q. [Culham Science Centre, Abingdon (United Kingdom). Euratom/CCFE Association; Logan, N. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lore, J. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menard, J. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nazikian, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shafer, M. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paz-Soldan, C. [General Atomics, San Diego, CA (United States); Reiman, A. H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Rice, J. E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sabbagh, S. A. [Columbia Univ., New York, NY (United States); Sugiyama, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Volpe, F. [Columbia Univ., New York, NY (United States); Wang, Z. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wolfe, S. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-09-30

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10-4 of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in

  12. Quantify Plasma Response to Non-Axisymmetric (3D) Magnetic Fields in Tokamaks, Final Report for FES (Fusion Energy Sciences) FY2014 Joint Research Target

    Energy Technology Data Exchange (ETDEWEB)

    Strait, E. J. [General Atomics, San Diego, CA (United States); Park, J. -K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Marmar, E. S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ahn, J. -W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Berkery, J. W. [Columbia Univ., New York, NY (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Canik, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. M. [General Atomics, San Diego, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kim, K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); King, J. D. [General Atomics, San Diego, CA (United States); Lanctot, M. J. [General Atomics, San Diego, CA (United States); Lazerson, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, Y. Q. [Culham Science Centre, Abingdon (United Kingdom). Euratom/CCFE Association; Logan, N. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lore, J. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menard, J. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nazikian, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shafer, M. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paz-Soldan, C. [General Atomics, San Diego, CA (United States); Reiman, A. H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Rice, J. E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sabbagh, S. A. [Columbia Univ., New York, NY (United States); Sugiyama, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Volpe, F. [Columbia Univ., New York, NY (United States); Wang, Z. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wolfe, S. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-09-30

    The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10-4 of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in

  13. Measurement of the Kr XVIII 3d $^2D_{5/2}$ lifetime at low energy in a unitary Penning trap

    CERN Document Server

    Guise, Nicholas D; Brewer, Samuel M; Fischer, Charlotte F; Jönsson, Per

    2014-01-01

    A different technique is used to study the radiative decay of a metastable state in multiply ionized atoms. With use of a unitary Penning trap to selectively capture Kr$^{17+}$ ions from an ion source at NIST, the decay of the 3d $^2D_{5/2}$ metastable state is measured in isolation at low energy, without any active cooling. The highly ionized atoms are trapped in the fine structure of the electronic ground configuration with an energy spread of 4(1) eV, which is narrower than within the ion source by a factor of about 100. By observing the visible 637 nm photon emission of the forbidden transition from the 3d $^2D_{5/2}$ level to the ground state, we measured its radiative lifetime to be $\\tau=$ 24.48 ms +/- 0.28(stat.) ms +/- 0.14(syst.) ms. Remarkably, various theoretical predictions for this relativistic Rydberg atom are in agreement with our measurement at the 1% level.

  14. Probing boundary-corrections to Nambu-Goto open string energy levels in 3d SU(2) gauge theory

    CERN Document Server

    Brandt, Bastian B

    2010-01-01

    We measure the energy levels of the excitations of the flux tube between static quark and antiquark in three-dimensional SU(2) gauge theory. Combining exponential error reduction techniques and a variational method we are able to reduce the errors for the excited states significantly and to extract excited states in distinct parity and charge conjugation channels. It is conjectured that the infrared behavior (at large q\\bar{q} separation R) of the flux tube is governed by an effective string theory. Indeed previous simulations show good agreement between lattice data and predictions from Nambu-Goto string theory. Recently, new results on the effective string theory obtained corrections to the Nambu-Goto predictions and showed that for the open string in three dimensions first corrections should appears at order 1/R^4. They correspond to boundary terms in the worldsheet field theory. These corrections are presumably small for the ground state, but significantly larger for the excited states and lift the degene...

  15. 3D parton imaging of the nucleon in high-energy p p and p A collisions

    CERN Document Server

    Frankfurt, L; Weiss, C

    2004-01-01

    We discuss several examples of how the transverse spatial distribution of partons in the nucleon, as well as multiparton correlations, can be probed by observing hard processes (dijets) in high-energy pp(pp) and pA(dA) collisions. Such studies can complement the information gained from measurements of hard exclusive processes in ep scattering. The transverse spatial distribution of partons determines the distribution over pp impact parameters of events with hard dijet production. Correlations in the transverse positions of partons can be studied in multiple dijet production. We find that the correlation cross section measured by the CDF Collaboration, sigma//e //f//f = 14.5 plus or minus 1.7//-//2//.//3**+**1**.**7 mb, can be explained by "constituent quark" type quark-gluon correlations with r //q approximately equals r//N/3, as suggested by the instanton liquid model of the QCD vacuum. Longitudinal and transverse multiparton correlations can be separated in a model-independent way by comparing multiple dije...

  16. TEHNOLOGIJE 3D TISKALNIKOV

    OpenAIRE

    Kolar, Nataša

    2016-01-01

    Diplomsko delo predstavi razvoj tiskanja skozi čas. Podrobneje so opisani 3D tiskalniki, ki uporabljajo različne tehnologije 3D tiskanja. Predstavljene so različne tehnologije 3D tiskanja, njihova uporaba in narejeni prototipi oz. končni izdelki. Diplomsko delo opiše celoten postopek, od zamisli, priprave podatkov in tiskalnika do izdelave prototipa oz. končnega izdelka.

  17. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; Modlin, Edward A.; Barnes, Bruce W.; Demoz, Belay B.

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  18. Single-exposure dual-energy computed radiography.

    Science.gov (United States)

    Stewart, B K; Huang, H K

    1990-01-01

    This paper focuses on analysis and development of a single-exposure dual-energy digital radiographic method using computed radiography (Fuji FCR-101 storage phosphor system). A detector sandwich consisting of storage phosphor imaging plates and an interdetector filter is used. The goal of this process is to provide a simple dual-energy method using typical plane-projection radiographic equipment and techniques. This approach exploits the transparency of the storage phosphor plates, using radiographic information that would be otherwise lost, to provide energy selective information essentially as a by-product of the radiographic examination. In order to effectively make use of the large dynamic range of the storage phosphor imaging plates (10,000:1), a computed radiography image reading mode of fixed analog-to-digital converter gain and variable photomultiplier sensitivity provides image data which can be related to relative incident exposure for export to the decomposition algorithm. Scatter rejection requirements necessitated crossed 12:1 grids for a field size of 36 x 36 cm. Optimal technique parameters obtained from computer simulation through minimization of the aluminum and Plexiglas equivalent image uncertainty under conditions of constant absorbed does resulted as: 100 kVp using a 0.15-mm-thick tin (Sn) interdetector filter for the lung field. This yields a surface exposure of 23 mR and a surface absorbed dose of 0.26 mGy for a 23-cm-thick chest. Clinical application in evaluation of the solitary pulmonary nodule is discussed, along with an image set demonstrating this application.

  19. Similarities between 2D and 3D convection for large Prandtl number

    Indian Academy of Sciences (India)

    PANDEY AMBRISH; VERMA MAHENDRA K; CHATTERJEE ANANDO G; DUTTA BIPLAB

    2016-07-01

    Using direct numerical simulations of Rayleigh–Bénard convection (RBC), we perform a comparative study of the spectra and fluxes of energy and entropy, and the scaling of large-scale quantities for large and infinite Prandtl numbers in two (2D) and three (3D) dimensions. We observe close similarities between the 2D and 3D RBC, in particular, the kinetic energy spectrum $E^{u}(k) ∼ k^{−13/3}$, and the entropy spectrum exhibits a dual branch with a dominant $k^{−2}$ spectrum. We showed that the dominant Fourier modes in 2D and 3D flows are very close. Consequently, the 3D RBC is quasi-two-dimensional, which is the reason for the similarities between the 2D and 3D RBC for large and infinite Prandtl numbers.

  20. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  1. Impact of dual energy characterization of urinary calculus on management.

    Science.gov (United States)

    Habashy, David; Xia, Ryan; Ridley, William; Chan, Lewis; Ridley, Lloyd

    2016-10-01

    Dual energy CT (DECT) is a recent technique that is increasingly being used to differentiate between calcium and uric acid urinary tract calculi. The aim of this study is to determine if urinary calculi composition analysis determined by DECT scanning results in a change of patient management. All patients presenting with symptoms of renal colic, who had not previously undergone DECT scanning underwent DECT KUB. DECT data of all patients between September 2013 and July 2015 were reviewed. Urinary calculi composition based on dual energy characterization was cross-matched with patient management and outcome. A total of 585 DECT KUB were performed. 393/585 (67%) DECT scans revealed urinary tract calculi. After excluding those with isolated bladder or small asymptomatic renal stones, 303 patients were found to have symptomatic stone(s) as an explanation for their presentation. Of these 303 patients, there were 273 (90.1%) calcium calculi, 19 (6.3%) uric acid calculi and 11 (3.4%) mixed calculi. Of those with uric acid calculi, 15 were commenced on dissolution therapy. Twelve of those commenced on dissolution therapy had a successful outcome, avoiding need for surgical intervention (lithotripsy or stone retrieval). Three patients failed dissolution therapy and required operative intervention for definitive management of the stone. Predicting urinary tract calculi composition by DECT plays an important role in identifying patients who may be managed with dissolution therapy. Identification of uric acid stone composition altered management in 15 of 303 (5.0%) patients, and was successful in 12, thereby avoiding surgery and its attendant risks. © 2016 The Royal Australian and New Zealand College of Radiologists.

  2. SUTRA: A model for 2D or 3D saturated-unsaturated, variable-density ground-water flow with solute or energy transport

    Science.gov (United States)

    Voss, Clifford I.; Provost, A.M.

    2002-01-01

    SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in

  3. Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation.

    Science.gov (United States)

    Polyak, Iakov; Benighaus, Tobias; Boulanger, Eliot; Thiel, Walter

    2013-08-14

    The dual Hamiltonian free energy perturbation (DH-FEP) method is designed for accurate and efficient evaluation of the free energy profile of chemical reactions in quantum mechanical/molecular mechanical (QM/MM) calculations. In contrast to existing QM/MM FEP variants, the QM region is not kept frozen during sampling, but all degrees of freedom except for the reaction coordinate are sampled. In the DH-FEP scheme, the sampling is done by semiempirical QM/MM molecular dynamics (MD), while the perturbation energy differences are evaluated from high-level QM/MM single-point calculations at regular intervals, skipping a pre-defined number of MD sampling steps. After validating our method using an analytic model potential with an exactly known solution, we report a QM/MM DH-FEP study of the enzymatic reaction catalyzed by chorismate mutase. We suggest guidelines for QM/MM DH-FEP calculations and default values for the required computational parameters. In the case of chorismate mutase, we apply the DH-FEP approach in combination with a single one-dimensional reaction coordinate and with a two-dimensional collective coordinate (two individual distances), with superior results for the latter choice.

  4. Assessment of vectorial total variation penalties on realistic dual-energy CT data.

    Science.gov (United States)

    Rigie, David S; Sanchez, Adrian A; La Rivière, Patrick J

    2017-04-21

    Vectorial extensions of total variation have recently been developed for regularizing the reconstruction and denoising of multi-channel images, such as those arising in spectral computed tomography. Early studies have focused mainly on simulated, piecewise-constant images whose structure may favor total-variation penalties. In the current manuscript, we apply vectorial total variation to real dual-energy CT data of a whole turkey in order to determine if the same benefits can be observed in more complex images with anatomically realistic textures. We consider the total nuclear variation ([Formula: see text]) as well as another vectorial total variation based on the Frobenius norm ([Formula: see text]) and standard channel-by-channel total variation ([Formula: see text]). We performed a series of 3D TV denoising experiments comparing the three TV variants across a wide range of smoothness parameter settings, optimizing each regularizer according to a very-high-dose 'ground truth' image. Consistent with the simulation studies, we find that both vectorial TV variants achieve a lower error than the channel-by-channel TV and are better able to suppress noise while preserving actual image features. In this real data study, the advantages are subtler than in the previous simulation study, although the [Formula: see text] penalty is found to have clear advantages over either [Formula: see text] or [Formula: see text] when comparing material images formed from linear combinations of the denoised energy images.

  5. Optimal error estimates and energy conservation identities of the ADI-FDTD scheme on staggered grids for 3D Maxwell's equations

    CERN Document Server

    Gao, Liping

    2011-01-01

    This paper is concerned with the optimal error estimates and energy conservation properties of the alternating direction implicit finite-difference time-domain (ADI-FDTD) method which is a popular scheme for solving the 3D Maxwell equations. Precisely, for the case with a perfectly electric conducting (PEC) boundary condition we establish the optimal second-order error estimates in both space and time in the discrete $H^1$-norm for the ADI-FDTD scheme and prove the approximate divergence preserving property that if the divergence of the initial electric and magnetic fields are zero then the discrete $L^2$-norm of the discrete divergence of the ADI-FDTD solution is approximately zero with the second-order accuracy in both space and time. A key ingredient is two new discrete energy norms which are second-order in time perturbations of two new energy conservation laws for the Maxwell equations introduced in this paper. Furthermore, we prove that, in addition to two known discrete energy identities which are seco...

  6. Initial experience of dual-energy lung perfusion CT using a dual-source CT system in children

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Songpa-gu, Seoul (Korea)

    2010-09-15

    Initial experience of dual-source dual-energy (DE) lung perfusion CT in children is described. In addition to traditional identification of pulmonary emboli, the assessment of lung perfusion is technically feasible with dual-source DE CT in children with acceptable radiation dose. This article describes how to perform dual-source DE lung perfusion CT in children, including the optimization of intravenous injection method and CT dose parameters. How to produce weighted-average CT images for the assessment of pulmonary emboli and colour-coded perfusion maps for the assessment of regional lung perfusion is also detailed. Lung perfusion status can then be evaluated on perfusion maps by means of either qualitative or quantitative analysis. Potential advantages and disadvantages of this emerging CT technique compared to lung perfusion scintigraphy and cardiac MRI are discussed. (orig.)

  7. Contrast-enhanced dual-energy mammography : a promising new imaging tool in breast cancer detection

    NARCIS (Netherlands)

    Lalji, Ulrich; Lobbes, Marc

    2014-01-01

    Contrast-enhanced dual-energy mammography (CEDM) is a promising new breast imaging tool for breast cancer detection. In CEDM, an iodine-based contrast agent is intravenously administered and subsequently, dual-energy mammography is performed. This results in a set of images containing both a regular

  8. Validation of a New Skinfold Prediction Equation Based on Dual-Energy X-Ray Absorptiometry

    Science.gov (United States)

    Ball, Stephen; Cowan, Celsi; Thyfault, John; LaFontaine, Tom

    2014-01-01

    Skinfold prediction equations recommended by the American College of Sports Medicine underestimate body fat percentage. The purpose of this research was to validate an alternative equation for men created from dual energy x-ray absorptiometry. Two hundred ninety-seven males, aged 18-65, completed a skinfold assessment and dual energy x-ray…

  9. In situ synthesized 3D heterometallic metal-organic framework (MOF) as a high-energy-density material shows high heat of detonation, good thermostability and insensitivity.

    Science.gov (United States)

    Feng, Yaya; Liu, Xiangyu; Duan, Linqiang; Yang, Qi; Wei, Qing; Xie, Gang; Chen, Sanping; Yang, Xuwu; Gao, Shengli

    2015-02-07

    A reticular 3D heterometallic metal-organic framework (MOF), [Cu4Na(Mtta)5(CH3CN)]n () (N% = 40.08%), has been synthesized, using a 5-methyl tetrazole (Mtta) ligand formed from acetonitrile and azide, through in situ synthesis and structurally characterized by X-ray single crystal diffraction. The fluorescence spectra demonstrate that undergoes an interesting structural transformation in aqueous solution, yielding the compound [Cu4Na(Mtta)5H2O]n () as confirmed by (1)H NMR, IR and PXRD. Thermoanalysis showed that possesses excellent thermostability up to 335 °C. The calculated detonation properties and the sensitivity test illustrate that compound could be used as a potential explosive. In addition, the non-isothermal kinetics for were studied using the Kissinger and Ozawa-Doyle methods. The enthalpy of formation was obtained from the determination of the constant-volume combustion energy.

  10. On the feasibility of polyurethane based 3D dosimeters with optical CT for dosimetric verification of low energy photon brachytherapy seeds

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Justus, E-mail: justus.adamson@duke.edu; Yang, Yun; Juang, Titania; Chisholm, Kelsey; Rankine, Leith; Yin, Fang Fang; Oldham, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Adamovics, John [Department of Chemistry, Rider University, Lawrenceville, New Jersey 08648 (United States)

    2014-07-15

    Purpose: To investigate the feasibility of and challenges yet to be addressed to measure dose from low energy (effective energy <50 keV) brachytherapy sources (Pd-103, Cs-131, and I-125) using polyurethane based 3D dosimeters with optical CT. Methods: The authors' evaluation used the following sources: models 200 (Pd-103), CS-1 Rev2 (Cs-131), and 6711 (I-125). The authors used the Monte Carlo radiation transport code MCNP5, simulations with the ScanSim optical tomography simulation software, and experimental measurements with PRESAGE{sup ®} dosimeters/optical CT to investigate the following: (1) the water equivalency of conventional (density = 1.065 g/cm{sup 3}) and deformable (density = 1.02 g/cm{sup 3}) formulations of polyurethane dosimeters, (2) the scatter conditions necessary to achieve accurate dosimetry for low energy photon seeds, (3) the change in photon energy spectrum within the dosimeter as a function of distance from the source in order to determine potential energy sensitivity effects, (4) the optimal delivered dose to balance optical transmission (per projection) with signal to noise ratio in the reconstructed dose distribution, and (5) the magnitude and characteristics of artifacts due to the presence of a channel in the dosimeter. Monte Carlo simulations were performed using both conventional and deformable dosimeter formulations. For verification, 2.8 Gy at 1 cm was delivered in 92 h using an I-125 source to a PRESAGE{sup ®} dosimeter with conventional formulation and a central channel with 0.0425 cm radius for source placement. The dose distribution was reconstructed with 0.02 and 0.04 cm{sup 3} voxel size using the Duke midsized optical CT scanner (DMOS). Results: While the conventional formulation overattenuates dose from all three sources compared to water, the current deformable formulation has nearly water equivalent attenuation properties for Cs-131 and I-125, while underattenuating for Pd-103. The energy spectrum of each source is

  11. On the feasibility of polyurethane based 3D dosimeters with optical CT for dosimetric verification of low energy photon brachytherapy seeds.

    Science.gov (United States)

    Adamson, Justus; Yang, Yun; Juang, Titania; Chisholm, Kelsey; Rankine, Leith; Adamovics, John; Yin, Fang Fang; Oldham, Mark

    2014-07-01

    To investigate the feasibility of and challenges yet to be addressed to measure dose from low energy (effective energy brachytherapy sources (Pd-103, Cs-131, and I-125) using polyurethane based 3D dosimeters with optical CT. The authors' evaluation used the following sources: models 200 (Pd-103), CS-1 Rev2 (Cs-131), and 6711 (I-125). The authors used the Monte Carlo radiation transport code MCNP5, simulations with the ScanSim optical tomography simulation software, and experimental measurements with PRESAGE(®) dosimeters/optical CT to investigate the following: (1) the water equivalency of conventional (density = 1.065 g/cm(3)) and deformable (density = 1.02 g/cm(3)) formulations of polyurethane dosimeters, (2) the scatter conditions necessary to achieve accurate dosimetry for low energy photon seeds, (3) the change in photon energy spectrum within the dosimeter as a function of distance from the source in order to determine potential energy sensitivity effects, (4) the optimal delivered dose to balance optical transmission (per projection) with signal to noise ratio in the reconstructed dose distribution, and (5) the magnitude and characteristics of artifacts due to the presence of a channel in the dosimeter. Monte Carlo simulations were performed using both conventional and deformable dosimeter formulations. For verification, 2.8 Gy at 1 cm was delivered in 92 h using an I-125 source to a PRESAGE(®) dosimeter with conventional formulation and a central channel with 0.0425 cm radius for source placement. The dose distribution was reconstructed with 0.02 and 0.04 cm(3) voxel size using the Duke midsized optical CT scanner (DMOS). While the conventional formulation overattenuates dose from all three sources compared to water, the current deformable formulation has nearly water equivalent attenuation properties for Cs-131 and I-125, while underattenuating for Pd-103. The energy spectrum of each source is relatively stable within the first 5 cm especially for I-125

  12. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  13. RHOCUBE: 3D density distributions modeling code

    Science.gov (United States)

    Nikutta, Robert; Agliozzo, Claudia

    2016-11-01

    RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

  14. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  15. Fabrication of 3D Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  16. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  17. DELTA 3D PRINTER

    Directory of Open Access Journals (Sweden)

    ȘOVĂILĂ Florin

    2016-07-01

    Full Text Available 3D printing is a very used process in industry, the generic name being “rapid prototyping”. The essential advantage of a 3D printer is that it allows the designers to produce a prototype in a very short time, which is tested and quickly remodeled, considerably reducing the required time to get from the prototype phase to the final product. At the same time, through this technique we can achieve components with very precise forms, complex pieces that, through classical methods, could have been accomplished only in a large amount of time. In this paper, there are presented the stages of a 3D model execution, also the physical achievement after of a Delta 3D printer after the model.

  18. Coupled 3D Time-Dependent Wave-Packet Approach in Hyperspherical Coordinates: The D(+)+H2 Reaction on the Triple-Sheeted DMBE Potential Energy Surface.

    Science.gov (United States)

    Ghosh, Sandip; Sahoo, Tapas; Adhikari, Satrajit; Sharma, Rahul; Varandas, António J C

    2015-12-17

    We implement a coupled three-dimensional (3D) time-dependent wave packet formalism for the 4D reactive scattering problem in hyperspherical coordinates on the accurate double many body expansion (DMBE) potential energy surface (PES) for the ground and first two singlet states (1(1)A', 2(1)A', and 3(1)A') to account for nonadiabatic processes in the D(+) + H2 reaction for both zero and nonzero values of the total angular momentum (J). As the long-range interactions in D(+) + H2 contribute significantly due to nonadiabatic effects, the convergence profiles of reaction probabilities for the reactive noncharge transfer (RNCT), nonreactive charge transfer (NRCT), and reactive charge transfer (RCT) processes are shown for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. The total and state-to-state cross sections are presented as a function of the collision energy for the initial rovibrational state v = 0, j = 0 of the diatom, and the calculated cross sections compared with other theoretical and experimental results.

  19. Dual energy subtraction method for breast calcification imaging

    Science.gov (United States)

    Koukou, Vaia; Martini, Niki; Fountos, George; Michail, Christos; Sotiropoulou, Panagiota; Bakas, Athanasios; Kalyvas, Nektarios; Kandarakis, Ioannis; Speller, Robert; Nikiforidis, George

    2017-03-01

    The aim of this work was to present an experimental dual energy (DE) method for the visualization of microcalcifications (μCs). A modified radiographic X-ray tube combined with a high resolution complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) X-ray detector was used. A 40/70 kV spectral combination was filtered with 100 μm cadmium (Cd) and 1000 μm copper (Cu) for the low/high-energy combination. Homogenous and inhomogeneous breast phantoms and two calcification phantoms were constructed with various calcification thicknesses, ranging from 16 to 152 μm . Contrast-to-noise ratio (CNR) was calculated from the DE subtracted images for various entrance surface doses. A calcification thickness of 152 μm was visible, with mean glandular doses (MGD) in the acceptable levels (below 3 mGy). Additional post-processing on the DE images of the inhomogeneous breast phantom resulted in a minimum visible calcification thickness of 93 μm (MGD=1.62 mGy). The proposed DE method could potentially improve calcification visibility in DE breast calcification imaging.

  20. Professional Papervision3D

    CERN Document Server

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  1. AE3D

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  2. Energy Spectrum Extraction and Optimal Imaging via Dual-Energy Material Decomposition

    CERN Document Server

    Zhao, Wei; Zhang, Bo; Zhang, Qiude; Niu, Tianye

    2015-01-01

    Inferior soft-tissue contrast resolution is a major limitation of current CT scanners. The aim of the study is to improve the contrast resolution of CT scanners using dual-energy acquisition. Based on dual-energy material decomposition, the proposed method starts with extracting the outgoing energy spectrum by polychromatic forward projecting the material-selective images. The extracted spectrum is then reweighted to boost the soft-tissue contrast. A simulated water cylinder phantom with inserts that contain a series of six solutions of varying iodine concentration (range, 0-20 mg/mL) is used to evaluate the proposed method. Results show the root mean square error (RMSE) and mean energy difference between the extracted energy spectrum and the spectrum acquired using an energy-resolved photon counting detector(PCD), are 0.044 and 0.01 keV, respectively. Compared to the method using the standard energy-integrating detectors, dose normalized contrast-to-noise ratio (CNRD) for the proposed method are improved fro...

  3. Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa

    DEFF Research Database (Denmark)

    Weihe, Johan Petur; Birger Morillon, Melanie; Lambrechtsen, Jess

    Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa......Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa...

  4. Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa

    DEFF Research Database (Denmark)

    Weihe, Johan Petur; Birger Morillon, Melanie; Lambrechtsen, Jess

    Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa......Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa...

