WorldWideScience

Sample records for 3d conformal radiotherapy

  1. Transition from 2-D radiotherapy to 3-D conformal and intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Cancer is one of the leading causes of death globally and radiotherapy is currently an essential component in the management of cancer patients, either alone or in combination with surgery or chemotherapy, both for cure or palliation. It is now recognized that safe and effective radiotherapy service needs not only substantial capital investment in radiotherapy equipment and specially designed facilities but also continuous investment in maintenance and upgrading of the equipment to comply with the technical progress, but also in training the staff. The recent IAEA-TECDOC publication 'Setting up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects' provides general guidelines for designing and implementing radiotherapy services in Member States. Advances in computer technology have enabled the possibility of transitioning from basic 2- dimensional treatment planning and delivery (2-D radiotherapy) to a more sophisticated approach with 3-dimensional conformal radiotherapy (3-D CRT). Whereas 2-D radiotherapy can be applied with simple equipment, infrastructure and training, transfer to 3-D conformal treatments requires more resources in technology, equipment, staff and training. A novel radiation treatment approach using Intensity Modulated Radiation Therapy (IMRT) that optimizes the delivery of radiation to irregularly shaped tumour volumes demands even more sophisticated equipment and seamless teamwork, and consequentially more resources, advanced training and more time for treatment planning and verification of dose delivery than 3-D CRT. Whereas 3-D CRT can be considered as a standard, IMRT is still evolving. Due to the increased interest of Member States to the modern application of radiotherapy the IAEA has received a number of requests for guidance coming from radiotherapy departments that wish to upgrade their facilities to 3-D CRT and IMRT through Technical Cooperation programme. These requests are expected to increase

  2. Chest wall desmoid tumours treated with definitive radiotherapy: a plan comparison of 3D conformal radiotherapy, intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy

    OpenAIRE

    Liu, Jia; Ng, Diana; Lee, James; Stalley, Paul; Hong, Angela

    2016-01-01

    Purpose Definitive radiotherapy is often used for chest wall desmoid tumours due to size or anatomical location. The delivery of radiotherapy is challenging due to the large size and constraints of normal surrounding structures. We compared the dosimetry of 3D conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) to evaluate the best treatment option. Methods and materials Ten consecutive patients with inoperable chest wall de...

  3. Nasopharyngeal carcinoma. Treatment planning with IMRT and 3D conformal radiotherapy

    DEFF Research Database (Denmark)

    Kristensen, Claus A; Kjaer-Kristoffersen, Flemming; Sapru, Wendy;

    2007-01-01

    -CRT plans were made and compared to the IMRT plans with respect to doses to the planning target volumes (PTVs) and to organs at risk (OARs). For comparison of the conformation of dose to defined target volumes the conformity index (CI) was used. Target volume coverage and critical organ protection were......The study was undertaken in order to compare dose plans for intensity-modulated radiotherapy (IMRT) with 3D conformal radiotherapy (3D-CRT) dose plans in patients with nasopharyngeal carcinoma (NPC). Clinical data from 20 consecutive patients treated with IMRT are presented. For 11 patients 3D...... significantly improved with IMRT compared to 3D-CRT. One-year loco-regional control, distant metastasis-free survival, and overall survival were 79%, 72%, and 80%. Two patients have had recurrence in the clinical target volume (CTV) only and seven patients have relapsed in distant organs and/or in head...

  4. 3D-Conformal Versus Intensity-Modulated Postoperative Radiotherapy of Vaginal Vault: A Dosimetric Comparison

    International Nuclear Information System (INIS)

    We evaluated a step-and-shoot IMRT plan in the postoperative irradiation of the vaginal vault compared with equispaced beam arrangements (3-5) 3D-radiotherapy (RT) optimized plans. Twelve patients were included in this analysis. Four plans for each patient were compared in terms of dose-volume histograms, homogeneity index (HI), and conformity index (CI): (1) 3 equispaced beam arrangement 3D-RT; (2) 4 equispaced beam arrangement 3D-RT; (3) 5 equispaced beam arrangement 3D-RT; (4) step-and-shoot IMRT technique. CI showed a good discrimination between the four plans. The mean scores of CI were 0.58 (range: 0.38-0.67) for the 3F-CRT plan, 0.58 (range: 0.41-0.66) for 4F-CRT, 0.62 (range: 0.43-0.68) for 5F-CRT and 0.69 (range: 0.58-0.78) for the IMRT plan. A significant improvement of the conformity was reached by the IMRT plan (p mean, V90%, V95%, V100% was recorded for rectal and bladder irradiation with the IMRT plan. Surprisingly, IMRT supplied a significant dose reduction also for rectum and bladder V30% and V50%. A significant dosimetric advantage of IMRT over 3D-RT in the adjuvant treatment of vaginal vault alone in terms of treatment conformity and rectum and bladder sparing is shown.

  5. SURVIVAL AND QUALITY OF LIFE AFTER STEREOTACTIC OR 3D-CONFORMAL RADIOTHERAPY FOR INOPERABLE EARLY-STAGE LUNG CANCER

    NARCIS (Netherlands)

    Widder, Joachim; Postmus, Douwe; Ubbels, Jan F.; Wiegman, Erwin M.; Langendijk, Johannes A.

    2011-01-01

    Purpose: To investigate survival and local recurrence after stereotactic ablative radiotherapy (SABR) or threedimensional conformal radiotherapy (3D-CRT) administered for early-stage primary lung cancer and to investigate longitudinal changes of health-related quality of life (HRQOL) parameters afte

  6. Radiological response and dosimetry in physical phantom of head and neck for 3D conformational radiotherapy

    International Nuclear Information System (INIS)

    Phantoms are tools for simulation of organs and tissues of the human body in radiology and radiotherapy. This thesis describes the development, validation and, most importantly, the use of a physical head and neck phantom in radiology and radiotherapy, with the purpose of evaluating dose distribution using Gafchromic EBT2 film in 15 MV 3D conformal radiotherapy. The work was divided in two stages, (1) development of new equivalent tissues and improvement of the physical phantom, and (2) use of the physical phantom in experimental dosimetry studies. In phase (1) parameters such as mass density, chemical composition of tissues, anatomical and biometric measurements were considered, as well as aspects of imaging by computed tomography (CT) and radiological response representation in Hounsfield Units (HU), which were compared with human data. Radiological experiments of in-phantom simulated brain pathologies were also conducted. All those results matched human-sourced data, therefore the physical phantom is a suitable simulator that may be used to enhance radiological protocols and education in medical imaging. The main objective in phase (2) was to evaluate the spatial dose distribution in a brain tumor simulator inserted inside the head and neck phantom developed by the Ionizing Radiation Research Group (NRI), exposed to 15 MV 3D conformal radiotherapy, for internal dose assessment. Radiation planning was based on CT images of the physical phantom with a brain tumor simulator made with equivalent material. The treatment planning system (TPS), CAT3D software, used CT images and prescribed a dose of 200 cGy, distributed in three fields of radiation, in a T-shaped pattern. The TPS covered the planning treatment volume (PTV) with 97% of the prescribed dose. A solid water phantom and radiochromic Gafchromic EBT2 film were used for calibration procedures, generating a dose response curve as a function of optical density (OD). After calibration and irradiation, the film

  7. Intensity-modulated radiotherapy, not 3D conformal, is the preferred technique for treating locally advanced lung cancer

    OpenAIRE

    Chang, Joe Y.

    2014-01-01

    When used to treat lung cancer, intensity-modulated radiotherapy (IMRT) can deliver higher dose to the targets and spare more critical organs in lung cancer than can 3D conformal radiotherapy (3DCRT). However, tumor-motion management and optimized radiotherapy planning based on four-dimensional computed tomography (4D CT) scanning are crucial to maximize the benefit of IMRT and to eliminate or minimize potential uncertainties. This article summarizes these strategies and reviews published fin...

  8. Dosimetric impact of different CT datasets for stereotactic treatment planning using 3D conformal radiotherapy or volumetric modulated arc therapy

    OpenAIRE

    Oechsner, Markus; Odersky, Leonhard; Berndt, Johannes; Combs, Stephanie Elisabeth; Wilkens, Jan Jakob; DUMA, MARCIANA NONA

    2015-01-01

    Background The purpose of this study was to assess the impact on dose to the planning target volume (PTV) and organs at risk (OAR) by using four differently generated CT datasets for dose calculation in stereotactic body radiotherapy (SBRT) of lung and liver tumors. Additionally, dose differences between 3D conformal radiotherapy and volumetric modulated arc therapy (VMAT) plans calculated on these CT datasets were determined. Methods Twenty SBRT patients, ten lung cases and ten liver cases, ...

  9. Comparison of Three-Dimensional (3D) Conformal Proton Radiotherapy (RT), 3D Conformal Photon RT, and Intensity-Modulated RT for Retroperitoneal and Intra-Abdominal Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Erika L. [Department of Radiation Oncology, University of Florida, Gainesville, Florida (United States); Indelicato, Daniel J., E-mail: dindelicato@floridaproton.org [Department of Radiation Oncology, University of Florida, Gainesville, Florida (United States); University of Florida Proton Therapy Institute, Jacksonville, Florida (United States); Louis, Debbie; Flampouri, Stella; Li, Zuofeng [University of Florida Proton Therapy Institute, Jacksonville, Florida (United States); Morris, Christopher G.; Paryani, Nitesh [Department of Radiation Oncology, University of Florida, Gainesville, Florida (United States); Slopsema, Roelf [University of Florida Proton Therapy Institute, Jacksonville, Florida (United States)

    2012-08-01

    Purpose: To compare three-dimensional conformal proton radiotherapy (3DCPT), intensity-modulated photon radiotherapy (IMRT), and 3D conformal photon radiotherapy (3DCRT) to predict the optimal RT technique for retroperitoneal sarcomas. Methods and Materials: 3DCRT, IMRT, and 3DCPT plans were created for treating eight patients with retroperitoneal or intra-abdominal sarcomas. The clinical target volume (CTV) included the gross tumor plus a 2-cm margin, limited by bone and intact fascial planes. For photon plans, the planning target volume (PTV) included a uniform expansion of 5 mm. For the proton plans, the PTV was nonuniform and beam-specific. The prescription dose was 50.4 Gy/Cobalt gray equivalent CGE. Plans were normalized so that >95% of the CTV received 100% of the dose. Results: The CTV was covered adequately by all techniques. The median conformity index was 0.69 for 3DCPT, 0.75 for IMRT, and 0.51 for 3DCRT. The median inhomogeneity coefficient was 0.062 for 3DCPT, 0.066 for IMRT, and 0.073 for 3DCRT. The bowel median volume receiving 15 Gy (V15) was 16.4% for 3DCPT, 52.2% for IMRT, and 66.1% for 3DCRT. The bowel median V45 was 6.3% for 3DCPT, 4.7% for IMRT, and 15.6% for 3DCRT. The median ipsilateral mean kidney dose was 22.5 CGE for 3DCPT, 34.1 Gy for IMRT, and 37.8 Gy for 3DCRT. The median contralateral mean kidney dose was 0 CGE for 3DCPT, 6.4 Gy for IMRT, and 11 Gy for 3DCRT. The median contralateral kidney V5 was 0% for 3DCPT, 49.9% for IMRT, and 99.7% for 3DCRT. Regardless of technique, the median mean liver dose was <30 Gy, and the median cord V50 was 0%. The median integral dose was 126 J for 3DCPT, 400 J for IMRT, and 432 J for 3DCRT. Conclusions: IMRT and 3DCPT result in plans that are more conformal and homogenous than 3DCRT. Based on Quantitative Analysis of Normal Tissue Effects in Clinic benchmarks, the dosimetric advantage of proton therapy may be less gastrointestinal and genitourinary toxicity.

  10. Skin-sparing Helical Tomotherapy vs 3D-conformal Radiotherapy for Adjuvant Breast Radiotherapy: In Vivo Skin Dosimetry Study

    Energy Technology Data Exchange (ETDEWEB)

    Capelle, Lisa [Division of Radiation Oncology, Cross Cancer Institute and University of Alberta, Edmonton, Alberta (Canada); Warkentin, Heather; MacKenzie, Marc [Division of Medical Physics, Cross Cancer Institute and University of Alberta, Edmonton, Alberta (Canada); Joseph, Kurian; Gabos, Zsolt; Pervez, Nadeem; Tankel, Keith; Chafe, Susan [Division of Radiation Oncology, Cross Cancer Institute and University of Alberta, Edmonton, Alberta (Canada); Amanie, John [Division of Statistics and Epidemiology, Cross Cancer Institute and University of Alberta, Edmonton, Alberta (Canada); Ghosh, Sunita; Parliament, Matthew [Division of Radiation Oncology, Cross Cancer Institute and University of Alberta, Edmonton, Alberta (Canada); Abdulkarim, Bassam, E-mail: bassam.abdulkarim@mcgill.ca [Division of Radiation Oncology, Cross Cancer Institute and University of Alberta, Edmonton, Alberta (Canada)

    2012-08-01

    Purpose: We investigated whether treatment-planning system (TPS)-calculated dose accurately reflects skin dose received for patients receiving adjuvant breast radiotherapy (RT) with standard three-dimensional conformal RT (3D-CRT) or skin-sparing helical tomotherapy (HT). Methods and Materials: Fifty patients enrolled in a randomized controlled trial investigating acute skin toxicity from adjuvant breast RT with 3D-CRT compared to skin-sparing HT, where a 5-mm strip of ipsilateral breast skin was spared. Thermoluminescent dosimetry or optically stimulated luminescence measurements were made in multiple locations and were compared to TPS-calculated doses. Skin dosimetric parameters and acute skin toxicity were recorded in these patients. Results: With HT there was a significant correlation between calculated and measured dose in the medial and lateral ipsilateral breast (r = 0.67, P<.001; r = 0.44, P=.03, respectively) and the medial and central contralateral breast (r = 0.73, P<.001; r = 0.88, P<.001, respectively). With 3D-CRT there was a significant correlation in the medial and lateral ipsilateral breast (r = 0.45, P=.03; r = 0.68, P<.001, respectively); the medial and central contralateral breast (r = 0.62, P=.001; r = 0.86, P<.001, respectively); and the mid neck (r = 0.42, P=.04, respectively). On average, HT-calculated dose overestimated the measured dose by 14%; 3D-CRT underestimated the dose by 0.4%. There was a borderline association between highest measured skin dose and moist desquamation (P=.05). Skin-sparing HT had greater skin homogeneity (homogeneity index of 1.39 vs 1.65, respectively; P=.005) than 3D-CRT plans. HT plans had a lower skin{sub V50} (1.4% vs 5.9%, respectively; P=.001) but higher skin{sub V40} and skin{sub V30} (71.7% vs 64.0%, P=.02; and 99.0% vs 93.8%, P=.001, respectively) than 3D-CRT plans. Conclusion: The 3D-CRT TPS more accurately reflected skin dose than the HT TPS, which tended to overestimate dose received by 14% in patients

  11. Dosimetric and radiobiologic comparison of 3D conformal versus intensity modulated planning techniques for prostate bed radiotherapy.

    Science.gov (United States)

    Koontz, Bridget F; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I; Montana, Gustavo S; Oleson, James R

    2009-01-01

    Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.

  12. Analysis of Intensity-Modulated Radiation Therapy (IMRT, Proton and 3D Conformal Radiotherapy (3D-CRT for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients

    Directory of Open Access Journals (Sweden)

    Ted C. Ling

    2014-12-01

    Full Text Available Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT, proton and 3D conformal radiotherapy (3D-CRT with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients.

  13. Analysis of Intensity-Modulated Radiation Therapy (IMRT), Proton and 3D Conformal Radiotherapy (3D-CRT) for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Ted C.; Slater, Jerry M.; Nookala, Prashanth; Mifflin, Rachel; Grove, Roger; Ly, Anh M.; Patyal, Baldev; Slater, Jerry D.; Yang, Gary Y., E-mail: gyang@llu.edu [Department of Radiation Medicine, Loma Linda University Medical Center, 11234 Anderson Street, A875, Loma Linda, CA 92354 (United States)

    2014-12-05

    Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR) being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients.

  14. Hepatic arterial chemoembolization combined with 3D conformal radiotherapy for primary hepatic carcinoma

    International Nuclear Information System (INIS)

    Objective: To evaluate transcatheter arterial chemoembolization (TACE) combined with three dimensional conformal radiotherapy (3DCRT) in treating primary hepatic carcinoma. Methods: TACE together with 3DCRT was performed in 131 patients with primary hepatic carcinoma. TACE was carried out before 3DCRT in 89 cases, or after 3DCRT in 15 cases. In 27 cases TACE was accomplished both before and after 3DCRT. According to the volume and the location of the tumor, 50%-90% isodose encircled the planning target volume, with single dosage of 3-5 Gy and a total of 8-12 fractions. The total radiation dose in tumor margins was 36-50 Gy. Results: The response rate in short term was 83.2%, and the survival rate in one and two years was 85.5% and 52.6% respectively. Conclusion: TACE combined with 3DCRT is an effective and safe therapy for the treatment of primary hepatic carcinoma. (authors)

  15. A comparative dosimetric study of neoadjuvant 3D conformal radiotherapy for operable rectal cancer patients versus conventional 2D radiotherapy in NCI-airo

    Institute of Scientific and Technical Information of China (English)

    Mohamed Mahmoud; Hesham A. EL-Hossiny; Nashaat A. Diab; Marwa A. EL Razek

    2012-01-01

    Objective: This study was to compare this multiple-field conformal technique to the AP-PA technique with respect to target volume coverage and dose to normal tissues.Methods: We conducted a single institutional prospective comparative dosimetric analysis of 22 patients who received neoadjuvant radiation therapy for rectal cancer presented to radiotherapy department in National Cancer Institute, Cairo in period between June 2010 to September 2011 using 3D conformal radiotherapy technique for each patient, a second radiotherapy treatment plan was done using an anteroposterior (AP-PA) fields, the two techniques were then compared using dose volume histogram (DVH) analysis.Results: Comparing different DVHs, it was found that the planning target volume (PTV) was adequately covered in both ( 3D & 2D ) plans while it was demonstrates that this multiple field conformal technique produces superior distribution compared to 2D technique, with considerable sparing of bladder, ovaries and head of both femora.Conclusion: From the present study, it shows that it is recommended to use 3D planning for preoperative cases of cancer rectum so far it produces good coverage of the target as well as good sparing of the surrounding critical organs.

  16. Comparison of 3D conformal radiotherapy vs. intensity modulated radiation therapy (IMRT) of a stomach cancer treatment;Comparacion dosimetrica de radioterapia conformal 3D versus radioterapia de intensidad modulada (IMRT) de un tratamiento de cancer de estomago

    Energy Technology Data Exchange (ETDEWEB)

    Bernui de V, Maria Giselle; Cardenas, Augusto; Vargas, Carlos [Hospital Nacional Carlos Alberto Seguin Escobedo (ESSALUD), Arequipa (Peru). Servicio de Radioterapia

    2009-07-01

    The purpose of this work was to compare the dosimetry in 3D Conformal Radiotherapy with Intensity Modulated Radiation Therapy (IMRT) in a treatment of stomach cancer. For this comparison we selected a patient who underwent subtotal gastrectomy and D2 dissection for a T3N3 adenocarcinoma Mx ECIIIB receiving treatment under the scheme Quimio INT 0116 - in adjuvant radiotherapy. In the treatment plan was contouring the Clinical Target Volume (CTV) and the Planning Target Volume (PTV) was generated from the expansion of 1cm of the CTV, the risky organs contouring were: the liver, kidneys and spinal cord, according to the consensus definition of volumes in gastric cancer. The 3D Conformal Radiotherapy planning is carried out using 6 half beams following the Leong Trevol technique; for the IMRT plan was used 8 fields, the delivery technique is step-and-shoot. In both cases the fields were coplanar, isocentric and the energy used was 18 MV. Intensity Modulated Radiation Therapy (IMRT), in this case has proved to be a good treatment alternative to the technique of 3D Conformal Radiotherapy; the dose distributions with IMRT have better coverage of PTV and positions of the hot spots, as well as the kidneys volume that received higher doses to 2000 cGy is lower, but the decrease in dose to the kidneys is at the expense of increased dose in other organs like the liver. (author)

  17. Combined error of patient positioning variability and prostate motion uncertainty in 3D conformal radiotherapy of localized prostate cancer

    International Nuclear Information System (INIS)

    Purpose: To measure the patient positioning and prostate motion variability and to estimate its influence on the calculated 3D dose distribution in 3D conformal radiotherapy of patients with localized prostate carcinoma. Methods and Materials: Patient positioning variability was determined retrospectively by comparing 54 orthogonal simulator films with 125 corresponding portal films from 27 patients. Prostate motion variability was determined by 107 computed tomography (CT) examinations with a CT simulator in 28 patients during radiotherapy. Results: In each observed direction, the patient positioning variability and prostate motion showed a normal distribution. This observation enabled the calculation of a combined error of both components. The standard deviation (1 SD) of the patient positioning error in three directions ranged from 3.1 to 5.4 mm; the prostate motion variability was significantly greater in the anterior-posterior direction (1 SD = 2.8 mm) than in the mediolateral direction (1 SD = 1.4 mm). The 1 SD of the estimated combined error was in the anterior-posterior direction 6.1 mm and in mediolateral direction 3.6 mm. Conclusion: The range of patient positioning variability and prostate motion were statistically predictable under the patient setup conditions used. Dose-volume histograms demonstrating the influence of the combined error of both components on the calculated dose distribution are presented

  18. High-dose radiotherapy in inoperable nonsmall cell lung cancer: comparison of volumetric modulated arc therapy, dynamic IMRT and 3D conformal radiotherapy.

    Science.gov (United States)

    Bree, Ingrid de; van Hinsberg, Mariëlle G E; van Veelen, Lieneke R

    2012-01-01

    Conformal 3D radiotherapy (3D-CRT) combined with chemotherapy for inoperable non-small cell lung cancer (NSCLC) to the preferable high dose is often not achievable because of dose-limiting organs. This reduces the probability of regional tumor control. Therefore, the surplus value of using intensity-modulated radiation therapy (IMRT) techniques, specifically volumetric modulated arc therapy (RapidArc [RA]) and dynamic IMRT (d-IMRT) has been investigated. RA and d-IMRT plans were compared with 3D-CRT treatment plans for 20 patients eligible for concurrent high-dose chemoradiotherapy, in whom a dose of 60 Gy was not achievable. Comparison of dose delivery in the target volume and organs at risk was carried out by evaluating 3D dose distributions and dose-volume histograms. Quality of the dose distribution was assessed using the inhomogeneity and conformity index. For most patients, a higher dose to the target volume can be delivered using RA or d-IMRT; in 15% of the patients a dose ≥60 Gy was possible. Both IMRT techniques result in a better conformity of the dose (p < 0.001). There are no significant differences in homogeneity of dose in the target volume. IMRT techniques for NSCLC patients allow higher dose to the target volume, thus improving regional tumor control. PMID:22459649

  19. High-dose radiotherapy in inoperable nonsmall cell lung cancer: Comparison of volumetric modulated arc therapy, dynamic IMRT and 3D conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Bree, Ingrid de, E-mail: i.de.bree@zrti.nl [Zeeuws Radiotherapeutisch Instituut, Vlissingen (Netherlands); Hinsberg, Marieelle G.E. van; Veelen, Lieneke R. van [Zeeuws Radiotherapeutisch Instituut, Vlissingen (Netherlands)

    2012-01-01

    Conformal 3D radiotherapy (3D-CRT) combined with chemotherapy for inoperable non-small cell lung cancer (NSCLC) to the preferable high dose is often not achievable because of dose-limiting organs. This reduces the probability of regional tumor control. Therefore, the surplus value of using intensity-modulated radiation therapy (IMRT) techniques, specifically volumetric modulated arc therapy (RapidArc [RA]) and dynamic IMRT (d-IMRT) has been investigated. RA and d-IMRT plans were compared with 3D-CRT treatment plans for 20 patients eligible for concurrent high-dose chemoradiotherapy, in whom a dose of 60 Gy was not achievable. Comparison of dose delivery in the target volume and organs at risk was carried out by evaluating 3D dose distributions and dose-volume histograms. Quality of the dose distribution was assessed using the inhomogeneity and conformity index. For most patients, a higher dose to the target volume can be delivered using RA or d-IMRT; in 15% of the patients a dose {>=}60 Gy was possible. Both IMRT techniques result in a better conformity of the dose (p < 0.001). There are no significant differences in homogeneity of dose in the target volume. IMRT techniques for NSCLC patients allow higher dose to the target volume, thus improving regional tumor control.

  20. High-dose radiotherapy in inoperable nonsmall cell lung cancer: Comparison of volumetric modulated arc therapy, dynamic IMRT and 3D conformal radiotherapy

    International Nuclear Information System (INIS)

    Conformal 3D radiotherapy (3D-CRT) combined with chemotherapy for inoperable non–small cell lung cancer (NSCLC) to the preferable high dose is often not achievable because of dose-limiting organs. This reduces the probability of regional tumor control. Therefore, the surplus value of using intensity-modulated radiation therapy (IMRT) techniques, specifically volumetric modulated arc therapy (RapidArc [RA]) and dynamic IMRT (d-IMRT) has been investigated. RA and d-IMRT plans were compared with 3D-CRT treatment plans for 20 patients eligible for concurrent high-dose chemoradiotherapy, in whom a dose of 60 Gy was not achievable. Comparison of dose delivery in the target volume and organs at risk was carried out by evaluating 3D dose distributions and dose-volume histograms. Quality of the dose distribution was assessed using the inhomogeneity and conformity index. For most patients, a higher dose to the target volume can be delivered using RA or d-IMRT; in 15% of the patients a dose ≥60 Gy was possible. Both IMRT techniques result in a better conformity of the dose (p < 0.001). There are no significant differences in homogeneity of dose in the target volume. IMRT techniques for NSCLC patients allow higher dose to the target volume, thus improving regional tumor control.

  1. A pilot survey of sexual function and quality of life following 3D conformal radiotherapy for clinically localized prostate cancer

    International Nuclear Information System (INIS)

    Purpose: To assess the impact of high dose three-dimensional conformal radiotherapy (3D CRT) for prostate cancer on the sexual function-related quality of life of patients and their partners. Methods and Materials: Sixty of 124 consecutive patients (median age 72.3 years) treated with 3D CRT for localized prostate cancer were surveyed and reported being potent prior to treatment. The answers to survey questions assessing the impact of quality of life related to sexual function from these 60 patients and their partners forms the basis for this retrospective analysis. Results: Following 3D CRT, 37 of 60 patients (62%) retained sexual function sufficient for intercourse. Intercourse at least once per month was reduced from 71 to 40%, whereas intercourse less than once per year increased from 12 to 35%. Following treatment, 25% of patients reported that the change in sexual dysfunction negatively affected their relationship or resulted in poor self-esteem. This outcome was associated with impotence following treatment (p < 0.01). Patients who had partners and satisfactory sexual function appeared to be at a higher risk of having a negatively affected relationship or losing self-esteem if they become impotent (p < 0.05). Partners of patients who reported a negatively affected relationship or loss of self-esteem appear to be less likely to return the survey instrument used (p = 0.02). Conclusions: More work is needed to evaluate the impact of radiotherapy and other treatments on the quality of life of patients and their partners to allow adequate informed consent to be given

  2. Survival and Quality of Life After Stereotactic or 3D-Conformal Radiotherapy for Inoperable Early-Stage Lung Cancer

    International Nuclear Information System (INIS)

    Purpose: To investigate survival and local recurrence after stereotactic ablative radiotherapy (SABR) or three-dimensional conformal radiotherapy (3D-CRT) administered for early-stage primary lung cancer and to investigate longitudinal changes of health-related quality of life (HRQOL) parameters after either treatment. Methods and Materials: Two prospective cohorts of inoperable patients with T1-2N0M0 primary lung tumors were analyzed. Patients received 70 Gy in 35 fractions with 3D-CRT or 60 Gy in three to eight fractions with SABR. Global quality of life (GQOL), physical functioning (PF), and patient-rated dyspnea were assessed using the respective dimensions of European Organization for Research and Treatment of Cancer Core Questionnaire-C30 and LC13. HRQOL was analyzed using multivariate linear mixed-effects modeling, survival and local control (LC) using the Kaplan-Meier method, Cox proportional hazards analysis, and Fine and Gray multivariate competing risk analysis as appropriate. Results: Overall survival (OS) was better after SABR compared with 3D-CRT with a HR of 2.6 (95% confidence interval [CI]: 1.5–4.8; p < 0.01). 3D-CRT conferred a subhazard ratio for LC of 5.0 (95% CI: 1.7–14.7; p < 0.01) compared with SABR. GQOL and PF were stable after SABR (p = 0.21 and p = 0.62, respectively). Dyspnea increased after SABR by 3.2 out of 100 points (95% CI: 1.0–5.3; p < 0.01), which is clinically insignificant. At 1 year, PF decreased by an excess of 8.7 out of 100 points (95% CI: 2.8–14.7; p < 0.01) after 3D-CRT compared with SABR. Conclusion: In this nonrandomized comparison of two prospective cohorts of medically inoperable patients with Stage I lung cancer, OS and LC were better after SABR. GQOL, PF, and patient-rated dyspnea were stable after SABR, whereas PF decreased after 3D-CRT approaching clinical significance already at 1 year.

  3. Intensity-modulated radiotherapy vs. parotid-sparing 3D conformal radiotherapy. Effect on outcome and toxicity in locally advanced head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, M.; Nevens, D.; Nuyts, S. [University Hospitals Leuven (Belgium). Dept. of Radiation Oncology

    2013-03-15

    Background and purpose: Intensity-modulated radiotherapy (IMRT) has rapidly become standard of care in the management of locally advanced head and neck squamous cell carcinoma (HNSCC). In this study, our aim was to retrospectively investigate the effect of the introducing IMRT on outcome and treatment-related toxicity compared to parotid-sparing 3D conformal radiotherapy (3DCRT). Material and methods: A total of 245 patients with stage III and IV HNSCC treated with primary radiotherapy between January 2003 and December 2010 were included in this analysis: 135 patients were treated with 3DCRT, 110 patients with IMRT. Groups were compared for acute and late toxicity, locoregional control (LRC), and overall survival (OS). Oncologic outcomes were estimated using Kaplan-Meier analysis and compared using a log-rank test. Acute toxicity was analyzed according to the Common Terminology Criteria for Adverse Events v3.0 and late toxicity was scored using the RTOG/EORTC late toxicity scoring system. Results: Median follow-up was 35 months in the IMRT group and 68 months in the 3DCRT group. No significant differences were found in 3-year LRC and OS rates between the IMRT group and 3DCRT group. Significantly less acute mucositis {>=} grade 3 was observed in the IMRT group (32% vs. 44%, p = 0.03). There was significantly less late xerostomia {>=} grade 2 in the IMRT group than in the 3DCRT group (23% vs. 68%, p < 0.001). After 24 months, there was less dysphagia {>=} grade 2 in the IMRT group although differences failed to reach statistical significance. Conclusion: The introduction of IMRT in the radiotherapeutic management of locally advanced head and neck cancer significantly improved late toxicity without compromising tumor control compared to a parotid-sparing 3D conformal radiotherapy technique. (orig.)

  4. Three-year outcomes of a once daily fractionation scheme for accelerated partial breast irradiation (APBI) using 3-D conformal radiotherapy (3D-CRT)

    International Nuclear Information System (INIS)

    The aim of this study was to report 3-year outcomes of toxicity, cosmesis, and local control using a once daily fractionation scheme (49.95 Gy in 3.33 Gy once daily fractions) for accelerated partial breast irradiation (APBI) using three-dimensional conformal radiotherapy (3D-CRT). Between July 2008 and August 2010, women aged ≥40 years with ductal carcinoma in situ or node-negative invasive breast cancer ≤3 cm in diameter, treated with breast-conserving surgery achieving negative margins, were accrued to a prospective study. Women were treated with APBI using 3–5 photon beams, delivering 49.95 Gy over 15 once daily fractions over 3 weeks. Patients were assessed for toxicities, cosmesis, and local control rates before APBI and at specified time points. Thirty-four patients (mean age 60 years) with Tis 0 (n = 9) and T1N0 (n = 25) breast cancer were treated and followed up for an average of 39 months. Only 3% (1/34) patients experienced a grade 3 subcutaneous fibrosis and breast edema and 97% of the patients had good/excellent cosmetic outcome at 3 years. The 3-year rate of ipsilateral breast tumor recurrence (IBTR) was 0% while the rate of contralateral breast events was 6%. The 3-year disease-free survival (DFS), overall survival (OS), and breast cancer-specific survival (BCSS) was 94%, 100%, and 100%, respectively. Our novel accelerated partial breast fractionation scheme of 15 once daily fractions of 3.33 Gy (49.95 Gy total) is a remarkably well-tolerated regimen of 3D-CRT-based APBI. A larger cohort of patients is needed to further ascertain the toxicity of this accelerated partial breast regimen

  5. Accelerated partial breast irradiation using 3D conformal radiotherapy: initial clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Gatti, M.; Madeddu, A.; Malinverni, G.; Delmastro, E.; Bona, C.; Gabriele, P. [IRCC-Radiotherapy, Candiolo, TO (Italy); Baiotto, B.; Stasi, M. [IRCC-Medical Physics, Candiolo, TO (Italy); Ponzone, R.; Siatis, D. [IRCC-Surgery, Candiolo, TO (Italy)

    2006-11-15

    Accelerated partial breast irradiation using 3D-C.R.T. is technically sophisticate but feasible and acute toxicity to date has been minimal. A C.T.V.-to-P.T.V. margin of 10 mm seems to provide coverage for analyzed patients. However, more patients and additional studies will be needed to validate the accuracy of this margin, and longer follow-up will be needed to assess acute and chronic toxicity, tumor control, and cosmetic results. (author)

  6. Patterns of failure following high-dose 3-D conformal radiotherapy for high-grade astrocytomas: a quantitative dosimetric study

    International Nuclear Information System (INIS)

    Purpose: To analyze the failure patterns for patients with high-grade astrocytomas treated with high-dose conformal radiotherapy (CRT) using a quantitative technique to calculate the dose received by the CT- or MR-defined recurrence volume and to assess whether the final target volume margin used in the present dose escalation study requires redefinition before further escalation. Methods and Materials: Between 4/89 and 10/95, 71 patients with high-grade supratentorial astrocytomas were entered in a phase I/II dose escalation study using 3-D treatment planning and conformal radiotherapy. All patients were treated to either 70 or 80 Gy in conventional daily fractions of 1.8-2.0 Gy. The clinical and planning target volumes (CTV, PTV) consisted of successively smaller volumes with the final PTV defined as the enhancing lesion plus 0.5 cm margin. As of 10/95, 47 patients have CT or MR evidence of disease recurrence/progression. Of the 47 patients, 36 scans obtained at the time of recurrence were entered into the 3-D radiation therapy treatment planning system. After definition of the recurrent tumor volumes, the recurrence scan dataset was registered with the pretreatment CT dataset so that the actual dose received by the recurrent tumor volumes during treatment could be accurately calculated and then analyzed dosimetrically using dose-volume histograms. Recurrences were divided into several categories: 1) 'central', in which 95% or more of the recurrent tumor volume (Vrecur) was within D95, the region treated to high dose (95% of the prescription dose); 2) ''in-field,'' in which 80% or more of Vrecur was within the D95 isodose surface; 3) ''marginal,'' when between 20 and 80% of Vrecur was inside the D95 surface; 4) 'outside', in which less than 20% of Vrecur was inside the D95 surface. Results: In 29 of 36 patients, a solitary lesion was seen on recurrence scans. Of the 29 solitary recurrences, 26 were central, 3 were marginal, and none were outside. Multiple

  7. A comparison of liver protection among 3-D conformal radiotherapy, intensity-modulated radiotherapy and RapidArc for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    The analysis was designed to compare dosimetric parameters among 3-D conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT) and RapidArc (RA) to identify which can achieve the lowest risk of radiation-induced liver disease (RILD) for hepatocellular carcinoma (HCC). Twenty patients with HCC were enrolled in this study. Dosimetric values for 3DCRT, IMRT, and RA were calculated for total dose of 50 Gy/25f. The percentage of the normal liver volume receiving >40, >30, >20, >10, and >5 Gy (V40, V30, V20, V10 and V5) were evaluated to determine liver toxicity. V5, V10, V20, V30 and Dmean of liver were compared as predicting parameters for RILD. Other parameters included the conformal index (CI), homogeneity index (HI), and hot spot (V110%) for the planned target volume (PTV) as well as the monitor units (MUs) for plan efficiency, the mean dose (Dmean) for the organs at risk (OARs) and the maximal dose at 1% volume (D1%) for the spinal cord. The Dmean of IMRT was higher than 3DCRT (p = 0.045). For V5, there was a significant difference: RA > IMRT >3DCRT (p <0.05). 3DCRT had a lower V10 and higher V20, V30 values for liver than RA (p <0.05). RA and IMRT achieved significantly better CI and lower V110% values than 3DCRT (p <0.05). RA had better HI, lower MUs and shorter delivery time than 3DCRT or IMRT (p <0.05). For right lobe tumors, RapidArc may have the lowest risk of RILD with the lowest V20 and V30 compared with 3DCRT or IMRT. For diameters of tumors >8 cm in our study, the value of Dmean for 3DCRT was lower than IMRT or RapidArc. This may indicate that 3DCRT is more suitable for larger tumors

  8. Volumetric intensity-modulated Arc (RapidArc therapy for primary hepatocellular carcinoma: comparison with intensity-modulated radiotherapy and 3-D conformal radiotherapy

    Directory of Open Access Journals (Sweden)

    Chen Chia-Wen

    2011-06-01

    Full Text Available Abstract Background To compare the RapidArc plan for primary hepatocellular carcinoma (HCC with 3-D conformal radiotherapy (3DCRT and intensity-modulated radiotherapy (IMRT plans using dosimetric analysis. Methods Nine patients with unresectable HCC were enrolled in this study. Dosimetric values for RapidArc, IMRT, and 3DCRT were calculated for total doses of 45~50.4 Gy using 1.8 Gy/day. The parameters included the conformal index (CI, homogeneity index (HI, and hot spot (V107% for the planned target volume (PTV as well as the monitor units (MUs for plan efficiency, the mean dose (Dmean for the organs at risk (OAR and the maximal dose at 1% volume (D1% for the spinal cord. The percentage of the normal liver volume receiving ≥ 40, > 30, > 20, and > 10 Gy (V40 Gy, V30 Gy, V20 Gy, and V10 Gy and the normal tissue complication probability (NTCP were also evaluated to determine liver toxicity. Results All three methods achieved comparable homogeneity for the PTV. RapidArc achieved significantly better CI and V107% values than IMRT or 3DCRT (p p mean of the normal liver than did 3DCRT or RapidArc (p = 0.001. 3DCRT had higher V40 Gy and V30 Gy values for the normal liver than did RapidArc or IMRT. Although the V10 Gy to the normal liver was higher with RapidArc (75.8 ± 13.1% than with 3DCRT or IMRT (60.5 ± 10.2% and 57.2 ± 10.0%, respectively; p p = 0.02. Conclusions RapidArc provided favorable tumor coverage compared with IMRT or 3DCRT, but RapidArc is not superior to IMRT in terms of liver protection. Further studies are needed to establish treatment outcome differences between the three approaches.

  9. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    International Nuclear Information System (INIS)

    This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT

  10. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance

    International Nuclear Information System (INIS)

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1–2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5–7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT. The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction

  11. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    OpenAIRE

    Yim, Jackie; Suttie, Clare; Bromley, Regina; Morgia, Marita; Lamoury, Gillian

    2015-01-01

    Introduction We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal...

  12. Prone Hypofractionated Whole-Breast Radiotherapy Without a Boost to the Tumor Bed: Comparable Toxicity of IMRT Versus a 3D Conformal Technique

    Energy Technology Data Exchange (ETDEWEB)

    Hardee, Matthew E.; Raza, Shahzad; Becker, Stewart J.; Jozsef, Gabor; Lymberis, Stella C. [Department of Radiation Oncology, New York University School of Medicine, New York, NY (United States); Hochman, Tsivia; Goldberg, Judith D. [Division of Biostatistics, New York University School of Medicine, New York, NY (United States); DeWyngaert, Keith J. [Department of Radiation Oncology, New York University School of Medicine, New York, NY (United States); Formenti, Silvia C., E-mail: silvia.formenti@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York, NY (United States)

    2012-03-01

    Purpose: We report a comparison of the dosimetry and toxicity of three-dimensional conformal radiotherapy (3D-CRT) vs. intensity-modulated radiotherapy (IMRT) among patients treated in the prone position with the same fractionation and target of the hypofractionation arm of the Canadian/Whelan trial. Methods and Materials: An institutional review board-approved protocol identified a consecutive series of early-stage breast cancer patients treated according to the Canadian hypofractionation regimen but in the prone position. Patients underwent IMRT treatment planning and treatment if the insurance carrier approved reimbursement for IMRT; in case of refusal, a 3D-CRT plan was used. A comparison of the dosimetric and toxicity outcomes during the acute, subacute, and long-term follow-up of the two treatment groups is reported. Results: We included 97 consecutive patients with 100 treatment plans in this study (3 patients with bilateral breast cancer); 40 patients were treated with 3D-CRT and 57 with IMRT. IMRT significantly reduced the maximum dose (Dmax median, 109.96% for 3D-CRT vs. 107.28% for IMRT; p < 0.0001, Wilcoxon test) and improved median dose homogeneity (median, 1.15 for 3D-CRT vs. 1.05 for IMRT; p < 0.0001, Wilcoxon test) when compared with 3D-CRT. Acute toxicity consisted primarily of Grade 1 to 2 dermatitis and occurred in 92% of patients. Grade 2 dermatitis occurred in 13% of patients in the 3D-CRT group and 2% in the IMRT group. IMRT moderately decreased rates of acute pruritus (p = 0.03, chi-square test) and Grade 2 to 3 subacute hyperpigmentation (p = 0.01, Fisher exact test). With a minimum of 6 months' follow-up, the treatment was similarly well tolerated in either group, including among women with large breast volumes. Conclusion: Hypofractionated breast radiotherapy is well tolerated when treating patients in the prone position, even among those with large breast volumes. Breast IMRT significantly improves dosimetry but yields only a modest

  13. Dose distribution and tumor control probability in out-of-field lymph node stations in intensity modulated radiotherapy (IMRT) vs 3D-conformal radiotherapy (3D-CRT) of non-small-cell lung cancer: an in silico analysis

    OpenAIRE

    Fleckenstein, Jochen; Eschler, Andrea; Kremp, Katharina; Kremp, Stephanie; Rübe, Christian

    2015-01-01

    Background The advent of IMRT and image-guided radiotherapy (IGRT) in combination with involved-field radiotherapy (IF-RT) in inoperable non-small-cell lung cancer results in a decreased incidental dose deposition in elective nodal stations. While incidental nodal irradiation is considered a relevant by-product of 3D-CRT to control microscopic disease this planning study analyzed the impact of IMRT on dosimetric parameters and tumor control probabilities (TCP) in elective nodal stations in di...

  14. 3D-conformal-intensity modulated radiotherapy with compensators for head and neck cancer: clinical results of normal tissue sparing

    Directory of Open Access Journals (Sweden)

    Koscielny Sven

    2006-06-01

    Full Text Available Abstract Background To investigate the potential of parotic gland sparing of intensity modulated radiotherapy (3D-c-IMRT performed with metallic compensators for head and neck cancer in a clinical series by analysis of dose distributions and clinical measures. Materials and methods 39 patients with squamous cell cancer of the head and neck irradiated using 3D-c-IMRT were evaluable for dose distribution within PTVs and at one parotid gland and 38 patients for toxicity analysis. 10 patients were treated primarily, 29 postoperatively, 19 received concomittant cis-platin based chemotherapy, 20 3D-c-IMRT alone. Initially the dose distribution was calculated with Helax ® and photon fluence was modulated using metallic compensators made of tin-granulate (n = 22. Later the dose distribution was calculated with KonRad ® and fluence was modified by MCP 96 alloy compensators (n = 17. Gross tumor/tumor bed (PTV 1 was irradiated up to 60–70 Gy, [5 fractions/week, single fraction dose: 2.0–2.2 (simultaneously integrated boost], adjuvantly irradiated bilateral cervical lymph nodes (PTV 2 with 48–54 Gy [single dose: 1.5–1.8]. Toxicity was scored according the RTOG scale and patient-reported xerostomia questionnaire (XQ. Results Mean of the median doses at the parotid glands to be spared was 25.9 (16.3–46.8 Gy, for tin graulate 26 Gy, for MCP alloy 24.2 Gy. Tin-granulate compensators resulted in a median parotid dose above 26 Gy in 10/22, MCP 96 alloy in 0/17 patients. Following acute toxicities were seen (°0–2/3: xerostomia: 87%/13%, dysphagia: 84%/16%, mucositis: 89%/11%, dermatitis: 100%/0%. No grade 4 reaction was encountered. During therapy the XQ forms showed °0–2/3: 88%/12%. 6 months postRT chronic xerostomia °0–2/3 was observed in 85%/15% of patients, none with °4 xerostomia. Conclusion 3D-c-IMRT using metallic compensators along with inverse calculation algorithm achieves sufficient parotid gland sparing in virtually all advanced

  15. Dose verification in carcinoma of uterine cervix patients undergoing 3D conformal radiotherapy with Farmer type ion chamber

    Directory of Open Access Journals (Sweden)

    Challapalli Srinivas

    2014-01-01

    Full Text Available External beam radiotherapy (EBRT for carcinoma of uterine cervix is a basic line of treatment with three dimensional conformal radiotherapy (3DCRT in large number of patients. There is need for an established method for verification dosimetry. We tried to document absorbed doses in a group of carcinoma cervix patients by inserting a 0.6 cc Farmer type ion chamber in the vaginal cavity. A special long perspex sleeve cap is designed to cover the chamber for using in the patient′s body. Response of ionization chamber is checked earlier in water phantom with and without cap. Treatment planning was carried out with X-ray computed tomography (CT scan and with the chamber along with cap in inserted position, and with the images Xio treatment planning system. Three measurements on 3 days at 5-6 fraction intervals were recorded in 12 patients. Electrometer measured charges are converted to absorbed dose at the chamber center, in vivo. Our results show good agreement with planned dose within 3% against prescribed dose. This study, is a refinement over our previous studies with transmission dosimetry and chemicals in ampules. This preliminary work shows promise that this can be followed as a routine dose check with special relevance to new protocols in the treatment of carcinoma cervix with EBRT.

  16. IMRT and 3D conformal radiotherapy with or without elective nodal irradiation in locally advanced NSCLC. A direct comparison of PET-based treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Fleckenstein, Jochen; Kremp, Katharina; Kremp, Stephanie; Palm, Jan; Ruebe, Christian [Saarland University Medical School, Department of Radiotherapy and Radiation Oncology, Homburg/Saar (Germany)

    2016-02-15

    The potential of intensity-modulated radiation therapy (IMRT) as opposed to three-dimensional conformal radiotherapy (3D-CRT) is analyzed for two different concepts of fluorodeoxyglucose positron emission tomography (FDG PET)-based target volume delineation in locally advanced non-small cell lung cancer (LA-NSCLC): involved-field radiotherapy (IF-RT) vs. elective nodal irradiation (ENI). Treatment planning was performed for 41 patients with LA-NSCLC, using four different planning approaches (3D-CRT-IF, 3D-CRT-ENI, IMRT-IF, IMRT-ENI). ENI included a boost irradiation after 50 Gy. For each plan, maximum dose escalation was calculated based on prespecified normal tissue constraints. The maximum prescription dose (PD), tumor control probability (TCP), conformal indices (CI), and normal tissue complication probabilities (NTCP) were analyzed. IMRT resulted in statistically significant higher prescription doses for both target volume concepts as compared with 3D-CRT (ENI: 68.4 vs. 60.9 Gy, p < 0.001; IF: 74.3 vs. 70.1 Gy, p < 0.03). With IMRT-IF, a PD of at least 66 Gy was achieved for 95 % of all plans. For IF as compared with ENI, there was a considerable theoretical increase in TCP (IMRT: 27.3 vs. 17.7 %, p < 0.00001; 3D-CRT: 20.2 vs. 9.9 %, p < 0.00001). The esophageal NTCP showed a particularly good sparing with IMRT vs. 3D-CRT (ENI: 12.3 vs. 30.9 % p < 0.0001; IF: 15.9 vs. 24.1 %; p < 0.001). The IMRT technique and IF target volume delineation allow a significant dose escalation and an increase in TCP. IMRT results in an improved sparing of OARs as compared with 3D-CRT at equivalent dose levels. (orig.) [German] Das Potenzial der intensitaetsmodulierten Strahlentherapie (IMRT) soll im Rahmen der FDG-PET basierten Bestrahlungsplanung des lokal fortgeschrittenen nichtkleinzelligen Bronchialkarzinoms (LA-NSCLC) fuer 2 Zielvolumenansaetze (Involved-Field-Bestrahlung, IF) sowie elektive Nodalbestrahlung (ENI) geprueft und mit der 3-D-konformalen Strahlentherapie (3-D

  17. Radiological response and dosimetry in physical phantom of head and neck for 3D conformational radiotherapy; Resposta radiologica e dosimetria em phantom fisico de cabeca e pescoco para radioterapia conformacional 3D

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larissa

    2013-07-01

    Phantoms are tools for simulation of organs and tissues of the human body in radiology and radiotherapy. This thesis describes the development, validation and, most importantly, the use of a physical head and neck phantom in radiology and radiotherapy, with the purpose of evaluating dose distribution using Gafchromic EBT2 film in 15 MV 3D conformal radiotherapy. The work was divided in two stages, (1) development of new equivalent tissues and improvement of the physical phantom, and (2) use of the physical phantom in experimental dosimetry studies. In phase (1) parameters such as mass density, chemical composition of tissues, anatomical and biometric measurements were considered, as well as aspects of imaging by computed tomography (CT) and radiological response representation in Hounsfield Units (HU), which were compared with human data. Radiological experiments of in-phantom simulated brain pathologies were also conducted. All those results matched human-sourced data, therefore the physical phantom is a suitable simulator that may be used to enhance radiological protocols and education in medical imaging. The main objective in phase (2) was to evaluate the spatial dose distribution in a brain tumor simulator inserted inside the head and neck phantom developed by the Ionizing Radiation Research Group (NRI), exposed to 15 MV 3D conformal radiotherapy, for internal dose assessment. Radiation planning was based on CT images of the physical phantom with a brain tumor simulator made with equivalent material. The treatment planning system (TPS), CAT3D software, used CT images and prescribed a dose of 200 cGy, distributed in three fields of radiation, in a T-shaped pattern. The TPS covered the planning treatment volume (PTV) with 97% of the prescribed dose. A solid water phantom and radiochromic Gafchromic EBT2 film were used for calibration procedures, generating a dose response curve as a function of optical density (OD). After calibration and irradiation, the film

  18. IMRT vs. 2D-radiotherapy or 3D-conformal radiotherapy of nasopharyngeal carcinoma. Survival outcome in a Korean multi-institutional retrospective study (KROG 11-06)

    International Nuclear Information System (INIS)

    We compared treatment outcomes of two-dimensional radiotherapy (2D-RT), three-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) in patients with nasopharyngeal carcinoma (NPC). In total, 1237 patients with cT1-4N0-3M0 NPC were retrospectively analyzed. Of these, 350, 390, and 497 were treated with 2D-RT, 3D-CRT, and IMRT, respectively. 3D-CRT and IMRT showed better 5-year overall survival (OS) rates (73.6 and 76.7 %, respectively) than did 2D-RT (5-year OS of 59.7 %, all p < 0.001). In T3-4 subgroup, IMRT was associated with a significantly better 5-year OS than was 2D-RT (70.7 vs. 50.4 %, respectively; p ≤ 0.001) and 3D-CRT (70.7 vs. 57.8 %, respectively; p = 0.011); however, the difference between the 2D-RT and 3D-CRT groups did not reach statistical significance (p = 0.063). In multivariate analyses of all patients, IMRT was a predictive factor for OS when compared with 2D-RT or 3D-CRT, as was 3D-CRT when compared with 2D-RT. Our study showed that 3D-CRT and IMRT were associated with a better local progression-free survival and OS than was 2D-RT in NPC. IMRT was significantly superior in terms of OS for advanced primary tumors (T3-4). (orig.)

  19. Comparing morbidity and cancer control after 3D-conformal (70/74 Gy) and intensity modulated radiotherapy (78/82 Gy) for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dolezel, Martin [Multiscan Alpha Pardubice Regional Hospital, Oncology Centre, Pardubice (Czech Republic); Charles University in Prague, First Faculty of Medicine, Prague (Czech Republic); Faculty of Medicine and Dentistry, Department of Oncology, Olomouc (Czech Republic); Odrazka, Karel [Multiscan Alpha Pardubice Regional Hospital, Oncology Centre, Pardubice (Czech Republic); Charles University in Prague, First Faculty of Medicine, Prague (Czech Republic); Charles University in Prague, Third Faculty of Medicine, Prague (Czech Republic); Zouhar, Milan; Jansa, Jan; Paluska, Petr [University Hospital Hradec Kralove, Department of Oncology and Radiotherapy, Hradec Kralove (Czech Republic); Vaculikova, Miloslava [Hospital Trutnov, Department of Oncology, Trutnov (Czech Republic); Sefrova, Jana [Hospital Prachatice, Department of Oncology, Prachatice (Czech Republic); Kohlova, Tereza [Proton Therapy Center, Prague (Czech Republic); Vanasek, Jaroslav [Multiscan Alpha Pardubice Regional Hospital, Oncology Centre, Pardubice (Czech Republic); Kovarik, Josef [The Freeman Hospital, Northern Centre for Cancer Care, Newcastle upon Tyne (United Kingdom)

    2015-04-01

    The purpose of this work was to compare toxicity and cancer control between patients with prostate cancer treated using three-dimensional conformal radiotherapy (3D-CRT) and those treated using intensity-modulated radiation therapy (IMRT). A total of 553 patients with prostate cancer were treated with 3D-CRT 70-74 Gy (3D-CRT 70, 3D-CRT 74) or IMRT 78-82 Gy (IMRT 78, IMRT/SIB 82). Late toxicity was scored according to FC-RTOG/LENT criteria. Biochemical failure was defined using the Phoenix and ASTRO definitions. The 5-year risk of grade 2-4 genitourinary toxicity was 26.3 % (3D-CRT 70), 27.2 % (3D-CRT 74), 17.3 % (IMRT 78), and 25.1 % (IMRT/SIB 82) without statistical differences. The 5-year risk of grade 2-4 gastrointestinal toxicity was 19.4 % (3D-CRT 70), 42.1 % (3D-CRT 74), 20.5 % (IMRT 78), and 26.6 % (IMRT/SIB 82). The differences between 3D-CRT 74 and 3D-CRT 70 and between 3D-CRT 74 and IMRT 78 were statistically significant (log rank p = 0.03). The 5-year Phoenix PSA relapse-free survival (PSA-RFS) in low-risk, intermediate-risk, and high-risk patients treated using 3D-CRT were 89.4, 65.5, and 57.8 %, respectively. Patients treated with IMRT achieved the following results: 90.9, 89.4, and 83.9 %. Clinical relapse-free survival (C-RFS) in patients treated using 3D-CRT vs. IMRT for the aforementioned groups were 94.7 vs. 100 %, 86.8 vs. 98.6 %, and 84.4 vs. 94.5 %. Disease-free survival (DFS) for patients treated using 3D-CRT were 83.1, 70.9, and 71.5 %. The IMRT group reached 95.8, 89.1, and 87.6 %. The PSA-RFS for intermediate- and high-risk patients were statistically significant, while C-RFS and DFS were marginally better. Dose escalation with IMRT was associated with improved cancer control in intermediate- and high-risk patients in comparison with 3D-CRT, without compromising toxicity. (orig.) [German] Es erfolgte ein Vergleich von Toxizitaet und Tumorkontrolle bei Patienten mit Prostatakarzinom nach der Behandlung mit dreidimensionaler konformaler

  20. Patterns of failure following 3-D conformal dose escalation radiotherapy for high grade astrocytomas - a quantitative dosimetric study

    International Nuclear Information System (INIS)

    Purpose: It is well known that the predominate pattern of failure of high grade astrocytomas is local recurrence. Using 3-dimensional conformal radiotherapy (3DCRT) high dose radiation can be delivered to a more precisely defined target while sparing normal tissue. However, if smaller target volumes are used to reduce morbidity, the risk for marginal misses may increase. The purpose of this study is to analyze the patterns of failure of high grade astrocytomas following high dose 3DCRT using a novel quantitative technique to calculate the dose received by the radiographically defined recurrence. Materials and Methods: From (4(89)) to (10(95)), 71 patients with supratentorial high grade astrocytomas have been entered in a dose escalation study. All patients were treated using 3DCRT to 70 - 80 Gy in conventional daily fractionation of 1.8 - 2.0 Gy. The clinical target volumes (CTV) consisted of successive cone downs with the final CTV defined as the enhancing lesion plus 0.5 cm margin. As of (10(95)), 45 patients have radiographic evidence of disease recurrence/progression. This is defined as 25% increase in the sum of products of measurable lesion over the smallest sum observed, reappearance of any lesion which had previously disappeared, or appearance of any new lesion. Of the 45 patients, 28 have recurrent scans (CT or MRI) that can be entered into our planning system and registered onto the treatment planning scans. Once the recurrent tumors were defined, dose volume histograms (DVHs) of the recurrent tumors were generated so that the dose delivered to the recurrent tumor volume from previous irradiation could be calculated. The recurrences were divided into 3 categories: 1) in-field recurrence, if ≥95% of the recurrence volume received ≥95% of the final prescribed dose, 2) marginal recurrence, if 26% - 94% of the recurrence volume received ≥95% of the final prescribed dose, and 3) distant recurrence, if ≤25% of the recurrence volume received ≥95% of

  1. Tracking the dynamic seroma cavity using fiducial markers in patients treated with accelerated partial breast irradiation using 3D conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Ning J.; Haffty, Bruce G.; Goyal, Sharad [Department of Radiation Oncology, Cancer Institute of New Jersey, UMDNJ/Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903 (United States); Kearney, Thomas; Kirstein, Laurie [Division of Surgical Oncology, Cancer Institute of New Jersey, UMDNJ/Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903 (United States); Chen Sining [Department of Biostatistics, Cancer Institute of New Jersey, UMDNJ/School of Public Health, New Brunswick, NJ 08901 (United States)

    2013-02-15

    Purpose: The purpose of the present study was to perform an analysis of the changes in the dynamic seroma cavity based on fiducial markers in early stage breast cancer patients treated with accelerated partial breast irradiation (APBI) using three-dimensional conformal external beam radiotherapy (3D-CRT). Methods: A prospective, single arm trial was designed to investigate the utility of gold fiducial markers in image guided APBI using 3D-CRT. At the time of lumpectomy, four to six suture-type gold fiducial markers were sutured to the walls of the cavity. Patients were treated with a fractionation scheme consisting of 15 fractions with a fractional dose of 333 cGy. Treatment design and planning followed NSABP/RTOG B-39 guidelines. During radiation treatment, daily kV imaging was performed and the markers were localized and tracked. The change in distance between fiducial markers was analyzed based on the planning CT and daily kV images. Results: Thirty-four patients were simulated at an average of 28 days after surgery, and started the treatment on an average of 39 days after surgery. The average intermarker distance (AiMD) between fiducial markers was strongly correlated to seroma volume. The average reduction in AiMD was 19.1% (range 0.0%-41.4%) and 10.8% (range 0.0%-35.6%) for all the patients between simulation and completion of radiotherapy, and between simulation and beginning of radiotherapy, respectively. The change of AiMD fits an exponential function with a half-life of seroma shrinkage. The average half-life for seroma shrinkage was 15 days. After accounting for the reduction which started to occur after surgery through CT simulation and treatment, radiation was found to have minimal impact on the distance change over the treatment course. Conclusions: Using the marker distance change as a surrogate for seroma volume, it appears that the seroma cavity experiences an exponential reduction in size. The change in seroma size has implications in the size of

  2. Comparison of toxicity after IMRT and 3D-conformal radiotherapy for patients with pancreatic cancer – A systematic review

    International Nuclear Information System (INIS)

    Summary: IMRT has been suggested to reduce treatment-related toxicity in pancreatic cancer. We attempted to identify all IMRT-studies indexed in PubMed/Medline, comparing them with recent 3D-CRT trials. The predominant treatment-related toxicities, namely nausea/vomiting, diarrhoea and late GI toxicity, are significantly reduced with IMRT while there was no apparent difference for outcome measures

  3. Factors of influence on acute skin toxicity of breast cancer patients treated with standard three-dimensional conformal radiotherapy (3D-CRT) after breast conserving surgery (BCS)

    International Nuclear Information System (INIS)

    Standard 3D-CRT after BCS may cause skin toxicity with a wide range of intensity including acute effects like erythema or late effects. In order to reduce these side effects it is mandatory to identify potential factors of influence in breast cancer patients undergoing standard three-dimensional conformal radiation therapy (3D-CRT) of the breast and modern systemic therapy. Between 2006 and 2010 a total of 211 breast cancer patients (median age 52,4 years, range 24–77) after BCS consecutively treated in our institution with 3D-CRT (50 Gy whole breast photon radiotherapy followed by 16 Gy electron boost to the tumorbed) were evaluated with special focus on documented skin toxicity at the end of the 50 Gy-course. Standardized photodocumentation of the treated breast was done in each patient lying on the linac table with arms elevated. Skin toxicity was documented according to the common toxicity criteria (CTC)-score. Potential influencing factors were classified in three groups: patient-specific (smoking, age, breast size, body mass index = BMI, allergies), tumor-specific (tumorsize) and treatment-specific factors (antihormonal therapy with tamoxifen or aromatase inhibitors, chemotherapy). Uni- and multivariate statistical analyses were done using IBM SPSS version 19. After 50 Gy 3D-CRT to the whole breast 28.9% of all 211 patients had no erythema, 62.2% showed erythema grade 1 (G1) and 8.5% erythema grade 2. None of the patients had grade 3/4 (G3/4) erythema. In univariate analyses a significant influence or trend on the development of acute skin toxicities (erythema G0 versus G1 versus G2) was observed for larger breast volumes (p=0,004), smoking during radiation therapy (p=0,064) and absence of allergies (p=0,014) as well as larger tumorsize (p=0,009) and antihormonal therapy (p=0.005). Neither patient age, BMI nor choice of chemotherapy showed any significant effect on higher grade toxicity. In the multivariate analysis, factors associated with higher grade

  4. IMRT vs. 2D-radiotherapy or 3D-conformal radiotherapy of nasopharyngeal carcinoma. Survival outcome in a Korean multi-institutional retrospective study (KROG 11-06)

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Ho; Cho, Kwan Ho [Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Ilsandong-gu, Goyang-si Gyeonggi-do (Korea, Republic of); Lee, Chang-Geol; Keum, Ki Chang [Yonsei University College of Medicine, Department of Radiation Oncology, Seodaemun-gu, Seoul (Korea, Republic of); Kim, Yeon-Sil [Seoul St. Mary' s Hospital, College of Medicine, the Catholic University of Korea, Department of Radiation Oncology, Seocho-gu, Seoul (Korea, Republic of); Wu, Hong-Gyun; Kim, Jin Ho [Seoul National University College of Medicine, Department of Radiation Oncology, Jongno-gu, Seoul (Korea, Republic of); Ahn, Yong Chan; Oh, Dongryul [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiation Oncology, Gangnam-gu, Seoul (Korea, Republic of); Lee, Jong Hoon [The Catholic University of Korea, College of Medicine, Department of Radiation Oncology, Paldal-gu, Suwon, Gyeonggi-do (Korea, Republic of)

    2016-06-15

    We compared treatment outcomes of two-dimensional radiotherapy (2D-RT), three-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) in patients with nasopharyngeal carcinoma (NPC). In total, 1237 patients with cT1-4N0-3M0 NPC were retrospectively analyzed. Of these, 350, 390, and 497 were treated with 2D-RT, 3D-CRT, and IMRT, respectively. 3D-CRT and IMRT showed better 5-year overall survival (OS) rates (73.6 and 76.7 %, respectively) than did 2D-RT (5-year OS of 59.7 %, all p < 0.001). In T3-4 subgroup, IMRT was associated with a significantly better 5-year OS than was 2D-RT (70.7 vs. 50.4 %, respectively; p ≤ 0.001) and 3D-CRT (70.7 vs. 57.8 %, respectively; p = 0.011); however, the difference between the 2D-RT and 3D-CRT groups did not reach statistical significance (p = 0.063). In multivariate analyses of all patients, IMRT was a predictive factor for OS when compared with 2D-RT or 3D-CRT, as was 3D-CRT when compared with 2D-RT. Our study showed that 3D-CRT and IMRT were associated with a better local progression-free survival and OS than was 2D-RT in NPC. IMRT was significantly superior in terms of OS for advanced primary tumors (T3-4). (orig.) [German] Wir verglichen die Behandlungsergebnisse von zweidimensionaler Strahlentherapie (2D-RT), dreidimensionaler konformer Strahlentherapie (3D-CRT) und intensitaetsmodulierter Strahlentherapie (IMRT) bei Patienten mit Nasopharynxkarzinom (NPC). Insgesamt 1237 Patienten mit NPC im Stadium cT1-4/N0-3/M0 wurden rueckwirkend analysiert. Von diesen wurden jeweils 350, 390 und 497 mit 2D-RT, 3D-CRT und IMRT behandelt. 3D-CRT und IMRT zeigten eine bessere 5-Jahres-Gesamtueberlebensrate (5y-OS; jeweils 73,6 und 76,7%) als 2D-RT (59,7%; alle p < 0,001). In der Untergruppe T3-4 war die IMRT mit einer erheblich besseren 5y-OS verbunden als 2D-RT (jeweils 70,7 vs. 50,4%; p ≤ 0,001) und 3D-CRT (jeweils 70,7 vs. 57,8%; p = 0,011); jedoch gab es keinen Unterschied zwischen den Gruppen 2D

  5. Phase Ⅰ/Ⅱ study of gemcitabine and oxaliplatin chemotherapy in combination with concurrent 3-D conformal radiotherapy for locally advanced non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    XU Feng; WANG Jin; SHEN Yali; ZHANG Hong; ZHOU Qinghua

    2006-01-01

    Background and objective Recent studies have showed that combination of chemotherapy and radiotherapy might result in better outcome for locally advanced non-small cell lung cancer (NSCLC). The aim of this study is to determine the maximal tolerance dose (MTD) and efficacy of full-dose gemcitabine and oxaliplatin when given concurrently with 3-dimentional radiation therapy (3D-RT) for locally advanced NSCLC. Methods Oxaliplatin was administered at a fixed dose of 130 mg/m2, and gemcitabine was administered at a starting dose of 800 mg/m2 with an incremental dose gradient of 200 mg/m2 for 3 dose levels. MTD was defined as the immediate dose level lower than the dose at which dose-limiting toxicity (DLT) occurred in more than one-third of the patients. The chemotherapy was administered at 3-week cycle. The RT was given as 3-D conformal manner at a single daily dose of 2 Gy for 5 days per week. Results Twenty-two patients were evaluable and distributed to three different dose levels: 6 at level 1, 8 at level 2 and 8 at level 3. Pulmonary toxicity, esophageal and hematologic toxicity were the main DLT. Grade Ⅲ acute pulmonary toxicity occurred in one patient each at level 2 and level 3, both with V20>20%, and grade Ⅲ esophagitis in two patients at level 3. The MTD of gemcitabine in this study was 1000 mg/m2. The overall response rate was 75.0% (9/12). The 1- and 2-year survival rate was 70.0% and 30.5% respectively. The median time to progression was 8.7 months (range 5--11.8 months). Conclusion With reduced radiation volume, gemcitabine of 1000 mg/m2 in combination with oxaliplatin of 130 mg/m2 was effective and could be safely administered for NSCLC.

  6. Irradiation of head-and-neck tumors with intensity modulated radiotherapy (IMRT). Comparison between two IMRT techniques with 3D conformal irradiation

    International Nuclear Information System (INIS)

    For 12 patients with inoperable head-neck carcinoma that were treated with 3D conformal irradiation techniques additional irradiation plans using IMRT were developed. It was shown that the IMRT techniques are superior to the 3D conformal technique. The new rapid arc technique is unclear with respect to the critical organs (parotid glands, spinal canal and mandibles) but is significantly advantageous for the other normal tissue with respect to conformity (steeper dose gradients) and thus radiation dose reduction. The resulting lower irradiation time and the reduced radiation exposure being important for the treatment economy and patients' comfort should favor the more planning intensive rapid arc technique.