  5. Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa

    DEFF Research Database (Denmark)

    Weihe, Johan Petur; Birger Morillon, Melanie; Lambrechtsen, Jess;

    2014-01-01

    Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa......Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa...

  6. Study of energy transfer from the solar wind to Earth's magnetosphere using the 3D- MHD BATS-R-US global model

    Science.gov (United States)

    Jauer, P. R.; Gonzalez, W. D.; de Souza Costa, C. L.; Souza, V. M.

    2013-12-01

    The interaction, transport and conversion of energy between the solar wind and Earth's magnetosphere have been studied for decades through in situ measurements and Magnetohydrodynamics simulation, (MHD). Nevertheless, due to the vast regions of space and nonlinearities of the physical processes there are many questions that still remain without conclusive answers. Currently, the MHD simulation is a powerful tool that helps other means of already existing research, even within its theoretical limitation; it provides information of the space regions where in situ measurements are rare or nonexistent. The aim of this work is the study of energy transfer from the solar wind through the calculation of the divergence of the Poynting vector for the inner regions of the Earth's magnetosphere, especially the magneto tail using 3D global MHD numerical code Space Weather Modelling Framework (SWMF) / (Block Adaptive Tree Solar wind Roe Upwind Scheme) (BATS-R-US), developed by the University of Michigan. We conducted a simulation study for the event that occurred on September 21-27, 1999, for which the peak value of the interplanetary magnetic field was -22 nT, and gave rise to an intense magnetic storm with peak Dst of -160 nT. Furthermore, we compare the results of the power estimated by the model - through the integration of the Poynting vector in rectangular region of the tail, with a domain -130 powerful tool to reproduce the observations with a good degree of reliability.

  7. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  8. Dual-energy computed tomography for gout diagnosis and management.

    Science.gov (United States)

    Dalbeth, Nicola; Choi, Hyon K

    2013-01-01

    The central feature of gout is deposition of monosodium urate crystals. Dual-energy computed tomography (DECT) is a recently developed advanced imaging method that enables visualisation of urate deposits by analysis of the chemical composition of the scanned materials. This review summarises recent research describing the use of DECT in gout management. This technology may assist in both diagnosis and monitoring of the disease. Studies of patients with established disease indicate diagnostic accuracy for gout is high. Excellent inter-reader agreement has been reported for detection of urate deposits by use of DECT. Automated volume assessment software also enables rapid and reproducible measurement of urate deposits within tophi, suggesting that this modality may be useful for monitoring the disease. Although several case reports indicate DECT can be used to reveal reduction in the size of urate deposits, the sensitivity to change in response to urate-lowering therapy has not yet been systematically reported. DECT images reveal variable urate deposition within tophi of the same physical size. The ability to visualise urate deposits in tissue may provide new insights into the pathology and mechanisms of gout.

  9. Quality in dual-energy X-ray absorptiometry scans.

    Science.gov (United States)

    Morgan, Sarah L; Prater, Ginnie L

    2017-11-01

    Dual-energy X-ray absorptiometry (DXA) is the gold standard for measuring bone mineral density (BMD), making the diagnosis of osteoporosis, and for monitoring changes in BMD over time. DXA data are also used in the determination of fracture risk. Procedural steps in DXA scanning can be broken down into scan acquisition, analysis, interpretation, and reporting. Careful attention to quality control pertaining to these procedural steps should theoretically be beneficial in patient management. Inattention to procedural steps and errors that may occur at each step has the possibility of providing information that would inform inappropriate clinical decisions, generating unnecessary healthcare expenses and ultimately causing avoidable harm to patients. This article reviews errors in DXA scanning that affect trueness and precision related to the machine, the patient, and the technologist and reviews articles which document problems with DXA quality in clinical and research settings. An understanding of DXA errors is critical for DXA quality; programs such as certification of DXA technologists and interpreters help in assuring quality bone densitometry. As DXA errors are common, pay for performance requiring DXA technologists and interpreters to be certified and follow quality indicators is indicated. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  11. 3D Spectroscopic Instrumentation

    CERN Document Server

    Bershady, Matthew A

    2009-01-01

    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  12. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  13. Prototype construction of a dual-channel 3D many-core NoC based on KILL rule%基于KILL规则的双通道3D众核NoC原型构建

    Institute of Scientific and Technical Information of China (English)

    谭海

    2013-01-01

    In order to design a low-delay and low-overhead many-core Network-on-Chip (NoC),the paper proposes an Architecture Utilizing 3D Stack Hierarchical Dual-channel NoC (AUSHDN) and KILL(Kill If Less Linear)rule is used to determine the number of processing cores in each group of AUSHDN.What's more,the prototype of the AUSHDN system is established based on the Graphite simulator from MIT.In AUSGHN system,3D stack Hierarchical multilevel internet-on-chip is employed and different communication link is used to transfer control and data signal according to different content of communication.The results of simulation test in prototype system show that:compared with the traditional 2D NOC,the power consumption has reduced by 20% and the time delay has shortened by 30%.Meanwhile,the hierarchy feature of the AUSGHN system guarantees its good scalability.%为设计一个低开销低时延的众核NoC系统,提出了一种使用3D叠片技术的双通道片上众核体系AUTSDN,应用KILL规则确定了片上众核中组内处理核的个数,并基于MIT的Graphite模拟器建立了该体系的原型.AUTSDN体系中采用3D叠片分组多级片上互连网络,并且根据通信内容的不同,控制信号和数据信号的传输采取不同的通信链路.原型系统中的模拟测试结果表明,相比传统的2D片上网络,功耗降低了20%,时延降低了30%,同时AUTSDN的系统层次化特征确保了良好的系统扩展性.

  14. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  15. Exploring Geothermal Energy Potential in Ireland through 3-D Geophysical-Petrological Modelling of Surface Heat-Flow and Crustal and Upper-Mantle Structure

    Science.gov (United States)

    Fullea, J.; Muller, M. R.; Jones, A. G.

    2012-04-01

    Little is known of Ireland's deep, low-enthalpy geothermal resources and the potential for space heating and/or electricity generation based on geothermal energy to displace Ireland's significant reliance on carbon-based fuels. IRETHERM (www.iretherm.ie) is a four-and-a-half year, all-island, academic-government-industry collaborative project, initiated in 2011, with the overarching objective of developing a strategic and holistic understanding of Ireland's geothermal energy potential through integrated modelling of new and existing geophysical and geological data. One of the challenges in searching for deep geothermal resources in the relatively unexplored setting of Ireland lies in identifying those areas most likely to support significantly elevated temperatures at depth. Available borehole data, although sparse and clustered around areas of mineral and hydrocarbon interest, suggest a marked regional increase in surface heat-flow across Ireland, from ~40 mW/m2 in the south to >80 mW/m2 in the north. The origins of both the observed regional heat-flow trend and local temperature anomalies have not been investigated and are not currently understood. Although variations in the structure of the crust and lithosphere have been revealed by a number of active-source seismic and teleseismic experiments, their effects on surface heat-flow have not been modelled. Bulk 3-D variation in crustal heat-production across Ireland, which may contribute significantly to the observed regional and local temperature variations, has also not been determined. We investigate the origins of Ireland's regional heat-flow trend and regional and local temperature variations using the software package LitMod. This software combines petrological and geophysical modelling of the lithosphere and sub-lithospheric upper mantle within an internally consistent thermodynamic-geophysical framework, where all relevant properties are functions of temperature, pressure and chemical composition. The major

  16. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....

  17. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  18. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  19. Europium-155 as a source for dual energy cone beam computed tomography in adaptive proton therapy: A simulation study.

    Science.gov (United States)

    Zhu, Jiahua; Penfold, Scott N

    2017-07-04

    To investigate the feasibility of a 3D imaging system utilizing a (155) Eu source and pixelated cadmium-zinc-telluride (CZT) detector for applications in adaptive radiotherapy. Specifically, to compare the reconstructed stopping power ratio (SPR) values of a head phantom obtained with the proposed imaging technique with theoretical SPR values. A Geant4 Monte Carlo simulation was performed with the novel imaging system. The simulation was repeated with a typical 120 kV X-ray tube spectrum while maintaining all other parameters. Dual energy (155) Eu source cone beam computed tomography (CBCT) images were reconstructed with an iterative projection algorithm known as total variation superiorization with diagonally relaxed orthogonal projections (TVS-DROP). Single energy 120 kV source CBCT images were also reconstructed with TVS-DROP. Reconstructed images were converted to SPR with stoichiometric calibration techniques based on ICRU 44 tissues. Quantitative accuracy of reconstructed attenuation coefficient images as well as SPR images were compared. Images generated by gamma emissions of (155) Eu showed superior contrast resolution to those generated by the 120 kV spectrum. Quantitatively, all reconstructed images correlated with reference attenuation coefficients of the head phantom within 1 standard deviation. Images generated with the (155) Eu source showed a smaller standard deviation of pixel values. Use of a dual energy conversion into SPR resulted in superior SPR accuracy with the (155) Eu source. (155) Eu was found to display desirable qualities when used as a source for dual energy CBCT. Further work is required to demonstrate whether the simulation results presented here can be translated into an experimental prototype. © 2017 American Association of Physicists in Medicine.

  20. 3D photoacoustic imaging

    Science.gov (United States)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  1. The ATLAS 3D project - XVI. Physical parameters and spectral line energy distributions of the molecular gas in gas-rich early-type galaxies

    CERN Document Server

    Bayet, Estelle; Davis, Timothy A; Young, Lisa M; Crocker, Alison F; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Cappellari, Michele; Davies, Roger L; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

    2012-01-01

    [Abridged] We present a detailed study of the physical properties of the molecular gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS$ 3D sample. Our goal is to better understand the star formation processes occurring in those galaxies, starting here with the dense star-forming gas. We use existing integrated $^{12}$CO(1-0, 2-1), $^{13}$CO(1-0, 2-1), HCN(1-0) and HCO$^{+}$(1-0) observations and present new $^{12}$CO(3-2) single-dish data. From these, we derive for the first time the average kinetic temperature, H$_{2}$ volume density and column density of the emitting gas, this using a non-LTE theoretical model. Since the CO lines trace different physical conditions than of those the HCN and HCO$^{+}$ lines, the two sets of lines are treated separately. We also compare for the first time the predicted CO spectral line energy distributions (SLEDs) and gas properties of our molecular gas-rich ETGs with those of a sample of nearby well-studied disc galaxies. The gas excitation con...

  2. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes.

    Science.gov (United States)

    Lin, Tsung-Wu; Dai, Chao-Shuan; Hung, Kuan-Chung

    2014-01-01

    The application of the composite of Ni3S2 nanoparticles and 3D graphene as a novel cathode material for supercapacitors is systematically investigated in this study. It is found that the electrode capacitance increases by up to 111% after the composite electrode is activated by the consecutive cyclic voltammetry scanning in 1 M KOH. Due to the synergistic effect, the capacitance and the diffusion coefficient of electrolyte ions of the activated composite electrode are ca. 3.7 and 6.5 times higher than those of the Ni3S2 electrode, respectively. Furthermore, the activated composite electrode exhibits an ultrahigh specific capacitance of 3296 F/g and great cycling stability at a current density of 16 A/g. To obtain the reasonable matching of cathode/anode electrodes, the composite of Fe(3)O(4) nanoparticles and chemically reduced graphene oxide (Fe(3)O(4)/rGO) is synthesized as the anode material. The Fe(3)O(4)/rGO electrode exhibits the specific capacitance of 661 F/g at 1 A/g and excellent rate capability. More importantly, an asymmetric supercapacitor fabricated by two different composite electrodes can be operated reversibly between 0 and 1.6 V and obtain a high specific capacitance of 233 F/g at 5 mV/s, which delivers a maximum energy density of 82.5 Wh/kg at a power density of 930 W/kg.

  3. Design and Simulation of Dual Inverter Based Energy Storage Systems for Wind Energy Systems Using MATLAB/SIMULINK

    Directory of Open Access Journals (Sweden)

    Harika G,

    2014-04-01

    Full Text Available This paper proposes the design and simulation of dual inverter based Energy Storage Systems(ESS for wind energy systems. A dual inverter consists of MAIN inverter which is connected to grid side and an auxiliary inverter for which an energy storage system is interfaced. Typical grid connected wind energy systems includes wind turbine, PMSG, DC-DC converters, three phase dual inverter ,energy storage system and related power electronic devices. The detailed model of design and simulation of dual inverter based Wind energy system starts with wind turbine coupled PMSG which is connected to three phase diode rectifier and Boost converter which in-turn connected to a dual inverter which is used to deliver the wind energy to grid and also to store the energy in energy storage systems during surplus periods. Also Short term power fluctuations are mitigated and harmonics are reduced. Maximum Power point Tracking (MPPT method, Energy storage system interfacing is also studied. The overall system model is designed and simulated by using MATLAB/SIMULINK.

  4. Three-Dimensional Reconstruction of Nuclear Envelope Architecture Using Dual-Color Metal-Induced Energy Transfer Imaging.

    Science.gov (United States)

    Chizhik, Anna M; Ruhlandt, Daja; Pfaff, Janine; Karedla, Narain; Chizhik, Alexey I; Gregor, Ingo; Kehlenbach, Ralph H; Enderlein, Jörg

    2017-09-20

    The nuclear envelope, comprising the inner and the outer nuclear membrane, separates the nucleus from the cytoplasm and plays a key role in cellular functions. Nuclear pore complexes (NPCs), which are embedded in the nuclear envelope, control transport of macromolecules between the two compartments. Here, using dual-color metal-induced energy transfer (MIET), we determine the axial distance between Lap2β and Nup358 as markers for the inner nuclear membrane and the cytoplasmic side of the NPC, respectively. Using MIET imaging, we reconstruct the 3D profile of the nuclear envelope over the whole basal area, with an axial resolution of a few nanometers. This result demonstrates that optical microscopy can achieve nanometer axial resolution in biological samples and without recourse to complex interferometric approaches.

  5. Dual-energy CT can detect malignant lymph nodes in rectal cancer

    DEFF Research Database (Denmark)

    Al-Najami, I.; Lahaye, M. J.; Beets-Tan, Regina G H

    2017-01-01

    node assessment, and compared it to Magnetic Resonance Imaging (MRI). The objective of this prospective observational feasibility study was to determine the clinical value of the DECT for the detection of metastases in the pelvic lymph nodes of rectal cancer patients and compare the findings to MRI......Background There is a need for an accurate and operator independent method to assess the lymph node status to provide the most optimal personalized treatment for rectal cancer patients. This study evaluates whether Dual Energy Computed Tomography (DECT) could contribute to the preoperative lymph...... a pelvic DECT scan and a standard MRI. The Dual Energy CT quantitative parameters were analyzed: Water and Iodine concentration, Dual-Energy Ratio, Dual Energy Index, and Effective Z value, for the benign and malignant lymph node differentiation. Results DECT scanning showed statistical difference between...

  6. Effects of occupation-numbers in (3d-5d) and U energy on transport and magnetic properties of complex perovskites Pb2MReO6 (M = Cr, Mn and Fe) by LSDA and LSDA + U methods

    Science.gov (United States)

    Musa Saad H.-E., M.

    2017-02-01

    Three compounds of lead-based complex perovskites Pb2MReO6 (M = Cr, Mn and Fe) have been investigated in detail based on density functional theory (DFT) using local spin density approximation (LSDA) and (LSDA + U) methods. By introducing a series of 3d-ions in M-site, the number of valence electrons that occupied the 3d-orbitals can be increased from Cr3+(3d3) to Mn2+(3d5) and Fe3+(3d5), and this beside the effect of energy U are the main factors that influenced the physical properties of Pb2MReO6. Magnetic and electronic calculations showed that all Pb2MReO6 compounds have ferrimagnetic half-metallic (FI-HM) properties. FI-HM are attributed to the M (3d)-Re (5d) hybridization through the strong 180° super-exchange (SE) interaction via the long-range pathway M (3d)↑-O (2p)-Re (5d)↓, in conformity with both Pauli Exclusion principles and Goodenough-Kanamori rules. This result is interpreted within a scenario where the Re (5d) states play a crucial role in the FI-HM ground state.

  7. Holography of 3d Flat Cosmological Horizons

    CERN Document Server

    Bagchi, Arjun; Fareghbal, Reza; Simon, Joan

    2013-01-01

    We provide a first derivation of the Bekenstein-Hawking entropy of 3d flat cosmological horizons in terms of the counting of states in a dual field theory. These horizons appear in the shifted-boost orbifold of R^{1,2}, the flat limit of non-extremal rotating BTZ black holes. These 3d geometries carry non-zero charges under the asymptotic symmetry algebra of R^{1,2}, the 3d Bondi-Metzner-Sachs (BMS3) algebra. The dual theory has the symmetries of the 2d Galilean Conformal Algebra, a contraction of two copies of the Virasoro algebra, which is isomorphic to BMS3. We study flat holography as a limit of AdS3/CFT2 to semi-classically compute the density of states in the dual, exactly reproducing the bulk entropy in the limit of large charges. Our flat horizons, remnants of the BTZ inner horizons also satisfy a first law of thermodynamics. We comment on how the dual theory reproduces the bulk first law and how cosmological bulk excitations are matched with boundary quantum numbers.

  8. Unoriented 3d TFTs

    CERN Document Server

    Bhardwaj, Lakshya

    2016-01-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...

  9. Multiphase Venturi Dual Energy Gamma Ray combination performance in NUEX flow loop; Desempenho no flowloop do NUEX da medicao multifasica Venturi Dual Energy Gamma Ray

    Energy Technology Data Exchange (ETDEWEB)

    Barreiros, Claudio; Taranto, Cleber; Costa, Alcemir [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Pinguet, Bruno; Heluey, Vitor; Bessa, Fabiano; Loicq, Olivier [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Multiphase Venturi Dual Energy Gamma Ray Combination, Vx* technology, arrived in Brazil in 2000. PETROBRAS, Brazilian Oil Company, has been putting big efforts in its production business and also has demonstrated a large interest in having a multiphase meter approved by ANP for back allocation purposes. The oil industry was looking for ways to improve the back allocation process using an approved on line multiphase flow measurement device, thus replacing punctual test done today by a permanent monitoring device. Considering this scenario, a partnership project between PETROBRAS and Schlumberger was created in Brazil. The main objective of this project, which was held in NUEX flow loop, was to demonstrate to INMETRO (Brazilian Metrology Institute) that the Multiphase Venturi Dual Energy Gamma Ray Combination meter is able to be used for back allocation purpose. PETROBRAS and Schlumberger elaborated a complete methodology in the NUEX flow loop to demonstrate the results and benefits of the Multiphase Venturi Dual Energy Gamma Ray Combination meter. The test was witnessed by INMETRO and had a very good performance at the end. The results were within what was expected by Schlumberger, PETROBRAS and INMETRO. These results has been very useful to PETROBRAS in order to start using the Venturi Dual Energy Gamma Ray technology for well allocation purposes. (author)

  10. [The value of dual-source dual-energy CT with iodine overlay in the diagnosis of acute necrotizing pancreatitis].

    Science.gov (United States)

    Yuan, Yuan; Huang, Zi-Xing; Li, Zhen-Lin; Song, Bin; Deng, Li-Ping

    2012-07-01

    To investigate the clinical value of dual-source computed tomography dual-energy Iodine overlay technique in the imaging diagnosis of acute necrotizing pancreatitis. The imaging data were retrospectively analyzed in 67 cases of acute necrotizing pancreatitis underwent contrast-enhanced dual-source dual-energy CT in portal venous phase. The CT imaging parameters, including the difference of CT value between pancreatic parenchyma and necrotic lesion, contrast-to-noise ratio of pancreatic parenchyma-to-necrosis, area of pancreatic necrosis and score of subjective diagnosis, were measured and assessed on CT images of 80 kV, 140 kV, weighted-average 120 kV as well as Iodine overlay. The differences of CT value between pancreatic parenchyma and necrosis in the images of 80 kV, 140 kV, weighted-average 120 kV and Iodine overlay were (67.40 +/- 20.82) HU, (42.87 +/- 14.99) HU, (48.69 +/- 15.82) HU, (33.01 +/- 10.26) HU, respectively; contrast-to-noise ratios of pancreatic parenchyma-to-necrosis of each group were 8.36 +/- 3.58, 5.85 +/- 2.65, 7.68 +/- 3.51, 10.60 4.34; area of pancreatic necrosis of each group was (3.78 +/- 2.68) cm2, (3.28 +/- 2.59) cm2, (3.37 +/- 2.46) cm2, (2.42 +/- 1.98) cm2; the score of subjective diagnosis of each group was 3.88 +/- 0.33, 3.31 +/- 0.80, 3.58 +/- 0.66, 2.81 +/- 0.76, respectively. The four indexes in the images of Iodine overlay were significantly different from those of another three groups (P overlay was significantly higher than that of another three groups, while the difference of CT value, area of pancreatic necrosis and score of subjective diagnosis were lower. CONCLUSION; Dual-source CT dual-energy Iodine overlay is not helpful to improve subjective judgment in the diagnosis of pancreatic necrosis, but contributes to the display of hypoperfusion area around the necrosis.

  11. 3D and beyond

    Science.gov (United States)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  12. Differentiation of kidney stones using dual-energy CT with and without a tin filter.

    Science.gov (United States)

    Fung, George S K; Kawamoto, Satomi; Matlaga, Brian R; Taguchi, Katsuyuki; Zhou, Xiaodong; Fishman, Elliot K; Tsui, Benjamin M W

    2012-06-01

    The aim of this in vitro study was to examine the capability of three protocols of dual-energy CT imaging in distinguishing calcium oxalate, calcium phosphate, and uric acid kidney stones. A total of 48 calcium oxalate, calcium phosphate, and uric acid human kidney stone samples were placed in individual containers inside a cylindric water phantom and imaged with a dual-energy CT scanner using the following three scanning protocols of different combinations of tube voltage, with and without a tin filter: 80 and 140 kVp without a tin filter, 100 and 140 kVp with a tin filter, and 80 and 140 kVp with a tin filter. The mean attenuation value (in Hounsfield units) of each stone was recorded in both low- and high-energy CT images in each protocol. The dual-energy ratio of the mean attenuation values of each stone was computed for each protocol. For all three protocols, the uric acid stones were significantly different (p filter protocol (AUC, 0.996), the 100- and 140-kVp tin filter protocol (AUC, 0.918), and the 80- and 140-kVp protocol (AUC, 0.871). The tin filter added to the high-energy tube and the use of a wider dual-energy difference are important for improving the stone differentiation capability of dual-energy CT imaging.

  13. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  14. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  15. Spatial Distribution of Iron Within the Normal Human Liver Using Dual-Source Dual-Energy CT Imaging.

    Science.gov (United States)

    Abadia, Andres F; Grant, Katharine L; Carey, Kathleen E; Bolch, Wesley E; Morin, Richard L

    2017-05-29

    Explore the potential of dual-source dual-energy (DSDE) computed tomography (CT) to retrospectively analyze the uniformity of iron distribution and establish iron concentration ranges and distribution patterns found in healthy livers. Ten mixtures consisting of an iron nitrate solution and deionized water were prepared in test tubes and scanned using a DSDE 128-slice CT system. Iron images were derived from a 3-material decomposition algorithm (optimized for the quantification of iron). A conversion factor (mg Fe/mL per Hounsfield unit) was calculated from this phantom study as the quotient of known tube concentrations and their corresponding CT values. Retrospective analysis was performed of patients who had undergone DSDE imaging for renal stones. Thirty-seven patients with normal liver function were randomly selected (mean age, 52.5 years). The examinations were processed for iron concentration. Multiple regions of interest were analyzed, and iron concentration (mg Fe/mL) and distribution was reported. The mean conversion factor obtained from the phantom study was 0.15 mg Fe/mL per Hounsfield unit. Whole-liver mean iron concentrations yielded a range of 0.0 to 2.91 mg Fe/mL, with 94.6% (35/37) of the patients exhibiting mean concentrations below 1.0 mg Fe/mL. The most important finding was that iron concentration was not uniform and patients exhibited regionally high concentrations (36/37). These regions of higher concentration were observed to be dominant in the middle-to-upper part of the liver (75%), medially (72.2%), and anteriorly (83.3%). Dual-source dual-energy CT can be used to assess the uniformity of iron distribution in healthy subjects. Applying similar techniques to unhealthy livers, future research may focus on the impact of hepatic iron content and distribution for noninvasive assessment in diseased subjects.

  16. A dynamic material discrimination algorithm for dual MV energy X-ray digital radiography.

    Science.gov (United States)

    Li, Liang; Li, Ruizhe; Zhang, Siyuan; Zhao, Tiao; Chen, Zhiqiang

    2016-08-01

    Dual-energy X-ray radiography has become a well-established technique in medical, industrial, and security applications, because of its material or tissue discrimination capability. The main difficulty of this technique is dealing with the materials overlapping problem. When there are two or more materials along the X-ray beam path, its material discrimination performance will be affected. In order to solve this problem, a new dynamic material discrimination algorithm is proposed for dual-energy X-ray digital radiography, which can also be extended to multi-energy X-ray situations. The algorithm has three steps: α-curve-based pre-classification, decomposition of overlapped materials, and the final material recognition. The key of the algorithm is to establish a dual-energy radiograph database of both pure basis materials and pair combinations of them. After the pre-classification results, original dual-energy projections of overlapped materials can be dynamically decomposed into two sets of dual-energy radiographs of each pure material by the algorithm. Thus, more accurate discrimination results can be provided even with the existence of the overlapping problem. Both numerical and experimental results that prove the validity and effectiveness of the algorithm are presented.