  7. Comparison of rectal volume definition techniques and their influence on rectal toxicity in patients with prostate cancer treated with 3D conformal radiotherapy: a dose-volume analysis

    International Nuclear Information System (INIS)

    To evaluate the impact of four different rectum contouring techniques and rectal toxicities in patients with treated with 3D conformal radiotherapy (3DCRT). Clinical and dosimetric data were evaluated for 94 patients who received a total dose 3DCRT of 70 Gy, and rectal doses were compared in four different rectal contouring techniques: the prostate-containing CT sections (method 1); 1 cm above and below the planning target volume (PTV) (method 2); 110 mm starting from the anal verge (method 3); and from the anal verge to the sigmoid flexure (method 4). The percentage of rectal volume receiving RT doses (30–70 Gy) and minimum, mean rectal doses were assessed. Median age was 69 years. Percentage of rectal volume receiving high doses (≥ 70 Gy) were higher with the techniques that contoured smaller rectal volumes. In methods 2 and 3, the percentage of rectal volume receiving ≥ 70 Gy was significantly higher in patients with than without rectal bleeding (method 2: 30.8% vs. 22.5%, respectively (p = 0.03); method 3: 26.9% vs. 18.1%, respectively (p = 0.006)). Mean rectal dose was significant predictor of rectal bleeding only in method 3 (48.8 Gy in patients with bleeding vs. 44.4 Gy in patients without bleeding; p = 0.02). Different techniques of rectal contouring significantly influence the calculation of radiation doses to the rectum and the prediction of rectal toxicity. Rectal volume receiving higher doses (≥ 70 Gy) and mean rectal doses may significantly predict rectal bleeding for techniques contouring larger rectal volumes, as was in method 3

  8. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Jackie; Suttie, Clare; Bromley, Regina; Morgia, Marita; Lamoury, Gillian [Department of Radiation Oncology, Royal North Shore Hospital, St Leonards, New South Wales (Australia)

    2015-09-15

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with the 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D{sub 105%} and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT.

  9. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    International Nuclear Information System (INIS)

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with the 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D105% and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT

  10. PubChem3D: Conformer generation

    Directory of Open Access Journals (Sweden)

    Bolton Evan E

    2011-01-01

    Full Text Available Abstract Background PubChem, an open archive for the biological activities of small molecules, provides search and analysis tools to assist users in locating desired information. Many of these tools focus on the notion of chemical structure similarity at some level. PubChem3D enables similarity of chemical structure 3-D conformers to augment the existing similarity of 2-D chemical structure graphs. It is also desirable to relate theoretical 3-D descriptions of chemical structures to experimental biological activity. As such, it is important to be assured that the theoretical conformer models can reproduce experimentally determined bioactive conformations. In the present study, we investigate the effects of three primary conformer generation parameters (the fragment sampling rate, the energy window size, and force field variant upon the accuracy of theoretical conformer models, and determined optimal settings for PubChem3D conformer model generation and conformer sampling. Results Using the software package OMEGA from OpenEye Scientific Software, Inc., theoretical 3-D conformer models were generated for 25,972 small-molecule ligands, whose 3-D structures were experimentally determined. Different values for primary conformer generation parameters were systematically tested to find optimal settings. Employing a greater fragment sampling rate than the default did not improve the accuracy of the theoretical conformer model ensembles. An ever increasing energy window did increase the overall average accuracy, with rapid convergence observed at 10 kcal/mol and 15 kcal/mol for model building and torsion search, respectively; however, subsequent study showed that an energy threshold of 25 kcal/mol for torsion search resulted in slightly improved results for larger and more flexible structures. Exclusion of coulomb terms from the 94s variant of the Merck molecular force field (MMFF94s in the torsion search stage gave more accurate conformer models at

  11. 中上段食管癌3D-CRT与IMRT肺损伤剂量学的对比研究%Dosimetric Comparison of Intensity-modulated Radiotherapy Versus 3D Conformal Radiotherapy in Treatment of Cancer of Upper/Mid Esophagus

    Institute of Scientific and Technical Information of China (English)

    张莉; 罗辉

    2011-01-01

    Objective To compared 3D-conformal radiotherapy (3D-CRT)-induced and intensity-modulated radiotherapy (IMRT)-induced pulmonary injury by using 3D treatment planning system,and to explore the optimum treatment strategy for upper/mid esophageal carcinoma.Methods Eight patients with upper/mid esophageal carcinoma were selected in this study. Four different radiotherapy plans were developed for each patient,including 5-field 3D-CRT(CRT5),7-field 3D-CRT(CRT7), 5-field IMRT (IMRT5) and 7-field IMRT (IMRT7). The planning target volume (PTV) received at least 95% of the prescription dose. The mean lung dose (MLD),V5,V10,V20 and V30 were evaluated using dose volume histogram(DVH). All statistics were analyzed using the SPSS version 11.5 software. Results CRT5 plan reduced lung V10 compared with CRT7 (P=0. 006), but V5, V20, V30 and MLD were not different between the two plans(P>0. 008 3). There were no significant differences in lung parameters between IMRT5 and IMRT7.Compared with IMRT plans, V20, V30 and MLD were increased by 3D-CRT, while V5 was decreased by 3D-CRT(P<0. 0083). Conclusion Compared with 3D-CRT, IMRT can reduce the MLD,V20 and V30 to achieve lung sparing in treatment of upper/mid esophageal carcinoma.There were no significant differences in the protection of lung tissues between 5-field and 7-field techniques for both 3D-CRT and IMRT plans.%目的 应用三维适形放疗(3D-CRT)计划比较中上段食管鳞癌3D-CRT和调强放疗(IMRT)的放射性肺损伤情况从而探讨理想的治疗计划模式.方法 8例患者每例分别设计4个放疗计划(CRT-5 、CRT-7、IMRT-5及 IMRT-7),规定PTV至少达到95%处方剂量前提下用DVH评价每个计划的V5 、V10 、V20 、V30及肺 MLD.采用SPSS 11.5软件包进行数据统计与分析.结果 采用3D-CRT技术时,5野的V10优于7野(P=0.006);5野与7野的肺Mean、肺V5、V20、V30(P>0.0083)之间无统计学意义;采用IMRT技术时,5野与7野之间各参数的对

  12. Estimate of the damage in organs induced by neutrons in three-dimensional conformal radiotherapy; Estimacion del dano en organos inducido por neutrones en radioterapia conformada en 3D

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. L. [Centro Estatal de Cancerologia de Nayarit, Servicio de Seguridad Radiologica, Calzada de la Cruz 118 sur, 63000 Tepic, Nayarit (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Uribe, M. del R., E-mail: jlbenitesr@prodigy.net.mx [Instituto Tecnico Superior de Radiologia, Calle Leon No. 129, 63000 Tepic, Nayarit (Mexico)

    2014-08-15

    By means of Monte Carlo methods was considered the damage in the organs, induced by neutrons, of patients with cancer that receive treatment in modality of three-dimensional conformal radiotherapy (3D-CRT) with lineal accelerator Varian Ix. The objective of this work was to estimate the damage probability in radiotherapy patients, starting from the effective dose by neutrons in the organs and tissues out of the treatment region. For that a three-dimensional mannequin of equivalent tissue of 30 x 100 x 30 cm{sup 3} was modeled and spherical cells were distributed to estimate the Kerma in equivalent tissue and the absorbed dose by neutrons. With the absorbed dose the effective dose was calculated using the weighting factors for the organ type and radiation type. With the effective dose and the damage factors, considered in the ICRP 103, was considered the probability of damage induction in organs. (Author)

  13. 食管癌三维适形放疗与放化疗的疗效比较%ANALYSIS OF PROGNOSIS ON ESOPHAGEAL CARCINOMA PATIENTS WITH THREE -DIMENSIONAL CONFORMAL RADIOTHERAPY ( 3D -CRT ) ALONE OR RADIOTHERAPY COMBINED WITH CHEMOTHERAPY

    Institute of Scientific and Technical Information of China (English)

    邱嵘; 王玉祥; 祝淑钗; 田丹丹; 杨洁; 刘志坤

    2011-01-01

    目的 比较食管癌三维适形放疗与放化疗的疗效.方法 回顾性分析2001年1月-2007年8月接受三维适形放疗的184例食管癌患者的临床资料,其中118例行单纯放疗(单放组)、66例放疗联合化疗(放化组),比较2组疗效及预后因素.结果 单放组和放化组比较,CT显示食管肿瘤最大直径差异有统计学意义(P<0.05);而性别、年龄、病变部位、食管造影病变长度、放疗前进食状况、T分期、N分期、M分期、临床分期和放疗剂量均差异均无统计学意义(P>0.05).全组放疗后完全缓解61例、部分缓解112例、未缓解11例,总有效率(完全缓解+部分缓解)为94.02%;放化组近期疗效优于单放组(P<0.05),2组放射性食管炎和肺炎发生率差异无统计学意义(P>0.05).全组1、3、4年生存率分别为64.67%、33.77%和26.64%;中位生存期18.7个月.单放组与放化组比较生存率差异无统计学意义(P>0.05);但化疗>2周期者预后好于化疗1~2周期和未化疗者(P<0.05).年龄>63岁者放化组生存率明显高于单放组,而T3~4期放化组生存率低于单放组(P<0.05);颈及胸上段癌、T1~2、N0期、I~II期和放疗剂量≤64Gy组放化组生存率高于单放组,但差异无统计学意义(P>0.05);年龄≤63岁、放疗剂量>64Gy、胸中下段癌、N1~2、III~IV期、性别、食管造影显示病变长度和CT显示瘤体最大直径,放化组和单放组比较生存率差异无统计学意义(P>0.05).结论 食管癌三维适形放疗联合化疗2周期以上者可以提高局控率和生存率,而化疗1~2周期者未能获益;年龄较大者,三维适形放疗加化疗可以提高生存率;颈及胸上段癌、早期和放疗剂量较低者放化疗有提高生存率的趋势.%Objective To explore the prognosis of esophageal carcinoma patients which treated with three - dimensional conformal radiotherapy ( 3D - CRT )alone or radiotherapy combined with chemotherapy. Methods From

  14. Dose comparison between three planing prostate: 3-D conformational radiotherapy, coplanar arc therapy and non-coplanar arc therapy; Comparaison dosimetrique de trois balistiques prostatiques: radiotherapie conformationnelle tridimensionnelle, arctherapie coplanaire et arctherapie non-coplanaire

    Energy Technology Data Exchange (ETDEWEB)

    Voyant, C.; Baadj, A.; Biffi, K.; Leschi, D.; Lantieri, C. [Centre Hospitalier Dept. Castelluccio, Service de Radiotherapie, Ajaccio (France); Voyant, C. [Universite de Corse, Lab. SPE, CNRS-UMR 6134, Corte (France)

    2008-09-15

    Purpose: Comparative study between a classical conformational prostate radiotherapy (3 D.R.T.C.) and two arc therapy techniques, a coplanar (A.T.-C) and the other non-coplanar (A.T.-N.C.). Patients and Methods:The comparison has been made retrospectively on 30 patients with localized prostate cancer (T.2-T.3a, P.S.A. < 20 ng/ml, Gleason < 7). The objective criteria for comparison were the N.T.C.P., E.U.D., and dose volume (on D.V.H.), for the volumes of bladder wall, rectal wall, femoral heads, small bowel, prostate (P) and seminal vesicles (V.S.). The treatment was 46 Gy on P.T.V.1 (V.S. + P + margins), and then an overdose of 30 Gy on P.T.V.1 (P + margins). Results: For prostate volumes exceeding 75 cm{sup 3}, arc therapy leads to a decrease in uniformity in the target volume and an increase in the dose received by the femoral heads, this method does not seem appropriate. For prostate volumes less than 75 cm{sup 3}, in addition to the coverage almost tumor, and radiation toxicity equivalent to the bladder and the small intestine, there is a significant increase in the dose to the femoral heads, while the remaining is still within limits, such as clinically tolerable. The contribution of arc therapy is mainly observed at the level of rectal doses. The dose received by 30% of the rectum is reduced by - 12% for A.T.-C and - 11.7% for A.T-N.C., and E.U.D. rectum - 5.2% and - 4.8%. Conclusion: In this virtual study, the arc therapy seems to generate a true dose reduction in the rectum wall. These results encourage us to continue the investigation for a possible integration in a dynamic clinical routine. (authors)

  15. 胸上段食管癌3D-CRT与IMRT的剂量学比较%Dosimetric comparison between intensity-modulated radiotherapy and conformal radiotherapy for up-per thoracic esophageal carcinoma

    Institute of Scientific and Technical Information of China (English)

    刘粉霞; 翟倩倩; 孙晓东; 王慧涛; 张强; 王银亮

    2014-01-01

    均剂量、脊髓保护方面均优于3D-CRT技术;但是双肺低剂量照射区域有所增加,肺损伤的风险就有可能增大。%Objective To compare the dosimetry between three -dimensional conformal radiotherapy (3DCRT)and intensity -modulated radiotherapy(IMRT)in the treatment of upper thoracic esophageal carcino-ma,and to provide references to choose radiotherapy program for clinical physician .Methods twenty-five cases with upper esophageal carcinoma (clinical stageⅠ~Ⅲstage)were treated by 3DCRT and IMRT at the concentra three-dimensional radiation treatment planning system .The different exposure doses between target area and effected organs were compared by dose volume histogram ( DVH) with the planed target volume ( PTV) ,which must reach 95% of the prescriptive doses.Results Two different radiotherapy plans of IMRT and 3DCRT:V95, (99.91 ±0.14)%,(95.73 ±4.14)% respectively,P0.05;targeting minimum dose(Dmin)were(5 458.88 ±184.06) cGy,(4541.60 ±599.0)cGy,P0.05;Lung V10 (35.39 ±11.41)%,(29.0 ±8.80)%,P<0.05,Lung V5(44.95 ±15.55)%,(37.27 ±11.93)%,P<0.05. Conclusion Intensity-modulated radiotherapy is better than 3DCRT technology in showing PTV volume ,target conformal degrees and the mean index ,spinal cord protection ,However ,The risk of lung injury could be increased with the enlarged area of low -dose irradiation in lung .

  16. Radiotherapy for soft tissue sarcomas of extremities. Preliminary comparative dosimetric study of 3D conformal radiotherapy versus helical tomo-therapy; Radiotherapie postoperatoire des sarcomes des tissus mous des extremites. Etude dosimetrique preliminaire comparative de la radiotherapie conformationnelle avec la tomotherapie helicoidale

    Energy Technology Data Exchange (ETDEWEB)

    Donnay, L.; Dejean, C.; Amsellem, E.; Bourezgui, H.; Figueiredo, B.H. de; Duparc, A.; Caron, J.; Tournat, H.; Lagarde, P.; Kantor, G. [Centre Regional de Lutte Contre le Cancer, Dept. de Radiotherapie, 33 - Bordeaux (France); Stoeckle, E. [Centre Regional de Lutte Contre le Cancer, Dept. de Chirurgie, Institut Bergonie, 33 - Bordeaux (France)

    2008-12-15

    Purpose: To evaluate dosimetry of helical tomo-therapy versus three-dimensional conformal radiotherapy (3D-C.R.T.) with and without I.M.R.T. for the treatment of soft tissue sarcoma (S.T.S.) of the thigh. Methods and patients: A retrospective study was performed for three patients who received 3D-C.R.T. as adjuvant radiation therapy for S.T.S. of the thigh. These three patients had a tumor in posterior, adductor or anterior compartment of the thigh. In each case, three treatments plans were optimised in tomo-therapy, without bloc, with directional bloc and complete bloc of contralateral limb, to adequately treat the planning target volume and spare organ at risk. For each patient, we compare the three modalities of tomo-therapy or 'classical' I.M.R.T. from a Clinac with the 3D-C.R.T. actually performed for the treatment. Results: Tomo-therapy provides improved P.T.V. coverage and dose homogeneity. This benefit was comparable in the three tomo-therapy plans. The average D95% for tomo-therapy and 3D-C.R.T. were 97.6% and 94.8% respectively and the standard deviation is, at least, divided by two with conformal and is always better than performed with a Clinac. The volume of the surrounding soft tissues receiving at least full prescription and hot spots, as evaluated by D2%, were significantly reduced in tomo-therapy. Nevertheless, the results concerning the skin, the femur and the gonads were dependent on the tumor site in the thigh and not always improved with tomo-therapy dosimetric studies. (authors)

  17. Dosimetric impact of inter-observer variability for 3D conformal radiotherapy and volumetric modulated arc therapy: the rectal tumor target definition case

    International Nuclear Information System (INIS)

    To assess the dosimetric effect induced by inter-observer variability in target definition for 3D-conformal RT (3DCRT) and volumetric modulated arc therapy by RapidArc (RA) techniques for rectal cancer treatment. Ten patients with rectal cancer subjected to neo-adjuvant RT were randomly selected from the internal database. Four radiation oncologists independently contoured the clinical target volume (CTV) in blind mode. Planning target volume (PTV) was defined as CTV + 7 mm in the three directions. Afterwards, shared guidelines between radiation oncologists were introduced to give general criteria for the contouring of rectal target and the four radiation oncologists defined new CTV following the guidelines. For each patient, six intersections (I) and unions (U) volumes were calculated coupling the contours of the various oncologists. This was repeated for the contours drawn after the guidelines. Agreement Index (AI = I/U) was calculated pre and post guidelines. Two RT plans (one with 3DCRT technique using 3–4 fields and one with RA using a single modulated arc) were optimized on each radiation oncologist’s PTV. For each plan the PTV volume receiving at least 95% of the prescribed dose (PTV V95%) was calculated for both target and non-target PTVs. The inter-operator AI pre-guidelines was 0.57 and was increased up to 0.69 post-guidelines. The maximum volume difference between the various CTV couples, drawn for each patient, passed from 380 ± 147 cm3 to 137 ± 83 cm3 after the introduction of guidelines. The mean percentage for the non-target PTV V95% was 93.7 ± 9.2% before and 96.6 ± 4.9%after the introduction of guidelines for the 3DCRT, for RA the increase was more relevant, passing from 86.5 ± 13.8% (pre) to 94.5 ± 7.5% (post). The OARs were maximally spared with VMAT technique while the variability between pre and post guidelines was not relevant in both techniques. The contouring inter-observer variability has dosimetric effects in the PTV coverage

  18. 源皮距辅助对宫颈癌适形放疗摆位误差的影响%Influence of patient's SSD on set-up error of 3D conformal radiotherapy for fervical cancer

    Institute of Scientific and Technical Information of China (English)

    陈苏玮; 袁锋; 林志仁; 王献维

    2012-01-01

    Objective To investigate the possibility of reduce the sut-up error of 3-dimensional conformal radiotherapy for cervical cancer. Methods The 54 patients were divided into control group given validation pictures on the basis of 3D-CRT plan directly and observation group given validation pictures after observing Patient' s source-skin distance.The drift between two group s validation pictures and the digital reconstructed radiography(DRR) were compared and noted as X,Y,Z direction of set-up error expressed as △X, △Y and △Z, the total set-up error of 3d direction expressed as D2 = △X2+△Y2+△ Z2 . Results The set-up errors of control group in direction of X,Y and z were(2.5±2.0)mm,(5.7±3.5)mm and (3.2+2.5) mm, the total set-up error of 3d direction was(7.0±3.2)mm; The set-up errors of auxiliary group on X,Y, Z direction were (1.8+ 1.6)mm,(3.1+2.3)mm and (2.3+1.8)mm, total set-up error of 3d direction was (4.3±3.2)mm. Set-up error of two groups in the X, Y, Z direction and 3 direction were significantly different (P < 0.01). Conclusion The set-up error of 3D conformal radiotherapy for cervical cancer with observation of Patient' s source-skin distance auxiliary is convenient and suitable for clinical application.%目的 探讨宫颈癌三维适形放疗摆位时用源皮距实时辅助检测是否可以减小误差.方法 54例患者分为两组,制定3D-CRT计划,对照组摆位后直接拍摄验证片,辅助组在摆位时利用源皮距检测后再拍摄验证片,两组验证片分别与放疗计划的DRR图像比较,X、Y、Z方向上的误差记为△X、△Y和△Z,三维方向的总误差为D2=△X2+△Y2+△Z2.结果 对照组的摆位误差:△X、△Y和△Z为(2.5±2.0)mm、(5.7±3.5)mm和(3.2±2.5)mm,三维方向的总误差为(7.0±3.2)mm;辅助组的摆位误差:△X、△Y和△Z为(1.8±1.6)mm、(3.1±2.3)mm和Z方向(2.3±1.8)mm,三维方向的总误差为(4.3±3.2)mm.两组误差在X、Y、Z方向和三

  19. 三维适形放疗单用或与不同时段热疗联合治疗局部晚期非小细胞肺癌%Thermotherapy combined with 3-D conformal radiotherapy in different time and sequence in the treatment of locally advanced non-small-cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    刘仙明; 郭建平; 孙建刚; 周尔玺; 王晓燕

    2011-01-01

    目的:评价不同时段深部热疗联合三维适形放疗治疗局部晚期非小细胞肺癌(NSCLC)的临床疗效.方法:回顾性分析我院2006年9月~2010年3月采用三维适形放疗单用或与不同时段深部热疗联合治疗局部晚期 NSCLC患者 91例,其中,单纯行放疗组(A组)31例,放疗后即刻行热疗组(B组)37例,热疗后2 h行放疗组(C组)23例.完成治疗后0~2个月通过CT对近期疗效进行评价.结果:3组有效率分别为A组 51.6%,B组 75.7%和C组78.3%.B组与A组,C组与A组的有效率比较,差异有统计学意义(P0.05).结论:热疗联合三维适形放疗比单纯行三维适形放疗在治疗局部晚期NSCLC短期疗效上更具优势,而热疗联合放疗的时间和顺序对短期疗效无明显影响.%Objective: To evaluate the efficacy of thermotherapy combined with 3-D conformal radiotherapy in different time and sequence in the treatment of locally advanced non-small-cell lung cancer (NSCLC).Methods: 91 patients with locally advanced NSCLC were analyzed retrospectively, who were treated with 3-D conformal radiotherapy only or combined with thermotherapy in different time and sequence in our hospital from September 2006 to March 2010.31 patients were treated with 3-D conformal radiotherapy only (group A), 37 patients were treated with thermotherapy after 3-D conformal radiotherapy immediately (group B), 23 patients were treated with 3-D conformal radiotherapy after thermotherapy at an interval of about 2 hours (group C).The short-term effects were evaluated through CT scan after therapy of 0-2 months.Results: The effective rate of group A was 51.6%, and that of group B and group C was 75.7% and 78.3%, the differences between group A and B, group A and C were significant (P<0.05), and there was no significant difference between group B and C (P>0.05).Conclusion: The patients treated with thermotherapy combined with 3-D conformal radiotherapy can obtain better short-term effects than those

  20. Acurácia na reprodutibilidade do posicionamento diário de pacientes submetidos a radioterapia conformada (RT3D para câncer de próstata Accuracy in the reproducibility of daily patients' setup in 3D conformal radiotherapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    Adelmo José Giordani

    2010-08-01

    Full Text Available OBJETIVO: Avaliar a reprodutibilidade do posicionamento de pacientes com diagnóstico de câncer de próstata submetidos a radioterapia conformada. MATERIAIS E MÉTODOS: Foram avaliados 960 (posições anterior e lateral filmes radiológicos, de um total de 120 pacientes que receberam radioterapia conformada na próstata com técnica isocêntrica. As imagens foram obtidas em acelerador linear de partículas 6 MV. Aplicou-se protocolo específico para planejamento e tratamento da próstata, com o paciente em posição supina, mãos colocadas sobre o tórax, pés apoiados em suporte apropriado. Diariamente, os pacientes foram posicionados conforme demarcações na pele, coincidentes com os lasers da sala. Os filmes radiológicos foram comparados com as radiografias reconstruídas digitalmente (digitally reconstructed radiography - DRR em sistema de planejamento computadorizado Eclipse, a partir das tomografias. As radiografias de posicionamento foram realizadas no primeiro dia e após, semanalmente, até o término do tratamento. RESULTADOS: As médias dos deslocamentos observados foram de 1,99 ± 1,25 mm no sentido crânio-caudal, 1,37 ± 0,84 mm no látero-lateral e 1,94 ± 1,10 mm no ântero-posterior. CONCLUSÃO: O uso de protocolos específicos para posicionamento dos pacientes é possível na prática clínica, possibilita reprodutibilidade adequada e rápida correção dos possíveis erros.OBJECTIVE: To evaluate the reproducibility of daily patients' setup in 3D conformal radiotherapy for prostate cancer. MATERIALS AND METHODS: The present study evaluated a total of 960 radiological images (anterior and lateral views of 120 patients submitted to conformal radiotherapy for prostate cancer with the isocentric technique. A 6 MV particle accelerator was utilized in the process. A specific protocol for prostate radiotherapy planning and treatment was applied, with the patients placed in supine position, hands on the chest and legs placed on and

  1. Model-based risk assessment for motion effects in 3D radiotherapy of lung tumors

    Science.gov (United States)

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Handels, Heinz

    2012-02-01

    Although 4D CT imaging becomes available in an increasing number of radiotherapy facilities, 3D imaging and planning is still standard in current clinical practice. In particular for lung tumors, respiratory motion is a known source of uncertainty and should be accounted for during radiotherapy planning - which is difficult by using only a 3D planning CT. In this contribution, we propose applying a statistical lung motion model to predict patients' motion patterns and to estimate dosimetric motion effects in lung tumor radiotherapy if only 3D images are available. Being generated based on 4D CT images of patients with unimpaired lung motion, the model tends to overestimate lung tumor motion. It therefore promises conservative risk assessment regarding tumor dose coverage. This is exemplarily evaluated using treatment plans of lung tumor patients with different tumor motion patterns and for two treatment modalities (conventional 3D conformal radiotherapy and step-&- shoot intensity modulated radiotherapy). For the test cases, 4D CT images are available. Thus, also a standard registration-based 4D dose calculation is performed, which serves as reference to judge plausibility of the modelbased 4D dose calculation. It will be shown that, if combined with an additional simple patient-specific breathing surrogate measurement (here: spirometry), the model-based dose calculation provides reasonable risk assessment of respiratory motion effects.

  2. A neurosurgery/stereotactic radiotherapy dedicated PACS for conformal radiotherapy

    International Nuclear Information System (INIS)

    To realise conformal cerebral stereotactic irradiations we use a Neurosurgery/stereotactic dedicated PACS between two distant hospitals. It connects the stereotactic neurosurgery planification imaging system NEUROAXIS (Sopelem-Sofretec/Ste Anne Hospital) with the dosimetric TPS ARTEMIS-3D/Dosigray (Tenon Hospital). NEUROAXIS is a computer aided stereotactic biopsies and stereo-electroencephalographies, used by surgeons in operating room. The system determines the precise location data for Talairach radiological equipment (X ray source at 5 meters from film) and the geometry of scanner and MRI stereotactical referentials. It provides a full set of features for lesion localization, geometrical computations, surgical planifications, picture archiving, stereotactic angiography, CT and MRI image processing and networking. It sends images through the French public digital network ISDN (NUMERIS/France Telecom : 2x64 Kbits/s) from Ste Anne to Tenon Hospital. Stereotactic angiographic and CT images are reformatted into the DOSIGRAY image processing environment where 3-D dose distributions, displays and DVHs are computed to determine the optimal treatment. ARTEMIS-3D/Dosigray is a TPS for stereotactic radiotherapy devised by the Tenon Hospital for clinical methodology and 3D dose calculations, optimization software development and the Dosigray company for multimodality imaging, (2D(3D)) computer graphics for dose and anatomical representation and data networking. Communication within the radiation oncology department is provided by local area ETHERNET network, linking heterogeneous systems (Vaxstations-3200; Decstation (5000(240))) by means of different protocols. The works in progress are to send back via the same network the 3-D dose matrix to Neurosurgery department NEUROAXIS system. Our PACS is used since six months to treat patients. It has permitted to improve the treatment quality in comparison with our first version TPS ARTEMIS-3D

  3. Automatic respiration tracking for radiotherapy using optical 3D camera

    Science.gov (United States)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  4. Interim Cosmetic Results and Toxicity Using 3D Conformal External Beam Radiotherapy to Deliver Accelerated Partial Breast Irradiation in Patients With Early-Stage Breast Cancer Treated With Breast-Conserving Therapy

    International Nuclear Information System (INIS)

    Purpose: We present our ongoing clinical experience utilizing three-dimensional (3D)-conformal radiation therapy (3D-CRT) to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer treated with breast-conserving therapy. Methods and Materials: Ninety-one consecutive patients were treated with APBI using our previously reported 3D-CRT technique. The clinical target volume consisted of the lumpectomy cavity plus a 10- to 15 -mm margin. The prescribed dose was 34 or 38.5 Gy in 10 fractions given over 5 consecutive days. The median follow-up was 24 months. Twelve patients have been followed for ≥4 years, 20 for ≥3.5 years, 29 for >3.0 years, 33 for ≥2.5 years, and 46 for ≥2.0 years. Results: No local recurrences developed. Cosmetic results were rated as good/excellent in 100% of evaluable patients at ≥ 6 months (n = 47), 93% at 1 year (n = 43), 91% at 2 years (n = 21), and in 90% at ≥3 years (n = 10). Erythema, hyperpigmentation, breast edema, breast pain, telangiectasias, fibrosis, and fat necrosis were evaluated at 6, 24, and 36 months after treatment. All factors stabilized by 3 years posttreatment with grade I or II rates of 0%, 0%, 0%, 0%, 9%, 18%, and 9%, respectively. Only 2 patients (3%) developed grade III toxicity (breast pain), which resolved with time. Conclusions: Delivery of APBI with 3D-CRT resulted in minimal chronic (≥6 months) toxicity to date with good/excellent cosmetic results. Additional follow-up is needed to assess the long-term efficacy of this form of APBI

  5. Film dosimetry in conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Danciu, C.; Proimos, B.S. [Patras Univ. (Greece). Dept. of Medical Physics

    1995-12-01

    Dosimetry, through a film sandwiched in a transverse cross-section of a solid phantom, is a method of choice in Conformal Radiotherapy because: (a) the blackness (density) of the film at each point offers a measure of the total dose received at that point, and (b) the film is easily calibrated by exposing a film strip in the same cross-section, through a stationary field. The film must therefore have the following properties: (a) it must be slow, in order not to be overexposed, even at a therapeutic dose of 200 cGy, and (b) the response of the film (density versus dose curve) must be independent of the photon energy spectrum. A few slow films were compared. It was found that the Kodak X-Omat V for therapy verification was the best choice. To investigate whether the film response was independent of the photon energy, response curves for six depths, starting from the depth of maximum dose to the depth of 25 cm, in solid phantom were derived. The vertical beam was perpendicular to the anterior surface of the phantom, which was at the distance of 100 cm from the source and the field was 15x15 cm at that distance. This procedure was repeated for photon beams emitted by a Cobalt-60 unit, two 6 MV and 15 MV Linear Accelerators, as well as a 45 MV Betatron. For each of those four different beams the film response was the same for all six depths. The results, as shown in the diagrams, are very satisfactory. The response curve under a geometry similar to that actually applied, when the film is irradiated in a transverse cross-section of the phantom, was derived. The horizontal beam was almost parallel (angle of 85) to the plane of the film. The same was repeated with the central ray parallel to the film (angle 90) and at a distance of 1.5 cm from the horizontal film. The field size was again 15x15 at the lateral entrance surface of the beam. The response curves remained the same, as when the beam was perpendicular to the films.

  6. The choice of optimal radiotherapy technique for locally advanced maxillary carcinoma using 3d treatment planning system

    Directory of Open Access Journals (Sweden)

    Mileusnić Dušan

    2004-01-01

    Full Text Available Aim. To compare the isodose distribution of three radiotherapy techniques for locally advanced maxillary sinus carcinoma and analyze the potential of three-dimensional (3D conformal radiotherapy planning in order to determine the optimal technique for target dose delivery, and spare uninvolved healthy tissue structures. Methods. Computed tomography (CT scans of fourteen patients with T3-T4, N0, M0 maxillary sinus carcinoma were acquired and transferred to 3D treatment planning system (3D-TPS. The target volume and uninvolved dose limiting structures were contoured on axial CT slices throughout the volume of interest combining three variants of treatment plans (techniques for each patient: 1. A conventional two-dimensional (2D treatment plan with classically shaped one anterior two lateral opposite fields and two types of 3D conformal radiotherapy plans were compared for each patient. 2. Three-dimensional standard (3D-S plan one anterior + two lateral opposite coplanar fields, which outlines were shaped with multileaf collimator (MLC according to geometric information based on 3D reconstruction of target volume and organs at risk as seen in the beam eye's view (BEV projection. 3. Three-dimensional non-standard (3D-NS plan: one anterior + two lateral noncoplanar fields, which outlines were shaped in the same manner as in 3D-S plans. The planning parameters for target volumes and the degree of neurooptic structures and parotid glands protection were evaluated for all three techniques. Comparison of plans and treatment techniques was assessed by isodose distribution, dose statistics and dose-volume histograms. Results. The most enhanced conformity of the dose delivered to the target volume was achieved with 3D-NS technique, and significant differences were found comparing 3D-NS vs. 2D (Dmax: p<0,05 Daver: p<0,01; Dmin: p<0,05; V90: p<0,05, and V95: p<0,01, as well as 3D-NS vs. 3D-S technique (Dmin: p<0,05; V90: p<0,05, and V95: p<0,01, while there

  7. Accelerated partial breast irradiation using 3D conformal radiation therapy (3D-CRT)

    International Nuclear Information System (INIS)

    Purpose: We present a novel three-dimensional conformal radiation therapy (3D-CRT) technique to treat the lumpectomy cavity, plus a 1.5-cm margin, in patients with early-stage breast cancer and study its clinical feasibility. Methods and Materials: A 3D-CRT technique for partial-breast irradiation was developed using archived CT scans from 7 patients who underwent an active breathing control study. The clinical feasibility of this technique was then assessed in 9 patients who were prospectively enrolled on an Investigational Review Board-approved protocol of partial-breast irradiation. The prescribed dose was 34 Gy in 5 patients and 38.5 Gy in 4 patients, delivered in 10 fractions twice daily over 5 consecutive days. The impact of both breathing motion and patient setup uncertainty on clinical target volume (CTV) coverage was studied, and an appropriate CTV-to-PTV (planning target volume) margin was calculated. Results: By adding a CTV-to-PTV 'breathing-only' margin of 5 mm, 98%-100% of the CTV remained covered by the 95% isodose surface at the extremes of normal inhalation and normal exhalation. The 'total' CTV-to-PTV margin employed to accommodate organ motion and setup error (10 mm) was found to be sufficient to accommodate the observed uncertainty in the delivery precision. Patient tolerance was excellent, and acute toxicity was minimal. No skin changes were noted during treatment, and at the initial 4-8-week follow-up visit, only mild localized hyperpigmentation and/or erythema was observed. No instances of symptomatic radiation pneumonitis have occurred. Conclusions: Accelerated partial-breast irradiation using 3D-CRT is technically feasible, and acute toxicity to date has been minimal. A CTV-to-PTV margin of 10 mm seems to provide coverage for most patients. However, more patients and additional studies will be needed to validate the accuracy of this margin, and longer follow-up will be needed to assess acute and chronic toxicity, tumor control, and cosmetic

  8. Conformal radiotherapy of prostate carcinoma: Procedure description

    Directory of Open Access Journals (Sweden)

    Erak Marko

    2011-01-01

    Full Text Available Introduction. Today, three-dimensional conformal radiotherapy is a standard way in the radical treatment of localized prostate cancer, and it is an alternative to the radical prostatectomy. This method of radiotherapy treatment is widely accepted in the treatment of prostate cancer patients, and provides irradiation of targeted volume (prostate, seminal vesicles with dose escalation sparing the surrounding healthy tissues (rectum, bladder at the same time. That is not possible with the conventional twodimension technique. Procedure description. Three-dimensional conformal radiotherapy is a volumetric, visual simulation according to the computed tomography slices; it defines the tumour and organ at risk individually in each patient. Results of several studies have shown that there is a significant decrease in the development of acute toxicity when prostate cancer patients are treated with conformal radiotherapy. High dose irradiation gives excellent results in treatment of localized prostate carcinoma and improves treatment results in the patients with locally advanced carcinoma of prostate. Discussion. Prostate carcinoma irradiation techniques have been changed dramatically during recent years. Data obtained by computed tomography are important since the size and shapes of the prostate as well as its anatomic relations towards the rectum and bladder are considerably different in individual patients. The three-dimension plan of irradiation can be designed for each patient individually by performing computed tomography technique when planning radiotherapy. Conclusion. The advanced planning systems for conformal radiotherapy can reconstruct the anatomic structures of pelvis in three-dimension technique on the basis of computed tomography scans, which provides better conformality between the irradiation beam and geometrical shape of the tumour with minimal irradiation of the surrounding healthy tissue.

  9. Estimated risk of cardiovascular disease and secondary cancers with modern highly conformal radiotherapy for early-stage mediastinal Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Maraldo, M.V.; Brodin, Nils Patrik; Aznar, Marianne Camille;

    2013-01-01

    Hodgkin lymphoma (HL) survivors have an increased morbidity and mortality from secondary cancers and cardiovascular disease (CD). We evaluate doses with involved node radiotherapy (INRT) delivered as 3D conformal radiotherapy (3D CRT), volumetric modulated arc therapy (VMAT), or proton therapy (P...

  10. Accelerated partial breast irradiation using robotic radiotherapy: a dosimetric comparison with tomotherapy and three-dimensional conformal radiotherapy

    OpenAIRE

    Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David

    2016-01-01

    Background Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the no...

  11. A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    Foroudi Farshad

    2012-07-01

    Full Text Available Abstract Background To compare 3 Dimensional Conformal radiotherapy (3D-CRT with Intensity Modulated Radiotherapy (IMRT with Volumetric-Modulated Arc Therapy (VMAT for bladder cancer. Methods Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. Results Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293 for 3D-CRT; 824 (range 641–1083 for IMRT; and 403 (range 333–489 for VMAT (P  Conclusions VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours.

  12. Class solution to decrease rectal dose in prostate radiotherapy treatments 3D-CRT; Solucion de clase para disminuir dosis en recto en tratamientos de prostata con radioterapia 3D-CRT

    Energy Technology Data Exchange (ETDEWEB)

    Andres Rodriguez, C.; Tortosa Oliver, R.; Alonso Hernandez, D.; Mari Palacios, A.; Castillo Belmonte, A. del

    2011-07-01

    This paper contains a method developed in our center with conventional 3D radiotherapy techniques to increase the dose conformation around the target volume in prostate cancer treatments significantly reduced the doses to the rectum. To evaluate the goodness of the method, the results are compared with two classical techniques of treatment.

  13. Adjuvant radiotherapy for gallbladder cancer: A dosimetric comparison of conformal radiotherapy and intensity-modulated radiotherapy

    Institute of Scientific and Technical Information of China (English)

    Xiao-Nan Sun; Qi Wang; Ben-Xing Gu; Yan-Hong Zhu; Jian-Bin Hu; Guo-Zhi Shi; Shu Zheng

    2011-01-01

    AIM: To assess the efficacy and toxicity of conformal radiotherapy (CRT) and compare with intensity-modulated radiotherapy (IMRT) in the treatment of gallbladder cancer.METHODS: Between November 2003 and January 2010, 20 patients with gallbladder cancer were treated with CRT with or without chemotherapy after surgical resection. Preliminary survival data were collected and examined using both Kaplan-Meier and actuarial analysis. Demographic and treatment parameters were collected. All patients were planned to receive 46-56 Gy in 1.8 or 2.0 Gy per fraction. CRT planning was compared with IMRT.RESULTS: The most common reported acute toxicities requiring medication (Radiation Therapy Oncology Group, Radiation Therapy Oncology Group Grade2) were nausea (10/20 patients) and diarrhea (3/20).There were no treatment-related deaths. Compared with CRT planning, IMRT significantly reduced the volume of right kidney receiving > 20 Gy and the volume of liver receiving > 30 Gy. IMRT has a negligible impact on the volume of left kidney receiving > 20 Gy. The 95% of prescribed dose for a planning tumor volume using either 3D CRT or IMRT planning were 84.0% ±6.7%, 82.9% ± 6.1%, respectively (P > 0.05).CONCLUSION: IMRT achieves similar excellent target coverage as compared with CRT planning, while reducingthe mean liver dose and volume above threshold dose. IMRT offers better sparing of the right kidney compared with CRT planning, with a significantly lower mean dose and volume above threshold dose.

  14. Indications for quality assurance in conformal radiotherapy in Italy

    International Nuclear Information System (INIS)

    Intensity-Modulated Radiation Therapy (IMRT) is an advanced and promising technique of external beam irradiation. IMRT is able to conform the dose distribution to the 3D tumour shape also for complex geometries, preserving surrounding normal tissues and reducing the probability of side effects. IMRT is a time consuming and complex technique and its use demands high level quality assurance. It is, therefore, very important to define conditions for its utilization. Professionals of Radiotherapy Centres, with experience in the IMRT use, have constituted a multidisciplinary working group with the aim of developing indications in this field. Purpose of the present document is to highlight relevant aspects of the technique, but also to underline the high complexity of the technique, whose implementation requires extreme attention of the staff of Radiotherapy Centres involved

  15. Comparative study of convolution, superposition, and fast superposition algorithms in conventional radiotherapy, three-dimensional conformal radiotherapy, and intensity modulated radiotherapy techniques for various sites, done on CMS XIO planning system

    OpenAIRE

    Muralidhar K; Murthy Narayana; Raju Alluri; Sresty NVNM

    2009-01-01

    The aim of this study is to compare the dosimetry results that are obtained by using Convolution, Superposition and Fast Superposition algorithms in Conventional Radiotherapy, Three-Dimensional Conformal Radiotherapy (3D-CRT), and Intensity Modulated Radiotherapy (IMRT) for different sites, and to study the suitability of algorithms with respect to site and technique. For each of the Conventional, 3D-CRT, and IMRT techniques, four different sites, namely, Lung, Esophagus, Prostate, and Hypoph...

  16. Análise comparativa dos histogramas de dose e volume entre planejamentos tridimensionais conformados e convencionais não conformados na radioterapia do câncer de próstata Comparative analysis of dose-volume histograms between 3D conformal and conventional non-conformal radiotherapy plannings for prostate cancer

    Directory of Open Access Journals (Sweden)

    Sílvia Moreira Feitosa

    2009-04-01

    Full Text Available OBJETIVO: Analisar, comparativamente, doses de radiação em volumes alvos e órgãos de risco entre planejamentos conformados e não conformados em pacientes com câncer de próstata. MATERIAIS E MÉTODOS: No presente trabalho foram analisados planejamentos de 40 pacientes portadores de câncer de próstata. Foram realizados planejamentos conformados, não conformados isocêntricos e não conformados utilizando a distância fonte-superfície, simulados para cada caso, para comparação das doses em volumes alvos e órgãos de risco. Para a comparação foram analisados os histogramas de dose e volume para volumes alvos e órgãos de risco. RESULTADOS: As medianas das doses foram significativamente menores no planejamento conformado analisando-se os seguintes volumes no reto: 25%, 40% e 60%. As medianas das doses foram significativamente menores no planejamento conformado analisando-se os seguintes volumes na bexiga: 30% e 60%. As doses medianas foram significativamente menores no planejamento conformado analisando-se as articulações coxofemorais direita e esquerda. As doses máximas, médias e medianas no volume alvo clínico e no volume alvo planejado foram significativamente maiores no planejamento conformado. CONCLUSÃO: O presente estudo demonstrou que por meio do planejamento conformado em pacientes com câncer de próstata é possível entregar doses maiores no volume alvo e doses menores em órgãos de risco.OBJECTIVE: The present study was aimed at comparing conformal and non-conformal radiotherapy plans designed for patients with prostate cancer, by analyzing radiation doses in target volumes and organs at risk. MATERIALS AND METHODS: Radiotherapy plans for 40 patients with prostate cancer were analyzed. Conformal, conformal isocentric and non-conformal plans utilizing the source-surface distance were simulated for each of the patients for comparison of radiation dose in target volumes and organs at risk. For comparison purposes

  17. Evaluation of isocenter reproducibility in telemedicine of 3D-radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Saeko; Tsujino, Kayoko; Kimura, Kouji; Takada, Yoshiki; Hishikawa, Yoshio; Kono, Michio [Hyogo Medical Center for Adults, Akashi (Japan); Soejima, Toshinori; Kodama, Akihisa

    2000-09-01

    To evaluate the utility in telemedicine of Three-Dimensional Radiotherapy Treatment Planning (tele-3D-RTP) and to examine the accuracy of isocenter reproducibility in its offline trial. CT data of phantoms and patients in the satellite hospital were transferred to our hospital via floppy-disk and 3D-radiotherapy plans were generated by 3D-RTP computer in our hospital. Profile data of CT and treatment beams in the satellite hospital were pre-installed into the computer. Tele-3D-RTPs were performed in 3 phantom plans and 14 clinical plans for 13 patients. Planned isocenters were well reproduced, especially in the immobilized head and neck/brain tumor cases, whose 3D-vector of aberration was 1.96{+-}1.38 (SD) mm. This teletherapy system is well applicable for practical use and can provides cost-reduction through sharing the resources of expensive equipment and radiation oncologists. (author)

  18. The impact of flattening-filter-free beam technology on 3D conformal RT

    International Nuclear Information System (INIS)

    The removal of the flattening filter (FF) leads to non-uniform fluence distribution with a considerable increase in dose rate. It is possible to adapt FFF beams (flattening-filter-free) in 3D conformal radiation therapy (3D CRT) by using field in field techniques (FiF). The aim of this retrospective study is to clarify whether the quality of 3D CRT plans is influenced by the use of FFF beams. This study includes a total of 52 CT studies of RT locations that occur frequently in clinical practice. Dose volume targets were provided for the PTV of breast (n=13), neurocranium (n=11), lung (n=7), bone metastasis (n=10) and prostate (n=11) in line with ICRU report 50/62. 3D CRT planning was carried out using FiF methods. Two clinically utilized photon energies are used for a Siemens ARTISTE linear accelerator in FFF mode at 7MVFFF and 11MVFFF as well as in FF mode at 6MVFF and 10MVFF. The plan quality in relation to the PTV coverage, OAR (organs at risk) and low dose burden as well as the 2D dosimetric verification is compared with FF plans. No significant differences were found between FFF and FF plans in the mean dose for the PTV of breast, lung, spine metastasis and prostate. The low dose parameters V5Gy and V10Gy display significant differences for FFF and FF plans in some subgroups. The DVH analysis of the OAR revealed some significant differences. Significantly more fields (1.9 – 4.5) were necessary in the use of FFF beams for each location (p<0.0001) in order to achieve PTV coverage. All the tested groups displayed significant increases (1.3 – 2.2 times) in the average number of necessary MU with the use of FFF beams (p<0.001). This study has shown that the exclusive use of a linear accelerator in FFF mode is feasible in 3D CRT. It was possible to realize RT plans in comparable quality in typical cases of clinical radiotherapy. The 2D dosimetric validation of the modulated fields verified the dose calculation and thus the correct reproduction of the

  19. A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    To compare 3 Dimensional Conformal radiotherapy (3D-CRT) with Intensity Modulated Radiotherapy (IMRT) with Volumetric-Modulated Arc Therapy (VMAT) for bladder cancer. Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB) of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI) index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI) index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293) for 3D-CRT; 824 (range 641–1083) for IMRT; and 403 (range 333–489) for VMAT (P < 0.05). Average treatment delivery time were 2:25min (range 2:01–3:09) for 3D-CRT; 4:39 (range 3:41–6:40) for IMRT; and 1:14 (range 1:13–1:14) for VMAT. In selected patients, the SIB did not result in a higher dose to small bowel or rectum. VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours

  20. Effects of multiple conformers per compound upon 3-D similarity search and bioassay data analysis

    Directory of Open Access Journals (Sweden)

    Kim Sunghwan

    2012-11-01

    Full Text Available Abstract Background To improve the utility of PubChem, a public repository containing biological activities of small molecules, the PubChem3D project adds computationally-derived three-dimensional (3-D descriptions to the small-molecule records contained in the PubChem Compound database and provides various search and analysis tools that exploit 3-D molecular similarity. Therefore, the efficient use of PubChem3D resources requires an understanding of the statistical and biological meaning of computed 3-D molecular similarity scores between molecules. Results The present study investigated effects of employing multiple conformers per compound upon the 3-D similarity scores between ten thousand randomly selected biologically-tested compounds (10-K set and between non-inactive compounds in a given biological assay (156-K set. When the “best-conformer-pair” approach, in which a 3-D similarity score between two compounds is represented by the greatest similarity score among all possible conformer pairs arising from a compound pair, was employed with ten diverse conformers per compound, the average 3-D similarity scores for the 10-K set increased by 0.11, 0.09, 0.15, 0.16, 0.07, and 0.18 for STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt, respectively, relative to the corresponding averages computed using a single conformer per compound. Interestingly, the best-conformer-pair approach also increased the average 3-D similarity scores for the non-inactive–non-inactive (NN pairs for a given assay, by comparable amounts to those for the random compound pairs, although some assays showed a pronounced increase in the per-assay NN-pair 3-D similarity scores, compared to the average increase for the random compound pairs. Conclusion These results suggest that the use of ten diverse conformers per compound in PubChem bioassay data analysis using 3-D molecular similarity is not expected to increase the separation of non

  1. Conformal Radiotherapy: Physics, Treatment Planning and Verification. Proceedings book

    Energy Technology Data Exchange (ETDEWEB)

    De Wagter, C. [ed.

    1995-12-01

    The goal of conformal radiotherapy is to establish radiation dose distributions that conform tightly to the target volume in view of limiting radiation to normal tissues. Conformal radiotherapy significantly improves both local control and palliation and thus contributes to increase survival and to improve the quality of life. The subjects covered by the symposium include : (1) conformal radiotherapy and multi-leaf collimation; (2) three dimensional imaging; (3) treatment simulation, planning and optimization; (4) quality assurance; and (5) dosimetry. The book of proceedings contains the abstracts of the invited lectures, papers and poster presentations as well as the full papers of these contributions.

  2. Conformal Radiotherapy: Physics, Treatment Planning and Verification. Proceedings book

    International Nuclear Information System (INIS)

    The goal of conformal radiotherapy is to establish radiation dose distributions that conform tightly to the target volume in view of limiting radiation to normal tissues. Conformal radiotherapy significantly improves both local control and palliation and thus contributes to increase survival and to improve the quality of life. The subjects covered by the symposium include : (1) conformal radiotherapy and multi-leaf collimation; (2) three dimensional imaging; (3) treatment simulation, planning and optimization; (4) quality assurance; and (5) dosimetry. The book of proceedings contains the abstracts of the invited lectures, papers and poster presentations as well as the full papers of these contributions

  3. Intensity modulated radiotherapy in early stage Hodgkin lymphoma patients: Is it better than three dimensional conformal radiotherapy?

    OpenAIRE

    De Sanctis Vitaliana; Bolzan Chiara; D’Arienzo Marco; Bracci Stefano; Fanelli Alessandro; Cox Maria; Valeriani Maurizio; Osti Mattia F; Minniti Giuseppe; Chiacchiararelli Laura; Enrici Riccardo

    2012-01-01

    Abstract Background Cure rate of early Hodgkin Lymphoma are high and avoidance of late toxicities is of paramount importance. This comparative study aims to assess the normal tissue sparing capability of intensity-modulated radiation therapy (IMRT) versus standard three-dimensional conformal radiotherapy (3D-CRT) in terms of dose-volume parameters and normal tissue complication probability (NTCP) for different organs at risk in supradiaphragmatic Hodgkin Lymphoma (HL) patients. Methods Ten HL...

  4. Square root and logarithm of rotors in 3D conformal geometric algebra using polar decomposition

    NARCIS (Netherlands)

    L. Dorst; R.J. Valkenburg

    2011-01-01

    Conformal transformations are described by rotors in the conformal model of geometric algebra (CGA). In applications there is a need for interpolation of such transformations, especially for the subclass of 3D rigid body motions. This chapter gives explicit formulas for the square root and the logar

  5. Frog: a FRee Online druG 3D conformation generator.

    Science.gov (United States)

    Leite, T Bohme; Gomes, D; Miteva, M A; Chomilier, J; Villoutreix, B O; Tufféry, P

    2007-07-01

    In silico screening methods based on the 3D structures of the ligands or of the proteins have become an essential tool to facilitate the drug discovery process. To achieve such process, the 3D structures of the small chemical compounds have to be generated. In addition, for ligand-based screening computations or hierarchical structure-based screening projects involving a rigid-body docking step, it is necessary to generate multi-conformer 3D models for each input ligand to increase the efficiency of the search. However, most academic or commercial compound collections are delivered in 1D SMILES (simplified molecular input line entry system) format or in 2D SDF (structure data file), highlighting the need for free 1D/2D to 3D structure generators. Frog is an on-line service aimed at generating 3D conformations for drug-like compounds starting from their 1D or 2D descriptions. Given the atomic constitution of the molecules and connectivity information, Frog can identify the different unambiguous isomers corresponding to each compound, and generate single or multiple low-to-medium energy 3D conformations, using an assembly process that does not presently consider ring flexibility. Tests show that Frog is able to generate bioactive conformations close to those observed in crystallographic complexes. Frog can be accessed at http://bioserv.rpbs.jussieu.fr/Frog.html. PMID:17485475

  6. Metallic stent and stereotactic conformal radiotherapy for hilar cholangiocarcinoma

    International Nuclear Information System (INIS)

    Objective: To evaluate the effect of metallic stent combined with stereotactic conformal radiotherapy (SCRT) for hilar cholangiocarcinoma. Methods: Fifty-four patients with hilar cholangiocarcinoma were analyzed, including 31 treated with stent plus stereotactic conformal radiotherapy (combined group) and 23 with metallic stent alone (control group). Results: The mean survival time of combined group was 11.1 ± 4.6 months, compared with 5.1 ± 2.8 months of the control group, giving a significant difference between the two groups (P<0.01). Conclusion: The combination of metallic stent and stereotactic conformal radiotherapy is more effective than metallic stent alone for unresectable hilar cholangiocarcinoma. (authors)

  7. SU-E-T-393: Investigation of Hot Spots in Tomotherapy 3D Conformal Breast Plan

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q; Siebers, J; Khandelwal, S [University of Virginia, Charlottesville, VA (United States)

    2014-06-01

    Purpose: The purpose of this study is to determine the root-cause of hotspots inherent to Tomotherapy static beam 3D conformal radiotherapy (3DCRT) for breast treatment. ASTRO (ref here) recommends that IMRT be avoided for breast treatments. Despite Tomotherapy's inherent IMRT-like optimization and delivery, our experience at a Tomotherapy-only site has been that Tomotherapy 3DCRT fail to produce a clinically acceptable plan for 79% of our breast patients. Hot-spots have been one of the major obstacles. Methods: Eight lumpectomy patients were planned according to RTOG-1005 specification. Two or four tangential beams were used for 3DCRT breast planning. To spare the contralateral breast and ipsilateral lung, part of the PTV was not covered by the primary beam, yielding adjacent hot-spots. We hypothesize that the planning system creates hotspots adjacent to the cold spots to yield scatter radiation dose compensation in the blocked region. Various phantom and patient setup were used to test the hypothesis. Results: Hot spots outside of PTV in the range of 135% - 174% were observed for patient plan. It is confirmed that the PTV partial block causes the adjacent hot spot. The root cause is the optimizer quadratic objective function over- weighs improving the cold spot. The IMRT flexibility offered by Tomotherapy is counter-productive in static-beam 3DCRT breast treatment. For phantom case, as the Modulation-Factor increases from 1.1 to 5, the hot spot increases from 110% to 300%. Limiting the 3DCRT intensity modulation is shown to produce clinically acceptable plan. Conclusion: Most of the hot spots in Tomotherapy 3DCRT breast plan originate from the planning-system optimizer attempting to cover PTV cold spots rather than from the beam energy. Altering the objective function could improve clinical acceptability of static beam Tomotherapy 3DCRT.

  8. Applications of three-dimensional image correlation in conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Van Herk, M.; Gilhuijs, K.; Kwa, S.; Lebesque, J.; Muller, S.; De Munck, J.; Touw, A. [Nederlands Kanker Inst. `Antoni van Leeuwenhoekhuis`, Amsterdam (Netherlands); Kooy, H. [Harvard Medical School, Boston, MA (United States)

    1995-12-01

    The development of techniques for the registration of CT, MRI and SPECT creates new possibilities for improved target volume definition and quantitative image analysis. The discussed technique is based on chamfer matching and is suitable for automatic 3-D matching of CT with CT, CT with MRI, CT with SPECT and MRI with SPECT. By integrating CT with MRI, the diagnostic qualities of MRI are combined with the geometric accuracy of the planning CT. Significant differences in the delineation of the target volume for brain, head and neck and prostate tumors were demonstrated when using integrated CT and MRI compared with using CT alone. In addition, integration of the planning CT with pre-operative scans improves knowledge of possible tumor extents. By first matching scans based on the bony anatomy and subsequently matching on an organ of study, relative motion of the organ is quantified accurately. In a study with 42 CT scans of 11 patients, magnitude and causes of prostate motion were analysed. The most important motion of the prostate is a forward-backward rotation around a point near the apex caused by rectal volume difference. Significant correlations were also found between motion of the legs and the prostate. By integrating functional images made before and after radiotherapy with the planning CT, the relation between local change of lung function and delivered dose has been quantified accurately. The technique of chamfer matching is a convenient and more accurate alternative for the use of external markers in a CT/SPECT lung damage study. Also, damage visible in diagnostic scans can be related to radiation dose, thereby improving follow-up diagnostics. It can be concluded that 3-D image integration plays an important role in assessing and improving the accuracy of radiotherapy and is therefore indispensable for conformal therapy. However, user-friendly implementation of these techniques remains to be done to facilitate clinical application on a large scale.

  9. Frog2: Efficient 3D conformation ensemble generator for small compounds

    OpenAIRE

    Miteva, Maria A; Guyon, Frederic; Tufféry, Pierre

    2010-01-01

    Frog is a web tool dedicated to small compound 3D generation. Here we present the new version, Frog2, which allows the generation of conformation ensembles of small molecules starting from either 1D, 2D or 3D description of the compounds. From a compound description in one of the SMILES, SDF or mol2 formats, the server will return an ensemble of diverse conformers generated using a two stage Monte Carlo approach in the dihedral space. When starting from 1D or 2D description of compounds, Frog...

  10. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario

    Science.gov (United States)

    Yong, J.H.E.; McGowan, T.; Redmond-Misner, R.; Beca, J.; Warde, P.; Gutierrez, E.; Hoch, J.S.

    2016-01-01

    Background Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. Methods An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. Results From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Conclusions Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption. PMID:27330359

  11. 3D conformal planning using low segment multi-criteria IMRT optimization

    CERN Document Server

    Khan, Fazal

    2014-01-01

    Purpose: To evaluate automated multicriteria optimization (MCO)-- designed for intensity modulated radiation therapy (IMRT), but invoked with limited segmentation -- to efficiently produce high quality 3D conformal treatment (3D-CRT) plans. Methods: Ten patients previously planned with 3D-CRT were replanned with a low-segment inverse multicriteria optimized technique. The MCO-3D plans used the same number of beams, beam geometry and machine parameters of the corresponding 3D plans, but were limited to an energy of 6 MV. The MCO-3D plans were optimized using a fluence-based MCO IMRT algorithm and then, after MCO navigation, segmented with a low number of segments. The 3D and MCO-3D plans were compared by evaluating mean doses to individual organs at risk (OARs), mean doses to combined OARs, homogeneity indexes (HI), monitor units (MUs), physician preference, and qualitative assessments of planning time and plan customizability. Results: The MCO-3D plans significantly reduced the OAR mean doses and monitor unit...

  12. 3D surface imaging for guidance in breast cancer radiotherapy: organs at risk

    Science.gov (United States)

    Alderliesten, Tanja; Betgen, Anja; van Vliet-Vroegindeweij, Corine; Remeijer, Peter

    2013-03-01

    Purpose: To evaluate the variability in heart position in deep-inspiration breath-hold (DIBH) radiotherapy for breast cancer when 3D surface imaging would be used for monitoring the depth of the breath hold during treatment. Materials and Methods: Ten patients who received DIBH radiotherapy after breast-conserving surgery (BCS) were included. Retrospectively, heart-based registrations were performed for cone-beam computed tomography (CBCT) to planning CT and breast surface registrations were performed for a 3D surface (two different regions of interest [ROIs]), captured concurrently with CBCT, to planning CT. The resulting setup errors were compared with linear regression analysis and receiver operating characteristic (ROC) analysis was performed to investigate the prediction quality of 3D surface imaging for 3D heart displacement. Further, the residual setup errors (systematic [Σ] and random [σ]) of the heart were estimated relative to the surface registrations. Results: When surface imaging [ROIleft-side;ROIboth-sides] would be used for monitoring, the residual errors of the heart position are in left-right: Σ=[0.360.12], σ=[0.160.14] cranio-caudal: Σ=[0.540.54], σ=[0.280.31] and in anteriorposterior: Σ=[0.180.14], σ=[0.200.19] cm. Correlations between setup errors were: R2 = [0.23;0.73], [0.67;0.65], [0.65;0.73] in left-right, cranio-caudal, and anterior-posterior direction, respectively. ROC analysis resulted in an area under the ROC curve of [0.82;0.78]. Conclusion: The use of ROIboth-sides provided promising results. However, considerable variability in the heart position, particularly in CC direction, is observed when 3D surface imaging would be used for guidance in DIBH radiotherapy after BCS. Planning organ at risk volume margins should be used to take into account the heart-position variability.

  13. Factors influencing conformity index in radiotherapy for non-small cell lung cancer.

    Science.gov (United States)

    Brennan, Sinead M; Thirion, Pierre; Buckney, Steve; Shea, Carmel O; Armstrong, John

    2010-01-01

    The radiotherapy conformity index (CI) is a useful tool to quantitatively assess the quality of radiotherapy treatment plans, and represents the relationship between isodose distributions and target volume. A conformity index of unity implies high planning target volume (PTV) coverage and minimal unnecessary irradiation of surrounding tissues. We performed this analysis to describe the CI for lung cancer 3-dimensional conformal radiotherapy (3DCRT) and to identify clinical and technical determinants of CI, as it is not known which factors are associated with good quality 3D conformal radiotherapy treatment planning. Radiotherapy treatment plans from a database of 52 patients with inoperable Stage 1 to 3b lung cancer, on a hypofractionated 3DCRT trial were evaluated. A CI was calculated for all plans using the definition of the ICRU 62:CI = (TV/PTV), which is the quotient of the treated volume (TV) and the PTV. Data on patient, tumor, and planning variables, which could influence CI, were recorded and analyzed. Mean CI was 2.01 (range = 1.06-3.8). On univariate analysis, PTV (p = 0.023), number of beams (p = 0.036), medial vs. lateral tumor location (p = 0.016), and increasing tumor stage (p = 0.041) were associated with improved conformity. On multiple regression analysis, factors found to be associated with CI included central vs. peripheral tumor location (p = 0.041) and PTV size (p = 0.058). The term 3DCRT is used routinely in the literature, without any indication of the degree of conformality. We recommend routine reporting of conformity indices. Conformity indices may be affected by both planning variables and tumor factors.

  14. Factors influencing conformity index in radiotherapy for non-small cell lung cancer.

    LENUS (Irish Health Repository)

    Brennan, Sinead M

    2010-01-01

    The radiotherapy conformity index (CI) is a useful tool to quantitatively assess the quality of radiotherapy treatment plans, and represents the relationship between isodose distributions and target volume. A conformity index of unity implies high planning target volume (PTV) coverage and minimal unnecessary irradiation of surrounding tissues. We performed this analysis to describe the CI for lung cancer 3-dimensional conformal radiotherapy (3DCRT) and to identify clinical and technical determinants of CI, as it is not known which factors are associated with good quality 3D conformal radiotherapy treatment planning. Radiotherapy treatment plans from a database of 52 patients with inoperable Stage 1 to 3b lung cancer, on a hypofractionated 3DCRT trial were evaluated. A CI was calculated for all plans using the definition of the ICRU 62:CI = (TV\\/PTV), which is the quotient of the treated volume (TV) and the PTV. Data on patient, tumor, and planning variables, which could influence CI, were recorded and analyzed. Mean CI was 2.01 (range = 1.06-3.8). On univariate analysis, PTV (p = 0.023), number of beams (p = 0.036), medial vs. lateral tumor location (p = 0.016), and increasing tumor stage (p = 0.041) were associated with improved conformity. On multiple regression analysis, factors found to be associated with CI included central vs. peripheral tumor location (p = 0.041) and PTV size (p = 0.058). The term 3DCRT is used routinely in the literature, without any indication of the degree of conformality. We recommend routine reporting of conformity indices. Conformity indices may be affected by both planning variables and tumor factors.

  15. Algoritmo evolucionário para otimização do plano de tratamento em radioterapia conformal 3D

    Directory of Open Access Journals (Sweden)

    Marco César Goldbarg

    2009-08-01

    Full Text Available O planejamento do tratamento por radioterapia tem por objetivo atingir um volume alvo com altas doses de radiação tomando cuidado para não expor órgãos sadios a doses elevadas. É, portanto, muito importante que se encontre um balanço ideal entre esses objetivos conflitantes. O presente trabalho relata um modelo de programação matemática multiobjetivo e introduz um Algoritmo Transgenético para o problema de seleção do direcionamento dos feixes de radiação no planejamento em radioterapia conformal 3D. A seleção das direções dos feixes é feita através de uma técnica denominada de isocentros variáveis. Com a finalidade de testar o potencial do algoritmo desenvolvido, realiza-se um experimento comparativo com um Algoritmo Genético Multiobjetivo. O experimento computacional obtém dados quantitativos e qualitativos que são analisados no trabalho.The radiotherapy treatment planning aims to achieve a target volume with high doses of radiation taking care not to expose healthy organs to high doses. It is therefore very important to find an optimal balance between these conflicting goals. This paper reports a mathematical model of multiobjective programming and presents a Transgenetic Algorithm for the problem of selecting the direction of radiation beams in 3D conformal radiotherapy planning. The selection of beams directions is done with a technique called variable isocenters. In order to test the potential of the developed algorithm, a comparative experiment with a multiobjective genetic algorithm was done. The computational experiment obtains quantitative and qualitative data that are analyzed in this paper.

  16. SU-E-T-538: Lung SBRT Dosimetric Comparison of 3D Conformal and RapidArc Planning

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, R; Zhan, L; Osei, E [Grand River Hospital, Kitchener, ON (Canada)

    2015-06-15

    Purpose: Dose distributions of RapidArc Plan can be quite different from standard 3D conformal radiation therapy. SBRT plans can be optimized with high conformity or mimic the 3D conformal treatment planning with very high dose in the center of the tumor. This study quantifies the dosimetric differences among 3D conformal plan; flattened beam and FFF beam RapidArc Plans for lung SBRT. Methods: Five lung cancer patients treated with 3D non-coplanar SBRT were randomly selected. All the patients were CT scanned with 4DCT to determine the internal target volume. Abdominal compression was applied to minimize respiratory motion for SBRT patients. The prescription dose was 48 Gy in 4 fractions. The PTV coverage was optimized by two groups of objective function: one with high conformity, another mimicking 3D conformal dose distribution with high dose in the center of PTV. Optimization constraints were set to meet the criteria of the RTOG-0915 protocol. All VMAT plans were optimized with the RapidArc technique using four full arcs in Eclipse treatment planning system. The RapidArc SBRT plans with flattened 6MV beam and 6MV FFF beam were generated and dosimetric results were compared with the previous treated 3D non-coplanar plans. Results: All the RapidArc plans with flattened beam and FFF beam had similar results for the PTV and OARs. For the high conformity optimization group, The DVH of PTV exhibited a steep dose fall-off outside the PTV compared to the 3D non-coplanar plan. However, for the group mimicking the 3D conformal target dose distribution, although the PTV is very similar to the 3D conformal plan, the ITV coverage is better than 3D conformal plan. Conclusion: Due to excellent clinical experiences of 3D conformal SBRT treatment, the Rapid Arc optimization mimicking 3D conformal planning may be suggested for clinical use.

  17. Pelvic Ewing sarcomas. Three-dimensional conformal vs. intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mounessi, F.S.; Lehrich, P.; Haverkamp, U.; Eich, H.T. [Muenster Univ. (Germany). Dept. of Radiation Oncology; Willich, N. [Muenster Univ. (Germany). Dept. of Radiation Oncology; Universitaetsklinikum Muenster (Germany). RiSK - Registry for the Evaluation of Late Side Effects after Radiotherapy in Childhood and Adolescence; Boelling, T. [Center for Radiation Oncology, Osnabrueck (Germany)

    2013-04-15

    The goal of the present work was to assess the potential advantage of intensity-modulated radiotherapy (IMRT) over three-dimensional conformal radiotherapy (3D-CRT) planning in pelvic Ewing's sarcoma. A total of 8 patients with Ewing sarcoma of the pelvis undergoing radiotherapy were analyzed. Plans for 3D-CRT and IMRT were calculated for each patient. Dose coverage of the planning target volume (PTV), conformity and homogeneity indices, as well as further parameters were evaluated. Results The average dose coverage values for PTV were comparable in 3D-CRT and IMRT plans. Both techniques had a PTV coverage of V{sub 95} > 98 % in all patients. Whereas the IMRT plans achieved a higher conformity index compared to the 3D-CRT plans (conformity index 0.79 {+-} 0.12 vs. 0.54 {+-} 0.19, p = 0.012), the dose distribution across the target volumes was less homogeneous with IMRT planning than with 3D-CRT planning. This difference was statistically significant (homogeneity index 0.11 {+-} 0.03 vs. 0.07 {+-} 0.0, p = 0.035). For the bowel, D{sub mean} and D{sub 1%}, as well as V{sub 2} to V{sub 60} were reduced in IMRT plans. For the bladder and the rectum, there was no significant difference in D{sub mean}. However, the percentages of volumes receiving at least doses of 30, 40, 45, and 50 Gy (V{sub 30} to V{sub 50}) were lower for the rectum in IMRT plans. The volume of normal tissue receiving at least 2 Gy (V{sub 2}) was significantly higher in IMRT plans compared with 3D-CRT, whereas at high dose levels (V{sub 30}) it was significantly lower. Compared to 3D-CRT, IMRT showed significantly better results regarding dose conformity (p = 0.012) and bowel sparing at dose levels above 30 Gy (p = 0.012). Thus, dose escalation in the radiotherapy of pelvic Ewing's sarcoma can be more easily achieved using IMRT. (orig.)

  18. Selection of candidate wells and optimization of conformance treatment design in the Barrancas Field using a 3D conformance simulator

    Energy Technology Data Exchange (ETDEWEB)

    Crosta, Dante; Elitseche, Luis [Repsol YPF (Argentina); Gutierrez, Mauricio; Ansah, Joe; Everett, Don [Halliburton Argentina S.A., Buenos Aires (Argentina)

    2004-07-01

    Minimizing the amount of unwanted water production is an important goal at the Barrancas field. This paper describes a selection process for candidate injection wells that is part of a pilot conformance project aimed at improving vertical injection profiles, reducing water cut in producing wells, and improving ultimate oil recovery from this field. The well selection process is based on a review of limited reservoir information available for this field to determine inter-well communications. The methodology focuses on the best use of available information, such as production and injection history, well intervention files, open hole logs and injectivity surveys. After the candidate wells were selected and potential water injection channels were identified, conformance treatment design and future performance of wells in the selected pilot area were evaluated using a new 3 -D conformance simulator, developed specifically for optimization of the design and placement of unwanted fluid shut-off treatments. Thus, when acceptable history match ing of the pilot area production was obtained, the 3 -D simulator was used to: evaluate the required volume of selected conformance treatment fluid; review expected pressures and rates during placement;. model temperature behavior; evaluate placement techniques, and forecast water cut reduction and incremental oil recovery from the producers in this simulated section of the pilot area. This paper outlines a methodology for selecting candidate wells for conformance treatments. The method involves application of several engineering tools, an integral component of which is a user-friendly conformance simulator. The use of the simulator has minimized data preparation time and allows the running of sensitivity cases quickly to explore different possible scenarios that best represent the reservoir. The proposed methodology provides an efficient means of identifying conformance problems and designing optimized solutions for these individual

  19. Spanish patterns of care for 3D radiotherapy in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Purpose: Curative radiotherapy for non-small-cell lung cancer is a difficult challenge, despite the use of conformal radiotherapy. Optimal three-dimensional delineation of treatment volumes is essential for improvement of local control and for limiting of tissue toxicity. Material and Methods: A planning course on clinical practice of lung cancer was held in Barcelona. A questionnaire was given concerning (1) patient positioning, (2) planning-computed tomography scan, (3) accounting for tumor mobility, (4) investigative-procedure respiration-gated radiotherapy and breath-holding maneuvers, (5) generation of target volumes, (6) treatment planning, and (7) treatment delivery. This questionnaire was made to determine the Spanish application of European recommendations. Results: On the negative side, 1 hospital did not use three-dimensional tools, less than 50% used immobilization devices, and 55.6% used computed tomography slices of greater than 5 mm. On the positive side, 70.4% did not use standard margins for gross target volume derived from a computed tomography scan, 92.6% agreed with the inclusion of Naruke anatomic criteria of 1 cm or more in gross target volume planning, and 75% used V20 to estimate the risk of pneumonitis. Conclusions: This study is the first validation of European recommendations for treatment planning and execution of radiotherapy in lung cancer. The main conclusion is the need to improve the negative aspects determined

  20. Influences of Motion Artifacts on Three-Dimensional Reconstruction Volume and Conformal Radiotherapy Planning

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To investigate the influences of motion artifacts on three-dimensional (3D) reconstruction volume and conformal radiotherapy planning. Methods: A phantom which can mimic the clip motion of lung tumor along the cranial-caudal direction is constructed by step motor, small ball of polyethylene and potato. Ten different scan protocols were set and CT data of the phantom were acquired by using a commercial GE LightSpeed16 CT scanner. The 3D reconstruction of the CT data was implemented by adopting volume-rendering technology of GE AdvantageSim 6.0 system. The reconstructed volumes of each target in different scan protocols were measured through 3D measuring tools. Thus, relative deviations of the reconstruction volumes between moving targets and static ones were determined. The three-dimensional conformal radiation therapy (3DCRT) plans and conformal fields were created and compared for a static/moving target with the WiMRT treatment planning system (TPS). Results:For a static target, there was no obvious difference among the 3D reconstruction volumes when the CT data were acquired with different pitches and slices. The appearance of 3D reconstruction volume and 3D conformal field of a moving target was quite different from that of static one. The maximum relative deviation is nearly 90% for a moving target scanned with different scan protocols. The relative deviations are variable among the different targets, about from -39.8% to 89.5% for a smaller target and from -18.4% to 20.5% for a larger one.Conclusion:The motion artifacts have great effects on 3D-CRT planning and reconstruction volume, which will greatly induce distorted conformal radiation fields and false DVHs for a moving target.

  1. Virtual 3D tumor marking-exact intraoperative coordinate mapping improve post-operative radiotherapy

    Directory of Open Access Journals (Sweden)

    Essig Harald

    2011-11-01

    Full Text Available Abstract The quality of the interdisciplinary interface in oncological treatment between surgery, pathology and radiotherapy is mainly dependent on reliable anatomical three-dimensional (3D allocation of specimen and their context sensitive interpretation which defines further treatment protocols. Computer-assisted preoperative planning (CAPP allows for outlining macroscopical tumor size and margins. A new technique facilitates the 3D virtual marking and mapping of frozen sections and resection margins or important surgical intraoperative information. These data could be stored in DICOM format (Digital Imaging and Communication in Medicine in terms of augmented reality and transferred to communicate patient's specific tumor information (invasion to vessels and nerves, non-resectable tumor to oncologists, radiotherapists and pathologists.

  2. Conformal perturbation of off-critical correlators in the 3D Ising universality class

    CERN Document Server

    Caselle, Michele; Magnoli, Nicodemo

    2016-01-01

    Thanks to the impressive progress of conformal bootstrap methods we have now very precise estimates of both scaling dimensions and OPE coefficients for several 3D universality classes. We show how to use this information to obtain similarly precise estimates for off-critical correlators using conformal perturbation. We discuss in particular the $$, $$ and $$ two point functions in the high and low temperature regimes of the 3D Ising model and evaluate the leading and next to leading terms in the $s = t r^{\\Delta_{t}}$ expansion, where $t$ is the reduced temperature. Our results for $$ agree both with Monte Carlo simulations and with a set of experimental estimates of the critical scattering function.

  3. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    Science.gov (United States)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0–1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  4. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    Science.gov (United States)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  5. Preliminary results of 3-dimensional conformal radiotherapy for primary unresectable hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Ki Chang; Park, Hee Chul; Seong, Jin Sil; Chang, Sei Kyoung; Han, Kwang Hyub; Chon, Chae Yoon; Moon, Young Myoung; Kim, Gwi Eon; Suh, Chang Ok [Hallym University College of Medicine, Seoul (Korea, Republic of)

    2002-06-15

    The purpose of this study was to determine the potential role of three-dimensional conformal radiotherapy (3D-CRT) in the treatment of primary unresectable hepatocellular carcinoma. The preliminary results on the efficacy and the toxicity of 3D-CRT are reported. Seventeen patients were enrolled in this study, which was conducted prospectively from January 1995 to June 1997. The exclusion criteria included the presence of extrahepatic metastasis, liver cirrhosis of Child-Pugh classification C, tumors occupying more than two thirds of the entire liver, and a performance status of more than 3 on the ECOG scale. Two patients were treated with radiotherapy only while the remaining 15 were treated with combined transcatheter arterial chemoembolization. Radiotherapy was given to the field including the tumor plus a 1.5 cm margin using a 3D-CRT technique. The radiation dose ranged from 36 {approx} 60 Gy (median: 59.4 Gy). Tumor response was based on a radiological examination such as the CT scan, MR imaging, and hepatic artery angiography at 4 {approx} 8 weeks following the completion of treatment. The acute and subacute toxicities were monitored. An objective response was observed in 11 out of 17 patients, giving a response rate of 64.7%. The actuarial survival rate at 2 years was 21.2% from the start of radiotherapy (median survival; 19 months). Six patients developed a distant metastasis consisting of a lung metastasis in 5 patients and bone metastasis in one. The complications related to 3D-CRT were gastro-duodenitis ({>=} grade 2) in 2 patients. There were no treatment related deaths and radiation induced hepatitis. The preliminary results show that 3D-CRT is a reliable and effective treatment modality for primary unresectable hepatocellular carcinoma compared to other conventional modalities. Further studies to evaluate the definitive role of the 3D-CRT technique in the treatment of primary unresectable hepatocellular carcinoma are needed.

  6. Preliminary results of 3-dimensional conformal radiotherapy for primary unresectable hepatocellular carcinoma

    International Nuclear Information System (INIS)

    The purpose of this study was to determine the potential role of three-dimensional conformal radiotherapy (3D-CRT) in the treatment of primary unresectable hepatocellular carcinoma. The preliminary results on the efficacy and the toxicity of 3D-CRT are reported. Seventeen patients were enrolled in this study, which was conducted prospectively from January 1995 to June 1997. The exclusion criteria included the presence of extrahepatic metastasis, liver cirrhosis of Child-Pugh classification C, tumors occupying more than two thirds of the entire liver, and a performance status of more than 3 on the ECOG scale. Two patients were treated with radiotherapy only while the remaining 15 were treated with combined transcatheter arterial chemoembolization. Radiotherapy was given to the field including the tumor plus a 1.5 cm margin using a 3D-CRT technique. The radiation dose ranged from 36 ∼ 60 Gy (median: 59.4 Gy). Tumor response was based on a radiological examination such as the CT scan, MR imaging, and hepatic artery angiography at 4 ∼ 8 weeks following the completion of treatment. The acute and subacute toxicities were monitored. An objective response was observed in 11 out of 17 patients, giving a response rate of 64.7%. The actuarial survival rate at 2 years was 21.2% from the start of radiotherapy (median survival; 19 months). Six patients developed a distant metastasis consisting of a lung metastasis in 5 patients and bone metastasis in one. The complications related to 3D-CRT were gastro-duodenitis (≥ grade 2) in 2 patients. There were no treatment related deaths and radiation induced hepatitis. The preliminary results show that 3D-CRT is a reliable and effective treatment modality for primary unresectable hepatocellular carcinoma compared to other conventional modalities. Further studies to evaluate the definitive role of the 3D-CRT technique in the treatment of primary unresectable hepatocellular carcinoma are needed

  7. CONSERVATIVE TREATMENT IN LOCALLY AND LOCALLY-ADVANCED PROSTATE CANCER USING CONFORMAL RADIOTHERAPY

    Directory of Open Access Journals (Sweden)

    Tkachev Sergey Ivanovich

    2013-01-01

    Full Text Available The combination of androgen deprivation and radiotherapy increase the probability of diseases full regresses and survival rate. Modern technical and technological opportunities of 3D CRT allow to increase total dose to prostate up to 72-76Gy vs. radiotherapy of 66-70Gy. In this study we compare the rates of post radiation toxicity and the efficiency of treatment for the patients receiving conventional radiotherapy and 3D CRT. The use of 3D CRT has not only result to increase of 10-years recurrence free survival rate from 74% (I grope to 86,5% (II grope, р=0,01, but also to increase of 10-years overall survival, 70% versus 78,4% (р=0,04. The proposed version of conformal 3D CRT radiation therapy made ​​it possible compared to conventional 2D RT radiation therapy by increasing SOD radiation to the tumor, accuracy and compliance with the quality assurance of radiation therapy significantly reduce rates of recurrence and significantly increase the performance of 10-year overall and disease-free survival.

  8. Dosimetric Comparison of 3D Tangential Radiotherapy of Post-Lumpectomy Breast at Two Different Energies

    Directory of Open Access Journals (Sweden)

    Robab Anbiaee

    2011-06-01

    Full Text Available Introduction: Radiation therapy following breast conserving surgery is one of the most common procedures performed in any radiation oncology department. A tangential parallel-opposed pair is almost always the technique of choice for this purpose. This technique is often performed based on 3D treatment planning. The aim of this study was to compare 3D treatment planning for two different energies (Cobalt 60 versus 6 MV photon beams in tangential irradiation of breast conserving radiotherapy. In this comparison, homogeneity of isodoses within the breast volume and dose received by lungs were considered. Materials and Methods: In this study, twenty patients with breast cancer treated with conservative surgery were included. A CT scan was performed on selected patients. Three-dimensional treatment planning with 6 MV photon beams was carried out for patients on the  Eclipse 3D treatment planning system (TPS. The volumes receiving lower than 95% (Vol105 (hot areas of the reference dose, and the volume of lung receiving ≥30Gy (Vol≥30Gy were derived from dose volume histograms (DVHs. Dose homogeneity index was calculated as: DHI = 100 – (Vol>105 + Vol

  9. Concurrent gemcitabine and 3D radiotherapy in patients with stage III unresectable non-small cell lung cancer

    International Nuclear Information System (INIS)

    Stage III unresectable non-small cell lung cancer (NSCLC) is preferably treated with concurrent schedules of chemoradiotherapy, but none is clearly superior Gemcitabine is a radiosensitizing cytotoxic drug that has been studied in phase 1 and 2 studies in this setting. The aim of this study was to describe outcome and toxicity of low-dose weekly gemcitabine combined with concurrent 3-dimensional conformal radiotherapy (3D-CRT). Treatment consisted of two cycles of a cisplatin and gemcitabine followed by weekly gemcitabine 300 mg/m2 during 5 weeks of 3D-CRT, 60 Gy in 5 weeks (hypofractionated-accelerated). Overall survival (OS), progression-free survival (PFS), and treatment related toxicity according to Common Toxicity Criteria of Adverse Events (CTCAE) version 3.0 were assessed. Between February 2002 and August 2008, 318 patients were treated. Median age was 64 years (range 36–86); 72% were male, WHO PS 0/1/2 was 44/53/3%. Median PFS was 15.5 months (95% confidence interval [CI], 12.9-18.1) and median OS was 24.6 months (95% CI., 21.0-28.1). Main toxicity (CTCAE grade ≥3) was dysphagia (12.6%), esophagitis (9.6%), followed by radiation pneumonitis (3.0%). There were five treatment related deaths (1.6%), two due to esophagitis and three due to radiation pneumonitis. Concurrent low-dose gemcitabine and 3D-CRT provides a comparable survival and toxicity profile to other available treatment schemes for unresectable stage III

  10. 3D Pattern Synthesis of Time-Modulated Conformal Arrays with a Multiobjective Optimization Approach

    Directory of Open Access Journals (Sweden)

    Wentao Li

    2014-01-01

    Full Text Available This paper addresses the synthesis of the three-dimensional (3D radiation patterns of the time-modulated conformal arrays. Due to the nature of periodic time modulation, harmonic radiation patterns are generated at the multiples of the modulation frequency in time-modulated arrays. Thus, the optimization goal of the time-modulated conformal array includes the optimization of the sidelobe level at the operating frequency and the sideband levels (SBLs at the harmonic frequency, and the design can be regarded as a multiobjective problem. The multiobjective particle swarm optimization (MOPSO is applied to optimize the switch-on instants and pulse durations of the time-modulated conformal array. To significantly reduce the optimization variables, the modified Bernstein polynomial is employed in the synthesis process. Furthermore, dual polarized patch antenna is designed as radiator to achieve low cross-polarization level during the beam scanning. A 12 × 13 (156-element conical conformal microstrip array is simulated to demonstrate the proposed synthesis mechanism, and good results reveal the promising ability of the proposed algorithm in solving the synthesis of the time-modulated conformal arrays problem.

  11. Intensity-Modulated Radiotherapy Might Increase Pneumonitis Risk Relative to Three-Dimensional Conformal Radiotherapy in Patients Receiving Combined Chemotherapy and Radiotherapy: A Modeling Study of Dose Dumping

    International Nuclear Information System (INIS)

    Purpose: To model the possible interaction between cytotoxic chemotherapy and the radiation dose distribution with respect to the risk of radiation pneumonitis. Methods and Materials: A total of 18 non-small-cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for the present modeling study. Three treatment plans were considered: the delivered tomotherapy plans; a three-dimensional conformal radiotherapy (3D-CRT) plan; and a fixed-field intensity-modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for the present study. The plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeled as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose added to all voxels of the organ at risk. The risk of radiation pneumonitis was estimated for all plans using the Lyman and the critical volume models. Results: For radiotherapy alone, the critical volume model predicts that the two IMRT plans are associated with a lower risk of radiation pneumonitis than the 3D-CRT plan. However, when the chemotherapy equivalent radiation dose exceeds a certain threshold, the radiation pneumonitis risk after IMRT is greater than after 3D-CRT. This threshold dose is in the range estimated from clinical chemoradiotherapy data sets. Conclusions: Cytotoxic chemotherapy might affect the relative merit of competing radiotherapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and the radiation dose distribution in clinical settings.

  12. Influence of CT/MRI Fusion Image on Target Volume and 3-D Conformal Radiotherapy in Non-small Cell Lung Cancer with Brain Metastasis%CT/MRI诊断影像融合对非小细胞肺癌脑转移瘤靶区及三维适形治疗影响

    Institute of Scientific and Technical Information of China (English)

    杨金山; 魏永兵; 侯超; 李静; 朱瑞霞

    2014-01-01

    目的:比较CT图像和CT/MRI融合图像来源的肺癌脑转移肿瘤靶区,评价CT/MRI融合靶区容积应用于三维适形放射治疗时,对治疗剂量的影响。方法:将20例非小细胞肺癌脑转移患者的增强CT和MRI扫描的图像传送至图像处理工作站,在CT和CT/MRI融合图像上分别勾画GTV和周围重要的器官。每个病例分别在CT图像和CT/MRI融合图像都做1个三维适形放射治疗计划。肿瘤的处方剂量为60 Gy,比较2个治疗计划中肿瘤靶区的95%容积(D95)受照平均剂量、周围正常组织的5%容积(D5)受照平均剂量。结果:CT/MRI融合图像上的肿瘤靶区平均比CT上的肿瘤靶区大21.32%。用CT上勾画的靶区有一部分肿瘤处于低剂量区,CT/MRI融合图像上的靶区D95剂量分布较好,但在周围重要器官的剂量分布较高。结论:CT/MRI融合图像有助于靶区的确定,在三维适形放射治疗计划上的肿瘤靶区剂量分布足够,能提高靶区勾画的准确性,更利于精确放疗的实施。%Objective:To compare the CT images and CT/MRI images fusion sources of lung cancer with brain metastasis tumor target,and to evaluae the effects of dose for treatment on target volume CT/MRI fusion for three-dimensional conformal radiotherapy. Method:The enhancement CT and MRI scan image of 20 patients with brain metastases from non-small cell lung cancer was transfer to image processing workstation,GTV and surrounding vital organs on CT and CT/MRI images fusion was delineated respectively. A three-dimensional conformal radiotherapy plan was done in CT images and CT/MRI fusion images of ach case. Tumor prescription dose was 60 Gy. Compared the average dose of the 95%volume(D95)tumor target,the average dose of the 5%of the normal tissue around of the two treatment plans. Result:The tumor targets of the CT/MRI images fusion was greater than those of the CT tumor targets on average 21.32%. A part of the tumor was

  13. Fast 3D Pattern Synthesis with Polarization and Dynamic Range Ratio Control for Conformal Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Massimiliano Comisso

    2014-01-01

    Full Text Available This paper proposes an iterative algorithm for the 3D synthesis of the electric far-field pattern of a conformal antenna array in the presence of requirements on both the polarization and the dynamic range ratio (DRR of the excitations. Thanks to the use of selectable weights, the algorithm allows a versatile control of the DRR and of the polarization in a given angular region and requires a low CPU time to provide the array excitations. Furthermore, a modified version of the algorithm is developed to enable the optimization of the polarization state by phase-only control. Numerical results are presented to verify the usefulness of the proposed approach for the joint pattern and polarization synthesis of conformal arrays with reduced or even unitary DRR.

  14. Intensity modulated radiotherapy as neoadjuvant chemoradiation for the treatment of patients with locally advanced pancreatic cancer. Outcome analysis and comparison with a 3D-treated patient cohort

    Energy Technology Data Exchange (ETDEWEB)

    Combs, S.E.; Habermehl, D.; Kessel, K.; Brecht, I. [Univ. Hospital of Heidelberg (Germany). Dept. of Radiation Oncology; Bergmann, F.; Schirmacher, P. [Univ. Hospital of Heidelberg (Germany). Dept. of Pathology; Werner, J.; Buechler, M.W. [Univ. Hospital of Heidelberg (Germany). Dept. of Surgery; Jaeger, D. [National Center for Tumor Diseases (NCT), Heidelberg (Germany); Debus, J. [Univ. Hospital of Heidelberg (Germany). Dept. of Radiation Oncology; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Radiation Oncology

    2013-09-15

    Background: To evaluate outcome after intensity modulated radiotherapy (IMRT) compared to 3D conformal radiotherapy (3D-RT) as neoadjuvant treatment in patients with locally advanced pancreatic cancer (LAPC). Materials and methods: In total, 57 patients with LAPC were treated with IMRT and chemotherapy. A median total dose of 45 Gy to the PTV {sub baseplan} and 54 Gy to the PTV {sub boost} in single doses of 1.8 Gy for the PTV {sub baseplan} and median single doses of 2.2 Gy in the PTV {sub boost} were applied. Outcomes were evaluated and compared to a large cohort of patients treated with 3D-RT. Results: Overall treatment was well tolerated in all patients and IMRT could be completed without interruptions. Median overall survival was 11 months (range 5-37.5 months). Actuarial overall survival at 12 and 24 months was 36 % and 8 %, respectively. A significant impact on overall survival could only be observed for a decrease in CA 19-9 during treatment, patients with less pre-treatment CA 19-9 than the median, as well as weight loss during treatment. Local progression-free survival was 79 % after 6 months, 39 % after 12 months, and 13 % after 24 months. No factors significantly influencing local progression-free survival could be identified. There was no difference in overall and progression-free survival between 3D-RT and IMRT. Secondary resectability was similar in both groups (26 % vs. 28 %). Toxicity was comparable and consisted mainly of hematological toxicity due to chemotherapy. Conclusion: IMRT leads to a comparable outcome compared to 3D-RT in patients with LAPC. In the future, the improved dose distribution, as well as advances in image-guided radiotherapy (IGRT) techniques, may improve the use of IMRT in local dose escalation strategies to potentially improve outcome. (orig.)

  15. Dosimetric comparison of three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and helical tomotherapy for lung stereotactic body radiotherapy

    OpenAIRE

    Rajesh Ashok Kinhikar; Ghadi, Yogesh G.; Priyadarshini Sahoo; Sarbani Ghosh Laskar; Deshpande, Deepak D; Shrivastava, Shyam K.; Jaiprakash Agarwal

    2015-01-01

    To compare the treatment plans generated with three-dimensional conformal radiation therapy (3DCRT), intensity modulated radiotherapy (IMRT), and helical tomotherapy (HT) for stereotactic body radiotherapy of lung, twenty patients with medically inoperable (early nonsmall cell lung cancer) were retrospectively reviewed for dosimetric evaluation of treatment delivery techniques (3DCRT, IMRT, and HT). A dose of 6 Gy per fraction in 8 fractions was prescribed to deliver 95% of the prescription d...

  16. Volumetric modulated arc planning for lung stereotactic body radiotherapy using conventional and unflattened photon beams: a dosimetric comparison with 3D technique

    International Nuclear Information System (INIS)

    Frequently, three-dimensional (3D) conformal beams are used in lung cancer stereotactic body radiotherapy (SBRT). Recently, volumetric modulated arc therapy (VMAT) was introduced as a new treatment modality. VMAT techniques shorten delivery time, reducing the possibility of intrafraction target motion. However dose distributions can be quite different from standard 3D therapy. This study quantifies those differences, with focus on VMAT plans using unflattened photon beams. A total of 15 lung cancer patients previously treated with 3D or VMAT SBRT were randomly selected. For each patient, non-coplanar 3D, coplanar and non-coplanar VMAT and flattening filter free VMAT (FFF-VMAT) plans were generated to meet the same objectives with 50 Gy covering 95% of the PTV. Two dynamic arcs were used in each VMAT plan. The couch was set at ± 5° to the 0° straight position for the two non-coplanar arcs. Pinnacle version 9.0 (Philips Radiation Oncology, Fitchburg WI) treatment planning system with VMAT capabilities was used. We analyzed the conformity index (CI), which is the ratio of the total volume receiving at least the prescription dose to the target volume receiving at least the prescription dose; the conformity number (CN) which is the ratio of the target coverage to CI; and the gradient index (GI) which is the ratio of the volume of 50% of the prescription isodose to the volume of the prescription isodose; as well as the V20, V5, and mean lung dose (MLD). Paired non-parametric analysis of variance tests with post-tests were performed to examine the statistical significance of the differences of the dosimetric indices. Dosimetric indices CI, CN and MLD all show statistically significant improvement for all studied VMAT techniques compared with 3D plans (p < 0.05). V5 and V20 show statistically significant improvement for the FFF-VMAT plans compared with 3D (p < 0.001). GI is improved for the FFF-VMAT and the non-coplanar VMAT plans (p < 0.01 and p < 0.05 respectively

  17. Dosimetry comparison of irradiation with conformal radiotherapy, intensity modulated radiotherapy, conformal radiotherapy in stereotactic conditions and robotic stereotactic radiotherapy for benign brain tumours; Comparaison dosimetrique de la radiotherapie conformationnelle, la radiotherapie conformationnelle avec modulation d'intensite, la radiotherapie conformationnelle en conditions stereotaxiques et la radiotherapie en conditions stereotaxiques robotisee des tumeurs cerebrales benignes

    Energy Technology Data Exchange (ETDEWEB)

    Spasic, E.; Noel, A. [Departement de radiophysique, centre Alexis-Vautrin, avenue de Bourgogne, 54511 Vandoeuvre-les-Nancy cedex (France); UMR 7039 CNRS, centre de recherche en automatique de Nancy (Cran), BP 239, 54506 Vandoeuvre-les-Nancy cedex (France); Cran UMR 7039, faculte des sciences et techniques, universite Henri-Poincare Nancy 1, BP 239, 54506 Vandoeuvre-les-Nancy cedex (France); Cran UMR 7039, institut national polytechnique de Lorraine, BP 239, 54506 Vandoeuvre-les-Nancy cedex (France); Buchheit, I.; Bernier, V. [Departement de radiophysique, centre Alexis-Vautrin, avenue de Bourgogne, 54511 Vandoeuvre-les-Nancy cedex (France)

    2011-07-15

    Purpose. - To compare several techniques in order to determine the best treatment for benign brain tumours. Methods and patients. - A retrospective study was performed for five patients who received 3D-conformal radiotherapy, intensity modulated radiotherapy or CyberKnife{sup R}. These patients had a meningioma, a pituitary tumour, a cranio-pharyngioma or a neurinoma. In each case, these treatment plans were optimised and compared with the three other dosimetries. Radiobiological or positioning parameters were evaluated, as well as dosimetric parameters, in order to compare treatments with different characteristics. Results. - The dosimetric parameters showed that the choice of treatment seemed to be determined mostly by tumour size, shape and proximity with organs at risk (not tumour localisation). Whereas the results showed no significant deviations with regards to the radiobiological parameters. Therefore, with these parameters, it was difficult to give priority to a treatment. Conclusions. - With regards to benign brain tumours of medium or large size, intensity modulated radiotherapy seemed the recommended treatment. It enabled to obtain a good ratio between efficacy and toxicity for tumours that are really close to organs at risk. Concerning small benign brain tumours, the CyberKnife{sup R} was probably the best treatment. (authors)

  18. 3D conformation of a flexible fiber in a turbulent flow

    Science.gov (United States)

    Verhille, Gautier; Bartoli, Adrien

    2016-07-01

    A growing number of studies is devoted to anisotropic particles in turbulent flows. In most cases, the particles are assumed to be rigid and their deformations are neglected. We present an adaptation of classical computer vision tools to reconstruct from two different images the 3D conformation of a fiber distorted by the turbulent fluctuations in a von Kármán flow. This technique allows us notably to characterize the fiber deformation by computing the correlation function of the orientation of the tangent vector. This function allows us to tackle the analogy between polymers and flexible fibers proposed by Brouzet et al. (Phys Rev Lett 112(7):074501, 2014). We show that this function depends on an elastic length ℓ _e which characterizes the particle flexibility, as is the case for polymers, but also on the fiber length L, contrary to polymers.

  19. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability

    Science.gov (United States)

    Zhong, Weibin; Liu, Qiongzhen; Wu, Yongzhi; Wang, Yuedan; Qing, Xing; Li, Mufang; Liu, Ke; Wang, Wenwen; Wang, Dong

    2016-06-01

    Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin.Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The

  20. Volumetric-modulated arc radiotherapy for pancreatic malignancies: Dosimetric comparison with sliding-window intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, Nima, E-mail: nabaviza@ohsu.edu; Simeonova, Anna O.; Waller, Joseph G.; Romer, Jeanna L.; Monaco, Debra L.; Elliott, David A.; Tanyi, James A.; Fuss, Martin; Thomas, Charles R.; Holland, John M.

    2014-10-01

    Volumetric-modulated arc radiotherapy (VMAT) is an iteration of intensity-modulated radiotherapy (IMRT), both of which deliver highly conformal dose distributions. Studies have shown the superiority of VMAT and IMRT in comparison with 3-dimensional conformal radiotherapy (3D-CRT) in planning target volume (PTV) coverage and organs-at-risk (OARs) sparing. This is the first study examining the benefits of VMAT in pancreatic cancer for doses more than 55.8 Gy. A planning study comparing 3D-CRT, IMRT, and VMAT was performed in 20 patients with pancreatic cancer. Treatments were planned for a 25-fraction delivery of 45 Gy to a large field followed by a reduced-volume 8-fraction external beam boost to 59.4 Gy in total. OARs and PTV doses, conformality index (CI) deviations from 1.0, monitor units (MUs) delivered, and isodose volumes were compared. IMRT and VMAT CI deviations from 1.0 for the large-field and the boost plans were equivalent (large field: 0.032 and 0.046, respectively; boost: 0.042 and 0.037, respectively; p > 0.05 for all comparisons). Both IMRT and VMAT CI deviations from 1.0 were statistically superior to 3D-CRT (large field: 0.217, boost: 0.177; p < 0.05 for all comparisons). VMAT showed reduction of the mean dose to the boost PTV (VMAT: 61.4 Gy, IMRT: 62.4 Gy, and 3D-CRT: 62.3 Gy; p < 0.05). The mean number of MUs per fraction was significantly lower for VMAT for both the large-field and the boost plans. VMAT delivery time was less than 3 minutes compared with 8 minutes for IMRT. Although no statistically significant dose reduction to the OARs was identified when comparing VMAT with IMRT, VMAT showed a reduction in the volumes of the 100% isodose line for the large-field plans. Dose escalation to 59.4 Gy in pancreatic cancer is dosimetrically feasible with shorter treatment times, fewer MUs delivered, and comparable CIs for VMAT when compared with IMRT.

  1. An ill-conditioning conformal radiotherapy analysis based on singular values decomposition

    International Nuclear Information System (INIS)

    Clinical experience in stereotactic radiotherapy of irregular complex lesions had shown that optimization algorithms were necessary to improve the dose distribution. We have developed a general optimization procedure which can be applied to different conformal irradiation techniques. In this presentation this procedure is tested on the stereotactic radiotherapy modality of complex cerebral lesions treated with multi-isocentric technique based on the 'associated targets methodology'. In this inverse procedure we use the singular value decomposition (SVD) analysis which proposes several optimal solutions for the narrow beams weights of each isocentre. The SVD analysis quantifies the ill-conditioning of the dosimetric calculation of the stereotactic irradiation, using the condition number which is the ratio of the bigger to smaller singular values. Our dose distribution optimization approach consists on the study of the irradiation parameters influence on the stereotactic radiotherapy inverse problem. The adjustment of the different irradiation parameters into the 'SVD optimizer' procedure is realized taking into account the ratio of the quality reconstruction to the time calculation. It will permit a more efficient use of the 'SVD optimizer' in clinical applications for real 3D lesions. The evaluation criteria for the choice of satisfactory solutions are based on the dose-volume histograms and clinical considerations. We will present the efficiency of ''SVD optimizer'' to analyze and predict the ill-conditioning in stereotactic radiotherapy and to recognize the topography of the different beams in order to create optimal reconstructed weighting vector. The planification of stereotactic treatments using the ''SVD optimizer'' is examined for mono-isocentrically and complex dual-isocentrically treated lesions. The application of the SVD optimization technique provides conformal dose distribution for complex intracranial lesions. It is a general optimization procedure

  2. MO-H-19A-03: Patient Specific Bolus with 3D Printing Technology for Electron Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, W; Swann, B; Siderits, R; McKenna, M; Khan, A; Yue, N; Zhang, M [Rutgers University, New Brunswick, NJ (United States); Fisher, T [Memorial Medical Center, Modesto, CA (United States)

    2014-06-15

    Purpose: Bolus is widely used in electron radiotherapy to achieve desired dose distribution. 3D printing technologies provide clinicians with easy access to fabricate patient specific bolus accommodating patient body surface irregularities and tissue inhomogeneity. This study presents the design and the clinical workflow of 3D printed bolus for patient electron therapy in our clinic. Methods: Patient simulation CT images free of bolus were exported from treatment planning system (TPS) to an in-house developed software package. Bolus with known material properties was designed in the software package and then exported back to the TPS as a structure. Dose calculation was carried out to examine the coverage of the target. After satisfying dose distribution was achieved, the bolus structure was transferred in Standard Tessellation Language (STL) file format for the 3D printer to generate the machine codes for printing. Upon receiving printed bolus, a quick quality assurance was performed with patient resimulated with bolus in place to verify the bolus dosimetric property before treatment started. Results: A patient specific bolus for electron radiotherapy was designed and fabricated in Form 1 3D printer with methacrylate photopolymer resin. Satisfying dose distribution was achieved in patient with bolus setup. Treatment was successfully finished for one patient with the 3D printed bolus. Conclusion: The electron bolus fabrication with 3D printing technology was successfully implemented in clinic practice.

  3. MO-H-19A-03: Patient Specific Bolus with 3D Printing Technology for Electron Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: Bolus is widely used in electron radiotherapy to achieve desired dose distribution. 3D printing technologies provide clinicians with easy access to fabricate patient specific bolus accommodating patient body surface irregularities and tissue inhomogeneity. This study presents the design and the clinical workflow of 3D printed bolus for patient electron therapy in our clinic. Methods: Patient simulation CT images free of bolus were exported from treatment planning system (TPS) to an in-house developed software package. Bolus with known material properties was designed in the software package and then exported back to the TPS as a structure. Dose calculation was carried out to examine the coverage of the target. After satisfying dose distribution was achieved, the bolus structure was transferred in Standard Tessellation Language (STL) file format for the 3D printer to generate the machine codes for printing. Upon receiving printed bolus, a quick quality assurance was performed with patient resimulated with bolus in place to verify the bolus dosimetric property before treatment started. Results: A patient specific bolus for electron radiotherapy was designed and fabricated in Form 1 3D printer with methacrylate photopolymer resin. Satisfying dose distribution was achieved in patient with bolus setup. Treatment was successfully finished for one patient with the 3D printed bolus. Conclusion: The electron bolus fabrication with 3D printing technology was successfully implemented in clinic practice

  4. Comparative dosimetric study of three-dimensional conformal, dynamic conformal arc, and intensity-modulated radiotherapy for brain tumor treatment using Novalis system

    International Nuclear Information System (INIS)

    Purpose: To investigate the dosimetric differences among three-dimensional conformal radiotherapy (3D-CRT), dynamic conformal arc therapy (DCAT), and intensity-modulated radiotherapy (IMRT) for brain tumor treatment. Methods and Materials: Fifteen patients treated with Novalis were selected. We performed 3D-CRT, DCAT, and IMRT plans for all patients. The margin for the planning target volume (PTV) was 1 mm, and the specific prescription dose was 90% for all plans. The target coverage at the prescription dose, conformity index (CI), and heterogeneity index were analyzed for all plans. Results: For small tumors (PTV ≤2 cm3), the three dosimetric parameters had approximate values for both 3D-CRT and DCAT plans. The CI for the IMRT plans was high. For medium tumors (PTV >2 to ≤100 cm3), the three plans were competitive with each other. The IMRT plans had a greater CI, better target coverage at the prescription dose, and a better heterogeneity index. For large tumors (PTV >100 cm3), the IMRT plan had good target coverage at the prescription dose and heterogeneity index and approximate CI values as those in the 3D-CRT and DCAT plans. Conclusion: The results of our study have shown that DCAT is suitable for most cases in the treatment of brain tumors. For a small target, 3D-CRT is useful, and IMRT is not recommended. For larger tumors, IMRT is superior to 3D-CRT and very competitive in sparing critical structures, especially for big tumors

  5. Comparison of radiotherapy dosimetry for 3D-CRT, IMRT, and SBRT based on electron density calibration

    Science.gov (United States)

    Kartutik, K.; Wibowo, W. E.; Pawiro, S. A.

    2016-03-01

    Accurate calculation of dose distribution affected by inhomogeneity tissue is required in radiotherapy planning. This study was performed to determine the ratio between radiotherapy planning using 3D-CRT, IMRT, and SBRT based on a calibrated curve of CT-number in the lung for different target's shape in 3D-CRT, IMRT, and spinal cord for SBRT. Calibration curves of CT-number were generated under measurement basis and introduced into TPS, then planning was performed for 3D-CRT, IMRT, and SBRT with 7, and 15 radiation fields. Afterwards, planning evaluation was performed by comparing the DVH curve, HI, and CI. 3D-CRT and IMRT produced the lowest HI at calibration curve of CIRS 002LFC with the value 0.24 and 10. Whereas SBRT produced the lowest HI on a linear calibration curve with a value of 0.361. The highest CI in IMRT and SBRT technique achieved using a linear calibration curve was 0.97 and 1.77 respectively. For 3D-CRT, the highest CI was obtained by using calibration curve of CIRS 062M with the value of 0.45. From the results of CI and HI, it is concluded that the calibration curve of CT-number does not significantly differ with Schneider's calibrated curve, and inverse planning gives a better result than forward planning.

  6. GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    OpenAIRE

    Gu, Xuejun; Jelen, Urszula; Li, Jinsheng; Jia, Xun; Jiang, Steve B.

    2011-01-01

    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework. Dosimetric evaluations against Monte Carlo dose calculations are conducted on 10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all cases, there i...

  7. Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study is to investigate the correlation between the respiratory waveform measured using a respiratory sensor and three-dimensional (3D) tumor motion. Methods and materials: A laser displacement sensor (LDS: KEYENCE LB-300) that measures distance using infrared light was used as the respiratory sensor. This was placed such that the focus was in an area around the patient's navel. When the distance from the LDS to the body surface changes as the patient breathes, the displacement is detected as a respiratory waveform. To obtain the 3D tumor motion, a biplane digital radiography unit was used. For the tumor in the lung, liver, and esophagus of 26 patients, the waveform was compared with the 3D tumor motion. The relationship between the respiratory waveform and the 3D tumor motion was analyzed by means of the Fourier transform and a cross-correlation function. Results: The respiratory waveform cycle agreed with that of the cranial-caudal and dorsal-ventral tumor motion. A phase shift observed between the respiratory waveform and the 3D tumor motion was principally in the range 0.0 to 0.3 s, regardless of the organ being measured, which means that the respiratory waveform does not always express the 3D tumor motion with fidelity. For this reason, the standard deviation of the tumor position in the expiration phase, as indicated by the respiratory waveform, was derived, which should be helpful in suggesting the internal margin required in the case of respiratory gated radiotherapy. Conclusion: Although obtained from only a few breathing cycles for each patient, the correlation between the respiratory waveform and the 3D tumor motion was evident in this study. If this relationship is analyzed carefully and an internal margin is applied, the accuracy and convenience of respiratory gated radiotherapy could be improved by use of the respiratory sensor.Thus, it is expected that this procedure will come into wider use

  8. Comparison of Heart and Coronary Artery Doses Associated With Intensity-Modulated Radiotherapy Versus Three-Dimensional Conformal Radiotherapy for Distal Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kole, Thomas P.; Aghayere, Osarhieme; Kwah, Jason [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yorke, Ellen D. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Goodman, Karyn A., E-mail: goodmank@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2012-08-01

    Purpose: To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Methods and Materials: Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Results: Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Conclusions: Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D

  9. 3-D conformal treatment of prostate cancer to 74 Gy vs. high-dose-rate brachytherapy boost: A cross-sectional quality-of-life survey

    Energy Technology Data Exchange (ETDEWEB)

    Vordermark, Dirk [Univ. of Wuerzburg (DE). Dept. of Radiation Oncology] (and others)

    2006-09-15

    The effects of two modalities of dose-escalated radiotherapy on health-related quality of life (HRQOL) were compared. Forty-one consecutive patients were treated with a 3-D conformal (3-DC) boost to 74 Gy, and 43 with high-dose rate (HDR) brachytherapy boost (2x9 Gy), following 3-D conformal treatment to 46 Gy. Median age was 70 years in both groups, median initial PSA was 7.9 {mu}g/l in 3-DC boost patients and 8.1 {mu}g/l in HDR boost patients. Stage was 7 in 52% and 47%, respectively. HRQOL was assessed cross-sectionally using EORTC QLQ-C30 and organ-specific PR25 modules 3-32 (median 19) and 4-25 (median 14) months after treatment, respectively. Questionnaires were completed by 93% and 97% of patients, respectively. Diarrhea and insomnia scores were significantly increased in both groups. In the PR25 module, scores of 3-DC boost and HDR boost patients for urinary, bowel and treatment-related symptoms were similar. Among responders, 34% of 3-DC boost patients and 86% of HDR boost patients had severe erectile problems. Dose escalation in prostate cancer by either 3-DC boost to 74 Gy or HDR brachytherapy boost appears to result in similar HRQOL profiles.

  10. 3-D conformal treatment of prostate cancer to 74 Gy vs. high-dose-rate brachytherapy boost: A cross-sectional quality-of-life survey

    International Nuclear Information System (INIS)

    The effects of two modalities of dose-escalated radiotherapy on health-related quality of life (HRQOL) were compared. Forty-one consecutive patients were treated with a 3-D conformal (3-DC) boost to 74 Gy, and 43 with high-dose rate (HDR) brachytherapy boost (2x9 Gy), following 3-D conformal treatment to 46 Gy. Median age was 70 years in both groups, median initial PSA was 7.9 μg/l in 3-DC boost patients and 8.1 μg/l in HDR boost patients. Stage was 7 in 52% and 47%, respectively. HRQOL was assessed cross-sectionally using EORTC QLQ-C30 and organ-specific PR25 modules 3-32 (median 19) and 4-25 (median 14) months after treatment, respectively. Questionnaires were completed by 93% and 97% of patients, respectively. Diarrhea and insomnia scores were significantly increased in both groups. In the PR25 module, scores of 3-DC boost and HDR boost patients for urinary, bowel and treatment-related symptoms were similar. Among responders, 34% of 3-DC boost patients and 86% of HDR boost patients had severe erectile problems. Dose escalation in prostate cancer by either 3-DC boost to 74 Gy or HDR brachytherapy boost appears to result in similar HRQOL profiles

  11. Dosimetric comparison of three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and helical tomotherapy for lung stereotactic body radiotherapy

    Directory of Open Access Journals (Sweden)

    Rajesh Ashok Kinhikar

    2015-01-01

    Full Text Available To compare the treatment plans generated with three-dimensional conformal radiation therapy (3DCRT, intensity modulated radiotherapy (IMRT, and helical tomotherapy (HT for stereotactic body radiotherapy of lung, twenty patients with medically inoperable (early nonsmall cell lung cancer were retrospectively reviewed for dosimetric evaluation of treatment delivery techniques (3DCRT, IMRT, and HT. A dose of 6 Gy per fraction in 8 fractions was prescribed to deliver 95% of the prescription dose to 95% volume of planning target volume (PTV. Plan quality was assessed using conformity index (CI and homogeneity index (HI. Doses to critical organs were assessed. Mean CI with 3DCRT, IMRT, and HT was 1.19 (standard deviation [SD] 0.13, 1.18 (SD 0.11, and 1.08 (SD 0.04, respectively. Mean HI with 3DCRT, IMRT, and HT was 1.14 (SD 0.05, 1.08 (SD 0.02, and 1.07 (SD 0.04, respectively. Mean R50% values for 3DCRT, IMRT, and HT was 8.5 (SD 0.35, 7.04 (SD 0.45, and 5.43 (SD 0.29, respectively. D2cmwas found superior with IMRT and HT. Significant sparing of critical organs can be achieved with highly conformal techniques (IMRT and HT without compromising the PTV conformity and homogeneity.

  12. Dosimetric comparison of three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and helical tomotherapy for lung stereotactic body radiotherapy.

    Science.gov (United States)

    Kinhikar, Rajesh Ashok; Ghadi, Yogesh G; Sahoo, Priyadarshini; Laskar, Sarbani Ghosh; Deshpande, Deepak D; Shrivastava, Shyam K; Agarwal, Jaiprakash

    2015-01-01

    To compare the treatment plans generated with three-dimensional conformal radiation therapy (3DCRT), intensity modulated radiotherapy (IMRT), and helical tomotherapy (HT) for stereotactic body radiotherapy of lung, twenty patients with medically inoperable (early nonsmall cell lung cancer) were retrospectively reviewed for dosimetric evaluation of treatment delivery techniques (3DCRT, IMRT, and HT). A dose of 6 Gy per fraction in 8 fractions was prescribed to deliver 95% of the prescription dose to 95% volume of planning target volume (PTV). Plan quality was assessed using conformity index (CI) and homogeneity index (HI). Doses to critical organs were assessed. Mean CI with 3DCRT, IMRT, and HT was 1.19 (standard deviation [SD] 0.13), 1.18 (SD 0.11), and 1.08 (SD 0.04), respectively. Mean HI with 3DCRT, IMRT, and HT was 1.14 (SD 0.05), 1.08 (SD 0.02), and 1.07 (SD 0.04), respectively. Mean R50% values for 3DCRT, IMRT, and HT was 8.5 (SD 0.35), 7.04 (SD 0.45), and 5.43 (SD 0.29), respectively. D2cm was found superior with IMRT and HT. Significant sparing of critical organs can be achieved with highly conformal techniques (IMRT and HT) without compromising the PTV conformity and homogeneity. PMID:26865754

  13. Conformal radiotherapy using multileaf collimation: quality assurance and in vivo dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Aletti, P. [Centre A. Vautrin, Nancy (France)

    1995-12-01

    The application of quality assurance principles in three dimensional conformal therapy is discussed.Critical requirements in three dimensional radiotherapy are the patient immobilization, the location, and the delivered dose. General recommendations with respect to the equipment for conformal radiotherapy and personnel are made.

  14. Automatic 3D segmentation of the prostate on magnetic resonance images for radiotherapy planning

    OpenAIRE

    Alvarez Jiménez, Charlems

    2015-01-01

    Abstract. Accurate segmentation of the prostate, the seminal vesicles, the bladder and the rectum is a crucial step for planning radiotherapy (RT) procedures. Modern radiotherapy protocols have included the delineation of the pelvic organs in magnetic resonance images (MRI), as the guide to the therapeutic beam irradiation over the target organ. However, this task is highly inter and intra-expert variable and may take about 20 minutes per patient, even for trained experts, constituting an imp...

  15. Dosimetric comparison of 3D conformal, IMRT, and V-MAT techniques for accelerated partial-breast irradiation (APBI)

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jian-Jian [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Chang, Zheng; Horton, Janet K.; Wu, Qing-Rong Jackie; Yoo, Sua [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Yin, Fang-Fang, E-mail: fangfang.yin@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States)

    2014-07-01

    The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies including gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10 Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V{sub 10}) or 20 Gy (V{sub 20}) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V{sub 5} and D{sub 5}). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral lung. In

  16. Comparative study of conformal versus intensity modulated radiotherapy treatment plans

    International Nuclear Information System (INIS)

    Full text: In order to establish some early clinical experience in the use of intensity modulated radiotherapy (IMRT) as an alternative treatment method to conformal irradiation, we selected a number of specifically difficult clinical cases to compare. Complex tumour shapes located in the skull (two cases), close to the spinal cord (two cases) and one standard prostate case were chosen for this study. A Varian CadPlan system is used for the conformal treatment plans and Helios for the IMRT plans. In both these techniques, the linear accelerator multileaf collimator system is used to shape the beam about the target volume. The Royal North Shore Hospital Varian Clinac 600C/D linear accelerator also has dynamic multileaf collimator control (DMLC) capabilities for IMRT. The five cases reported here were planned by the radiation therapists for conformal treatment and then re-planned by physics using the CadPlan's Helios inverse planning option to produce an alternative IMRT plan. Both planners worked independently of each other. Treatment set-up errors were not considered as part of this study but it is apparent here that positional errors and immobilisation are particularly important factors to consider. An allowance for all errors must therefore be included for all critical organ outlines as well as the target volume for both the conformal or IMRT treatments. Visually, the covering of regularly shaped treatment volumes for the IMRT plans was improved marginally over the conformal plan. However, complex treatment volumes (such as the posterior orbital region with surrounding critical structures) showed very clear improvements. The IMRT dose drop-off at the edge of the target volume was not as sharp as the conformal equivalent. The dose-volume-histogram (DVH) provides a limited analytical tool to quantify these observations. The DVH generally indicated similar curves for the IMRT and conformal target volume but significant IMRT improvements in limiting the dose to

  17. External validation of three dimensional conformal radiotherapy based NTCP models for patient-rated xerostomia and sticky saliva among patients treated with intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study was to investigate the ability of predictive models for patient-rated xerostomia (XER6M) and sticky saliva (STIC6M) at 6 months after completion of primary (chemo)radiation developed in head and neck cancer patients treated with 3D-conformal radiotherapy (3D-CRT) to predict outcome in patients treated with intensity modulated radiotherapy (IMRT). Methods and materials: Recently, we published the results of a prospective study on predictive models for patient-rated xerostomia and sticky saliva in head and neck cancer patients treated with 3D-CRT (3D-CRT based NTCP models). The 3D-CRT based model for XER6M consisted of three factors, including the mean parotid dose, age, and baseline xerostomia (none versus a bit). The 3D-CRT based model for STIC6M consisted of the mean submandibular dose, age, the mean sublingual dose, and baseline sticky saliva (none versus a bit). In the current study, a population consisting of 162 patients treated with IMRT was used to test the external validity of these 3D-CRT based models. External validity was described by the explained variation (R2 Nagelkerke) and the Brier score. The discriminative abilities of the models were calculated using the area under the receiver operating curve (AUC) and calibration (i.e. the agreement between predicted and observed outcome) was assessed with the Hosmer–Lemeshow “goodness-of-fit” test. Results: Overall model performance of the 3D-CRT based predictive models for XER6M and STIC6M was significantly worse in terms of the Brier score and R2 Nagelkerke among patients treated with IMRT. Moreover the AUC for both 3D-CRT based models in the IMRT treated patients were markedly lower. The Hosmer–Lemeshow test showed a significant disagreement for both models between predicted risk and observed outcome. Conclusion: 3D-CRT based models for patient-rated xerostomia and sticky saliva among head and neck cancer patients treated with primary radiotherapy or chemoradiation

  18. 3-dimensional conformal radiotherapy for cervical and upper-thoracic esophageal cancer

    International Nuclear Information System (INIS)

    Objective: To evaluate the effect of 3-dimensional conformal radiotherapy (3D CRT) and prognostic factors for cervical and upper-thoracic esophageal cancer. Methods: Between July 1998 and July 2001, 33 patients with cervical and upper-thoracic esophageal cancer were treated with 3D CRT(2 Gy per day, 5 sessions a week to a total dose of 66-68 Gy over 6-7 weeks). Acute toxicities and survival rates were evaluated by Kaplan-Meier method and prognostic factors were analyzed by Cox proportional hazard model. Results: The 1-, 2-, 3-year local control rates were 87.9%, 75.8%, 45.5% respectively. The 1-, 2-, 3-year disease-free and overall survival rates were 72.7%, 60.6%, 30.3% and 78.8%, 66.8%, 44.2% respectively. GradeI- II acute esophagitis and bronchitis were the most common radiation side effects. Multivariate analysis revealed that the depth of primary tumor invasion, regional lymph node metastasis and tumor length were independent prognostic factors (P<0.05). Conclusions: 3D CRT can be considered as an effective and feasible approach to cervical and upper-thoracic esophageal cancer treatment. The depth of primary tumor invasion, regional lymph node status and tumor length are important prognostic indicators for cervical and upper-thoracic esophageal cancer. (authors)

  19. Three-dimensional conformal radiotherapy for portal vein tumor thrombosis alone in advanced hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Hye Kim Dong Hyun; Ki, Yong Kan; Kim, Dong Won; Kim, Won Taek; Heo, Jeong; Woo, Hyun Young [Pusan National University Hospital, Pusan National University School of Medicine, Busan (Korea, Republic of); Nam, Ji Ho [Dept.of Radiation Oncology, Pusan National University Yangsan Hospital, Yangsan (Korea, Republic of)

    2014-09-15

    We sought to evaluate the clinical outcomes of 3-dimensional conformal radiation therapy (3D-CRT) for portal vein tumor thrombosis (PVTT) alone in patients with advanced hepatocellular carcinoma. We retrospectively analyzed data on 46 patients who received 3D-CRT for PVTT alone between June 2002 and December 2011. Response was evaluated following the Response Evaluation Criteria in Solid Tumors. Prognostic factors and 1-year survival rates were compared between responders and non-responders. Thirty-seven patients (80.4%) had category B Child-Pugh scores. The Eastern Cooperative Oncology Group performance status score was 2 in 20 patients. Thirty patients (65.2%) had main or bilateral PVTT. The median irradiation dose was 50 Gy (range, 35 to 60 Gy) and the daily median dose was 2 Gy (range, 2.0 to 2.5 Gy). PVTT response was classified as complete response in 3 patients (6.5%), partial response in 12 (26.1%), stable disease in 19 (41.3%), and progressive disease in 12 (26.1%). There were 2 cases of grade 3 toxicities during or 3 months after radiotherapy. Twelve patients in the responder group (15 patients) received at least 50 Gy irradiation, but about 84% of patients in the non-responder group received less than 50 Gy. The 1-year survival rate was 66.8% in responders and 27.4% in non-responders constituting a statistically significant difference (p = 0.008). Conformal radiotherapy for PVTT alone could be chosen as a palliative treatment modality in patients with unfavorable conditions (liver, patient, or tumor factors). However, more than 50 Gy of radiation may be required.

  20. 3D radiation therapy or intensity-modulated radiotherapy for recurrent and metastatic cervical cancer: the Shanghai Cancer Hospital experience.

    Directory of Open Access Journals (Sweden)

    Su-Ping Liu

    Full Text Available We evaluate the outcomes of irradiation by using three-dimensional radiation therapy (3D-RT or intensity-modulated radiotherapy (IMRT for recurrent and metastatic cervical cancer. Between 2007 and 2010, 50 patients with recurrent and metastatic cervical cancer were treated using 3D-RT or IMRT. The median time interval between the initial treatment and the start of irradiation was 12 (6-51 months. Salvage surgery was performed before irradiation in 5 patients, and 38 patients received concurrent chemotherapy. Sixteen patients underwent 3D-RT, and 34 patients received IMRT. Median follow-up for all the patients was 18.3 months. Three-year overall survival and locoregional control were 56.1% and 59.7%, respectively. Three-year progression-free survival and disease-free survival were 65.3% and 64.3%, respectively. Nine patients developed grade 3 leukopenia. Grade 5 acute toxicity was not observed in any of the patients; however, 2 patients developed Grade 3 late toxicity. 3D-RT or IMRT is effective for the treatment of recurrent and metastatic cervical cancer, with the 3-year overall survival of 56.1%, and its complications are acceptable. Long-term follow-up and further studies are needed to confirm the role of 3D-RT or IMRT in the multimodality management of the disease.

  1. UniCon3D: de novo protein structure prediction using united-residue conformational search via stepwise, probabilistic sampling

    Science.gov (United States)

    Bhattacharya, Debswapna; Cao, Renzhi; Cheng, Jianlin

    2016-01-01

    Motivation: Recent experimental studies have suggested that proteins fold via stepwise assembly of structural units named ‘foldons’ through the process of sequential stabilization. Alongside, latest developments on computational side based on probabilistic modeling have shown promising direction to perform de novo protein conformational sampling from continuous space. However, existing computational approaches for de novo protein structure prediction often randomly sample protein conformational space as opposed to experimentally suggested stepwise sampling. Results: Here, we develop a novel generative, probabilistic model that simultaneously captures local structural preferences of backbone and side chain conformational space of polypeptide chains in a united-residue representation and performs experimentally motivated conditional conformational sampling via stepwise synthesis and assembly of foldon units that minimizes a composite physics and knowledge-based energy function for de novo protein structure prediction. The proposed method, UniCon3D, has been found to (i) sample lower energy conformations with higher accuracy than traditional random sampling in a small benchmark of 6 proteins; (ii) perform comparably with the top five automated methods on 30 difficult target domains from the 11th Critical Assessment of Protein Structure Prediction (CASP) experiment and on 15 difficult target domains from the 10th CASP experiment; and (iii) outperform two state-of-the-art approaches and a baseline counterpart of UniCon3D that performs traditional random sampling for protein modeling aided by predicted residue-residue contacts on 45 targets from the 10th edition of CASP. Availability and Implementation: Source code, executable versions, manuals and example data of UniCon3D for Linux and OSX are freely available to non-commercial users at http://sysbio.rnet.missouri.edu/UniCon3D/. Contact: chengji@missouri.edu Supplementary information: Supplementary data are

  2. Conformal three dimensional radiotherapy treatment planning in Lund

    Energy Technology Data Exchange (ETDEWEB)

    Knoos, T.; Nilsson, P. [Lund Univ. (Sweden). Dept. of Radiation Physics; Anders, A. [Lund Univ. (Sweden). Dept. of Oncology

    1995-12-01

    The use of conformal therapy is based on 3-dimensional treatment planning as well as on methods and routines for 3-dimensional patient mapping, 3-dimensional virtual simulation and others. The management of patients at the Radiotherapy Department at the University Hospital in Lund (Sweden) is discussed. About 2100 new patients are annually treated with external radiotherapy using seven linear accelerators. Three of the accelerators have dual photon energies and electron treatment facilities. A multi-leaf collimator as well as an electronic portal imaging device are available on one machine. Two simulators and an in-house CT-scanner are used for treatment planning. From 1988 to 1992 Scandiplan (Umplan) was used. Since 1992, the treatment planning system is TMS (HELAX AB, Sweden), which is based on the pencil beam algorithm of Ahnesjo. The calculations use patient modulated accelerator specific energy fluence spectra which are compiled with pencil beams from Monte Carlo generated energy absorption kernels. Heterogeneity corrections are performed with results close to conventional algorithms. Irregular fields, either from standard or individual blocks and from multi-leaf collimators are handled by the treatment planning system. The field shape is determined conveniently using the beam`s eye view. The final field shape is exported electronically to either the block cutting machine or the multileaf collimator control computer. All patient fields are checked against the beam`s eye view during simulation using manual methods. Treatment verification is performed by portal films and in vivo dosimetry with silicon diodes or TL-dosimetry. Up to now, approximately 4400 patients have received a highly individualized 3-dimensional conformal treatment.

  3. A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    OpenAIRE

    Gu, Xuejun; Jelen, Urszula; Li, Jinsheng; Jia, Xun; Jiang, Steve B.

    2011-01-01

    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against Monte Carlo dose calculations are conducted on 10 IMRT treatment plans (5 head-and-neck c...

  4. Technical and Dosimetric Study of Four Facio-cervical Fields Conformal Radiotherapy for Nasopharyngeal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    WANG Fang-zheng; FU Zhen-fu; WANG Lei; PIAO Yong-feng; HUA Yong-hong; CHEN Wei-jun; XU Min

    2015-01-01

    Objective: The aim of this study is to establish the methods of four facio-cervical field's conformal radiotherapy (4F-CRT) for nasopharyngeal carcinoma (NPC), and to optimize the methods for clinical practiceMaterials and Methods:40 patients with untreated NPC of T1-T4 (1997 AJCC Staging System) were rolled into this study.Conventional and four facio-cervical fields conform plans were designed for each patient using Pinnacle 8.0 three-dimension treatment planning system (3D-TPS) as follows:1Improved plan, four facio-cervical field's conform plan, anterior, posterior facio-cervical and two lateral opposing facio-cervical fields; 2Conventional plan, two lateral opposing facio-cervical fields delivered to the target in each plan, only with the same dose dose volume histograms (DVHs) of the targets and normal organs, brain stem, spinal cord, parotid glands, and temporal mandibular joints (TMJs) were compared and the dose distribution were evaluatedResults: 1.The dose distribution of the improved plan could meet the requirements for the target volume2There was not any significant difference in the dose of spinal cord between the two plans.The mean doses of D max for brain stem in conventional plan were much lower than those in the improved plan, though both were within safety limits3Compared with the conventional plans, the improved plan significantly decreased the hotspot areas in the target volume and had better parotid glands and temporal mandibular joints sparing effectConclusion:Compared with the conventional plan, the improved plan provides satisfactory dose coverage to the tumor volume and better sparing of the parotid gland, TMJs and other normal tissues in external beam radiotherapy of NPC.

  5. Comparison of 3D and 4D Monte Carlo optimization in robotic tracking stereotactic body radiotherapy of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Mark K.H. [Tuen Mun Hospital, Department of Clinical Oncology, Hong Kong (S.A.R) (China); Werner, Rene [The University Medical Center Hamburg-Eppendorf, Department of Computational Neuroscience, Hamburg (Germany); Ayadi, Miriam [Leon Berard Cancer Center, Department of Radiation Oncology, Lyon (France); Blanck, Oliver [University Clinic of Schleswig-Holstein, Department of Radiation Oncology, Luebeck (Germany); CyberKnife Center Northern Germany, Guestrow (Germany)

    2014-09-20

    To investigate the adequacy of three-dimensional (3D) Monte Carlo (MC) optimization (3DMCO) and the potential of four-dimensional (4D) dose renormalization (4DMC{sub renorm}) and optimization (4DMCO) for CyberKnife (Accuray Inc., Sunnyvale, CA) radiotherapy planning in lung cancer. For 20 lung tumors, 3DMCO and 4DMCO plans were generated with planning target volume (PTV{sub 5} {sub mm}) = gross tumor volume (GTV) plus 5 mm, assuming 3 mm for tracking errors (PTV{sub 3} {sub mm}) and 2 mm for residual organ deformations. Three fractions of 60 Gy were prescribed to ≥ 95 % of the PTV{sub 5} {sub mm}. Each 3DMCO plan was recalculated by 4D MC dose calculation (4DMC{sub recal}) to assess the dosimetric impact of organ deformations. The 4DMC{sub recal} plans were renormalized (4DMC{sub renorm}) to 95 % dose coverage of the PTV{sub 5} {sub mm} for comparisons with the 4DMCO plans. A 3DMCO plan was considered adequate if the 4DMC{sub recal} plan showed ≥ 95 % of the PTV{sub 3} {sub mm} receiving 60 Gy and doses to other organs at risk (OARs) were below the limits. In seven lesions, 3DMCO was inadequate, providing < 95 % dose coverage to the PTV{sub 3} {sub mm}. Comparison of 4DMC{sub recal} and 3DMCO plans showed that organ deformations resulted in lower OAR doses. Renormalizing the 4DMC{sub recal} plans could produce OAR doses higher than the tolerances in some 4DMC{sub renorm} plans. Dose conformity of the 4DMC{sub renorm} plans was inferior to that of the 3DMCO and 4DMCO plans. The 4DMCO plans did not always achieve OAR dose reductions compared to 3DMCO and 4DMC{sub renorm} plans. This study indicates that 3DMCO with 2 mm margins for organ deformations may be inadequate for Cyberknife-based lung stereotactic body radiotherapy (SBRT). Renormalizing the 4DMC{sub recal} plans could produce degraded dose conformity and increased OAR doses; 4DMCO can resolve this problem. (orig.) [German] Untersucht wurde die Angemessenheit einer dreidimensionalen (3-D) Monte

  6. Strategies to evaluate the impact of rectal volume on prostate motion during three-dimensional conformal radiotherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Poli, Ana Paula Diniz Fortuna, E-mail: anapaulafortuna@yahoo.com.br [Universidade Estadual de Campinas (CAISM/UNICAMP), Campinas, SP (Brazil). Centro de Atencao Integrada a Saude da Mulher. Divisao de Radioterapia; Dias, Rodrigo Souza; Giordani, Adelmo Jose; Segreto, Helena Regina Comodo; Segreto, Roberto Araujo [Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP (Brazil). Escola Paulista de Medicina. Divisao de Radioterapia

    2016-01-15

    Objective: To evaluate the rectal volume influence on prostate motion during three-dimensional conformal radiotherapy (3D-CRT) for prostate cancer. Materials and Methods: Fifty-one patients with prostate cancer underwent a series of three computed tomography scans including an initial planning scan and two subsequent scans during 3D-CRT. The organs of interest were outlined. The prostate contour was compared with the initial CT images considering the anterior, posterior, superior, inferior and lateral edges of the organ. Variations in the anterior limits and volume of the rectum were assessed and correlated with prostate motion in the anteroposterior direction. Results: The maximum range of prostate motion was observed in the superoinferior direction, followed by the anteroposterior direction. A significant correlation was observed between prostate motion and rectal volume variation (p = 0.037). A baseline rectal volume superior to 70 cm{sup 3} had a significant influence on the prostate motion in the anteroposterior direction (p = 0.045). Conclusion: The present study showed a significant interfraction motion of the prostate during 3D-CRT with greatest variations in the superoinferior and anteroposterior directions, and that a large rectal volume influences the prostate motion with a cutoff value of 70 cm{sup 3}. Therefore, the treatment of patients with a rectal volume > 70 cm{sup 3} should be re-planned with appropriate rectal preparation. Keywords: Rectal volume; Prostate cancer; Three-dimensional conformal radiotherapy. (author)

  7. Comparison of intensity modulated radiotherapy with conformal radiotherapy in cancer on anal canal

    International Nuclear Information System (INIS)

    Full text: Introduction: The aim of the Intensity-Modulated Radiation Therapy (IMRT) use is homogeneous irradiation of volume for radiotherapy and preservation of critical organs and normal healthy tissues. The aim of the study is to develop a protocol for radiotherapy of cancer of the anal canal with IMRT, evaluation of dosimetric plans by comparison with analogous obtained with conformal radiotherapy (CRT). Materials and Methods: The protocol was developed using data of 10 patients with carcinoma of the anal canal in clinical stage T3 -4N1-3M0, as 5 patients were treated with CRT, and 5 of them were treated on this protocol. Planned target volumes are: PTV A - perineum with anal opening and anal canal, rectum and all lymph chains in the pelvis (pre-sacral, perirectal, internal iliac, external iliac and obturator) and PTV B - inguinal lymph nodes. Planned total therapeutic dose is 50 Gy, fractionated 2 Gy per day. Critical organs are small intestinal loops, bladder, and hips. Through the dose- volume histograms analysis of the results in the two groups are compared. Results: The results of the analysis of the dose - volume histograms show the following advantages of IMRT over CRT: Better homogeneity of the dose distribution, particularly for PTV B, where for the IMRT plan only 2% of the volume receive a dose > 52 Gy, while on CRT 15% receive a dose > 60Gy; average dose in IMRT plan for intestinal loops, bladder and femoral is with 7 Gy lower and the maximum dose for the critical organs is low and substantially less volume from the critical organs receive it . Conclusion: IMRT protocol offers better homogeneity in the planned target volumes and lower doses to critical organs. Time for planning, verification and simulation of plan for radiotherapy is doubled compared to CRT. The time for irradiation of a patient is similar to this for CRT - about 10 minutes

  8. Propensity Score-based Comparison of Long-term Outcomes With 3-Dimensional Conformal Radiotherapy vs Intensity-Modulated Radiotherapy for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Steven H., E-mail: SHLin@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wang Lu [Department of Biostatistics, University of Michigan, Ann Arbor, Michigan (United States); Myles, Bevan [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Thall, Peter F. [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hofstetter, Wayne L.; Swisher, Stephen G. [Department of Thoracic Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cox, James D.; Komaki, Ritsuko; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-12-01

    Purpose: Although 3-dimensional conformal radiotherapy (3D-CRT) is the worldwide standard for the treatment of esophageal cancer, intensity modulated radiotherapy (IMRT) improves dose conformality and reduces the radiation exposure to normal tissues. We hypothesized that the dosimetric advantages of IMRT should translate to substantive benefits in clinical outcomes compared with 3D-CRT. Methods and Materials: An analysis was performed of 676 nonrandomized patients (3D-CRT, n=413; IMRT, n=263) with stage Ib-IVa (American Joint Committee on Cancer 2002) esophageal cancers treated with chemoradiotherapy at a single institution from 1998-2008. An inverse probability of treatment weighting and inclusion of propensity score (treatment probability) as a covariate were used to compare overall survival time, interval to local failure, and interval to distant metastasis, while accounting for the effects of other clinically relevant covariates. The propensity scores were estimated using logistic regression analysis. Results: A fitted multivariate inverse probability weighted-adjusted Cox model showed that the overall survival time was significantly associated with several well-known prognostic factors, along with the treatment modality (IMRT vs 3D-CRT, hazard ratio 0.72, P<.001). Compared with IMRT, 3D-CRT patients had a significantly greater risk of dying (72.6% vs 52.9%, inverse probability of treatment weighting, log-rank test, P<.0001) and of locoregional recurrence (P=.0038). No difference was seen in cancer-specific mortality (Gray's test, P=.86) or distant metastasis (P=.99) between the 2 groups. An increased cumulative incidence of cardiac death was seen in the 3D-CRT group (P=.049), but most deaths were undocumented (5-year estimate, 11.7% in 3D-CRT vs 5.4% in IMRT group, Gray's test, P=.0029). Conclusions: Overall survival, locoregional control, and noncancer-related death were significantly better after IMRT than after 3D-CRT. Although these results need

  9. Comparative study of convolution, superposition, and fast superposition algorithms in conventional radiotherapy, three-dimensional conformal radiotherapy, and intensity modulated radiotherapy techniques for various sites, done on CMS XIO planning system

    Directory of Open Access Journals (Sweden)

    Muralidhar K

    2009-01-01

    Full Text Available The aim of this study is to compare the dosimetry results that are obtained by using Convolution, Superposition and Fast Superposition algorithms in Conventional Radiotherapy, Three-Dimensional Conformal Radiotherapy (3D-CRT, and Intensity Modulated Radiotherapy (IMRT for different sites, and to study the suitability of algorithms with respect to site and technique. For each of the Conventional, 3D-CRT, and IMRT techniques, four different sites, namely, Lung, Esophagus, Prostate, and Hypopharynx were analyzed. Treatment plans were created using 6MV Photon beam quality using the CMS XiO (Computerized Medical System, St.Louis, MO treatment planning system. The maximum percentage of variation recorded between algorithms was 3.7% in case of Ca.Lung, for the IMRT Technique. Statistical analysis was performed by comparing the mean relative difference, Conformity Index, and Homogeneity Index for target structures. The fast superposition algorithm showed excellent results for lung and esophagus cases for all techniques. For the prostate, the superposition algorithm showed better results in all techniques. In the conventional case of the hypopharynx, the convolution algorithm was good. In case of Ca. Lung, Ca Prostate, Ca Esophagus, and Ca Hypopharynx, OARs got more doses with the superposition algorithm; this progressively decreased for fast superposition and convolution algorithms, respectively. According to this study the dosimetric results using different algorithms led to significant variation and therefore care had to be taken while evaluating treatment plans. The choice of a dose calculation algorithm may in certain cases even influence clinical results.