  17. Evaluation of a dichromatic X-ray source for dual-energy imaging in mammography

    Science.gov (United States)

    Tuffanelli, A.; Fabbri, S.; Sarnelli, A.; Taibi, A.; Gambaccini, M.

    2002-08-01

    A novel X-ray system, providing dichromatic beams for dual-energy radiography, has been assembled. The source generates pairs of superimposed quasi-monochromatic beams, having energies E and 2 E, with E tuneable in the 15-20 keV range. In this paper the characteristics of the radiation field in terms of energy resolution and fluence, for three dichromatic X-ray beams are reported. A study of the spectra attenuated by a 5 cm-thick phantom of breast equivalent tissue demonstrates that the optimal energy of the dichromatic beam for dual-energy application may be set as a function of the thickness of investigated tissue. A detailed topographic study of mean energy and flux shows the spatial superposition of the first and the second diffraction order beam, that is the main requirement for the application of a single exposure dual-energy radiography. The bidimensional mapping of the irradiated beam is also reported, showing the presence of energy and intensity gradients. We estimate that the observed gradients do not affect the results of dual-energy technique application in an appreciable way.

  18. 3D-kompositointi

    OpenAIRE

    Piirainen, Jere

    2015-01-01

    Opinnäytetyössä käydään läpi yleisimpiä 3D-kompositointiin liittyviä tekniikoita sekä kompositointiin käytettyjä ohjelmia ja liitännäisiä. Työssä esitellään myös kompositoinnin juuret 1800-luvun lopulta aina nykyaikaiseen digitaaliseen kompositointiin asti. Kompositointi on yksinkertaisimmillaan usean kuvan liittämistä saumattomasti yhdeksi uskottavaksi kokonaisuudeksi. Vaikka prosessi vaatii visuaalista silmää, vaatii se myös paljon teknistä osaamista. Tämän lisäksi perusymmärrys kamera...

  19. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  20. Correlation between Dual-Energy and Perfusion CT in Patients with Hepatocellular Carcinoma.

    Science.gov (United States)

    Gordic, Sonja; Puippe, Gilbert D; Krauss, Bernhard; Klotz, Ernst; Desbiolles, Lotus; Lesurtel, Mickaël; Müllhaupt, Beat; Pfammatter, Thomas; Alkadhi, Hatem

    2016-07-01

    Purpose To develop a dual-energy contrast media-enhanced computed tomographic (CT) protocol by using time-attenuation curves from previously acquired perfusion CT data and to evaluate prospectively the relationship between iodine enhancement metrics at dual-energy CT and perfusion CT parameters in patients with hepatocellular carcinoma (HCC). Materials and Methods Institutional review board and local ethics committee approval and written informed consent were obtained. The retrospective part of this study included the development of a dual-energy CT contrast-enhanced protocol to evaluate peak arterial enhancement of HCC in the liver on the basis of time-attenuation curves from previously acquired perfusion CT data in 20 patients. The prospective part of the study consisted of an intraindividual comparison of dual-energy CT and perfusion CT data in another 20 consecutive patients with HCC. Iodine density and iodine ratio (iodine attenuation of the lesion divided by iodine attenuation in the aorta) from dual-energy CT and arterial perfusion (AP), portal venous perfusion, and total perfusion (TP) from perfusion CT were compared. Pearson R and linear correlation coefficients were calculated for AP and iodine density, AP and iodine ratio, TP and iodine density, and TP and iodine ratio. Results The dual-energy CT protocol consisted of bolus tracking in the abdominal aorta (threshold, 150 HU; scan delay, 9 seconds). The strongest intraindividual correlations in HCCs were found between iodine density and AP (r = 0.75, P = .0001). Moderate correlations were found between iodine ratio and AP (r = 0.50, P = .023) and between iodine density and TP (r = 0.56, P = .011). No further significant correlations were found. The volume CT dose index (11.4 mGy) and dose-length product (228.0 mGy · cm) of dual-energy CT was lower than those of the arterial phase of perfusion CT (36.1 mGy and 682.3 mGy · cm, respectively). Conclusion A contrast-enhanced dual-energy CT protocol developed

  1. SU-E-I-38: Improved Metal Artifact Correction Using Adaptive Dual Energy Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Dong, X; Elder, E; Roper, J; Dhabaan, A [Winship Cancer Institute of Emory University (United States)

    2015-06-15

    Purpose: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Methods: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Results: Highly attenuating copper rods cause severe streaking artifacts on standard CT images. EDEC improves the image quality, but cannot eliminate the streaking artifacts. Compared to EDEC, the proposed ADEC method further reduces the streaking resulting from metallic inserts and beam-hardening effects and obtains material decomposition images with significantly improved accuracy. Conclusion: We propose an adaptive dual energy calibration method to correct for metal artifacts. ADEC is evaluated with the Shepp-Logan phantom, and shows superior metal artifact correction performance. In the future, we will further evaluate the performance of the proposed method with phantom and patient data.

  2. Investigation of dual-energy X-ray photon counting using a cadmium telluride detector with dual-energy selection electronics

    Science.gov (United States)

    Sato, Eiichi; Kosuge, Yoshiyuki; Yamanome, Hayato; Mikata, Akiko; Miura, Tatsuya; Oda, Yasuyuki; Ishii, Tomotaka; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Watanabe, Manabu; Kusachi, Shinya

    2017-01-01

    To obtain two kinds of tomograms at two different X-ray energy ranges simultaneously, we have developed a dual-energy X-ray photon counter with a cadmium telluride (CdTe) detector and two energy-selecting devices (ESDs). The ESD consists of two comparators and a microcomputer (MC). X-ray photons are detected using the CdTe detector, and the event pulses from a shaping amplifier are sent to two ESDs simultaneously to determine two energy ranges. X-ray photons in the two ranges are counted using the MCs, and the logical pulses from the MCs are input to frequency-to-voltage converters (FVCs). The outputs from the two FVCs are input to a personal computer through an analog-to-digital converter to carry out dual-energy computed tomography. The tube voltage and current were 80 kV and 8.5 μA, respectively. Two tomograms were obtained simultaneously with two energy ranges. K-edge CT using iodine and gadolinium media was carried out utilizing two energy ranges of 33-45 and 50-65 keV, respectively. The maximum count rate was 6.8 kilocounts per second with energies ranging from 10 to 80 keV, and the exposure time for tomography was 9.8 min.

  3. Radiation Optimized Dual-source Dual-energy Computed Tomography Pulmonary Angiography: Intra-individual and Inter-individual Comparison.

    Science.gov (United States)

    Li, Xie; Chen, Guo Zhong; Zhao, Yan E; Schoepf, U Joseph; Albrecht, Moritz H; Bickford, Matthew W; Gu, Hai Feng; Zhang, Long Jiang; Lu, Guang Ming

    2017-01-01

    This study aimed to intra-individually and inter-individually compare image quality, radiation dose, and diagnostic accuracy of dual-source dual-energy computed tomography pulmonary angiography (CTPA) protocols in patients with suspected pulmonary embolism (PE). Thirty-three patients with suspected PE underwent initial and follow-up dual-energy CTPA at 80/Sn140 kVp (group A) or 100/Sn140 kVp (group B), which were assigned based on tube voltages. Subjective and objective CTPA image quality and lung perfusion map image quality were evaluated. Diagnostic accuracies of CTPA and perfusion maps were assessed by two radiologists independently. Effective dose (ED) was calculated and compared. Mean computed tomography (CT) values of pulmonary arteries were higher in group A than group B (P = .006). There was no difference in signal-to-noise ratio and contrast-to-noise ratio between the two groups (both P > .05). Interobserver agreement for evaluating subjective image quality of CTPA and color-coded perfusion images was either good (κ = 0.784) or excellent (κ = 0.887). Perfusion defect scores and diagnostic accuracy of CTPA showed no difference between both groups (both P > .05). Effective dose of group A was reduced by 45.8% compared to group B (P energy CTPA with 80/Sn140 kVp allows for sufficient image quality and diagnostic accuracy for detecting PE while substantially reducing radiation dose. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  4. An aerial 3D printing test mission

    Science.gov (United States)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  5. Improvement of material decomposition and image quality in dual-energy radiography by reducing image noise

    Science.gov (United States)

    Lee, D.; Kim, Y.-s.; Choi, S.; Lee, H.; Choi, S.; Jo, B. D.; Jeon, P.-H.; Kim, H.; Kim, D.; Kim, H.; Kim, H.-J.

    2016-08-01

    Although digital radiography has been widely used for screening human anatomical structures in clinical situations, it has several limitations due to anatomical overlapping. To resolve this problem, dual-energy imaging techniques, which provide a method for decomposing overlying anatomical structures, have been suggested as alternative imaging techniques. Previous studies have reported several dual-energy techniques, each resulting in different image qualities. In this study, we compared three dual-energy techniques: simple log subtraction (SLS), simple smoothing of a high-energy image (SSH), and anti-correlated noise reduction (ACNR) with respect to material thickness quantification and image quality. To evaluate dual-energy radiography, we conducted Monte Carlo simulation and experimental phantom studies. The Geant 4 Application for Tomographic Emission (GATE) v 6.0 and tungsten anode spectral model using interpolation polynomials (TASMIP) codes were used for simulation studies and digital radiography, and human chest phantoms were used for experimental studies. The results of the simulation study showed improved image contrast-to-noise ratio (CNR) and coefficient of variation (COV) values and bone thickness estimation accuracy by applying the ACNR and SSH methods. Furthermore, the chest phantom images showed better image quality with the SSH and ACNR methods compared to the SLS method. In particular, the bone texture characteristics were well-described by applying the SSH and ACNR methods. In conclusion, the SSH and ACNR methods improved the accuracy of material quantification and image quality in dual-energy radiography compared to SLS. Our results can contribute to better diagnostic capabilities of dual-energy images and accurate material quantification in various clinical situations.

  6. [Chaotic artificial bee colony algorithm: a new approach to the problem of minimization of energy of the 3D protein structure].

    Science.gov (United States)

    Wang, Y; Guo, G D; Chen, L F

    2013-01-01

    Frediction of the three-dimensional structure of a protein from its amino acid sequence can be considered as a global optimization problem. In this paper, the Chaotic Artificial Bee Colony (CABC) algorithm was introduced and applied to 3D protein structure prediction. Based on the 3D off-lattice AB model, the CABC algorithm combines global search and local search of the Artificial Bee Colony (ABC) algorithm with the Chaotic search algorithm to avoid the problem of premature convergence and easily trapping the local optimum solution. The experiments carried out with the popular Fibonacci sequences demonstrate that the proposed algorithm provides an effective and high-performance method for protein structure prediction.

  7. Intraoral 3D scanner

    Science.gov (United States)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  8. Martian terrain - 3D

    Science.gov (United States)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  9. 3D Printing and 3D Bioprinting in Pediatrics.

    Science.gov (United States)

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  10. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  11. A new strategy for storage and transportation of sensitive high-energy materials: guest-dependent energy and sensitivity of 3D metal-organic-framework-based energetic compounds.

    Science.gov (United States)

    Zhang, Sheng; Liu, Xiangyu; Yang, Qi; Su, Zhiyong; Gao, Wenjuan; Wei, Qing; Xie, Gang; Chen, Sanping; Gao, Shengli

    2014-06-23

    Reaction of Co(II) with the nitrogen-rich ligand N,N-bis(1H-tetrazole-5-yl)-amine (H2bta) leads to a mixed-valence, 3D, porous, metal-organic framework (MOF)-based, energetic material with the nitrogen content of 51.78%, [Co9(bta)10(Hbta)2(H2O)10]n⋅(22 H2O)n (1). Compound 1 was thermohydrated to produce a new, stable, energetic material with the nitrogen content of 59.85% and heat of denotation of 4.537 kcal cm(-3), [Co9(bta)10(Hbta)2(H2O)10]n (2). Sensitivity tests show that 2 is more sensitivity to external stimuli than 1, reflecting guest-dependent energy and sensitivity of 3D, MOF-based, energetic materials. Less-sensitive 1 can be regarded as a more safe form for storage and transformation to sensitive 2. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Utility of single-energy and dual-energy computed tomography in clot characterization: An in-vitro study.

    Science.gov (United States)

    Brinjikji, Waleed; Michalak, Gregory; Kadirvel, Ramanathan; Dai, Daying; Gilvarry, Michael; Duffy, Sharon; Kallmes, David F; McCollough, Cynthia; Leng, Shuai

    2017-06-01

    Background and purpose Because computed tomography (CT) is the most commonly used imaging modality for the evaluation of acute ischemic stroke patients, developing CT-based techniques for improving clot characterization could prove useful. The purpose of this in-vitro study was to determine which single-energy or dual-energy CT techniques provided optimum discrimination between red blood cell (RBC) and fibrin-rich clots. Materials and methods Seven clot types with varying fibrin and RBC densities were made (90% RBC, 99% RBC, 63% RBC, 36% RBC, 18% RBC and 0% RBC with high and low fibrin density) and their composition was verified histologically. Ten of each clot type were created and scanned with a second generation dual source scanner using three single (80 kV, 100 kV, 120 kV) and two dual-energy protocols (80/Sn 140 kV and 100/Sn 140 kV). A region of interest (ROI) was placed over each clot and mean attenuation was measured. Receiver operating characteristic curves were calculated at each energy level to determine the accuracy at differentiating RBC-rich clots from fibrin-rich clots. Results Clot attenuation increased with RBC content at all energy levels. Single-energy at 80 kV and 120 kV and dual-energy 80/Sn 140 kV protocols allowed for distinguishing between all clot types, with the exception of 36% RBC and 18% RBC. On receiver operating characteristic curve analysis, the 80/Sn 140 kV dual-energy protocol had the highest area under the curve for distinguishing between fibrin-rich and RBC-rich clots (area under the curve 0.99). Conclusions Dual-energy CT with 80/Sn 140 kV had the highest accuracy for differentiating RBC-rich and fibrin-rich in-vitro thrombi. Further studies are needed to study the utility of non-contrast dual-energy CT in thrombus characterization in acute ischemic stroke.

  13. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  14. Determination of the area density and composition of alloy film using dual alpha particle energy loss

    Science.gov (United States)

    Ma, Xiaojun; Li, Bo; Gao, Dangzhong; Xu, Jiayun; Tang, Yongjian

    2017-02-01

    A novel method based on dual α-particles energy loss (DAEL) is proposed for measuring the area density and composition of binary alloy films. In order to obtain a dual-energy α-particles source, an ingenious design that utilizes the transmitted α-particles traveling the thin film as a new α-particles source is presented. Using the DAEL technique, the area density and composition of Au/Cu film are determined accurately with an uncertainty of better than 10%. Finally, some measures for improving the combined uncertainty are discussed.

  15. Improving the mid-infrared energy absorption efficiency by using a dual-band metamaterial absorber

    Institute of Scientific and Technical Information of China (English)

    Nan Zhang; Peiheng Zhoun; Shifeng Zou; Xiaolong Weng; Jianliang Xie; Longjiang Deng

    2014-01-01

    In this paper, a dual-band mid-infrared metamaterial absorber was proposed to improve the energy absorption efficiency. Up to 99%absorption was obtained at 9.03 and 11.83μm in the simulation, and each absorption band can be tuned by the dielectric spacing layer, i.e., the dielectric constant and its thickness. The dual-band absorption mechanism was analyzed, and the quite well absorption performance at large incident angles was also presented. The results of this study can be applied in the field of thermal absorbing and solar energy harvesting.

  16. Using MCNPX and GEANT code to study the energy response of dual energy detectors; Utilizacion del codigo MCNP y GEANT para el estudio de la respuesta energetica de detectores de energia dual

    Energy Technology Data Exchange (ETDEWEB)

    Juste, B.; Moreda, D.; Miro, R.; Verdu, G.

    2011-07-01

    The use of radiation detectors Dual energy (dual energy) is a powerful tool for identification of materials subjected to X-ray analysis. Given a photon spectrum emitted by an X-ray tube, at low energies, the absorption of radiation depends mainly on the effective atomic number and thickness of the material. In contrast, higher energy levels, above 100 kilovolts, the energy absorbed depends, above all, the material density.

  17. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  18. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  19. Energy management. A dual obligation; Energiemanagement. Doppelte Pflicht fuer Anlagenbetreiber

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, Gerald; Reisz, Thomas [EnergieAgentur.NRW, Wuppertal (Germany)

    2013-04-15

    The current situation is familiar to us all: as a result, not least of all, of significant price increases in recent years, energy has now become an incalculable cost factor for companies and even for entire national economies. And: the use of energy has, equally, for decades now constituted a serious burden on the global climate. There are therefore good ecological and economic reasons for making energy consumption as efficient as possible. Via structured action, energy management assures the achievement of consumer behaviour that will be sustainable for the future.

  20. Issues on 3D Noncommutative Electromagnetic Duality

    CERN Document Server

    Rodrigues, D C; Rodrigues, Davi C.; Wotzasek, Clovis

    2006-01-01

    We extend the ordinary 3D electromagnetic duality to the noncommutative (NC) space-time through a Seiberg-Witten map to second order in the noncommutativity parameter $\\theta$, defining a new scalar field model. There are similarities with the 4D NC duality, these are exploited to clarify properties of both cases. Up to second order in $\\theta$, we find duality interchanges the 2-form $\\theta$ with its 1-form Hodge dual ${^\\star} \\theta $ times the gauge coupling constant, i.e., $ \\theta \\to {^\\star} \\theta g^2$ (similar to the 4D NC electromagnetic duality). We prove that this property is false in the third order expansion in both 3D and 4D space-times. Starting from the third order expansion, $\\theta$ cannot be rescaled to attain an S-duality; on the other hand, to any order in $\\theta$, it is possible to rescale the fields to obtain the same coupling constants in both dual descriptions. In addition to possible applications on effective models, the 3D space-time is useful for studying general properties of ...

  1. Dichromatic source for the application of dual-energy tissue cancellation in mammography

    Science.gov (United States)

    Tuffanelli, Alessandra; Fabbri, S.; Marziani, Michele; Taibi, Angelo; Sarnelli, A.; Gambaccini, Mauro

    2002-05-01

    A novel x-ray source, providing dichromatic beams for the application of dual-energy radiography, has been assembled and studied. The system works via Bragg diffraction, by monochromatizing the beam produced by a conventional W-anode x-ray tube with a mosaic crystal monochromator. The source generates a laminar beam (10 cm-high and 0.8 cm-wide), composed by two spatially superimposed quasi-monochromatic beams. The characteristics of the radiation field in terms of energy resolution and fluence have been reported, for three pairs of energies. A study of the spectra attenuated by several phantoms of breast equivalent tissue of different thicknesses shows that the optimal energy of the dichromatic beam for dual energy mammography application ranges between 18/36 keV and 18.6/37.2 keV and may be set as a function of the thickness or density of investigated tissue.

  2. Dual-energy lung perfusion computed tomography: a novel pulmonary functional imaging method.

    Science.gov (United States)

    Thieme, Sven F; Johnson, Thorsten R C; Reiser, Maximilian F; Nikolaou, Konstantin

    2010-08-01

    Dual-energy computed tomography (DECT) can be used for visualization of pulmonary microvascular contrast material distribution, representing regional perfusion. It is performed as DECT angiography and allows for the reconstruction of morphologic images as well as of "perfusion maps." The authors of previous studies have shown its potential to reliably depict perfusion defects, mainly in the context of pulmonary embolism. Also in the diagnostic work-up of other pulmonary diseases, there might be additional functional information provided by dual-energy acquisition techniques. This review focuses on the physical and technical background and the potential clinical value of pulmonary DECT. Technical improvements of a second-generation dual-source CT system are elucidated.

  3. Pulse energy control through dual loop electronic feedback

    CSIR Research Space (South Africa)

    Jacobs, Cobus

    2006-07-01

    Full Text Available surgery • Better accuracy in laser-based scientific measurements Pulse Energy Control handptright Cobus Jacobs et al. head2righthead2rightPump/Gain • Duration & intensity of pump determine energy stored in laser medium barb2rightbarb2right Problem...

  4. Theoretical and applied research on bistable dual-piezoelectric-cantilever vibration energy harvesting toward realistic ambience

    Science.gov (United States)

    Gao, Y.; Leng, Y.; Javey, A.; Tan, D.; Liu, J.; Fan, S.; Lai, Z.

    2016-11-01

    Pink noise, which is similar to realistic ambient noise, is normally used to simulate ambience where a piezoelectric energy harvesting system (PEHS) is set up. However, pink noise with standard spectral representation can only be used to simulate excitations assumed to possess constant intensity, whereas realistic ambient noise normally appears with a random spectrum and varying intensity in terms of different locations and time. The output performance of conventional bistable magnetic repulsive energy harvesters is significantly affected by the ambience intensity. Considering this fact, a model bistable dual-piezoelectric-cantilever energy harvester (DPEH) is developed in this study to achieve optimal broadband energy harvesting under a varying-intensity realistic circumstance. We utilized various realistic ambient conditions as excitations to obtain the DPEH energy harvesting performance for theoretical and applied study. The elastically supported PEHS has been proven to be more adaptive to realistic ambience with significant or medium intensity variation, but is less qualified for realistic ambience with constant intensity compared with the rigidly supported PEHS (RPEHS). Fortunately, the dual-piezoelectric-cantilever energy harvesting system is superior to the RPEHS under all circumstances because the dual-piezoelectric cantilevers are efficiently utilized for electromechanical energy conversion to realize optimal energy harvesting.

  5. Dual energy computed tomography quantification of carotid plaques calcification: comparison between monochromatic and polychromatic energies with pathology correlation

    Energy Technology Data Exchange (ETDEWEB)

    Mannelli, Lorenzo [University of Washington, Departments of Radiology, Seattle, WA (United States); Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY (United States); MacDonald, Lawrence; Ferguson, Marina; Shuman, William P.; Xu, Dongxiang; Yuan, Chun; Mitsumori, Lee M. [University of Washington, Departments of Radiology, Seattle, WA (United States); Mancini, Marcello; Ragucci, Monica; Monti, Serena [IRCCS Fondazione SDN, Naples (Italy)

    2015-05-01

    We compared carotid plaque calcification detection sensitivity and apparent cross-sectional area on CT as a function of CT beam energy using conventional CT techniques and virtual mono-energetic CT images generated from dual-energy acquisitions. Five ex-vivo carotid endarterectomy (CEA) specimens were imaged with dual-energy computed tomography. Virtual monochromatic spectrum (VMS) CT images were reconstructed at energies between 40-140 keV. The same specimens were imaged using conventional polyenergetic spectrum (PS) CT with peak beam energies 80, 100, 120, and 140 kVp. The histological calcium areas on each corresponding CEA specimen were traced manually on digitized images of Toluidine-Blue/Basic-Fuchsin stained plastic sections. 40 keV VMS CT images provided high detection sensitivity (97 %) similar to conventional PS CT images (∝96 %). The calcification size measured on CT decreased systematically with increasing CT beam energy; the rate of change was larger for the VMS images than for PS images. From a single dual-energy CT, multiple VMS-CT images can be generated, yielding equivalent detection sensitivity and size correlations as conventional PS-CT in CEA calcification imaging. VMS-CT at 80-100 keV provided the most accurate estimates of calcification size, as compared to histology, but detection sensitivity was reduced for smaller calcifications on these images. (orig.)

  6. Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of colored iodine overlay.

    Science.gov (United States)

    Ascenti, Giorgio; Mazziotti, Silvio; Lamberto, Salvatore; Bottari, Antonio; Caloggero, Simona; Racchiusa, Sergio; Mileto, Achille; Scribano, Emanuele

    2011-06-01

    The purpose of our study was to evaluate the value of dual-source dual-energy CT with colored iodine overlay for detection of endoleaks after endovascular abdominal aortic aneurysm repair. We also calculated the potential dose reduction by using a dual-energy CT single-phase protocol. From November 2007 to November 2009, 74 patients underwent CT angiography 2-7 days after endovascular repair during single-energy unenhanced and dual-energy venous phases. By using dual-energy software, the iodine overlay was superimposed on venous phase images with different percentages ranging between 0 (virtual unenhanced images) and 50-75% to show the iodine in an orange color. Two blinded readers evaluated the data for diagnosis of endoleaks during standard unenhanced and venous phase images (session 1, standard of reference) and virtual unenhanced and venous phase images with colored iodine overlay images (session 2). We compared the effective dose radiation of a single-energy biphasic protocol with that of a single-phase dual-energy protocol. The diagnostic accuracy of session 2 was calculated. The mean dual-energy effective dose was 7.27 mSv. By using a dual-energy single-phase protocol, we obtained a mean dose reduction of 28% with respect to a single-energy biphasic protocol. The diagnostic accuracy of session 2 was: 100% sensitivity, 100% specificity, 100% negative predictive value, and 100% positive predictive value. Statistically significant differences in the level of confidence for endoleak detection between the two sessions were found by reviewers for scores 3-5. Dual-energy CT with colored iodine overlay is a useful diagnostic tool in endoleak detection. The use of a dual-energy single-phase study protocol will lower radiation exposure to patients.