  10. Intensity modulated radiotherapy in early stage Hodgkin lymphoma patients: Is it better than three dimensional conformal radiotherapy?

    Directory of Open Access Journals (Sweden)

    De Sanctis Vitaliana

    2012-08-01

    Full Text Available Abstract Background Cure rate of early Hodgkin Lymphoma are high and avoidance of late toxicities is of paramount importance. This comparative study aims to assess the normal tissue sparing capability of intensity-modulated radiation therapy (IMRT versus standard three-dimensional conformal radiotherapy (3D-CRT in terms of dose-volume parameters and normal tissue complication probability (NTCP for different organs at risk in supradiaphragmatic Hodgkin Lymphoma (HL patients. Methods Ten HL patients were actually treated with 3D-CRT and all treatments were then re-planned with IMRT. Dose-volume parameters for thyroid, oesophagus, heart, coronary arteries, lung, spinal cord and breast were evaluated. Dose-volume histograms generated by TPS were analyzed to predict the NTCP for the considered organs at risk, according to different endpoints. Results Regarding dose-volume parameters no statistically significant differences were recorded for heart and origin of coronary arteries. We recorded statistically significant lower V30 with IMRT for oesophagus (6.42 vs 0.33, p = 0.02 and lungs (4.7 vs 0.1 p = 0.014 for the left lung and 2.59 vs 0.1 p = 0.017 for the right lung and lower V20 for spinal cord (17.8 vs 7.2 p = 0.02. Moreover the maximum dose to the spinal cord was lower with IMRT (30.2 vs 19.9, p Conclusions In HL male patients IMRT seems feasible and accurate while for women HL patients IMRT should be used with caution.

  11. Integral Dose and Radiation-Induced Secondary Malignancies: Comparison between Stereotactic Body Radiation Therapy and Three-Dimensional Conformal Radiotherapy

    Directory of Open Access Journals (Sweden)

    Stefano G. Masciullo

    2012-11-01

    Full Text Available The aim of the present paper is to compare the integral dose received by non-tumor tissue (NTID in stereotactic body radiation therapy (SBRT with modified LINAC with that received by three-dimensional conformal radiotherapy (3D-CRT, estimating possible correlations between NTID and radiation-induced secondary malignancy risk. Eight patients with intrathoracic lesions were treated with SBRT, 23 Gy × 1 fraction. All patients were then replanned for 3D-CRT, maintaining the same target coverage and applying a dose scheme of 2 Gy × 32 fractions. The dose equivalence between the different treatment modalities was achieved assuming α/β = 10Gy for tumor tissue and imposing the same biological effective dose (BED on the target (BED = 76Gy10. Total NTIDs for both techniques was calculated considering α/β = 3Gy for healthy tissue. Excess absolute cancer risk (EAR was calculated for various organs using a mechanistic model that includes fractionation effects. A paired two-tailed Student t-test was performed to determine statistically significant differences between the data (p ≤ 0.05. Our study indicates that despite the fact that for all patients integral dose is higher for SBRT treatments than 3D-CRT (p = 0.002, secondary cancer risk associated to SBRT patients is significantly smaller than that calculated for 3D-CRT (p = 0.001. This suggests that integral dose is not a good estimator for quantifying cancer induction. Indeed, for the model and parameters used, hypofractionated radiotherapy has the potential for secondary cancer reduction. The development of reliable secondary cancer risk models seems to be a key issue in fractionated radiotherapy. Further assessments of integral doses received with 3D-CRT and other special techniques are also strongly encouraged.

  12. Involved-Site Image-Guided Intensity Modulated Versus 3D Conformal Radiation Therapy in Early Stage Supradiaphragmatic Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, Andrea Riccardo, E-mail: andreariccardo.filippi@unito.it [Department of Oncology, University of Torino, Torino (Italy); Ciammella, Patrizia [Radiation Therapy Unit, Department of Oncology and Advanced Technology, ASMN Hospital IRCCS, Reggio Emilia (Italy); Piva, Cristina; Ragona, Riccardo [Department of Oncology, University of Torino, Torino (Italy); Botto, Barbara [Hematology, Città della Salute e della Scienza, Torino (Italy); Gavarotti, Paolo [Hematology, University of Torino and Città della Salute e della Scienza, Torino (Italy); Merli, Francesco [Hematology Unit, ASMN Hospital IRCCS, Reggio Emilia (Italy); Vitolo, Umberto [Hematology, Città della Salute e della Scienza, Torino (Italy); Iotti, Cinzia [Radiation Therapy Unit, Department of Oncology and Advanced Technology, ASMN Hospital IRCCS, Reggio Emilia (Italy); Ricardi, Umberto [Department of Oncology, University of Torino, Torino (Italy)

    2014-06-01

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows for margin reduction and highly conformal dose distribution, with consistent advantages in sparing of normal tissues. The purpose of this retrospective study was to compare involved-site IG-IMRT with involved-site 3D conformal RT (3D-CRT) in the treatment of early stage Hodgkin lymphoma (HL) involving the mediastinum, with efficacy and toxicity as primary clinical endpoints. Methods and Materials: We analyzed 90 stage IIA HL patients treated with either involved-site 3D-CRT or IG-IMRT between 2005 and 2012 in 2 different institutions. Inclusion criteria were favorable or unfavorable disease (according to European Organization for Research and Treatment of Cancer criteria), complete response after 3 to 4 cycles of an adriamycin- bleomycin-vinblastine-dacarbazine (ABVD) regimen plus 30 Gy as total radiation dose. Exclusion criteria were chemotherapy other than ABVD, partial response after ABVD, total radiation dose other than 30 Gy. Clinical endpoints were relapse-free survival (RFS) and acute toxicity. Results: Forty-nine patients were treated with 3D-CRT (54.4%) and 41 with IG-IMRT (45.6%). Median follow-up time was 54.2 months for 3D-CRT and 24.1 months for IG-IMRT. No differences in RFS were observed between the 2 groups, with 1 relapse each. Three-year RFS was 98.7% for 3D-CRT and 100% for IG-IMRT. Grade 2 toxicity events, mainly mucositis, were recorded in 32.7% of 3D-CRT patients (16 of 49) and in 9.8% of IG-IMRT patients (4 of 41). IG-IMRT was significantly associated with a lower incidence of grade 2 acute toxicity (P=.043). Conclusions: RFS rates at 3 years were extremely high in both groups, albeit the median follow-up time is different. Acute tolerance profiles were better for IG-IMRT than for 3D-CRT. Our preliminary results support the clinical safety and efficacy of advanced RT planning and delivery techniques in patients affected with early stage HL, achieving complete

  13. Involved-Site Image-Guided Intensity Modulated Versus 3D Conformal Radiation Therapy in Early Stage Supradiaphragmatic Hodgkin Lymphoma

    International Nuclear Information System (INIS)

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows for margin reduction and highly conformal dose distribution, with consistent advantages in sparing of normal tissues. The purpose of this retrospective study was to compare involved-site IG-IMRT with involved-site 3D conformal RT (3D-CRT) in the treatment of early stage Hodgkin lymphoma (HL) involving the mediastinum, with efficacy and toxicity as primary clinical endpoints. Methods and Materials: We analyzed 90 stage IIA HL patients treated with either involved-site 3D-CRT or IG-IMRT between 2005 and 2012 in 2 different institutions. Inclusion criteria were favorable or unfavorable disease (according to European Organization for Research and Treatment of Cancer criteria), complete response after 3 to 4 cycles of an adriamycin- bleomycin-vinblastine-dacarbazine (ABVD) regimen plus 30 Gy as total radiation dose. Exclusion criteria were chemotherapy other than ABVD, partial response after ABVD, total radiation dose other than 30 Gy. Clinical endpoints were relapse-free survival (RFS) and acute toxicity. Results: Forty-nine patients were treated with 3D-CRT (54.4%) and 41 with IG-IMRT (45.6%). Median follow-up time was 54.2 months for 3D-CRT and 24.1 months for IG-IMRT. No differences in RFS were observed between the 2 groups, with 1 relapse each. Three-year RFS was 98.7% for 3D-CRT and 100% for IG-IMRT. Grade 2 toxicity events, mainly mucositis, were recorded in 32.7% of 3D-CRT patients (16 of 49) and in 9.8% of IG-IMRT patients (4 of 41). IG-IMRT was significantly associated with a lower incidence of grade 2 acute toxicity (P=.043). Conclusions: RFS rates at 3 years were extremely high in both groups, albeit the median follow-up time is different. Acute tolerance profiles were better for IG-IMRT than for 3D-CRT. Our preliminary results support the clinical safety and efficacy of advanced RT planning and delivery techniques in patients affected with early stage HL, achieving complete

  14. A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    Science.gov (United States)

    Gu, Xuejun; Jelen, Urszula; Li, Jinsheng; Jia, Xun; Jiang, Steve B.

    2011-06-01

    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite-size pencil beam (FSPB) algorithm with a 3D-density correction method on graphics processing unit (GPU). This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework (Gu et al 2009 Phys. Med. Biol. 54 6287-97). Dosimetric evaluations against Monte Carlo dose calculations are conducted on ten IMRT treatment plans (five head-and-neck cases and five lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 s (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (~5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning.

  15. Evaluation of the optimal field arrangement for conformal radiotherapy for prostate cancer patients

    Institute of Scientific and Technical Information of China (English)

    M. Mahmoud; K Elshahat; H. William; M.Barsum; Amr Gaber

    2012-01-01

    Objective: The aim of this study was to evaluate the optimal field arrangement for conformal radiotherapy (CFRT) for prostate cancer patients. Methods: Thirty patients with prostate cancer of different grades and stages were treated with 3D conformal radiotherapy to minimize the dose to bladder, rectum and head of both femora using four fields (4F), five fields (5F), six fields (6F) and ARC techniques to minimize the risk of over dose to bladder, rectum and femoral heads. Patients received a total dose between 76 to 78 Gy given in 38 to 39 fractions over 7.5 to 8 weeks. Results: It was observed that V95, D95, D50 and D5 values for planning target volume (PTV) were comparatively higher when planned by 5 fields technique than when planned by fixed field technique (91%, 91%, 90% and 91.4% for skip-scan technique versus 85%, 87%, 86% and 88% by fixed field). The organs like rectum and urinary bladder get much higher dose when treated by fixed field techniques than rotation or 5 fields technique, when comparison was made for V95, V50 and DM values for rectum and urinary bladder obtained by 5 fields technique planning and 4/6 field planning, the value for 5 fields technique was found to be lower than 4/6 field technique (1%, 70% and 51% versus 13%, 91% and 55% for rectum and 4%, 25% and 51% versus 16%, 38% and 56% for urinary bladder respectively). Conclusion: Similarly for femoral heads, planning by full rotational technique had been observed to be beneficial as compared to when planning was done by fixed field technique (0%, 0% and 29% versus 0%, 1% and 28%).

  16. Intensity-Modulated Radiotherapy Causes Fewer Side Effects than Three-Dimensional Conformal Radiotherapy When Used in Combination With Brachytherapy for the Treatment of Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: To measure the benefits of intensity-modulated radiotherapy (IMRT) compared with three-dimensional conformal radiotherapy (3D-CRT) when used in combination with brachytherapy for the treatment of prostate cancer. Methods and Materials: We conducted a retrospective review of all patients with localized prostate cancer who received external-beam radiotherapy (EBRT) in combination with brachytherapy with at least 1 year follow-up (n = 812). Combination therapy consisted of 103Pd or 125I implant, followed by a course of EBRT. From 1993 to March 2003 521 patients were treated with 3D-CRT, and from April 2003 to March 2009 291 patients were treated with IMRT. Urinary symptoms were prospectively measured with the International Prostate Symptom Score questionnaire with a single quality of life (QOL) question; rectal bleeding was assessed per the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Schema. The Pearson χ2 test was used to compare toxicities experienced by patients who were treated with either IMRT or 3D-CRT. Logistic regression analyses were also performed to rule out possible confounding factors. Results: Within the first 3 months after treatment, patients treated with 3D-CRT scored their urinary symptoms as follows: 19% mild, 44% moderate, and 37% severe; patients treated with IMRT scored their urinary symptoms as follows: 36% mild, 47% moderate, and 17% severe (p < 0.001). The 3D-CRT patients rated their QOL as follows: 35% positive, 20% neutral, and 45% negative; IMRT patients rated their QOL as follows: 51% positive, 18% neutral, and 31% negative (p < 0.001). After 1 year of follow-up there was no longer any difference in urinary morbidity between the two groups. Logistic regression confirmed the differences in International Prostate Symptom Score and QOL in the acute setting (p < 0.001 for both). Grade ≥2 rectal bleeding was reported by 11% of 3D-CRT patients and 7% of

  17. Intensity-Modulated Radiotherapy Causes Fewer Side Effects than Three-Dimensional Conformal Radiotherapy When Used in Combination With Brachytherapy for the Treatment of Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Forsythe, Kevin; Blacksburg, Seth [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, NY (United States); Stone, Nelson [Department of Urology, Mount Sinai School of Medicine, New York, NY (United States); Stock, Richard G., E-mail: richard.stock@moutsinai.org [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, NY (United States)

    2012-06-01

    Purpose: To measure the benefits of intensity-modulated radiotherapy (IMRT) compared with three-dimensional conformal radiotherapy (3D-CRT) when used in combination with brachytherapy for the treatment of prostate cancer. Methods and Materials: We conducted a retrospective review of all patients with localized prostate cancer who received external-beam radiotherapy (EBRT) in combination with brachytherapy with at least 1 year follow-up (n = 812). Combination therapy consisted of {sup 103}Pd or {sup 125}I implant, followed by a course of EBRT. From 1993 to March 2003 521 patients were treated with 3D-CRT, and from April 2003 to March 2009 291 patients were treated with IMRT. Urinary symptoms were prospectively measured with the International Prostate Symptom Score questionnaire with a single quality of life (QOL) question; rectal bleeding was assessed per the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Schema. The Pearson {chi}{sup 2} test was used to compare toxicities experienced by patients who were treated with either IMRT or 3D-CRT. Logistic regression analyses were also performed to rule out possible confounding factors. Results: Within the first 3 months after treatment, patients treated with 3D-CRT scored their urinary symptoms as follows: 19% mild, 44% moderate, and 37% severe; patients treated with IMRT scored their urinary symptoms as follows: 36% mild, 47% moderate, and 17% severe (p < 0.001). The 3D-CRT patients rated their QOL as follows: 35% positive, 20% neutral, and 45% negative; IMRT patients rated their QOL as follows: 51% positive, 18% neutral, and 31% negative (p < 0.001). After 1 year of follow-up there was no longer any difference in urinary morbidity between the two groups. Logistic regression confirmed the differences in International Prostate Symptom Score and QOL in the acute setting (p < 0.001 for both). Grade {>=}2 rectal bleeding was reported by 11% of 3D

  18. A 3D global-to-local deformable mesh model based registration and anatomy-constrained segmentation method for image guided prostate radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Jinghao; Kim, Sung; Jabbour, Salma; Goyal, Sharad; Haffty, Bruce; Chen, Ting; Levinson, Lydia; Metaxas, Dimitris; Yue, Ning J. [Department of Radiation Oncology, UMDNJ-Robert Wood Johnson Medical School, Cancer Institute of New Jersey, New Brunswick, New Jersey 08903 (United States); Department of Bioinformatics, UMDNJ-Robert Wood Johnson Medical School, Cancer Institute of New Jersey, New Brunswick, New Jersey 08903 (United States); Department of Radiation Oncology, UMDNJ-Robert Wood Johnson Medical School, Cancer Institute of New Jersey, New Brunswick, New Jersey 08903 (United States); Department of Computer Science, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854 (United States); Department of Radiation Oncology, UMDNJ-Robert Wood Johnson Medical School, Cancer Institute of New Jersey, New Brunswick, New Jersey 08903 (United States)

    2010-03-15

    Purpose: In the external beam radiation treatment of prostate cancers, successful implementation of adaptive radiotherapy and conformal radiation dose delivery is highly dependent on precise and expeditious segmentation and registration of the prostate volume between the simulation and the treatment images. The purpose of this study is to develop a novel, fast, and accurate segmentation and registration method to increase the computational efficiency to meet the restricted clinical treatment time requirement in image guided radiotherapy. Methods: The method developed in this study used soft tissues to capture the transformation between the 3D planning CT (pCT) images and 3D cone-beam CT (CBCT) treatment images. The method incorporated a global-to-local deformable mesh model based registration framework as well as an automatic anatomy-constrained robust active shape model (ACRASM) based segmentation algorithm in the 3D CBCT images. The global registration was based on the mutual information method, and the local registration was to minimize the Euclidian distance of the corresponding nodal points from the global transformation of deformable mesh models, which implicitly used the information of the segmented target volume. The method was applied on six data sets of prostate cancer patients. Target volumes delineated by the same radiation oncologist on the pCT and CBCT were chosen as the benchmarks and were compared to the segmented and registered results. The distance-based and the volume-based estimators were used to quantitatively evaluate the results of segmentation and registration. Results: The ACRASM segmentation algorithm was compared to the original active shape model (ASM) algorithm by evaluating the values of the distance-based estimators. With respect to the corresponding benchmarks, the mean distance ranged from -0.85 to 0.84 mm for ACRASM and from -1.44 to 1.17 mm for ASM. The mean absolute distance ranged from 1.77 to 3.07 mm for ACRASM and from 2.45 to

  19. Semiautomatic registration of 3D transabdominal ultrasound images for patient repositioning during postprostatectomy radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Presles, Benoît, E-mail: benoit.presles@creatis.insa-lyon.fr; Rit, Simon; Sarrut, David [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Lyon F-69621, France and Léon Bérard Cancer Center, Université de Lyon, Lyon F-69373 (France); Fargier-Voiron, Marie; Liebgott, Hervé [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Lyon F-69621 (France); Biston, Marie-Claude; Munoz, Alexandre; Pommier, Pascal [Léon Bérard Cancer Center, Université de Lyon, Lyon F-69373 (France); Lynch, Rod [The Andrew Love Cancer Centre, University Hospital Geelong, Geelong 3220 (Australia)

    2014-12-15

    Purpose: The aim of the present work is to propose and evaluate registration algorithms of three-dimensional (3D) transabdominal (TA) ultrasound (US) images to setup postprostatectomy patients during radiation therapy. Methods: Three registration methods have been developed and evaluated to register a reference 3D-TA-US image acquired during the planning CT session and a 3D-TA-US image acquired before each treatment session. The first method (method A) uses only gray value information, whereas the second one (method B) uses only gradient information. The third one (method C) combines both sets of information. All methods restrict the comparison to a region of interest computed from the dilated reference positioning volume drawn on the reference image and use mutual information as a similarity measure. The considered geometric transformations are translations and have been optimized by using the adaptive stochastic gradient descent algorithm. Validation has been carried out using manual registration by three operators of the same set of image pairs as the algorithms. Sixty-two treatment US images of seven patients irradiated after a prostatectomy have been registered to their corresponding reference US image. The reference registration has been defined as the average of the manual registration values. Registration error has been calculated by subtracting the reference registration from the algorithm result. For each session, the method has been considered a failure if the registration error was above both the interoperator variability of the session and a global threshold of 3.0 mm. Results: All proposed registration algorithms have no systematic bias. Method B leads to the best results with mean errors of −0.6, 0.7, and −0.2 mm in left–right (LR), superior–inferior (SI), and anterior–posterior (AP) directions, respectively. With this method, the standard deviations of the mean error are of 1.7, 2.4, and 2.6 mm in LR, SI, and AP directions, respectively

  20. Semiautomatic registration of 3D transabdominal ultrasound images for patient repositioning during postprostatectomy radiotherapy

    International Nuclear Information System (INIS)

    Purpose: The aim of the present work is to propose and evaluate registration algorithms of three-dimensional (3D) transabdominal (TA) ultrasound (US) images to setup postprostatectomy patients during radiation therapy. Methods: Three registration methods have been developed and evaluated to register a reference 3D-TA-US image acquired during the planning CT session and a 3D-TA-US image acquired before each treatment session. The first method (method A) uses only gray value information, whereas the second one (method B) uses only gradient information. The third one (method C) combines both sets of information. All methods restrict the comparison to a region of interest computed from the dilated reference positioning volume drawn on the reference image and use mutual information as a similarity measure. The considered geometric transformations are translations and have been optimized by using the adaptive stochastic gradient descent algorithm. Validation has been carried out using manual registration by three operators of the same set of image pairs as the algorithms. Sixty-two treatment US images of seven patients irradiated after a prostatectomy have been registered to their corresponding reference US image. The reference registration has been defined as the average of the manual registration values. Registration error has been calculated by subtracting the reference registration from the algorithm result. For each session, the method has been considered a failure if the registration error was above both the interoperator variability of the session and a global threshold of 3.0 mm. Results: All proposed registration algorithms have no systematic bias. Method B leads to the best results with mean errors of −0.6, 0.7, and −0.2 mm in left–right (LR), superior–inferior (SI), and anterior–posterior (AP) directions, respectively. With this method, the standard deviations of the mean error are of 1.7, 2.4, and 2.6 mm in LR, SI, and AP directions, respectively

  1. Predictors of IMRT and Conformal Radiotherapy Use in Head and Neck Squamous Cell Carcinoma: A SEER-Medicare Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sher, David J., E-mail: dsher@lroc.harvard.edu [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, MA (United States); Center for Outcomes and Policy Research, Dana Farber Cancer Institute, Boston, MA (United States); Neville, Bridget A. [Center for Outcomes and Policy Research, Dana Farber Cancer Institute, Boston, MA (United States); Chen, Aileen B. [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, MA (United States); Center for Outcomes and Policy Research, Dana Farber Cancer Institute, Boston, MA (United States); Schrag, Deborah [Center for Outcomes and Policy Research, Dana Farber Cancer Institute, Boston, MA (United States)

    2011-11-15

    Purpose: The extent to which new techniques for the delivery of radiotherapy for head and neck squamous cell carcinoma (HNSCC) have diffused into clinical practice is unclear, including the use of 3-dimensional conformal RT (3D-RT) and intensity-modulated radiation therapy (IMRT). Methods and Materials: Using the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database, we identified 2,495 Medicare patients with Stage I-IVB HNSCC diagnosed at age 65 years or older between 2000 and 2005 and treated with either definitive (80%) or adjuvant (20%) radiotherapy. Our primary aim was to analyze the trends and predictors of IMRT use over this time, and the secondary aim was a similar description of the trends and predictors of conformal radiotherapy (CRT) use, defined as treatment with either 3D-RT or IMRT. Results: Three hundred sixty-four (15%) patients were treated with IMRT, and 1,190 patients (48%) were treated with 3D-RT. Claims for IMRT and CRT rose from 0% to 33% and 39% to 86%, respectively, between 2000 and 2005. On multivariable analysis, IMRT use was associated with SEER region (West 18%; Northeast 11%; South 12%; Midwest 13%), advanced stage (advanced, 21%; early, 9%), non-larynx site (non-larynx, 23%; larynx, 7%), higher median census tract income (highest vs. lowest quartile, 18% vs. 10%), treatment year (2003-2005, 31%; 2000-2002, 6%), use of chemotherapy (26% with; 9% without), and higher radiation oncologist treatment volume (highest vs. lowest tertile, 23% vs. 8%). With CRT as the outcome, only SEER region, treatment year, use of chemotherapy, and increasing radiation oncologist HNSCC volume were significant on multivariable analysis. Conclusions: The use of IMRT and CRT by Medicare beneficiaries with HNSCC rose significantly between 2000 and 2005 and was associated with both clinical and non-clinical factors, with treatment era and radiation oncologist HNSCC treatment volume serving as the strongest predictors of IMRT use.

  2. Advantages of mesh tallying in MCNPX for 3D dose calculations in radiotherapy

    International Nuclear Information System (INIS)

    The energy deposition mesh tally option of MCNPX Monte Carlo code is very useful for 3-Dimentional (3D) dose calculations. In this study, the 3D dose calculation was done for CT-based Monte Carlo treatment planning in which the energy deposition mesh tally were superimposed on merged voxel model. The results were compared with those of obtained from the common energy deposition (*F8) tally method for all cells of non-merged voxel model. The results of these two tallies and their respective computational times are compared, and the advantages of the proposed method are discussed. For this purpose, a graphical user interface (GUI) application was developed for reading CT slice data of patient, creating voxelized model of patient, optionally merging adjacent cells with the same material to reduce the total number of cells, reading beam configuration from commercial treatment planning system transferred in DICOM-RT format, and showing the isodose distribution on the CT images. To compare the results of Monte Carlo calculated and TiGRT planning system (LinaTech LLC, USA), treatment head of the Siemens ONCOR Impression accelerator was also simulated and the phase-space data on the scoring plane just above the Y-jaws was created and used. The results for a real prostate intensity-modulated radiation therapy (IMRT) plan showed that the proposed method was fivefold faster while the precision was almost the same. (author)

  3. Dose escalation in prostate radiotherapy up to 82 Gy using simultaneous integrated boost. Direct comparison of acute and late toxicity with 3D-CRT 74 Gy and IMRT 78 Gy

    Energy Technology Data Exchange (ETDEWEB)

    Dolezel, Martin; Odrazka, Karel; Vanasek, Jaroslav [Oncology Center, Multiscan and Pardubice Regional Hospital, Pardubice (Czech Republic); Vaculikova, Miloslava [Dept. of Oncology, Hospital Nachod (Czech Republic); Sefrova, Jana; Paluska, Petr; Zouhar, Milan; Jansa, Jan; Macingova, Zuzana; Jarosova, Lida [Dept. of Oncology and Radiotherapy, Univ. Hospital Hradec Kralove (Czech Republic); Brodak, Milos; Moravek, Petr [Dept. of Urology, Univ. Hospital Hradec Kralove (Czech Republic); Hartmann, Igor [Dept. of Urology, Univ. Hospital Olomouc (Czech Republic)

    2010-04-15

    Purpose: To compare acute and late toxicity after three-dimensional conformal radiotherapy to the prostate to 74 Gy (3D-CRT) with intensity-modulated radiotherapy to 78 Gy (IMRT 78) and IMRT using simultaneous integrated boost to 82 Gy (IMRT/SIB 82). Patients and methods: 94 patients treated with 3D-CRT to the prostate and base of seminal vesicles to 74 Gy represented the first group. The second group consisted of 138 patients subjected to IMRT covering the prostate and base of seminal vesicles to 78 Gy. The last group was treated with IMRT using SIB. The prescribed doses were 82 Gy and 73.8 Gy in 42 fractions to the prostate and seminal vesicles. Late toxicity was prospectively scored according to the RTOG/FC-LENT scale. Results: Acute gastrointestinal toxicity {>=} grade 2 occurred in 35.1% of patients treated with 3D-CRT, in 16% subjected to IMRT 78, and in 7.7% receiving IMRT/SIB 82. Acute genitourinary toxicity {>=} grade 2 was observed in 26.6% (3D-CRT), 33% (IMRT 78), and 30.7% (IMRT/SIB 82). At 3 years, the estimated cumulative incidence of grade 3 late gastrointestinal toxicity was 14% for 3D-CRT, 5% for IMRT 78, and 2% for IMRT/SIB 82. The difference became significant (log rank p = 0.02). The estimated cumulative incidence of grade 3 late genitourinary toxicity was 9% (3D-CRT), 7% (IMRT 78), and 6% (IMRT/SIB 82) without statistical differences (log rank p = 0.32). Conclusion: SIB enables dose escalation up to 82 Gy with a lower rate of gastrointestinal toxicity grade 3 in comparison with 3D-CRT up to 74 Gy. (orig.)

  4. Conformal Radiotherapy in the Treatment of Advanced Juvenile Nasopharyngeal Angiofibroma With Intracranial Extension: An Institutional Experience

    International Nuclear Information System (INIS)

    Purpose: To describe the results of conformal radiotherapy in advanced juvenile nasopharyngeal angiofibroma in a tertiary care institution. Methods and Materials: Retrospective chart review was conducted for 8 patients treated with conformal radiotherapy between 2006 and 2009. The median follow-up was 17 months. All patients had Stage IIIB disease with intracranial extension. Radiotherapy was considered as treatment because patients were deemed inoperable owing to extensive intracranial/intraorbital extension or proximity to optic nerve. All but 1 patient were treated with intensity-modulated radiotherapy using seven coplanar fields. Median (range) dose prescribed was 39.6 (30-46) Gy. Actuarial analysis of local control and descriptive analysis of toxicity profile was conducted. Results: Despite the large and complex target volume (median planning target volume, 292 cm3), intensity-modulated radiotherapy achieved conformal dose distributions (median van't Reit index, 0.66). Significant sparing of the surrounding organs at risk was obtained. No significant Grade 3/4 toxicities were experienced during or after treatment. Actual local control at 2 years was 87.5%. One patient died 1 month after radiotherapy secondary to massive epistaxis. The remaining 7 patients had progressive resolution of disease and were symptom-free at last follow-up. Persistent rhinitis was the only significant toxicity, seen in 1 patient. Conclusions: Conformal radiotherapy results in good local control with minimal acute and late side effects in juvenile nasopharyngeal angiofibromas, even in the presence of advanced disease.

  5. Quality assurance in conformal radiotherapy: DYNARAD consensus report on practice guidelines

    International Nuclear Information System (INIS)

    Background and purpose: Conformal radiotherapy has only recently been widely implemented. Although not all aspects have yet been adequately proven, it is generally recognized that maintaining a high degree of precision throughout the process is critical to the treatment outcome while the focus for quality assurance and quality improvement will need to concentrate more on human factors, procedures, communication, organization and training. A general consensus document on quality assurance guidelines for institutions that deliver conformal radiotherapy treatments to patients has been elaborated within the framework of the DYNARAD/BIOMED concerted action on conformal radiotherapy. The present paper aims to highlight those issues that were identified as of specific importance to conformal radiotherapy. The work reported here further details this guidance by direct correlation with the issues involved in the special case of conformal radiotherapy. Methods: The DYNARAD document has been drafted in the form of a desktop guide comprising six sets of guidelines and is based on the ESTRO advisory report on 'Quality Assurance in Radiotherapy'. Results and conclusions: The document has been endorsed by the DYNARAD group of institutions. As such it can form the basis for further discussions and enter into the subsequent phase of expanding its consensus basis

  6. A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    CERN Document Server

    Gu, Xuejun; Li, Jinsheng; Jia, Xun; Jiang, Steve B

    2011-01-01

    Targeting at developing an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against MCSIM Monte Carlo dose calculations are conducted on 10 IMRT treatment plans with heterogeneous treatment regions (5 head-and-neck cases and 5 lung cases). For head and neck cases, when cavities exist near the target, the improvement with the 3D-density correction over the conventional FSPB algorithm is significant. However, when there are high-density dental filling materials in beam paths, the improvement is small and the accuracy of the new algorithm is still unsatisfactory. On the other hand, significant improvement of dose calculation accuracy is observed in all lung cases. Especially when the target is in the m...

  7. Quality of Life and Survival Outcome for Patients With Nasopharyngeal Carcinoma Receiving Three-Dimensional Conformal Radiotherapy vs. Intensity-Modulated Radiotherapy-A Longitudinal Study

    International Nuclear Information System (INIS)

    Purpose: To investigate the changes of quality of life (QoL) and survival outcomes for patients with nasopharyngeal carcinoma (NPC) treated by three-dimensional conformal radiotherapy (3D-CRT) vs. intensity-modulated radiotherapy (IMRT). Methods and Materials: Two hundred and three newly diagnosed NPC patients, who were curatively treated by 3D-CRT (n = 93) or IMRT (n = 110) between March 2002 and July 2004, were analyzed. The distributions of clinical stage according to American Joint Committee on Cancer 1997 were I: 15 (7.4%), II: 78 (38.4%), III: 74 (36.5%), and IV: 36 (17.7%). QoL was longitudinally assessed by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30 and the EORTC QLQ-H and N35 questionnaires at the five time points: before RT, during RT (36 Gy), and 3 months, 12 months, and 24 months after RT. Results: The 3-year locoregional control, metastasis-free survival, and overall survival rates were 84.8%, 76.7%, and 81.7% for the 3D-CRT group, respectively, compared with 84.2%, 82.6%, and 85.4% for the IMRT group (p value > 0.05). A general trend of maximal deterioration in most QoL scales was observed during RT, followed by a gradual recovery thereafter. There was no significant difference in most scales between the two groups at each time point. The exception was that patients treated by IMRT had a both statistically and clinically significant improvement in global QoL, fatigue, taste/smell, dry mouth, and feeling ill at the time point of 3 months after RT. Conclusions: The potential advantage of IMRT over 3D-CRT in treating NPC patients might occur in QoL outcome during the recovery phase of acute toxicity

  8. Advantages and disadvantages of using non-coplanar techniques in radiotherapy of the abdomen formed 3D; Ventajas e inconvenientes del uso de tecnicas con coplanares en radiaoterpia 3D conformada de abdomen

    Energy Technology Data Exchange (ETDEWEB)

    Urena Llinares, A.; Castro Ramirez, I.; Iborra Oquendo, M. A; Quinones Rodriguez, L. A.; Angulo Pain, E.

    2011-07-01

    3D Radiotherapy locations abdomen, especially in pancreas and stomach cancers is often extremely difficult if we are to meet the dose constraints to organs at risk due to proximity and many of these (liver, kidneys, intestines, lungs, bone. ..). Of these, the most critical are the kidneys, which also present values of tolerance, in most cases difficult to meet. This is done in our hospital are using non-coplanar techniques performing well both as coating PTV dose to both kidneys.

  9. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer.

    Science.gov (United States)

    Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa

    2013-04-01

    For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR's, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR's DVH's as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment.

  10. Evidence-based review of three-dimensional conformal radiotherapy for localized prostate cancer: An ASTRO outcomes initiative

    International Nuclear Information System (INIS)

    Purpose: To perform a systematic review of the evidence to determine the efficacy and effectiveness of three-dimensional conformal radiotherapy (3D-CRT) for localized prostate cancer; provide a clear presentation of the key clinical outcome questions related to the use of 3D-CRT in the treatment of localized prostate cancer that may be answered by a formal literature review; and provide concise information on whether 3D-CRT improves the clinical outcomes in the treatment of localized prostate cancer compared with conventional RT. Methods and Materials: We performed a systematic review of the literature through a structured process developed by the American Society for Therapeutic Radiology and Oncology's Outcomes Committee that involved the creation of a multidisciplinary task force, development of clinical outcome questions, a formal literature review and data abstraction, data review, and outside peer review. Results: Seven key clinical questions were identified. The results and task force conclusions of the literature review for each question are reported. Conclusion: The technological goals of reducing morbidity with 3D-CRT have been achieved. Randomized trials and follow-up of completed trials remain necessary to address these clinical outcomes specifically with regard to patient subsets and the use of hormonal therapy

  11. Heat- and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold.

    Science.gov (United States)

    Navarra, Giovanna; Peres, Chiara; Contardi, Marco; Picone, Pasquale; San Biagio, Pier Luigi; Di Carlo, Marta; Giacomazza, Daniela; Militello, Valeria

    2016-09-15

    Aggregation and gelation of globular proteins can be an advantage to generate new forms of nanoscale biomaterials based on the fibrillar architecture. Here, we report results obtained by exploiting the proteins' natural tendency to self-organize in 3D network, for the production of new material based on BSA for medical application. In particular, at five different pH values the conformational and structural changes of the BSA during all the steps of the thermal aggregation and gelation have been analyzed by FTIR spectroscopy. The macroscopic mechanical properties of these hydrogels have been obtained by rheological measurements. The microscopic structure of the gels have been studied by AFM and SEM images to have a picture of their different spatial arrangement. Finally, the use of the BSA hydrogels as scaffold has been tested in two different cell cultures.

  12. 3D quantitative assessment of response to fractionated stereotactic radiotherapy and single-session stereotactic radiosurgery of vestibular schwannoma

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T. [The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Neuroradiology, Baltimore, MD (United States); University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Neuroradiology, Hamburg (Germany); Chapiro, J. [The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Interventional Radiology, Baltimore, MD (United States); Lin, M. [Philips Research North America, Ultrasound Imaging and Interventions (UII), Briarcliff Manor, NY (United States); Geschwind, J.F. [The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Interventional Radiology, Baltimore, MD (United States); Yale University School of Medicine, Department of Radiology and Imaging Science, New Haven, CT (United States); Kleinberg, L. [The Johns Hopkins University School of Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD (United States); Rigamonti, D.; Jusue-Torres, I.; Marciscano, A.E. [The Johns Hopkins University School of Medicine, Department of Neurological Surgery, Baltimore, MD (United States); Yousem, D.M. [The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Neuroradiology, Baltimore, MD (United States)

    2016-03-15

    To determine clinical outcome of patients with vestibular schwannoma (VS) after treatment with fractionated stereotactic radiotherapy (FSRT) and single-session stereotactic radiosurgery (SRS) by using 3D quantitative response assessment on MRI. This retrospective analysis included 162 patients who underwent radiation therapy for sporadic VS. Measurements on T1-weighted contrast-enhanced MRI (in 2-year post-therapy intervals: 0-2, 2-4, 4-6, 6-8, 8-10, 10-12 years) were taken for total tumour volume (TTV) and enhancing tumour volume (ETV) based on a semi-automated technique. Patients were considered non-responders (NRs) if they required subsequent microsurgical resection or developed radiological progression and tumour-related symptoms. Median follow-up was 4.1 years (range: 0.4-12.0). TTV and ETV decreased for both the FSRT and SRS groups. However, only the FSRT group achieved significant tumour shrinkage (p < 0.015 for TTV, p < 0.005 for ETV over time). The 11 NRs showed proportionally greater TTV (median TTV pre-treatment: 0.61 cm{sup 3}, 8-10 years after: 1.77 cm{sup 3}) and ETV despite radiation therapy compared to responders (median TTV pre-treatment: 1.06 cm{sup 3}; 10-12 years after: 0.81 cm{sup 3}; p = 0.001). 3D quantification of VS showed a significant decrease in TTV and ETV on FSRT-treated patients only. NR had significantly greater TTV and ETV over time. (orig.)

  13. In vivo surface dose measurement using GafChromic film dosimetry in breast cancer radiotherapy: comparison of 7-field IMRT, tangential IMRT and tangential 3D-CRT

    International Nuclear Information System (INIS)

    The purpose of this study was to compare the surface dose of 7-field IMRT (7 F-IMRT), tangential beam IMRT (TB-IMRT), and tangential beam 3D-CRT (3D-CRT) of breast cancer patients receiving adjuvant radiotherapy by means of in vivo GafChromic film dosimetry. Breast cancer patients receiving adjuvant radiotherapy of the whole breast or the chest wall were eligible for the study. Study patients were treated with a treatment plan using two different radiotherapy techniques (first patient series, 3D-CRT followed by TB-IMRT; second patient series, TB-IMRT followed by 7 F-IMRT). The surface dose was evaluated on three consecutive treatment fractions per radiotherapy technique using in vivo GafChromic film dosimetry. The paired t-test was used to assess the difference of in vivo GafChromic film readings or calculated plan parameters of the compared pairs of radiation techniques for statistical significance. Forty-five unselected breast cancer patients were analysed in this study. 7 F-IMRT significantly reduced the surface dose compared to TB-IMRT. Differences were greatest in the central and lateral breast or chest wall region and amounted to a dose reduction of -11.8% to -18.8%. No significant difference of the surface dose was observed between TB-IMRT and 3D-CRT. A corresponding observation was obtained for the calculated skin dose derived from dose-volume histograms. In adjuvant breast cancer radiotherapy, 7 F-IMRT offers a significantly reduced surface dose compared to TB-IMRT or 3D-CRT

  14. Medical applications of fast 3D cameras in real-time image-guided radiotherapy (IGRT) of cancer

    Science.gov (United States)

    Li, Shidong; Li, Tuotuo; Geng, Jason

    2013-03-01

    Dynamic volumetric medical imaging (4DMI) has reduced motion artifacts, increased early diagnosis of small mobile tumors, and improved target definition for treatment planning. High speed cameras for video, X-ray, or other forms of sequential imaging allow a live tracking of external or internal movement useful for real-time image-guided radiation therapy (IGRT). However, none of 4DMI can track real-time organ motion and no camera has correlated with 4DMI to show volumetric changes. With a brief review of various IGRT techniques, we propose a fast 3D camera for live-video stereovision, an automatic surface-motion identifier to classify body or respiratory motion, a mechanical model for synchronizing the external surface movement with the internal target displacement by combination use of the real-time stereovision and pre-treatment 4DMI, and dynamic multi-leaf collimation for adaptive aiming the moving target. Our preliminary results demonstrate that the technique is feasible and efficient in IGRT of mobile targets. A clinical trial has been initiated for validation of its spatial and temporal accuracies and dosimetric impact for intensity-modulated RT (IMRT), volumetric-modulated arc therapy (VMAT), and stereotactic body radiotherapy (SBRT) of any mobile tumors. The technique can be extended for surface-guided stereotactic needle insertion in biopsy of small lung nodules.

  15. Determining inter-fractional motion of the uterus using 3D ultrasound imaging during radiotherapy for cervical cancer

    DEFF Research Database (Denmark)

    Baker, Mariwan; Jensen, Jørgen Arendt; Behrens, Claus F.

    2014-01-01

    by Cone-Beam CT (CBCT) imaging.Five cervical cancer patients were enrolled in the study. Three of them underwent weekly CBCT imaging prior to treatment and bone match shift was applied. After treatment delivery they underwent a weekly US scan. The transabdominal scans were conducted using a Clarity US......Uterine positional changes can reduce the accuracy of radiotherapy for cervical cancer patients. The purpose of this study was to; 1) Quantify the inter-fractional uterine displacement using a novel 3D ultrasound (US) imaging system, and 2) Compare the result with the bone match shift determined...... system (Clarity® Model 310C00). Uterine positional shifts based on soft-tissue match using US was performed and compared to bone match shifts for the three directions. Mean value (±1 SD) of the US shifts were (mm); anterior-posterior (A/P): (3.8±5.5), superior-inferior (S/I) (-3.5±5.2), and left-right (L...

  16. SU-D-9A-06: 3D Localization of Neurovascular Bundles Through MR-TRUS Registration in Prostate Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X; Rossi, P; Ogunleye, T; Jani, A; Curran, W; Liu, T [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA (United States)

    2014-06-01

    Purpose: Erectile dysfunction (ED) is the most common complication of prostate-cancer radiotherapy (RT) and the major mechanism is radiation-induced neurovascular bundle (NVB) damage. However, the localization of the NVB remains challenging. This study's purpose is to accurately localize 3D NVB by integrating MR and transrectal ultrasound (TRUS) images through MR-TRUS fusion. Methods: T1 and T2-weighted MR prostate images were acquired using a Philips 1.5T MR scanner and a pelvic phase-array coil. The 3D TRUS images were captured with a clinical scanner and a 7.5 MHz biplane probe. The TRUS probe was attached to a stepper; the B-mode images were captured from the prostate base to apex at a 1-mm step and the Doppler images were acquired in a 5-mm step. The registration method modeled the prostate tissue as an elastic material, and jointly estimated the boundary condition (surface deformation) and the volumetric deformations under elastic constraint. This technique was validated with a clinical study of 7 patients undergoing RT treatment for prostate cancer. The accuracy of our approach was assessed through the locations of landmarks, as well as previous ultrasound Doppler images of patients. Results: MR-TRUS registration was successfully performed for all patients. The mean displacement of the landmarks between the post-registration MR and TRUS images was 1.37±0.42 mm, which demonstrated the precision of the registration based on the biomechanical model; and the NVB volume Dice Overlap Coefficient was 92.1±3.2%, which demonstrated the accuracy of the NVB localization. Conclusion: We have developed a novel approach to improve 3D NVB localization through MR-TRUS fusion for prostate RT, demonstrated its clinical feasibility, and validated its accuracy with ultrasound Doppler data. This technique could be a useful tool as we try to spare the NVB in prostate RT, monitor NBV response to RT, and potentially improve post-RT potency outcomes.

  17. Dosimetric Comparison of Three-Dimensional Conformal Proton Radiotherapy, Intensity-Modulated Proton Therapy, and Intensity-Modulated Radiotherapy for Treatment of Pediatric Craniopharyngiomas

    Energy Technology Data Exchange (ETDEWEB)

    Boehling, Nicholas S. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Grosshans, David R., E-mail: dgrossha@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Bluett, Jaques B. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Palmer, Matthew T. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Song, Xiaofei; Amos, Richard A.; Sahoo, Narayan [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Meyer, Jeffrey J.; Mahajan, Anita; Woo, Shiao Y. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2012-02-01

    Purpose: Cranial irradiation in pediatric patients is associated with serious long-term adverse effects. We sought to determine whether both three-dimensional conformal proton radiotherapy (3D-PRT) and intensity-modulated proton therapy (IMPT) compared with intensity-modulated radiotherapy (IMRT) decrease integral dose to brain areas known to harbor neuronal stem cells, major blood vessels, and other normal brain structures for pediatric patients with craniopharyngiomas. Methods and Materials: IMRT, forward planned, passive scattering proton, and IMPT plans were generated and optimized for 10 pediatric patients. The dose was 50.4 Gy (or cobalt Gy equivalent) delivered in 28 fractions with the requirement for planning target volume (PTV) coverage of 95% or better. Integral dose data were calculated from differential dose-volume histograms. Results: The PTV target coverage was adequate for all modalities. IMRT and IMPT yielded the most conformal plans in comparison to 3D-PRT. Compared with IMRT, 3D-PRT and IMPT plans had a relative reduction of integral dose to the hippocampus (3D-PRT, 20.4; IMPT, 51.3%{sup Asterisk-Operator }), dentate gyrus (27.3, 75.0%{sup Asterisk-Operator }), and subventricular zone (4.5, 57.8%{sup Asterisk-Operator }). Vascular organs at risk also had reduced integral dose with the use of proton therapy (anterior cerebral arteries, 33.3{sup Asterisk-Operator }, 100.0%{sup Asterisk-Operator }; middle cerebral arteries, 25.9%{sup Asterisk-Operator }, 100%{sup Asterisk-Operator }; anterior communicating arteries, 30.8{sup Asterisk-Operator }, 41.7%{sup Asterisk-Operator }; and carotid arteries, 51.5{sup Asterisk-Operator }, 77.6{sup Asterisk-Operator }). Relative reduction of integral dose to the infratentorial brain (190.7{sup Asterisk-Operator }, 109.7%{sup Asterisk-Operator }), supratentorial brain without PTV (9.6, 26.8%{sup Asterisk-Operator }), brainstem (45.6, 22.4%{sup Asterisk-Operator }), and whole brain without PTV (19.4{sup Asterisk

  18. Effect of Radiotherapy Techniques (IMRT vs. 3D-CRT) on Outcome in Patients With Intermediate-Risk Rhabdomyosarcoma Enrolled in COG D9803—A Report From the Children’s Oncology Group

    International Nuclear Information System (INIS)

    Purpose: To compare the dosimetric parameters of intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) in patients with intermediate-risk rhabdomyosarcoma and to analyze their effect on locoregional control and failure-free survival (FFS). Methods and Materials: The study population consisted of 375 patients enrolled in the Children’s Oncology Group protocol D9803 study, receiving IMRT or 3D-CRT. Dosimetric data were collected from 179 patients with an available composite plan. The chi-square test or Fisher’s exact test was used to compare the patient characteristics and radiotherapy parameters between the two groups. The interval-to-event outcomes were estimated using the Kaplan-Meier method and compared using log–rank tests. Cox proportional hazards regression analysis was used to examine the effect of the treatment technique on FFS after adjusting for primary site and risk group. Results: The median follow-up time was 5.7 and 4.2 years for patients receiving 3D-CRT and IMRT, respectively. No differences in the 5-year failure of locoregional control (18% vs. 15%) or FFS (72% vs. 76%) rates were noted between the two groups. Multivariate analysis revealed no association between the two techniques and FFS. Patients with primary tumors in parameningeal sites were more likely to receive IMRT than 3D-CRT. IMRT became more common during the later years of the study. Patients receiving IMRT were more likely to receive >50 Gy, photon energy of ≤6 MV, and >5 radiation fields than those who received 3D-CRT. The coverage of the IMRT planning target volume by the prescription dose was improved compared with the coverage using 3D-CRT with similar target dose heterogeneity. Conclusions: IMRT improved the target dose coverage compared with 3D-CRT, although an improvement in locoregional control or FFS could not be demonstrated in this population. Future studies comparing the integral dose to nontarget tissue and late radiation

  19. Dosimetric comparison between conventional and conformal radiotherapy for carcinoma cervix: Are we treating the right volumes?

    Directory of Open Access Journals (Sweden)

    Jyotirup Goswami

    2013-01-01

    Full Text Available Background and Purpose: Conventional portals, based on bony anatomy, for external beam radiotherapy for cervical cancer have been repeatedly demonstrated as inadequate. Conversely, with image-based conformal radiotherapy, better target coverage may be offset by the greater toxicities and poorer compliance associated with treating larger volumes. This study was meant to dosimetrically compare conformal and conventional radiotherapy. Materials and Methods: Five patients of carcinoma cervix underwent planning CT scan with IV contrast and targets, and organs at risk (OAR were contoured. Two sets of plans-conventional and conformal were generated for each patient. Field sizes were recorded, and dose volume histograms of both sets of plans were generated and compared on the basis of target coverage and OAR sparing. Results: Target coverage was significantly improved with conformal plans though field sizes required were significantly larger. On the other hand, dose homogeneity was not significantly improved. Doses to the OARs (rectum, urinary bladder, and small bowel were not significantly different across the 2 arms. Conclusion: Three-dimensional conformal radiotherapy gives significantly better target coverage, which may translate into better local control and survival. On the other hand, it also requires significantly larger field sizes though doses to the OARs are not significantly increased.

  20. Strategies to evaluate the impact of rectal volume on prostate motion during three-dimensional conformal radiotherapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    Ana Paula Diniz Fortuna Poli

    2016-02-01

    Full Text Available Abstract Objective: To evaluate the rectal volume influence on prostate motion during three-dimensional conformal radiotherapy (3D-CRT for prostate cancer. Materials and Methods: Fifty-one patients with prostate cancer underwent a series of three computed tomography scans including an initial planning scan and two subsequent scans during 3D-CRT. The organs of interest were outlined. The prostate contour was compared with the initial CT images considering the anterior, posterior, superior, inferior and lateral edges of the organ. Variations in the anterior limits and volume of the rectum were assessed and correlated with prostate motion in the anteroposterior direction. Results: The maximum range of prostate motion was observed in the superoinferior direction, followed by the anteroposterior direction. A significant correlation was observed between prostate motion and rectal volume variation ( p = 0.037. A baseline rectal volume superior to 70 cm3 had a significant influence on the prostate motion in the anteroposterior direction ( p = 0.045. Conclusion: The present study showed a significant interfraction motion of the prostate during 3D-CRT with greatest variations in the superoinferior and anteroposterior directions, and that a large rectal volume influences the prostate motion with a cutoff value of 70 cm3. Therefore, the treatment of patients with a rectal volume > 70 cm3 should be re-planned with appropriate rectal preparation.

  1. The Three Dimensional Conformal Radiotherapy for Hyperkeratotic Plantar Mycosis Fungoides

    OpenAIRE

    Lee, Sun Young; Kwon, Hyoung Cheol; Cho, Yong-Sun; Nam, Kyung-Hwa; Ihm, Chull-Wan; Kim, Jung Soo

    2011-01-01

    The localized early-stage of Mycosis fungoides (MF) (stage IA-IIA) is usually treated with topical agents, such as nitrogen mustard, steroids, and phototherapy (UVB/PUVA) as first line therapy; response to these initial treatments is usually good. However, hyperkeratotic plantar lesions are clinically rare and have decreased responsiveness to topical agents. For such cases, physicians may consider local radiotherapy. Here, a case of an 18-year-old Korean woman who was treated with three-dimen...

  2. Evaluation of conformal radiotherapy techniques through physics and biologic criteria

    International Nuclear Information System (INIS)

    In the fight against cancer, different irradiation techniques have been developed based on technological advances and aiming to optimize the elimination of tumor cells with the lowest damage to healthy tissues. The radiotherapy planning goal is to establish irradiation technical parameters in order to achieve the prescribed dose distribution over the treatment volumes. While dose prescription is based on radiosensitivity of the irradiated tissues, the physical calculations on treatment planning take into account dosimetric parameters related to the radiation beam and the physical characteristics of the irradiated tissues. To incorporate tissue's radiosensitivity into radiotherapy planning calculations can help particularize treatments and establish criteria to compare and elect radiation techniques, contributing to the tumor control and the success of the treatment. Accordingly, biological models of cellular response to radiation have to be well established. This work aimed to study the applicability of using biological models in radiotherapy planning calculations to aid evaluating radiotherapy techniques. Tumor control probability (TCP) was studied for two formulations of the linear-quadratic model, with and without repopulation, as a function of planning parameters, as dose per fraction, and of radiobiological parameters, as the α/β ratio. Besides, the usage of biological criteria to compare radiotherapy techniques was tested using a prostate planning simulated with Monte Carlo code PENELOPE. Afterwards, prostate planning for five patients from the Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto, USP, using three different techniques were compared using the tumor control probability. In that order, dose matrices from the XiO treatment planning system were converted to TCP distributions and TCP-volume histograms. The studies performed allow the conclusions that radiobiological parameters can significantly influence tumor control

  3. Towards the production of radiotherapy treatment shells on 3D printers using data derived from DICOM CT and MRI: preclinical feasibility studies

    OpenAIRE

    Laycock, S. D.; Hulse, M.; Scrase, C. D.; Tam, M. D.; Isherwood, S; Mortimore, D. B.; Emmens, D; Patman, J; Short, S C; Bell, G. D.

    2015-01-01

    Background: Immobilisation for patients undergoing brain or head and neck radiotherapy is achieved using perspex or thermoplastic devices that require direct moulding to patient anatomy. The mould room visit can be distressing for patients and the shells do not always fit perfectly. In addition the mould room process can be time consuming. With recent developments in three-dimensional (3D) printing technologies comes the potential to generate a treatment shell directly from a computer model o...

  4. FlexyDos3D: a deformable anthropomorphic 3D radiation dosimeter: radiation properties

    DEFF Research Database (Denmark)

    De Deene, Yves; Skyt, Peter Sandegaard; Hill, Robin;

    2015-01-01

    Three dimensional radiation dosimetry has received growing interest with the implementation of highly conformal radiotherapy treatments. The radiotherapy community faces new challenges with the commissioning of image guided and image gated radiotherapy treatments (IGRT) and deformable image...... during the actual treatment. FlexyDos3D offers the additional advantage that it is easy to fabricate, is non-toxic and can be molded in an arbitrary shape with high geometrical precision.The dosimeter formulation has been optimized in terms of dose sensitivity. The influence of the casting material...

  5. Three-dimensional conformal arc radiotherapy using a C-arm linear accelerator with a computed tomography on-rail system for prostate cancer: clinical outcomes

    International Nuclear Information System (INIS)

    We report the feasibility and treatment outcomes of image-guided three-dimensional conformal arc radiotherapy (3D-CART) using a C-arm linear accelerator with a computed tomography (CT) on-rail system for localized prostate cancer. Between 2006 and 2011, 282 consecutive patients with localized prostate cancer were treated with in-room CT-guided 3D-CART. Biochemical failure was defined as a rise of at least 2.0 ng/ml beyond the nadir prostate-specific antigen level. Toxicity was scored according to the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0. A total of 261 patients were analyzed retrospectively (median follow-up: 61.6 months). The median prescribed 3D-CART dose was 82 Gy (2 Gy/fraction, dose range: 78–86 Gy), and 193 of the patients additionally received hormonal therapy. The 5-year overall survival rate was 93.9 %. Among low-, intermediate-, and high-risk patients, 5-year rates of freedom from biochemical failure were 100, 91.5 and 90.3 %, respectively. Rates of grade 2–3 late gastrointestinal and genitourinary toxicities were 2.3 and 11.4 %, respectively. No patient experienced late grade 4 or higher toxicity. In-room CT-guided 3D-CART was feasible and effective for localized prostate cancer. Treatment outcomes were comparable to those previously reported for intensity-modulated radiotherapy

  6. Prostate and seminal vesicle volume based consideration of prostate cancer patients for treatment with 3D-conformal or intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Nandanuri M. S.; Nori, Dattatreyudu; Chang, Hyesook; Lange, Christopher S.; Ravi, Akkamma [Department of Radiation Oncology, New York Hospital Queens, Flushing, New York 11355 (United States); Department of Radiation Oncology, State University of New York Downstate Medical Center, Brooklyn, New York 11203 (United States); Department of Radiation Oncology, New York Hospital Queens, Flushing, New York 11355 (United States)

    2010-07-15

    Purpose: The purpose of this article was to determine the suitability of the prostate and seminal vesicle volumes as factors to consider patients for treatment with image-guided 3D-conformal radiation therapy (3D-CRT) or intensity-modulated radiation therapy (IMRT), using common dosimetry parameters as comparison tools. Methods: Dosimetry of 3D and IMRT plans for 48 patients was compared. Volumes of prostate, SV, rectum, and bladder, and prescriptions were the same for both plans. For both 3D and IMRT plans, expansion margins to prostate+SV (CTV) and prostate were 0.5 cm posterior and superior and 1 cm in other dimensions to create PTV and CDPTV, respectively. Six-field 3D plans were prepared retrospectively. For 3D plans, an additional 0.5 cm margin was added to PTV and CDPTV. Prescription for both 3D and IMRT plans was the same: 45 Gy to CTV followed by a 36 Gy boost to prostate. Dosimetry parameters common to 3D and IMRT plans were used for comparison: Mean doses to prostate, CDPTV, SV, rectum, bladder, and femurs; percent volume of rectum and bladder receiving 30 (V30), 50 (V50), and 70 Gy (V70), dose to 30% of rectum and bladder, minimum and maximum point dose to CDPTV, and prescription dose covering 95% of CDPTV (D95). Results: When the data for all patients were combined, mean dose to prostate and CDPTV was higher with 3D than IMRT plans (P<0.01). Mean D95 to CDPTV was the same for 3D and IMRT plans (P>0.2). On average, among all cases, the minimum point dose was less for 3D-CRT plans and the maximum point dose was greater for 3D-CRT than for IMRT (P<0.01). Mean dose to 30% rectum with 3D and IMRT plans was comparable (P>0.1). V30 was less (P<0.01), V50 was the same (P>0.2), and V70 was more (P<0.01) for rectum with 3D than IMRT plans. Mean dose to bladder was less with 3D than IMRT plans (P<0.01). V30 for bladder with 3D plans was less than that of IMRT plans (P<0.01). V50 and V70 for 3D plans were the same for 3D and IMRT plans (P>0.2). Mean dose to femurs

  7. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    Science.gov (United States)

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT. PMID:26011493

  8. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    Science.gov (United States)

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT.

  9. Implementation of intensity-modulated conformational radiotherapy for cervical cancers at the Alexis Vautrin Centre

    International Nuclear Information System (INIS)

    As platinum salt based concomitant conformational radiotherapy and chemotherapy have been used as a standard treatment for cervical cancers but resulted in digestive and haematological toxicities, this research thesis reports the application of intensity-modulated conformational radiation therapy. After having recalled some epidemiological, anatomical aspects, diagnosis and treatments aspects regarding cervical cancer, the author presents this last treatment technique (principles, benefits, practical implementation). The author discusses results obtained by an experiment during which seven patients have been treated by simple conformational radiation therapy, and four by intensity-modulated conformational radiation therapy. Results are discussed in terms of volumes (clinical target volume, growth target volume, planned target volume), dosimetric results, toxicities (urine and skin), weight loss

  10. Continuous table acquisition MRI for radiotherapy treatment planning: Distortion assessment with a new extended 3D volumetric phantom

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Amy, E-mail: aw554@uowmail.edu.au; Metcalfe, Peter [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia and Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Liney, Gary [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); South West Clinical School, University of New South Wales, Sydney, NSW 2170 (Australia); Holloway, Lois [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); South West Clinical School, University of New South Wales, Sydney, NSW 2170 (Australia); Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Dowling, Jason; Rivest-Henault, David [Commonwealth Scientific and Industrial Research Organisation, Australian E-Health Research Centre, Herston, QLD 4029 (Australia)

    2015-04-15

    Purpose: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images should be considered. While scanner technology and vendor supplied correction algorithms provide some correction, large distortions are still present in images, even when considering considerably smaller scan lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition with a moving table compared with static scans for potential geometric benefits for RTP. Methods: A full field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developed for measuring geometric distortions in MR images over volumes pertinent to RTP. The phantom consisted of layers of refined plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to provide the geometric gold standard and on MRI, with differences in capsule location determining the distortion. MRI images were acquired with two techniques. For the first method, standard static table acquisitions were considered. Both 2D and 3D acquisition techniques were investigated. With the second technique, images were acquired with a moving table. The same sequence was acquired with a static table and then with table speeds of 1.1 mm/s and 2 mm/s. All of the MR images acquired were registered to the CT dataset using a deformable B-spline registration with the resulting deformation fields providing the distortion information for each acquisition. Results: MR images acquired with the moving table enabled imaging of the whole phantom length while images acquired with a static table were only able to image 50%–70% of the phantom length of 513 mm. Maximum distortion values were reduced across a larger volume when imaging with a moving table. Increased table speed resulted in a larger contribution of distortion from gradient nonlinearities in the through

  11. Quality of life following 3D conformal radiation therapy or permanent interstitial brachytherapy for localized prostate cancer

    International Nuclear Information System (INIS)

    Purpose: Both 3D Conformal Radiation Therapy (3DCRT) and Transperineal Interstitial Permanent Brachytherapy (TIPPB) are offered as suitable non-surgical alternatives to radical prostatectomy. Despite equivalent cancer control, very little data has been published that compares Quality of Life (QOL) in contemporary cohorts of patients choosing these treatments. Materials and Methods: Since 1998, patients selecting either 3DCRT alone or TIPPB (monotherapy or boost after external beam) for primary management of localized prostate cancer were asked to participate in a prospective assessment of QOL measures. In this preliminary report, 41 3DCRT and 40 TIPPB (34 monotherapy, 6 boost) patients completed validated QOL instruments at each followup visit. QOL instruments included the International Prostate Symptom Score (IPSS), FACT-P, and Sexual Adjustment Questionnaire (SAQ). Results: The average age of men in each group was 69 years. Choice of treatment was left to the patient unless there were significant medical or technical contraindications to either modality. 3DCRT total doses ranged from 61-78 Gy (mean 73.5Gy) and TIPPB doses were 145Gy (TG43) in 34 I-125 implants and 115 Gy in 1 Pd-103 (monotherapy) or 90 Gy in 5 Pd-103 (boost) implants. Patients undergoing TIPPB reported significantly worse urinary and sexual function than their counterparts receiving 3DCRT. The mean cumulative IPSS was 12.5 with TIPPB compared to 8.3 with 3DCRT (p=0.036). Differences were most pronounced in the first 12 months after treatment, particularly with respect to the strength of stream and the need to strain. TIPPB patients were more likely to report a need to urinate frequently (p=0.02), require a pad (p=0.001), be bothered (p=0.02), or have activity limited by urinary side effects (p=0.01). TIPPB patients were less likely to resume sexual activity within 6 months after treatment (p=0.0003) and engaged in sexual activity less often (p= 0.016) than 3DCRT patients. They were also more

  12. Fractionated stereotactic conformal radiotherapy for large benign skull base meningiomas

    International Nuclear Information System (INIS)

    to assess the safety and efficacy of fractionated stereotactic radiotherapy (FSRT) for large skull base meningiomas. Fifty-two patients with large skull base meningiomas aged 34-74 years (median age 56 years) were treated with FSRT between June 2004 and August 2009. All patients received FSRT for residual or progressive meningiomas more than 4 centimeters in greatest dimension. The median GTV was 35.4 cm3 (range 24.1-94.9 cm3), and the median PTV was 47.6 cm3 (range 33.5-142.7 cm3). Treatment volumes were achieved with 5-8 noncoplanar beams shaped using a micromultileaf collimator (MLC). Treatment was delivered in 30 daily fractions over 6 weeks to a total dose of 50 Gy using 6 MV photons. Outcome was assessed prospectively. At a median follow-up of 42 months (range 9-72 months) the 3-year and 5-year progression-free survival (PFS) rates were 96% and 93%, respectively, and survival was 100%. Three patients required further debulking surgery for progressive disease. Hypopituitarism was the most commonly reported late complication, with a new hormone pituitary deficit occurring in 10 (19%) of patients. Clinically significant late neurological toxicity was observed in 3 (5.5%) patients consisting of worsening of pre-existing cranial deficits. FSRT as a high-precision technique of localized RT is suitable for the treatment of large skull base meningiomas. The local control is comparable to that reported following conventional external beam RT. Longer follow-up is required to assess long term efficacy and toxicity, particularly in terms of potential reduction of treatment-related late toxicity

  13. The bound conformation of microtubule-stabilizing agents: NMR insights into the bioactive 3D structure of discodermolide and dictyostatin.

    Science.gov (United States)

    Canales, Angeles; Matesanz, Ruth; Gardner, Nicola M; Andreu, José Manuel; Paterson, Ian; Díaz, J Fernando; Jiménez-Barbero, Jesús

    2008-01-01

    A protocol based on a combination of NMR experimental data with molecular mechanics calculations and docking procedures has been employed to determine the microtubule-bound conformation of two microtubule-stabilizing agents, discodermolide (DDM) and dictyostatin (DCT). The data indicate that tubulin in assembled microtubules recognizes DDM through a conformational selection process, with minor changes in the molecular skeleton between the major conformer in water solution and that bound to assembled microtubules. For DCT, the deduced bound geometry presents some key conformation differences around certain torsion angles, with respect to the major conformer in solution, and still displays mobility even when bound. The bound conformer of DCT resembles that of DDM and provides very similar contacts with the receptor. Competition experiments indicate that both molecules compete with the taxane-binding site. A model of the binding mode of DDM and DCT to tubulin is proposed.