  7. Optimization of dual-energy CT acquisitions for proton therapy using projection-based decomposition.

    Science.gov (United States)

    Vilches-Freixas, Gloria; Létang, Jean Michel; Ducros, Nicolas; Rit, Simon

    2017-09-01

    Dual-energy computed tomography (DECT) has been presented as a valid alternative to single-energy CT to reduce the uncertainty of the conversion of patient CT numbers to proton stopping power ratio (SPR) of tissues relative to water. The aim of this work was to optimize DECT acquisition protocols from simulations of X-ray images for the treatment planning of proton therapy using a projection-based dual-energy decomposition algorithm. We have investigated the effect of various voltages and tin filtration combinations on the SPR map accuracy and precision, and the influence of the dose allocation between the low-energy (LE) and the high-energy (HE) acquisitions. For all spectra combinations, virtual CT projections of the Gammex phantom were simulated with a realistic energy-integrating detector response model. Two situations were simulated: an ideal case without noise (infinite dose) and a realistic situation with Poisson noise corresponding to a 20 mGy total central dose. To determine the optimal dose balance, the proportion of LE-dose with respect to the total dose was varied from 10% to 90% while keeping the central dose constant, for four dual-energy spectra. SPR images were derived using a two-step projection-based decomposition approach. The ranges of 70 MeV, 90 MeV, and 100 MeV proton beams onto the adult female (AF) reference computational phantom of the ICRP were analytically determined from the reconstructed SPR maps. The energy separation between the incident spectra had a strong impact on the SPR precision. Maximizing the incident energy gap reduced image noise. However, the energy gap was not a good metric to evaluate the accuracy of the SPR. In terms of SPR accuracy, a large variability of the optimal spectra was observed when studying each phantom material separately. The SPR accuracy was almost flat in the 30-70% LE-dose range, while the precision showed a minimum slightly shifted in favor of lower LE-dose. Photon noise in the SPR images (20 mGy dose

  8. Bone age assessment by dual-energy X-ray absorptiometry in children: An alternative for X-ray?

    NARCIS (Netherlands)

    D.H.M. Heppe (Denise); H.R. Taal (Rob); G.D.S. Ernst (Gesina); E.L.T. van den Akker (Erica); M.H. Lequin (Maarten); A.C.S. Hokken-Koelega (Anita); J.J.M. Geelhoed (Miranda); V.W.V. Jaddoe (Vincent)

    2012-01-01

    textabstractObjective: The aim of the study was to validate dual-energy X-ray absorptiometry (DXA) as a method to assess bone age in children. Methods: Paired dual-energy X-ray absorptiometry (DXA) scans and X-rays of the left hand were performed in 95 children who attended the paediatric endocrinol

  9. SU-C-18C-03: Dual-Energy X-Ray Fluoroscopy Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Virshup, G; Richmond, M; Mostafavi, H; Ganguly, A [Ginzton Technology Center, Varian Medical Systems Inc, Palo Alto, CA (United States); Fu, D [Ruier Medical, Wuxi, Jiangsu Province (China)

    2014-06-01

    Purpose: This work studies the clinical utility of dual energy (DE) subtraction fluoroscopy for fiducial-free tumor tracking in lung radiation therapy (RT). Improvement in tumor visualization and quantification of tumor shift within a breathing cycle were analyzed. Methods: Twenty subjects who were undergoing RT for lung cancer were recruited following institutional review board approval. The subjects had a range of tumor sizes, locations in the lungs, and body sizes. An x-ray imaging system was setup with the following components: (a) x-ray tube (Varian G-242, Varian Medical Systems (VMS), CA) (b) flat panel detector (4030CB, VMS, CA) and (c) x-ray generator (EPS 50RF, EMD, Canada). Firmware and software modifications were made to the generator to allow 10 x-ray pulse pairs with alternating low/high kV, 100 ms apart for ∼4s (one breathing cycle). Images were obtained at 4 angles: 0°, 45°, 90° and 135°. Weighted subtraction of a kV-pair image set was used to create a “bone-free” image of the lungs. The 2D tumor-shift in each subtracted image and the 3D shift during a breathing cycle was calculated using all views. Results: The subjects enrolled had the following statistics: average age 62.3±7.1 years, 5 female/15 male, 11 had tumors on the right and 9 on the left and the average tumor size was ∼31.4±10.8 mm. X-ray imaging conditions for the pulse pairs were: 70/120 kVp, 280/221 mA and 65/8 ms. For views where these parameters were insufficient 80/130 kVp, 280/221 mA and 60/12 ms was used. Tumor visibility improved for 0°, 45°, 90° and 135° in 100%, 55%, 75% and 80% of the cases respectively. Tumor shift during a breathing cycle was: 2.4±1.0 mm AP, 2.7±1.4 mm LR and 7.6±4.8 mm IS. Conclusion: DE subtraction fluoroscopy allowed improved visualization and quantification of movement of tumors in the lungs during a breathing cycle. This study was entirely funded by Varian Medical Systems.

  10. Transient dual-energy lasing in a semiconductor microcavity

    CERN Document Server

    Hsu, Feng-Kuo; Lee, Yi-Shan; Lin, Sheng-Di; Lai, Chih-Wei

    2015-01-01

    We demonstrate sequential lasing at two well-separated energies in a highly photoexcited planar microcavity at room temperature. Two spatially overlapped lasing states with distinct polarization properties appear at energies more than 5 meV apart. Under a circularly polarized nonresonant 2 ps pulse excitation, a sub-10-ps transient circularly polarized high-energy (HE) state emerges within 10 ps after the pulse excitation. This HE state is followed by a pulsed state that lasts for 20--50 ps at a low energy (LE) state. The HE state is highly circularly polarized as a result of a spin-preserving stimulated process, while the LE state shows a significantly reduced circular polarization because of a diminishing spin imbalance.

  11. Detection of pulmonary fat embolism with dual-energy CT: an experimental study in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun Xiang; Zhou, Chang Sheng; Zhao, Yan E.; Han, Zong Hong; Qi, Li; Zhang, Long Jiang; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Schoepf, U.J. [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Mangold, Stefanie; Ball, B.D. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States)

    2017-04-15

    To evaluate the use of dual-energy CT imaging of the lung perfused blood volume (PBV) for the detection of pulmonary fat embolism (PFE). Dual-energy CT was performed in 24 rabbits before and 1 hour, 1 day, 4 days and 7 days after artificial induction of PFE via the right ear vein. CT pulmonary angiography (CTPA) and lung PBV images were evaluated by two radiologists, who recorded the presence, number, and location of PFE on a per-lobe basis. Sensitivity, specificity, and accuracy of CTPA and lung PBV for detecting PFE were calculated using histopathological evaluation as the reference standard. A total of 144 lung lobes in 24 rabbits were evaluated and 70 fat emboli were detected on histopathological analysis. The overall sensitivity, specificity and accuracy were 25.4 %, 98.6 %, and 62.5 % for CTPA, and 82.6 %, 76.0 %, and 79.2 % for lung PBV. Higher sensitivity (p < 0.001) and accuracy (p < 0.01), but lower specificity (p < 0.001), were found for lung PBV compared with CTPA. Dual-energy CT can detect PFE earlier than CTPA (all p < 0.01). Dual-energy CT provided higher sensitivity and accuracy in the detection of PFE as well as earlier detection compared with conventional CTPA in this animal model study. (orig.)

  12. Detection of pulmonary fat embolism with dual-energy CT: an experimental study in rabbits.

    Science.gov (United States)

    Tang, Chun Xiang; Zhou, Chang Sheng; Zhao, Yan E; Schoepf, U Joseph; Mangold, Stefanie; Ball, B Devon; Han, Zong Hong; Qi, Li; Zhang, Long Jiang; Lu, Guang Ming

    2017-04-01

    To evaluate the use of dual-energy CT imaging of the lung perfused blood volume (PBV) for the detection of pulmonary fat embolism (PFE). Dual-energy CT was performed in 24 rabbits before and 1 hour, 1 day, 4 days and 7 days after artificial induction of PFE via the right ear vein. CT pulmonary angiography (CTPA) and lung PBV images were evaluated by two radiologists, who recorded the presence, number, and location of PFE on a per-lobe basis. Sensitivity, specificity, and accuracy of CTPA and lung PBV for detecting PFE were calculated using histopathological evaluation as the reference standard. A total of 144 lung lobes in 24 rabbits were evaluated and 70 fat emboli were detected on histopathological analysis. The overall sensitivity, specificity and accuracy were 25.4 %, 98.6 %, and 62.5 % for CTPA, and 82.6 %, 76.0 %, and 79.2 % for lung PBV. Higher sensitivity (p PFE earlier than CTPA (all p PFE as well as earlier detection compared with conventional CTPA in this animal model study. • Fat embolism occurs commonly in patients with traumatic bone injury. • Dual-energy CT improves diagnostic performance for pulmonary fat embolism detection. • Dual-energy CT can detect pulmonary fat embolism earlier than CTPA.

  13. WE-A-BRF-01: Dual-Energy CT Imaging in Diagnostic Imaging and Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Molloi, S [University of California, Irvine, CA (United States); Li, B [Boston University Medical Center, Boston, MA (United States); Yin, F [Duke University Medical Center, Durham, NC (United States); Chen, H [New York Presbyterian Hospital, New York, NY (United States)

    2014-06-15

    The quantification accuracy of dual-energy imaging is influenced by the fundamentals of x-ray physics, system geometry, data acquisition hardware/protocol, system calibration, and image processing technique. This symposium will provide updates on the following advanced application areas: Mammography. Volumetric breast density techniques based on standard mammograms require estimation of breast thickness, which is difficult to accurately measure. By comparison, calculation of breast density using dual energy mammography does not require measurement of breast thickness. Dual energy mammography has been implemented using both energy integrating flat panel detectors in conjunction with beam energy switching and energy resolved photon counting detectors. These techniques have been optimized using simulation studies and validated using physical phantoms and postmortem breasts. Chemical decomposition was used as the gold standard for volumetric breast density measurement in postmortem breasts. Breast density measurements have also been compared with results from four-category BI-RADS density rankings, standard image thresholding and Fuzzy k-mean clustering techniques. These studies indicate that dual energy mammography can be used to accurately measure volumetric breast density. Cardiovascular CT. The predicative accuracy of risk models for recurrent stroke and cardiac arrest depends heavily on accurate differentiation of thrombus or calcium from iodine in left atrial appendage or coronary arteries. The amount of energy separation is constrained by image noise; therefore, optimal kVp, beam filtration, and balanced flux are essential for the quantification accuracy of iodine and calcium. The basis materials are combined linearly to generate monochromatic energy images, where CT# accuracy and CNR are energy dependent. With optimal monochromatic energy, the mean iodine concentration for the thrombus, circulatory stasis, and control groups are significantly different. Risk

  14. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images.

    Science.gov (United States)

    Mashouf, S; Lechtman, E; Lai, P; Keller, B M; Karotki, A; Beachey, D J; Pignol, J P

    2014-09-21

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 [Formula: see text] formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  15. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    Science.gov (United States)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  16. Dual energy contrast enhanced breast imaging optimization using contrast to noise ratio

    Science.gov (United States)

    Arvanitis, C. D.; Royle, G.; Speller, R.

    2007-03-01

    The properties of dual energy contrast enhanced breast imaging have been analyzed by imaging a 4 cm breast equivalent phantom consisting of adipose and glandular equivalent plastics. This phantom had superimposed another thin plastic which incorporated a 2 mm deep cylinder filled with iodinated contrast media. The iodine projected thicknesses used for this study was 3 mg/cm2. Low and high energy spectra that straddle the iodine K-edge were used. Critical parameters such as the energy spectra and exposure are discussed, along with post processing by means of nonlinear energy dependent function. The dual energy image was evaluated using the relative contrast to noise ratio of a 2.5 mm x 2.5 mm region of the image at the different iodine concentrations incorporating different breast composition with respect to the noniodinated areas. Optimum results were achieved when the low and high-energy images were used in such a way that relative contrast to noise ratio of the iodine with respect to the background tissue was maximum. A figure of merit suggests that higher noise levels can be tolerated at the benefit of lower exposure. Contrast media kinetics of a phantom incorporating a water flow of 20.4 ml/min through the plastic cylinder suggests that time domain imaging could be performed with this approach. The results suggest that optimization of dual energy contrast enhanced mammography has the potential to lead to the development of perfusion digital mammography.

  17. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering.

    Science.gov (United States)

    Hilz, Florian M; Ahrens, Philipp; Grad, Sibylle; Stoddart, Martin J; Dahmani, Chiheb; Wilken, Frauke L; Sauerschnig, Martin; Niemeyer, Philipp; Zwingmann, Jörn; Burgkart, Rainer; von Eisenhart-Rothe, Rüdiger; Südkamp, Norbert P; Weyh, Thomas; Imhoff, Andreas B; Alini, Mauro; Salzmann, Gian M

    2014-02-01

    Articular cartilage, once damaged, has very low regenerative potential. Various experimental approaches have been conducted to enhance chondrogenesis and cartilage maturation. Among those, non-invasive electromagnetic fields have shown their beneficial influence for cartilage regeneration and are widely used for the treatment of non-unions, fractures, avascular necrosis and osteoarthritis. One very well accepted way to promote cartilage maturation is physical stimulation through bioreactors. The aim of this study was the investigation of combined mechanical and electromagnetic stress affecting cartilage cells in vitro. Primary articular chondrocytes from bovine fetlock joints were seeded into three-dimensional (3-D) polyurethane scaffolds and distributed into seven stimulated experimental groups. They either underwent mechanical or electromagnetic stimulation (sinusoidal electromagnetic field of 1 mT, 2 mT, or 3 mT; 60 Hz) or both within a joint-specific bioreactor and a coil system. The scaffold-cell constructs were analyzed for glycosaminoglycan (GAG) and DNA content, histology, and gene expression of collagen-1, collagen-2, aggrecan, cartilage oligomeric matrix protein (COMP), Sox9, proteoglycan-4 (PRG-4), and matrix metalloproteinases (MMP-3 and -13). There were statistically significant differences in GAG/DNA content between the stimulated versus the control group with highest levels in the combined stimulation group. Gene expression was significantly higher for combined stimulation groups versus static control for collagen 2/collagen 1 ratio and lower for MMP-13. Amongst other genes, a more chondrogenic phenotype was noticed in expression patterns for the stimulated groups. To conclude, there is an effect of electromagnetic and mechanical stimulation on chondrocytes seeded in a 3-D scaffold, resulting in improved extracellular matrix production.

  18. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  19. Radiation Doses of Dual-Energy CT for Abdominopelvic CT: Comparison with Single-Energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Seo; Jeong, Woo Kyoung; Kim, Yong Soo; Heo, Jeong Nam [Dept. of Radiology, Hanyang University Guro Hospital, Hanyang University College of Medicine, Seoul (Korea, Republic of)

    2011-11-15

    To compare radiation doses of dual-energy CT (DECT) to single-energy CT (SECT) by a phantom experiment, with the application of mean tube currents for abdomino-pelvic CT. This study includes patients who were examined by contrast-enhanced CT for kidney evaluation. We divided the patients into six groups according to sex and body mass index. Each group consisted of five patients and a total of 30 patients were evaluated. We split the body parts (abdomen and pelvis), and calculated the mean tube current of each group as well as investigated the image noise. Applying the mean mAs from a CT scan, we measured the weighted CT dose index (CTDIw) of DECT and SECT. We compared the measured CTDIw to an estimated CTDI value displayed on the CT console. We also compared the radiation dose ratio of DECT to SECT (D/S ratio) for each subgroup. The radiation doses were compared by the student's t-test and analysis of variance. The difference of image noise between DECT and SECT was not statistically significant. Radiation dose of DECT was higher than SECT by about 21.6% (10.69 mGy, 8.79 mGy; p < 0.0001), and the measured CTDI of the DECT was significantly higher than the estimated CTDI by about 6% (p < 0.001). The D/S ratio was not significant between the six groups. The measured CTDIw of abdominopelvic DECT studies were significantly higher than those of SECT.

  20. An integrated time-of-flight versus residual energy subsystem for a compact dual ion composition experiment for space plasmas.

    Science.gov (United States)

    Desai, M I; Ogasawara, K; Ebert, R W; McComas, D J; Allegrini, F; Weidner, S E; Alexander, N; Livi, S A

    2015-05-01

    We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ∼10 eV/q-40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ∼30 keV-10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs' singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.

  1. An integrated time-of-flight versus residual energy subsystem for a compact dual ion composition experiment for space plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Desai, M. I.; McComas, D. J.; Allegrini, F.; Livi, S. A. [Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238-5166 (United States); Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0697 (United States); Ogasawara, K.; Ebert, R. W.; Weidner, S. E.; Alexander, N. [Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238-5166 (United States)

    2015-05-15

    We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ∼10 eV/q–40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ∼30 keV–10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs’ singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.

  2. Delft3D turbine turbulence module

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-18

    The DOE has funded Sandia National Labs (SNL) to develop an open-source modeling tool to guide the design and layout of marine hydrokinetic (MHK) arrays to maximize power production while minimizing environmental effects. This modeling framework simulates flows through and around a MHK arrays while quantifying environmental responses. As an augmented version of the Dutch company, Deltares’s, environmental hydrodynamics code, Delft3D, SNL-Delft3D includes a new module that simulates energy conversion (momentum withdrawal) by MHK devices with commensurate changes in the turbulent kinetic energy and its dissipation rate.

  3. 3D Spectroscopy in Astronomy

    Science.gov (United States)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  4. Spherical 3D isotropic wavelets

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  5. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  6. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  7. Quantitative material analysis by dual-energy computed tomography for industrial NDT applications

    Science.gov (United States)

    Nachtrab, F.; Weis, S.; Keßling, P.; Sukowski, F.; Haßler, U.; Fuchs, T.; Uhlmann, N.; Hanke, R.

    2011-05-01

    Dual-energy computed tomography (DECT) is an established method in the field of medical CT to obtain quantitative information on a material of interest instead of mean attenuation coefficients only. In the field of industrial X-ray imaging dual-energy techniques have been used to solve special problems on a case-by-case basis rather than as a standard tool. Our goal is to develop an easy-to-use dual-energy solution that can be handled by the average industrial operator without the need for a specialist. We are aiming at providing dual-energy CT as a measurement tool for those cases where qualitative images are not enough and one needs additional quantitative information (e.g. mass density ρ and atomic number Z) about the sample at hand. Our solution is based on an algorithm proposed by Heismann et al. (2003) [1] for application in medical CT . As input data this algorithm needs two CT data sets, one with low (LE) and one with high effective energy (HE). A first order linearization is applied to the raw data, and two volumes are reconstructed thereafter. The dual-energy analysis is done voxel by voxel, using a pre-calculated function F(Z) that implies the parameters of the low and high energy measurement (such as tube voltage, filtration and detector sensitivity). As a result, two volume data sets are obtained, one providing information about the mass density ρ in each voxel, the other providing the effective atomic number Z of the material therein. One main difference between medical and industrial CT is that the range of materials that can be contained in a sample is much wider and can cover the whole range of elements, from hydrogen to uranium. Heismann's algorithm is limited to the range of elements Z=1-30, because for Z>30 the function F(Z) as given by Heismann is not a bijective function anymore. While this still seems very suitable for medical application, it is not enough to cover the complete range of industrial applications. We therefore investigated the

  8. A 3-D Contextual Classifier

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  9. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  10. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  11. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  12. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  13. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  14. 3D printing of interdigitated Li-ion microbattery architectures.

    Science.gov (United States)

    Sun, Ke; Wei, Teng-Sing; Ahn, Bok Yeop; Seo, Jung Yoon; Dillon, Shen J; Lewis, Jennifer A

    2013-09-06

    3D interdigitated microbattery architectures (3D-IMA) are fabricated by printing concentrated lithium oxide-based inks. The microbatteries are composed of interdigitated, high-aspect ratio cathode and anode structures. Our 3D-IMA, which exhibit high areal energy and power densities, may find potential application in autonomously powered microdevices.

  15. On two-parameter models of photon cross sections: application to dual-energy CT imaging.

    Science.gov (United States)

    Williamson, Jeffrey F; Li, Sicong; Devic, Slobodan; Whiting, Bruce R; Lerma, Fritz A

    2006-11-01

    The goal of this study is to evaluate the theoretically achievable accuracy in estimating photon cross sections at low energies (20-1000 keV) from idealized dual-energy x-ray computed tomography (CT) images. Cross-section estimation from dual-energy measurements requires a model that can accurately represent photon cross sections of any biological material as a function of energy by specifying only two characteristic parameters of the underlying material, e.g., effective atomic number and density. This paper evaluates the accuracy of two commonly used two-parameter cross-section models for postprocessing idealized measurements derived from dual-energy CT images. The parametric fit model (PFM) accounts for electron-binding effects and photoelectric absorption by power functions in atomic number and energy and scattering by the Klein-Nishina cross section. The basis-vector model (BVM) assumes that attenuation coefficients of any biological substance can be approximated by a linear combination of mass attenuation coefficients of two dissimilar basis substances. Both PFM and BVM were fit to a modern cross-section library for a range of elements and mixtures representative of naturally occurring biological materials (Z = 2-20). The PFM model, in conjunction with the effective atomic number approximation, yields estimated the total linear cross-section estimates with mean absolute and maximum error ranges of 0.6%-2.2% and 1%-6%, respectively. The corresponding error ranges for BVM estimates were 0.02%-0.15% and 0.1%-0.5%. However, for photoelectric absorption frequency, the PFM absolute mean and maximum errors were 10.8%-22.4% and 29%-50%, compared with corresponding BVM errors of 0.4%-11.3% and 0.5%-17.0%, respectively. Both models were found to exhibit similar sensitivities to image-intensity measurement uncertainties. Of the two models, BVM is the most promising approach for realizing dual-energy CT cross-section measurement.

  16. Virtual monochromatic imaging in dual-source and dual-energy CT for visualization of acute ischemic stroke

    CERN Document Server

    Hara, Hidetake; Matsuzawa, Hiroki; Inoue, Toshiyuki; Abe, Shinji; Satoh, Hitoshi; Nakajima, Yasuo

    2015-01-01

    We have recently developed a phantom that simulates acute ischemic stroke. We attempted to visualize acute-stage cerebral infarction by applying virtual monochromatic images to this phantom using dual-energy CT (DECT). Virtual monochromatic images were created using DECT from 40 to 100 keV at every 10 keV and from 60 to 80 keV at every 1 keV, under three energy conditions of tube voltages with thin (Sn) filters. Calculation of the CNR values allowed us to evaluate the visualization of acute-stage cerebral infarction. The CNR value of a virtual monochromatic image was the highest at 68 keV under 80 kV / Sn 140 kV, at 72 keV under 100 kV / Sn 140 kV, and at 67 keV under 140 kV / 80 kV. The CNR values of virtual monochromatic images between 65 and 75 keV were significantly higher than those obtained for all other created energy images. Therefore, optimal conditions for visualizing acute ischemic stroke were achievable.

  17. Dual-energy CTA in patients with symptomatic peripheral arterial occlusive disease. Study of diagnostic accuracy and impeding factors

    Energy Technology Data Exchange (ETDEWEB)

    Klink, Thorsten [Wuerzburg Univ. (Germany). Inst. of Diagnostic and Interventional Radiology; Bern Univ. (Switzerland). Univ. Inst. of Diagnostic, Interventional, and Pediatric Radiology; Wilhelm, Theresa; Roth, Christine [Univ. Hospital Giessen and Marburg, Marburg (Germany). Dept. of Diagnostic and Interventional Radiology; Heverhagen, Johannes T. [Bern Univ. (Switzerland). Univ. Inst. of Diagnostic, Interventional, and Pediatric Radiology

    2017-05-15

    The purpose of this study was to assess the diagnostic performance of dual-energy CT angiography (DE-CTA) in patients with symptomatic peripheral artery occlusive disease (PAOD) and to identify factors that impede its diagnostic accuracy. Dual-source DE-CTA scans of the lower extremities of 94 patients were retrospectively compared to the diagnostic reference standard, digital subtraction angiography (DSA). Two independent observers assessed PAOD incidence, image quality, artifacts, and diagnostic accuracy of DE-CTA in 1014 arterial segments on axial, combined 80/140 kVp reconstructions and on 3 D maximum intensity projections (MIP) after automated bone and plaque removal. The impact of calcifications, image quality, and image artifacts on the diagnostic accuracy was evaluated using Fisher's exact test. Furthermore, interobserver agreement was analyzed. Two observers achieved sensitivities of 98.0% and 93.9%, respectively, and specificities of 75.0% and 66.7%, respectively, for detecting stenoses of >50% of the lower extremity arteries. Calcifications impeded specificity, e.g. from 81.2% to 46.2% for reader 1 (p<0.001). Specificity increased with higher image quality, e.g. from 70.0% to 76.4% for reader 1 (p<0.001). Artifacts decreased the specificity of reader 2 (p<0.001). The overall interobserver agreement ranged between moderate and substantial for stenosis detection and calcified plaques. Conclusion DE-CTA is accurate in the detection of arterial stenoses of >50% in symptomatic PAOD patients. Calcified atherosclerotic plaques, image quality, and artifacts may impede specificity.