  14. WE-F-16A-06: Using 3D Printers to Create Complex Phantoms for Dose Verification, Quality Assurance, and Treatment Planning System Commissioning in Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To use 3D printers to design and construct complex geometrical phantoms for commissioning treatment planning systems, dose calculation algorithms, quality assurance (QA), dose delivery, and patient dose verifications. Methods: In radiotherapy, complex geometrical phantoms are often required for dose verification, dose delivery and calculation algorithm validation. Presently, fabrication of customized phantoms is limited due to time, expense and challenges in machining of complex shapes. In this work, we designed and utilized 3D printers to fabricate two phantoms for QA purposes. One phantom includes hills and valleys (HV) for verification of intensity modulated radiotherapy for photons, and protons (IMRT and IMPT). The other phantom includes cylindrical cavities (CC) of various sizes for dose verification of inhomogeneities. We evaluated the HV phantoms for an IMPT beam, and the CC phantom to study various inhomogeneity configurations using photon, electron, and proton beams. Gafcromic ™ films were used to quantify the dose distributions delivered to the phantoms. Results: The HV phantom has dimensions of 12 cm × 12 cm and consists of one row and one column of five peaks with heights ranging from 2 to 5 cm. The CC phantom has a size 10 cm × 14 cm and includes 6 cylindrical cavities with length of 7.2 cm and diameters ranging from 0.6 to 1.2 cm. The IMPT evaluation using the HV phantom shows good agreement as compared to the dose distribution calculated with treatment planning system. The CC phantom also shows reasonable agreements for using different algorithms for each beam modalities. Conclusion: 3D printers with submillimiter resolutions are capable of printing complex phantoms for dose verification and QA in radiotherapy. As printing costs decrease and the technology becomes widely available, phantom design and construction will be readily available to any clinic for testing geometries that were not previously feasible

  15. Evaluation of radiotherapy setup accuracy for head and neck cancer using a 3-D surface imaging system

    Science.gov (United States)

    Cho, H.-L.; Park, E.-T.; Kim, J.-Y.; Kwak, K.-S.; Kim, C.-J.; Ahn, K.-J.; Suh, T.-S.; Lee, Y.-K.; Kim, S.-W.; Kim, J.-K.; Lim, S.; Choi, Y.-M.; Park, S.-K.

    2013-11-01

    The purpose of this study was to measure the accuracy of a three-dimensional surface imaging system (3-D SIS) in comparison to a 3-laser system by analyzing the setup errors obtained from a RANDO Phantom and head and neck cancer patients. The 3-D SIS used for the evaluation of the setup errors was a C-RAD Sentinel. In the phantom study, the OBI setup errors without the thermoplastic mask of the 3-laser system vs. the 3-D SIS were measured. Furthermore, the setup errors with the thermoplastic mask of the 3-laser system vs. the 3-D SIS were measured. After comparison of the CBCT, setup correction about 1 mm was performed in a few cases. The probability of the error without the thermoplastic mask exceeding 1 mm in the 3-laser system vs. the 3-D SIS was 75.00% vs. 35.00% on the X-axis, 80.00% vs. 40.00% on the Y-axis, and 80.00% vs. 65.00% on the Z-axis. Moreover, the probability of the error with the thermoplastic mask exceeding 1 mm in the 3-laser system vs. the 3-D SIS was 70.00% vs. 15.00% on the X-axis, 75.00% vs. 25.00% on the Y-axis, and 70.00% vs. 35.00% on the Z-axis. These results showed that the 3-D SIS has a lower probability of setup error than the 3-laser system for the phantom. For the patients, the setup errors of the 3-laser system vs. the 3-D SIS were measured. The probability of the error exceeding more than 1 mm in the 3-laser system vs. the 3-D SIS was shown to be 81.82% vs. 36.36% on the X-axis, 81.82% vs. 45.45% on the Y-axis, and 86.36% vs. 72.73% on the Z-axis. As a result, the 3-D SIS also exhibited a lower probability of setup error for the cancer patients. Therefore, this study confirmed that the 3-D SIS is a promising method for setup verification.

  16. Conformal radiotherapy made easy through gravity oriented absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Proimos, B.S. [Patras Univ. (Greece). Dept. of Medical Physics

    1995-12-01

    In the 50`s and the 60`s simple techniques modulating the beam intensity in synchronism with the rotation, either of the vertical patient or of the machine around the horizontal patient were developed. An absorber, which is similar in shape to a vital organ, intercepts the beam, casting its protective `shade` over the organ, for all positions of rotation. In this way, the organ is protected during the irradiation time. On any transverse cross, any point outside of the organ`s cross-section is protected for only a fraction of T, which is decreasing with the distance of that point from the organ. Consequently, the dose to the protected organ is smaller than (a) the dose it would absorb without protection (b) the dose to the surrounding (less vital) healthy tissue and (c), the dose to the neighbouring tumour. Consider a plane perpendicular to the principal plane and passing through the source. It cuts the organ and its protector in two cross-sections, which remain always homiotheta, with centre of homiothesis the source. In this way, the protector`s cross-section is projected by the beam on the organ`s cross-section for all positions of rotation. The larger the cross-section of the organ and the smaller the required protection, the smaller must be the attenuation coefficient of the material the protector is made of. The dose distributions in a series of actual cases, such as head tumours with eyes protection, neck or chest tumours with spinal cord protection, cervix tumours with rectum and bladder protection, are discussed. In most cases, if the vital organs are not overprotected, the 90% or 80% isodose surface fits to or conforms with the surface of the Planning Target Volume (PTV) no matter how irregular (convex and concave) it is.

  17. Post-mastectomy radiotherapy in Denmark: From 2D to 3D treatment planning guidelines of The Danish Breast Cancer Cooperative Group

    DEFF Research Database (Denmark)

    Thomsen, Mette Skovhus; Berg, Martin; Nielsen, Hanne M.;

    2008-01-01

    with PWT. The dose to the internal mammary nodes (IMN) was not satisfactory for five of the seven patients for 3F, whereas only two of the seven patients had a minimum dose lower than 95% of the prescribed dose with PWT. Finally, the dose to the contralateral breast was increased when using PWT compared...... to 3F. It was concluded that PWT was an appropriate choice of technique for future radiation treatment of post-mastectomy patients. A working group was formed and guidelines for 3D planning were developed during a series of workshops where radiation oncologists and physicists from all radiotherapy...

  18. The advantage of 3D conformal treatment of lumbar spine metastases in comparison to traditional PA or AP-PA techniques: restoring an intermediate niche of therapeutic sophistication

    International Nuclear Information System (INIS)

    To evaluate the effect of the 3D radiation field design on normal tissues compared with commonly used appositional fields in patients with lumbar spine metastases. Ten comparative treatment plans for radiation of lumbar spine metastases were compared for posterior and anterior- posterior fields with 3D plans. The PTV coverage in all comparative plans was similar. V 15 of the bowel in 3D, AP-PA and PA plans was 6.7 Gy (SD 6.47), 39.8 Gy (SD 11.4) and 37.3 Gy (SD15.7), respectively (p < 0.0001). The mean dose to both kidneys was 9.6 Gy (SD 4.8), 4.1 Gy (SD 3.9) and 4.6 Gy (SD 4.4) for appropriate plans (p = 0.002). Maximal dose to the spinal cord was 30.6 Gy (SD 2.1), 33.1 Gy (SD 9.8) and 37.7 Gy (SD 2) for 3D, AP-PA and PA plans. 3D conformal treatment planning of lumbar vertebral metastases was significantly better in term of bowel and spinal cord exposure compared to AP-PA and PA techniques. The exposure of the kidneys in 3D plans, while greater than in the comparative plans, did not violate accepted dose-volume thresholds

  19. Conformal radiotherapy for prostate cancer - Longer duration of acute genitourinary toxicity in patients with prior history of invasive urological procedure

    Energy Technology Data Exchange (ETDEWEB)

    Odrazka, Karel; Vanasek, Jaroslav; Vaculikova, Miloslava; Petera, Jiri; Zouhar, Milan; Zoul, Zdenk; Stejskal, Jan; Skrabkova, Zuzana; Kadeka, David [Charles Univ. Medical School and Teaching Hospital, Hradec Kralove (Czech Republic). Dept. of Radiotherapy and Oncology

    2001-11-01

    The incidence and predictors of acute toxicity were evaluated in patients treated with three-dimensional conformal radiotherapy (3D-CRT) for localized prostate cancer. Between December 1997 and November 1999, 116 patients with T1-T3 prostatic carcinoma were enrolled in the study. Ninety patients were treated with 70 Gy and 26 patients with T3 tumors received 74 Gy. Of the 116 patients 42 (36.2%) had a prior history of invasive urological procedure (IUP) (transurethral resection of the prostate or transvesical prostatectomy for benign prostatic hyperplasia). Acute gastrointestinal (GI) and genitourinary (GU) symptoms were graded according to the EORTC/RTOG scoring system. Toxicity duration after the completion of 3D-CRT was recorded. The majority of patients experienced only mild or no (Grade 1) acute toxicities. Medications for GI and GU symptoms (Grade 2) were required by 28.4% and 12.9% of patients, respectively. Only one case of Grade 3 GI toxicity (0.9%) was observed. Seven patients (6.1%) experienced severe GU toxicity (Grade 3 or 4). No correlation was found between acute toxicity and age, stage, dose (70 Gy vs. 74 Gy), IUP and pelvic lymphadenectomy. A significant relationship was observed between the duration of acute GU toxicity and prior IUP. Symptoms persisted for more than 4 weeks in 51.9% and 26.0% of patients with and without a prior history of IUP, respectively (p = 0.02). The incidence of acute complications, associated with 3D-CRT for prostate cancer, was acceptable in our cohort of patients. A prior history of IUP resulted in a significantly longer duration of acute GU toxicity.

  20. AP-PA field orientation followed by IMRT reduces lung exposure in comparison to conventional 3D conformal and sole IMRT in centrally located lung tumors

    OpenAIRE

    Soyfer Viacheslav; Meir Yaron; Corn Benjamin W; Schifter Dan; Gez Eliahu; Tempelhoff Haim; Shtraus Natan

    2012-01-01

    Abstract Little attention has been paid to the fact that intensity modulated radiation therapy (IMRT) techniques do not easily enable treatment with opposed beams. Three treatment plans (3 D conformal, IMRT, and combined (anterior-posterior-posterio-anterior (AP-PA) + IMRT) of 7 patients with centrally-located lung cancer were compared for exposure of lung, spinal cord and esophagus. Combined IMRT and AP-PA techniques offer better lung tissue sparing compared to plans predicated solely on IMR...

  1. Incidental irradiation of internal mammary lymph nodes in breast cancer: conventional two-dimensional radiotherapy versus conformal three-dimensional radiotherapy*

    Science.gov (United States)

    Leite, Elton Trigo Teixeira; Ugino, Rafael Tsuneki; Santana, Marco Antônio; Ferreira, Denis Vasconcelos; Lopes, Maurício Russo; Pelosi, Edilson Lopes; da Silva, João Luis Fernandes; Carvalho, Heloisa de Andrade

    2016-01-01

    Objective To evaluate incidental irradiation of the internal mammary lymph nodes (IMLNs) through opposed tangential fields with conventional two-dimensional (2D) or three-dimensional (3D) radiotherapy techniques and to compare the results between the two techniques. Materials and Methods This was a retrospective study of 80 breast cancer patients in whom radiotherapy of the IMLNs was not indicated: 40 underwent 2D radiotherapy with computed tomography for dosimetric control, and 40 underwent 3D radiotherapy. The total prescribed dose was 50.0 Gy or 50.4 Gy (2.0 or 1.8 Gy/day, respectively). We reviewed all plans and defined the IMLNs following the Radiation Therapy Oncology Group recommendations. For the IMLNs, we analyzed the proportion of the volume that received 45 Gy, the proportion of the volume that received 25 Gy, the dose to 95% of the volume, the dose to 50% of the volume, the mean dose, the minimum dose (Dmin), and the maximum dose (Dmax). Results Left-sided treatments predominated in the 3D cohort. There were no differences between the 2D and 3D cohorts regarding tumor stage, type of surgery (mastectomy, breast-conserving surgery, or mastectomy with immediate reconstruction), or mean delineated IMLN volume (6.8 vs. 5.9 mL; p = 0.411). Except for the Dmin, all dosimetric parameters presented higher mean values in the 3D cohort (p < 0.05). The median Dmax in the 3D cohort was 50.34 Gy. However, the mean dose to the IMLNs was 7.93 Gy in the 2D cohort, compared with 20.64 Gy in the 3D cohort. Conclusion Neither technique delivered enough doses to the IMLNs to achieve subclinical disease control. However, all of the dosimetric parameters were significantly higher for the 3D technique.

  2. Incidental irradiation of internal mammary lymph nodes in breast cancer: conventional two-dimensional radiotherapy versus conformal three-dimensional radiotherapy*

    Science.gov (United States)

    Leite, Elton Trigo Teixeira; Ugino, Rafael Tsuneki; Santana, Marco Antônio; Ferreira, Denis Vasconcelos; Lopes, Maurício Russo; Pelosi, Edilson Lopes; da Silva, João Luis Fernandes; Carvalho, Heloisa de Andrade

    2016-01-01

    Objective To evaluate incidental irradiation of the internal mammary lymph nodes (IMLNs) through opposed tangential fields with conventional two-dimensional (2D) or three-dimensional (3D) radiotherapy techniques and to compare the results between the two techniques. Materials and Methods This was a retrospective study of 80 breast cancer patients in whom radiotherapy of the IMLNs was not indicated: 40 underwent 2D radiotherapy with computed tomography for dosimetric control, and 40 underwent 3D radiotherapy. The total prescribed dose was 50.0 Gy or 50.4 Gy (2.0 or 1.8 Gy/day, respectively). We reviewed all plans and defined the IMLNs following the Radiation Therapy Oncology Group recommendations. For the IMLNs, we analyzed the proportion of the volume that received 45 Gy, the proportion of the volume that received 25 Gy, the dose to 95% of the volume, the dose to 50% of the volume, the mean dose, the minimum dose (Dmin), and the maximum dose (Dmax). Results Left-sided treatments predominated in the 3D cohort. There were no differences between the 2D and 3D cohorts regarding tumor stage, type of surgery (mastectomy, breast-conserving surgery, or mastectomy with immediate reconstruction), or mean delineated IMLN volume (6.8 vs. 5.9 mL; p = 0.411). Except for the Dmin, all dosimetric parameters presented higher mean values in the 3D cohort (p < 0.05). The median Dmax in the 3D cohort was 50.34 Gy. However, the mean dose to the IMLNs was 7.93 Gy in the 2D cohort, compared with 20.64 Gy in the 3D cohort. Conclusion Neither technique delivered enough doses to the IMLNs to achieve subclinical disease control. However, all of the dosimetric parameters were significantly higher for the 3D technique. PMID:27403017

  3. Incidental irradiation of internal mammary lymph nodes in breast cancer: conventional two-dimensional radiotherapy versus conformal three-dimensional radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Elton Trigo Teixeira; Ugino, Rafael Tsuneki; Lopes, Mauricio Russo; Pelosi, Edilson Lopes; Silva, Joao Luis Fernandes da, E-mail: eltontt@gmail.com [Hospital Sirio-Libanes, Sao paulo, SP (Brazil). Departamento de Radiologia e Oncologia; Santana, Marco Antonio; Ferreira, Denis Vasconcelos; Carvalho, Heloisa de Andrade [Universidade de Sao Paulo (FM/USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Departamento de Radiologia e Oncologia

    2016-05-15

    Objective: to evaluate incidental irradiation of the internal mammary lymph nodes (IMLNs) through opposed tangential fields with conventional two-dimensional (2D) or three-dimensional (3D) radiotherapy techniques and to compare the results between the two techniques. Materials and Methods: This was a retrospective study of 80 breast cancer patients in whom radiotherapy of the IMLNs was not indicated: 40 underwent 2D radiotherapy with computed tomography for dosimetric control, and 40 underwent 3D radiotherapy. The total prescribed dose was 50.0 Gy or 50.4 Gy (2.0 or 1.8 Gy/day, respectively). We reviewed all plans and defined the IMLNs following the Radiation Therapy Oncology Group recommendations. For the IMLNs, we analyzed the proportion of the volume that received 45 Gy, the proportion of the volume that received 25 Gy, the dose to 95% of the volume, the dose to 50% of the volume, the mean dose, the minimum dose (Dmin), and the maximum dose (Dmax). Results: Left-sided treatments predominated in the 3D cohort. There were no differences between the 2D and 3D cohorts regarding tumor stage, type of surgery (mastectomy, breast-conserving surgery, or mastectomy with immediate reconstruction), or mean delineated IMLN volume (6.8 vs. 5.9 mL; p = 0.411). Except for the Dmin, all dosimetric parameters presented higher mean values in the 3D cohort (p < 0.05). The median Dmax in the 3D cohort was 50.34 Gy. However, the mean dose to the IMLNs was 7.93 Gy in the 2D cohort, compared with 20.64 Gy in the 3D cohort. Conclusion: Neither technique delivered enough doses to the IMLNs to achieve subclinical disease control. However, all of the dosimetric parameters were significantly higher for the 3D technique. (author)

  4. SU-C-18A-04: 3D Markerless Registration of Lung Based On Coherent Point Drift: Application in Image Guided Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nasehi Tehrani, J; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); Guo, X [University of Texas at Dallas, Richardson, TX (United States); Yang, Y [The University of New Mexico, New Mexico, NM (United States)

    2014-06-01

    Purpose: This study evaluated a new probabilistic non-rigid registration method called coherent point drift for real time 3D markerless registration of the lung motion during radiotherapy. Method: 4DCT image datasets Dir-lab (www.dir-lab.com) have been used for creating 3D boundary element model of the lungs. For the first step, the 3D surface of the lungs in respiration phases T0 and T50 were segmented and divided into a finite number of linear triangular elements. Each triangle is a two dimensional object which has three vertices (each vertex has three degree of freedom). One of the main features of the lungs motion is velocity coherence so the vertices that creating the mesh of the lungs should also have features and degree of freedom of lung structure. This means that the vertices close to each other tend to move coherently. In the next step, we implemented a probabilistic non-rigid registration method called coherent point drift to calculate nonlinear displacement of vertices between different expiratory phases. Results: The method has been applied to images of 10-patients in Dir-lab dataset. The normal distribution of vertices to the origin for each expiratory stage were calculated. The results shows that the maximum error of registration between different expiratory phases is less than 0.4 mm (0.38 SI, 0.33 mm AP, 0.29 mm RL direction). This method is a reliable method for calculating the vector of displacement, and the degrees of freedom (DOFs) of lung structure in radiotherapy. Conclusions: We evaluated a new 3D registration method for distribution set of vertices inside lungs mesh. In this technique, lungs motion considering velocity coherence are inserted as a penalty in regularization function. The results indicate that high registration accuracy is achievable with CPD. This method is helpful for calculating of displacement vector and analyzing possible physiological and anatomical changes during treatment.

  5. SU-E-T-562: Motion Tracking Optimization for Conformal Arc Radiotherapy Plans: A QUASAR Phantom Based Study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z; Wang, I; Yao, R; Podgorsak, M [Roswell Park Cancer Institute, Buffalo, NY (United States)

    2015-06-15

    Purpose: This study is to use plan parameters optimization (Dose rate, collimator angle, couch angle, initial starting phase) to improve the performance of conformal arc radiotherapy plans with motion tracking by increasing the plan performance score (PPS). Methods: Two types of 3D conformal arc plans were created based on QUASAR respiratory motion phantom with spherical and cylindrical targets. Sinusoidal model was applied to the MLC leaves to generate motion tracking plans. A MATLAB program was developed to calculate PPS of each plan (ranges from 0–1) and optimize plan parameters. We first selected the dose rate for motion tracking plans and then used simulated annealing algorithm to search for the combination of the other parameters that resulted in the plan of the maximal PPS. The optimized motion tracking plan was delivered by Varian Truebeam Linac. In-room cameras and stopwatch were used for starting phase selection and synchronization between phantom motion and plan delivery. Gaf-EBT2 dosimetry films were used to measure the dose delivered to the target in QUASAR phantom. Dose profiles and Truebeam trajectory log files were used for plan delivery performance evaluation. Results: For spherical target, the maximal PPS (PPSsph) of the optimized plan was 0.79: (Dose rate: 500MU/min, Collimator: 90°, Couch: +10°, starting phase: 0.83π). For cylindrical target, the maximal PPScyl was 0.75 (Dose rate: 300MU/min, Collimator: 87°, starting phase: 0.97π) with couch at 0°. Differences of dose profiles between motion tracking plans (with the maximal and the minimal PPS) and 3D conformal plans were as follows: PPSsph=0.79: %ΔFWHM: 8.9%, %Dmax: 3.1%; PPSsph=0.52: %ΔFWHM: 10.4%, %Dmax: 6.1%. PPScyl=0.75: %ΔFWHM: 4.7%, %Dmax: 3.6%; PPScyl=0.42: %ΔFWHM: 12.5%, %Dmax: 9.6%. Conclusion: By achieving high plan performance score through parameters optimization, we can improve target dose conformity of motion tracking plan by decreasing total MLC leaf travel distance

  6. Dosimetric analysis of intensity modulated radiotherapy (IMRT) and three dimensional conformal radiotherapy (3DCRT) for treatment of non-small cell lung cancer: A comparative study

    OpenAIRE

    Priyusha Bagdare; Om Prakash Gurjar; Garima Shrivastav; Virendra Bhandari; Krishna Lal Gupta

    2015-01-01

    Purpose: The purpose of this study is to analyze and compare the dosimetric parameters of three dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT) in selected non-small cell lung cancer (NSCLC) cases. Methods: Ten patients with inoperable NSCLC were selected for this study. The 3DCRT and IMRT plans were generated for all patients following Radiation Therapy Oncology Group (RTOG) guidelines. Generated plans were then compared on the basis of planning target ...

  7. 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy

    CERN Document Server

    Li, Ruijiang; Jia, Xun; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Song, William Y; Jiang, Steve B

    2011-01-01

    Recently we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency were then evaluated on 1) a digital respiratory phantom, 2) a physical respiratory phantom, and 3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset. For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 seconds, for both regular and irreg...

  8. Design and implementation of a rotational radiotherapy technique for breast cancer treatment and their comparison with 3-D-Crt irradiation technique; Diseno e implementacion de una tecnica de radioterapia rotacional para tratamiento de cancer de mama y su comparacion contra la tecnica 3D-CRT de irradiacion

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez M, J. G.; Lopez V, A.; Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Velazquez T, J. J.; Adame G, C. S. [Centro Medico Nacional Siglo XXI, Hospital de Oncologia, Departamento de Fisica Medica, Av. Cuauhtemoc No. 330, Col. Doctores, 06720 Mexico D. F. (Mexico); Rubio N, O.; Chagoya G, A.; Hernandez G, J. C., E-mail: jggm25@yahoo.com.mx [Centro Medico Nacional Siglo XXI, Hospital de Oncologia, Departamento de Radioterapia, Av. Cuauhtemoc No. 330, Col. Doctores, 06720 Mexico D. F. (Mexico)

    2015-10-15

    Breast cancer is one of oncological diseases worldwide, as well in Mexico, which causes even more deaths than cervical cancer; this condition is the second death cause in women aged 30-54 years and threatens all socio-economic groups. The treatment is highly dependent on the stage which is detected and based on protocols that include a combination of surgery, chemotherapy and radiotherapy. This paper studies the main irradiation technique for patients with mastectomy, breast full cycle (irradiation of the chest well and supraclavicular nodes) in their mode Three Dimensional - Conformal Radiation Therapy (3-D-Crt), and compared with the Volumetric Modulated Arc Therapy (VMAT) technique proposed in this paper. In both techniques the prescription was 50 Gy divided into 25 fractions. The techniques were applied in three female patients (being an initial study) with disease of the left side, the target volume and organs at risk were delineated by the medical treating radiation oncologist, the planning system used was Eclipse version 10; for quantitative comparison of both plans indexes of homogeneity were used, con formality, the target volume coverage and normal tissue, sub factors and overdosing, the conformation number and coverage quality. They were evaluated and compared the media, maximum and minimum dose of the organs at risk, based on the fact that the coverage of the target volume, dose gradient and dose at risk organs are acceptable (prescription dose greater that 90% coverage, gradient less that 20% and organs at risk in accordance with the Quantec limitations for both versions). (Author)

  9. Therapeutic effects and prognostic factors in three-dimensional conformal radiotherapy combined with transcatheter arterial chemoembolization for hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    De-Hua Wu; Li Liu; Long-Hua Chen

    2004-01-01

    AIM: To evaluate the therapeutic efficacy of threedimensional conformal radiotherapy (3D-CRT) combined with transcatheter arterial chemoembolization (TACE) on the patients with hepatocellular carcinoma (HCC).METHODS: Between 1998 and 2001, 94 patients with HCC received 3D-CRT combined with TACE. A total 63 patients had a Okuda stage Ⅰ lesion and 31 patients had stage Ⅱ. The median tumor size was 10.7 cm (range 3.0-18 cm), and liver cirrhosis was present in all the patients. There were 43 cases of class A and 51 class B. TACE was performed using lipiodol,5-fluorouracil, cisplatin, doxorubicin hydrochloride and mitomycin, followed by gelatin sponge cubes. Fifty-nine patients received TACE only one time, while the others 2 to 3 times. 3D-CRT was started 3-4 wk after TACE. All patients were irradiated with a stereotactic body frame and received 4-8 Gy single high-dose radiation for 8-12 times at the isocenter during a period of 17-26 d (median 22 d).RESULTS: The median follow-up was 37 mo (range 10-48 mo)after diagnosis. The response rate was 90.5%. The overall survival rate at 1-, 2-, and 3- year was 93.6%, 53.8% and 26.0% respectively, with the median survival of 25 mo. On univariate analysis, age (P=0.026), Child-Pugh classification for cirrhosis of liver (P=0.010), Okuda stage (P=0.026),tumor size (P=0.000), tumor type (P=0.029), albuminemia (P=0.035), and radiation dose (P=0.000) proved to be significant factors for survival. On multivariate analysis,age (P=0.024), radiation dose (P=0.001), and tumor size (P=0.000) were the significant factors.CONCLUSION: 3D-CRT combined with TACE is an effective and feasible approach for HCC. Age, radiation dose and tumor size were found to be significant prognostic factors for survival of patients with HCC treated by 3D-CRT combined with TACE. Further study for HCC is needed to improve the treatment efficacy.

  10. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    International Nuclear Information System (INIS)

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm3) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180

  11. Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Bache, Steven T.; Juang, Titania; Belley, Matthew D. [Duke University Medical Physics Graduate Program, Durham, North Carolina 27705 (United States); Koontz, Bridget F.; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark, E-mail: mark.oldham@duke.edu [Duke University Medical Center, Durham, North Carolina 27710 (United States); Adamovics, John [Rider University, Lawrenceville, New Jersey 08648 (United States)

    2015-02-15

    Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm{sup 3}) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180

  12. Comparison of postoperative three-dimensional conformal radiotherapy with conventional radiotherapy for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Objective: To compare postoperative three-dimensional conformal radiotherapy (3DCRT) and conventional radiotherapy (CR) in patients with non-small-cell lung cancer (NSCLC). Methods: From Nov. 2002 to Mar. 2006, 162 patients with stage IB-IIIB NSCLC receiving postoperative radiotherapy in our department were retrospectively analyzed. Among them, 86 received 3DCRT and 76 received CR. The survival outcome, pattern of failure and treatment-related side effects in both groups were analyzed. Results: The median follow-up was 29.4 months in the 3DCRT group and 24 months in the CR group. The 1-,2- and 3-year local-regional free survival was 97.5% ,83.2% and 83.2% in 3DCRT group, and 84.3%, 76.0% and 65.6% in CB group(χ2=5.46, P=0.019), respectively. No statistically significant difference was found in the overall survival, disease-free survival or distant metastasis-free survival between the two groups. The local-regional failure rate was statistically different between the two groups (14.5 % vs 33.3 %, χ2=7.70, P=0.006). The incidence of distant metastasis in the two groups was similar. Radiation pneumonitis of NCI CTC grade 2-3 occurred in 10 patients (11.6%) in 3DCRT group and 18 (23.7%) in CR group, which was statistically different (χ2=4.10, P=0.043). Conclusions: Postoperative 3DCRT for NSCLC provides a better local-regional control and lower incidence of radiation pneumonitis compared with CR. (authors)

  13. A comparative analysis of 3D conformal deep inspiratory–breath hold and free-breathing intensity-modulated radiation therapy for left-sided breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, Kelli A.; Read, Paul W.; Morris, Monica M. [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Reardon, Michael A. [Department of Radiology, University of Virginia, Charlottesville, VA (United States); Geesey, Constance [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Wijesooriya, Krishni, E-mail: kw5wx@hscmail.mcc.virginia.edu [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States)

    2013-07-01

    Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory–breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumes of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.

  14. Experimental evaluations of the accuracy of 3D and 4D planning in robotic tracking stereotactic body radiotherapy for lung cancers

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Mark K. H. [Department of Clinical Oncology, The University of Hong Kong and Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong Special Administrative Region, 999077 (Hong Kong); Kwong, Dora L. W.; Ng, Sherry C. Y. [Department of Clinical Oncology, Queen Mary Hospital, Hong Kong Special Administrative Region, 999077 (Hong Kong); Tong, Anthony S. M.; Tam, Eric K. W. [Theresa Po CyberKnife Center, Hong Kong Special Administrative Region, 999077 (Hong Kong)

    2013-04-15

    Purpose: Due to the complexity of 4D target tracking radiotherapy, the accuracy of this treatment strategy should be experimentally validated against established standard 3D technique. This work compared the accuracy of 3D and 4D dose calculations in respiration tracking stereotactic body radiotherapy (SBRT). Methods: Using the 4D planning module of the CyberKnife treatment planning system, treatment plans for a moving target and a static off-target cord structure were created on different four-dimensional computed tomography (4D-CT) datasets of a thorax phantom moving in different ranges. The 4D planning system used B-splines deformable image registrations (DIR) to accumulate dose distributions calculated on different breathing geometries, each corresponding to a static 3D-CT image of the 4D-CT dataset, onto a reference image to compose a 4D dose distribution. For each motion, 4D optimization was performed to generate a 4D treatment plan of the moving target. For comparison with standard 3D planning, each 4D plan was copied to the reference end-exhale images and a standard 3D dose calculation was followed. Treatment plans of the off-target structure were first obtained by standard 3D optimization on the end-exhale images. Subsequently, they were applied to recalculate the 4D dose distributions using DIRs. All dose distributions that were initially obtained using the ray-tracing algorithm with equivalent path-length heterogeneity correction (3D{sub EPL} and 4D{sub EPL}) were recalculated by a Monte Carlo algorithm (3D{sub MC} and 4D{sub MC}) to further investigate the effects of dose calculation algorithms. The calculated 3D{sub EPL}, 3D{sub MC}, 4D{sub EPL}, and 4D{sub MC} dose distributions were compared to measurements by Gafchromic EBT2 films in the axial and coronal planes of the moving target object, and the coronal plane for the static off-target object based on the {gamma} metric at 5%/3mm criteria ({gamma}{sub 5%/3mm}). Treatment plans were considered

  15. DG-AMMOS: A New tool to generate 3D conformation of small molecules using Distance Geometry and Automated Molecular Mechanics Optimization for in silico Screening

    Directory of Open Access Journals (Sweden)

    Villoutreix Bruno O

    2009-11-01

    Full Text Available Abstract Background Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats. Results Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine. Conclusion DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.

  16. Tumor control probability and the utility of 4D vs 3D dose calculations for stereotactic body radiotherapy for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, Gilmer, E-mail: gilmer.valdes@uphs.upenn.edu [Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA (United States); Robinson, Clifford [Department of Radiation Oncology, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO (United States); Lee, Percy [Department of Radiation Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA (United States); Morel, Delphine [Department of Biomedical Engineering, AIX Marseille 2 University, Marseille (France); Department of Medical Physics, Joseph Fourier University, Grenoble (France); Low, Daniel; Iwamoto, Keisuke S.; Lamb, James M. [Department of Radiation Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA (United States)

    2015-04-01

    Four-dimensional (4D) dose calculations for lung cancer radiotherapy have been technically feasible for a number of years but have not become standard clinical practice. The purpose of this study was to determine if clinically significant differences in tumor control probability (TCP) exist between 3D and 4D dose calculations so as to inform the decision whether 4D dose calculations should be used routinely for treatment planning. Radiotherapy plans for Stage I-II lung cancer were created for 8 patients. Clinically acceptable treatment plans were created with dose calculated on the end-exhale 4D computed tomography (CT) phase using a Monte Carlo algorithm. Dose was then projected onto the remaining 9 phases of 4D-CT using the Monte Carlo algorithm and accumulated onto the end-exhale phase using commercially available deformable registration software. The resulting dose-volume histograms (DVH) of the gross tumor volume (GTV), planning tumor volume (PTV), and PTV{sub setup} were compared according to target coverage and dose. The PTV{sub setup} was defined as a volume including the GTV and a margin for setup uncertainties but not for respiratory motion. TCPs resulting from these DVHs were estimated using a wide range of alphas, betas, and tumor cell densities. Differences of up to 5 Gy were observed between 3D and 4D calculations for a PTV with highly irregular shape. When the TCP was calculated using the resulting DVHs for fractionation schedules typically used in stereotactic body radiation therapy (SBRT), the TCP differed at most by 5% between 4D and 3D cases, and in most cases, it was by less than 1%. We conclude that 4D dose calculations are not necessary for most cases treated with SBRT, but they might be valuable for irregularly shaped target volumes. If 4D calculations are used, 4D DVHs should be evaluated on volumes that include margin for setup uncertainty but not respiratory motion.

  17. Comparative evaluation of a novel 3D segmentation algorithm on in-treatment radiotherapy cone beam CT images

    Science.gov (United States)

    Price, Gareth; Moore, Chris

    2007-03-01

    Image segmentation and delineation is at the heart of modern radiotherapy, where the aim is to deliver as high a radiation dose as possible to a cancerous target whilst sparing the surrounding healthy tissues. This, of course, requires that a radiation oncologist dictates both where the tumour and any nearby critical organs are located. As well as in treatment planning, delineation is of vital importance in image guided radiotherapy (IGRT): organ motion studies demand that features across image databases are accurately segmented, whilst if on-line adaptive IGRT is to become a reality, speedy and correct target identification is a necessity. Recently, much work has been put into the development of automatic and semi-automatic segmentation tools, often using prior knowledge to constrain some grey level, or derivative thereof, interrogation algorithm. It is hoped that such techniques can be applied to organ at risk and tumour segmentation in radiotherapy. In this work, however, we make the assumption that grey levels do not necessarily determine a tumour's extent, especially in CT where the attenuation coefficient can often vary little between cancerous and normal tissue. In this context we present an algorithm that generates a discontinuity free delineation surface driven by user placed, evidence based support points. In regions of sparse user supplied information, prior knowledge, in the form of a statistical shape model, provides guidance. A small case study is used to illustrate the method. Multiple observers (between 3 and 7) used both the presented tool and a commercial manual contouring package to delineate the bladder on a serially imaged (10 cone beam CT volumes ) prostate patient. A previously presented shape analysis technique is used to quantitatively compare the observer variability.

  18. Conformal fields in prostate radiotherapy: A comparison between measurement, calculation and simulation

    Directory of Open Access Journals (Sweden)

    Seied R Mahdavi

    2012-01-01

    Full Text Available Aims: The objective of this study is to evaluate the accuracy of a treatment planning system (TPS for calculating the dose distribution parameters in conformal fields (CF. Dosimetric parameters of CF′s were compared between measurement, Monte Carlo simulation (MCNP4C and TPS calculation. Materials and Methods: Field analyzer water phantom was used for obtaining percentage depth dose (PDD curves and beam profiles (BP of different conformal fields. MCNP4C was used to model conformal fields dose specification factors and head of linear accelerator varian model 2100C/D. Results: Results showed that the distance to agreement (DTA and dose difference (DD of our findings were well within the acceptance criteria of 3 mm and 3%, respectively. Conclusions: According to this study it can be revealed that TPS using equivalent tissue air ratio calculation method is still convenient for dose prediction in non small conformal fields normally used in prostate radiotherapy. It was also showed that, since there is a close correlation with Monte Carlo simulation, measurements and TPS, Monte Carlo can be further confirmed for implementation and calculation dose distribution in non standard and complex conformal irradiation field for treatment planning systems.

  19. Reduced late rectal mucosal changes after prostate three-dimensional conformal radiotherapy with endorectal balloon as observed in repeated endoscopy

    International Nuclear Information System (INIS)

    Purpose: The aim of this study was to investigate prospectively the rectal wall (Rwall) spatial dose distribution, toxicity, and mucosal changes after prostate cancer radiotherapy with or without an endorectal balloon (ERB). Methods and Materials: A total of 24 patients with ERB and 24 without ERB (No-ERB) were treated with three-dimensional conformal radiotherapy (3D-CRT) to a dose of 67.5 Gy. The Rwall was divided into 16 mucosal areas and Rwall dose surface maps were constructed. After 3 months, 6 months, 1 year, and 2 years a rectosigmoidoscopy was performed, and each mucosal area was scored on telangiectasia, congestion, ulceration, stricture, and necrosis. Late rectal toxicity was correlated with the endoscopic findings. Results: The ERB significantly reduced the Rwall volume exposed to doses >40 Gy. Late rectal toxicity (grade ≥1, including excess of bowel movements and slight rectal discharge) was reduced significantly in the ERB group. A total of 146 endoscopies and 2,336 mucosal areas were analyzed. Telangiectases were most frequently seen and appeared after 6 months. At 1 and 2 years, significantly less high-grade telangiectasia (T 2-3) was observed in the ERB group at the lateral and posterior part of the Rwall. In mucosal areas exposed to doses >40 Gy, less high-grade telangiectases (T 2-3) were seen in the ERB group compared with the No-ERB group. Conclusions: An ERB reduced the Rwall volume exposed to doses >40 Gy, resulting in reduction of late rectal mucosal changes and reduced late rectal toxicity. Although further analysis is needed, these data suggest an ERB-induced increased tolerance for late Rwall damage

  20. The clinical observation of three-dimensional conformal radiotherapy combined with FOLFOX chemotherapy for rectal cancer of postoperative local recurrence

    Institute of Scientific and Technical Information of China (English)

    Yeqin Zhou; Mi Liu; Daiyuan Ma; Tao Ren; Xiaojie Ma; Xianfu Li; Bangxian Tan

    2012-01-01

    Objective: The aim of this study was to explore the three-dimensional conformal radiotherapy combined with FOLFOX scheme chemotherapy in the treatment of postoperative recurrence of rectal cancer. Methods: Sixty-eight cases of recurrent rectal cancer were divided randomly into two groups: 34 cases of conformal radiotherapy plus FOLFOX chemotherapy group (experiment group) and 34 cases of conformal radiotherapy (control group). After 6 MvX line with three-dimensional conformal radiotherapy technologies for recurrent lesions and pelvic cavity around subclinical lymphatic drainage radiotherapy after radiotherapy to DT 40 Gy to reposit was made use of between both groups, experiment group was made the new treatment plan to continue to irradiate to 50 Gy, and then Shrinkage GTV was pushed quantity in the field 66 Gy. Researchers took chemotherapy in the first week and the fourth week after radiotherapy, with 5-fluorouracil 500 mg/m2, calcium leucovorin 200 mg, d1-5 with intravenous drip, Oxaliplatin 130 mg/m2 and d1 with intravenous drip 2 h, 21 days was one cycle. Kaplan-Meier method was used for survival analysis. Results: The survival rates for 1, 2 and 3 years for experiment group and control group were 88.2%, 64.7%, 47.1% and 66.7%, 38.2%, 29.4% (P = 0.03), the 2-year rate of distant metastases was 32.4% and 58.8% (P = 0.032) respectively. The median survival time was 33 and 20 months respectively. There were some side effects between the groups, but there was no statistical difference. Conclusion: Three-dimensional conformal radiotherapy plus FOLFOX chemotherapy can be considered as a safe and effective approach to treat rectal cancer patients of postoperative recurrence, and can improve the survival rates of patients and reduce distant metastasis rate obviously and make the acute adverse reaction rate insignificantly.

  1. A novel tracking technique for the continuous precise measurement of tumour positions in conformal radiotherapy

    International Nuclear Information System (INIS)

    Changing tumour positions induced by organ motion can impede the full exploitation of the strengths of conformal radiotherapy. The unnecessary irradiation of healthy tissue surrounding the target volume can be the consequence. To overcome this, one should measure tumour positions directly and continuously with high resolution in space and time. We have developed a novel tracking technique which will allow this. The method can also be used to survey and monitor the patient positioning. The proper functioning of our method has been technically demonstrated at PSI with the help of phantom irradiation with protons. Implementation into the clinical environment is now beginning. (author)

  2. Radiotherapy of intensity modulated VS conformational in the treatment of carcinoma of the prostate. A dosimetric comparison; Radioterapia de intensidad modulada VS conformacional en el tratamiento de carcinoma de prostata. Una camparacion dosimetrica

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Martin, G.; Garcia Vicente, F.; Zapatero Laborda, A.; Bermudez Luna, R.; Roch Gonzalez, M.; Perez Gonzalez, L.; Torres Escobar, J. J.

    2013-07-01

    The intensity modulated (IMRT) radiation therapy is a technique of high conformation which, by its nature, has as one of its main directions prostate cancer radiotherapy treatment. The purpose of this work is presents results of the dosimetric indicators collected in our hospital a number of patients of carcinoma of the prostate with standard three-dimensional Conformal technique (3D-CRT) and IMRT. Aims to demonstrate and quantify with a statistical methodology that, establishing an adequate Protocol of IMRT, significant reductions in risk organ doses can be obtained by keeping the same prescription to the white volume. (Author)

  3. Tangential beam IMRT versus tangential beam 3D-CRT of the chest wall in postmastectomy breast cancer patients: A dosimetric comparison

    OpenAIRE

    AI-Yahya Khaled; Mohamed Adel; Aziz Alaradi Abdul; Rudat Volker; Altuwaijri Saleh

    2011-01-01

    Abstract Background This study evaluates the dose distribution of reversed planned tangential beam intensity modulated radiotherapy (IMRT) compared to standard wedged tangential beam three-dimensionally planned conformal radiotherapy (3D-CRT) of the chest wall in unselected postmastectomy breast cancer patients Methods For 20 unselected subsequent postmastectomy breast cancer patients tangential beam IMRT and tangential beam 3D-CRT plans were generated for the radiotherapy of the chest wall. ...

  4. SU-E-T-348: Verification MU Calculation for Conformal Radiotherapy with Multileaf Collimator Using Report AAPM TG 114

    Energy Technology Data Exchange (ETDEWEB)

    Adrada, A; Tello, Z; Medina, L; Garrigo, E; Venencia, D [Instituto de Radioterapia - Fundacion Marie Curie, Cordoba (Argentina)

    2014-06-01

    Purpose: The purpose of this work was to develop and validate an open source independent MU dose calculation software for 3D conformal radiotherapy with multileaf high and low resolution according to the report of AAPM TG 11 Methods: Treatment plans were done using Iplan v4.5 BrainLAB TPS. A 6MV photon beam produced by Primus and Novalis linear accelerators equipped with an Optifocus MLC and HDMLC, respectively. TPS dose calculation algorithms were pencil beam and Monte Carlo. 1082 treatments plans were selected for the study. The algorithm was written in free and open source CodeBlocks C++ platform. Treatment plans were imported by the software using RTP format. Equivalent size field is obtained from the positions of the leaves; the effective depth of calculation can be introduced by TPS's dosimetry report or automatically calculated starting from SSD. The inverse square law is calculated by the 3D coordinates of the isocenter and normalization point of the treatment plan. The dosimetric parameters TPR, Sc, Sp and WF are linearly interpolated. Results: 1082 plans of both machines were analyzed. The average uncertainty between the TPS and the independent calculation was −0.43% ± 2.42% [−7.90%, 7.50%]. Specifically for the Primus the variation obtained was −0.85% ± 2.53% and for the Novalis 0.00% ± 2.23%. Data show that 94.8% of the cases the uncertainty was less than or equal to 5%, while 98.9% is less than or equal to 6%. Conclusion: The developed software is appropriate for use in calculation of UM. This software can be obtained upon request.

  5. Practical application of the tool calculation Monte Carlo MCVerif for checking for radiotherapy treatment; Aplicacion practica de la herramienta de calculo Monte Carlo MCVerif para la verificacion de tratamientos de radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Laliena Bielsa, V. M.; Garcia Romero, A.; Villa Gazulla, D.; Ortega Pardilla, P.; Calvo Carrillo, S.; Millan Cebrian, E.; Hernandez Vitorial, A.; Canellas Aznoz, M.

    2013-07-01

    The object of this work is to verify a patient group representative of the usual techniques of 3D conformal radiotherapy and IMRT performed in the radiotherapy service our hospital and thus validate the algorithm used commercial planning system. (Author)

  6. AP-PA field orientation followed by IMRT reduces lung exposure in comparison to conventional 3D conformal and sole IMRT in centrally located lung tumors.

    Science.gov (United States)

    Soyfer, Viacheslav; Meir, Yaron; Corn, Benjamin W; Schifter, Dan; Gez, Eliahu; Tempelhoff, Haim; Shtraus, Natan

    2012-01-01

    Little attention has been paid to the fact that intensity modulated radiation therapy (IMRT) techniques do not easily enable treatment with opposed beams. Three treatment plans (3 D conformal, IMRT, and combined (anterior-posterior-posterio-anterior (AP-PA) + IMRT) of 7 patients with centrally-located lung cancer were compared for exposure of lung, spinal cord and esophagus. Combined IMRT and AP-PA techniques offer better lung tissue sparing compared to plans predicated solely on IMRT for centrally-located lung tumors. PMID:22340727

  7. AP-PA field orientation followed by IMRT reduces lung exposure in comparison to conventional 3D conformal and sole IMRT in centrally located lung tumors

    Directory of Open Access Journals (Sweden)

    Soyfer Viacheslav

    2012-02-01

    Full Text Available Abstract Little attention has been paid to the fact that intensity modulated radiation therapy (IMRT techniques do not easily enable treatment with opposed beams. Three treatment plans (3 D conformal, IMRT, and combined (anterior-posterior-posterio-anterior (AP-PA + IMRT of 7 patients with centrally-located lung cancer were compared for exposure of lung, spinal cord and esophagus. Combined IMRT and AP-PA techniques offer better lung tissue sparing compared to plans predicated solely on IMRT for centrally-located lung tumors.

  8. AP-PA field orientation followed by IMRT reduces lung exposure in comparison to conventional 3D conformal and sole IMRT in centrally located lung tumors

    International Nuclear Information System (INIS)

    Little attention has been paid to the fact that intensity modulated radiation therapy (IMRT) techniques do not easily enable treatment with opposed beams. Three treatment plans (3 D conformal, IMRT, and combined (anterior-posterior-posterio-anterior (AP-PA) + IMRT) of 7 patients with centrally-located lung cancer were compared for exposure of lung, spinal cord and esophagus. Combined IMRT and AP-PA techniques offer better lung tissue sparing compared to plans predicated solely on IMRT for centrally-located lung tumors

  9. Analysis of Intensity-Modulated Radiation Therapy (IMRT), Proton and 3D Conformal Radiotherapy (3D-CRT) for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients

    OpenAIRE

    Ling, Ted C.; Jerry M. Slater; Prashanth Nookala; Rachel Mifflin; Roger Grove; Ly, Anh M.; Baldev Patyal; Jerry D. Slater; Yang, Gary Y.

    2014-01-01

    Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of ...

  10. Evaluation of xerostomia following 3 dimensional conformal radiotherapy for nasopharyngeal cancer patients

    International Nuclear Information System (INIS)

    This study is to evaluate the xerostomia following 3-dimensional conformal radiation therapy (3D CRT) in nasopharynx cancer patients using the xerostomia questionnaire score (XQS). Questionnaire study was done on 51 patients with nasopharynx cancer who received 3D CRT from Dec. 2000 to Aug. 2005. 3D CRT technique is based on 'serial shrinking field' concept by 3 times of computed tomography (CT) simulation. Total target dose to the primary tumor was 72 Gy with 1.8 Gy daily fractions. Xerostomia was assessed with 4-questions XQS, and the associations between XQS and time elapsed after RT, age, sex, stage, concurrent chemotherapy, an parotid dose were analyzed. Concurrent chemotherapy was given to 40 patients and RT alone was given to 11 patients. The median time elapsed after 3D CRT was 20 (1 ∼ 58) months and the mean XQS of all 51 patients was 8.4 ± 1.9 (6 ∼ 14). XQS continuously and significantly decreased over time after 3D CRT (χ 2 -0.484, ρ < 0.05). There was no significant difference in XQS according to sex, age, and stag. However, XQS of concurrent chemotherapy patients was significantly higher than RT alone patients (ρ = 0.001). XQS of patients receiving total mean parotid dose ≥ 35 Gy was significantly higher than < 35 Gy (ρ = 0.05). Decreasing tendency of XQS over time after 3D CRT was observed. Concurrent chemotherapy and total mean parotid dose ≥ 35 Gy were suggested to adversely affect radiation-induced xerostomia

  11. Three-dimensional conformal radiotherapy in the treatment of prostate cancer in Australia and New Zealand: Report on a survey of radiotherapy centres and the proceedings of a consensus workshop.

    Science.gov (United States)

    Tai, K-H; Duchesne, G; Turner, S; Kneebone, A; See, A; Gogna, K; Berry, M

    2004-12-01

    There is an increasing use of 3-D conformal radiotherapy (3DCRT) in the radiotherapeutic management of prostate cancer. The Faculty of Radiation Oncology Genito-Urinary Group carried out a survey of Australian and New Zealand radiotherapy centres in the preparation of a consensus workshop. Of the 19 centres that were represented, there were 24 radiation oncologists, 16 radiation therapists and 12 medical physicists. The survey collected demographic information and data on the practices undertaken at those centres when delivering curative radiotherapy in the treatment of prostate cancer. There was much variation in the delivery of treatment in the areas of patient set-up, contouring of target volumes and organs of interest during computer planning, the techniques and the dose constraints used in these techniques, the use of adjuvant androgen deprivation therapy and the quality assurance processes used in monitoring effects of treatment. This variability reflects the range of data in the published literature. Emerging trends of practices were also identified. This is a first report on a multi-disciplinary approach to the development of guidelines in 3DCRT of prostate cancer.

  12. Dosimetric Comparison of Involved-Field Three-Dimensional Conformal Photon Radiotherapy and Breast-Sparing Proton Therapy for the Treatment of Hodgkin’s Lymphoma in Female Pediatric Patients

    International Nuclear Information System (INIS)

    Purpose: To assess the potential reduction in breast dose for young girls with Hodgkin’s lymphoma (HL) treated with breast-sparing proton therapy (BS-PT) as compared with three-dimensional conformal involved-field photon radiotherapy (3D-CRT). Methods and Materials: The Clarian Health Cancer Registry was queried for female pediatric patients with the diagnosis of HL who received radiotherapy at the Indiana University Simon Cancer Center during 2006–2009. The original CT simulation images were obtained, and 3D-CRT and BS-PT plans delivering 21 Gy or cobalt gray equivalent (CGE) in 14 fractions were created for each patient. Dose–volume histogram data were collected for both 3D-CRT and BS-PT plans and compared by paired t test for correlated samples. Results: The cancer registry provided 10 female patients with Ann Arbor Stage II HL, aged 10–18 years at the time of treatment. Both mean and maximum breast dose were significantly less with BS-PT compared with 3D-CRT: 0.95 CGE vs. 4.70 Gy (p 3 and 93 cm3, respectively, compared with 790 cm3 and 360 cm3 with 3D-CRT (p = 0.009, 0.013). Conclusion: Breast-sparing proton therapy has the potential to reduce unnecessary breast dose in young girls with HL by as much as 80% relative to involved-field 3D-CRT.

  13. Improved local control without elective nodal radiotherapy in patients with unresectable NSCLC treated by 3D-CRT

    Institute of Scientific and Technical Information of China (English)

    YANG Kunyu; CAO Fengjun; WANG Jianhua; LIU Li; ZHANG Tao; WU Gang

    2007-01-01

    To investigate the influence of prophylactic elective nodal irradiation on the therapeutic results of definitive radiotherapy for patients with stage IliA or stage IIIB unresectable non-small-cell lung cancer,55 patients with clinically inoperable advanced non-small-cell lung cancer were studied.After four cycles of induction chemotherapy,the patients were divided into two groups at random.In one group,the elective nodal irradiation was included in clinical tumor volume(CTV)of definitive radiotherapy(ENI group);and in the other group,elective nodal irradiation was not included in CTV(non-ENI group).For the patients in the ENI group,the mean prescription dose for gross tumor volumes was 58.4 Gy,while for the patients in the non-ENI group,it was 65.8 Gy(P<0.05).The responsive rates were 45.8% and 74.0%(P<0.05),and the rate of the elective nodal failure (ENF)was 4.2% and 11.1%,respectively.Kaplan-Meier analysis showed that the mean local-progression-free survival time was 11.0 and 15.0 months,and one-year local-failure rates were 51.9% and 24.5%(P<0.05).The median overall survival time was 13.0 and 15.0 months,respectively (P=0.084).The one-year survival rates were 55.7% and 72.5%,and two-year survival rates were 0% and 19.9%.There was no significant difference in the occurrences of radiation-associated complications between the two groups.Our results showed that omitting elective nodal irradiation did not result in a high incidence of elective nodal failure.On the contrary,it decreased local failure by increasing prescription doses to the primary diseases and lymphadenopaphy,and thereby it may further prolong the patients' survival.

  14. Rapid Arc, helical tomotherapy, sliding window intensity modulated radiotherapy and three dimensional conformal radiation for localized prostate cancer: A dosimetric comparison

    Directory of Open Access Journals (Sweden)

    Rajesh A Kinhikar

    2014-01-01

    Full Text Available Objective: The objective of this study was to investigate the potential role of RapidArc (RA compared with helical tomotherapy (HT, sliding window intensity modulated radiotherapy (SW IMRT and three-dimensional conformal radiation therapy (3D CRT for localized prostate cancer. Materials and Methods: Prescription doses ranged from 60 Gy to planning target volume (PTV and 66.25 Gy for clinical target volume prostate (CTV-P over 25-30 fractions. PTV and CTV-P coverage were evaluated by conformity index (CI and homogeneity index (HI. Organ sparing comparison was done with mean doses to rectum and bladder. Results: CI 95 were 1.0 ± 0.01 (RA, 0.99 ± 0.01 (HT, 0.97 ± 0.02 (IMRT, 0.98 ± 0.02 (3D CRT for PTV and 1.0 ± 0.00 (RA, HT, SW IMRT and 3D CRT for CTV-P. HI was 0.11 ± 0.03 (RA, 0.16 ± 0.08 (HT, 0.12 ± 0.03 (IMRT, 0.06 ± 0.01 (3D CRT for PTV and 0.03 ± 0.00 (RA, 0.05 ± 0.01 (HT, 0.03 ± 0.01 (SW IMRT and 3D CRT for CTV-P. Mean dose to bladder were 23.68 ± 13.23 Gy (RA, 24.55 ± 12.51 Gy (HT, 19.82 ± 11.61 Gy (IMRT and 23.56 ± 12.81 Gy (3D CRT, whereas mean dose to rectum was 36.85 ± 12.92 Gy (RA, 33.18 ± 11.12 Gy (HT, IMRT and 38.67 ± 12.84 Gy (3D CRT. Conclusion: All studied intensity-modulated techniques yield treatment plans of significantly improved quality when compared with 3D CRT, with HT providing best organs at risk sparing and RA being the most efficient treatment option, reducing treatment time to 1.45-3.7 min and monitor unit to <400 for a 2 Gy fraction.

  15. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy

    CERN Document Server

    Li, Ruijiang; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B

    2010-01-01

    Purpose: To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Methods: Given a set of volumetric images of a patient at N breathing phases as the training data, we perform deformable image registration between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, we can generate new DVFs, which, when applied on the reference image, lead to new volumetric images. We then can reconstruct a volumetric image from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. Our algorithm was implemented on graphics processing units...

  16. Dosimetry in radiotherapy using a-Si EPIDs: Systems, methods, and applications focusing on 3D patient dose estimation

    Science.gov (United States)

    McCurdy, B. M. C.

    2013-06-01

    An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.

  17. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    International Nuclear Information System (INIS)

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  18. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    Energy Technology Data Exchange (ETDEWEB)

    Min Yugang; Santhanam, Anand; Ruddy, Bari H [University of Central Florida, FL (United States); Neelakkantan, Harini; Meeks, Sanford L [M D Anderson Cancer Center Orlando, FL (United States); Kupelian, Patrick A, E-mail: anand.santhanam@orlandohealth.co [Department of Radiation Oncology, University of California, Los Angeles, CA (United States)

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  19. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    Science.gov (United States)

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H.; Meeks, Sanford L.; Kupelian, Patrick A.

    2010-09-01

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  20. Treatment techniques for 3D conformal radiation to breast and chest wall including the internal mammary chain.

    Science.gov (United States)

    Sonnik, Deborah; Selvaraj, Raj N; Faul, Clare; Gerszten, Kristina; Heron, Dwight E; King, Gwendolyn C

    2007-01-01

    Breast, chest wall, and regional nodal irradiation have been associated with an improved outcome in high-risk breast cancer patients. Complex treatment planning is often utilized to ensure complete coverage of the target volume while minimizing the dose to surrounding normal tissues. The 2 techniques evaluated in this report are the partially wide tangent fields (PWTFs) and the 4-field photon/electron combination (the modified "Kuske Technique"). These 2 techniques were evaluated in 10 consecutive breast cancer patients. All patients had computerized tomographic (CT) scans for 3D planning supine on a breast board. The breast was defined clinically by the physician and confirmed radiographically with radiopaque bebes. The resulting dose-volume histograms (DVHs) of normal and target tissues were then compared. The deep tangent field with blocks resulted in optimal coverage of the target and the upper internal mammary chain (IMC) while sparing of critical and nontarget tissues. The wide tangent technique required less treatment planning and delivery time. We compared the 2 techniques and their resultant DVHs and feasibility in a busy clinic.

  1. Analysis of dose-volume parameters predicting radiation pneumonitis in patients with esophageal cancer treated with 3D-conformal radiation therapy or IMRT

    International Nuclear Information System (INIS)

    Multimodality therapy for esophageal cancer can cause various kinds of treatment-related sequelae, especially pulmonary toxicities. This prospective study aims to investigate the clinical and dosimetric parameters predicting lung injury in patients undergoing radiation therapy for esophageal cancer. Forty-five esophageal cancer patients were prospectively analyzed. The pulmonary toxicities (or sequelae) were evaluated by comparing chest X-ray films, pulmonary function tests and symptoms caused by pulmonary damage before and after treatment. All patients were treated with either three-dimensional radiotherapy (3DCRT) or with intensity-modulated radiotherapy (IMRT). The planning dose volume histogram was used to compute the lung volumes receiving more than 5, 10, 20 and 30 Gy (V5, V10, V20, V30) and mean lung dose. V20 was larger in the IMRT group than in the 3DCRT group (p=0.002). V20 (>15%) and V30 (>20%) resulted in a statistically significant increase in the occurrence of chronic pneumonitis (p=0.03) and acute pneumonitis (p=0.007), respectively. The study signifies that a larger volume of lung receives lower doses because of multiple beam arrangement and a smaller volume of lung receives higher doses because of better dose conformity in IMRT plans. Acute pneumonitis correlates more with V30 values, whereas chronic pneumonitis was predominantly seen in patients with higher V20 values. (author)

  2. Toxicity and cosmetic outcome of three-dimensional conformal radiotherapy for accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    Full text of publication follows: Purpose.- To analyse the incidence and severity of acute and late normal tissue toxicity and cosmetic outcome using three - dimensional conformal radiotherapy to deliver accelerated partial breast irradiation. Patients and Methods.- 70 patients with stage I disease were treated with three-dimensional conformal radiotherapy for accelerated partial breast irradiation, in an approved protocol. The prescribed dose was 34 Gy in all patients delivered in 10 fractions over 5 consecutive days. On all CT scans gross tumor volume (GTV ) was defined around surgical clips. A 1.5 cm margin was added in order to account for clinical target volume (CTV) . A margin of 1 cm was added to CTI to define the planning target volume (PTV). The dose-volume constraints were followed in accordance with the specifications as dictated in the NSABP/RTOG protocol. After treatment, patients underwent a clinical and cosmetic evaluation every 3 months. Late toxicity was evaluated according to the RTOG grading schema. The cosmetic assessment was performed by the physicians using the controlateral untreated breast as the reference (Harvard scale). Results.- Median patient age was 66 years (range 51-80). Median follow-up was 15 months (range 6-46). Tumor size was 2 cm in 4(6%). The mean value of the ratio between the PTV and the whole ipsilateral breast volume was 38 % and the median percentage whole breast volume that received 95 % of prescribed dose was 34% (range 16%-55%). The rate of G1 and G2 acute skin toxicity was 28% and 2% respectively and the late toxicity was 17% (G1). G2 or greater toxicities were not observed. The most pronounced G1 late toxicity was subcutaneous fibrosis, developed in 3 patients. The cosmetic outcome was excellent in 83% and good in 17%. Conclusion.- Accelerated partial breast irradiation using three-dimensional conformal radiotherapy is technically feasible with very low acute and late toxicity. Long-term results are needed to assess

  3. Toxicity and cosmetic outcome of three-dimensional conformal radiotherapy for accelerated partial breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gatti, M.; Bresciani, S.; Ponzone, R.; Panaia, R.; Salatino, A.; Stasi, M.; Gabriele, P. [IRCC, Candiolo (Italy)

    2011-10-15

    Full text of publication follows: Purpose.- To analyse the incidence and severity of acute and late normal tissue toxicity and cosmetic outcome using three - dimensional conformal radiotherapy to deliver accelerated partial breast irradiation. Patients and Methods.- 70 patients with stage I disease were treated with three-dimensional conformal radiotherapy for accelerated partial breast irradiation, in an approved protocol. The prescribed dose was 34 Gy in all patients delivered in 10 fractions over 5 consecutive days. On all CT scans gross tumor volume (GTV ) was defined around surgical clips. A 1.5 cm margin was added in order to account for clinical target volume (CTV) . A margin of 1 cm was added to CTI to define the planning target volume (PTV). The dose-volume constraints were followed in accordance with the specifications as dictated in the NSABP/RTOG protocol. After treatment, patients underwent a clinical and cosmetic evaluation every 3 months. Late toxicity was evaluated according to the RTOG grading schema. The cosmetic assessment was performed by the physicians using the controlateral untreated breast as the reference (Harvard scale). Results.- Median patient age was 66 years (range 51-80). Median follow-up was 15 months (range 6-46). Tumor size was < 10 mm in 33 patients (53%) and > 2 cm in 4(6%). The mean value of the ratio between the PTV and the whole ipsilateral breast volume was 38 % and the median percentage whole breast volume that received 95 % of prescribed dose was 34% (range 16%-55%). The rate of G1 and G2 acute skin toxicity was 28% and 2% respectively and the late toxicity was 17% (G1). G2 or greater toxicities were not observed. The most pronounced G1 late toxicity was subcutaneous fibrosis, developed in 3 patients. The cosmetic outcome was excellent in 83% and good in 17%. Conclusion.- Accelerated partial breast irradiation using three-dimensional conformal radiotherapy is technically feasible with very low acute and late toxicity. Long

  4. Temporal characterization and in vitro comparison of cell survival following the delivery of 3D-conformal, intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT)

    Science.gov (United States)

    McGarry, Conor K.; Butterworth, Karl T.; Trainor, Colman; O'Sullivan, Joe M.; Prise, Kevin M.; Hounsell, Alan R.

    2011-04-01

    A phantom was designed and implemented for the delivery of treatment plans to cells in vitro. Single beam, 3D-conformal radiotherapy (3D-CRT) plans, inverse planned five-field intensity-modulated radiation therapy (IMRT), nine-field IMRT, single-arc volumetric modulated arc therapy (VMAT) and dual-arc VMAT plans were created on a CT scan of the phantom to deliver 3 Gy to the cell layer and verified using a Farmer chamber, 2D ionization chamber array and gafchromic film. Each plan was delivered to a 2D ionization chamber array to assess the temporal characteristics of the plan including delivery time and 'cell's eye view' for the central ionization chamber. The effective fraction time, defined as the percentage of the fraction time where any dose is delivered to each point examined, was also assessed across 120 ionization chambers. Each plan was delivered to human prostate cancer DU-145 cells and normal primary AGO-1522b fibroblast cells. Uniform beams were delivered to each cell line with the delivery time varying from 0.5 to 20.54 min. Effective fraction time was found to increase with a decreasing number of beams or arcs. For a uniform beam delivery, AGO-1552b cells exhibited a statistically significant trend towards increased survival with increased delivery time. This trend was not repeated when the different modulated clinical delivery methods were used. Less sensitive DU-145 cells did not exhibit a significant trend towards increased survival with increased delivery time for either the uniform or clinical deliveries. These results confirm that dose rate effects are most prevalent in more radiosensitive cells. Cell survival data generated from uniform beam deliveries over a range of dose rates and delivery times may not always be accurate in predicting response to more complex delivery techniques, such as IMRT and VMAT.

  5. Minimising contralateral breast dose in post-mastectomy intensity-modulated radiotherapy by incorporating conformal electron irradiation

    NARCIS (Netherlands)

    van der Laan, Hans Paul; Korevaar, Erik W; Dolsma, Willemtje; Maduro, John H; Langendijk, Johannes A

    2010-01-01

    PURPOSE: To assess the potential benefit of incorporating conformal electron irradiation in intensity-modulated radiotherapy (IMRT) for loco-regional post-mastectomy RT. PATIENTS AND METHODS: Ten consecutive patients that underwent left-sided mastectomy were selected for this comparative planning st

  6. FXG dosimeter response for three-dimensional conformal radiotherapy using different evaluation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cavinato, Christianne C.; Campos, Leticia L., E-mail: ccavinato@ipen.b, E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Souza, Benedito H.; Carrete Junior, Henrique; Daros, Kellen A.C.; Medeiros, Regina B., E-mail: bhsouza@unifesp.b, E-mail: daros.kellen@unifesp.b, E-mail: rbitel-li.ddi@epm.b [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Diagnostico por Imagem; Giordani, Adelmo J. [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Servico de Radioterapia

    2011-07-01

    This work aims to compare the dose-response of the Fricke xylenol gel (FXG) dosimeter developed at IPEN using 270 Bloom gelatin from porcine skin made in Brazil evaluated using the magnetic resonance imaging (MRI) technique with the dosimetric response evaluated using the optical absorption (OA) spectrophotometry technique, in order to verify the possibility of quality assurance (QA) and reproducibility of FXG dosimeter to be carried out routinely using the OA technique for three-dimensional conformal radiotherapy (3DCRT) application using a 6 MV photons linear accelerator. The response in function of the absorbed dose of FXG dosimeter developed at IPEN presents linear behavior in clinical interest dose range when irradiated with Co-60 gamma radiation and 6 MV photons and evaluated using the MRI and OA techniques. The results indicate that the optical technique can be used for QA of FXG dosemeter when used in the possible application in QA of 3DCRT. (author)

  7. Multilayer bonding using a conformal adsorbate film (CAF) for the fabrication of 3D monolithic microfluidic devices in photopolymer

    International Nuclear Information System (INIS)

    Reliable microfabrication processes and materials compatible with complementary metal-oxide semiconductor (CMOS) technology are required by industry for the mass production of complex and highly miniaturized lab-on-a-chip systems. Photopolymers are commonly used in the semiconductor industry, and are suitable for the integration of multilayer structures onto CMOS substrates. This paper describes a novel photopolymer bonding process compatible with CMOS technology for the fabrication of three-dimensional monolithic microfluidic devices. The process consists of the formation of a conformal adsorbate film (CAF) approximately 15 nm thick on a patterned photopolymer layer (KMPR), thereby increasing the number of open polymer chains at the bonding interface and acting as an ultra-thin adhesive layer. This thin adhesive layer is made of the same photopolymer as the microfluidic structures, but has a substantially lower crosslinking density so it will be able to make better bonds during a thermocompressive bonding step. This CAF treatment substantially improves the bonding yield between two patterned and previously crosslinked photopolymer layers because both optimum structure strength (to resist deformation during bonding) and bonding strength from epoxy crosslinking can be achieved. We demonstrate high bonding yields of up to 99% of the useful area of the substrate after three successive bonding steps. With this technique, up to six layers have been bonded in a single device. Unlike previously reported methods the quality of bonding is mostly decoupled from soft-bake parameters and crosslinking level of the previously patterned layers. Three differentbonding processes were characterized to describe the bonding mechanism and the differences between the presented method and the partial-crosslinking bonding method. Capillary filling experiments were performed in microchannels of multilayer structures built with the CAF technique, without any observable leakage between

  8. Analysis of long-term survival in patients treated with three-dimensional conformal radiotherapy for locally advanced non-small cell lung cancer

    International Nuclear Information System (INIS)

    Objective: To evaluate the prognostic factors of locally advanced non-small cell lung cancer (LA-NSCLC) treated with three dimensional conformal radiation therapy (3D CRT). Methods: In 106 patients with stage IIIa/IIIb NSCLC treated with 3DCRT from Nov 2000 to Mar 2004, 46 of them were treated with radiotherapy alone, 41 by concurrent chemoradiation, and 19 by sequential chemoradiation. The influence of related prognostic factors on survival was evaluated by univariate and multivariate analysis. The treatment outcome was analyzed by prognostic index model. Results: The 1-, 3- and 5- year overall survival rate was 50.0%, 22.2% and 15.5%, respectively, and the median survival time was 12 months. The univariate analysis showed that the following factors were significantly associated with the longer survival: female, good kamofsky performance status (KPS), squamous cell carcinoma, absence of supraclavicular lymph nodes, no smoking history, hemoglobin ≥130 g/L before treatment, N stage, the maximum diameter of tumor ≤5 cm, the volume of tumor ≤90 cm3, GTV ≤150 cm3 and the radiotherapy efficacy. However, multivariate analysis revealed that no smoking history, hemoglobin ≥130 g/L and GTV ≤150 cm3 were the independent risk factors for predicting the survival. Conclusions: Three dimensional conformal radiation therapy could be effective in the treatment of locally advanced NSCLC. No smoking history, hemoglobin ≥130 g/L and GTV ≤150 cm3 might be the independent risk factors for predicting the survival. Prognostic index model could improve the potential of multivariate analysis in predicting the survival of patients treated with radiotherapy for NSCLC. (authors)

  9. SU-C-BRE-01: 3D Conformal Micro Irradiation Results of Four Treatment Sites for Preclinical Small Animal and Clinical Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Price, S; Yaddanapudi, S [Washington University School of Medicine, Saint Louis, MO (United States); Rangaraj, D; Izaguirre, E [Scott and White Hospital, Temple, TX (United States)

    2014-06-15

    Purpose: Small animal irradiation can provide preclinical insights necessary for clinical advancement. In order to provide clinically relevant data, these small animal irradiations must be designed such that the treatment methods and results are comparable to clinical protocols, regardless of variations in treatment size and modality. Methods: Small animal treatments for four treatment sites (brain, liver, lung and spine) were investigated, accounting for change in treatment energy and target size. Up to five orthovoltage (300kVp) beams were used in the preclinical treatments, using circular, square, and conformal tungsten apertures, based on the treatment site. Treatments were delivered using the image guided micro irradiator (microIGRT). The plans were delivered to a mouse sized phantom and dose measurements in axial and coronal planes were performed using radiochromic film. The results of the clinical and preclinical protocols were characterized in terms of conformality number, CTV coverage, dose nonuniformity ratio, and organ at risk sparing. Results: Preclinical small animal treatment conformality was within 1–16% of clinical results for all treatment sites. The volume of the CTV receiving 100% of the prescription dose was typically within 10% of clinical values. The dose non-uniformity was consistently higher for preclinical treatments compared to clinical treatments, indicating hot spots in the target. The ratios of the mean dose in the target to the mean dose in an organ at risk were comparable if not better for preclinical versus clinical treatments. Finally, QUANTEC dose constraints were applied and the recommended morbidity limits were satisfied in each small animal treatment site. Conclusion: We have shown that for four treatment sites, preclinical 3D conformal small animal treatments can be clinically comparable if clinical protocols are followed. Using clinical protocols as the standard, preclinical irradiation methods can be altered and iteratively

  10. A framework for inverse planning of beam-on times for 3D small animal radiotherapy using interactive multi-objective optimisation

    International Nuclear Information System (INIS)

    Advances in precision small animal radiotherapy hardware enable the delivery of increasingly complicated dose distributions on the millimeter scale. Manual creation and evaluation of treatment plans becomes difficult or even infeasible with an increasing number of degrees of freedom for dose delivery and available image data. The goal of this work is to develop an optimisation model that determines beam-on times for a given beam configuration, and to assess the feasibility and benefits of an automated treatment planning system for small animal radiotherapy.The developed model determines a Pareto optimal solution using operator-defined weights for a multiple-objective treatment planning problem. An interactive approach allows the planner to navigate towards, and to select the Pareto optimal treatment plan that yields the most preferred trade-off of the conflicting objectives. This model was evaluated using four small animal cases based on cone-beam computed tomography images. Resulting treatment plan quality was compared to the quality of manually optimised treatment plans using dose-volume histograms and metrics.Results show that the developed framework is well capable of optimising beam-on times for 3D dose distributions and offers several advantages over manual treatment plan optimisation. For all cases but the simple flank tumour case, a similar amount of time was needed for manual and automated beam-on time optimisation. In this time frame, manual optimisation generates a single treatment plan, while the inverse planning system yields a set of Pareto optimal solutions which provides quantitative insight on the sensitivity of conflicting objectives. Treatment planning automation decreases the dependence on operator experience and allows for the use of class solutions for similar treatment scenarios. This can shorten the time required for treatment planning and therefore increase animal throughput. In addition, this can improve treatment standardisation and

  11. Significant negative impact of adjuvant chemotherapy on Health-Related Ouality of Life (HR-OoL) in women with breast cancer treated by conserving surgery and postoperative 3-D radiotherapy. A prospective measurement

    Energy Technology Data Exchange (ETDEWEB)

    Galalae, R.M.; Michel, J.; Kimmig, B. [Clinic for Radiation Therapy (Radiooncology), Univ. Hospital Schleswig-Holstein, Campus Kiel (Germany); Siebmann, J.U.; Kuechler, T.; Eilf, K. [Dept. of General and Thoracic Surgery/Reference Center on Quality of Life in Oncology, Univ. Hospital Schleswig-Holstein, Campus Kiel (Germany)

    2005-10-01

    Purpose: to prospectively assess health-related quality of life (HR-QoL) in women after conserving surgery for breast cancer during/after postoperative 3-D radiotherapy. Patients and methods: 109 consecutively treated patients were analyzed. HR-QoL was assessed at initiation (t1), end (t2), and 6 weeks after radiotherapy (t3) using the EORTC modules QLQ-C30/BR23. Patients were divided into three therapy groups. Group I comprised 41 patients (radiotherapy and adjuvant chemotherapy), group II 45 patients (radiotherapy and adjuvant hormonal therapy), and group III 23 patients (radiotherapy alone). Reliability was tested. Scale means were calculated. Univariate (ANOVA) and multivariate (MANCOVA) analyses were performed. Results: reliability testing revealed mean Cronbach's {alpha} > 0.70 at all measurement points. ANOVA/MANCOVA statistics revealed significantly better HR-QoL for patients in group II versus I. Patients receiving radiotherapy alone (group III) showed the best results in HR-QoL. However, scale mean differences between groups II and III were not significant. Conclusion: HR-QoL measurement using EORTC instruments during/after radiotherapy is reliable. Adjuvant chemotherapy significantly lowered HR-QoL versus hormones or radiotherapy alone. Chemotherapy patients did not recover longitudinally (from t1 to t3). (orig.)

  12. Whole breast and excision cavity radiotherapy plan comparison: Conformal radiotherapy with sequential boost versus intensity-modulated radiation therapy with a simultaneously integrated boost

    OpenAIRE

    Small, Katherine; Kelly, Chris; Beldham-Collins, Rachael; Gebski, Val

    2013-01-01

    Introduction A comparative study was conducted comparing the difference between (1) conformal radiotherapy (CRT) to the whole breast with sequential boost excision cavity plans and (2) intensity-modulated radiation therapy (IMRT) to the whole breast with simultaneously integrated boost to the excision cavity. The computed tomography (CT) data sets of 25 breast cancer patients were used and the results analysed to determine if either planning method produced superior plans. Methods CT data set...

  13. Comparison of stereotactic radiosurgery and fractionated stereotactic radiotherapy of acoustic neurinomas according to 3-D tumor volume shrinkage and quality of life

    Energy Technology Data Exchange (ETDEWEB)

    Henzel, Martin; Engenhart-Cabillic, Rita [Dept. of Radiation Oncology, Philipps Univ. Marburg (Germany); Hamm, Klaus; Surber, Gunnar; Kleinert, Gabriele [Dept. of Stereotactic Neurosurgery and Radiosurgery, HELIOS Klinikum, Erfurt (Germany); Sitter, Helmut [Dept. of Theoretical Surgery, Philipps Univ. Marburg (Germany); Gross, Markus W. [Dept. of Radiation Oncology, Philipps Univ. Marburg (Germany); Dept. of Radio-Oncology, Univ. Hospital of Basel (Switzerland)

    2009-09-15

    Background and purpose: stereotactic radiosurgery (SRS) and also fractionated stereotactic radiotherapy (SRT) offer high local control (LC) rates (> 90%). This study aimed to evaluate three-dimensional (3-D) tumor volume (TV) shrinkage and to assess quality of life (QoL) after SRS/SRT. Patients and methods: from 1999 to 2005, 35/74 patients were treated with SRS, and 39/74 with SRT. Median age was 60 years. Treatment was delivered by a linear accelerator. Median single dose was 13 Gy (SRS) or 54 Gy (SRT). Patients were followed up {>=} 12 months after SRS/SRT. LC and toxicity were evaluated by clinical examinations and magnetic resonance imaging. 3-D TV shrinkage was evaluated with the planning system. QoL was assessed using the questionnaire Short Form-36. Results: Median follow-up was 50/36 months (SRS/SRT). Actuarial 5-year freedom from progression/overall survival was 88.1%/100% (SRS), and 87.5%/87.2% (SRT). TV shrinkage was 15.1%/40.7% (SRS/SRT; p = 0.01). Single dose (< 13 Gy) was the only determinant factor for TV shrinkage after SRS (p = 0.001). Age, gender, initial TV, and previous operations did not affect TV shrinkage. Acute or late toxicity ({>=} grade 3) was never seen. Concerning QoL, no significant differences were observed after SRS/SRT. Previous operations and gender did not affect QoL (p > 0.05). Compared with the German normal population, patients had worse values for all domains except for mental health. Conclusion: TV shrinkage was significantly higher after SRT than after SRS. Main symptoms were not affected by SRS/SRT. Retrospectively, QoL was neither affected by SRS nor by SRT. (orig.)

  14. Preoperative radiotherapy in gastric cancer: CTV definition for conformal therapy according to tumor location.

    Science.gov (United States)

    Cellini, Francesco; Valentini, Vincenzo; Pacelli, Fabio; D'Ugo, Domenico; Mantini, Giovanna; Balducci, Mario; Gambacorta, Maria Antonietta; Nori, Stefania

    2003-01-01

    In the past radiation oncologists had not a major interest in the treatment of gastric cancer, but the positive outcomes of the Intergroup Study (INT-0116) supported the role of locoregional control in promoting better survival. To reduce the toxicity and the risk of residual disease in locally advanced tumors after surgery,a preoperative approach was tentatively considered. The aim of this manuscript is to define the location of nodal area at risk for cancer involvement according to the tumor location (cardias, corpus, antrum) on CT images to help the radiotherapist in the contouring process of the CTV for preoperative conformal treatment of gastric cancer. The analysis of both the percentage of nodal involvement detected at surgery and of the site of recurrence after radical surgery can direct to the areas to be considered at risk with its contouring on CT. Preoperative conformal-three dimensional radiotherapy of gastric cancer requires clear and well defined contouring guide-lines to allow the evaluation of clinical outcomes and the analysis if the area at risk for recurrence has changed after the preoperative approach. PMID:15018320

  15. 3D Radiotherapy Can Be Safely Combined With Sandwich Systemic Gemcitabine Chemotherapy in the Management of Pancreatic Cancer: Factors Influencing Outcome

    International Nuclear Information System (INIS)

    Purpose: The aim of this Phase II study was to examine whether concurrent continuous infusion 5-fluorouracil (CI 5FU) plus three-dimensional conformal planning radiotherapy sandwiched between gemcitabine chemotherapy is effective, tolerable, and safe in the management of pancreatic cancer. Methods and Materials: Patients were enrolled in two strata: (1) resected pancreatic cancer at high risk of local relapse (postsurgery arm, n = 22) or (2) inoperable pancreatic cancer in head or body without metastases (locally advanced arm, n = 41). Gemcitabine was given at 1,000 mg/m2 weekly for 3 weeks followed by 1 week rest then 5-6 weeks of radiotherapy and concurrent CI 5FU (200 mg/m2/day). After 4 weeks' rest, gemcitabine treatment was reinitiated for 12 weeks. Results: For the two arms combined, treatment-related Grade 3 and 4 toxicities were reported by 25 (39.7%) and 7 (11.1%) patients, respectively. No significant late renal or hepatic toxicity was observed. In the postsurgery arm (R1 54.5%), median time to progressive disease from surgery was 11.0 months, median time to failure of local control was 32.9 months, and median survival time was 15.6 months. The 1- and 2-year survival rates were 63.6% and 31.8%. No significant associations between outcome and mutations in K-ras or TP53 or microsatellite instability were identified. Post hoc investigation of cancer antigen 19-9 levels found baseline levels and increases postbaseline were associated with shorter survival (p = 0.0061 and p < 0.0001, respectively). Conclusions: This three-dimensional chemoradiotherapy regimen is safe and promising, with encouraging local control for a substantial proportion of patients, and merits testing in a randomized trial

  16. Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization

    Science.gov (United States)

    Pepin, Robert; Laszlo, Kenneth J.; Marek, Aleš; Peng, Bo; Bush, Matthew F.; Lavanant, Helène; Afonso, Carlos; Tureček, František

    2016-07-01

    Heptapeptide ions containing combinations of polar Lys, Arg, and Asp residues with non-polar Leu, Pro, Ala, and Gly residues were designed to study polar effects on gas-phase ion conformations. Doubly and triply charged ions were studied by ion mobility mass spectrometry and electron structure theory using correlated ab initio and density functional theory methods and found to exhibit tightly folded 3D structures in the gas phase. Manipulation of the basic residue positions in LKGPADR, LRGPADK, KLGPADR, and RLGPADK resulted in only minor changes in the ion collision cross sections in helium. Replacement of the Pro residue with Leu resulted in only marginally larger collision cross sections for the doubly and triply charged ions. Disruption of zwitterionic interactions in doubly charged ions was performed by converting the C-terminal and Asp carboxyl groups to methyl esters. This resulted in very minor changes in the collision cross sections of doubly charged ions and even slightly diminished collision cross sections in most triply charged ions. The experimental collision cross sections were related to those calculated for structures of lowest free energy ion conformers that were obtained by extensive search of the conformational space and fully optimized by density functional theory calculations. The predominant factors that affected ion structures and collision cross sections were due to attractive hydrogen bonding interactions and internal solvation of the charged groups that overcompensated their Coulomb repulsion. Structure features typically assigned to the Pro residue and zwitterionic COO-charged group interactions were only secondary in affecting the structures and collision cross sections of these gas-phase peptide ions.

  17. Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization

    Science.gov (United States)

    Pepin, Robert; Laszlo, Kenneth J.; Marek, Aleš; Peng, Bo; Bush, Matthew F.; Lavanant, Helène; Afonso, Carlos; Tureček, František

    2016-10-01

    Heptapeptide ions containing combinations of polar Lys, Arg, and Asp residues with non-polar Leu, Pro, Ala, and Gly residues were designed to study polar effects on gas-phase ion conformations. Doubly and triply charged ions were studied by ion mobility mass spectrometry and electron structure theory using correlated ab initio and density functional theory methods and found to exhibit tightly folded 3D structures in the gas phase. Manipulation of the basic residue positions in LKGPADR, LRGPADK, KLGPADR, and RLGPADK resulted in only minor changes in the ion collision cross sections in helium. Replacement of the Pro residue with Leu resulted in only marginally larger collision cross sections for the doubly and triply charged ions. Disruption of zwitterionic interactions in doubly charged ions was performed by converting the C-terminal and Asp carboxyl groups to methyl esters. This resulted in very minor changes in the collision cross sections of doubly charged ions and even slightly diminished collision cross sections in most triply charged ions. The experimental collision cross sections were related to those calculated for structures of lowest free energy ion conformers that were obtained by extensive search of the conformational space and fully optimized by density functional theory calculations. The predominant factors that affected ion structures and collision cross sections were due to attractive hydrogen bonding interactions and internal solvation of the charged groups that overcompensated their Coulomb repulsion. Structure features typically assigned to the Pro residue and zwitterionic COO-charged group interactions were only secondary in affecting the structures and collision cross sections of these gas-phase peptide ions.

  18. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy

    International Nuclear Information System (INIS)

    Purpose: In this work, three-dimensional (3D) motion of lung tumors during radiotherapy in real time was investigated. Understanding the behavior of tumor motion in lung tissue to model tumor movement is necessary for accurate (gated or breath-hold) radiotherapy or CT scanning. Methods: Twenty patients were included in this study. Before treatment, a 2-mm gold marker was implanted in or near the tumor. A real-time tumor tracking system using two fluoroscopy image processor units was installed in the treatment room. The 3D position of the implanted gold marker was determined by using real-time pattern recognition and a calibrated projection geometry. The linear accelerator was triggered to irradiate the tumor only when the gold marker was located within a certain volume. The system provided the coordinates of the gold marker during beam-on and beam-off time in all directions simultaneously, at a sample rate of 30 images per second. The recorded tumor motion was analyzed in terms of the amplitude and curvature of the tumor motion in three directions, the differences in breathing level during treatment, hysteresis (the difference between the inhalation and exhalation trajectory of the tumor), and the amplitude of tumor motion induced by cardiac motion. Results: The average amplitude of the tumor motion was greatest (12±2 mm [SD]) in the cranial-caudal direction for tumors situated in the lower lobes and not attached to rigid structures such as the chest wall or vertebrae. For the lateral and anterior-posterior directions, tumor motion was small both for upper- and lower-lobe tumors (2±1 mm). The time-averaged tumor position was closer to the exhale position, because the tumor spent more time in the exhalation than in the inhalation phase. The tumor motion was modeled as a sinusoidal movement with varying asymmetry. The tumor position in the exhale phase was more stable than the tumor position in the inhale phase during individual treatment fields. However, in many

  19. Hypofractionated three-dimensional conformal radiotherapy for medically inoperable early stage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Ho; Wu, Hong Gyun; KIm, Hak Jae; Park, Charn Il; Lee, Se Hoon; Kim, Dong Wan; Heo, Dae Seong [Seoul National University College of Medicine, Seou (Korea, Republic of)

    2013-01-15

    The purpose of this study was to assess the clinical outcomes of hypofractionated radiotherapy (HFRT) with three-dimensional conformal technique for medically inoperable patients with early stage non-small-cell lung cancer (NSCLC) and to evaluate prognostic factors. We performed a retrospective review of 26 patients who underwent HFRT for early stage NSCLC between September 2005 and August 2011. Only clinical stage T1-3N0 was included. The median RT dose was 70 Gy (range, 60 to 72 Gy) and the median biologically equivalent dose (BED) was 94.5 Gy (range, 78.0 to 100.8 Gy). In 84.6% of patients, 4 Gy per fraction was used. Neoadjuvant chemotherapy with paclitaxel and cisplatin was given to 2 of 26 patients. The median follow-up time for surviving patients was 21 months (range, 13 to 49 months). The overall response rate was 53.9%, and the initial local control rate was 100%. The median survival duration was 27.8 months. Rates of 2-year overall survival, progression-free survival (PFS), local control (LC), and locoregional-free survival (LRFS) were 54.3%, 61.1%, 74.6%, and 61.9%, respectively. Multivariate analysis showed that BED (>90 vs. {<=}90 Gy) was an independent prognostic factor influencing PFS, LC, and LRFS. Severe toxicities over grade 3 were not observed. Radical HFRT can yield satisfactory disease control with acceptable rates of toxicities in medically inoperable patients with early stage NSCLC. HFRT is a viable alternative for clinics and patients ineligible for stereotactic ablative radiotherapy. BED over 90 Gy and 4 Gy per fraction might be appropriate for HFRT.

  20. A dynamic compensation strategy to correct patient-positioning errors in conformal prostate radiotherapy.

    Science.gov (United States)

    Lauve, A D; Siebers, J V; Crimaldi, A J; Hagan, M P; Kealla, P J

    2006-06-01

    Traditionally, pretreatment detected patient-positioning errors have been corrected by repositioning the couch to align the patient to the treatment beam. We investigated an alternative strategy: aligning the beam to the patient by repositioning the dynamic multileaf collimator and adjusting the beam weights, termed dynamic compensation. The purpose of this study was to determine the geometric range of positioning errors for which the dynamic compensation method is valid in prostate cancer patients treated with three-dimensional conformal radiotherapy. Twenty-five previously treated prostate cancer patients were replanned using a four-field technique to deliver 72 Gy to 95% of the planning target volume (PTV). Patient-positioning errors were introduced by shifting the patient reference frame with respect to the treatment isocenter. Thirty-six randomly selected isotropic displacements with magnitudes of 1.0, 2.0, 4.0, 6.0, 8.0, and 10.0 cm were sampled for each patient, for a total of 5400 errors. Dynamic compensation was used to correct each of these errors by conforming the beam apertures to the new target position and adjusting the monitor units using inverse-square and off-axis factor corrections. The dynamic compensation plans were then compared with the original treatment plans via dose-volume histogram (DVH) analysis. Changes of more than 5% of the prescription dose, 3.6 Gy, were deemed significant. Compared with the original treatment plans, dynamic compensation produced small discrepancies in isodose distributions and DVH analyses. These differences increased with the magnitudes of the initial patient-positioning errors. Coverage of the PTV was excellent: D95 and Dmean were not increased or decreased by more than 5% of the prescription dose, and D5 was not decreased by more than 5% of the prescription dose for any of the 5400 simulated positioning errors. D5 was increased by more than 5% of the prescription dose in only three of the 5400 positioning errors

  1. Acute toxicity in pelvic radiotherapy; a randomised trial of conformal versus conventional treatment

    International Nuclear Information System (INIS)

    Background: A prospective, randomized clinical trial to assess the effect of reducing the volume of irradiated normal tissue on acute reactions in pelvic radiotherapy accrued 266 evaluable patients between 1988 and 1993. Purpose: This is the definitive analysis to assess the differences between the conformal and conventional arms of the trial. Materials and methods: In both arms, patients were treated with 6 MV X-rays using a 3-field technique (in all but 5 cases) consisting of an anterior and two wedged lateral or posterior oblique fields; in the conventional arm, rectangular fields were employed, whereas in the conformal arm, the fields were shaped with customized blocks drawn according to the beam's-eye-view of the target volume. The most common dosage was 65 Gy in 2-Gy fractions 5 times a week, although a subgroup (of ca. bladder patients) were treated with 30-36 Gy in once-a-week 6 Gy fractions. Each patient completed a comprehensive acute toxicity scoring questionnaire concentrating on bowel and bladder problems, tiredness and nausea, before the start of treatment, weekly during and for 3 weeks after the end of treatment and then monthly for a further 2 months. Compliance was excellent. Results: There were no differences between the patients in the two arms with respect to age, gender, tumour type (52% prostate, 41% bladder, 5% rectum, 2% other) fractionation/dosage, anterior field size, weight, or baseline symptoms. Substantial differences in normal-tissue volumes (rectum, bladder, etc.) were achieved: median high-dose volume (HDV) of 689 cm3 for the conformal technique versus 792 cm3 for the conventional. A clear pattern of an increase in symptoms during RT, followed by a decrease after RT, was observed for the patient group as a whole. However, a very extensive analysis has not revealed any (statistically) significant differences between the two arms in level of symptoms, nor in medication prescribed. The disparity between our findings and those of other

  2. A dosimetric comparison between 3D-Conformal radiation therapy and intensity modulated radiation therapy plans in the treatment of posterior fossa boost in children with high risk medulloblastom

    Institute of Scientific and Technical Information of China (English)

    Saad El Din I; Abd El AAl H; Makaar W; Mashhour K; El Beih D; Hashem W

    2013-01-01

    Objective:The work is a comparative study between two modalities of radiation therapy, the aim of which is to compare 3D conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) in treating posterior fossa boost in children with high risk medul oblastoma;dosimetrical y evaluating and comparing both techniques as regard target coverage and doses to organs at risk (OAR). Methods:Twenty patients with high risk medul oblastoma were treated by 3D-CRT technique. A dosimetric comparison was done by performing two plans for the posterior fossa boost, 3D-CRT and IMRT plans, for the same patient using Eclipse planning system (version 8.6). Results:IMRT had a better conformity index compared to 3D-CRT plans (P value of 0.000). As for the dose homogeneity it was also better in the IMRT plans, yet it hasn’t reached the statistical significant value. Also, doses received by the cochleae, brainstem and spinal cord were significantly less in the IMRT plans than those of 3D-CRT (P value<0.05). Conclusion:IMRT technique was clearly able to improve conformity and homogeneity index, spare the cochleae, reduce dose to the brainstem and spinal cord in comparison to 3D-CRT technique.

  3. Independent dose calculation of the Tps Iplan in radiotherapy conformed with MLC

    International Nuclear Information System (INIS)

    The systems utilization of independent dose calculation in three dimensional-Conformal Radiation Therapy (3D-Crt) treatments allows a direct verification of the treatments times. The utilization of these systems allows diminishing the probability of errors occurrence generated by the treatment planning system (Tps), allowing a detailed analysis of the dose to delivering and review of the normalization point (Np) or prescription. The independent dose calculation is realized across the knowledge of dosimetric parameters of the treatment machine and particular characteristics of every individual field. The aim of this work is develops a calculation system of punctual doses for isocentric fields conformed with multi-leaf collimation systems (MLC), where the dose calculation is in conformity with the suggested ones by ICRU Report No. 42, 1987. Calculation software was realized in C ++ under a free platform of programming (Code::Blocks). The system uses files in format Rtp, exported from the Tps to systems of record and verification (Lantis). This file contains detailed information of the dose, Um, position of the MLC sheets and collimators for every field of treatment. The size of equivalent field is obtained from the positions of every sheet; the effective depth of calculation can be introduced from the dosimetric report of the Tps or automatically from the DFS of the field. The 3D coordinates of the isocenter and the Np for the treatment plan must be introduced manually. From this information the system looks the dosimetric parameters and calculates the Um. The calculations were realized in two accelerators a NOVALIS Tx (Varian) with 120 sheets of high definition (hd-MLC) and a PRIMUS Optifocus (Siemens) with 82 sheets. 705 patients were analyzed for a total of 1082, in plans made for both equipment s, the average uncertainty with regard to the calculation of the Tps is-0.43% ± 2.42% in a range between [-7.90 %, 7.50 %]. The major uncertainty was in Np near of the

  4. Clinical and dosimetric risk factors of acute radiation esophagitis in non-small cell lung cancer patients treated with three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Objective: To analyze the clinical and dosimetric risk factors for acute radiation esophagitis (ARE) in non-small cell lung cancer (NSCLC) patients treated with three-dimensional conformal radiotherapy (3D-CRT), and to find significant risk factors for clinical therapy. Methods: A total of 102 NSCLC patients treated with 3D-CRT were retrospectively analyzed.ARE was scored according to the Radiation Therapy Oncology Group (RTOG) criteria with grade 2 or worse. Patients were divided into non-concurrent chemoradiotherapy group and concurrent chemoradiotherapy group. The clinical and dosimetric factors associated with grade 2 or worse ARE were analyzed using univariate logistic regression, multivariate logistic analysis and receiver operating characteristic (ROC) curve. Results: There were no grade 4 or 5 ARE observed in the 102 patients. Nineteen developed grade 2, 15 developed grade 3. In non-concurrent chemoradiotherapy group,multivariate analysis showed that V55 was the only risk factor of grade 2/3 ARE. For ROC curve analysis, the cut-off point of V55 was 16.0 while the area under ROC curve was 0.870 (95% CI: 0.782-0.957, P<0.05). In concurrent chemoradiotherapy group, multivariate analysis showed that V35 and chemotherapy regimens during radiotherapy were risk factors of grade 2/3 ARE. The cut-off point of V35 was 23.75 while the area under ROC curve was 0.782 (95% CI: 0.636-0.927, P<0.05). Vinorelbine and cisplatin regimen showed low incidence of ARE contrast with gemcitabine/docetaxel and cisplatin regimens (33.3% and 66.7%). Conclusions: V55 is the only statistically significant risk factor associated with grade 2 or worse ARE for patients who don't accepted concurrent chemotherapy. V35 and chemotherapy regimens during radiotherapy are statistically significant risk factors associated with grade 2 or worse ARE for patients who accept concurrent chemotherapy. Vinorelbine and cisplatin regimen during radiotherapy shows low incidence of ARE. (authors)

  5. Intensity-Modulated Radiotherapy versus 3-Dimensional Conformal Radiotherapy Strategies for Locally Advanced Non-Small-Cell Lung Cancer

    OpenAIRE

    Selek, Uğur; Bölükbaşı, Yasemin; Welsh, James W.; Topkan, Erkan

    2014-01-01

    Chemoradiotherapy is the current standard of care in patients with advanced inoperable stage IIIA or IIIB non-small cell lung cancer (NSCLC). Three-dimensional radiotherapy (3DCRT) has been a trusted method for a long time and has well-known drawbacks, most of which could be improved by Intensity Modulated Radiotherapy (IMRT). IMRT is not currently the standard treatment of locally advanced NSCLC, but almost all patients could benefit to a degree in organ at risk sparing, dose coverage confor...

  6. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Guerra, Jose L. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Hospitales Universitarios Virgen del Rocio, Seville (Spain); Department of Medicine, Universitat Autonoma de Barcelona, Barcelona (Spain); Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhuang Yan; Levy, Lawrence B. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Eapen, George [Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liu, Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-07-15

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received {>=}60 Gy radio(chemo)therapy for primary NSCLC in 1998-2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient's preradiation value at the following time intervals: 0-4 (T1), 5-8 (T2), and 9-12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy or

  7. Changes in Pulmonary Function After Three-Dimensional Conformal Radiotherapy, Intensity-Modulated Radiotherapy, or Proton Beam Therapy for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Purpose: To investigate the extent of change in pulmonary function over time after definitive radiotherapy for non-small-cell lung cancer (NSCLC) with modern techniques and to identify predictors of changes in pulmonary function according to patient, tumor, and treatment characteristics. Patients and Methods: We analyzed 250 patients who had received ≥60 Gy radio(chemo)therapy for primary NSCLC in 1998–2010 and had undergone pulmonary function tests before and within 1 year after treatment. Ninety-three patients were treated with three-dimensional conformal radiotherapy, 97 with intensity-modulated radiotherapy, and 60 with proton beam therapy. Postradiation pulmonary function test values were evaluated among individual patients compared with the same patient’s preradiation value at the following time intervals: 0–4 (T1), 5–8 (T2), and 9–12 (T3) months. Results: Lung diffusing capacity for carbon monoxide (DLCO) was reduced in the majority of patients along the three time periods after radiation, whereas the forced expiratory volume in 1 s per unit of vital capacity (FEV1/VC) showed an increase and decrease after radiation in a similar percentage of patients. There were baseline differences (stage, radiotherapy dose, concurrent chemotherapy) among the radiation technology groups. On multivariate analysis, the following features were associated with larger posttreatment declines in DLCO: pretreatment DLCO, gross tumor volume, lung and heart dosimetric data, and total radiation dose. Only pretreatment DLCO was associated with larger posttreatment declines in FEV1/VC. Conclusions: Lung diffusing capacity for carbon monoxide is reduced in the majority of patients after radiotherapy with modern techniques. Multiple factors, including gross tumor volume, preradiation lung function, and dosimetric parameters, are associated with the DLCO decline. Prospective studies are needed to better understand whether new radiation technology, such as proton beam therapy

  8. A comparative dosimetric study of 3-dimensional conformal radical radiotherapy for bladder cancer patients versus conventional 2-dimensional radical radiotherapy in NCI-Cairo, Egypt%埃及开罗国家癌症研究所膀胱癌患者的三维适形根治性放疗与传统的二维根治性放疗的比较剂量学研究

    Institute of Scientific and Technical Information of China (English)

    Mohamed Mahmoud; Hesham A. El-Hossiny; Nashaat A. Diab; Marwa A. El Razek

    2012-01-01

    Objective: This study was to compare this multiple-field conformal technique to the 2-dimensional (2D) conventional technique with respect to target volume coverage and dose to normal tissues. Methods: We conducted a single institutional prospective comparative dosimetric analysis of 15 patients who received radical radiation therapy for bladder cancer presented to Radiotherapy Department in National Cancer Institute, Cairo (Egypt), in period between November 2011 to July 2012 using 3-dimensional (3D) conformal radiotherapy technique for each patient, a second 2D conventional radiotherapy treatment plan was done, the two techniques were then compared using dose volume histogram (DVH) analysis. Results: Comparing different DVHs, it was found that the planning target volume (PTV) was adequately covered in both (3D & 2D) plans while it was demonstrated that this multiple field conformal technique produced superior distribution compared to 2D technique, with considerable sparing of rectum and to lesser extent for the head of both femora. Conclusion: From the present study, it is recommended to use 3D planning for cases of bladder cancer especially in elderly patients as it produces good coverage of the target volume as well as good sparing of the surrounding critical organs.

  9. Accelerated partial breast irradiation with external beam three-dimensional conformal radiotherapy. Five-year results of a prospective phase II clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Mozsa, Emoeke [National Institute of Oncology, Centre of Radiotherapy, Budapest (Hungary); Landesklinikum Wiener Neustadt, Department of Radiooncology and Radiotherapy, Wiener Neustadt (Austria); Meszaros, Norbert; Major, Tibor; Froehlich, Georgina; Stelczer, Gabor; Fodor, Janos; Polgar, Csaba [National Institute of Oncology, Centre of Radiotherapy, Budapest (Hungary); Sulyok, Zoltan [National Institute of Oncology, Centre of Surgery, Budapest (Hungary)

    2014-05-15

    The aim of this study was to report the 5-year results of accelerated partial breast irradiation (APBI) using external beam three-dimensional conformal radiotherapy (3D-CRT). Between 2006 and 2011, 44 patients with low-risk, stage I-II breast cancer underwent breast-conserving surgery. Postoperative APBI was given by means of 3D-CRT using three to five non-coplanar fields. The total dose of APBI was 36.9 Gy (nine fractions of 4.1 Gy b.i.d.). The mean follow-up time was 58.2 months for surviving patients. Survival results, side effects, and cosmetic results were assessed. One (2.3 %) local recurrence was observed, for a 5-year actuarial rate of 3.7 %. Neither regional nor distant failure was observed. Two patients died of internal disease. The 5-year disease-free, cancer-specific, and overall survival rates were 96.3, 100, and 95.1 %, respectively. Acute side effects included grade 1 (G1) erythema in 75 %, G1 parenchymal induration in 46 %, and G1 pain in 46 % of patients. No G2 or higher acute side effect occurred. Late side effects included G1, G2, and G3 fibrosis in 44, 7, and 2 % of patients, respectively, G1 skin pigmentation in 12 %, and G1 pain in 2 %. Asymptomatic fat necrosis occurred in 14 %. Cosmetic results were rated excellent or good in 86 % of cases by the patients themselves and 84 % by the physicians. The 5-year local tumor control, toxicity profile, and cosmetic results of APBI delivered with external beam 3D-CRT are encouraging and comparable to other APBI series. (orig.) [German] Evaluation der 5-Jahres-Ergebnisse bezueglich Ueberleben, Tumorkontrolle, Nebenwirkungen und Kosmetik nach Teilbrustbestrahlung (APBI) mittels 3-D-konformaler, akzelerierter Radiotherapie (3D-CRT). Zwischen 2006 und 2011 wurden 44 Patienten mit Brustkrebs im Stadium I-II und niedrigem Risikoprofil brusterhaltend operiert. Die adjuvante, 3-D-konformale APBI wurde mittels 3-5 nonkoplanarer Feldern durchgefuehrt. Die Gesamtdosis betrug 36,9 Gy bei 9 -mal 4,1 Gy b.i.d.. Nach

  10. Long-Term Results of Conformal Radiotherapy for Progressive Airway Amyloidosis

    International Nuclear Information System (INIS)

    Purpose: To evaluate the efficacy of conformal external beam radiotherapy (RT) for local control of progressive airway amyloidosis. Methods and Materials: We conducted a retrospective review of patients with biopsy-proven progressive airway amyloidosis treated with conformal RT between 2000 and 2006 at Boston Medical Center. The patients were evaluated for performance status and pulmonary function, with computed tomography and endoscopy after RT compared with the pretreatment studies. Local control was defined as the lack of progression of airway wall thickening on computed tomography imaging and stable endobronchial deposits by endoscopy. Results: A total of 10 symptomatic airway amyloidosis patients (3 laryngeal and 7 tracheobronchial) received RT to a median total dose of 20 Gy in 10 fractions within 2 weeks. At a median follow-up of 6.7 years (range, 1.5–10.3), 8 of the 10 patients had local control. The remaining 2 patients underwent repeat RT 6 and 8.4 months after initial RT, 1 for persistent bronchial obstruction and 1 for progression of subglottic amyloid disease with subsequent disease control. The Eastern Cooperative Oncology Group performance status improved at a median of 18 months after RT compared with the baseline values, from a median score of 2 to a median of 1 (p = .035). Airflow (forced expiratory volume in 1 second) measurements increased compared with the baseline values at each follow-up evaluation, reaching a 10.7% increase (p = .087) at the last testing (median duration, 64.8 months). Acute toxicity was limited to Grade 1-2 esophagitis, occurring in 40% of patients. No late toxicity was observed. Conclusions: RT prevented progressive amyloid deposition in 8 of 10 patients, resulting in a marginally increased forced expiratory volume in 1 second, and improved functional capacity, without late morbidity.

  11. Long-Term Results of Conformal Radiotherapy for Progressive Airway Amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    Truong, Minh Tam, E-mail: mitruong@bu.edu [Department of Radiation Oncology, Amyloid Treatment and Research Program, Boston University School of Medicine, Boston Medical Center, Boston, MA (United States); Kachnic, Lisa A. [Department of Radiation Oncology, Amyloid Treatment and Research Program, Boston University School of Medicine, Boston Medical Center, Boston, MA (United States); Grillone, Gregory A. [Department of Otolaryngology, Amyloid Treatment and Research Program, Boston University School of Medicine, Boston Medical Center, Boston, MA (United States); Bohrs, Harry K.; Lee, Richard [Department of Radiation Oncology, Amyloid Treatment and Research Program, Boston University School of Medicine, Boston Medical Center, Boston, MA (United States); Sakai, Osamu [Department of Radiology, Amyloid Treatment and Research Program, Boston University School of Medicine, Boston Medical Center, Boston, MA (United States); Berk, John L. [Department of Medicine, Amyloid Treatment and Research Program, Boston University School of Medicine, Boston Medical Center, Boston, MA (United States)

    2012-06-01

    Purpose: To evaluate the efficacy of conformal external beam radiotherapy (RT) for local control of progressive airway amyloidosis. Methods and Materials: We conducted a retrospective review of patients with biopsy-proven progressive airway amyloidosis treated with conformal RT between 2000 and 2006 at Boston Medical Center. The patients were evaluated for performance status and pulmonary function, with computed tomography and endoscopy after RT compared with the pretreatment studies. Local control was defined as the lack of progression of airway wall thickening on computed tomography imaging and stable endobronchial deposits by endoscopy. Results: A total of 10 symptomatic airway amyloidosis patients (3 laryngeal and 7 tracheobronchial) received RT to a median total dose of 20 Gy in 10 fractions within 2 weeks. At a median follow-up of 6.7 years (range, 1.5-10.3), 8 of the 10 patients had local control. The remaining 2 patients underwent repeat RT 6 and 8.4 months after initial RT, 1 for persistent bronchial obstruction and 1 for progression of subglottic amyloid disease with subsequent disease control. The Eastern Cooperative Oncology Group performance status improved at a median of 18 months after RT compared with the baseline values, from a median score of 2 to a median of 1 (p = .035). Airflow (forced expiratory volume in 1 second) measurements increased compared with the baseline values at each follow-up evaluation, reaching a 10.7% increase (p = .087) at the last testing (median duration, 64.8 months). Acute toxicity was limited to Grade 1-2 esophagitis, occurring in 40% of patients. No late toxicity was observed. Conclusions: RT prevented progressive amyloid deposition in 8 of 10 patients, resulting in a marginally increased forced expiratory volume in 1 second, and improved functional capacity, without late morbidity.

  12. Bootstrapping 3D fermions

    Science.gov (United States)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  13. FIRE: an open-software suite for real-time 2D/3D image registration for image guided radiotherapy research

    Science.gov (United States)

    Furtado, H.; Gendrin, C.; Spoerk, J.; Steiner, E.; Underwood, T.; Kuenzler, T.; Georg, D.; Birkfellner, W.

    2016-03-01

    Radiotherapy treatments have changed at a tremendously rapid pace. Dose delivered to the tumor has escalated while organs at risk (OARs) are better spared. The impact of moving tumors during dose delivery has become higher due to very steep dose gradients. Intra-fractional tumor motion has to be managed adequately to reduce errors in dose delivery. For tumors with large motion such as tumors in the lung, tracking is an approach that can reduce position uncertainty. Tumor tracking approaches range from purely image intensity based techniques to motion estimation based on surrogate tracking. Research efforts are often based on custom designed software platforms which take too much time and effort to develop. To address this challenge we have developed an open software platform especially focusing on tumor motion management. FLIRT is a freely available open-source software platform. The core method for tumor tracking is purely intensity based 2D/3D registration. The platform is written in C++ using the Qt framework for the user interface. The performance critical methods are implemented on the graphics processor using the CUDA extension. One registration can be as fast as 90ms (11Hz). This is suitable to track tumors moving due to respiration (~0.3Hz) or heartbeat (~1Hz). Apart from focusing on high performance, the platform is designed to be flexible and easy to use. Current use cases range from tracking feasibility studies, patient positioning and method validation. Such a framework has the potential of enabling the research community to rapidly perform patient studies or try new methods.

  14. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer

    OpenAIRE

    Xin Ming; Yuanming Feng; Huan Liu; Ying Zhang; Li Zhou; Jun Deng

    2015-01-01

    Purpose To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT), intensity-modulated radiotherapy (IMRT), or volumetric modulated arc therapy (VMAT) at our institution in the past seven years. Methods and Materials A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercia...

  15. Definitive conformation radiotherapy combined with chemo-hormonal therapy in the treatment of adenocarcinoma of the prostate

    International Nuclear Information System (INIS)

    To ascertain the clinical benefits of photon conformation radiotherapy, since 1988 we have been conducting a clinical trial of photon conformation radiotherapy for adenocarcinoma of the prostate, and we have analyzed the findings thus far. Between 1988 and 1993, 33 evaluable patients with prostate cancer were treated with definitive radiotherapy at the Dept. of Radiology, Social Health Insurance Medical Center. Their ages ranged from 54 to 86, and averaged 69.3 y.o. (median 67). Their stages were as follows: 3 stage-B, 25 stage-C, and 5 stage-D cases. The minimum follow-up period was 1 year. Patients received 40 to 50 Gy (fraction dose ranged from 1.8 Gy to 2 Gy) to the pelvis using the AP-PA technique followed by a 20 to 30 Gy conformal boost (fraction dose 2 Gy) to the prostate gland. Total dose ranged from 68 Gy to 70.4 Gy, with an average of 70 Gy. Systemic multiagent chemotherapy with CDDP, ADR, MTX, 5FU, and CPM was administered concurrently and adjuvantly. Hormonal therapy was also adjuvantly administered. Overall survival rates at 3 years for stage B, C, and D were 100%, 100%, and 60%, respectively. and was 85% at 5 years for stage C. Relapse-free survival rates at 3 years for stage B and C were 100% and 96%, respectively, and was 61% at 5 years for stage C. Regarding stage C cases, the initial site of recurrence was bone in 5 cases. As for complications, there were 5 (15%) grade 1, 4 (12%) grade 2, and 1 (3%) grade 3 rectal complications. Although the number of cases is rather small and the follow-up period is rather short, definitive conformal radiotherapy with adjuvant chemo-hormonal therapy appears promising in the treatment of prostate cancer by improving survival rates with acceptable normal tissue toxicity. (author)

  16. Comparison of dose contribution to normal pelvic tissues among conventional, conformal and intensity-modulated radiotherapy techniques in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yungan Tao; Lefkopoulos, Dimitri; Ibrahima, Diallo; Bridier, Andre; Polizzi, Maria del Pilar; Wibault, Pierre; Crevoisier, Renaud de; Arriagada, Rodrigo; Bourhis, Jean (Dept. of Radiotherapy, Institut Gustave-Roussy, Villejuif (France))

    2008-03-15

    High-energy external radiotherapy has become one of the most common treatment in localized prostate cancer. We compared the difference of dose distribution, mainly at the 5-30 Gy dose level, in the irradiated pelvic volume among three modalities of radiotherapy for patients with prostate cancer: conventional, conformal and intensity-modulated radiotherapy (IMRT). We selected six patients with prostate cancer treated by conformal radiotherapy at the doses of 46 Gy to PTVN (prostate and seminal vesicles), and 70 Gy to PTV-T (prostate). The conventional technique: an 8-field arrangement was used; the conformal technique 4 fields with a boost through 6 fields. For IMRT, a five-beam arrangement was used. Dose-volume histograms (DVH) were analyzed and compared among the three techniques. The IMRT technique significantly increased the pelvic volume covered by the isodose surfaces below 15 Gy as compared with the conventional and conformal techniques. The mean absolute increase for the pelvic volume included between 5-30 Gy for the IMRT technique, was about 2 900 ml as compared with the conventional technique. However, IMRT significantly reduced the irradiated volume of the rectum in the dose range of 5 to 40 Gy, also significantly reduced the irradiated volume of bladder and femoral heads, and obtained a similar or improved isodose distribution in the PTVs. In addition, the use of IMRT slightly increased the relative dose delivered to the body volume outside the pelvis, as estimated by the use of specific software. A long-term follow-up will be needed to evaluate potential late treatment complications related to the use of IMRT and the low or moderate irradiation dose level obtained in the pelvis and in the whole body

  17. Contribution to the development and the modelling of an ultrasonic conformable phased array transducer for the contact inspection of 3D complex geometry components

    International Nuclear Information System (INIS)

    With the difficulties encountered for the exploration of complex shape surfaces, particularly in nuclear industry, the ultrasonic conformable phased array transducer allows a non destructive evaluation of parts with 3D complex parts. For this, one can use the Smart Contact Transducer principle to generate an ultrasonic field by adaptive dynamic focalisation, with a matrix array composed of independent elements moulded in a soft resin. This work deals with the electro-acoustic conception, with the realization of such a prototype and with the study of it's mechanical and acoustic behaviour. The array design is defined using a radiation model adapted to the simulation of contact sources on a free surface. Once one have defined the shape of the radiating elements, a vibratory analysis using finite elements method allows the determination of the emitting structure with 1-3 piezocomposite, witch leads to the realization of emitting-receiving elements. With the measurement of the field transmitted by such elements, we deduced new hypothesis to change the model of radiation. Thus one can take into account normal and tangential stresses calculated with finite element modelling at the interface between the element and the propagation medium, to use it with the semi-analytical model. Some vibratory phenomena dealing with fluid coupling of contact transducers have been studied, and the prediction of the transverse wave radiation profile have been improved. The last part of this work deals with the realization of the first prototype of the conformable phased array transducer. For this a deformation measuring system have been developed, to determine the position of each element on real time with the displacement of the transducer on complex shape surfaces. With those positions, one can perform the calculation of the a delay law intended for the adaptive dynamic focusing of the desired ultrasonic field. The conformable phased array transducer have been characterized in

  18. Quality assurance of computerized planning systems for radiotherapy treatments according the IAEA-TECDOC-1583: application to PCRT3D; Garantaa de calidad de sistemas de planificacion de tratamientos de radioterapia segun el documento IAEA-TECDOC-1583: aplicacion a PCRT3D

    Energy Technology Data Exchange (ETDEWEB)

    Laliena Bielsa, V.; Millan Cebrian, E.; Garcia Romero, A.; Cortes Rodicio, J.; Villa Gazulla, D.; Ortega Pardina, P.; Jimenez Alberico, J.; Hernandez Vitoria, A.; Canellas Anoz, M.

    2012-07-01

    The quality of the PCRT3D radiotherapy treatment planning system is analyzed following the guidelines of IAEA-TECDOC-1583. The two main algorithms for photon beams implemented by the system, Preciso and Superposicion, perform well in heterogeneities, especially Superposicion. The results are similar to those published for algorithms of the same type. The good performance in heterogeneities for high energy X-ray beams is remarkable: both algorithms perform better for 15 MV than for 6 MV. (Author)

  19. Comparison of dose distributions between conformal and intensity modulated radiotherapy for the esophageal carcinoma%食管癌三维适形和调强放疗剂量学对比研究

    Institute of Scientific and Technical Information of China (English)

    刘智华; 胡海芹; 罗辉; 徐建华; 钟军

    2012-01-01

    目的 应用三维治疗计划系统分析食管癌三维适形放疗(3 D-CRT)及调强放疗(IMRT)中肿瘤靶区和危及器官的剂量分布.方法 对20例胸段食管鳞癌患者行CT模拟定位.每例分别设计3D-CRT和IMRT两份计划,以95% PTV60体积获得60Gy处方剂量进行归一,分析靶区剂量和危及器官受量.结果 IMRT的PTV50剂量参数D100和D95、PTV50体积参数V100均优于3D-CRT计划(P均<0.01),PTV50剂量参数最大剂量、最小剂量和平均剂量均优于3D-CRT计划(P均<0.01).IMRT的PTV60参数D100、D95、V100较3D-CRT无优势,Dmean低于3D-CRT(P <0.01).IMRT的PTV50和PTV60适形指数均优于3D-CRT(P均<0.01).IMRT的全肺V5、V10、V15、V20和平均剂量均低于3D-CRT(P均<0.01).IMRT和3D-CRT的心脏平均剂量相似,IMRT的脊髓剂量较3D-CRT显著增加,但未超过耐受量.结论 IMRT放疗技术能够更好实现食管癌的肿瘤靶区均匀的剂量分布,并降低肺部的照射剂量.%Objective To evaluate the dose distribution between three dimensional conformal radiotherapy(3D-CRT) and intensity modulated radiotherapy( IMRT) in tumor target area and organs at risks. Methods Twenty patients with thoracic esophageal carcinoma underwent CT simulation. The IMRT plan and 3D-CRT plan were designed for each patient. The prescription dose in 95% of PTV volume was 60 Gy. PTV and organs at risk in 3-DCRT and IMRT plans were compared. Results Dose parameters of PTV50 of IMRT plan was superior than those of 3DCRT( P <0.01). The volume parameters V100 of PTV50 of IMRT plan was higher than those of 3DCRT plan. Dose and volume parameters of PTV60 were similar between the 3DCRT plan and IMRT plan. The mean dose of PTV60 of IMRT plan was lower than that of 3DCRT plan(P <0. 01) . The conformity indexes of PTV50 and PTV60 in the IMRT plan were higher than those in 3DCRT plan. The V5 , V10, V15 , V20 of the total lung in the IMRT plan were all lower than those in the 3D-CRT plan( P < 0. 01). The

  20. Dosimetric Comparison of Involved-Field Three-Dimensional Conformal Photon Radiotherapy and Breast-Sparing Proton Therapy for the Treatment of Hodgkin's Lymphoma in Female Pediatric Patients

    Energy Technology Data Exchange (ETDEWEB)

    Andolino, David L., E-mail: dandolin@iupui.edu [Department of Radiation Oncology, Indiana University School of Medicine, Bloomington, IN (United States); Hoene, Ted [Midwest Proton Radiotherapy Institute, Bloomington, IN (United States); Xiao, Lu [Department of Radiation Oncology, Indiana University School of Medicine, Bloomington, IN (United States); Buchsbaum, Jeffrey; Chang, Andrew L. [Department of Radiation Oncology, Indiana University School of Medicine, Bloomington, IN (United States); Midwest Proton Radiotherapy Institute, Bloomington, IN (United States)

    2011-11-15

    Purpose: To assess the potential reduction in breast dose for young girls with Hodgkin's lymphoma (HL) treated with breast-sparing proton therapy (BS-PT) as compared with three-dimensional conformal involved-field photon radiotherapy (3D-CRT). Methods and Materials: The Clarian Health Cancer Registry was queried for female pediatric patients with the diagnosis of HL who received radiotherapy at the Indiana University Simon Cancer Center during 2006-2009. The original CT simulation images were obtained, and 3D-CRT and BS-PT plans delivering 21 Gy or cobalt gray equivalent (CGE) in 14 fractions were created for each patient. Dose-volume histogram data were collected for both 3D-CRT and BS-PT plans and compared by paired t test for correlated samples. Results: The cancer registry provided 10 female patients with Ann Arbor Stage II HL, aged 10-18 years at the time of treatment. Both mean and maximum breast dose were significantly less with BS-PT compared with 3D-CRT: 0.95 CGE vs. 4.70 Gy (p < 0.001) and 21.07 CGE vs. 23.11 Gy (p < 0.001), respectively. The volume of breast receiving 1.0 Gy/CGE and 5.0 Gy/CGE was also significantly less with BS-PT, 194 cm{sup 3} and 93 cm{sup 3}, respectively, compared with 790 cm{sup 3} and 360 cm{sup 3} with 3D-CRT (p = 0.009, 0.013). Conclusion: Breast-sparing proton therapy has the potential to reduce unnecessary breast dose in young girls with HL by as much as 80% relative to involved-field 3D-CRT.

  1. Dosimetric study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques - 3D CRT, IMRT and VMAT. Study protocol.

    Science.gov (United States)

    Jodda, Agata; Urbański, Bartosz; Piotrowski, Tomasz; Malicki, Julian

    2016-03-01

    Background: The paper shows the methodology of an in-phantom study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques: three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and volumetric modulated arc therapy, preceded by the procedures of image guidance. Methods/Design: The dosimetric evaluation of the doses will be performed in an in-house multi-element anthropomorphic phantom of the female pelvic area created by three-dimensional printing technology. The volume and position of the structures will be regulated according to the guidelines from the Bayesian network. The input data for the learning procedure of the model will be obtained from the retrospective analysis of imaging data obtained for 96 patients with endometrial cancer or cervical cancer treated with radiotherapy in our centre in 2008-2013. Three anatomical representations of the phantom simulating three independent clinical cases will be chosen. Five alternative treatment plans (1 × three-dimensional conformal radiotherapy, 2 × intensity modulated radiotherapy and 2 × volumetric modulated arc therapy) will be created for each representation. To simulate image-guided radiotherapy, ten specific recombinations will be designated, for each anatomical representation separately, reflecting possible changes in the volume and position of the phantom components. Discussion: The comparative analysis of planned measurements will identify discrepancies between calculated doses and doses that were measured in the phantom. Finally, differences between the doses cumulated in the hip plates performed by different techniques simulating the gynaecological patients' irradiation of dose delivery will be established. The results of this study will form the basis of the prospective clinical trial that will be designed for the assessment of hematologic toxicity and its correlation with the doses cumulated in the hip plates

  2. Accelerated partial breast irradiation with external beam three-dimensional conformal radiotherapy. Five-year results of a prospective phase II clinical study

    International Nuclear Information System (INIS)

    The aim of this study was to report the 5-year results of accelerated partial breast irradiation (APBI) using external beam three-dimensional conformal radiotherapy (3D-CRT). Between 2006 and 2011, 44 patients with low-risk, stage I-II breast cancer underwent breast-conserving surgery. Postoperative APBI was given by means of 3D-CRT using three to five non-coplanar fields. The total dose of APBI was 36.9 Gy (nine fractions of 4.1 Gy b.i.d.). The mean follow-up time was 58.2 months for surviving patients. Survival results, side effects, and cosmetic results were assessed. One (2.3 %) local recurrence was observed, for a 5-year actuarial rate of 3.7 %. Neither regional nor distant failure was observed. Two patients died of internal disease. The 5-year disease-free, cancer-specific, and overall survival rates were 96.3, 100, and 95.1 %, respectively. Acute side effects included grade 1 (G1) erythema in 75 %, G1 parenchymal induration in 46 %, and G1 pain in 46 % of patients. No G2 or higher acute side effect occurred. Late side effects included G1, G2, and G3 fibrosis in 44, 7, and 2 % of patients, respectively, G1 skin pigmentation in 12 %, and G1 pain in 2 %. Asymptomatic fat necrosis occurred in 14 %. Cosmetic results were rated excellent or good in 86 % of cases by the patients themselves and 84 % by the physicians. The 5-year local tumor control, toxicity profile, and cosmetic results of APBI delivered with external beam 3D-CRT are encouraging and comparable to other APBI series. (orig.)

  3. Conformational radiotherapy in the case of prostate cancer: experience gained by the Blida Oncology Radiotherapy Department, Algeria; La radiotherapie conformationnelle dans le cancer de la prostate: experience du service de radiotherapie oncologique de Blida, Algerie

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, M.; Abbas, L.; Mesli, S.; Boualga, K. [Centre anti cancer, Blida (Algeria)

    2010-10-15

    Conformational radiotherapy is used as the first method for the treatment of localized prostate cancers. It preserves some life quality and allows a significant reduction of the dose applied to healthy organs, and therefore a drastic reduction of late and severe effects of irradiation. The authors report a prospective study which aims at describing therapeutic modalities and assessing preliminary results in terms of biochemical control and toxicity. They discuss the results obtained on 34 patients who have been treated between January 2008 and January 2009. In comparison with conventional therapy, they observe an absence of grade 3 and 4 side effects, and a normalization of biological criteria which indicates a good tumour response. Short communication

  4. SU-E-T-596: Axillary Nodes Radiotherapy Boost Field Dosimetric Impact Study: Oblique Field and Field Optimization in 3D Conventional Breast Cancer Radiation Treatment

    International Nuclear Information System (INIS)

    Purpose: To evaluate dosimetric impact of two axillary nodes (AX) boost techniques: (1) posterior-oblique optimized field boost (POB), (2) traditional posterior-anterior boost (PAB) with field optimization (O-PAB), for a postmastectomy breast patient with positive axillary lymph nodes. Methods: Five patients, 3 left and 2 right chest walls, were included in this study. All patients were simulated in 5mm CT slice thickness. Supraclavicular (SC) and level I/II/III AX were contoured based on the RTOG atlas guideline. Five treatment plans, (1) tangential chest wall, (2) oblique SC including AX, (3) PAB, O-PAB and POB, were created for each patient. Three plan sums (PS) were generated by sum one of (3) plan with plan (1) and (2). The field optimization was done through PS dose distribution, which included a field adjustment, a fractional dose, a calculation location and a gantry angle selection for POB. A dosimetric impact was evaluated by comparing a SC and AX coverage, a PS maximum dose, an irradiated area percentage volume received dose over 105% prescription dose (V105), an ipsi-laterial mean lung dose (MLD), an ipsi-laterial mean humeral head dose (MHHD), a mean heart dose (MHD) (for left case only) and their DVH amount these three technique. Results: O-PAB, POB and PAB dosimetric results showed that there was no significant different on SC and AX coverage (p>0.43) and MHD (p>0.16). The benefit of sparing lung irradiation from PAB to O-PAB to POB was significant (p<0.004). PAB showed a highest PS maximum dose (p<0.005), V105 (p<0.023) and MLD (compared with OPAB, p=0.055). MHHD showed very sensitive to the patient arm positioning and anatomy. O-PAB convinced a lower MHHD than PAB (p=0.03). Conclusion: 3D CT contouring plays main role in accuracy radiotherapy. Dosimetric advantage of POB and O-PAB was observed for a better normal tissue irradiation sparing

  5. SU-D-213-03: Towards An Optimized 3D Scintillation Dosimetry Tool for Quality Assurance of Dynamic Radiotherapy Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rilling, M [Département de physique, de génie physique et d’optique, Université Laval, Quebec City, QC (Canada); Centre de Recherche sur le Cancer, Hôtel-Dieu de Québec, Quebec City, QC (Canada); Département de radio-oncologie, CHU de Québec, Quebec City, QC (Canada); Center for Optics, Photonics and Lasers, Université Laval, Quebec City, QC, CA (Canada); Goulet, M [Département de radio-oncologie, CHU de Québec, Quebec City, QC (Canada); Thibault, S [Département de physique, de génie physique et d’optique, Université Laval, Quebec City, QC (Canada); Center for Optics, Photonics and Lasers, Université Laval, Quebec City, QC, CA (Canada); Archambault, L [Département de physique, de génie physique et d’optique, Université Laval, Quebec City, QC (Canada); Centre de Recherche sur le Cancer, Hôtel-Dieu de Québec, Quebec City, QC (Canada); Département de radio-oncologie, CHU de Québec, Quebec City, QC (Canada)

    2015-06-15

    specifications. This work leads the way to improving the 3D dosimeter’s achievable resolution, efficiency and build for providing a quality assurance tool fully meeting clinical needs. M.R. is financially supported by a Master’s Canada Graduate Scholarship from the NSERC. This research is also supported by the NSERC Industrial Research Chair in Optical Design.

  6. SU-E-T-596: Axillary Nodes Radiotherapy Boost Field Dosimetric Impact Study: Oblique Field and Field Optimization in 3D Conventional Breast Cancer Radiation Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Su, M [Mount Sinai School of Medicine, Elmhurst, NY (United States); Sura, S

    2014-06-01

    Purpose: To evaluate dosimetric impact of two axillary nodes (AX) boost techniques: (1) posterior-oblique optimized field boost (POB), (2) traditional posterior-anterior boost (PAB) with field optimization (O-PAB), for a postmastectomy breast patient with positive axillary lymph nodes. Methods: Five patients, 3 left and 2 right chest walls, were included in this study. All patients were simulated in 5mm CT slice thickness. Supraclavicular (SC) and level I/II/III AX were contoured based on the RTOG atlas guideline. Five treatment plans, (1) tangential chest wall, (2) oblique SC including AX, (3) PAB, O-PAB and POB, were created for each patient. Three plan sums (PS) were generated by sum one of (3) plan with plan (1) and (2). The field optimization was done through PS dose distribution, which included a field adjustment, a fractional dose, a calculation location and a gantry angle selection for POB. A dosimetric impact was evaluated by comparing a SC and AX coverage, a PS maximum dose, an irradiated area percentage volume received dose over 105% prescription dose (V105), an ipsi-laterial mean lung dose (MLD), an ipsi-laterial mean humeral head dose (MHHD), a mean heart dose (MHD) (for left case only) and their DVH amount these three technique. Results: O-PAB, POB and PAB dosimetric results showed that there was no significant different on SC and AX coverage (p>0.43) and MHD (p>0.16). The benefit of sparing lung irradiation from PAB to O-PAB to POB was significant (p<0.004). PAB showed a highest PS maximum dose (p<0.005), V105 (p<0.023) and MLD (compared with OPAB, p=0.055). MHHD showed very sensitive to the patient arm positioning and anatomy. O-PAB convinced a lower MHHD than PAB (p=0.03). Conclusion: 3D CT contouring plays main role in accuracy radiotherapy. Dosimetric advantage of POB and O-PAB was observed for a better normal tissue irradiation sparing.

  7. Outcomes After Intensity-Modulated Versus Conformal Radiotherapy in Older Men With Nonmetastatic Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bekelman, Justin E., E-mail: bekelman@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA (United States); Mitra, Nandita [Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA (United States); Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA (United States); Efstathiou, Jason [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Liao Kaijun [Division of General Internal Medicine, University of Pennsylvania, Philadelphia, PA (United States); Sunderland, Robert; Yeboa, Deborah N. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Armstrong, Katrina [Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA (United States); Division of General Internal Medicine, University of Pennsylvania, Philadelphia, PA (United States); Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA (United States)

    2011-11-15

    Purpose: There is little evidence comparing complications after intensity-modulated (IMRT) vs. three-dimensional conformal radiotherapy (CRT) for prostate cancer. The study objective was to test the hypothesis that IMRT, compared with CRT, is associated with a reduction in bowel, urinary, and erectile complications in elderly men with nonmetastatic prostate cancer. Methods and Materials: We undertook an observational cohort study using registry and administrative claims data from the SEER-Medicare database. We identified men aged 65 years or older diagnosed with nonmetastatic prostate cancer in the United States between 2002 and 2004 who received IMRT (n = 5,845) or CRT (n = 6,753). The primary outcome was a composite measure of bowel complications. Secondary outcomes were composite measures of urinary and erectile complications. We also examined specific subsets of bowel (proctitis/hemorrhage) and urinary (cystitis/hematuria) events within the composite complication measures. Results: IMRT was associated with reductions in composite bowel complications (24-month cumulative incidence 18.8% vs. 22.5%; hazard ratio [HR] 0.86; 95% confidence interval [CI], 0.79-0.93) and proctitis/hemorrhage (HR 0.78; 95% CI, 0.64-0.95). IMRT was not associated with rates of composite urinary complications (HR 0.93; 95% CI, 0.83-1.04) or cystitis/hematuria (HR 0.94; 95% CI, 0.83-1.07). The incidence of erectile complications involving invasive procedures was low and did not differ significantly between groups, although IMRT was associated with an increase in new diagnoses of impotence (HR 1.27, 95% CI, 1.14-1.42). Conclusion: IMRT is associated with a small reduction in composite bowel complications and proctitis/hemorrhage compared with CRT in elderly men with nonmetastatic prostate cancer.

  8. Outcomes After Intensity-Modulated Versus Conformal Radiotherapy in Older Men With Nonmetastatic Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: There is little evidence comparing complications after intensity-modulated (IMRT) vs. three-dimensional conformal radiotherapy (CRT) for prostate cancer. The study objective was to test the hypothesis that IMRT, compared with CRT, is associated with a reduction in bowel, urinary, and erectile complications in elderly men with nonmetastatic prostate cancer. Methods and Materials: We undertook an observational cohort study using registry and administrative claims data from the SEER-Medicare database. We identified men aged 65 years or older diagnosed with nonmetastatic prostate cancer in the United States between 2002 and 2004 who received IMRT (n = 5,845) or CRT (n = 6,753). The primary outcome was a composite measure of bowel complications. Secondary outcomes were composite measures of urinary and erectile complications. We also examined specific subsets of bowel (proctitis/hemorrhage) and urinary (cystitis/hematuria) events within the composite complication measures. Results: IMRT was associated with reductions in composite bowel complications (24-month cumulative incidence 18.8% vs. 22.5%; hazard ratio [HR] 0.86; 95% confidence interval [CI], 0.79–0.93) and proctitis/hemorrhage (HR 0.78; 95% CI, 0.64–0.95). IMRT was not associated with rates of composite urinary complications (HR 0.93; 95% CI, 0.83–1.04) or cystitis/hematuria (HR 0.94; 95% CI, 0.83–1.07). The incidence of erectile complications involving invasive procedures was low and did not differ significantly between groups, although IMRT was associated with an increase in new diagnoses of impotence (HR 1.27, 95% CI, 1.14–1.42). Conclusion: IMRT is associated with a small reduction in composite bowel complications and proctitis/hemorrhage compared with CRT in elderly men with nonmetastatic prostate cancer.

  9. Superiority of helical tomotherapy on liver sparing and dose escalation in hepatocellular carcinoma: a comparison study of three-dimensional conformal radiotherapy and intensity-modulated radiotherapy

    Science.gov (United States)

    Zhao, Qianqian; Wang, Renben; Zhu, Jian; Jin, Linzhi; Zhu, Kunli; Xu, Xiaoqing; Feng, Rui; Jiang, Shumei; Qi, Zhonghua; Yin, Yong

    2016-01-01

    Background and purpose To compare the difference of liver sparing and dose escalation between three-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT), and helical tomotherapy (HT) for hepatocellular carcinoma. Patients and methods Sixteen unresectable HCC patients were enrolled in this study. First, some evaluation factors of 3DCRT, IMRT, and HT plans were calculated with prescription dose at 50 Gy/25 fractions. Then, the doses were increased using HT or IMRT independently until either the plans reached 70 Gy or any normal tissue reached the dose limit according to quantitative analysis of normal tissue effects in the clinic criteria. Results The conformal index of 3DCRT was lower than that of IMRT (PV50% (fraction of normal liver treated to at least 50% of the isocenter dose) of the normal liver, there was a significant difference: 3DCRT > IMRT > HT (P<0.001). HT had a lower Dmean (mean dose) and V20 (Vn, the percentage of organ volume receiving ≥n Gy) of liver compared with 3DCRT (P=0.005 and P=0.005, respectively) or IMRT (P=0.508 and P=0.007, respectively). Dmean of nontarget normal liver and V30 of liver were higher for 3DCRT than IMRT (P=0.005 and P=0.005, respectively) or HT (P=0.005 and P=0.005, respectively). Seven patients in IMRT (43.75%) and nine patients in HT (56.25%) reached the isodose 70 Gy, meeting the dose limit of the organs at risk. Conclusion HT may provide significantly better liver sparing and allow more patients to achieve higher prescription dose in HCC radiotherapy. PMID:27445485

  10. Dosimetric study comparing intensity modulated and conformal pelvic radiotherapy boost plans in locally advanced cancer cervix in NCI-Cairo

    Institute of Scientific and Technical Information of China (English)

    Mohamed Mahmoud; Hesham A. EL-Hossiny; Nashaat A. Diab; Mahmoud Shosha

    2013-01-01

    Objective: This study was to compare 5 field conformal technique to the intensity modulated radiotherapy (IMRT) 8 fields technique in boosting locally advanced cancer cervix cases after external beam radiotherapy with respect to target volume coverage and dose to normal tissues. Methods: We conducted a single institutional comparative dosimetric analysis of 10 patients with cancer cervix who was presented to radiotherapy department in National Cancer Institute, Cairo in period between June 2012 to September 2012 and received a CRT boost in the place of planned brachytherapy after large field pelvic radiotherapy (PRT) with concurrent chemotherapy were retrospectively identified. All tumors were situated in the low central pelvis. Two plans were done for every patient; one using the 8 fields IMRT and the second one using 5 fields' 3DCRT the two techniques were then compared using dose volume histogram (DVH) analysis for the PTV, bladder, rectum and both femoral heads. Results: Comparing different DVHs, it was found that the planning target volume (PTV) was adequately covered in both plans while it was demonstrates that the 8 fields IMRT technique carried less doses reaching OARs (rectum, bladder, both femoral heads). Conclusion: From the present study, it is concluded that IMRT technique spared more efficiently OARs than CRT technique but both techniques covered the PTV adequately so whenever possible IMRT technique should be used.