  18. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    Science.gov (United States)

    Fíla, T.; Kumpová, I.; Koudelka, P.; Zlámal, P.; Vavřík, D.; Jiroušek, O.; Jung, A.

    2016-01-01

    In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi7Mg0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation.

  19. Dual-energy CT angiography of the lung in patients with suspected pulmonary embolism. Initial results

    Energy Technology Data Exchange (ETDEWEB)

    Fink, C.; Michaely, H.J. [Inst. fuer Klinische Radiologie und Nuklearmedizin, Universitaetsklinikum Mannheim, Univ. Heidelberg (Germany); Inst. fuer Klinische Radiologie, Campus Grosshadern, Klinikum der Univ. Muenchen (Germany); Johnson, T.R.; Morhard, D.; Becker, C.; Reiser, M.; Nikolaou, K. [Inst. fuer Klinische Radiologie, Campus Grosshadern, Klinikum der Univ. Muenchen (Germany)

    2008-10-15

    To evaluate the feasibility of dual-energy CT angiography (CTA) of the lung in patients with suspected pulmonary embolism (PE). 24 patients with suspected PE were examined with a single-acquisition, dual-energy CTA protocol (A-system: 140 kV/65 mAsref, B-system: 80 kV/190 mAsref) on a dual-source CT system. Lung perfusion was visualized by color-coding voxels containing iodine and air using dedicated dual-energy post-processing software. Perfusion defects were classified by two blinded radiologists as being consistent or non-consistent with PE. Subjective image quality of perfusion maps and CTA was rated using a 5-point scale (1: excellent, 5: poor). The reading of a third independent radiologist served as the standard of reference for the diagnosis of PE. In all patients with PE (n = 4), perfusion defects classified as being consistent with PE were identified in lung areas affected by PE. Both readers did not record perfusion defects classified as being consistent with PE in any of the patients without PE. Thus, on a per patient basis the sensitivity and specificity for the assessment of PE was 100% for both readers. On a per segment basis the sensitivity and specificity ranged between 60 - 66.7% and 99.5 - 99.8%. The interobserver agreement was good (k = 0.81). Perfusion defects rated as non-consistent with PE were most frequently caused by streak artifacts from dense contrast material in the great thoracic vessels. The median score of the image quality of both the perfusion maps and CTA was 2. In conclusion, dual-energy CTA of pulmonary embolism is feasible and allows the assessment of perfusion defects caused by pulmonary embolism. Further optimization of the injection protocol is required to reduce artifacts from dense contrast material. (orig.)

  20. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    Energy Technology Data Exchange (ETDEWEB)

    Ding Huanjun; Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2013-06-15

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of -11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.

  1. Specific survivin dual fluorescence resonance energy transfer molecular beacons for detection of human bladder cancer cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-qiang WANG; Jun ZHAO; Jin ZENG; Kai-jie WU; Yu-le CHEN; Xin-ya ng WANG; Luke S CHANG; Da-lin HE

    2011-01-01

    Survivin molecular beacons can be used to detectbladder cancer cells in urine samples non-invasively.The aim of this study is to improve the specificity of detection of bladder cancer cells using survivin dual fluorescence resonance energy transfer molecular beacons (FRET MBs) that have fluorophores forming one donor-acceptor pair.Methods:Survivin-targeting dual fluorescence resonance energy transfer molecular beacons with unique target sequences were designed,which had no overlap with the other genes in the apoptosis inhibitor protein family.Human bladder cancer cell lines 5637,253J and T24,as well as the exfoliated cells in the urine of healthy adults and patients with bladder cancer were examined.Images of cells were taken using a laser scanning confocal fluorescence microscope.For assays using dual FRET MBs,the excitation wavelength was 488 nm,and the emission detection wavelengths were 520+20 nm and 560+20 nm,respectively.Results:The human bladder cancer cell lines and exfoliated cells in the urine of patients with bladder cancer incubated with the survivin dual FRET MBs exhibited strong fluorescence signals.In contrast,no fluorescence was detected in the survivin-negative human dermal fibroblasts-adult (HDF-a) cells or exfoliated cells in the urine of healthy adults incubated with the survivin dual FRET MBs.Conclusion:The results suggest that the survivin dual FRET MBs may be used as a specific and non-invasive method for early detection and follow-up of patients with bladder cancer.

  2. About accuracy of the discrimination parameter estimation for the dual high-energy method

    Science.gov (United States)

    Osipov, S. P.; Chakhlov, S. V.; Osipov, O. S.; Shtein, A. M.; Strugovtsev, D. V.

    2015-04-01

    A set of the mathematical formulas to estimate the accuracy of discrimination parameters for two implementations of the dual high energy method - by the effective atomic number and by the level lines is given. The hardware parameters which influenced on the accuracy of the discrimination parameters are stated. The recommendations to form the structure of the high energy X-ray radiation impulses are formulated. To prove the applicability of the proposed procedure there were calculated the statistical errors of the discrimination parameters for the cargo inspection system of the Tomsk polytechnic university on base of the portable betatron MIB-9. The comparison of the experimental estimations and the theoretical ones of the discrimination parameter errors was carried out. It proved the practical applicability of the algorithm to estimate the discrimination parameter errors for the dual high energy method.

  3. Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates.

    Science.gov (United States)

    Farace, Paolo

    2014-11-21

    A two-steps procedure is presented to convert dual-energy CT data to stopping power ratio (SPR), relative to water. In the first step the relative electron density (RED) is calculated from dual-energy CT-numbers by means of a bi-linear relationship: RED=a HUscH+b HUscL+c, where HUscH and HUscL are scaled units (HUsc=HU+1000) acquired at high and low energy respectively, and the three parameters a, b and c has to be determined for each CT scanner. In the second step the RED values were converted into SPR by means of published poly-line functions, which are invariant as they do not depend on a specific CT scanner. The comparison with other methods provides encouraging results, with residual SPR error on human tissue within 1%. The distinctive features of the proposed method are its simplicity and the generality of the conversion functions.

  4. Single- versus dual-energy quantitative computed tomography for spinal densitometry in patients with rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Laan, R.F.J.M.; Erning, L.J.Th.O. van; Lemmens, J.A.M.; Putte, L.B.A. van de; Ruijs, S.H.J.; Riel, P.L.C.M. van (University Hospital, Nijmegen (Netherlands))

    1992-10-01

    Lumbar bone mineral density was measured by both single- and dual-energy quantitative computed tomography in 109 patients with rheumatoid arthritis. The results were corrected for the age-related increase in vertebral fat content by converting them to percentages of expected densities, using sex and energy-level specific regression equations obtained in a normal reference population. The percentages of expected density are approximately 10% lower in the single- than in the dual-energy mode, both in the patients with and without prednisone therapy. This difference is statistically highly significant, and is positively correlated with the duration of the disease and with the degree of radiological joint destruction. The data suggest that the vertebral fat content may be increased in patients with rheumatoid arthritis, as a consequence of disease-dependent mechanisms. (Author).

  5. X-ray synchrotron dual energy imaging for material specific study

    Science.gov (United States)

    Singh, B.; Agrawal, A. K.; Kashyap, Y. S.; Gadkari, S. C.

    2017-05-01

    X-ray imaging techniques, in general, are used to study the internal structures of an object non-destructively such as anatomy, imperfections, cracks and voids whereas insensitive to spatial distribution of different element or elemental compositions of the object. With the development of advance bright X-ray synchrotron sources and accurate energy tunability using high resolution crystal monochromator, detection of elemental distribution in an object became possible. Quantitative small concentrations with enhance contrast can be detected fast in X-ray synchrotron based dual energy imaging, in comparison to conventional X-ray lab based techniques. We report here the experimental setup, image acquisition and image processing for the dual energy X-ray imaging (DEI) technique to retrieve the spatial distribution of different elements in the object.

  6. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    Directory of Open Access Journals (Sweden)

    Kuo Men

    2015-01-01

    Full Text Available Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images. Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously. Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation.

  7. Dual-energy tissue cancellation in mammography with quasi-monochromatic x-rays.

    Science.gov (United States)

    Marziani, M; Taibi, A; Tuffanelli, A; Gambaccini, M

    2002-01-21

    Dual-energy radiography has not evolved into a routine clinical examination yet due to intrinsic limitations of both dual-kVp imaging and single-exposure imaging with conventional x-ray sources. The recent introduction of novel quasi-monochromatic x-ray sources and detectors could lead to interesting improvements, especially in mammography where the complex structure of healthy tissues often masks the detectability of lesions. A dual-energy radiography technique based on a tissue cancellation algorithm has been developed for mammography, with the aim of maximizing the low intrinsic contrast of pathologic tissues while being able to minimize or cancel the contrast between glandular and fat tissues. Several images of a plastic test object containing various tissue equivalent inserts were acquired in the energy range 17-36 keV using a quasi-monochromatic x-ray source and a scintillator-coated CCD detector. Images acquired at high and low energies were nonlinearly combined to generate two energy-independent basis images. Suitable linear combinations of these two basis images result in the elimination of the contrast of a given material with respect to another. This makes it possible to selectively cancel certain details in the processed image.

  8. Preliminary Research on Dual-Energy X-Ray Phase-Contrast Imaging

    CERN Document Server

    Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Peiping

    2015-01-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure bone mineral density (BMD) and soft-tissue composition of human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption. While X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method is aiming to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretic ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for future precise and lo...

  9. Dual energy CT kidney stone differentiation in photon counting computed tomography

    Science.gov (United States)

    Gutjahr, R.; Polster, C.; Henning, A.; Kappler, S.; Leng, S.; McCollough, C. H.; Sedlmair, M. U.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2017-03-01

    This study evaluates the capabilities of a whole-body photon counting CT system to differentiate between four common kidney stone materials, namely uric acid (UA), calcium oxalate monohydrate (COM), cystine (CYS), and apatite (APA) ex vivo. Two different x-ray spectra (120 kV and 140 kV) were applied and two acquisition modes were investigated. The macro-mode generates two energy threshold based image-volumes and two energy bin based image-volumes. In the chesspattern-mode four energy thresholds are applied. A virtual low energy image, as well as a virtual high energy image are derived from initial threshold-based images, while considering their statistically correlated nature. The energy bin based images of the macro-mode, as well as the virtual low and high energy image of the chesspattern-mode serve as input for our dual energy evaluation. The dual energy ratio of the individually segmented kidney stones were utilized to quantify the discriminability of the different materials. The dual energy ratios of the two acquisition modes showed high correlation for both applied spectra. Wilcoxon-rank sum tests and the evaluation of the area under the receiver operating characteristics curves suggest that the UA kidney stones are best differentiable from all other materials (AUC = 1.0), followed by CYS (AUC ≍ 0.9 compared against COM and APA). COM and APA, however, are hardly distinguishable (AUC between 0.63 and 0.76). The results hold true for the measurements of both spectra and both acquisition modes.

  10. Quantification of breast density with dual energy mammography: An experimental feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2010-02-15

    Purpose: Breast density, the percentage of glandular breast tissue, has been shown to be a strong indicator of breast cancer risk. A quantitative method to measure breast density with dual energy mammography was investigated using physical phantoms. Methods: The dual energy mammography system used a tungsten anode x-ray tube with a 50 {mu}m rhodium beam filter for low energy images and a 300 {mu}m copper beam filter for high energy images. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Four different phantom studies were used to evaluate the technique. The first study consisted of phantoms with thicknesses of 2.5-8.5 cm in 0.5 cm steps with variable densities centered at a mean of 28%. The second study consisted of phantoms at a fixed thickness of 4.0 cm, which ranged in densities from 0% to 100% in increments of 12.5%. The third study consisted of 4.0 cm thick phantoms at densities of 25%, 50% and 75% each imaged at three areal sizes, approximately 62.5, 125, and 250 cm{sup 2}, in order to assess the effect of breast size on density measurement. The fourth study consisted of step phantoms designed to more closely mimic the shape of a female breast with maximal thicknesses from 3.0 to 7.0 cm at a fixed density of 50%. All images were corrected for x-ray scatter. Results: The RMS errors in breast density measurements were 0.44% for the variable thickness phantoms, 0.64% for the variable density phantoms, 2.87% for the phantoms of different areal sizes, and 4.63% for step phantoms designed to closely resemble the shape of a breast. Conclusions: The results of the phantom studies indicate that dual energy mammography can be used to measure breast density with an RMS error of approximately 5%.

  11. Synthesis and photo-/electro-catalytic properties of a 3D POMOF material based on an interpenetrated copper coordination polymer linked by in situ dual ligands and Dawson-type phosphotungstates.

    Science.gov (United States)

    Fan, Ling-Yu; Yu, Kai; Lv, Jing-Hua; Zhang, He; Su, Zhan-Hua; Wang, Lu; Wang, Chun-Mei; Zhou, Bai-Bin

    2017-08-08

    A novel 3D polyoxometalate metal organic framework (POMOF), [{CuCu (H2O)5(pzc)10(pz)6}{P2W18O62}2]·4H2O (1) (Hpzc = pyrazine-2-carboxylic acid, pz = pyrazine) has been hydrothermally synthesized and characterized by IR, TG, XRD, UV-vis and elemental analyses. In compound 1, the pzc and pz ligands are generated through in situ transformation from pyrazine-2,3-dicarboxylic acid (pzdc) to remove one or two CO2 molecules. The ligands with four coordination modes connect nine crystallographically independent Cu atoms to form a super-big circle unit. Each ring unit is connected to the adjacent six rings via an edge-sharing way to form a 2-D Cu/pz/pzc MOF layer, which is further extended along two spatial directions by two kinds of insert modes to generate an interpenetrating and staggered 3-D metal organic network. The {P2W18} clusters as nine-node inorganic guest molecules are grafted on the Cu/pz/pzc framework forming a complex 3D POMOF with a new topology {4·6·8(3)·10}2 {4·6·8}2 {4·6(2)·8(2)·10}2{4·6(3)·8(2)}2{4·8(5)}2{4(2)·6(2)·8(2)}2{4(2)·6(3)·8}{4(3)·6(7)·8(13)·10(10)·12(3)}2 {4}6{6·8(2)}2{6(2)·8}2 {6(4)·8·10}{6}2{8}4. Additionally, compound 1 exhibits good electrocatalytic activity for the reduction of H2O2 and effective photocatalytic degradation ability for three azo dyes under UV irradiation.

  12. Perception of 3D spatial relations for 3D displays

    Science.gov (United States)

    Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.

    2004-05-01

    We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.

  13. 3D Printing for Bricks

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  14. Market study: 3-D eyetracker

    Science.gov (United States)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  15. Spherical 3D Isotropic Wavelets

    CERN Document Server

    Lanusse, F; Starck, J -L

    2011-01-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...

  16. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  17. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    to produce high quality 3-D images. Because of the large matrix transducers with integrated custom electronics, these systems are extremely expensive. The relatively low price of ultrasound scanners is one of the factors for the widespread use of ultrasound imaging. The high price tag on the high quality 3-D......The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...

  18. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  19. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  20. 3D vision system assessment

    Science.gov (United States)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  1. PLOT3D user's manual

    Science.gov (United States)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  2. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  3. Prior Image Guided Undersampled Dual Energy Reconstruction with Piecewise Polynomial Function Constraint

    Directory of Open Access Journals (Sweden)

    Dufan Wu

    2013-01-01

    Full Text Available Dual energy CT has the ability to give more information about the test object by reconstructing the attenuation factors under different energies. These images under different energies share identical structures but different attenuation factors. By referring to the fully sampled low-energy image, we show that it is possible to greatly reduce the sampling rate of the high-energy image in order to lower dose. To compensate the attenuation factor difference between the two modalities, we use piecewise polynomial fitting to fit the low-energy image to the high-energy image. During the reconstruction, the result is constrained by its distance to the fitted image, and the structural information thus can be preserved. An ASD-POCS-based optimization schedule is proposed to solve the problem, and numerical simulations are taken to verify the algorithm.

  4. 3D MHD Flux emergence experiments

    DEFF Research Database (Denmark)

    Hood, A.W.; Archontis, V.; Mactaggart, David

    2012-01-01

    This paper reviews some of the many 3D numerical experiments of the emergence of magnetic fields from the solar interior and the subsequent interaction with the pre-existing coronal magnetic field. The models described here are idealised, in the sense that the internal energy equation only involves...

  5. In vivo determination of renal stone composition with dual-energy computed tomography

    Directory of Open Access Journals (Sweden)

    John-Henry Corbett

    2014-04-01

    Full Text Available Background: Composition of renal stones influences management of patients with renal stone disease. Currently stone composition can only be analysed ex vivo after stone extraction or passage, but recent introduction of dual-energy computed tomography (CT to clinical practice has raised interest in the ability of this technology to determine composition of renal stones in vivo.Objectives: To determine renal stone composition in patients using single-source dual-energy rapid-peak kilovolt (kVp switching CT.Method: Nineteen patients with renal stones for percutaneous nephrolithotomy were evaluated with single-source dual-energy computed tomography on a Discovery CT 750HD. The Gemstone Spectral Imaging (GSI effective atomic number (Zeff and attenuation at 70 keV monochromatic energy were used to predict the stone composition. Infrared spectroscopy and x-ray diffraction of stones after extraction served as the reference standard.Results: Two (10.5% of the 19 stones had uric acid as major component. The other 17 (89.5% were calcium-based stones. No statistically significant difference between the GSI Zeff and calculated effective atomic number (Z for stone compounds was found. The GSI Zeff and attenuation could differentiate between uric acid and non-uric acid stones. No differentiation between different calcium stones could be made.Conclusion: Uric acid and non-uric acid renal stones can be differentiated with single-source dual-energy in vivo. The GSI Zeff reflects the dominant material in polycrystalline stones.

  6. Mapping our Universe in 3D with MITEoR

    CERN Document Server

    Zheng, Haoxuan; Buza, Victor; Dillon, Joshua S; Gharibyan, Hrant; Hickish, Jack; Kunz, Eben; Liu, Adrian; Losh, Jon; Lutomirski, Andrew; Morrison, Scott; Narayanan, Sruthi; Perko, Ashley; Rosner, Devon; Sanchez, Nevada; Schutz, Katelin; Tribiano, Shana M; Zaldarriaga, Matias; Adami, Kristian Zarb; Zelko, Ioana; Zheng, Kevin; Armstrong, Richard; Bradley, Richard F; Dexter, Matthew R; Ewall-Wice, Aaron; Magro, Alessio; Matejek, Michael; Morgan, Edward; Neben, Abraham R; Pan, Qinxuan; Peterson, Courtney M; Su, Meng; Villasenor, Joel; Williams, Christopher L; Yang, Hung-I; Zhu, Yan

    2013-01-01

    Mapping our universe in 3D by imaging the redshifted 21 cm line from neutral hydrogen has the potential to overtake the cosmic microwave background as our most powerful cosmological probe, because it can map a much larger volume of our Universe, shedding new light on the epoch of reionization, inflation, dark matter, dark energy, and neutrino masses. We report on MITEoR, a pathfinder low-frequency radio interferometer whose goal is to test technologies that greatly reduce the cost of such 3D mapping for a given sensitivity. MITEoR accomplishes this by using massive baseline redundancy both to enable automated precision calibration and to cut the correlator cost scaling from N^2 to NlogN, where N is the number of antennas. The success of MITEoR with its 64 dual-polarization elements bodes well for the more ambitious HERA project, which would incorporate many identical or similar technologies using an order of magnitude more antennas, each with dramatically larger collecting area.

  7. Dynamic dual-energy chest radiography: a potential tool for lung tissue motion monitoring and kinetic study.

    Science.gov (United States)

    Xu, Tong; Ducote, Justin L; Wong, Jerry T; Molloi, Sabee

    2011-02-21

    Dual-energy chest radiography has the potential to provide better diagnosis of lung disease by removing the bone signal from the image. Dynamic dual-energy radiography is now possible with the introduction of digital flat-panel detectors. The purpose of this study is to evaluate the feasibility of using dynamic dual-energy chest radiography for functional lung imaging and tumor motion assessment. The dual-energy system used in this study can acquire up to 15 frames of dual-energy images per second. A swine animal model was mechanically ventilated and imaged using the dual-energy system. Sequences of soft-tissue images were obtained using dual-energy subtraction. Time subtracted soft-tissue images were shown to be able to provide information on regional ventilation. Motion tracking of a lung anatomic feature (a branch of pulmonary artery) was performed based on an image cross-correlation algorithm. The tracking precision was found to be better than 1 mm. An adaptive correlation model was established between the above tracked motion and an external surrogate signal (temperature within the tracheal tube). This model is used to predict lung feature motion using the continuous surrogate signal and low frame rate dual-energy images (0.1-3.0 frames per second). The average RMS error of the prediction was (1.1 ± 0.3) mm. The dynamic dual energy was shown to be potentially useful for lung functional imaging such as regional ventilation and kinetic studies. It can also be used for lung tumor motion assessment and prediction during radiation therapy.

  8. 能耗管理系统3D展示的设计与实现%The Design and Implementation of the 3D Visualization of Energy Management System

    Institute of Scientific and Technical Information of China (English)

    徐明

    2014-01-01

    There are many ways to render a 3D scene in the browser, though the development languages and environ-ments are not the same. WebGL is one of the ways to render the 3D scene based on the tag of canvas in browser. The design and implement of the energy management system is used to display 3D scene of a data center by using a open source library, and the library three. js is based on WebGL. With this system, the operation state of the data center can be observed and the alarm events can be noticed which is convient for the manager. Different to the traditional ways, a new 3D technology for browser is applied to this system.%当前浏览器中实现3D场景的技术方法有很多种,开发语言和环境也都不太相同。其中,WebGL 是一种基于浏览器的canvas绘制3D图形的实现技术。基于WebGL 的一个Javascript第三方库 Three.js能够减少底层开发过程,通过使用这个开源库完成了对数据中心的能耗管理系统的3D 展示部分的设计与实现过程。通过系统,可以观察数据中心的运行状态,及时了解数据中心的警报事件,有利于进行管理者远程观察。系统避开了传统开发三维场景的模式,将新兴的Web 3D 呈现技术应用于工程项目之中。

  9. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  10. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Menten, Martin J., E-mail: martin.menten@icr.ac.uk; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe, E-mail: uwe.oelfke@icr.ac.uk [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2015-12-15

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  11. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  12. Bioprinting of 3D hydrogels.

    Science.gov (United States)

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  13. Tracking earthquake source evolution in 3-D

    Science.gov (United States)

    Kennett, B. L. N.; Gorbatov, A.; Spiliopoulos, S.

    2014-08-01

    Starting from the hypocentre, the point of initiation of seismic energy, we seek to estimate the subsequent trajectory of the points of emission of high-frequency energy in 3-D, which we term the `evocentres'. We track these evocentres as a function of time by energy stacking for putative points on a 3-D grid around the hypocentre that is expanded as time progresses, selecting the location of maximum energy release as a function of time. The spatial resolution in the neighbourhood of a target point can be simply estimated by spatial mapping using the properties of isochrons from the stations. The mapping of a seismogram segment to space is by inverse slowness, and thus more distant stations have a broader spatial contribution. As in hypocentral estimation, the inclusion of a wide azimuthal distribution of stations significantly enhances 3-D capability. We illustrate this approach to tracking source evolution in 3-D by considering two major earthquakes, the 2007 Mw 8.1 Solomons islands event that ruptured across a plate boundary and the 2013 Mw 8.3 event 610 km beneath the Sea of Okhotsk. In each case we are able to provide estimates of the evolution of high-frequency energy that tally well with alternative schemes, but also to provide information on the 3-D characteristics that is not available from backprojection from distant networks. We are able to demonstrate that the major characteristics of event rupture can be captured using just a few azimuthally distributed stations, which opens the opportunity for the approach to be used in a rapid mode immediately after a major event to provide guidance for, for example tsunami warning for megathrust events.

  14. Local orientation measurements in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, D.

    2005-01-01

    The 3 Dimensional X-Ray Diffraction (3DXRD) method is presented and its potentials illustrated by examples. The 3DXRD method is based on diffraction of high energy X-rays and allows fast and nondestructive 3D characterization of the local distribution of crystallographic orientations in the bulk....... The spatial resolution is about 1x5x5 mu m but diffraction from microstructural elements as small as 100 nm may be monitored within suitable samples. As examples of the use of the 3DXRD method, it is chosen to present results for complete 3D characterization of grain structures, in-situ "filming...

  15. A study on dual readout crystal calorimeter for hadron and jet energy measurement at a future lepton collider

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.P.; /Fermilab

    2010-01-01

    Studies of requirements and specifications of crystals are necessary to develop a new generation of crystals for dual readout crystal hadron or total absorption calorimeter. This is a short and basic study of the characteristics and hadron energy measurement of PbWO4 and BGO crystals for scintillation and Cerenkov Dual Readout hadron calorimeter.

  16. Computed tomography with single-shot dual-energy sandwich detectors

    Science.gov (United States)

    Kim, Seung Ho; Youn, Hanbean; Kim, Daecheon; Kim, Dong Woon; Jeon, Hosang; Kim, Ho Kyung

    2016-03-01

    Single-shot dual-energy sandwich detector can produce sharp images because of subtraction of images from two sub-detector layers, which have different thick x-ray converters, of the sandwich detector. Inspired by this observation, the authors have developed a microtomography system with the sandwich detector in pursuit of high-resolution bone-enhanced small-animal imaging. The preliminary results show that the bone-enhanced images reconstructed with the subtracted projection data are better in visibility of bone details than the conventionally reconstructed images. In addition, the bone-enhanced images obtained from the sandwich detector are relatively immune to the artifacts caused by photon starvation. The microtomography with the single-shot dual-energy sandwich detector will be useful for the high-resolution bone imaging.

  17. Energy-Efficiency of Dual-Switched Branch Diversity Receiver in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ghaida A. AL-Suhail

    2011-12-01

    Full Text Available In this paper, we develop an analytical energy efficiency model using dual switched branch diversity receiver in wireless sensor networks in fading environments. To adapt energy efficiency of sensor node to channel variations, the optimal packet length at the data link layer is considered. Within this model, the energy efficiency can be effectively improved for switch-and-stay combiner (SSC receiver with optimal switching threshold. Moreover, to improve energy efficiency, we use error control of Bose-Chaudhuri-Hochquengh (BCH coding for SSC-BPSK receiver node compared to one of non-diversity NCFSK receiver of sensor node. The results show that the BCH code for channel coding can improve the energy efficiency significantly for long link distance and various values of high energy consumptions over Rayleigh fading channel.

  18. Tuotekehitysprojekti: 3D-tulostin

    OpenAIRE

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  19. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  20. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  1. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  2. Aerosol-Assisted Heteroassembly of Oxide Nanocrystals and Carbon Nanotubes into 3D Mesoporous Composites for High-Rate Electrochemical Energy Storage.

    Science.gov (United States)

    Jia, Xilai; Zhu, Xiao; Cheng, Yanhua; Chen, Zheng; Ning, Guoqing; Lu, Yunfeng; Wei, Fei

    2015-07-01

    Nanostructured composites built from ordinary building units have attracted much attention because of their collective properties for critical applications. Herein, we have demonstrated the heteroassembly of carbon nanotubes and oxide nanocrystals using an aerosol spray method to prepare nanostructured mesoporous composites for electrochemical energy storage. The designed composite architectures show high conductivity and hierarchically structured mesopores, which achieve rapid electron and ion transport in electrodes. Therefore, as-synthesized carbon nanotube/TiO2 electrodes exhibit high rate performance through rapid Li(+) intercalation, making them suitable for ultrafast energy storage devices. Moreover, the synthesis process provides a broadly applicable method to achieve the heteroassembly of vast low-dimensional building blocks for many important applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Correlation Between Dual-energy and Perfusion CT in Patients with Focal Liver Lesions Using Third-generation Dual-source CT Scanner.

    Science.gov (United States)

    Xu, Jia; Zheng, Yongchang; Wang, Xuan; Xue, Huadan; Wang, Shitian; Liang, Jixiang; Jin, Zhengyu

    2017-02-20

    Objective To compare measurements of dual-energy CT iodine map parameters and liver perfusion CT parameters in patients with focal liver lesions using a third-generation dual-source CT scanner. Methods Between November 2015 and August 2016,33 patients with non-cystic focal lesions of liver were enrolled in this study. CT examinations were performed with a third-generation dual-source CT. The study CT protocol included a perfusion CT and dual-energy arterial and portal venous scans,with a time interval of 15 minutes. Iodine attenuation was measured at five region of interests including areas of high,medium,and low density within the lesion,as well as right and left liver parenchyma from the iodine map,while arterial liver perfusion (ALP),portal venous liver perfusion (PVP),and hepatic perfusion index (HPI) at the same location were measured from perfusion CT. The Pearson product-moment correlation coefficient was used to evaluate the relationship between iodine attenuation and perfusion parameters. Results The iodine attenuation at arterial phase showed significant intra-individual correlation with ALP (r=0.812,95% CI=0.728-0.885,Pperfusion CT [(14.53±0.45)mSv](t=25.212,P<0.001). Conclusion Iodine attenuation from arterial phase of dual energy CT demonstrates significant correlation with ALP and PVP,and iodine attenuation from portal venous phase demonstrates significant correlation with PVP.

  4. Resist loss in 3D compact modeling

    Science.gov (United States)

    Zheng, Xin; Huang, Jensheng; Chin, Fook; Kazarian, Aram; Kuo, Chun-Chieh

    2012-03-01

    An enhancement to compact modeling capability to include photoresist (PR) loss at different heights is developed and discussed. A hypsometric map representing 3-D resist profile was built by applying a first principle approximation to estimate the "energy loss" from the resist top to any other plane of interest as a proportional corresponding change in model threshold, which is analogous to a change in exposure dose. The result is compared and validated with 3D rigorous modeling as well as SEM images. Without increase in computation time, this compact model can construct 3D resist profiles capturing resist profile degradation at any vertical plane. Sidewall angle and standing wave information can also be granted from the vertical profile reconstruction. Since this method does not change any form of compact modeling, it can be integrated to validation and correction without any additional work.

  5. Dual energy CT for the assessment of lung perfusion-Correlation to scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F.; Becker, Christoph R. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany); Hacker, Marcus [Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich (Germany); Nikolaou, Konstantin; Reiser, Maximilian F. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany); Johnson, Thorsten R.C. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany)], E-mail: thorsten.johnson@med.uni-muenchen.de

    2008-12-15

    Purpose of this study was to determine the diagnostic value of dual energy CT in the assessment of pulmonary perfusion with reference to pulmonary perfusion scintigraphy. Thirteen patients received both dual energy CT (DECT) angiography (Somatom Definition, Siemens) and ventilation/perfusion scintigraphy. Median time between scans was 3 days (range, 0-90). DECT perfusion maps were generated based on the spectral properties of iodine. Two blinded observes assessed DECT angiograms, perfusion maps and scintigrams for presence and location of perfusion defects. The results were compared by patient and by segment, and diagnostic accuracy of DECT perfusion imaging was calculated regarding scintigraphy as standard of reference. Diagnostic accuracy per patient showed 75% sensitivity, 80% specificity and a negative predictive value of 66%. Sensitivity per segment amounted to 83% with 99% specificity, with 93% negative predictive value. Peripheral parts of the lungs were not completely covered by the 80 kVp detector in 85% of patients. CTA identified corresponding emboli in 66% of patients with concordant perfusion defects in DECT and scintigraphy. Dual energy CT perfusion imaging is able to display pulmonary perfusion defects with good agreement to scintigraphic findings. DECT can provide a pulmonary CT angiogram, high-resolution morphology of the lung parenchyma and perfusion information in one single exam.

  6. Can single-phase dual-energy CT reliably identify adrenal adenomas?

    Energy Technology Data Exchange (ETDEWEB)

    Helck, A.; Hummel, N.; Meinel, F.G.; Johnson, T.; Nikolaou, K.; Graser, A. [University of Munich, Institute for Clinical Radiology, Munich (Germany)

    2014-07-15

    To evaluate whether single-phase dual-energy-CT-based attenuation measurements can reliably differentiate lipid-rich adrenal adenomas from malignant adrenal lesions. We retrospectively identified 51 patients with adrenal masses who had undergone contrast-enhanced dual-energy-CT (140/100 or 140/80 kVp). Virtual non-contrast and colour-coded iodine images were generated, allowing for measurement of pre- and post-contrast density on a single-phase acquisition. Adrenal adenoma was diagnosed if density on virtual non-contrast images was ≤10 HU. Clinical follow-up, true non-contrast CT, PET/CT, in- and opposed-phase MRI, and histopathology served as the standard of reference. Based on the standard of reference, 46/57 (80.7 %) adrenal masses were characterised as adenomas or other benign lesions; 9 malignant lesions were detected. Based on a cutoff value of 10 HU, virtual non-contrast images allowed for correct identification of adrenal adenomas in 33 of 46 (71 %), whereas 13/46 (28 %) adrenal adenomas were lipid poor with a density ≥10 HU. Based on the threshold of 10 HU on the virtual non-contrast images, the sensitivity, specificity, and accuracy for detection of benign adrenal lesions was 73 %, 100 %, and 81 % respectively. Virtual non-contrast images derived from dual-energy-CT allow for accurate characterisation of lipid-rich adrenal adenomas and can help to avoid additional follow-up imaging. (orig.)

  7. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency

    Science.gov (United States)

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  8. Calibration of dual-energy gamma systems for determining liquid saturations during multiphase flow in soil

    Energy Technology Data Exchange (ETDEWEB)

    Bali, K.M.; Grismer, M.E. [University of California, Cooperative Extension and University of California, Holtville (United States)

    1994-12-31

    The purpose of this study was to calibrate a dual-energy gamma system for simultaneous determination of aqueous and non-aqueous phase liquid (NAPL) in soil column. A dual energy gamma system containing {sup 241}Am and {sup 137}Cs was used to study the infiltration and displacement of aqueous liquid by NAPL and vice versa. Distilled water and Nal solution, and Soltrol 130 were used as fluids. The system was calibrated to minimize errors in liquid saturations due to random nature of gamma photons emission and drift in the photon detection equipment. The measurement accuracy in liquid saturations was substantially improved by increasing counting time and fluid attenuation coefficient. Nal salt was used to increase the attenuation coefficient of water. Measured and predicted liquid saturation during immiscible displacement in soil were consistent with mass balance measurements and anticipated deviations in saturations from probable error calculations. The calibration procedure resulted in a significant improvement in the prediction of liquid saturation using dual-energy gamma system. (author). 8 refs, 4 tabs.

  9. FLUKA Monte Carlo for Basic Dosimetric Studies of Dual Energy Medical Linear Accelerator

    Directory of Open Access Journals (Sweden)

    K. Abdul Haneefa

    2014-01-01

    Full Text Available General purpose Monte Carlo code for simulation of particle transport is used to study the basic dosimetric parameters like percentage depth dose and dose profiles and compared with the experimental measurements from commercial dual energy medical linear accelerator. Varian Clinac iX medical linear accelerator with dual energy photon beams (6 and 15 MV is simulated using FLUKA. FLAIR is used to visualize and edit the geometry. Experimental measurements are taken for 100 cm source-to-surface (SSD in 50 × 50 × 50 cm3 PTW water phantom using 0.12 cc cylindrical ionization chamber. Percentage depth dose for standard square field sizes and dose profiles for various depths are studied in detail. The analysis was carried out using ROOT (a DATA analysis frame work developed at CERN system. Simulation result shows good agreement in percentage depth dose and beam profiles with the experimental measurements for Varian Clinac iX dual energy medical linear accelerator.

  10. Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2012-10-08

    A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

  11. BEAMS3D Neutral Beam Injection Model

    Science.gov (United States)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  12. Recent Progress on 3D Silicon Detectors

    CERN Document Server

    Lange, Jörn

    2015-01-01

    3D silicon detectors, in which the electrodes penetrate the sensor bulk perpendicular to the surface, have recently undergone a rapid development from R\\&D over industrialisation to their first installation in a real high-energy-physics experiment. Since June 2015, the ATLAS Insertable B-Layer is taking first collision data with 3D pixel detectors. At the same time, preparations are advancing to install 3D pixel detectors in forward trackers such as the ATLAS Forward Proton detector or the CMS-TOTEM Proton Precision Spectrometer. For those experiments, the main requirements are a slim edge and the ability to cope with non-uniform irradiation. Both have been shown to be fulfilled by 3D pixel detectors. For the High-Luminosity LHC pixel upgrades of the major experiments, 3D detectors are promising candidates for the innermost pixel layers to cope with harsh radiation environments up to fluences of $2\\times10^{16}$\\,n$_{eq}$/cm$^2$ thanks to their excellent radiation hardness at low operational voltages and ...

  13. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  14. Accepting the T3D

    Energy Technology Data Exchange (ETDEWEB)

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  15. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...... ultrasonic vector flow estimation and bring it a step closer to a clinical application. A method for high frame rate 3-D vector flow estimation in a plane using the transverse oscillation method combined with a 1024 channel 2-D matrix array is presented. The proposed method is validated both through phantom......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges...

  16. A dual resonant rectilinear-to-rotary oscillation converter for low frequency broadband electromagnetic energy harvesting

    Science.gov (United States)

    Deng, Wei; Wang, Ya

    2017-09-01

    This paper reports a dual resonant rectilinear-to-rotary oscillation converter (RROC) for low frequency broadband electromagnetic energy harvesting from ambient vibrations. An approximate theoretical model has been established to integrate the electromechanical coupling into a comprehensive electromagnetic-dynamic model of the dual resonant RROC. Numerical simulation has proved the nature of dual resonances by revealing that both the rectilinear resonance and the rotary resonance could be achieved when the stand-alone rectilinear oscillator (RLO) and the stand-alone rotary oscillator (RTO) were excited independently. Simulation on the magnetically coupled RROC has also shown that the rectilinear resonance and the rotary resonance could be obtained simultaneously in the low-frequency region (2-14 Hz) with well-defined restoring torque (M r ) and the initial rotation angle of the RLO (ψ). The magnetic interaction patterns between the rectilinear and the RTOs have been categorized based on aforementioned simulation results. Both simulation and experimental results have demonstrated broadband output attributing from the dual resonances. Experimental results have also indicated that the RROC could have wide bandwidth in a much lower frequency region (2-8 Hz) even without the rotary resonance as long as the system parameters are carefully tuned. Parameter analysis on different values of M r and ψ are experimentally carried out to provide a quantitative guidance of designing the RROC to achieve an optimal power density.

  17. Computed Tomography of the Head and Neck Region for Tumor Staging-Comparison of Dual-Source, Dual-Energy and Low-Kilovolt, Single-Energy Acquisitions.

    Science.gov (United States)

    May, Matthias Stefan; Bruegel, Joscha; Brand, Michael; Wiesmueller, Marco; Krauss, Bernhard; Allmendinger, Thomas; Uder, Michael; Wuest, Wolfgang

    2017-09-01

    The aim of this study was to intra-individually compare the image quality obtained by dual-source, dual-energy (DSDE) computed tomography (CT) examinations and different virtual monoenergetic reconstructions to a low single-energy (SE) scan. Third-generation DSDE-CT was performed in 49 patients with histologically proven malignant disease of the head and neck region. Weighted average images (WAIs) and virtual monoenergetic images (VMIs) for low (40 and 60 keV) and high (120 and 190 keV) energies were reconstructed. A second scan aligned to the jaw, covering the oral cavity, was performed for every patient to reduce artifacts caused by dental hardware using a SE-CT protocol with 70-kV tube voltages and matching radiation dose settings. Objective image quality was evaluated by calculating contrast-to-noise ratios. Subjective image quality was evaluated by experienced radiologists. Highest contrast-to-noise ratios for vessel and tumor attenuation were obtained in 40-keV VMI (all P VMI, WAI, and the 70-kV SE examinations. Overall subjective image quality was also highest for 40-keV, but differences to 60-keV VMI, WAI, and 70-kV SE were nonsignificant (all P > 0.05). High kiloelectron volt VMIs reduce metal artifacts with only limited diagnostic impact because of insufficiency in case of severe dental hardware. CTDIvol did not differ significantly between both examination protocols (DSDE: 18.6 mGy; 70-kV SE: 19.4 mGy; P = 0.10). High overall image quality for tumor delineation in head and neck imaging were obtained with 40-keV VMI. However, 70-kV SE examinations are an alternative and modified projections aligned to the jaw are recommended in case of severe artifacts caused by dental hardware.

  18. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  19. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  20. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  1. A Parallel 3D Model for the Multi-Species Low Energy Beam Transport System of the RIA Prototype ECR Ion Source VENUS

    CERN Document Server

    Qiang, Ji; Todd, Damon

    2005-01-01

    The driver linac of the proposed Rare Isotope Accelerator (RIA) requires a great variety of high intensity, high charge state ion beams. In order to design and optimize the low energy beam line optics of the RIA front end, we have developed a new parallel three-dimensional model to simulate the low energy, multi-species beam transport from the ECR ion source extraction region to the focal plane of the analyzing magnet. A multi-section overlapped computational domain has been used to break the original transport system into a number of independent subsystems. Within each subsystem, macro-particle tracking is used to obtain the charge density distribution in this subdomain. The three-dimensional Poisson equation is solved within the subdomain and particle tracking is repeated until the solution converges. Two new Poisson solvers based on a combination of the spectral method and the multigrid method have been developed to solve the Poisson equation in cylindrical coordinates for the beam extraction region and in...

  2. Ab initio 3D potential energy and dipole moment surfaces for the CH4-Ar complex: Collision-induced intensity and dimer content.

    Science.gov (United States)

    Kalugina, Yulia N; Lokshtanov, Sergei E; Cherepanov, Victor N; Vigasin, Andrey A

    2016-02-07

    We present new three-dimensional potential energy surface (PES) and dipole moment surfaces (DMSs) for the CH4-Ar van der Waals system. Ab initio calculations of the PES and DMS were carried out using the closed-shell single- and double-excitation coupled cluster approach with non-iterative perturbative treatment of triple excitations. The augmented correlation-consistent aug-cc-pVXZ (X = D,T,Q) basis sets were employed, and the energies obtained were then extrapolated to the complete basis set limit. The dipole moment surface was obtained using aug-cc-pVTZ basis set augmented with mid-bond functions for better description of exchange interactions. The second mixed virial coefficient was calculated and compared to available experimental data. The equilibrium constant for true dimer formation was calculated using classical partition function based on the knowledge of ab initio PES. Temperature variations of the zeroth spectral moment of the rototranslational collision-induced band as well as its true dimer constituent were traced with the use of the Boltzmann-weighted squared induced dipole properly integrated over respective phase space domains. Height profiles for N2-N2, N2-H2, CH4-N2, (CH4)2, and CH4-Ar true bound dimers in Titan's atmosphere were calculated with the use of reliable ab initio  PESs.

  3. Virtual monochromatic imaging in dual-source and dual-energy CT for visualization of acute ischemic stroke

    Science.gov (United States)

    Hara, Hidetake; Muraishi, Hiroshi; Matsuzawa, Hiroki; Inoue, Toshiyuki; Nakajima, Yasuo; Satoh, Hitoshi; Abe, Shinji

    2015-07-01

    We have recently developed a phantom that simulates acute ischemic stroke. We attempted to visualize an acute-stage cerebral infarction by using dual-energy Computed tomography (DECT) to obtain virtual monochromatic images of this phantom. Virtual monochromatic images were created by using DECT voltages from 40 to 100 keV in steps of 10 keV and from 60 to 80 keV in steps of 1 keV, under three conditions of the tube voltage with thin (Sn) filters. Calculation of the CNR values allowed us to evaluate the visualization of acute-stage cerebral infarction. The CNR value of a virtual monochromatic image was the highest at 68 keV under 80 kV / Sn 140 kV, at 72 keV under 100 kV / Sn 140 kV, and at 67 keV under 140 kV / 80 kV. The CNR values of virtual monochromatic images at voltages between 65 and 75 keV were significantly higher than those obtained for all other created images. Therefore, the optimal conditions for visualizing acute ischemic stroke were achievable.

  4. Implementation of dual-energy technique for virtual monochromatic and linearly mixed CBCTs

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao; Giles, William; Ren Lei; Bowsher, James; Yin Fangfang [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2012-10-15

    Purpose: To implement dual-energy imaging technique for virtual monochromatic (VM) and linearly mixed (LM) cone beam CTs (CBCTs) and to demonstrate their potential applications in metal artifact reduction and contrast enhancement in image-guided radiation therapy (IGRT). Methods: A bench-top CBCT system was used to acquire 80 kVp and 150 kVp projections, with an additional 0.8 mm tin filtration. To implement the VM technique, these projections were first decomposed into acrylic and aluminum basis material projections to synthesize VM projections, which were then used to reconstruct VM CBCTs. The effect of VM CBCT on the metal artifact reduction was evaluated with an in-house titanium-BB phantom. The optimal VM energy to maximize contrast-to-noise ratio (CNR) for iodine contrast and minimize beam hardening in VM CBCT was determined using a water phantom containing two iodine concentrations. The LM technique was implemented by linearly combining the low-energy (80 kVp) and high-energy (150 kVp) CBCTs. The dose partitioning between low-energy and high-energy CBCTs was varied (20%, 40%, 60%, and 80% for low-energy) while keeping total dose approximately equal to single-energy CBCTs, measured using an ion chamber. Noise levels and CNRs for four tissue types were investigated for dual-energy LM CBCTs in comparison with single-energy CBCTs at 80, 100, 125, and 150 kVp. Results: The VM technique showed substantial reduction of metal artifacts at 100 keV with a 40% reduction in the background standard deviation compared to a 125 kVp single-energy scan of equal dose. The VM energy to maximize CNR for both iodine concentrations and minimize beam hardening in the metal-free object was 50 keV and 60 keV, respectively. The difference of average noise levels measured in the phantom background was 1.2% between dual-energy LM CBCTs and equivalent-dose single-energy CBCTs. CNR values in the LM CBCTs of any dose partitioning are better than those of 150 kVp single-energy CBCTs. The

  5. A Bayesian model to correct underestimated 3-D wind speeds from sonic anemometers increases turbulent components of the surface energy balance

    Science.gov (United States)

    Frank, John M.; Massman, William J.; Ewers, Brent E.

    2016-12-01

    Sonic anemometers are the principal instruments in micrometeorological studies of turbulence and ecosystem fluxes. Common designs underestimate vertical wind measurements because they lack a correction for transducer shadowing, with no consensus on a suitable correction. We reanalyze a subset of data collected during field experiments in 2011 and 2013 featuring two or four CSAT3 sonic anemometers. We introduce a Bayesian analysis to resolve the three-dimensional correction by optimizing differences between anemometers mounted both vertically and horizontally. A grid of 512 points (˜ ±5° resolution in wind location) is defined on a sphere around the sonic anemometer, from which the shadow correction for each transducer pair is derived from a set of 138 unique state variables describing the quadrants and borders. Using the Markov chain Monte Carlo (MCMC) method, the Bayesian model proposes new values for each state variable, recalculates the fast-response data set, summarizes the 5 min wind statistics, and accepts the proposed new values based on the probability that they make measurements from vertical and horizontal anemometers more equivalent. MCMC chains were constructed for three different prior distributions describing the state variables: no shadow correction, the Kaimal correction for transducer shadowing, and double the Kaimal correction, all initialized with 10 % uncertainty. The final posterior correction did not depend on the prior distribution and revealed both self- and cross-shadowing effects from all transducers. After correction, the vertical wind velocity and sensible heat flux increased ˜ 10 % with ˜ 2 % uncertainty, which was significantly higher than the Kaimal correction. We applied the posterior correction to eddy-covariance data from various sites across North America and found that the turbulent components of the energy balance (sensible plus latent heat flux) increased on average between 8 and 12 %, with an average 95 % credible

  6. HAPE3D-a new constructive algorithm for the 3D irregular packing problem

    Institute of Scientific and Technical Information of China (English)

    Xiao LIU; Jia-min LIU; An-xi CAO; Zhuang-le YAO

    2015-01-01

    We propose a new constructive algorithm, called HAPE3D, which is a heuristic algorithm based on the principle of minimum total potential energy for the 3D irregular packing problem, involving packing a set of irregularly shaped polyhedrons into a box-shaped container with fixed width and length but unconstrained height. The objective is to allocate all the polyhedrons in the container, and thus minimize the waste or maximize profit. HAPE3D can deal with arbitrarily shaped polyhedrons, which can be rotated around each coordinate axis at different angles. The most outstanding merit is that HAPE3D does not need to calculate no-fit polyhedron (NFP), which is a huge obstacle for the 3D packing problem. HAPE3D can also be hybridized with a meta-heuristic algorithm such as simulated annealing. Two groups of computational experiments demonstrate the good perfor-mance of HAPE3D and prove that it can be hybridized quite well with a meta-heuristic algorithm to further improve the packing quality.

  7. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler

    Science.gov (United States)

    Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-01-01

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media. PMID:28225007

  8. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler.

    Science.gov (United States)

    Kardaś, Tomasz M; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-22

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  9. Optimal Design of Dual-Hop VLC/RF Communication System With Energy Harvesting

    KAUST Repository

    Rakia, Tamer

    2016-07-28

    In this letter, we consider a dual-hop heterogeneous visible light communication (VLC)/radio frequency (RF) communication system to extend the coverage of VLC systems. Besides detecting the information over VLC link, the relay is able to harvest energy from the first-hop VLC link, by extracting the direct current component of the received optical signal, and uses the harvested energy to retransmit the data to a mobile terminal over the second-hop RF link. We investigate the optimal design of the hybrid system in terms of data rate maximization.