  11. Influence of high-definition multileaf collimator for three-dimensional conformal radiotherapy and intensity-modulated radiotherapy of prostate cancer

    International Nuclear Information System (INIS)

    The focus of this work is to evaluate the dosimetric impact of treatment planning for three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) of prostate cancer using Varian/BrainLAB 120-leaf high-definition multileaf collimator (HD120 MLC) with 2.5 mm leaf width and Varian 120-leaf millennium multileaf collimator (M120 MLC) with 5 mm leaf width. We measured the leaf transmission and dosimetric leaf gap (DLG) of two multileaf collimator (MLC) systems using Farmer ionization chamber. The dosimetric impact of treatment planning for 3DCRT and IMRT of prostate cancer for ten clinical cases using two MLC systems was evaluated quantitatively. 3DCRT was divided to 3DCRTmiddle as fitting at middle of leaf tip and 3DCRToutside as fitting at outside of leaf tip. The leaf transmission factor and DLG of HD120 MLC for 6 and 10 MV X-ray decreased by 0.2% and 1 mm, respectively, compared to M120 MLC. The mean conformity index of planning target volume (PTV) of treatment planning for prostate 3DCRTmiddle, 3DCRToutside, and IMRT decreased by 0.9%, 6.6%, and 0.9% and the mean homogeneity index increased 2.3%, 13.0%, and 4.2%, respectively. The mean V20, V40, and V65 decreased by 2.4%, 6.6%, and 4.5% for bladder and 3.3%, 6.1%, and 5.9% for rectum, respectively. The results of this work demonstrated that the dose conformity of PTV improved and the dose of bladder and rectum decreased for 3DCRT and IMRT of prostate cancer using HD120 MLC compared to M120 MLC, because of reduction of leaf width, leaf transmission, and rounded leaf end transmission. (author)

  12. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Xin Ming

    Full Text Available To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT, intensity-modulated radiotherapy (IMRT, or volumetric modulated arc therapy (VMAT at our institution in the past seven years.A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated.The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2% with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance.Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin's disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy.

  13. Superiority of helical tomotherapy on liver sparing and dose escalation in hepatocellular carcinoma: a comparison study of three-dimensional conformal radiotherapy and intensity-modulated radiotherapy

    Directory of Open Access Journals (Sweden)

    Zhao QQ

    2016-06-01

    Full Text Available Qianqian Zhao,1,2 Renben Wang,2 Jian Zhu,2 Linzhi Jin,1,2 Kunli Zhu,2 Xiaoqing Xu,2 Rui Feng,2 Shumei Jiang,2 Zhonghua Qi,1,2 Yong Yin2 1School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 2Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Jinan, People’s Republic of China Background and purpose: To compare the difference of liver sparing and dose escalation between three-dimensional conformal radiotherapy (3DCRT, intensity-modulated radiotherapy (IMRT, and helical tomotherapy (HT for hepatocellular carcinoma.Patients and methods: Sixteen unresectable HCC patients were enrolled in this study. First, some evaluation factors of 3DCRT, IMRT, and HT plans were calculated with prescription dose at 50 Gy/25 fractions. Then, the doses were increased using HT or IMRT independently until either the plans reached 70 Gy or any normal tissue reached the dose limit according to quantitative analysis of normal tissue effects in the clinic criteria.Results: The conformal index of 3DCRT was lower than that of IMRT (P<0.001 or HT (P<0.001, and the homogeneity index of 3DCRT was higher than that of IMRT (P<0.001 or HT (P<0.001. HT took the longest treatment time (P<0.001. For V50% (fraction of normal liver treated to at least 50% of the isocenter dose of the normal liver, there was a significant difference: 3DCRT > IMRT > HT (P<0.001. HT had a lower Dmean (mean dose and V20 (Vn, the percentage of organ volume receiving ≥n Gy of liver compared with 3DCRT (P=0.005 and P=0.005, respectively or IMRT (P=0.508 and P=0.007, respectively. Dmean of nontarget normal liver and V30 of liver were higher for 3DCRT than IMRT (P=0.005 and P=0.005, respectively or HT (P=0.005 and P=0.005, respectively. Seven patients in IMRT (43.75% and nine patients in HT (56.25% reached the isodose 70 Gy, meeting the dose limit of the organs at risk.Conclusion: HT may provide significantly better

  14. 宫颈癌术后三维适形放疗和共面等分设野调强放疗计划的对比分析%Dosimetric study of postoperative 3-dimensional conformal radiotherapy and coplanar decile intensity-modulated radiotherapy for cervical cancer

    Institute of Scientific and Technical Information of China (English)

    蒋军; 张利文; 廖珊; 黄荣

    2012-01-01

    目的 探讨宫颈癌术后三维适形放射治疗(3D-CRT)和共面等分设野调强放射治疗(IMRT)计划靶区及其周围危及器官受照剂量的差异.方法 随机选择10例宫颈癌术后患者,进行CT扫描、靶区和危及器官的勾画,处方剂量50 Gy.分别进行3D-CRT和共面等分设野IMRT计划设计,计算靶区剂量均匀度指数(HI)、适形度指数(CI)、最大受照剂量、最小受照剂量、平均受照剂量和危及器官照射体积等并对结果进行比较分析.结果 5F-IMRT、7F-IMRT和9F-IMRT在靶区适形度方面明显优于3D-CRT;在危及器官(膀胱V30 、V40 、V50,小肠V50和直肠V30、V40、V50)保护方面,5F-IMRT、7F-IMRT和9F-IMRT明显优于3D-CRT,P<0.05.而各IMRT计划之间差异无统计学意义,P>0.05.结论 宫颈癌术后辅助放疗共面等分IMRT计划无论在靶区适形度还是正常组织保护方面均优于3D-CRT,同时也证实7野或9野IMRT未必较5野获益更多.5野与7、9野的IMRT相比、在治疗时间及费用方面有独特的优势,值得在临床上推广.%Objective To compare the difference of the dose distribution in clinical target volume and organ at risk (OAR) between coplanar decile field intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy (3D-CRT) for postoperative radiotherapy of cervical cancer. Methods Ten postoperative patients with cervical cancer were selected randomly to undergo CT scan and planning target volume (PTV) and OAR contouring. 3D-CRT and coplanar decile IMRT planning was performed for each patient with a prescribed dose of 50 Gy. The homogeneity index (HI), conformity index (CI), maximum dose, minimum dose, mean dose of PTV, and irradiated volume of OARs were calculated and the results were compared. Results 5-field IMRT, 7-field IMRT and 9-field IMRT plans had a significant better conformity index (CI) of PTV compared with 3D-CRT (P0.05). Conclusion Coplanar decile IMRT plans is superior

  15. Doses to head and neck normal tissues for early stage Hodgkin lymphoma after involved node radiotherapy

    DEFF Research Database (Denmark)

    Maraldo, M. V.; Brodin, N. P.; Aznar, M. C.;

    2014-01-01

    To evaluate dose plans for head and neck organs at risk (OARs) for classical Hodgkin lymphoma (HL) patients using involved node radiotherapy (INRT) delivered as 3D conformal radiotherapy (3DCRT), volumetric modulated arc therapy (VMAT), and intensity modulated proton therapy (PT), in comparison t...

  16. Conformal radiotherapy for lung cancer: interobservers' variability in the definition of gross tumor volume between radiologists and radiotherapists

    Directory of Open Access Journals (Sweden)

    Fogaroli Ricardo C

    2009-08-01

    Full Text Available Abstract Background Conformal external radiotherapy aims to improve tumor control by boosting tumor dose, reducing morbidity and sparing healthy tissues. To meet this objective careful visualization of the tumor and adjacent areas is required. However, one of the major issues to be solved in this context is the volumetric definition of the targets. This study proposes to compare the gross volume of lung tumors as delineated by specialized radiologists and radiotherapists of a cancer center. Methods Chest CT scans of a total of 23 patients all with non-small cell lung cancer, not submitted to surgery, eligible and referred to conformal radiotherapy on the Hospital A. C. Camargo (São Paulo, Brazil, during the year 2004 were analyzed. All cases were delineated by 2 radiologists and 2 radiotherapists. Only the gross tumor volume and the enlarged lymph nodes were delineated. As such, four gross tumor volumes were achieved for each one of the 23 patients. Results There was a significant positive correlation between the 2 measurements (among the radiotherapists, radiologists and intra-class and there was randomness in the distribution of data within the constructed confidence interval. Conclusion There were no significant differences in the definition of gross tumor volume between radiologists and radiotherapists.

  17. Conformal radiotherapy for lung cancer: interobservers' variability in the definition of gross tumor volume between radiologists and radiotherapists

    International Nuclear Information System (INIS)

    Conformal external radiotherapy aims to improve tumor control by boosting tumor dose, reducing morbidity and sparing healthy tissues. To meet this objective careful visualization of the tumor and adjacent areas is required. However, one of the major issues to be solved in this context is the volumetric definition of the targets. This study proposes to compare the gross volume of lung tumors as delineated by specialized radiologists and radiotherapists of a cancer center. Chest CT scans of a total of 23 patients all with non-small cell lung cancer, not submitted to surgery, eligible and referred to conformal radiotherapy on the Hospital A. C. Camargo (São Paulo, Brazil), during the year 2004 were analyzed. All cases were delineated by 2 radiologists and 2 radiotherapists. Only the gross tumor volume and the enlarged lymph nodes were delineated. As such, four gross tumor volumes were achieved for each one of the 23 patients. There was a significant positive correlation between the 2 measurements (among the radiotherapists, radiologists and intra-class) and there was randomness in the distribution of data within the constructed confidence interval. There were no significant differences in the definition of gross tumor volume between radiologists and radiotherapists

  18. A framework for inverse planning of beam-on times for 3D small animal radiotherapy using interactive multi-objective optimization

    NARCIS (Netherlands)

    Balvert, Marleen; van Hoof, S.J.; Granton, Patrick V.; Trani, Daniela; den Hertog, Dick; Hoffmann, A.L.; Verhaegen, Frank

    2015-01-01

    Advances in precision small animal radiotherapy hardware enable the delivery of increasingly complicated dose distributions on the millimeter scale. Manual creation and evaluation of treatment plans becomes difficult or even infeasible with an increasing number of degrees of freedom for dose deliver

  19. SU-E-J-55: End-To-End Effectiveness Analysis of 3D Surface Image Guided Voluntary Breath-Holding Radiotherapy for Left Breast

    International Nuclear Information System (INIS)

    Purpose To evaluate the effectiveness of using 3D-surface-image to guide breath-holding (BH) left-side breast treatment. Methods Two 3D surface image guided BH procedures were implemented and evaluated: normal-BH, taking BH at a comfortable level, and deep-inspiration-breath-holding (DIBH). A total of 20 patients (10 Normal-BH and 10 DIBH) were recruited. Patients received a BH evaluation using a commercialized 3D-surface- tracking-system (VisionRT, London, UK) to quantify the reproducibility of BH positions prior to CT scan. Tangential 3D/IMRT plans were conducted. Patients were initially setup under free-breathing (FB) condition using the FB surface obtained from the untaged CT to ensure a correct patient position. Patients were then guided to reach the planned BH position using the BH surface obtained from the BH CT. Action-levels were set at each phase of treatment process based on the information provided by the 3D-surface-tracking-system for proper interventions (eliminate/re-setup/ re-coaching). We reviewed the frequency of interventions to evaluate its effectiveness. The FB-CBCT and port-film were utilized to evaluate the accuracy of 3D-surface-guided setups. Results 25% of BH candidates with BH positioning uncertainty > 2mm are eliminated prior to CT scan. For >90% of fractions, based on the setup deltas from3D-surface-trackingsystem, adjustments of patient setup are needed after the initial-setup using laser. 3D-surface-guided-setup accuracy is comparable as CBCT. For the BH guidance, frequency of interventions (a re-coaching/re-setup) is 40%(Normal-BH)/91%(DIBH) of treatments for the first 5-fractions and then drops to 16%(Normal-BH)/46%(DIBH). The necessity of re-setup is highly patient-specific for Normal-BH but highly random among patients for DIBH. Overall, a −0.8±2.4 mm accuracy of the anterior pericardial shadow position was achieved. Conclusion 3D-surface-image technology provides effective intervention to the treatment process and ensures

  20. SU-E-J-55: End-To-End Effectiveness Analysis of 3D Surface Image Guided Voluntary Breath-Holding Radiotherapy for Left Breast

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M; Feigenberg, S [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose To evaluate the effectiveness of using 3D-surface-image to guide breath-holding (BH) left-side breast treatment. Methods Two 3D surface image guided BH procedures were implemented and evaluated: normal-BH, taking BH at a comfortable level, and deep-inspiration-breath-holding (DIBH). A total of 20 patients (10 Normal-BH and 10 DIBH) were recruited. Patients received a BH evaluation using a commercialized 3D-surface- tracking-system (VisionRT, London, UK) to quantify the reproducibility of BH positions prior to CT scan. Tangential 3D/IMRT plans were conducted. Patients were initially setup under free-breathing (FB) condition using the FB surface obtained from the untaged CT to ensure a correct patient position. Patients were then guided to reach the planned BH position using the BH surface obtained from the BH CT. Action-levels were set at each phase of treatment process based on the information provided by the 3D-surface-tracking-system for proper interventions (eliminate/re-setup/ re-coaching). We reviewed the frequency of interventions to evaluate its effectiveness. The FB-CBCT and port-film were utilized to evaluate the accuracy of 3D-surface-guided setups. Results 25% of BH candidates with BH positioning uncertainty > 2mm are eliminated prior to CT scan. For >90% of fractions, based on the setup deltas from3D-surface-trackingsystem, adjustments of patient setup are needed after the initial-setup using laser. 3D-surface-guided-setup accuracy is comparable as CBCT. For the BH guidance, frequency of interventions (a re-coaching/re-setup) is 40%(Normal-BH)/91%(DIBH) of treatments for the first 5-fractions and then drops to 16%(Normal-BH)/46%(DIBH). The necessity of re-setup is highly patient-specific for Normal-BH but highly random among patients for DIBH. Overall, a −0.8±2.4 mm accuracy of the anterior pericardial shadow position was achieved. Conclusion 3D-surface-image technology provides effective intervention to the treatment process and ensures

  1. Whole breast and excision cavity radiotherapy plan comparison: Conformal radiotherapy with sequential boost versus intensity-modulated radiation therapy with a simultaneously integrated boost

    International Nuclear Information System (INIS)

    A comparative study was conducted comparing the difference between (1) conformal radiotherapy (CRT) to the whole breast with sequential boost excision cavity plans and (2) intensity-modulated radiation therapy (IMRT) to the whole breast with simultaneously integrated boost to the excision cavity. The computed tomography (CT) data sets of 25 breast cancer patients were used and the results analysed to determine if either planning method produced superior plans. CT data sets from 25 past breast cancer patients were planned using (1) CRT prescribed to 50 Gy in 25 fractions (Fx) to the whole-breast planning target volume (PTV) and 10 Gy in 5Fx to the excision cavity and (2) IMRT prescribed to 60 Gy in 25Fx, with 60 Gy delivered to the excision cavity PTV and 50 Gy delivered to the whole-breast PTV, treated simultaneously. In total, 50 plans were created, with each plan evaluated by PTV coverage using conformity indices, plan maximum dose, lung dose, and heart maximum dose for patients with left-side lesions. CRT plans delivered the lowest plan maximum doses in 56% of cases (average CRT = 6314.34 cGy, IMRT = 6371.52 cGy). They also delivered the lowest mean lung dose in 68% of cases (average CRT = 1206.64 cGy, IMRT = 1288.37 cGy) and V20 in 88% of cases (average CRT = 20.03%, IMRT = 21.73%) and V30 doses in 92% of cases (average CRT = 16.82%, IMRT = 17.97%). IMRT created more conformal plans, using both conformity index and conformation number, in every instance, and lower heart maximum doses in 78.6% of cases (average CRT = 5295.26 cGy, IMRT = 5209.87 cGy). IMRT plans produced superior dose conformity and shorter treatment duration, but a slightly higher planning maximum and increased lung doses. IMRT plans are also faster to treat on a daily basis, with shorter fractionation

  2. Contribution to the development and the modelling of an ultrasonic conformable phased array transducer for the contact inspection of 3D complex geometry components; Contribution au developpement et a la modelisation d'un traducteur ultrasonore multielements conformable pour l'inspection au contact de composants a geometrie complexe 3D

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, O

    2005-04-15

    With the difficulties encountered for the exploration of complex shape surfaces, particularly in nuclear industry, the ultrasonic conformable phased array transducer allows a non destructive evaluation of parts with 3D complex parts. For this, one can use the Smart Contact Transducer principle to generate an ultrasonic field by adaptive dynamic focalisation, with a matrix array composed of independent elements moulded in a soft resin. This work deals with the electro-acoustic conception, with the realization of such a prototype and with the study of it's mechanical and acoustic behaviour. The array design is defined using a radiation model adapted to the simulation of contact sources on a free surface. Once one have defined the shape of the radiating elements, a vibratory analysis using finite elements method allows the determination of the emitting structure with 1-3 piezocomposite, witch leads to the realization of emitting-receiving elements. With the measurement of the field transmitted by such elements, we deduced new hypothesis to change the model of radiation. Thus one can take into account normal and tangential stresses calculated with finite element modelling at the interface between the element and the propagation medium, to use it with the semi-analytical model. Some vibratory phenomena dealing with fluid coupling of contact transducers have been studied, and the prediction of the transverse wave radiation profile have been improved. The last part of this work deals with the realization of the first prototype of the conformable phased array transducer. For this a deformation measuring system have been developed, to determine the position of each element on real time with the displacement of the transducer on complex shape surfaces. With those positions, one can perform the calculation of the a delay law intended for the adaptive dynamic focusing of the desired ultrasonic field. The conformable phased array transducer have been characterized in

  3. Dosimetric Analysis of Preoperative Three Dimensional Conformal and Preoperative Intensity Modulated Radiotherapy for Middle Esophageal Cancer%胸中段食管癌根治性放疗三维适形放疗与调强放疗剂量学比较

    Institute of Scientific and Technical Information of China (English)

    石丽婉; 傅丽蓉; 哈晦明; 林勤

    2012-01-01

    Objective:To compare the dose distributions of three-dimensional conformal radiotherapy planning (3D-CRT) and intensity modulated radiotherapy (IMRT) and explore the value of IMRT in the middle of esophageal cancer. Methods: The 3D-CRT and IMRT plans were designed in 10 cases of middle esophageal cancer patients, respectively.The application of dose-volume histogram (DVH) to compare the target volume dose ,conformal index (CI), homogeneity index (HI) and the dose of normal structures. Results: With radical radiotherapy in esophageal cancer,the target dose distribution in IMRT and 3DCRT plans had advantages and disadvantages. IMRT had obvious advantages in reducing the normal structures dose.IMRT had better V5, V10, V20 and mean dose of lung compare to 3D-CRT. IMRT plans exposed lower heart to V30 compare to 3D-CRT.The dose of spinal cord did not significant differences in two plans. Conclusions: IMRT plans have no obvious advantage in the target dose distribution of radical radiotherapy in esophageal cancer, but the normal structures will be better protected .%目的:比较食管癌根治性放疗三维适形放射治疗(3D-CRT)与调强放射治疗(IMRT)的剂量分布,探讨IMRT在胸中段食管癌放疗的价值.方法:对10例胸中段食管癌病例分别行3D-CRT和IMRT计划设计,应用剂量体积直方图(DVH)比较两种计划靶区剂量、适形度指数(CI)、不均匀度指数(HI)及正常器官受量.结果:在食管癌根治放疗中,IMRT在靶区剂量分布上与3D-CRT各有优劣;IMRT在正常器官的保护上优势明显;肺V5、V10、V20以及全肺平均剂量IMRT均明显优于3D-CRT;心脏V30 IMRT低于3D-CRT;脊髓剂量没差别.结论:食管癌根治放疗中IMRT计划在靶区剂量分布上没有明显优势,但可更好保护正常组织.

  4. Comparison of conformal and intensity-modulated techniques for simultaneous integrated boost radiotherapy of upper esophageal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Wei-Hua Fu; Lu-Hua Wang; Zong-Mei Zhou; Jian-Rong Dai; Yi-Min Hu; Lu-Jun Zhao

    2004-01-01

    AIM: To compare intensity-modulated radiotherapy (IMRT)with conformal radiotherapy (CRT) by investigating the dose profiles of primary tumors, electively treated regions, and the doses to organs at risk.METHODS: CRT and IMRT plans were designed for five patients with upper esophageal carcinoma. For each patient,target volumes for primary lesions (67.2 Gy) and electively treated regions (50.4 Gy) were predefined. An experienced planner manually designed one CRT plan. Four IMRT plans were generated with the same dose-volume constraints, but with different beam arrangements. Indices including dose distributions, dose volume histograms (DVHs) and conformity index were compared.RESULTS: The plans with three intensity-modulated beams were discarded because the doses to spinal cord were lager than the tolerable dose 45Gy, and the dose on areas near the skin was up to 50Gy. When the number of intensity beams increased to five, IMRT plans were better than CRT plans in terms of the dose conformity and homogeneity of targets and the dose to OARs. The dose distributions changed little when the beam number increased from five to seven and nine.CONCLUSION: IMRT is superior to CRT for the treatment of upper esophageal carcinoma with simultaneous integrated boost (SIB). Five equispaced coplanar intensity-modulated beams can produce desirable dose distributions. The primary tumor can get higher equivalent dose by SIB technique.The SIB-IMRT technique shortens the total treatment time,and is an easier, more efficient, and perhaps a less errorprone way in delivering IMRT.

  5. Radiotherapy

    International Nuclear Information System (INIS)

    The need for radiotherapy research is exemplified by the 100,000 cancer patients who will fail treatment locally and/or regionally annually for the next several years but who would benefit from better local treatment modalities. Theoretically, all of the areas of investigation discussed in this projection paper have the potential to significantly improve local-regional treatment of cancer by radiotherapy alone or in combination with other modalities. In many of the areas of investigation discussed in this paper encouraging results have been obtained in cellular and animal tumor studies and in limited studies in humans as well. In the not too distant future the number of patients who would benefit from better local control may increase by tens of thousands if developments in chemotherapy and/or immunotherapy provide a means to eradicate disseminated microscopic foci of cancer. Thus the efforts to improve local-regional control take on even greater significance

  6. A Retrospective Comparison of Robotic Stereotactic Body Radiotherapy and Three-Dimensional Conformal Radiotherapy for the Reirradiation of Locally Recurrent Nasopharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Purpose: We assessed therapeutic outcomes of reirradiation with robotic stereotactic radiotherapy (SBRT) for locally recurrent nasopharyngeal carcinoma (LRNPC) patients and compared those results with three-dimensional conformal radiotherapy (CRT) with or without brachytherapy (BRT). Methods and Materials: Treatment outcomes were evaluated retrospectively in 51 LRNPC patients receiving either robotic SBRT (24 patients) or CRT with or without BRT (27 patients) in our department. CRT was delivered with a 6-MV linear accelerator, and a median total reirradiation dose of 57 Gy in 2 Gy/day was given. Robotic SBRT was delivered with CyberKnife (Accuray, Sunnyvale, CA). Patients in the SBRT arm received 30 Gy over 5 consecutive days. We calculated actuarial local control and cancer-specific survival rates for the comparison of treatment outcomes in SBRT and CRT arms. The Common Terminology Criteria for Adverse Events v3.0 was used for toxicity evaluation. Results: The median follow-up was 24 months for all patients. Two-year actuarial local control rates were 82% and 80% for SBRT and CRT arms, respectively (p = 0.6). Two-year cancer-specific survival rates were 64% and 47% for the SBRT and CRT arms, respectively (p = 0.4). Serious late toxicities (Grade 3 and above) were observed in 21% of patients in the SBRT arm, whereas 48% of patients had serious toxicity in the CRT arm (p = 0.04). Fatal complications occurred in three patients (12.5%) of the SBRT arm, and four patients (14.8%) of the CRT arm (p = 0.8). T stage at recurrence was the only independent predictor for local control and survival. Conclusion: Our robotic SBRT protocol seems to be feasible and less toxic in terms of late effects compared with CRT arm for the reirradiation of LRNPC patients.

  7. Dosimetric analysis of intensity modulated radiotherapy (IMRT and three dimensional conformal radiotherapy (3DCRT for treatment of non-small cell lung cancer: A comparative study

    Directory of Open Access Journals (Sweden)

    Priyusha Bagdare

    2015-09-01

    Full Text Available Purpose: The purpose of this study is to analyze and compare the dosimetric parameters of three dimensional conformal radiotherapy (3DCRT and intensity modulated radiotherapy (IMRT in selected non-small cell lung cancer (NSCLC cases. Methods: Ten patients with inoperable NSCLC were selected for this study. The 3DCRT and IMRT plans were generated for all patients following Radiation Therapy Oncology Group (RTOG guidelines. Generated plans were then compared on the basis of planning target volume (PTV coverage, dose delivered to organs at risk, homogeneity index (HI, and conformity index (CI for the prescribed dose (PD of 50 Gy in 25 fractions.Results: The mean D95 and D99 (dose to the 95% and 99% volume for the PTV were found better in the 3DCRT plans compared to the ones in the IMRT plans. On an average, the volume receiving 20 Gy (V20 of contralateral lung was 2.91% and 3.03% in the 3DCRT and IMRT plans, respectively. The Dmean of contralateral lung was 3.17 Gy (3DCRT versus 4.2 Gy (IMRT, whereas the Dmean of ipsilateral lung was 12.69 Gy (3DCRT and 13.82 Gy (IMRT. The V20 of ipsilateral lung was found to be slightly lower in the 3DCRT (25.67% when compared to the IMRT (30.50%. The dose to the heart was comparable in the 3DCRT and IMRT plans (mean dose: 4.42 Gy versus 4.48 Gy; D33: 3.77 Gy versus and 4.02 Gy. For the spinal cord, the Dmax was found to be lower in the 3DCRT plans (18.40 Gy when compared to the IMRT plans (25.49 Gy. The HI was 1.08 versus 1.41 in the 3DCRT and IMRT plans, respectively. The CI was identical (1.67 in both sets of plans.Conclusion: Based on the results of this study, the PTV coverage was found to be slightly better in the 3DCRT plans when compared to the one in the IMRT plans. On average, the dose to the organs at risk were found to be comparable.

  8. Radiobiologic comparison of helical tomotherapy, intensity modulated radiotherapy, and conformal radiotherapy in treating lung cancer accounting for secondary malignancy risks

    International Nuclear Information System (INIS)

    The aim of the present study is to examine the importance of using measures to predict the risk of inducing secondary malignancies in association with the clinical effectiveness of treatment plans in terms of tumor control and normal tissue complication probabilities. This is achieved by using radiobiologic parameters and measures, which may provide a closer association between clinical outcome and treatment delivery. Overall, 4 patients having been treated for lung cancer were examined. For each of them, 3 treatment plans were developed based on the helical tomotherapy (HT), multileaf collimator-based intensity modulated radiation therapy (IMRT), and 3-dimensional conformal radiation therapy (CRT) modalities. The different plans were evaluated using the complication-free tumor control probability (p+), the overall probability of injury (pI), the overall probability of control/benefit (pB), and the biologically effective uniform dose (D¯¯). These radiobiologic measures were used to develop dose-response curves (p-D¯¯ diagram), which can help to evaluate different treatment plans when used in conjunction with standard dosimetric criteria. The risks for secondary malignancies in the heart and the contralateral lung were calculated for the 3 radiation modalities based on the corresponding dose-volume histograms (DVHs) of each patient. Regarding the overall evaluation of the different radiation modalities based on the p+ index, the average values of the HT, IMRT, and CRT are 67.3%, 61.2%, and 68.2%, respectively. The corresponding average values of pB are 75.6%, 70.5%, and 71.0%, respectively, whereas the average values of pI are 8.3%, 9.3%, and 2.8%, respectively. Among the organs at risk (OARs), lungs show the highest probabilities for complications, which are 7.1%, 8.0%, and 1.3% for the HT, IMRT, and CRT modalities, respectively. Similarly, the biologically effective prescription doses (DB¯¯) for the HT, IMRT, and CRT modalities are 64.0, 60.9, and 60.8 Gy

  9. Radiobiologic comparison of helical tomotherapy, intensity modulated radiotherapy, and conformal radiotherapy in treating lung cancer accounting for secondary malignancy risks

    Energy Technology Data Exchange (ETDEWEB)

    Komisopoulos, Georgios [Department of Medical Physics, Medical School, University of Patras, Patras (Greece); Mavroidis, Panayiotis, E-mail: mavroidis@uthscsa.edu [Department of Radiation Oncology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX (United States); Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, Stockholm (Sweden); Rodriguez, Salvador; Stathakis, Sotirios; Papanikolaou, Nikos [Department of Radiation Oncology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX (United States); Nikiforidis, Georgios C.; Sakellaropoulos, Georgios C. [Department of Medical Physics, Medical School, University of Patras, Patras (Greece)

    2014-01-01

    The aim of the present study is to examine the importance of using measures to predict the risk of inducing secondary malignancies in association with the clinical effectiveness of treatment plans in terms of tumor control and normal tissue complication probabilities. This is achieved by using radiobiologic parameters and measures, which may provide a closer association between clinical outcome and treatment delivery. Overall, 4 patients having been treated for lung cancer were examined. For each of them, 3 treatment plans were developed based on the helical tomotherapy (HT), multileaf collimator-based intensity modulated radiation therapy (IMRT), and 3-dimensional conformal radiation therapy (CRT) modalities. The different plans were evaluated using the complication-free tumor control probability (p{sub +}), the overall probability of injury (p{sub I}), the overall probability of control/benefit (p{sub B}), and the biologically effective uniform dose (D{sup ¯¯}). These radiobiologic measures were used to develop dose-response curves (p-D{sup ¯¯} diagram), which can help to evaluate different treatment plans when used in conjunction with standard dosimetric criteria. The risks for secondary malignancies in the heart and the contralateral lung were calculated for the 3 radiation modalities based on the corresponding dose-volume histograms (DVHs) of each patient. Regarding the overall evaluation of the different radiation modalities based on the p{sub +} index, the average values of the HT, IMRT, and CRT are 67.3%, 61.2%, and 68.2%, respectively. The corresponding average values of p{sub B} are 75.6%, 70.5%, and 71.0%, respectively, whereas the average values of p{sub I} are 8.3%, 9.3%, and 2.8%, respectively. Among the organs at risk (OARs), lungs show the highest probabilities for complications, which are 7.1%, 8.0%, and 1.3% for the HT, IMRT, and CRT modalities, respectively. Similarly, the biologically effective prescription doses (D{sub B}{sup ¯¯}) for the

  10. Three-dimensional conformal radiotherapy with concurrent chemotherapy for postoperative recurrence of esophageal squamous cell carcinoma: clinical efficacy and failure pattern

    International Nuclear Information System (INIS)

    To assess the therapeutic outcome and failure pattern of three-dimensional conformal radiotherapy (3D-CRT)-based concurrent chemoradiotherapy (CCRT) for recurrence of esophageal squamous cell carcinoma (SCC) after radical surgery. Treatment outcome and failure pattern were retrospectively evaluated in 83 patients with localized cervical and thoracic recurrences after radical surgery for thoracic esophageal SCC. All patients were treated with 3DCRT-based CCRT (median radiation dose 60 Gy), in which 39 received concurrent cisplatin plus 5-fluorouracil (PF), and 44 received concurrent docetaxel plus cisplatin (TP). Treatment response was evaluated at 1–3 months after CCRT. With a median follow-up of 34 months (range, 2–116 months), the 3-year overall survival (OS) of all the patients was 51.8% and the median OS time was 43.0 months. The overall tumor response rate was 75.9% (63/83), with a complete remission (CR) rate of 44.6% (37/83). In univariate analysis, tumor response after CCRT (p = 0.000), recurrence site (p = 0.028) and concurrent chemotherapy (p = 0.090) showed a trend favoring better OS. Multivariate analysis revealed that tumor response after CCRT (p = 0.000) and concurrent chemotherapy (p = 0.010) were independent predictors of OS. Forty-seven patients had progressive diseases after CCRT, 27 had local failure (27/47, 57.4%), 18 had distant metastasis (18/47, 38.3%) and 2 had both local and distant failures (2/47, 4.3%). 3DCRT-based CCRT is effective in postoperatively recurrent esophageal SCC. Patients that obtained complete remission after CCRT appeared to achieve long-term OS and might benefit from concurrent TP regimen. Local and distant failures remained high and prospective studies are needed to validate these factors

  11. Late radiation side effects, cosmetic outcomes and pain in breast cancer patients after breast-conserving surgery and three-dimensional conformal radiotherapy. Risk-modifying factors

    International Nuclear Information System (INIS)

    The purpose of this work was to identify parameters influencing the risk of late radiation side effects, fair or poor cosmetic outcomes (COs) and pain in breast cancer patients after breast-conserving therapy (BCT) and three-dimensional conformal radiotherapy (3D-CRT). Between 2006 and 2013, 159 patients were treated at the Hannover Medical School. Physician-rated toxicity according to the LENT-SOMA criteria, CO and pain were assessed by multivariate analysis. LENT-SOMA grade 1-4 toxicity was observed as follows: fibrosis 10.7 %, telangiectasia 1.2 %, arm oedema 8.8 % and breast oedema 5.0 %. In addition, 15.1 % of patients reported moderate or severe breast pain, and 21.4 % complained about moderate or severe pain in the arm or shoulder. In multivariate analysis, axillary clearing (AC) was significantly associated with lymphoedema of the arm [odds ratio (OR) 4.37, p = 0.011, 95 % confidence interval (CI) 1.4-13.58]. Breast oedema was also highly associated with AC (OR 10.59, p = 0.004, 95 % CI 2.1-53.36), a ptosis grade 2/3 or pseudoptosis and a bra size ≥ cup C (OR 5.34, p = 0.029, 95 % CI 1.2-24.12). A ptosis grade 2/3 or pseudoptosis and a bra size ≥ cup C were the parameters significantly associated with an unfavourable CO (OR 3.19, p = 0.019, 95 % CI 1.2-8.4). Concerning chronic breast pain, we found a trend related to the prescribed radiation dose including boost (OR 1.077, p = 0.060, 95 % CI 0.997-1.164). Chronic shoulder or arm pain was statistically significantly associated with lymphoedema of the arm (OR 3.9, p = 0.027, 95 % CI 1.17-13.5). Chronic arm and breast oedema were significantly influenced by the extent of surgery (AC). Ptotic and large breasts were significantly associated with unfavourable COs and chronic breast oedema. Late toxicities exclusive breast pain were not associated with radiotherapy parameters. (orig.)

  12. The impact of substrate bias on a remote plasma sputter coating process for conformal coverage of trenches and 3D structures

    Science.gov (United States)

    Brown, H. L.; Thornley, S. A.; Wakeham, S. J.; Thwaites, M. J.; Curry, R. J.; Baker, M. A.

    2015-08-01

    With the progression towards higher aspect ratios and finer topographical dimensions in many micro- and nano-systems, it is of technological importance to be able to conformally deposit thin films onto such structures. Sputtering techniques have been developed to provide such conformal coverage through a combination of coating re-sputtering and ionised physical vapour deposition (IPVD), the latter by use of a secondary plasma source or a pulsed high target power (HiPIMS). This paper reports on the use of an alternate remote plasma sputtering technique in which a high density (>1013 cm-3) magnetised plasma is used for sputter deposition, and additionally is shown to provide IPVD and a re-sputtering capability. From the substrate I-V characteristics and optical emission spectroscopy (OES) data, it is shown that remote plasma sputtering is an inherently continuous IPVD process (without the need of a secondary discharge). Through the reactive deposition of Al2O3 onto complex structures, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) results demonstrate that applying a negative substrate bias during film growth can result in re-sputtering of deposited material and film growth on surfaces obscured from the initial sputter flux. Using 5 : 1 (height : width) aspect ratio trenches, the substrate bias was set to 0,-245 and  -334 V. At 0 V substrate bias, the alumina coating is predominantly deposited on the horizontal surfaces; at  -344 V, it is predominantly deposited onto the side walls and at  -245 V a more uniform layer thickness is obtained over the trench. The process was optimised further by alternating the substrate bias between  -222 and  -267 V, with a 50% residence time at each voltage, yielding a more uniform conformal coverage of the 5 : 1 aspect ratio structures over large areas.

  13. The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide.

    Science.gov (United States)

    Korreman, Stine; Rasch, Coen; McNair, Helen; Verellen, Dirk; Oelfke, Uwe; Maingon, Philippe; Mijnheer, Ben; Khoo, Vincent

    2010-02-01

    The past decade has provided many technological advances in radiotherapy. The European Institute of Radiotherapy (EIR) was established by the European Society of Therapeutic Radiology and Oncology (ESTRO) to provide current consensus statement with evidence-based and pragmatic guidelines on topics of practical relevance for radiation oncology. This report focuses primarily on 3D CT-based in-room image guidance (3DCT-IGRT) systems. It will provide an overview and current standing of 3DCT-IGRT systems addressing the rationale, objectives, principles, applications, and process pathways, both clinical and technical for treatment delivery and quality assurance. These are reviewed for four categories of solutions; kV CT and kV CBCT (cone-beam CT) as well as MV CT and MV CBCT. It will also provide a framework and checklist to consider the capability and functionality of these systems as well as the resources needed for implementation. Two different but typical clinical cases (tonsillar and prostate cancer) using 3DCT-IGRT are illustrated with workflow processes via feedback questionnaires from several large clinical centres currently utilizing these systems. The feedback from these clinical centres demonstrates a wide variability based on local practices. This report whilst comprehensive is not exhaustive as this area of development remains a very active field for research and development. However, it should serve as a practical guide and framework for all professional groups within the field, focussed on clinicians, physicists and radiation therapy technologists interested in IGRT.

  14. Efficiency and prognosis of whole brain irradiation combined with precise radiotherapy on triple-negative breast cancer

    OpenAIRE

    Xinhong Wu; Bo Luo; Shaozhong Wei; Yan Luo; Yaojun Feng; Juan Xu; Wei Wei

    2013-01-01

    Aim: To investigate the treatment efficiency of whole brain irradiation combined with precise radiotherapy on triple-negative (TN) phenotype breast cancer patients with brain metastases and their survival times. Materials and Methods : A total of 112 metastatic breast cancer patients treated with whole brain irradiation and intensity modulated radiotherapy (IMRT) or 3D conformal radiotherapy (3DCRT) were analyzed. Thirty-seven patients were of TN phenotype. Objective response rates were co...

  15. Treatment of primary liver cancer using highly-conformal radiotherapy with kv-image guidance and respiratory control

    International Nuclear Information System (INIS)

    Purpose: To implement a reliable, practical and reproducible treatment procedure, based on in-room kV-image guidance and respiratory control, for liver cancer patients treated with high dose conformal radiotherapy using a commercially available treatment system. Materials and methods: CT stimulation was conducted under voluntary breath hold or gating using the Varian Real-time Position Management™ (RPM) System. Treatments were delivered daily under kV image guidance to verify the diaphragmatic or lipiodol-defined tumor position. Results: Thirty-three patients with liver confined hepatocellular carcinoma were treated between May 2006 and Dec 2009. After a median follow-up period of 16.5 months (range: 3.5–40.7), all but 2 patients demonstrated radiological tumor regression. Eight patients (24%) achieved complete remission. The median tumor shrinkage was 42% (27–100%). Subsequent in-field tumor progression was observed in only three patients (10%). For the 23 patients with abnormal alpha fetoprotein level, 22 of them showed biochemical response with a median AFP level drop of 78%. The treatment was well tolerated: Grade 3 toxicities occurred in 5 patients (1 leucopenia, 1 elevated liver enzyme and 3 elevated bilirubin level) but there was no grade 4 toxicity or treatment related death. The 1 year overall survival rate is 71.7% and median survival time is 17.2 months (3.5–40.7 months). Conclusions: Excellent treatment results with minimal toxicities could be achieved in a clinical environment with a commercially available highly sophisticated radiotherapy system.

  16. Multivariable normal-tissue complication modeling of acute esophageal toxicity in advanced stage non-small cell lung cancer patients treated with intensity-modulated (chemo-)radiotherapy

    NARCIS (Netherlands)

    Wijsman, R.; Dankers, F.; Troost, E.G.; Hoffman, A.L.; Heijden, E. van der; Geus-Oei, L.F. de; Bussink, J.

    2015-01-01

    BACKGROUND AND PURPOSE: The majority of normal-tissue complication probability (NTCP) models for acute esophageal toxicity (AET) in advanced stage non-small cell lung cancer (AS-NSCLC) patients treated with (chemo-)radiotherapy are based on three-dimensional conformal radiotherapy (3D-CRT). Due to d

  17. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Wortel, Ruud C.; Incrocci, Luca [Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam (Netherlands); Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; Heide, Uulke A. van der; Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands); Heemsbergen, Wilma D., E-mail: w.heemsbergen@nki.nl [Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands)

    2015-03-15

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions to organs at risk and acute gastrointestinal (GI) and genitourinary (GU) toxicity levels of patients treated to 78 Gy with either IG-IMRT or 3D-CRT. Methods and Materials: Patients treated with 3D-CRT (n=215) and IG-IMRT (n=260) receiving 78 Gy in 39 fractions within 2 randomized trials were selected. Dose surface histograms of anorectum, anal canal, and bladder were calculated. Identical toxicity questionnaires were distributed at baseline, prior to fraction 20 and 30 and at 90 days after treatment. Radiation Therapy Oncology Group (RTOG) grade ≥1, ≥2, and ≥3 endpoints were derived directly from questionnaires. Univariate and multivariate binary logistic regression analyses were applied. Results: The median volumes receiving 5 to 75 Gy were significantly lower (all P<.001) with IG-IMRT for anorectum, anal canal, and bladder. The mean dose to the anorectum was 34.4 Gy versus 47.3 Gy (P<.001), 23.6 Gy versus 44.6 Gy for the anal canal (P<.001), and 33.1 Gy versus 43.2 Gy for the bladder (P<.001). Significantly lower grade ≥2 toxicity was observed for proctitis, stool frequency ≥6/day, and urinary frequency ≥12/day. IG-IMRT resulted in significantly lower overall RTOG grade ≥2 GI toxicity (29% vs 49%, respectively, P=.002) and overall GU grade ≥2 toxicity (38% vs 48%, respectively, P=.009). Conclusions: A clinically meaningful reduction in dose to organs at risk and acute toxicity levels was observed in IG-IMRT patients, as a result of improved technique and tighter margins. Therefore reduced late toxicity levels can be expected as well; additional research is needed to quantify such reductions.

  18. TU-F-17A-04: Respiratory Phase-Resolved 3D MRI with Isotropic High Spatial Resolution: Determination of the Average Breathing Motion Pattern for Abdominal Radiotherapy Planning

    International Nuclear Information System (INIS)

    Purpose: To develop a retrospective 4D-MRI technique (respiratory phase-resolved 3D-MRI) for providing an accurate assessment of tumor motion secondary to respiration. Methods: A 3D projection reconstruction (PR) sequence with self-gating (SG) was developed for 4D-MRI on a 3.0T MRI scanner. The respiration-induced shift of the imaging target was recorded by SG signals acquired in the superior-inferior direction every 15 radial projections (i.e. temporal resolution 98 ms). A total of 73000 radial projections obtained in 8-min were retrospectively sorted into 10 time-domain evenly distributed respiratory phases based on the SG information. Ten 3D image sets were then reconstructed offline. The technique was validated on a motion phantom (gadolinium-doped water-filled box, frequency of 10 and 18 cycles/min) and humans (4 healthy and 2 patients with liver tumors). Imaging protocol included 8-min 4D-MRI followed by 1-min 2D-realtime (498 ms/frame) MRI as a reference. Results: The multiphase 3D image sets with isotropic high spatial resolution (1.56 mm) permits flexible image reformatting and visualization. No intra-phase motion-induced blurring was observed. Comparing to 2D-realtime, 4D-MRI yielded similar motion range (phantom: 10.46 vs. 11.27 mm; healthy subject: 25.20 vs. 17.9 mm; patient: 11.38 vs. 9.30 mm), reasonable displacement difference averaged over the 10 phases (0.74mm; 3.63mm; 1.65mm), and excellent cross-correlation (0.98; 0.96; 0.94) between the two displacement series. Conclusion: Our preliminary study has demonstrated that the 4D-MRI technique can provide high-quality respiratory phase-resolved 3D images that feature: a) isotropic high spatial resolution, b) a fixed scan time of 8 minutes, c) an accurate estimate of average motion pattern, and d) minimal intra-phase motion artifact. This approach has the potential to become a viable alternative solution to assess the impact of breathing on tumor motion and determine appropriate treatment margins

  19. Application of 2D/3D Image Registration in the Radiotherapy of Nasopharyngeal Carcinoma%2D/3D影像配准在鼻咽癌放疗中的应用

    Institute of Scientific and Technical Information of China (English)

    马广栋; 洪莉; 王亮和

    2013-01-01

    目的:研究2D/3D像配准方法对鼻咽癌放疗中计划靶区PTV外扩距离的影响。方法应用OBI (On Board Image,OBI)系统获取2D影像(kV图像和PV图像)和3D影像(CBCT图像),将获取的2D和3D影像分别经DRR配准系统和模拟定位CT进行图像配准,确定前后、头脚、左右3个方向上的摆位误差,再由2种PTV外扩公式计算3个方向上的PTV外扩距离。结果2D和3D影像配准的PTV外扩值有所不同。kV,PV,CBCT三者配准误差相互比较P>0.05,无统计学意义。结论kV图像和PV图像和CBCT图像都能很好地验证照射野位置。CBCT图像可以分析三维方向的影像误差,降低了2D图像影像重叠产生的摆位误差的影响。%Objective To study the effect of 2D/3D image registration on the extended distance of planning target volume (PTV) in the radiotherapy of nasopharyngeal carcinoma (NPC). Methods Using OBI system to obtain two-dimensional images (kV images and PV images) and three-dimensional images (CBCT images). Then registering 2D and 3D images by using DRR registration system and simulation positioning CT respectively to get the set-up errors of VRT, LNG, LAT. Then calculating the values of PTV extended distance of VRT, LNG, LAT with two kinds of PTV expansion formulas. Results The values of PTV extended distance between 2D and 3D images are different while there is no signiifcance in registration errors among kV, PV, CBCT images (P>0.05). Conclusion Both of 2D images (kV images and PV images) and 3D images (CBCT images) can verify the radiation field well. 3D image errors can be analyzed with CBCT images, which can reduce the inlfuence of set-up errors caused by image overlapping of 2D images.

  20. TU-F-17A-04: Respiratory Phase-Resolved 3D MRI with Isotropic High Spatial Resolution: Determination of the Average Breathing Motion Pattern for Abdominal Radiotherapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Pang, J; Yang, W; Yue, Y; Tuli, R; Fraass, B; Li, D; Fan, Z [Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    2014-06-15

    Purpose: To develop a retrospective 4D-MRI technique (respiratory phase-resolved 3D-MRI) for providing an accurate assessment of tumor motion secondary to respiration. Methods: A 3D projection reconstruction (PR) sequence with self-gating (SG) was developed for 4D-MRI on a 3.0T MRI scanner. The respiration-induced shift of the imaging target was recorded by SG signals acquired in the superior-inferior direction every 15 radial projections (i.e. temporal resolution 98 ms). A total of 73000 radial projections obtained in 8-min were retrospectively sorted into 10 time-domain evenly distributed respiratory phases based on the SG information. Ten 3D image sets were then reconstructed offline. The technique was validated on a motion phantom (gadolinium-doped water-filled box, frequency of 10 and 18 cycles/min) and humans (4 healthy and 2 patients with liver tumors). Imaging protocol included 8-min 4D-MRI followed by 1-min 2D-realtime (498 ms/frame) MRI as a reference. Results: The multiphase 3D image sets with isotropic high spatial resolution (1.56 mm) permits flexible image reformatting and visualization. No intra-phase motion-induced blurring was observed. Comparing to 2D-realtime, 4D-MRI yielded similar motion range (phantom: 10.46 vs. 11.27 mm; healthy subject: 25.20 vs. 17.9 mm; patient: 11.38 vs. 9.30 mm), reasonable displacement difference averaged over the 10 phases (0.74mm; 3.63mm; 1.65mm), and excellent cross-correlation (0.98; 0.96; 0.94) between the two displacement series. Conclusion: Our preliminary study has demonstrated that the 4D-MRI technique can provide high-quality respiratory phase-resolved 3D images that feature: a) isotropic high spatial resolution, b) a fixed scan time of 8 minutes, c) an accurate estimate of average motion pattern, and d) minimal intra-phase motion artifact. This approach has the potential to become a viable alternative solution to assess the impact of breathing on tumor motion and determine appropriate treatment margins

  1. Optimal hypofractionated conformal radiotherapy for large brain metastases in patients with high risk factors: a single-institutional prospective study

    International Nuclear Information System (INIS)

    A single-institutional prospective study of optimal hypofractionated conformal radiotherapy for large brain metastases with high risk factors was performed based on the risk prediction of radiation-related complications. Eighty-eight patients with large brain metastases ≥10 cm3 in critical areas treated from January 2010 to February 2014 using the CyberKnife were evaluated. The optimal dose and number of fractions were determined based on the surrounding brain volume circumscribed with a single dose equivalent (SDE) of 14 Gy (V14) to be less than 7 cm3 for individual lesions. Univariate and multivariate analyses were conducted. As a result of optimal treatment, 92 tumors ranging from 10 to 74.6 cm3 (median, 16.2 cm3) in volume were treated with a median prescribed isodose of 57% and a median fraction number of five. In order to compare the results according to the tumor volume, the tumors were divided into the following three groups: 1) 10–19.9 cm3, 2) 20–29.9 cm3 and 3) ≥30 cm3. The lesions were treated with a median prescribed isodose of 57%, 56% and 55%, respectively, and the median fraction number was five in all three groups. However, all tumors ≥20 cm3 were treated with ≥ five fractions. The median SDE of the maximum dose in the three groups was 47.2 Gy, 48.5 Gy and 46.5 Gy, respectively. Local tumor control was obtained in 90.2% of the patients, and the median survival was nine months, with a median follow-up period of seven months (range, 3-41 months). There were no significant differences in the survival rates among the three groups. Six tumors exhibited marginal recurrence 7-36 months after treatment. Ten patients developed symptomatic brain edema or recurrence of pre-existing edema, seven of whom required osmo-steroid therapy. No patients developed radiation necrosis requiring surgical resection. Our findings demonstrate that the administration of optimal hypofractionated conformal radiotherapy based on the dose-volume prediction of

  2. Dosimetric Comparison of Volumetric Modulated Arc Therapy, Static Field Intensity Modulated Radiation Therapy, and 3D Conformal Planning for the Treatment of a Right-Sided Reconstructed Chest Wall and Regional Nodal Case

    Directory of Open Access Journals (Sweden)

    Vishruta A. Dumane

    2014-01-01

    Full Text Available We compared 3D conformal planning, static field intensity modulated radiation therapy (IMRT, and volumetric modulated arc therapy (VMAT to investigate the suitable treatment plan and delivery method for a right-sided reconstructed chest wall and nodal case. The dose prescribed for the reconstructed chest wall and regional nodes was 50.4 Gy. Plans were compared for target coverage and doses of the lungs, heart, contralateral breast, and healthy tissue. All plans achieved acceptable coverage of the target and IMNs. The best right lung sparing achieved with 3D was a V20 Gy of 31.09%. Compared to it, VMAT reduced the same by 10.85% and improved the CI and HI over 3D by 18.75% and 2%, respectively. The ipsilateral lung V5 Gy to V20 Gy decreased with VMAT over IMRT by as high as 17.1%. The contralateral lung V5 Gy was also lowered with VMAT compared to IMRT by 16.22%. The MU and treatment beams were lowered with VMAT over IMRT by 30% and 10, respectively, decreasing the treatment time by >50%. VMAT was the treatment plan and delivery method of choice for this case due to a combination of improved lung sparing and reduced treatment time without compromising target coverage.

  3. Health-Related Quality of Life in Patients With Locally Advanced Prostate Cancer After 76 Gy Intensity-Modulated Radiotherapy vs. 70 Gy Conformal Radiotherapy in a Prospective and Longitudinal Study

    International Nuclear Information System (INIS)

    Purpose: To compare quality of life (QoL) after 70 Gy conformal radiotherapy with QoL after 76 Gy intensity-modulated radiotherapy (IMRT) in patients with locally advanced prostate carcinoma. Methods and Materials: Seventy-eight patients with locally advanced prostate cancer were treated with 70 Gy three-field conformal radiotherapy, and 92 patients received 76 Gy IMRT with fiducial markers for position verification. Quality of life was measured by RAND-36, the European Organization for Research and Treatment of Cancer core questionnaire (EORTC QLQ-C30(+3)), and the prostate-specific EORTC QLQ-PR25, before radiotherapy (baseline) and 1 month and 6 months after treatment. Quality of life changes in time (baseline vs. 1 month and baseline vs. 6 months) of ≥10 points were considered clinically relevant. Results: Differences between the treatment groups for QoL changes over time occurred in several QoL domains. The 76-Gy group revealed no significant deterioration in QoL compared with the 70-Gy group. The IMRT 76-Gy group even demonstrated a significantly better change in QoL from baseline to 1 month in several domains. The conformal 70-Gy group revealed temporary deterioration in pain, role functioning, and urinary symptoms; for the IMRT 76-Gy group a better QoL in terms of change in health existed after 1 month, which persisted after 6 months. For both treatment groups temporary deterioration in physical role restriction occurred after 1 month, and an improvement in emotional role restriction occurred after 6 months. Sexual activity was reduced after treatment for both groups and remained decreased after 6 months. Conclusions: Intensity-modulated radiotherapy and accurate position verification seem to provide a possibility to increase the radiation dose for prostate cancer without deterioration in QoL

  4. Phase I Study of Concurrent High-Dose Three-Dimensional Conformal Radiotherapy With Chemotherapy Using Cisplatin and Vinorelbine for Unresectable Stage III Non-Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Ikuo, E-mail: isekine@ncc.go.jp [Division of Internal Medicine and Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan); Sumi, Minako; Ito, Yoshinori [Division of Radiation Oncology, National Cancer Center Hospital, Tokyo (Japan); Horinouchi, Hidehito; Nokihara, Hiroshi; Yamamoto, Noboru; Kunitoh, Hideo; Ohe, Yuichiro; Kubota, Kaoru; Tamura, Tomohide [Division of Internal Medicine and Thoracic Oncology, National Cancer Center Hospital, Tokyo (Japan)

    2012-02-01

    Purpose: To determine the maximum tolerated dose in concurrent three-dimensional conformal radiotherapy (3D-CRT) with chemotherapy for unresectable Stage III non-small-cell lung cancer (NSCLC). Patients and Methods: Eligible patients with unresectable Stage III NSCLC, age {>=}20 years, performance status 0-1, percent of volume of normal lung receiving 20 GY or more (V{sub 20}) {<=}30% received three to four cycles of cisplatin (80 mg/m{sup 2} Day 1) and vinorelbine (20 mg/m{sup 2} Days 1 and 8) repeated every 4 weeks. The doses of 3D-CRT were 66 Gy, 72 Gy, and 78 Gy at dose levels 1 to 3, respectively. Results: Of the 17, 16, and 24 patients assessed for eligibility, 13 (76%), 12 (75%), and 6 (25%) were enrolled at dose levels 1 to 3, respectively. The main reasons for exclusion were V{sub 20} >30% (n = 10) and overdose to the esophagus (n = 8) and brachial plexus (n = 2). There were 26 men and 5 women, with a median age of 60 years (range, 41-75). The full planned dose of radiotherapy could be administered to all the patients. Grade 3-4 neutropenia and febrile neutropenia were noted in 24 (77%) and 5 (16%) of the 31 patients, respectively. Grade 4 infection, Grade 3 esophagitis, and Grade 3 pulmonary toxicity were noted in 1 patient, 2 patients, and 1 patient, respectively. The dose-limiting toxicity was noted in 17% of the patients at each dose level. The median survival and 3-year and 4-year survival rates were 41.9 months, 72.3%, and 49.2%, respectively. Conclusions: 72 Gy was the maximum dose that could be achieved in most patients, given the predetermined normal tissue constraints.

  5. 三维适形放疗配合腔内后装治疗宫颈癌的临床研究%Clinical study of three dimensional conformal radiotherapy combined with intracavitary brachytherapy in the treatment of cervical cancer

    Institute of Scientific and Technical Information of China (English)

    Yeqin Zhou; Daiyuan Ma; Tao Ren; Xianfu Li; Jing Hu; Bangxian Tan

    2011-01-01

    Objective: The aim of our study was to evaluate the outcome and complications of cervical cancer patients undergoing conventional intracavitary brachytherapy (ICBT) treated with 3D-conformal radiotherapy (3DCRT). Methods: Sixty cervical cancer patients were divided randomly into the conformal group and the conventional group. Thirty patients treated with 3D-conformal radiotherapy in the 3DCRT group, when the whole pelvic received DT 40 Gy, a planning CT scan of each patient was obtained and the second 3DCRT therapy plan was taken. Then, continued to irradiate to 50 Gy. At last, 3DCRT was boosted at local involved volumes to the total close of 60 Gy. When 3DCRT was combined with intracavitary brachytherapy, the dose of brachytherapy to point A was 30 Gy/5 fractions. In the conventional group, after a total tumor dose of 40 Gy was delivered by the whole pelvic irradiation, the four-field technique was used to irradiate the total pelvic and regional nodes (median close of 10 Gy), and the involved volumes were boosted to 60 Gy and the dose of brachytherapy to point A was 30 Gy-36 Gy/5-6 fractions. Moreover, both groups were combined with intracavitary brachytherapy respectively. Results: The 1, 2, 3-year survival rates for the 3DCRT group and the conventional group were 96.7%, 93.3%, 90.0% and 86.6%, 76.7%,70% respectively (P = 0.04, P = 0.02 and P = 0.02). There was a statistically significant difference between the two groups.Compared to the two groups each other in toxic effects, except for the Ⅰ-Ⅱ grade rectal and bladder reaction and pelvic fibrosis which was lower in the 3DCRT group (P = 0. 007, P = 0. 006 and P = 0. 015), the side effects were similar and well tolerated in two groups. Conclusion: The all-course 3DCRT combined with intracavitary brachytherapy can be considered as an effective and feasible approach to cervical cancer and may significantly improve the survival rate and reduce the late toxicity. This new rote for 3DCRT merits need further

  6. Conformal deposition of an insulator layer and Ag nano paste filling of a through silicon via for a 3D interconnection

    International Nuclear Information System (INIS)

    In this study, we reported the feasibility of filling a high-aspect-ratio through silicon via (HARTSV) with Ag nano paste for a 3D interconnection. TSVs with aspect ratios of 8:1 ∼ 10:1 were fabricated in a deep reactive etching system by using the Bosch process. Then, SiO2 insulators were deposited by using various chemical vapor deposition (CVD) processes, including plasma enhanced CVD oxides, of which precursors were silane (PECVD Oxide) and tetraethoxysilane (PECVDTEOS), and sub-atmospheric CVD oxide (SACVD oxide). We succeeded in obtaining a SiO2 layer with good step coverage over 80% for all via CD sizes by using SACVD oxidation process. The thickness of SiO2 for the via top and the via bottom were in the range 158.8 ∼ 161.5 nm and 162.6 ∼ 170.7 nm, respectively. The HAR-TSVs were filled with Ag nano paste by using vacuum assisted paste printing. Then, the samples were cured on a hotplate at 80 .deg. C for 2 min. The temperature was increased to 180 .deg. C at a rate of 25 .deg. C/min and the samples were re-annealed for 2 min. We investigated the effects for the time of evacuation/purge process and of the vacuum drying on the filling properties. A field emission scanning electron microscope (FE-SEM), X-ray microscope and focused ion beam (FIB) microscope were used to investigate the filling profile of the TSV with Ag nano pastes. By increasing the evacuation/purge time and the vacuum drying time, we could fully fill the TSV was full filled with Ag nano paste and then form a metal plug.

  7. Dosimetric comparison between conformational radio-therapies with or without intensity modulation in the postoperative treatment of retroperitoneal sarcomas; Comparaison dosimetrique entre radio-therapies conformationnelles sans et avec modulation d'intensite dans le traitement postoperatoire des sarcomes retro-peritoneaux

    Energy Technology Data Exchange (ETDEWEB)

    Paumier, A.; Le Pechoux, C.; Negretti, L.; Roberti, E.; Daly-Schweitzer, N. [Departement de radiotherapie, institut Gustave-Roussy, 94 - Villejuif (France); Ferreira, I.; Beaudre, A.; Brahim, J.; Lefkopoulos, D. [Unite de physique, institut Gustave-Roussy, 94 - Villejuif (France); Bonvalot, S. [Departement de chirurgie, institut Gustave-Roussy, 94 - Villejuif (France)

    2010-10-15

    The authors report a study performed on ten patients who had a postoperative radiotherapy. Three treatment plans have been computed (conventional conformational radiotherapy, intensity-modulated conformation radiotherapy or IMRT with 6 or 9 beams). Different parameters have been compared: dose delivered to organs at risk, dose delivered to the whole body, and the conformity index. It appears that IMRT reduces high-dose irradiated volumes, increases low dose irradiation, and also allows the treatment duration to be reduced. Radio-induced cancers and late toxicity are still to be assessed, notably the intestinal and contralateral renal toxicity. Short communication

  8. Conformal Postoperative Radiotherapy in Patients With Positive Resection Margins and/or pT3-4 Prostate Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Bellavita, Rita, E-mail: ritabellavita@libero.it [Institute of Radiation Oncology, General Hospital and Perugia University, Perugia (Italy); Massetti, Michela [Institute of Radiation Oncology, General Hospital and Perugia University, Perugia (Italy); Abraha, Iosief [Regional Health Authority of Umbria, General Hospital and Perugia University, Perugia (Italy); Lupattelli, Marco [Institute of Radiation Oncology, General Hospital and Perugia University, Perugia (Italy); Mearini, Luigi [Urology Department, General Hospital and Perugia University, Perugia (Italy); Falcinelli, Lorenzo; Farneti, Alessia; Palumbo, Isabella [Institute of Radiation Oncology, General Hospital and Perugia University, Perugia (Italy); Porena, Massimo [Urology Department, General Hospital and Perugia University, Perugia (Italy); Aristei, Cynthia [Institute of Radiation Oncology, General Hospital and Perugia University, Perugia (Italy)

    2012-11-01

    Purpose: To evaluate outcome and toxicity of high-dose conformal radiotherapy (RT) after radical prostatectomy. Methods and Materials: Between August 1998 and December 2007, 182 consecutive patients with positive resection margins and/or pT3-4, node-negative prostate adenocarcinoma underwent postoperative conformal RT. The prescribed median dose to the prostate/seminal vesicle bed was 66.6 Gy (range 50-70). Hormone therapy (a luteinizing hormone-releasing hormone analogue and/or antiandrogen) was administered to 110/182 (60.5%) patients with high-risk features. Biochemical relapse was defined as an increase of more than 0.2 ng/mL over the lowest postoperative prostate-specific antigen (PSA) value measured on 3 occasions, each at least 2 weeks apart. Results: Median follow-up was 55.6 months (range 7.6-141.9 months). The 3- and 5-year probability of biochemical relapse-free survival were 87% and 81%, respectively. In univariate analysis, more advanced T stages, preoperative PSA values {>=}10 ng/mL, and RT doses <70 Gy were significant factors for biochemical relapse. Pre-RT PSA values >0.2 ng/mL were significant for distant metastases. In multivariate analysis, risk factors for biochemical relapse were higher preoperative and pre-RT PSA values, hormone therapy for under 402 days and RT doses of <70 Gy. Higher pre-RT PSA values were the only independent predictor of distant metastases. Acute genitourinary (GU) and gastrointestinal (GI) toxicities occurred in 72 (39.6%) and 91 (50%) patients, respectively. There were 2 cases of Grade III GI toxicity but no cases of Grade IV. Late GU and GI toxicities occurred in 28 (15.4%) and 14 (7.7%) patients, respectively: 11 cases of Grade III toxicity: 1 GI (anal stenosis) and 10 GU, all urethral strictures requiring endoscopic urethrotomy. Conclusions: Postoperative high-dose conformal RT in patients with high-risk features was associated with a low risk of biochemical relapse as well as minimal morbidity.

  9. Biological in-vivo measurement of dose distribution in patients' lymphocytes by gamma-H2AX immunofluorescence staining: 3D conformal- vs. step-and-shoot IMRT of the prostate gland

    Directory of Open Access Journals (Sweden)

    Huber Peter E

    2011-06-01

    Full Text Available Abstract Background Different radiation-techniques in treating local staged prostate cancer differ in their dose- distribution. Physical phantom measurements indicate that for 3D, less healthy tissue is exposed to a relatively higher dose compared to SSIMRT. The purpose is to substantiate a dose distribution in lymphocytes in-vivo and to discuss the possibility of comparing it to the physical model of total body dose distribution. Methods For each technique (3D and SSIMRT, blood was taken from 20 patients before and 10 min after their first fraction of radiotherapy. The isolated leukocytes were fixed 2 hours after radiation. DNA double-strand breaks (DSB in lymphocytes' nuclei were stained immunocytochemically using the gamma-H2AX protein. Gamma-H2AX foci inside each nucleus were counted in 300 irradiated as well as 50 non-irradiated lymphocytes per patient. In addition, lymphocytes of 5 volunteer subjects were irradiated externally at different doses and processed under same conditions as the patients' lymphocytes in order to generate a calibration-line. This calibration-line assigns dose-value to mean number of gamma-H2AX foci/ nucleus. So the dose distributions in patients' lymphocytes were determined regarding to the gamma-H2AX foci distribution. With this information a cumulative dose-lymphocyte-histogram (DLH was generated. Visualized distribution of gamma-H2AX foci, correspondingly dose per nucleus, was compared to the technical dose-volume-histogram (DVH, related to the whole body-volume. Results Measured in-vivo (DLH and according to the physical treatment-planning (DVH, more lymphocytes resulted with low-dose exposure ( 80% was equal in both radiation techniques. The mean number of gamma-H2AX foci per lymphocyte was 0.49 (3D and 0.47 (SSIMRT without significant difference. Conclusions In-vivo measurement of the dose distribution within patients' lymphocytes can be performed by detecting gamma-H2AX foci. In case of 3D and SSIMRT, the

  10. Commissioning of a novel microCT/RT system for small animal conformal radiotherapy

    Science.gov (United States)

    Rodriguez, Manuel; Zhou, Hu; Keall, Paul; Graves, Edward

    2009-06-01

    The purpose of this work was to commission a 120 kVp photon beam produced by a micro-computed tomography (microCT) scanner for use in irradiating mice to therapeutic doses. A variable-aperture collimator has been integrated with a microCT scanner to allow the delivery of beams with pseudocircular profiles of arbitrary width between 0.1 and 6.0 cm. The dose rate at the isocenter of the system was measured using ion chamber and gafchromic EBT film as 1.56-2.13 Gy min-1 at the water surface for field diameters between 0.2 and 6.0 cm. The dose rate decreases approximately 10% per every 5 mm depth in water for field diameters between 0.5 and 1.0 cm. The flatness, symmetry and penumbra of the beam are 3.6%, 1.0% and 0.5 mm, respectively. These parameters are sufficient to accurately conform the radiation dose delivered to target organs on mice. The irradiated field size is affected principally by the divergence of the beam. In general, the beam has appropriate dosimetric characteristics to accurately deliver the dose to organs inside the mice's bodies. Using multiple beams delivered from a variety of angular directions, targets as small as 2 mm may be irradiated while sparing surrounding tissue. This microCT/RT system is a feasible tool to irradiate mice using treatment planning and delivery methods analogous to those applied to humans.