  10. In vivo characterization of tumor vasculature using iodine and gold nanoparticles and dual energy micro-CT.

    Science.gov (United States)

    Clark, Darin P; Ghaghada, Ketan; Moding, Everett J; Kirsch, David G; Badea, Cristian T

    2013-03-21

    Tumor blood volume and vascular permeability are well established indicators of tumor angiogenesis and important predictors in cancer diagnosis, planning and treatment. In this work, we establish a novel preclinical imaging protocol which allows quantitative measurement of both metrics simultaneously. First, gold nanoparticles are injected and allowed to extravasate into the tumor, and then liposomal iodine nanoparticles are injected. Combining a previously optimized dual energy micro-CT scan using high-flux polychromatic x-ray sources (energies: 40 kVp, 80 kVp) with a novel post-reconstruction spectral filtration scheme, we are able to decompose the results into 3D iodine and gold maps, allowing simultaneous measurement of extravasated gold and intravascular iodine concentrations. Using a digital resolution phantom, the mean limits of detectability (mean CNR = 5) for each element are determined to be 2.3 mg mL(-1) (18 mM) for iodine and 1.0 mg mL(-1) (5.1 mM) for gold, well within the observed in vivo concentrations of each element (I: 0-24 mg mL(-1), Au: 0-9 mg mL(-1)) and a factor of 10 improvement over the limits without post-reconstruction spectral filtration. Using a calibration phantom, these limits are validated and an optimal sensitivity matrix for performing decomposition using our micro-CT system is derived. Finally, using a primary mouse model of soft-tissue sarcoma, we demonstrate the in vivo application of the protocol to measure fractional blood volume and vascular permeability over the course of five days of active tumor growth.

  11. In vivo characterization of tumor vasculature using iodine and gold nanoparticles and dual energy micro-CT

    Science.gov (United States)

    Clark, Darin P.; Ghaghada, Ketan; Moding, Everett J.; Kirsch, David G.; Badea, Cristian T.

    2013-03-01

    Tumor blood volume and vascular permeability are well established indicators of tumor angiogenesis and important predictors in cancer diagnosis, planning and treatment. In this work, we establish a novel preclinical imaging protocol which allows quantitative measurement of both metrics simultaneously. First, gold nanoparticles are injected and allowed to extravasate into the tumor, and then liposomal iodine nanoparticles are injected. Combining a previously optimized dual energy micro-CT scan using high-flux polychromatic x-ray sources (energies: 40 kVp, 80 kVp) with a novel post-reconstruction spectral filtration scheme, we are able to decompose the results into 3D iodine and gold maps, allowing simultaneous measurement of extravasated gold and intravascular iodine concentrations. Using a digital resolution phantom, the mean limits of detectability (mean CNR = 5) for each element are determined to be 2.3 mg mL-1 (18 mM) for iodine and 1.0 mg mL-1 (5.1 mM) for gold, well within the observed in vivo concentrations of each element (I: 0-24 mg mL-1, Au: 0-9 mg mL-1) and a factor of 10 improvement over the limits without post-reconstruction spectral filtration. Using a calibration phantom, these limits are validated and an optimal sensitivity matrix for performing decomposition using our micro-CT system is derived. Finally, using a primary mouse model of soft-tissue sarcoma, we demonstrate the in vivo application of the protocol to measure fractional blood volume and vascular permeability over the course of five days of active tumor growth.

  12. MPML3D: Scripting Agents for the 3D Internet.

    Science.gov (United States)

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru

    2011-05-01

    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  13. Rubber Impact on 3D Textile Composites

    Science.gov (United States)

    Heimbs, Sebastian; Van Den Broucke, Björn; Duplessis Kergomard, Yann; Dau, Frederic; Malherbe, Benoit

    2012-06-01

    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools.

  14. Irrigated plantations and their effect on energy fluxes in a semi-arid region of Israel - a validated 3-D model simulation

    Science.gov (United States)

    Branch, O.; Warrach-Sagi, K.; Wulfmeyer, V.; Cohen, S.

    2013-11-01

    A large irrigated biomass plantation was simulated in an arid region of Israel within the WRF-NOAH coupled atmospheric/land surface model in order to assess land surface atmosphere feedbacks. Simulations were carried out for the 2012 summer season (JJA). The irrigated plantations were simulated by prescribing tailored land surface and soil/plant parameters, and by implementing a newly devised, controllable sub-surface irrigation scheme within NOAH. Two model cases studies were considered and compared - Impact and Control. Impact simulates a hypothetical 10 km × 10 km irrigated plantation. Control represents a baseline and uses the existing land surface data, where the predominant land surface type in the area is bare desert soil. Central to the study is model validation against observations collected for the study over the same period. Surface meteorological and soil observations were made at a desert site and from a 400 ha Simmondsia chinensis (Jojoba) plantation. Control was validated with data from the desert, and Impact from the Jojoba. Finally, estimations were made of the energy balance, applying two Penman-Monteith based methods along with observed meteorological data. These estimations were compared with simulated energy fluxes. Control simulates the daytime desert surface 2 m air temperatures (T2) with less than 0.2 °C deviation and the vapour pressure deficit (VPD) to within 0.25 hPa. Desert wind speed (U) is simulated to within 0.5 m s-1 and the net surface radiation (Rn) to 25 W m-2. Soil heat flux (G) is not so accurately simulated by Control (up to 30 W m-2 deviation) and 5 cm soil temperatures (ST5) are simulated to within 1.5 °C. Impact simulates daytime T2 over irrigated vegetation to within 1-1.5 °C, the VPD to 0.5 hPa, Rn to 50 W m-2 and ST5 to within 2 °C. Simulated Impact G deviates up to 40 W m-2, highlighting a need for re-parameterisation or better soil classification, but the overall contribution to the energy balance is small (5

  15. 3D-mallinnus ja 3D-animaatiot biovoimalaitoksesta

    OpenAIRE

    Hiltula, Tytti

    2014-01-01

    Opinnäytetyössä tehtiin biovoimalaitoksen piirustuksista 3D-mallinnus ja animaatiot. Työn tarkoituksena oli saada valmiiksi Recwell Oy:lle markkinointiin tarkoitetut kuva- ja videomateriaalit. Työssä perehdyttiin 3D-mallintamisen perustietoihin ja lähtökohtiin sekä animaation laatimiseen. Työ laadittiin kokonaisuudessaan AutoCAD-ohjelmalla, ja työn aikana tutustuttiin huolellisesti myös ohjelman käyttöohjeisiin. Piirustusten mitoituksessa huomattiin jo alkuvaiheessa suuria puutteita, ...

  16. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  17. 3D Align overlay verification using glass wafers

    NARCIS (Netherlands)

    Smeets, E.M.J.; Bijnen, F.C.G.; Slabbekoorn, J.; Van Zeijl, H.W.

    2004-01-01

    In the MEMS world, increasing attention is being given to 3D devices requiring dual-sided processing. This requires lithography tools that are able to align a wafer to both its back side as front side. Overlay describes how well front and back side layers are positioned with respect to each other. C

  18. 3D Align overlay verification using glass wafers

    NARCIS (Netherlands)

    Smeets, E.M.J.; Bijnen, F.C.G.; Slabbekoorn, J.; Van Zeijl, H.W.

    2004-01-01

    In the MEMS world, increasing attention is being given to 3D devices requiring dual-sided processing. This requires lithography tools that are able to align a wafer to both its back side as front side. Overlay describes how well front and back side layers are positioned with respect to each other.

  19. 3D Align overlay verification using glass wafers

    NARCIS (Netherlands)

    Smeets, E.M.J.; Bijnen, F.C.G.; Slabbekoorn, J.; Van Zeijl, H.W.

    2004-01-01

    In the MEMS world, increasing attention is being given to 3D devices requiring dual-sided processing. This requires lithography tools that are able to align a wafer to both its back side as front side. Overlay describes how well front and back side layers are positioned with respect to each other. C

  20. Dual-energy CT in the follow-up after endovascular abdominal aortic aneurysm repair; Dual-Energy CT zur postoperativen Langzeitkontrolle nach endovaskulaer therapierten abdominellen Aortenaneurysmen

    Energy Technology Data Exchange (ETDEWEB)

    Braegelmann, A.; Heindel, W.; Seifarth, H. [Universitaetsklinikum Muenster (Germany). Inst. fuer Klinische Radiologie; Bunck, A.; Maintz, D. [Universitaetsklinikum Muenster (Germany). Inst. fuer Klinische Radiologie; Universitaetsklinikum Koeln (Germany). Inst. und Poliklinik fuer Radiologische Diagnostik; Donas, K.; Kasprzak, B. [Universitaetsklinikum Muenster (Germany). Klinik fuer Vaskulaere und Endovaskulaere Chirurgie

    2013-04-15

    This study investigates the dual-energy procedure for postoperative CT follow-up scans after endovascularly treated abdominal aortic aneurysms. The procedure is analyzed with respect to its sensitivity and specificity as well as the associated radiation exposure. 51 examinations were carried out on 47 patients between February 2009 and March 2010. For each patient, a non-enhanced, an arterial and a venous scan were conducted, the latter two using the dual-energy technology. Virtual images for the non-enhanced phase were reconstructed from the data taken in the venous phase. Protocol A, the reference standard, consisted of non-enhanced images and images of the arterial and venous phase. In protocol B, standard non-enhanced images were replaced by the reconstructed virtual non-enhanced images. Protocol C consisted only of virtual non-enhanced and 80 kV images taken during the venous phase. All data was anonymized and evaluated by two independent radiologists. For protocol C, sensitivity, specificity, negative and positive predictive values were computed. The effective radiation dosage was determined for each scan. All endoleaks identified in protocol A were found using protocols B and C. For protocol C, the sensitivity and negative predictive value were 100 %, the specificity was 94.1 %, and the positive predictive value was 89.5 %. Compared to protocol A, protocol C reduces the radiation exposure by 62.45 %. A scan protocol consisting of virtual non-enhanced images as well as 80 kV images taken during the venous phase was found to be a reliable alternative method for diagnosing endoleaks, while reducing the radiation exposure by 62.45 %. (orig.)

  1. Utility of iodine overlay technique and virtual unenhanced images for the characterization of renal masses by dual-energy CT.

    Science.gov (United States)

    Song, Kyoung Doo; Kim, Chan Kyo; Park, Byung Kwan; Kim, Bohyun

    2011-12-01

    The objective of our study was to assess the utility of dual-energy CT for characterizing renal masses using iodine overlay techniques and virtual unenhanced images and to measure the potential radiation dose reduction for two-phase kidney CT compared with a standard three-phase protocol. Sixty patients with suspected renal masses underwent dual-energy CT including true unenhanced, dual-energy corticomedullary, and dual-energy late nephrographic phase imaging. Iodine overlay and virtual unenhanced images were derived from the corticomedullary and late nephrographic phases, respectively. The CT numbers of renal masses were calculated using the iodine overlay images superimposed on the virtual unenhanced images. The overall imaging quality of the true unenhanced images and of the virtual unenhanced images was also evaluated. The effective radiation doses for dual-energy CT and for true unenhanced imaging were calculated. For overlay or enhancement values on iodine overlay images, 36 simple cysts and 10 hemorrhagic cysts had an attenuation value of less than 20 HU, whereas 21 renal cell carcinomas showed an attenuation value of 20 HU or greater. Eleven angiomyolipomas contained macroscopic fat tissue. All renal masses were accurately classified on the basis of dual-energy CT. The imaging quality of the virtual unenhanced images from the corticomedullary and late nephrographic phases was inferior to the image quality of the true unenhanced images (p overlay techniques and virtual unenhanced images may be useful for characterizing renal masses.

  2. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  3. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  4. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  5. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  6. Speaking Volumes About 3-D

    Science.gov (United States)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  7. 3D Sisyphus Cooling of Trapped Ions

    CERN Document Server

    Ejtemaee, S

    2016-01-01

    Using a laser polarization gradient, we realize 3D Sisyphus cooling of $^{171}$Yb$^+$ ions confined in and near the Lamb-Dicke regime in a linear Paul trap. The cooling rate and final mean motional energy of a single ion are characterized as a function of laser intensity and compared to semiclassical and quantum simulations. Sisyphus cooling is also applied to a linear string of four ions to obtain a mean energy of 1-3 quanta for all vibrational modes, an approximately order-of-magnitude reduction below Doppler cooled energies. This is used to enable subsequent, efficient sideband laser cooling.

  8. 3D Sisyphus Cooling of Trapped Ions

    Science.gov (United States)

    Ejtemaee, S.; Haljan, P. C.

    2017-07-01

    Using a laser polarization gradient, we realize 3D Sisyphus cooling of Yb+ 171 ions confined in and near the Lamb-Dicke regime in a linear Paul trap. The cooling rate and final mean motional energy of a single ion are characterized as a function of laser intensity and compared to semiclassical and quantum simulations. Sisyphus cooling is also applied to a linear string of four ions to obtain a mean energy of 1-3 quanta for all vibrational modes, an approximately order of magnitude reduction below Doppler cooled energies. This is used to enable subsequent, efficient sideband laser cooling.

  9. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  10. Aspects of defects in 3d-3d correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Dongmin [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Chiba 277-8583 (Japan); Kim, Nakwoo [Department of Physics and Research Institute of Basic Science, Kyung Hee University,Seoul 02447 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Romo, Mauricio; Yamazaki, Masahito [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Chiba 277-8583 (Japan); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2016-10-12

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0) theory of type A{sub N−1} on a 3-manifold M. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,ℂ)) on M and a 3d N=2 theory T{sub N}[M]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N>2. We also highlight the non-Abelian description of the 3d N=2T{sub N}[M] theory with defect included, when such a description is available. This paper is a companion to our shorter paper http://dx.doi.org/10.1088/1751-8113/49/30/30LT02, which summarizes our main results.

  11. Aspects of defects in 3d-3d correspondence

    Science.gov (United States)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-10-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2, 0) theory of type A N -1 on a 3-manifold M . The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C) ) on M and a 3d N=2 theory T N [ M ]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T [SU( N )], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N > 2. We also highlight the non-Abelian description of the 3d N=2 T N [ M ] theory with defect included, when such a description is available. This paper is a companion to our shorter paper [1], which summarizes our main results.

  12. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  13. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    studies and in vivo. Phantom measurements are compared with their corresponding reference value, whereas the in vivo measurement is validated against the current golden standard for non-invasive blood velocity estimates, based on magnetic resonance imaging (MRI). The study concludes, that a high precision......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges......For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...

  14. 3D Printed Bionic Nanodevices.

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  15. 3D Printed Bionic Nanodevices

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  16. Wireless Power Transfer in 3D Space

    Directory of Open Access Journals (Sweden)

    C.Bhuvaneshvari

    2014-06-01

    Full Text Available The main objective of this project is to develop a system of wireless power transfer in 3D space. This concept based on low frequency to high frequency conversion. High frequency power is transmit between air-core and inductor. This work presents an experiment for wireless energy transfer by using the Inductive resonant coupling (also known as resonant energy transfer phenomenon. The basic principles will be presented about this physical phenomenon, the experiment design, and the results obtained for the measurements performed on the system. The parameters measured were the efficiency of the power transfer, and the angle between emitter and receiver. We can achieve wireless power transfer up to 10watts in 3D space using high frequency through tuned circuit. The wireless power supply is motivated by simple and comfortable use of many small electric appliances with low power input.

  17. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  18. 3D digitization of mosaics

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2012-11-01

    Full Text Available In this paper we present a methodology developed to access to Cultural Heritage information using digital 3d reality-based models as graphic interfaces. The case studies presented belong to the wide repertoire of mosaics of Ravenna. One of the most peculiar characteristics of mosaics that often limits their digital survey is their multi-scale complexity; nevertheless their models could be used in 3d information systems, for digital exhibitions, for reconstruction aims and to document their conservation conditions in order to conduct restoration interventions in digital environments aiming at speeding and performing more reliable evaluations.

  19. Developing 3D microstructures for tissue engineering

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan

    casting process to generate various large scale tissue engineering constructs with single pore geometry with the desired mechanical stiffness and porosity. In addition, a new technique was developed to fa bricate dual-pore scaffolds for various tissue-engineering applications where 3D printing...... materials have been developed and tested for enhancing the differentiation of hiPSC-derived hepatocytes and fabricating biodegradable scaffolds for in-vivo tissue engineering applications. Along with various scaffolds fabrication methods we finally presented an optimized study of hepatic differentiation...... doxycycline was loaded into the hydrogel of the IPN materials, and the biological activity of released doxycycline was tested using a doxycycline regulated green fluorescent reporter gene expression assay in HeLa cells. Additionally, decellularized liver extracellular matrix (ECM) and natural silk protein...

  20. An Asymmetric Supercapacitor with Both Ultra-High Gravimetric and Volumetric Energy Density Based on 3D Ni(OH)2/MnO2@Carbon Nanotube and Activated Polyaniline-Derived Carbon.

    Science.gov (United States)

    Shen, Juanjuan; Li, Xiaocheng; Wan, Liu; Liang, Kun; Tay, Beng Kang; Kong, Lingbin; Yan, Xingbin

    2017-01-11

    Development of a supercapacitor device with both high gravimetric and volumetric energy density is one of the most important requirements for their practical application in energy storage/conversion systems. Currently, improvement of the gravimetric/volumetric energy density of a supercapacitor is restricted by the insufficient utilization of positive materials at high loading density and the inferior capacitive behavior of negative electrodes. To solve these problems, we elaborately designed and prepared a 3D core-shell structured Ni(OH)2/MnO2@carbon nanotube (CNT) composite via a facile solvothermal process by using the thermal chemical vapor deposition grown-CNTs as support. Owing to the superiorities of core-shell architecture in improving the service efficiency of pseudocapacitive materials at high loading density, the prepared Ni(OH)2/MnO2@CNT electrode demonstrated a high capacitance value of 2648 F g(-1) (1 A g(-1)) at a high loading density of 6.52 mg cm(-2). Coupled with high-performance activated polyaniline-derived carbon (APDC, 400 F g(-1) at 1 A g(-1)), the assembled Ni(OH)2/MnO2@CNT//APDC asymmetric device delivered both high gravimetric and volumetric energy density (126.4 Wh kg(-1) and 10.9 mWh cm(-3), respectively), together with superb rate performance and cycling lifetime. Moreover, we demonstrate an effective approach for building a high-performance supercapacitor with high gravimetric/volumetric energy density.

  1. PubChem3D: Biologically relevant 3-D similarity

    Directory of Open Access Journals (Sweden)

    Kim Sunghwan

    2011-07-01

    Full Text Available Abstract Background The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive, but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between "active/active" and "active/inactive" spaces? These questions are explored using 734,486 biologically tested chemical structures, 1,389 biological assay data sets, and six different 3-D similarity types utilized by PubChem analysis tools. Results The similarity value distributions of 269.7 billion unique conformer pairs from 734,486 biologically tested compounds (all-against-all from PubChem were utilized to help work towards an answer to the question: what is a biologically meaningful 3-D similarity score? The average and standard deviation for the six similarity measures STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were 0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ± 0.06, and 0.59 ± 0.14, respectively. Considering that this random distribution of biologically tested compounds was constructed using a single theoretical conformer per compound (the "default" conformer provided by PubChem, further study may be necessary using multiple diverse conformers per compound; however, given the breadth of the compound set, the single conformer per compound results may still apply to the case of multi-conformer per compound 3-D similarity value distributions. As such, this work is a critical step, covering a very wide corpus of chemical structures and biological assays, creating a statistical framework to build upon. The second part of this study explored the question of whether it was possible to realize a statistically meaningful 3-D similarity value separation between reputed biological assay "inactives" and "actives". Using the terminology of noninactive-noninactive (NN pairs and the noninactive-inactive (NI pairs to represent comparison of the "active/active" and

  2. Dual energy CT. A new perspective in the diagnosis of gout; Dual Energy CT. Eine neue Perspektive in der Gicht-Diagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, Andreas; Ratzenboeck, M.; Noszian, I. [Radiologie II, Klinikum Wels Grieskirchen (Austria); Inst. fuer Digitale Schnittbildtechnik, Wels (Austria); Trieb, K. [Orthopaedie, Klinikum Wels Grieskirchen (Austria)

    2010-03-15

    Purpose: To describe the first experience with dual energy CT (DECT) for the diagnosis of gout and to evaluate its potential for the clinical routine. Materials and Methods: DECT examinations acquired with a dual source CT of 71 regions from 41 patients were evaluated with respect to image quality, amount of urate deposits and their location. The amount of urate deposits was described using a 4-stage scale: none (1), minimal punctual (up to 2 mm) (2), at least moderate (bigger than 2 mm) (3), soft tissue or osseus tophi (4). The DECT results were compared with the findings of the diagnostic tools currently in use. Results: The DECTs of peripheral regions showed excellent image quality, while the image quality was poor in the regions of the trunk. Patients (n) and regions (r) with a score of 3 (n = 23, r = 44), 4 (n=5, r=8) and 1 (n=2, r=2) showed a highly significant correlation (p<0.01) with the currently available diagnostic tools. In patients or regions with a score of 2 (n = 7, r = 11), the urate deposits were asymptomatic, the serum urate levels were partly elevated (43%) and partly normal (57%). The symptoms were ultimately able to be associated with a differential diagnosis. The urate deposits were found in tendons (57), articular synovia (25), cartilage (17), soft tissue tophi (8), osseus tophi (5), cruciate ligaments (7) and menisci (7). Conclusion: DECT allows specific and quantitative visualization of urate deposits in peripheral regions. Taking into account the amount of urate deposits shown in DECT, the diagnosis of gout can be stated reliably. Based on our experience and results, DECT greatly benefits the routine diagnosis of gout in peripheral regions. (orig.)

  3. An Image-Domain Contrast Material Extraction Method for Dual-Energy Computed Tomography.

    Science.gov (United States)

    Lambert, Jack W; Sun, Yuxin; Gould, Robert G; Ohliger, Michael A; Li, Zhixi; Yeh, Benjamin M

    2017-04-01

    Conventional material decomposition techniques for dual-energy computed tomography (CT) assume mass or volume conservation, where the CT number of each voxel is fully assigned to predefined materials. We present an image-domain contrast material extraction process (CMEP) method that preferentially extracts contrast-producing materials while leaving the remaining image intact. Image processing freeware (Fiji) is used to perform consecutive arithmetic operations on a dual-energy ratio map to generate masks, which are then applied to the original images to generate material-specific images. First, a low-energy image is divided by a high-energy image to generate a ratio map. The ratio map is then split into material-specific masks. Ratio intervals known to correspond to particular materials (eg, iodine, calcium) are assigned a multiplier of 1, whereas ratio values in between these intervals are assigned linear gradients from 0 to 1. The masks are then multiplied by an original CT image to produce material-specific images. The method was tested quantitatively at dual-source CT and rapid kVp-switching CT (RSCT) with phantoms using pure and mixed formulations of tungsten, calcium, and iodine. Errors were evaluated by comparing the known material concentrations with those derived from the CMEP material-specific images. Further qualitative evaluation was performed in vivo at RSCT with a rabbit model using identical CMEP parameters to the phantom. Orally administered tungsten, vascularly administered iodine, and skeletal calcium were used as the 3 contrast materials. All 5 material combinations-tungsten, iodine, and calcium, and mixtures of tungsten-calcium and iodine-calcium-showed distinct dual-energy ratios, largely independent of material concentration at both dual-source CT and RSCT. The CMEP was successful in both phantoms and in vivo. For pure contrast materials in the phantom, the maximum error between the known and CMEP-derived material concentrations was 0.9 mg

  4. Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals?

    Science.gov (United States)

    Xu, Xuefei; Zhang, Wenjing; Tang, Mingsheng; Truhlar, Donald G

    2015-05-12

    Coupled-cluster (CC) methods have been extensively used as the high-level approach in quantum electronic structure theory to predict various properties of molecules when experimental results are unavailable. It is often assumed that CC methods, if they include at least up to connected-triple-excitation quasiperturbative corrections to a full treatment of single and double excitations (in particular, CCSD(T)), and a very large basis set, are more accurate than Kohn-Sham (KS) density functional theory (DFT). In the present work, we tested and compared the performance of standard CC and KS methods on bond energy calculations of 20 3d transition metal-containing diatomic molecules against the most reliable experimental data available, as collected in a database called 3dMLBE20. It is found that, although the CCSD(T) and higher levels CC methods have mean unsigned deviations from experiment that are smaller than most exchange-correlation functionals for metal-ligand bond energies of transition metals, the improvement is less than one standard deviation of the mean unsigned deviation. Furthermore, on average, almost half of the 42 exchange-correlation functionals that we tested are closer to experiment than CCSD(T) with the same extended basis set for the same molecule. The results show that, when both relativistic and core-valence correlation effects are considered, even the very high-level (expensive) CC method with single, double, triple, and perturbative quadruple cluster operators, namely, CCSDT(2)Q, averaged over 20 bond energies, gives a mean unsigned deviation (MUD(20) = 4.7 kcal/mol when one correlates only valence, 3p, and 3s electrons of transition metals and only valence electrons of ligands, or 4.6 kcal/mol when one correlates all core electrons except for 1s shells of transition metals, S, and Cl); and that is similar to some good xc functionals (e.g., B97-1 (MUD(20) = 4.5 kcal/mol) and PW6B95 (MUD(20) = 4.9 kcal/mol)) when the same basis set is used. We

  5. G.O.THERM.3D - Providing a 3D Atlas of Temperature in Ireland's Subsurface

    Science.gov (United States)

    Farrell, Thomas; Fullea, Javier

    2017-04-01

    We introduce the recently initiated project G.O.THERM.3D, which aims to develop a robust and unique model of temperature within Ireland's crust and to produce a 3D temperature atlas of the country. The temperature model will be made publicly available on an interactive online platform, and the project findings will be reported to appropriate state energy and geoscience bodies. The project objective is that an interactive, publicly available 3D temperature model will increase public awareness of geothermal energy. The aim is also that the project findings will focus and encourage geothermal resource exploration and will assist in the development of public policy on geothermal energy exploration, mapping, planning and exploitation. Previous maps of temperature at depth in Ireland's subsurface are heavily reliant on temperature observations in geographically-clustered, shallow boreholes. These maps also make insufficient allowance for near-surface perturbation effects (such as the palaeoclimatic effect), do not allow for the 3D variation of petrophysical parameters and do not consider the deep, lithospheric thermal structure. To develop a 3D temperature model of Ireland's crust, G.O.THERM.3D proposes to model both the compositional and thermal structure of the Irish crust using the LitMod3D geophysical-petrological modelling tool. LitMod3D uses an integrated approach that simultaneously accounts for multiple geophysical (heat-flow, gravity, topography, magnetotelluric, seismic) and petrological (thermal conductivity, heat-production, xenolith composition) datasets, where the main rock properties (density, electrical resistivity, seismic velocity) are thermodynamically computed based on the temperature and bulk rock composition. LitMod3D has been applied to study the lithosphere-asthenosphere boundary (LAB) beneath Ireland (at a depth of 100 km) and is typically used to investigate lithospheric-scale structures. In the previous studies focussing on the LAB beneath

  6. A New Fractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Sika Shrestha

    2014-01-01

    Full Text Available The growth of wireless communications in recent years has made it necessary to develop compact, lightweight multiband antennas. Compact antennas can achieve the same performance as large antennas do with low price and with greater system integration. Dual-frequency microstrip antennas for transmission and reception represent promising approach for doubling the system capacity. In this work, a miniaturized dual band antenna operable at 2.45 and 5.8 GHz is constructed by modifying the standard microstrip patch antenna geometry into a fractal structure. In addition to miniaturization and dual band nature, the proposed antenna also removes unwanted harmonics without the use of additional filter component. Using a finite-element-method-based high frequency structure simulator (HFSS, the antenna is designed and its performance in terms of return loss, impedance matching, radiation pattern, and voltage standing wave ratio (VSWR is demonstrated. Simulation results are shown to be in close agreement with performance measurements from an actual antenna fabricated on an FR4 substrate. The proposed antenna can be integrated with a rectifier circuit to develop a compact rectenna that can harvest RF energy in both of these frequency bands at a reduction in size of 25.98% relative to a conventional rectangular patch antenna.

  7. Viewing galaxies in 3D

    CERN Document Server

    Krajnović, Davor

    2016-01-01

    Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.

  8. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  9. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  10. When Art Meets 3D

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  11. 3D Printing of Metals

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2017-09-01

    Full Text Available The potential benefits that could be derived if the science and technology of 3D printing were to be established have been the crux behind monumental efforts by governments, in most countries, that invest billions of dollars to develop this manufacturing technology.[...

  12. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  13. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  14. Lossless compression of 3D seismic data using a horizon displacement compensated 3D lifting scheme

    Science.gov (United States)

    Meftah, Anis; Antonini, Marc; Ben Amar, Chokri

    2010-01-01

    In this paper we present a method to optimize the computation of the wavelet transform for the 3D seismic data while reducing the energy of coefficients to the minimum. This allow us to reduce the entropy of the signal and so increase the compression ratios. The proposed method exploits the geometrical information contained in the seismic 3D data to optimize the computation of the wavelet transform. Indeed, the classic filtering is replaced by a filtering following the horizons contained in the 3D seismic images. Applying this approach in two dimensions permits us to obtain wavelets coefficients with lowest energy. The experiments show that our method permits to save extra 8% of the size of the object compared to the classic wavelet transform.

  15. A Dual-Band Antenna for RF Energy Harvesting Systems in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    A. Bakkali

    2016-01-01

    Full Text Available In this paper, we focus on ambient radio frequency energy available from commercial broadcasting stations in order to provide a system based on RF energy harvesting using a new design of receiving antenna. Several antenna designs have been proposed for use in RF energy harvesting systems, as a pertinent receiving antenna design is highly required since the antenna features can affect the amount of energy harvested. The proposed antenna is aimed at greatly increasing the energy harvesting efficiency over Wi-Fi bands: 2.45 GHz and 5 GHz. This provides a promising alternative energy source in order to power sensors located in harsh environments or remote places, where other energy sources are impracticable. The dual-band antenna can be easily integrated with RF energy harvesting system on the same circuit board. Simulations and measurements were carried out to evaluate the antenna performances and investigate the effects of different design parameters on the antenna performance. The receiving antenna meets the required bandwidth specification and provides peak gain of more than 4 dBi across the operating band.

  16. Motion correction for improving the accuracy of dual-energy myocardial perfusion CT imaging

    Science.gov (United States)

    Pack, Jed D.; Yin, Zhye; Xiong, Guanglei; Mittal, Priya; Dunham, Simon; Elmore, Kimberly; Edic, Peter M.; Min, James K.

    2016-03-01

    Coronary Artery Disease (CAD) is the leading cause of death globally [1]. Modern cardiac computed tomography angiography (CCTA) is highly effective at identifying and assessing coronary blockages associated with CAD. The diagnostic value of this anatomical information can be substantially increased in combination with a non-invasive, low-dose, correlative, quantitative measure of blood supply to the myocardium. While CT perfusion has shown promise of providing such indications of ischemia, artifacts due to motion, beam hardening, and other factors confound clinical findings and can limit quantitative accuracy. In this paper, we investigate the impact of applying a novel motion correction algorithm to correct for motion in the myocardium. This motion compensation algorithm (originally designed to correct for the motion of the coronary arteries in order to improve CCTA images) has been shown to provide substantial improvements in both overall image quality and diagnostic accuracy of CCTA. We have adapted this technique for application beyond the coronary arteries and present an assessment of its impact on image quality and quantitative accuracy within the context of dual-energy CT perfusion imaging. We conclude that motion correction is a promising technique that can help foster the routine clinical use of dual-energy CT perfusion. When combined, the anatomical information of CCTA and the hemodynamic information from dual-energy CT perfusion should facilitate better clinical decisions about which patients would benefit from treatments such as stent placement, drug therapy, or surgery and help other patients avoid the risks and costs associated with unnecessary, invasive, diagnostic coronary angiography procedures.

  17. A magnetic-spring-based, low-frequency-vibration energy harvester comprising a dual Halbach array

    Science.gov (United States)

    Salauddin, M.; Halim, M. A.; Park, J. Y.

    2016-09-01

    Energy harvesting that uses low-frequency vibrations is attractive due to the availability of such vibrations throughout the ambient environment. Significant power generation at low-frequency vibrations, however, is challenging because the power flow decreases as the frequency decreases; moreover, designing a spring-mass system that is suitable for low-frequency-vibration energy harvesting is difficult. In this work, our proposed device overcomes both of these challenges by using a dual Halbach array and magnetic springs. Each Halbach array concentrates the magnetic-flux lines on one side of the array while suppressing the flux lines on the other side; therefore, a dual Halbach array allows for an interaction between the concentrated magnetic-flux lines and the same coil so that the maximum flux linkage occurs. During the experiment, vibration was applied in a horizontal direction to reduce the gravity effect on the Halbach-array structure. To achieve an increased power generation at low-amplitude and low-frequency vibrations, the magnetic structure of the dual Halbach array and the magnetic springs were optimized in terms of the operating frequency and the power density; subsequently, a prototype was fabricated and tested. The prototype device offers a normalized power density of 133.45 μW cm-3 g-2 that is much higher than those of recently reported electromagnetic energy harvesters; furthermore, it is capable of delivering a maximum average power of 1093 μW to a 44 Ω optimum load, at an 11 Hz resonant frequency and under a 0.5 g acceleration.

  18. Dual-Hop VLC/RF Transmission System with Energy Harvesting Relay under Delay Constraint

    KAUST Repository

    Rakia, Tamer

    2017-02-09

    In this paper, we introduce a dual-hop visible light communication (VLC) / radio frequency (RF) transmission system to extend the coverage of indoor VLC systems. The relay between the two hops is able to harvest light energy from different artificial light sources and sunlight entering the room. The relay receives data packet over a VLC channel and uses the harvested energy to retransmit it to a mobile terminal over an RF channel. We develop a novel statistical model for the harvested electrical power and analyze the probability of data packet loss. We define a system design parameter (α ∈ [0, 1)) that controls the time dedicated for excess energy harvesting and data packet retransmission. It was found that the parameter has an optimal value which minimizes the packet loss probability. Further more, this optimal value is independent of the RF channel path loss. However, optimal showed inverse dependence on the packet size.

  19. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A. [Shenzhen College of International Education, 1st HuangGang Park St., Shenzhen, GuangDong (China); Luo, J. [Department of Biomedical Engineering, University at Buffalo, 332 Bonner Hall, Buffalo, NY 14260-1920 (United States); Wang, A. [Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Broadbent, C. [School of Engineering, Columbia University, 1130 Amsterdam Av., New York, NY 10027 (United States); Zhong, J. [Department of English, Dartmouth College, 6032 Sanborn House, Hanover, NH 03755 (United States); Dilmanian, F.A. [Departments of Radiation Oncology, Neurology, and Radiology, Stony Brook University, Stony Brook, NY 11794 (United States); Zafonte, F.; Zhong, Z. [National Synchrotron Light Source II, Brookhaven National Laboratory, Bldg. 743, Upton, NY 11973 (United States)

    2015-07-11

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  20. Fat to Muscle Ratio Measurements with Dual Energy X Ray Absorbtiometry

    CERN Document Server

    Chen, A; Broadbent, C; Zhong, J; Dilmanian, A; Zafonte, F; Zhong, Z

    2014-01-01

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  1. Application of dual-energy x-ray techniques for automated food container inspection

    Science.gov (United States)

    Shashishekhar, N.; Veselitza, D.

    2016-02-01

    Manufacturing for plastic food containers often results in small metal particles getting into the containers during the production process. Metal detectors are usually not sensitive enough to detect these metal particles (0.5 mm or lesser), especially when the containers are stacked in large sealed shipping packages; X-ray inspection of these packages provides a viable alternative. This paper presents the results of an investigation into dual-energy X-ray techniques for automated detection of small metal particles in plastic food container packages. The sample packages consist of sealed cardboard boxes containing stacks of food containers: plastic cups for food, and Styrofoam cups for noodles. The primary goal of the investigation was to automatically identify small metal particles down to 0.5 mm diameter in size or less, randomly located within the containers. The multiple container stacks in each box make it virtually impossible to reliably detect the particles with single-energy X-ray techniques either visually or with image processing. The stacks get overlaid in the X-ray image and create many indications almost identical in contrast and size to real metal particles. Dual-energy X-ray techniques were investigated and found to result in a clear separation of the metal particles from the food container stack-ups. Automated image analysis of the resulting images provides reliable detection of the small metal particles.

  2. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    Science.gov (United States)

    Sotiropoulou, P. I.; Fountos, G. P.; Martini, N. D.; Koukou, V. N.; Michail, C. M.; Valais, I. G.; Kandarakis, I. S.; Nikiforidis, G. C.

    2015-09-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant.

  3. Priprava 3D modelov za 3D tisk

    OpenAIRE

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  4. Post processing of 3D models for 3D printing

    OpenAIRE

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  5. Wire transfer function analysis for castellated dual-energy x-ray detectors.

    Science.gov (United States)

    Chan, Jer Wang; Evans, James Paul Owain; Yong, Yen San; Monteith, Andrew

    2004-12-10

    An investigation into the spatial resolving power of a castellated linear dual-energy x-ray detector array is reported. The detector was developed for use in aviation security screening applications. Experiments employing different gauges of lead wire are used to plot a wire transfer function. A numerical simulation is developed to predict and underpin the empirical results. The suitable processing of the castellated detector signals helps to maintain spatial resolving power while affording a 50% reduction in x-ray sensing elements. This encouraging result has formed the basis for an ongoing investigation into materials discrimination capability of the castellated detector array.

  6. Bone mineral density of normal people by dual energy X-ray absorptiometry

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    The bone minearl density(BMD) determination is performed for 210 selected Shanghai residents of both sexes across the age range 15-50 using Hologic QDR-2000 dual energy X-ray absorptiometry(DEXA).The results whow that in female groups the peak value of L1-L4 BMD is 1.023±0.103g/cm2 at the ages of 31-35,but in male groups it is 0.971±0.118g/cm2 aged 26-30 and the peak period can last he ages 46-50,The similarconclusion is also obtained by further statistics.

  7. Dual-energy CT in gout - A review of current concepts and applications.

    Science.gov (United States)

    Chou, Hong; Chin, Teck Yew; Peh, Wilfred C G

    2017-02-26

    Dual-energy computed tomography (DECT) is a relatively recent development in the imaging of gouty arthritis. Its availability and usage have become increasingly widespread in recent years. DECT is a non-invasive method for the visualisation, characterisation and quantification of monosodium urate crystal deposits which aids the clinician in the early diagnosis, treatment and follow-up of this condition. This article aims to give an up to date review and summary of existing literature on the role and accuracy of DECT in the imaging of gout. Techniques in image acquisition, processing and interpretation will be discussed along with pitfalls, artefacts and clinical applications.

  8. Enhanced acoustoelectric coupling in acoustic energy harvester using dual Helmholtz resonators.

    Science.gov (United States)

    Peng, Xiao; Wen, Yumei; Li, Ping; Yang, Aichao; Bai, Xiaoling

    2013-10-01

    In this paper, enhanced acoustoelectric transduction in an acoustic energy harvester using dual Helmholtz resonators has been reported. The harvester uses a pair of cavities mechanically coupled with a compliant perforated plate to enhance the acoustic coupling between the cavity and the plate. The experimental results show that the volume optimization of the second cavity can significantly increase the generated electric voltage up to 400% and raise the output power to 16 times as large as that of a harvester using a single Helmholtz resonator at resonant frequencies primarily related to the plate.

  9. Toward the AdS/CFT gravity dual for High Energy Heavy Ion Collisions

    CERN Document Server

    Lin, S; Lin, Shu; Shuryak, Edward

    2006-01-01

    In the context of the AdS/CFT correspondence we discuss the gravity dual of a heavy-ion-like collision in a strongly coupled ${\\cal N}=4$ SYM gauge theory. We suggest a setting in which two colliding walls are made of non-dynamical heavy quarks and antiquarks, which allows to treat the process in classical string approximation. Some string have ends on two outgoing walls, and thus are being ``stretched'' along the collision axes. We discuss motion in these strings in a considerable detail, concluding that they rapidly become ``rectangular'' in $\\tau-y$ coordinates, with a free-falling rapidity-independent central part. Assuming that multiple stretching strings create a 3d stretching membrane, we discuss motion of such membrane as well. We then argue that a complete solution can be approximated by two different vacuum solutions of Einstein eqns, with matter membrane separating them. We identify one of this solution with Janik-Peschanski stretching black hole solution, and show that all objects approach its (re...

  10. Spin fluctuations in 3d paramagnetic metals

    Science.gov (United States)

    Wysocki, Aleksander; Kutepov, Andrey; Antropov, Vladimir

    Spin fluctuations (SFs) in 3d paramagnetic metals were investigated using the linear response formalism within the time dependent density functional theory. An efficient scheme of frequency integration using the Matsubara technique has been implemented and tested. The SFs spectrum in 3d paramagnets is analyzed in real and reciprocal spaces as a function of frequency and temperature. For all materials the SFs are characterized by the coexistence of low and high energy branches which originate from different regions of the Brillouin zone. The low-energy ones can be measured by neutron scattering experiments while the high-energy SFs appear to be more localized. Further, we studied the nature of square of fluctuating magnetic moment in these materials. This work was supported, in part, by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), and by the Office of Basic Energy Science, Division of Materials Science and Engineering. The research was performed at Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract # DE-AC02-07CH11358.

  11. Diagnostic accuracy of dual energy CT angiography in patients with diabetes mellitus; Diagnostische Genauigkeit der Dual-energy-CT-Angiographie bei Patienten mit Diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Schabel, C.; Bongers, M.N.; Syha, R. [Klinikum der Eberhard-Karls-Universitaet, Abteilung fuer Diagnostische und Interventionelle Radiologie, Tuebingen (Germany); Klinikum der Eberhard-Karls-Universitaet, Sektion fuer Experimentelle Radiologie der Abteilung fuer Diagnostische und Interventionelle Radiologie, Tuebingen (Germany); Ketelsen, D.; Homann, G.; Notohamiprodjo, M.; Nikolaou, K.; Bamberg, F. [Klinikum der Eberhard-Karls-Universitaet, Abteilung fuer Diagnostische und Interventionelle Radiologie, Tuebingen (Germany); Thomas, C. [Universitaetsklinikum Duesseldorf, Abteilung fuer Diagnostische und Interventionelle Radiologie, Duesseldorf (Germany)

    2015-04-01

    Peripheral arterial disease (PAD) represents a major and highly prevalent complication in patients with diabetes mellitus. The diagnostic, non-invasive work-up by computed tomography angiography (CTA) is limited in the presence of extensive calcification. The aim of the study was to determine the diagnostic accuracy of dual energy CTA (DE-CTA) for the detection and characterization of PAD in patients with diabetes mellitus. In this study 30 diabetic patients with suspected or known PAD were retrospectively included in the analysis. All subjects underwent DE-CTA (Somatom Definition Flash, Siemens Healthcare, Erlangen, Germany) prior to invasive angiography, which served as the reference standard. Blinded analysis included assessment of the presence and degree of peripheral stenosis on curved multiplanar reformatting (MPR) and maximum intensity projections (MIP). Conventional measures of diagnostic accuracy were derived. Among the 30 subjects included in the analysis (83 % male, mean age 70.0 ± 10.5 years, 83 % diabetes type 2), the prevalence of critical stenosis in 331 evaluated vessel segments was high (30 %). Dual energy CT identified critical stenoses with a high sensitivity and good specificity using curved MPR (100 % and 93.1 %, respectively) and MIP images (99 % and 91.8 %, respectively). In stratified analysis, the diagnostic accuracy was higher for stenosis pertaining to the pelvic and thigh vessels as compared with the lower extremities (curved MPR accuracy 97.1 % vs. 99.2 vs. 90.9 %; respectively, p < 0.001). The use of DE-CTA allows reliable detection and characterization of peripheral arterial stenosis in patients with diabetes mellitus with higher accuracy in vessels in the pelvic and thigh regions compared with the vessels in the lower legs. (orig.) [German] Die periphere arterielle Verschlusskrankheit (PAVK) ist eine wesentliche Komplikation des Diabetes mellitus und stellt aufgrund ausgepraegter Gefaessverkalkungen eine diagnostische

  12. A novel 3D energetic MOF of high energy content: synthesis and superior explosive performance of a Pb(ii) compound with 5,5'-bistetrazole-1,1'-diolate.

    Science.gov (United States)

    Shang, Yu; Jin, Bo; Peng, Rufang; Liu, Qiangqiang; Tan, Bisheng; Guo, Zhicheng; Zhao, Jun; Zhang, Qingchun

    2016-09-21

    The development of high-performance insensitive energetic materials is important because of the increasing demand for these materials in military and civilian applications. A novel 3D energetic metal-organic framework (MOF) of exceptionally high energy content, [Pb(BTO)(H2O)]n, was synthesized and structurally characterized by single crystal X-ray diffraction, featuring a three-dimensional parallelogram porous framework, where BTO represents 5,5'-bistetrazole-1,1'-diolate. The thermal stability and energetic properties were determined, exhibiting good thermostability (Td = 309.0 °C), excellent detonation pressure (P) of 53.06 GPa, a detonation velocity (D) of 9.204 km s(-1), and acceptable sensitivity to confirmed impact (IS = 7.5 J). Notably, the complex possesses unprecedented superior density than the reported energetic MOFs. The results highlight this new MOF as a potential energetic material.

  13. Dual-energy perfusion-CT in recurrent pancreatic cancer. Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, F.; Skornitzke, S.; Kauczor, H.U.; Stiller, W.; Klauss, M. [Heidelberg Univ. (Germany). Clinic of Diagnostic and Interventional Radiology; Hackert, T. [Heidelberg Univ. (Germany). Clinic of Surgery; Grenacher, L. [Diagnostik Muenchen (Germany). Diagnostic Imaging Center

    2016-06-15

    To evaluate the diagnostic performance of dual energy (DE) perfusion-CT for the differentiation between postoperative soft-tissue formation and tumor recurrence in patients after potentially curative pancreatic cancer resection. 24 patients with postoperative soft-tissue formation in the conventional regular follow-up CT acquisition after pancreatic cancer resection with curative intent were included prospectively. They were examined with a 64-row dual-source CT using a dynamic sequence of 34 DE acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). Weighted average (linearly blended M0.5) 120 kVp-equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool for estimating blood flow, permeability, and blood volume. Diagnosis was confirmed by histological study (n=4) and by regular follow-up. Final diagnosis was local recurrence of pancreatic cancer in 15 patients and unspecific postoperative tissue formation in 9 patients. The blood-flow values for recurrence tissue trended to be lower compared to postoperative tissue formation with 16.6 ml/100 ml/min and 24.7 ml/100 ml/min, respectively for weighted average 120 kVp-equivalent image data, which was not significant (n.s.) (p=0.06, significance level 0.05). Permeability- and blood-volume values were only slightly lower in recurrence tissue (n.s.). DE perfusion-CT is feasible in patients after pancreatic cancer resection and a promising functional imaging technique. As only a trend for lower perfusion values in local recurrence compared to unspecific postoperative alterations was found, the perfusion differences are not yet sufficient to differentiate between malignancy and unspecific postoperative alterations for this new technique. Further studies and technical improvements are needed to generate reliable data for this clinically highly relevant differentiation.

  14. Design and experiment of human hand motion driven electromagnetic energy harvester using dual Halbach magnet array

    Science.gov (United States)

    Salauddin, M.; Park, Jae Y.

    2017-03-01

    We present a dual Halbach array electromagnetic energy harvester that generates significant power from hand shaking vibration. The magnetic-spring configuration is employed for generating sufficient power from the hand motion of irregular and low-frequency vibrations. However, significant power generation at low-frequency vibrations is challenging because the power flow decreases as the frequency decreases; moreover, designing a spring-mass system that is suitable for low-frequency-vibration energy harvesting is difficult. In this work, our proposed device overcomes both of these challenges by using a dual Halbach array and magnetic springs. During the experiment, vibration was applied in a horizontal direction to reduce the gravity effect on the Halbach-array structure. To achieve an increased power generation at low-amplitude and low-frequency vibrations, the magnetic structure of the dual Halbach array and the magnetic springs were optimized in terms of the operating frequency and the power density. A prototype was fabricated and tested both using a vibration exciter and by manual hand-shaking. The fabricated device showed resonant behavior during the vibration exciter test. For the vibration exciter test, the prototype device offers a maximum average power of 2.92 mW to a 62 Ω optimum load, at a 6 Hz resonance frequency and under a 0.5 g acceleration. The prototype device is capable of delivering a maximum average power of 2.27 mW from hand shaking. The fabricated device exhibited a normalized power density 0.46 mW cm‑2g‑2 which is very high compared to the current state-of-the-art devices, representing its ability in powering portable and wearable smart devices from extremely low frequency vibration.

  15. Studies on absorption coefficients of dual-energy γ-rays and measuring error correction for multiphase fraction determination

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this article, principle and mathematical method of determining the phase fractions of multiphase flows by using a dual-energy γ-ray system have been described. The dual-energy γ-ray device is composed of radioactive isotopes of 241Am and 137Cs with γ-ray energies of 59.5 and 662 keV, respectively. A rational method to calibrate the absorption coefficient was introduced in detail. The modified arithmetic is beneficial to removing the extra Compton scattering from the measured value. The result shows that the dual-energy γ-ray technique can be used in three-phase flow with average accuracy greater than 95%, which enables us to determine phase fractions almost independent of the flow regime. Improvement has been achieved on measurement accuracy of phase fractions.

  16. 3D Printable Graphene Composite.

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  17. Forensic 3D Scene Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  18. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  19. Study on absorption coefficients of dual-energy γ-rays in determining phase fractions of multiphase flows

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-biao; LI Dong-hui; WU Ying-xiang

    2005-01-01

    This paper discusses the principle and mathematical method to measure the phase fractions of multiphase flows by using a dual-energy gamma-ray system. The dual-energy gamma-ray device is composed of radioactive isotopes of 241Am and 137Cs with emission energies of 59.5 keV and 662 keV respectively. A rational method to calibrate the absorption coefficient was introduced in detail. The statistical error has been analyzed on the basis of the accurate absorption coefficient which enables determination phrase fractions almo