  11. Late radiation side effects, cosmetic outcomes and pain in breast cancer patients after breast-conserving surgery and three-dimensional conformal radiotherapy. Risk-modifying factors

    Energy Technology Data Exchange (ETDEWEB)

    Hille-Betz, Ursula; Soergel, Philipp; Kundu, Sudip; Klapdor, Ruediger; Hillemanns, Peter [Hannover Medical School, Department of Obstetrics and Gynaecology, Hannover (Germany); Vaske, Bernhard [Hannover Medical School, Institute of Medical Biometry and Informatics, Hannover (Germany); Bremer, Michael; Henkenberens, Christoph [Hannover Medical School, Department of Radiation Oncology and Special Oncology, Hannover (Germany)

    2016-01-15

    The purpose of this work was to identify parameters influencing the risk of late radiation side effects, fair or poor cosmetic outcomes (COs) and pain in breast cancer patients after breast-conserving therapy (BCT) and three-dimensional conformal radiotherapy (3D-CRT). Between 2006 and 2013, 159 patients were treated at the Hannover Medical School. Physician-rated toxicity according to the LENT-SOMA criteria, CO and pain were assessed by multivariate analysis. LENT-SOMA grade 1-4 toxicity was observed as follows: fibrosis 10.7 %, telangiectasia 1.2 %, arm oedema 8.8 % and breast oedema 5.0 %. In addition, 15.1 % of patients reported moderate or severe breast pain, and 21.4 % complained about moderate or severe pain in the arm or shoulder. In multivariate analysis, axillary clearing (AC) was significantly associated with lymphoedema of the arm [odds ratio (OR) 4.37, p = 0.011, 95 % confidence interval (CI) 1.4-13.58]. Breast oedema was also highly associated with AC (OR 10.59, p = 0.004, 95 % CI 2.1-53.36), a ptosis grade 2/3 or pseudoptosis and a bra size ≥ cup C (OR 5.34, p = 0.029, 95 % CI 1.2-24.12). A ptosis grade 2/3 or pseudoptosis and a bra size ≥ cup C were the parameters significantly associated with an unfavourable CO (OR 3.19, p = 0.019, 95 % CI 1.2-8.4). Concerning chronic breast pain, we found a trend related to the prescribed radiation dose including boost (OR 1.077, p = 0.060, 95 % CI 0.997-1.164). Chronic shoulder or arm pain was statistically significantly associated with lymphoedema of the arm (OR 3.9, p = 0.027, 95 % CI 1.17-13.5). Chronic arm and breast oedema were significantly influenced by the extent of surgery (AC). Ptotic and large breasts were significantly associated with unfavourable COs and chronic breast oedema. Late toxicities exclusive breast pain were not associated with radiotherapy parameters. (orig.) [German] Ziel dieser Arbeit war es, Parameter zu identifizieren, die Spaetschaeden nach Radiotherapie, ein unguenstiges

  12. 宫颈癌术后快速旋转调强放疗和三维适形放疗计划的对比研究%RapidArc radiotherapy for postoperative cervical cancer: comparison with three-dimensional conformal radiotherapy

    Institute of Scientific and Technical Information of China (English)

    蒋军; 李莉; 张利文; 廖珊; 黄荣

    2013-01-01

    Objective To compare the differences of dose distribution in clinical target volume and organ at risk (OAR) between volumetric-modulated arc therapy(RapidArc) and conventional three-dimensional conformal radiotherapy (3D-CRT) in the radiotherapy of postoperative cervical cancer.Methods Ten postoperative patients with cervical cancer were chosen randomly.The next steps were CT scan,PTV and OAR contouring.The RapidArc plan and 3D-CRT plan were performed for each patient with the prescribed dose 50Gy,respectively.Homogeneity index (HI),conformity index (CI),maximum dose (PTVmax),minimum dose (PTVmin),mean dose(PTVmean) of PTV and irradiated volume of OARs were calculated and the results were compared.Results Conformity index (CI) of PTV and PTV Dmean in RapidArc plan were better than those in 3D-CRT plan with statistically significant difference (P < 0.05).Compared with 3D-CRT plans,V20 of the left and right femoral head,V50 of the bladder and V40,V50 of rectumin RapidArc plans all reduced and the differences were statistically significant (P < 0.05).While there were no significant difference on the PTV Dmax,PTV Dmin,HI and OARs(V10,V20,V30,V40,V50 of the small bowel,V10,V20,V30 of the rectum,V1o,V20,V30,V40 of the bladder,V10,V30,V40,V50 of the left and right femoral head) between 3D-CRT and RapidArc group (P > 0.05).Conclusion RapidArc plans are better than 3D-CRT plans in CI of PTV and PTV Dmean in the radiotherapy of postoperative cervical cancer.Meanwhile,compared with 3D-CRT plans,there are more advantages in sparing the OAR in RapidArc plans.%目的 探讨宫颈癌术后快速旋转调强放疗(RapidArc)和三维适形放疗(3D-CRT)计划靶区及其周围危及器官(0AR)受照剂量的差异.方法 随机选择10例宫颈癌术后患者,进行CT扫描、靶区(PTV)和OAR的勾画,处方剂量50Gy.分别进行RapidArc和3D-CRT计划设计,计算并比较两种计划的PTV剂量均匀度指数(HI)、适形度指数(CI)、最大受照剂量(PTV Dmax

  13. Prostate seed implantation using 3D-computer assisted intraoperative planning vs. a standard look-up nomogram: Improved target conformality with reduction in urethral and rectal wall dose

    International Nuclear Information System (INIS)

    Purpose: To compare dosimetric outcomes between two real-time prostate seed implantation (PSI) techniques to evaluate the impact of three-dimensional (3D) intraoperative computer planning on target coverage, conformality, and preset urethral and rectal dose constraints. Methods and materials: One hundred and fourteen patients with clinically localized prostate cancer underwent ultrasound-guided transperineal PSI of the prostate with 125I sources as monotherapy. From 1999 to 2001, 69 patients were implanted in real-time using a standard look-up nomogram (Group 1: NG-PSI). All patients were implanted with a modified peripheral loading technique in which 75-80% of the calculated total activity was delivered to the gland periphery, with the remaining 20-25% activity placed in the gland interior, to achieve a prescribed dose (PD) of 144 Gy to cover the gland with acceptable homogeneity. No preoperative or intraoperative planning was performed to set dose constraints to the urethra or anterior rectal wall. Dosimetric outcome from this group was compared with 45 patients subsequently implanted after 2001 using an intraoperative 3D computer planning system (Group 2: 3D-PSI). A similar modified peripheral loading technique was used as an option in the planning system. Preoperative dose constraints were placed on the urethra (V150 95% of PD; D90: 140-180 Gy), and rectal wall (V110 125I sources to adhere to urethral and rectal constraints and target coverage goals. Both groups underwent postimplant CT analysis to determine dosimetric outcome with regard toV100prostate, D90prostate, V150urethra, and V110rectum. Univariate and multivariate analysis was performed to determine variables impacting on dosimetric outcome. Results: Analysis of preimplant and postimplant variables demonstrated no difference in the median preimplant gland volume (33 cc vs. 35 cc; p = 0.31), median mCi/seed strengths (0.4 vs. 0.45 mCi; p = 0.23), median V100 (94% vs. 94%), or median D90 at postimplant

  14. PubChem3D: Biologically relevant 3-D similarity

    Directory of Open Access Journals (Sweden)

    Kim Sunghwan

    2011-07-01

    Full Text Available Abstract Background The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive, but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between "active/active" and "active/inactive" spaces? These questions are explored using 734,486 biologically tested chemical structures, 1,389 biological assay data sets, and six different 3-D similarity types utilized by PubChem analysis tools. Results The similarity value distributions of 269.7 billion unique conformer pairs from 734,486 biologically tested compounds (all-against-all from PubChem were utilized to help work towards an answer to the question: what is a biologically meaningful 3-D similarity score? The average and standard deviation for the six similarity measures STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were 0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ± 0.06, and 0.59 ± 0.14, respectively. Considering that this random distribution of biologically tested compounds was constructed using a single theoretical conformer per compound (the "default" conformer provided by PubChem, further study may be necessary using multiple diverse conformers per compound; however, given the breadth of the compound set, the single conformer per compound results may still apply to the case of multi-conformer per compound 3-D similarity value distributions. As such, this work is a critical step, covering a very wide corpus of chemical structures and biological assays, creating a statistical framework to build upon. The second part of this study explored the question of whether it was possible to realize a statistically meaningful 3-D similarity value separation between reputed biological assay "inactives" and "actives". Using the terminology of noninactive-noninactive (NN pairs and the noninactive-inactive (NI pairs to represent comparison of the "active/active" and

  15. Clinical Research on Three-Dimensional Conformal Radiotherapy of Non-Small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    Baolin Yuan; Tao Zhang; Jianqi Luo; Liang Zhang; Suqun Chen; Lina Yang; Yong Wu; Yuying Ma

    2008-01-01

    OBJECTIVE To investigate the clinical efficacy and toxic effect of the 3-dimensional conformal radiation therapy (3DCRT) for non-small cell lung cancer (NSCLC).METHODS Fifty-two patients with the Stage-I and W NSCLC were treated with 3DCRT. Cross analysis of the clinical data was conducted in the comparison between the 52 cases with 3DCRT and the other 50 cases with the conventional radiation therapy (CRT). In the 3DCRT group, only the primary tumor and positive lymph-node draining area were included in the clinical target area, setting 4 to 6 coplanar or non-coplanar irradiation fields, with 2 Gy or 3 Gy/fraction, 1 fraction a day and 5 fractions per week.The total dose ranged from a test dose (DT) of 66 Gy to 72 Gy. In the CRT group, the field area contained the primary tumor plus the homolateral hilum of the lung, the mediastinum superior or hol-mediastinum, and opposed anteroposterior irradiation. When the dosage reached DT 36~40 Gy, an oblique portal administered radiation was conducted in order to avoid injuring the spinal cord.The DT was 1.8~2.0 Gy/fraction, 1 fraction a day, 5 fractions per week, with a total dose of 60 Gy to 70 Gy.RESULTS The therapeutic effect (CR + PR) was 90.4% in the 3DCRT group, and was 72% in the CRT group. There was statistically significant difference between the two groups, P 0.05. The toxic reaction was 12.5% and 23.7% respectively in the 3DCRT and CRT groups.Acute radioactive esophagitis and leucopenia were markedly lower in the 3DCRT group than in the CRT group. There was a statistically significant difference between the groups, P <0.05. Notoxic reaction of Stage-Ⅲ and over was found in the 3DCRT group during radiation therapy.CONCLUSION The 3DCRT method has a satisfactory short-term efficacy and improvement of clinical symptoms in treating NSCLC, with a mild toxic reaction and good tolerance in patients.It can be used for enhancing the tumor-control rate and bettering the quality of life.

  16. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  17. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  18. 保角特征结合改进差分进化算法的三维人脸识别%3D face recognition based on fusion of conformal features and improved differential evolution algorithm

    Institute of Scientific and Technical Information of China (English)

    刘述木; 杨建; 陈跃

    2016-01-01

    As the problem of the high complexity of 3D face recognition and 2D face recognition not providing granular clues, this paper proposed a fully automatic 3D facial expression recognition algorithm.It provided more clues than that of 2D face recognition and reduced the computational complexity at the same time.Firstly,it transformed 3D face into a 2D plane by con-formal mapping,retaining the changing of facial clues.Secondly,it proposed an optimization algorithm based on differential e-volution (DE)algorithm to improve the recognition efficiency,while extracting the best facial feature set and classification pa-rameters,and speed up robust features (SURF)described all the expected facial feature points.Experimental results on the data sets of Bosphorus,FRGC v2 and gathered face data sets show that the proposed algorithm solves high computational com-plexity of 3D face recognition and low clues of 2D face recognition.This algorithm greatly reduces the cost without lowering the recognition performance,compared to several more advanced 3D face recognition algorithm,the algorithm achieves better reco-gnition results,expecting to be applied to commercial face recognition systems.%针对三维人脸识别的高复杂度和二维人脸识别无法提供粒状线索的问题,提出一种全自动3D 人脸表情识别算法,该算法主要是提供比2D 人脸识别更多的线索,同时降低计算复杂度。通过保角映射将3D 人脸转换到2D 平面,保留了面部变化的线索,提出了基于优化算法的差分进化(DE)算法用于提高识别效率,同时提取最优人脸特征集和分类器参数,加速鲁棒特征池描述了所有预期的人脸特征点。在博斯普鲁斯、FRGC v2及笔者搜集的人脸数据集上的实验结果表明,算法解决了三维人脸识别的高计算复杂度和二维人脸识别的线索低的问题,并在不降低识别性能的前提下大大地节约了成本,相比几种较为先进的三

  19. Reply to 'Comment on genetic and global algorithms for optimization of three-dimensional conformal radiotherapy treatment planning'

    International Nuclear Information System (INIS)

    . Response to the second and third comments: The objective function is a big issue. Dr. Vaarkamp thinks that our cost functions seem too simple to be capable of finding any clinically meaningful solutions. We do not agree with him on this issue. Finding clinically meaningful solutions is mainly the task of optimization methods, not of just the cost function. The cost function we used is the most common least-squares function. It has been used not only in radiotherapy optimization research but also in some commercial planning systems. It can be used to impose the dose homogeneity to planning target volume (PTV), and to ensure that the doses in OARs do not surpass the maximum allowable dose (or DVH in our new investigations). In terms of beam weighting optimization, we started out with existing manually placed beams that were conformal to the PTV. The optimization procedure tends to keep those beams that will contribute to the dose uniformity within the PTV while sparing OARs. Because our patients do not normally have a 'perfectly' shaped small PTV in the exact centre of a small sized ('ideally' cubic shaped) brain, we normally do not find a solution that will eliminate all beams except two lateral beams. Radiotherapy optimization problems based on objective function are usually non-convex because of the addition of some constraints. There exist many local extremes. Traditional methods based on gradient are easily trapped into local minima. Other methods, like simulated annealing, genetic algorithm and global optimization methods, usually find better solutions, because they adopt some mechanism to avoid such local traps. Our efforts in these three papers were intended mainly to prove in principle that the new methods presented are applicable to our radiotherapy planning optimization problems. Many researchers have been devoting their efforts to similar goals. Response to the fourth comment: Because the patient contour and the tumour are not exactly symmetric, we cannot expect

  20. 3D simulation of external beam radiotherapy

    OpenAIRE

    Karangelis, Grigorios

    2005-01-01

    Radiation therapy treatment is a very demanding cancer treatment process. The aim of the treatment is to cure or to limit the disease using high-energy radiation dose, having as minimum as possible damage on healthy tissues. In order to have the wanted results, the process is composed from several steps that are highly depended to each other. One could separate them into three different categories; the treatment planning and evaluation, the planning verification before and after treatment and...

  1. [Radiotherapy Techniques and Radiation Pneumonitis: A Lot To A Little Or A Little To A Lot?].

    Science.gov (United States)

    Yu, Bingqi; Wang, Jin; Xu, Yujin; Su, Feng; Shan, Guoping; Chen, Ming

    2015-12-01

    Radiotherapy is one of the main treatment for patients with lung cancer. Three-dimensional conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) are widely used to deliver radiation. Here, we focus on the correlations between dose distribution in lung and radiation pneumonitis according to the analysis about radiotherapy for lung cancer: A lot to a little or a little to a lot, which is the main cause of radiation pneumonitis? PMID:26706952

  2. IMAGE-GUIDED RADIOTHERAPY AND -BRACHYTHERAPY FOR CERVICAL CANCER

    Directory of Open Access Journals (Sweden)

    Suresh eDutta

    2015-03-01

    Full Text Available Conventional radiotherapy for cervical cancer relies on clinical examination, 3-dimensional conformal radiotherapy (3D-CRT, and 2-dimensional intracavitary brachytherapy.Excellent local control and survival have been obtained for small early stage cervical cancer with definitive radiotherapy. For bulky and locally advanced disease, the addition of chemotherapy has improved the prognosis but toxicity remains significant. New imaging technology such as positron emission tomography (PET and magnetic resonance imaging (MRI has improved tumor delineation for radiotherapy planning. Image-guided radiotherapy (IGRT may decrease treatment toxicity of whole pelvic radiation because of its potential for bone marrow, bowel, and bladder sparring. Tumor shrinkage during whole pelvic IGRT may optimize image-guided brachytherapy (IGBT, allowing for better local control and reduced toxicity for patients with cervical cancer. IGRT and IGBT should be integrated in future prospective studies for cervical cancer.

  3. Image-guided radiotherapy and -brachytherapy for cervical cancer.

    Science.gov (United States)

    Dutta, Suresh; Nguyen, Nam Phong; Vock, Jacqueline; Kerr, Christine; Godinez, Juan; Bose, Satya; Jang, Siyoung; Chi, Alexander; Almeida, Fabio; Woods, William; Desai, Anand; David, Rick; Karlsson, Ulf Lennart; Altdorfer, Gabor

    2015-01-01

    Conventional radiotherapy for cervical cancer relies on clinical examination, 3-dimensional conformal radiotherapy (3D-CRT), and 2-dimensional intracavitary brachytherapy. Excellent local control and survival have been obtained for small early stage cervical cancer with definitive radiotherapy. For bulky and locally advanced disease, the addition of chemotherapy has improved the prognosis but toxicity remains significant. New imaging technology such as positron-emission tomography and magnetic resonance imaging has improved tumor delineation for radiotherapy planning. Image-guided radiotherapy (IGRT) may decrease treatment toxicity of whole pelvic radiation because of its potential for bone marrow, bowel, and bladder sparring. Tumor shrinkage during whole pelvic IGRT may optimize image-guided brachytherapy (IGBT), allowing for better local control and reduced toxicity for patients with cervical cancer. IGRT and IGBT should be integrated in future prospective studies for cervical cancer. PMID:25853092

  4. Dosimetric Study of Current Treatment Options for Radiotherapy in Retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Eldebawy, Eman [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada); Department of Radiation Oncology, Children' s Cancer Hospital, Cairo (Egypt); Parker, William, E-mail: william.parker@mcgill.ca [Department of Medical Physics, McGill University Health Centre, Montreal, Quebec (Canada); Abdel Rahman, Wamied [Department of Medical Physics, McGill University Health Centre, Montreal, Quebec (Canada); Freeman, Carolyn R. [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada)

    2012-03-01

    Purpose: To determine the best treatment technique for patients with retinoblastoma requiring radiotherapy to the whole eye. Methods and Materials: Treatment plans for 3 patients with retinoblastoma were developed using 10 radiotherapy techniques including electron beams, photon beam wedge pair (WP), photon beam three-dimensional conformal radiotherapy (3D-CRT), fixed gantry intensity-modulated radiotherapy (IMRT), photon volumetric arc therapy (VMAT), fractionated stereotactic radiotherapy, and helical tomotherapy (HT). Dose-volume analyses were carried out for each technique. Results: All techniques provided similar target coverage; conformity was highest for VMAT, nine-field (9F) IMRT, and HT (conformity index [CI] = 1.3) and lowest for the WP and two electron techniques (CI = 1.8). The electron techniques had the highest planning target volume dose gradient (131% of maximum dose received [D{sub max}]), and the CRT techniques had the lowest (103% D{sub max}) gradient. The volume receiving at least 20 Gy (V{sub 20Gy}) for the ipsilateral bony orbit was lowest for the VMAT and HT techniques (56%) and highest for the CRT techniques (90%). Generally, the electron beam techniques were superior in terms of brain sparing and delivered approximately one-third of the integral dose of the photon techniques. Conclusions: Inverse planned image-guided radiotherapy delivered using HT or VMAT gives better conformity index, improved orbital bone and brain sparing, and a lower integral dose than other techniques.

  5. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  6. Dosimetric differences between three dimensional radiotherapy and intensity modulated radiotherapy in stereotactic body radiation therapy of non-small cell lung cancer%非小细胞肺癌3D-CRT与IMRT立体定向放疗剂量学比较

    Institute of Scientific and Technical Information of China (English)

    王若峥; 秦永辉; 尹勇; 巩贯忠; 于金明

    2013-01-01

    OBJECTIVE:To study the dosimetric differences of three dimensional radiotherapy(3D-CRT) and intensity modulated radiotherapy(IMRT) in stereotactic body radiation therapy (SBRT) of early-stage non-small cell lung cancer (NSCLC).METHODS:Twelve patients who received RT with early-stage NSCLC were selected.For every patient 3D-CRT and IMRT plans were designed.The dosimetric parameters of PTV (CI,HI,D1%,D99%),lung,chest wall,heart and spinal-cord Vx,D Dmax,the total MUs and delivery time were compared.RESULTS:The PTV CI,HI and D1% of 3D-CRT were lower than that of IMRT and with statistical significant difference(P<0.05); while the D99% was similar between two plans (P>0.05).The differences in V5 to V40 of ipsilateral lung,V5 to V15 of health lung,V5 to V40 of total lung,V5 to V40 and mean dose of chest wall,V20 to V40 and mean dose of heart,maximum dose of spinal cord were no statistically significance between 3D-CRT and IMRT(P>0.05).The MUs of 3D-CRT and treatment time were reduced by 53% and 78% compared to IMRT (P<0.05).Comparing to the volume of absolute dose,the V60-V75 and V45-V60 of 3D-CRT were slightly larger than that of IMRT,the V20-V45 was smaller than that of IMRT,and the difference was not statistically significant (P> 0.05).CONCLUSIONS:There's no significant dosimetry advantage in SBRT of early-stage NSCLC applying IMRT.3D-CRT should be the chief approach for SBRT of NSCLC considering the complex and uncertainties of IMRT.%目的:研究三维适形(3D-CRT)和逆向调强(IMRT)两种计划方式在进行早期非小细胞肺癌(NSCLC)立体定向放射治疗(SBRT)的剂量学差异.方法:选取接受放射治疗的早期NSCLC患者12例,分别采用3D-CRT和IMRT技术设计SBRT治疗计划.比较两种计划方式下PTV的相关剂量学参数(CI、HI、D1%、D99%),肺、胸壁、心脏及脊髓的剂量学参数(Vx、Dmean、Dmax),以及加速器的机器跳数、治疗时间等差异.结果:在PTV相关参数比较中,3D

  7. SU-E-T-63: Carotid Sparing Tomohelical Three Dimensional Conformal Radiotherapy for T1N0 Glottic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hong, C; Ju, S; Ahn, Y; Oh, D; Noh, J; Chung, K; Kim, J; Han, Y; Choi, D [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: We investigated the dosimetric benefit and treatment efficiency of carotid-sparing TomoHelical (TH) three-dimensional conformal radiotherapy (3DCRT) for early glottic cancer. Methods: Computed tomography (CT) simulation was performed for 10 patients with early-stage (T1N0M0) glottic squamous cell carcinoma. The clinical target volume, planning target volume (PTV), carotid artery (CA), and spinal cord (SP) were delineated for each CT data set. Two-field 3DCRT (2F-3DCRT), three-field intensity-modulated radiation therapy (IMRT) (3F-IMRT), TomoHelical-IMRT (TH-IMRT), and TH-3DCRT plans were generated, with a total prescribed dose of 67.5 Gy in 30 fractions to the PTV for each patient. In order to evaluate plan quality, dosimetric characteristics were compared in terms of the conformity index (CI) and homogeneity index (HI) for the PTV, V35, V50, and V63 for the CAs and in terms of the maximum dose for the SP. Additionally, treatment planning and delivery times were compared to evaluate treatment efficiency. Results: The CIs for 3F-IMRT (0.650±0.05), TH-IMRT (0.643±0.03), and TH-3DCRT (0.631±0.03) were much better than that for 2F-3DCRT (0.318±0.03). The HIs for TH-IMRT (1.053±0.01) and TH-3DCRT (1.055±0.01) were slightly better than those for 2F-3DCRT (1.062±0.01) and 3F-IMRT (1.091±0.007). 2F-3DCRT showed poor CA sparing in terms of the V35, V50, and V63 compared to 3F-IMRT, TH-IMRT, and TH-3DCRT (p<0.05), whereas there was no significant dose difference between 3F-IMRT, TH-IMRT, and TH-3DCRT (p>0.05). The maximum dose to the SP with all plans was below 45 Gy. The treatment planning times for 2F-3DCRT (5.9±0.66 min) and TH-3DCRT (7.32±0.94 min) were much lower than those for 3F-IMRT (45.51±2.76 min) and TH-IMRT (35.58±4.41 min), whereas the delivery times with all plans was below 3 minutes. Conclusion: TH-3DCRT showed excellent carotid sparing capability, comparable to that with TH-IMRT, with high treatment efficiency and short planning and

  8. Solid works 3D

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol Yeong

    2004-02-15

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  9. Solid works 3D

    International Nuclear Information System (INIS)

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  10. Prone Whole-Breast Irradiation Using Three-Dimensional Conformal Radiotherapy in Women Undergoing Breast Conservation for Early Disease Yields High Rates of Excellent to Good Cosmetic Outcomes in Patients With Large and/or Pendulous Breasts

    International Nuclear Information System (INIS)

    Purpose: To report our institution's experience using prone positioning for three-dimensional conformal radiotherapy (3D-CRT) to deliver post-lumpectomy whole breast irradiation (WBI) in a cohort of women with large and/or pendulous breasts, to determine the rate of acute and late toxicities and, more specifically, cosmetic outcomes. We hypothesized that using 3D-CRT for WBI in the prone position would reduce or eliminate patient and breast size as negative prognostic indicators for toxicities associated with WBI. Methods and Materials: From 1998 to 2006, 110 cases were treated with prone WBI using 3D-CRT. The lumpectomy, breast target volumes, heart, and lung were contoured on all computed tomography scans. A dose of 45–50 Gy was prescribed to the breast volume using standard fractionation schemes. The planning goals were ≥95% of prescription to 95% of the breast volume, and 100% of boost dose to 95% of lumpectomy planning target volume. Toxicities and cosmesis were prospectively scored using the Common Terminology Criteria for Adverse Effects Version 3.0 and the Harvard Scale. The median follow-up was 40 months. Results: The median body mass index (BMI) was 33.6 kg/m2, and median breast volume was 1396 cm3. The worst toxicity encountered during radiation was Grade 3 dermatitis in 5% of our patient population. Moist desquamation occurred in 16% of patients, with only 2% of patients with moist desquamation outside the inframammary/axillary folds. Eleven percent of patients had Grade ≥2 late toxicities, including Grade 3 induration/fibrosis in 2%. Excellent to good cosmesis was achieved in 89%. Higher BMI was associated with moist desquamation and breast pain, but BMI and breast volume did not impact fibrosis or excellent to good cosmesis. Conclusion: In patients with higher BMI and/or large–pendulous breasts, delivering prone WBI using 3D-CRT results in favorable toxicity profiles and high excellent to good cosmesis rates. Higher BMI was associated with

  11. Prone Whole-Breast Irradiation Using Three-Dimensional Conformal Radiotherapy in Women Undergoing Breast Conservation for Early Disease Yields High Rates of Excellent to Good Cosmetic Outcomes in Patients With Large and/or Pendulous Breasts

    Energy Technology Data Exchange (ETDEWEB)

    Bergom, Carmen; Kelly, Tracy; Morrow, Natalya; Wilson, J. Frank [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Walker, Alonzo [Department of Surgery, Medical College of Wisconsin, Milwaukee, WI (United States); Xiang Qun; Ahn, Kwang Woo [Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI (United States); White, Julia, E-mail: jwhite@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States)

    2012-07-01

    Purpose: To report our institution's experience using prone positioning for three-dimensional conformal radiotherapy (3D-CRT) to deliver post-lumpectomy whole breast irradiation (WBI) in a cohort of women with large and/or pendulous breasts, to determine the rate of acute and late toxicities and, more specifically, cosmetic outcomes. We hypothesized that using 3D-CRT for WBI in the prone position would reduce or eliminate patient and breast size as negative prognostic indicators for toxicities associated with WBI. Methods and Materials: From 1998 to 2006, 110 cases were treated with prone WBI using 3D-CRT. The lumpectomy, breast target volumes, heart, and lung were contoured on all computed tomography scans. A dose of 45-50 Gy was prescribed to the breast volume using standard fractionation schemes. The planning goals were {>=}95% of prescription to 95% of the breast volume, and 100% of boost dose to 95% of lumpectomy planning target volume. Toxicities and cosmesis were prospectively scored using the Common Terminology Criteria for Adverse Effects Version 3.0 and the Harvard Scale. The median follow-up was 40 months. Results: The median body mass index (BMI) was 33.6 kg/m{sup 2}, and median breast volume was 1396 cm{sup 3}. The worst toxicity encountered during radiation was Grade 3 dermatitis in 5% of our patient population. Moist desquamation occurred in 16% of patients, with only 2% of patients with moist desquamation outside the inframammary/axillary folds. Eleven percent of patients had Grade {>=}2 late toxicities, including Grade 3 induration/fibrosis in 2%. Excellent to good cosmesis was achieved in 89%. Higher BMI was associated with moist desquamation and breast pain, but BMI and breast volume did not impact fibrosis or excellent to good cosmesis. Conclusion: In patients with higher BMI and/or large-pendulous breasts, delivering prone WBI using 3D-CRT results in favorable toxicity profiles and high excellent to good cosmesis rates. Higher BMI was

  12. 3d-3d correspondence revisited

    Science.gov (United States)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  13. [Radiotherapy of breast cancer].

    Science.gov (United States)

    Hennequin, C; Barillot, I; Azria, D; Belkacémi, Y; Bollet, M; Chauvet, B; Cowen, D; Cutuli, B; Fourquet, A; Hannoun-Lévi, J M; Leblanc, M; Mahé, M A

    2016-09-01

    In breast cancer, radiotherapy is an essential component of the treatment. After conservative surgery for an infiltrating carcinoma, radiotherapy must be systematically performed, regardless of the characteristics of the disease, because it decreases the rate of local recurrence and by this way, specific mortality. Partial breast irradiation could not be proposed routinely but only in very selected and informed patients. For ductal carcinoma in situ, adjuvant radiotherapy must be also systematically performed after lumpectomy. After mastectomy, chest wall irradiation is required for pT3-T4 tumours and if there is an axillary nodal involvement, whatever the number of involved lymph nodes. After neo-adjuvant chemotherapy and mastectomy, in case of pN0 disease, chest wall irradiation is recommended if there is a clinically or radiologically T3-T4 or node positive disease before chemotherapy. Axillary irradiation is recommended only if there is no axillary surgical dissection and a positive sentinel lymph node. Supra and infra-clavicular irradiation is advised in case of positive axillary nodes. Internal mammary irradiation must be discussed case by case, according to the benefit/risk ratio (cardiac toxicity). Dose to the chest wall or the breast must be between 45-50Gy with a conventional fractionation. A boost dose over the tumour bed is required if the patient is younger than 60 years old. Hypofractionation (42.5 Gy in 16 fractions, or 41.6 Gy en 13 or 40 Gy en 15) is possible after tumorectomy and if a nodal irradiation is not mandatory. Delineation of the breast, the chest wall and the nodal areas are based on clinical and radiological evaluations. 3D-conformal irradiation is the recommended technique, intensity-modulated radiotherapy must be proposed only in case of specific clinical situations. Respiratory gating could be useful to decrease the cardiac dose. Concomitant administration of chemotherapy in unadvised, but hormonal treatment could be start with

  14. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  15. Correlations between dose-volume histogram parameters and radiation-induced lung injury for lung cancer patients treated with three-dimensional conformal radiotherapy and intensity-modulated radiotherapy%肺癌三维适形及调强放疗诱导肺损伤与剂量体积直方图参数的相关性

    Institute of Scientific and Technical Information of China (English)

    王强; 石健

    2014-01-01

    目的:探讨肺癌三维适形放疗(3D-CRT)和调强放疗(IMRT)诱导肺损伤(RILI)与剂量体积直方图(DVH)参数的关系及两种放疗计划的差异。方法151例肺癌患者分别接受3D-CRT( n=90)和IMRT( n=61),均给予根治性放疗剂量,采用传统分割照射(1�8~2�0Gy/次,1次/天,5次/周),中位剂量60�0Gy。比较两组发生RILI的差异,并分析两组发生≥2级RILI与DVH参数的关系。结果3D-CRT组≥2级RILI发生率为17�8%,略低于IMRT组的24�6%;≥3级RILI发生率为8�9%,略高于IMRT组的3�3%,差异无统计学意义( P>0�05)。单因素分析显示,3D-CRT组V20可增加≥2级RILI的发生风险( OR=3�780,P=0�030);IMRT组V5、V10、V13、V20和平均照射剂量均可增加≥2级RILI的发生风险( OR:3�575~6�286,P:0�003~0�045)。多因素分析显示V20是RILI的独立危险因素。结论3D-CRT和IMRT对肺癌患者≥2级RILI的发生率影响不明显,但RILI的发生风险均与V20相关。%Objective To investigate the effect of three-dimensional conformal radiotherapy ( 3D-CRT ) and intensity-modulated radiotherapy( IMRT) on radiation-induced lung injury( RILI) and their relations with parameters of dose volume histograms ( DVH) . Methods One hundred and fifty-one cases of locally advanced lung cancer patients treated with chemoradiotherapy from sin-gle clinical center were enrolled retrospectively, including 90 cases of 3D-CRT and 61 cases of IMRT. All patients were treated with radical radiotherapy dose, 1�8-2�0Gy per fraction, 5 fracions one week, and the median prescribed dose was 60�0Gy. RILI was de-fined according to the National Cancer Institute Common Toxicity Criteria, version 3�0. The incidence of RILI in two groups was calcu-lated and its association with the parameters of DVH were analyzed. Results The incidence of RILI(≥grade 2) in 3D-CRT group was lower than

  16. Proton Radiotherapy for Pediatric Sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Ladra, Matthew M.; Yock, Torunn I., E-mail: tyock@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114 (United States)

    2014-01-14

    Pediatric sarcomas represent a distinct group of pathologies, with approximately 900 new cases per year in the United States alone. Radiotherapy plays an integral role in the local control of these tumors, which often arise adjacent to critical structures and growing organs. The physical properties of proton beam radiotherapy provide a distinct advantage over standard photon radiation by eliminating excess dose deposited beyond the target volume, thereby reducing both the dose of radiation delivered to non-target structures as well as the total radiation dose delivered to a patient. Dosimetric studies comparing proton plans to IMRT and 3D conformal radiation have demonstrated the superiority of protons in numerous pediatric malignancies and data on long-term clinical outcomes and toxicity is emerging. In this article, we review the existing clinical and dosimetric data regarding the use of proton beam radiation in malignant bone and soft tissue sarcomas.

  17. Advances in conformal radiotherapy using Monte Carlo Code to design new IMRT and IORT accelerators and interpret CT numbers

    CERN Document Server

    Wysocka-Rabin, A

    2013-01-01

    The introductory chapter of this monograph, which follows this Preface, provides an overview of radiotherapy and treatment planning. The main chapters that follow describe in detail three significant aspects of radiotherapy on which the author has focused her research efforts. Chapter 2 presents studies the author worked on at the German National Cancer Institute (DKFZ) in Heidelberg. These studies applied the Monte Carlo technique to investigate the feasibility of performing Intensity Modulated Radiotherapy (IMRT) by scanning with a narrow photon beam. This approach represents an alternative to techniques that generate beam modulation by absorption, such as MLC, individually-manufactured compensators, and special tomotherapy modulators. The technical realization of this concept required investigation of the influence of various design parameters on the final small photon beam. The photon beam to be scanned should have a diameter of approximately 5 mm at Source Surface Distance (SSD) distance, and the penumbr...

  18. Radiotherapy Techniques and Radiation Pneumonitis: 
A Lot To A Little Or A Little To A Lot?

    Directory of Open Access Journals (Sweden)

    Bingqi YU

    2015-12-01

    Full Text Available Radiotherapy is one of the main treatment for patients with lung cancer. Three-dimensional conformal radiation therapy (3D-CRT and intensity modulated radiation therapy (IMRT are widely used to deliver radiation. Here, we focus on the correlations between dose distribution in lung and radiation pneumonitis according to the analysis about radiotherapy for lung cancer: A lot to a little or a little to a lot, which is the main cause of radiation pneumonitis?

  19. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  20. 三维适形放疗和适形调强放疗技术对鼻咽癌放疗后颞颌关节损伤的影响%Comparison of temporomandibular joint injuries after three-dimensional conformal and intensity-modulated radiotherapies for nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    陈冬平; 余意; 齐斌; 刘锦全; 李铭仪; 梁玉莹

    2012-01-01

    Objective To compare the radiation injuries of the temporomandibular joint (TMJ) following three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) in patients with nasopharyngeal carcinoma (NPC). Methods Thirty-nine NPC patients without previous radiotherapy underwent 3D-CRT and another 32 received IMRT in our institute. The distance between the 2 dens incisivus medialis (DDIM) and LENT SOMA criteria were employed to evaluate TMJ injuries, clinical outcomes, and the performance-to-price ratios. Results The short-term local response rates were similar between the two groups (P=0.878). The mean radiation doses of the TMJ were significantly higher in 3D-CRT group than in IMRT group (57.06 us 40.90 Gy, P0.05). Conclusion Radiation injuries of the TMJ are tolerable in both 3D-CRT and IMRT groups, and 3D-CRT is a more economic choice for patients who can not afford IMRT.%目的 观察不同放疗方式对患者颞颌关节损伤的影响,为不同条件的患者制定个体化的放疗计划提供参考.方法 回顾性分析71例初治鼻咽癌患者,三维适形放疗(3D-CRT)组39例,适形调强放疗(IMRT)组32例,以门齿距及LENT SOMA标准为评价指标,比较两组之间疗效及性价比.结果 3D-CRT组近期局部控制率与IMRT组无差异(P=0.878);3D-CRT组的颞颌关节受量高于IMRT组(平均57.06 Gy和40.90 Gy,P<0.001);比较两组放疗后1年与放疗前 门齿距差值,3D-CRT组缩小较明显,具有统计学意义(P<0.05);两组患者颞颌关节损伤按SOMA分级标准比较,无统计学差异(P>0 05).结论 相对于IMRT技术来说,3D-CRT技术具有很好的经济优势,颞颌关节的损伤可耐受,3D-CRT技术对于经济条件较差的患者仍是性价比较好的治疗选择.

  1. Neuropsychological status in children and young adults with benign and low-grade brain tumors treated prospectively with focal stereotactic conformal radiotherapy

    International Nuclear Information System (INIS)

    Purpose: To present prospective neuropsychological data at baseline and follow-up in children and young adults with benign and low-grade gliomas treated with focal stereotactic conformal radiotherapy (SCRT). Methods and Materials: A total of 22 patients (age 4-25 years) with residual/progressive benign and low-grade brain tumors considered suitable for SCRT underwent detailed and in-depth neuropsychological and cognitive testing at baseline before SCRT. The test battery included measurement of age-adjusted intelligence quotients (IQs) and cognitive parameters of visual, spatial, visuomotor, and attention concentrations. Anxiety was measured using the State-Trait Anxiety Inventory for Children and Hamilton Anxiety Rating Scale for patients >16 years old. Patients were treated with high-precision conformal radiotherapy under stereotactic guidance to a dose of 54 Gy in 30 fractions. All neuropsychological assessments were repeated at 6 and 24 months after SCRT completion and compared with the baseline values. Results: The baseline mean full-scale IQ before starting RT for patients 16 years, the corresponding value was 72 (range, 64-129). Of 20 evaluable patients, 14 (70%) had less than average IQs at baseline, even before starting radiotherapy. The verbal IQ, performance IQ, and full-scale IQ, as well as other cognitive scores, did not change significantly at the 6- and 24-month follow-up assessments for all patients. The memory quotient in older children and young adults was maintained at 6 and 24 months after SCRT, with a mean value of 93 and 100, respectively, compared with a mean baseline value of 81 before RT. The mean anxiety score in children measured by the C1 and C2 components of the State-Trait Anxiety Inventory for Children (STAIC) was 48 and 40, respectively, which improved significantly to mean values of 30 and 26, respectively, at the 24-month follow-up assessment (p = 0.005). The mean depression score in patients >16 years old was 23 at baseline and had

  2. Mapping metabolic changes associated with early Radiation Induced Lung Injury post conformal radiotherapy using hyperpolarized 13C-pyruvate Magnetic Resonance Spectroscopic Imaging

    International Nuclear Information System (INIS)

    Purpose: Radiation Pneumonitis (RP) limits radiotherapy. Detection of early metabolic changes in the lungs associated with RP may provide an opportunity to adjust treatment before substantial toxicities occur. In this work, regional lactate-to-pyruvate signal ratio (lac/pyr) was quantified in rat lungs and heart following administration of hyperpolarized 13C-pyruvate magnetic resonance imaging (MRI) at day 5, 10, 15 and 25-post conformal radiotherapy. These results were also compared to histology and blood analyses. Methods: The lower right lungs of 12 Sprague Dawley rats were irradiated in 2 fractions with a total dose of 18.5 Gy using a modified micro-CT system. Regional lactate and pyruvate data were acquired from three irradiated and three age-matched healthy rats at each time point on days 5, 10, 15 and 25-post radiotherapy. Arterial blood was collected from each animal prior to the 13C-pyruvate injection and was analyzed for blood lactate concentration and arterial oxygen concentration (paO2). Macrophage count was computed from the histology of all rat lungs. Results: A significant increase in lac/pyr was observed in both right and left lungs of the irradiated cohort compared to the healthy cohort for all time points. No increase in lac/pyr was observed in the hearts of the irradiated cohort compared to the hearts of the healthy cohorts. Blood lactate concentration and paO2 did not show a significant change between the irradiated and the healthy cohorts. Macrophage count in both right and left lungs was elevated for the irradiated cohort compared to the healthy cohort. Conclusions: Metabolic changes associated with RP may be mapped as early as five days post conformal radiotherapy. Over the small sample size in each cohort, elevated macrophage count, consistent with early phase of inflammation was highly correlated to increases in lac/pyr in both the irradiated and unirradiated lungs. Further experiments with larger sample size may improve the confidence of

  3. 肿瘤体积和放疗剂量对局部晚期非小细胞肺癌三维适形放疗预后的影响%Influence of gross tumor volume and radiotherapy dose on prognosis of three dimensional conformal ;radiation therapy for locally advanced non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    刘兴祥

    2015-01-01

    目的:探讨肿瘤体积和放疗剂量对局部晚期非小细胞肺癌(NSCLC)三维适形放疗(3D-CRT)预后的影响。方法78例接受3D-CRT的局部晚期NSCLC患者为研究对象,利用三维适形放射计划系统和CT扫描勾画相应靶区,分别定义为GTV-T、GTV-P和GTV-N,分析各靶区肿瘤体积和放疗剂量对3D-CRT的预后效果。结果全组研究对象中肿瘤最大直径<5.00 cm的患者生存率高于肿瘤最大直径≥5.00 cm的患者(P<0.05);GTV-T<100.00 cm3的患者生存率明显高于GTV-T≥100.00 cm3的患者(P<0.05)。分层分析显示放疗处方剂量≤66 Gy亚组中,肿瘤大体体积越小,生存率越高。结论应用三维适形放射计划系统和CT扫描所勾画的大体肿瘤体积对接受放疗的NSCLC患者长期生存率有显著影响;对体积小的肿瘤行大剂量放疗对局部晚期NSCLC患者的生存有益。%Objective To investigate influence of gross tumor volume and radiotherapy dose on prognosis of three dimensional conformal radiation therapy (3D-CRT) for locally advanced non-small cell lung cancer (NSCLC). Methods There were 78 locally advanced NSCLC patients receiving 3D-CRT as study subjects. Three dimensional conformal radiation planning system and CT screening were applied for delineating corresponding target sections, as GTV-T, GTV-P and GTV-N. Gross tumor volume and radiotherapy dose in each target section were analyzed for their prognosis effects. Results Patients with tumor diameter<5.00 cm had higher survival rate than those with tumor diameter≥5.00 cm (P<0.05). Patients with GTV-T<100.00 cm3 had obviously higher survival rate than those with GTV-T≥100.00 cm3 (P<0.05). Stratification analysis showed that in subgroup with radiotherapy dose ≤66 Gy, the survival rate increased while gross tumor volume declined. Conclusion Gross tumor volume shown by three dimensional conformal radiation planning system and CT screening has remarkable influence on long-term survival rate

  4. Influence of gross tumor volume and radiotherapy dose on prognosis of three dimensional conformal ;radiation therapy for locally advanced non-small cell lung cancer%肿瘤体积和放疗剂量对局部晚期非小细胞肺癌三维适形放疗预后的影响

    Institute of Scientific and Technical Information of China (English)

    刘兴祥

    2015-01-01

    Objective To investigate influence of gross tumor volume and radiotherapy dose on prognosis of three dimensional conformal radiation therapy (3D-CRT) for locally advanced non-small cell lung cancer (NSCLC). Methods There were 78 locally advanced NSCLC patients receiving 3D-CRT as study subjects. Three dimensional conformal radiation planning system and CT screening were applied for delineating corresponding target sections, as GTV-T, GTV-P and GTV-N. Gross tumor volume and radiotherapy dose in each target section were analyzed for their prognosis effects. Results Patients with tumor diameter<5.00 cm had higher survival rate than those with tumor diameter≥5.00 cm (P<0.05). Patients with GTV-T<100.00 cm3 had obviously higher survival rate than those with GTV-T≥100.00 cm3 (P<0.05). Stratification analysis showed that in subgroup with radiotherapy dose ≤66 Gy, the survival rate increased while gross tumor volume declined. Conclusion Gross tumor volume shown by three dimensional conformal radiation planning system and CT screening has remarkable influence on long-term survival rate in NSCLC patients. It is also beneficial for locally advanced NSCLC patients receiving large radiotherapy dose for small tumor volume.%目的:探讨肿瘤体积和放疗剂量对局部晚期非小细胞肺癌(NSCLC)三维适形放疗(3D-CRT)预后的影响。方法78例接受3D-CRT的局部晚期NSCLC患者为研究对象,利用三维适形放射计划系统和CT扫描勾画相应靶区,分别定义为GTV-T、GTV-P和GTV-N,分析各靶区肿瘤体积和放疗剂量对3D-CRT的预后效果。结果全组研究对象中肿瘤最大直径<5.00 cm的患者生存率高于肿瘤最大直径≥5.00 cm的患者(P<0.05);GTV-T<100.00 cm3的患者生存率明显高于GTV-T≥100.00 cm3的患者(P<0.05)。分层分析显示放疗处方剂量≤66 Gy亚组中,肿瘤大体体积越小,生存率越高。结论应用三维适形放射计划系统和CT扫描所勾画的大体肿瘤体积对接受

  5. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  6. Conformal radiotherapy with intensity modulation, regional deep hyperthermia and total androgen suppression in patients with a high risk prostate tumor, operated or not. Preliminary results in 20 patients

    International Nuclear Information System (INIS)

    Purpose: to evaluate the feasibility and the toxicity of association of I.M.R.T., regional deep hyperthermia and complete androgenic elimination for the patients suffering of a high risk prostate tumor. Conclusion: According to our experience the association of pelvis I.M.R.T., a complement of prostate irradiation, a regional deep hyperthermia and complete androgenic elimination by analog is feasible. In comparison with the modest toxicity that we previously observed for patients treated by three dimensional conformal radiotherapy limited to the prostate associated to a regional deep hyperthermia and a complete androgenic elimination, the tolerance of the association of pelvic I.M.R.T.,regional deep hyperthermia and complete androgenic elimination turns out better. (N.C.)

  7. Evaluation of conformal radiotherapy techniques through physics and biologic criteria; Avaliacao de tecnicas radioterapicas conformacionais utilizando criterios fisicos e biologicos

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Jonatas Carrero

    2012-07-01

    In the fight against cancer, different irradiation techniques have been developed based on technological advances and aiming to optimize the elimination of tumor cells with the lowest damage to healthy tissues. The radiotherapy planning goal is to establish irradiation technical parameters in order to achieve the prescribed dose distribution over the treatment volumes. While dose prescription is based on radiosensitivity of the irradiated tissues, the physical calculations on treatment planning take into account dosimetric parameters related to the radiation beam and the physical characteristics of the irradiated tissues. To incorporate tissue's radiosensitivity into radiotherapy planning calculations can help particularize treatments and establish criteria to compare and elect radiation techniques, contributing to the tumor control and the success of the treatment. Accordingly, biological models of cellular response to radiation have to be well established. This work aimed to study the applicability of using biological models in radiotherapy planning calculations to aid evaluating radiotherapy techniques. Tumor control probability (TCP) was studied for two formulations of the linear-quadratic model, with and without repopulation, as a function of planning parameters, as dose per fraction, and of radiobiological parameters, as the α/β ratio. Besides, the usage of biological criteria to compare radiotherapy techniques was tested using a prostate planning simulated with Monte Carlo code PENELOPE. Afterwards, prostate planning for five patients from the Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto, USP, using three different techniques were compared using the tumor control probability. In that order, dose matrices from the XiO treatment planning system were converted to TCP distributions and TCP-volume histograms. The studies performed allow the conclusions that radiobiological parameters can significantly influence tumor control

  8. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  9. Multivariate Analysis of Long-term Outcome for Esophageal Cancer Treated with Three-dimensional Conformal Radiotherapy%食管癌三维适形放疗长期疗效的多因素分析

    Institute of Scientific and Technical Information of China (English)

    陈创珍; 陈建洲; 李德锐; 汤忠明; 陆佳扬; 余元祥; 陈志坚

    2012-01-01

    [Purpose] To evaluate prognostic factors of long-term outcome for esophageal cancer treated with three-dimensional conformal radiotherapy (3D-CRT) and provide evidences for individualized treatment decision making and for revision of clinical staging system. [ Methods ] During Jan.2005 to Dec.2006, two hundred and thirty six patients diagnosed with esophageal cancer who received three-dimensional radiation therapy in the Cancer Hospital of Shantou University Medical College were entered into the study. The clinical and image data were evaluated. Univariate and multivariate analysis were performed to test the association between the correlative factors and prognosis. [Results] The five year overall survival rate was 26.2% with a median follow up of 50 months. By univariate analysis,it was proved that lesion location,length of lesion in barium esophagogram,lesion characteristics in CT image such as the largest diameter,transverse diameter and anteri-oposterior diameter of lesion,length of lesion,depth of tumor invasion,gross tumor volume (GTV) of primary lesion (GTV-E),invasion to adjacent structure,lymph node metastasis,pattern of lymph node metastasis,number of metastasis lymph nodes, GTV of lymph nodes(GTV-LN) and the total GTV (GTV -T) were the prognostic factors for survival. By multivariate analysis,it was proved that the total GTV and the largest diameter of lesion in axis CT image were independent prognostic factors for survival. [Conclusions] The total GTV and the largest diameter of primary tumor influence for predicting the overall survival rates of esophageal carcinoma patients undergoing 3D-CRT. Their roles in the individual treatment decision making and staging should be emphasized.%[目的]分析影响食管癌三维适形放疗(3D-CRT)长期生存的预后因素,为个体化治疗方案的选择和临床分期的修订提供依据.[方法]收集2005~2006年在汕头大学医学院附属肿瘤医院行根治性3D-CRT的食管癌患者236例,对患

  10. 3D Variation in delineation of head and neck organs at risk

    International Nuclear Information System (INIS)

    Consistent delineation of patient anatomy becomes increasingly important with the growing use of highly conformal and adaptive radiotherapy techniques. This study investigates the magnitude and 3D localization of interobserver variability of organs at risk (OARs) in the head and neck area with application of delineation guidelines, to establish measures to reduce current redundant variability in delineation practice. Interobserver variability among five experienced radiation oncologists was studied in a set of 12 head and neck patient CT scans for the spinal cord, parotid and submandibular glands, thyroid cartilage, and glottic larynx. For all OARs, three endpoints were calculated: the Intraclass Correlation Coefficient (ICC), the Concordance Index (CI) and a 3D measure of variation (3D SD). All endpoints showed largest interobserver variability for the glottic larynx (ICC = 0.27, mean CI = 0.37 and 3D SD = 3.9 mm). Better agreement in delineations was observed for the other OARs (range, ICC = 0.32-0.83, mean CI = 0.64-0.71 and 3D SD = 0.9-2.6 mm). Cranial, caudal, and medial regions of the OARs showed largest variations. All endpoints provided support for improvement of delineation practice. Variation in delineation is traced to several regional causes. Measures to reduce this variation can be: (1) guideline development, (2) joint delineation review sessions and (3) application of multimodality imaging. Improvement of delineation practice is needed to standardize patient treatments

  11. High-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine and carboplatin chemotherapy in locally advanced non-small-cell lung cancer: a feasibility study

    International Nuclear Information System (INIS)

    Increasing the radiotherapy dose can result in improved local control for non-small-cell lung cancer (NSCLC) and can thereby improve survival. Accelerated hypofractionated radiotherapy can expose tumors to a high dose of radiation in a short period of time, but the optimal treatment regimen remains unclear. The purpose of this study was to evaluate the feasibility of utilizing high-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for the treatment of local advanced NSCLC. Untreated patients with unresectable stage IIIA/IIIB NSCLC or patients with a recurrence of NSCLC received accelerated hypofractionated three-dimensional conformal radiotherapy. The total dose was greater than or equal to 60 Gy. The accelerated hypofractionated radiotherapy was conducted once daily at 3 Gy/fraction with 5 fractions per week, and the radiotherapy was completed in 5 weeks. In addition to radiotherapy, the patients also received at least 1 cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. A total of 26 patients (19 previously untreated cases and 7 cases of recurrent disease) received 60Gy-75Gy radiotherapy with concurrent chemotherapy. All of the patients underwent evaluations for toxicity and preliminary therapeutic efficacy. There were no treatment-related deaths within the entire patient group. The major acute adverse reactions were radiation esophagitis (88.5%) and radiation pneumonitis (42.3%). The percentages of grade III acute radiation esophagitis and grade III radiation pneumonitis were 15.4% and 7.7%, respectively. Hematological toxicities were common and did not significantly affect the implementation of chemoradiotherapy after supportive treatment. Two patients received high dose of 75 Gy had grade III late esophageal toxicity, and none had grade IV and above. Grade III and above late lung toxicity did not occur. High-dose accelerated

  12. Development of NTCP models for head and neck cancer patients treated with three-dimensional conformal radiotherapy for xerostomia and sticky saliva: The role of dosimetric and clinical factors

    International Nuclear Information System (INIS)

    Purpose: The purpose of this multicentre prospective study was to investigate the significance of the radiation dose in the major and minor salivary glands, and other pre-treatment and treatment factors, with regard to the development of patient-rated xerostomia and sticky saliva among head and neck cancer (HNC) patients treated with primary (chemo-) radiotherapy ((CH)RT). Methods and materials: The study population was composed of 167 consecutive HNC patients treated with three-dimensional conformal (3D-CRT) (CH) RT. The primary endpoint was moderate to severe xerostomia (XER6m) as assessed by the EORTC QLQ-H and N35 at 6 months after completing (CH)RT. The secondary endpoint was moderate to severe sticky saliva at 6 months (STIC6 m). All organs at risk (OARs) potentially involved in salivary function were delineated on planning-CT, including the parotid, submandibular and sublingual glands and the minor glands in the soft palate, cheeks and lips. Patients with moderate to severe xerostomia or sticky saliva at baseline were excluded. The optimum number of variables for a multivariate logistic regression model was determined using a bootstrapping method. Results: The multivariate analysis showed the mean parotid dose, age and baseline xerostomia (none versus a bit) to be the most important predictors for XER6m. The risk of developing xerostomia increased with age and was higher when minor baseline xerostomia was present in comparison with patients without any xerostomia complaints at baseline. Model performance was good with an area under the curve (AUC) of 0.82. For STIC6m, the mean submandibular dose, age, the mean sublingual dose and baseline sticky saliva (none versus a bit) were most predictive for sticky saliva. The risk of developing STIC6 m increased with age and was higher when minor baseline sticky saliva was present in comparison with patients without any sticky saliva complaints at baseline. Model performance was good with an AUC of 0.84. Conclusions

  13. 三维适形放疗配合全脑照射治疗脑转移瘤的疗效观察%The effects of three-dimensional conformal radiotherapy combined with whole brain irradiation on brain metastases

    Institute of Scientific and Technical Information of China (English)

    Jin Hu; Yeqing Zhou; Mi Liu

    2009-01-01

    Objective: To observe the recently therapeutic effects and toxicity of three-dimensional conformal radiotherapy combined with whole brain irradiation for patients with brain metastasis. Methods: 33 cases were treated by whole brain irradiation at first, the dose of which was 36-40 Gy (18-20 f). Then three-dimensional conformal radiotherapy was added to the focus with a total dose of 20-25 Gy, whose fractionated dose was 2-5 Gy/time, 5 times/week or 3 times/week. Results: Within 1 month after radiotherapy, according to imaging of the brain, the CR of all patients was 45.5%, PR 36.4%, NC 15.1%, and PD 3%. For the 32 cases with neural symptoms before radiation, the CR of the symptoms was 40.6% and PR 59.4%. All patients gained different increases in KPS grade. By the end of the follow-up period, there were 22 deaths with the mean survival time up to 9.3 months. Conclusion: Three-dimensional conformal radiotherapy combined with whole brain irradiation can not only effectively control brain metastases and improve life quality, but also tends to prolong survival time.

  14. More on Massive 3D Supergravity

    CERN Document Server

    Bergshoeff, Eric A; Rosseel, Jan; Sezgin, Ergin; Townsend, Paul K

    2010-01-01

    Completing earlier work on three dimensional (3D) N=1 supergravity with curvature-squared terms, we construct the general supergravity extension of cosmological massive gravity theories. We expand about supersymmetric anti-de Sitter vacua, finding the conditions for bulk unitarity and the critical points in parameter space at which the spectrum changes. We discuss implications for the dual conformal field theory.

  15. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  16. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  17. Intensity-Modulated Radiotherapy of Sacral Chordoma

    Energy Technology Data Exchange (ETDEWEB)

    Thilmann, Christoph; Schulz-Ertner, Daniela; Zabel, Angelika; Herfarth, Klaus K.; Wannenmacher, Michael; Debus, Juergen [German Cancer Research Center, Heidelberg (Germany)

    2002-08-01

    In a case of partially resected sacral chordoma, the planning target volume (PTV) received 60 Gy and the gross target volume (GTV) 72 Gy using inversely planned, intensity-modulated, radiation therapy (IMRT). IMRT was compared with 3D-conformal radiotherapy (CRT). With IMRT, it was found that dose distribution is more homogeneous within the PTV outside the GTV and allows simultaneous dose escalation within the GTV. The volume of bowel receiving a dose higher than 40 Gy was reduced from 400cc with CRT to 220cc with IMRT. If particle therapy is not available, IMRT seems to be a promising alternative in the treatment of sacral chordomas.

  18. Dosimetric comparison between three dimensional conformal radiotherapy, tomo-therapy and treatment by Cyberknife: about one case of a ponto cerebellar meningioma; Comparaison dosimetrique entre radiotherapie conformationnelle tridimensionnelle, tomotherapie et traitement par cyberknife: a propos d'un cas de meningiome de l'angle pontocerebelleux

    Energy Technology Data Exchange (ETDEWEB)

    Vasseur, F.; Rezvoy, N.; Lacornerie, T.; Lartigau, E. [Centre Oscar-Lambret, Dept. Universitaire de Radiotherapie, 59 - Lille (France)

    2009-10-15

    In order to illustrate the evolution of techniques in radiotherapy we compare the dose distributions calculated for the exclusive treatment of a ponto-cerebellar angle meningioma by a linear accelerator (clinac 2100) by helical irradiation and by cyberknife in radiosurgery mode and in fractionated mode. In conclusion: according to our first results, the tomo-therapy or the fractionated stereotactic radiotherapy appear as the treatments conjugating the advantages of stereotactic radiotherapy ( conformation of the dose to the target volume) and the fractionated radiotherapy ( protection of sane tissues by the fractionation). This study highlights the saving of sane tissues that allows these techniques. this better tolerance is to be evaluated. If it was confirmed, an increasing of the dose prescribed on the target volume could be considered. (N.C.)

  19. Herramientas SIG 3D

    Directory of Open Access Journals (Sweden)

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  20. TOWARDS: 3D INTERNET

    OpenAIRE

    Ms. Swapnali R. Ghadge

    2013-01-01

    In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot o...

  1. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  2. Phase I Study of Conformal Radiotherapy and Concurrent Full-Dose Gemcitabine With Erlotinib for Unresected Pancreatic Cancer

    International Nuclear Information System (INIS)

    Purpose: To determine the recommended dose of radiotherapy when combined with full-dose gemcitabine and erlotinib for unresected pancreas cancer. Methods and Materials: Patients with unresected pancreatic cancer (Zubrod performance status 0–2) were eligible for the present study. Gemcitabine was given weekly for 7 weeks (1,000 mg/m2) with erlotinib daily for 8 weeks (100 mg). A final toxicity assessment was performed in Week 9. Radiotherapy (starting at 30 Gy in 2-Gy fractions, 5 d/wk) was given to the gross tumor plus a 1-cm margin starting with the first dose of gemcitabine. A standard 3 plus 3 dose escalation (an additional 4 Gy within 2 days for each dose level) was used, except for the starting dose level, which was scheduled to contain 6 patients. In general, Grade 3 or greater gastrointestinal toxicity was considered a dose-limiting toxicity, except for Grade 3 anorexia or Grade 3 fatigue alone. Results: A total of 20 patients were treated (10 men and 10 women). Nausea, vomiting, and infection were significantly associated with the radiation dose (p = .01, p = .03, and p = .03, respectively). Of the 20 patients, 5 did not complete treatment and were not evaluable for dose-escalation purposes (3 who developed progressive disease during treatment and 2 who electively discontinued it). Dose-limiting toxicity occurred in none of 6 patients at 30 Gy, 2 of 6 at 34 Gy, and 1 of 3 patients at 38 Gy. Conclusion: The results of the present study have indicated that the recommended Phase II dose is 30 Gy in 15 fractions.

  3. Phase I Study of Conformal Radiotherapy and Concurrent Full-Dose Gemcitabine With Erlotinib for Unresected Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, John M., E-mail: jrobertson@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Margolis, Jeffrey [Division of Medical Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Jury, Robert P. [Department of Surgery, William Beaumont Hospital, Royal Oak, MI (United States); Balaraman, Savitha; Cotant, Matthew B.; Ballouz, Samer; Boxwala, Iqbal G.; Jaiyesimi, Ishmael A.; Nadeau, Laura [Division of Medical Oncology, William Beaumont Hospital, Royal Oak, MI (United States); Hardy-Carlson, Maria [Division of Radiation Oncology, M. D. Anderson Cancer Center, Houston, TX (United States); Marvin, Kimberly S.; Wallace, Michelle; Ye Hong [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States)

    2012-02-01

    Purpose: To determine the recommended dose of radiotherapy when combined with full-dose gemcitabine and erlotinib for unresected pancreas cancer. Methods and Materials: Patients with unresected pancreatic cancer (Zubrod performance status 0-2) were eligible for the present study. Gemcitabine was given weekly for 7 weeks (1,000 mg/m{sup 2}) with erlotinib daily for 8 weeks (100 mg). A final toxicity assessment was performed in Week 9. Radiotherapy (starting at 30 Gy in 2-Gy fractions, 5 d/wk) was given to the gross tumor plus a 1-cm margin starting with the first dose of gemcitabine. A standard 3 plus 3 dose escalation (an additional 4 Gy within 2 days for each dose level) was used, except for the starting dose level, which was scheduled to contain 6 patients. In general, Grade 3 or greater gastrointestinal toxicity was considered a dose-limiting toxicity, except for Grade 3 anorexia or Grade 3 fatigue alone. Results: A total of 20 patients were treated (10 men and 10 women). Nausea, vomiting, and infection were significantly associated with the radiation dose (p = .01, p = .03, and p = .03, respectively). Of the 20 patients, 5 did not complete treatment and were not evaluable for dose-escalation purposes (3 who developed progressive disease during treatment and 2 who electively discontinued it). Dose-limiting toxicity occurred in none of 6 patients at 30 Gy, 2 of 6 at 34 Gy, and 1 of 3 patients at 38 Gy. Conclusion: The results of the present study have indicated that the recommended Phase II dose is 30 Gy in 15 fractions.

  4. Pulmonary Toxicity in Stage III Non-Small Cell Lung Cancer Patients Treated With High-Dose (74 Gy) 3-Dimensional Conformal Thoracic Radiotherapy and Concurrent Chemotherapy Following Induction Chemotherapy: A Secondary Analysis of Cancer and Leukemia Group B (CALGB) Trial 30105

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Joseph K., E-mail: joseph.salama@duke.edu [Duke University Medical Center, Durham, NC (United States); Stinchcombe, Thomas E. [University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Gu Lin; Wang Xiaofei [CALGB Statistical Center, Duke University Medical Center, Durham, NC (United States); Morano, Karen [Quality Assurance Review Center, Lincoln, RI (United States); Bogart, Jeffrey A. [State University of New York Upstate Medical University, Syracuse, NY (United States); Crawford, Jeffrey C. [Duke University Medical Center, Durham, NC (United States); Socinski, Mark A. [University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Blackstock, A. William [Wake Forest University School of Medicine, Winston-Salem, NC (United States); Vokes, Everett E. [University of Chicago, Chicago, IL (United States)

    2011-11-15

    Purpose: Cancer and Leukemia Group B (CALGB) 30105 tested two different concurrent chemoradiotherapy platforms with high-dose (74 Gy) three-dimensional conformal radiotherapy (3D-CRT) after two cycles of induction chemotherapy for Stage IIIA/IIIB non-small cell lung cancer (NSCLC) patients to determine if either could achieve a primary endpoint of >18-month median survival. Final results of 30105 demonstrated that induction carboplatin and gemcitabine and concurrent gemcitabine 3D-CRT was not feasible because of treatment-related toxicity. However, induction and concurrent carboplatin/paclitaxel with 74 Gy 3D-CRT had a median survival of 24 months, and is the basis for the experimental arm in CALGB 30610/RTOG 0617/N0628. We conducted a secondary analysis of all patients to determine predictors of treatment-related pulmonary toxicity. Methods and Materials: Patient, tumor, and treatment-related variables were analyzed to determine their relation with treatment-related pulmonary toxicity. Results: Older age, higher N stage, larger planning target volume (PTV)1, smaller total lung volume/PTV1 ratio, larger V20, and larger mean lung dose were associated with increasing pulmonary toxicity on univariate analysis. Multivariate analysis confirmed that V20 and nodal stage as well as treatment with concurrent gemcitabine were associated with treatment-related toxicity. A high-risk group comprising patients with N3 disease and V20 >38% was associated with 80% of Grades 3-5 pulmonary toxicity cases. Conclusions: Elevated V20 and N3 disease status are important predictors of treatment related pulmonary toxicity in patients treated with high-dose 3D-CRT and concurrent chemotherapy. Further studies may use these metrics in considering patients for these treatments.

  5. Pulmonary Toxicity in Stage III Non-Small Cell Lung Cancer Patients Treated With High-Dose (74 Gy) 3-Dimensional Conformal Thoracic Radiotherapy and Concurrent Chemotherapy Following Induction Chemotherapy: A Secondary Analysis of Cancer and Leukemia Group B (CALGB) Trial 30105

    International Nuclear Information System (INIS)

    Purpose: Cancer and Leukemia Group B (CALGB) 30105 tested two different concurrent chemoradiotherapy platforms with high-dose (74 Gy) three-dimensional conformal radiotherapy (3D-CRT) after two cycles of induction chemotherapy for Stage IIIA/IIIB non–small cell lung cancer (NSCLC) patients to determine if either could achieve a primary endpoint of >18-month median survival. Final results of 30105 demonstrated that induction carboplatin and gemcitabine and concurrent gemcitabine 3D-CRT was not feasible because of treatment-related toxicity. However, induction and concurrent carboplatin/paclitaxel with 74 Gy 3D-CRT had a median survival of 24 months, and is the basis for the experimental arm in CALGB 30610/RTOG 0617/N0628. We conducted a secondary analysis of all patients to determine predictors of treatment-related pulmonary toxicity. Methods and Materials: Patient, tumor, and treatment-related variables were analyzed to determine their relation with treatment-related pulmonary toxicity. Results: Older age, higher N stage, larger planning target volume (PTV)1, smaller total lung volume/PTV1 ratio, larger V20, and larger mean lung dose were associated with increasing pulmonary toxicity on univariate analysis. Multivariate analysis confirmed that V20 and nodal stage as well as treatment with concurrent gemcitabine were associated with treatment-related toxicity. A high-risk group comprising patients with N3 disease and V20 >38% was associated with 80% of Grades 3-5 pulmonary toxicity cases. Conclusions: Elevated V20 and N3 disease status are important predictors of treatment related pulmonary toxicity in patients treated with high-dose 3D-CRT and concurrent chemotherapy. Further studies may use these metrics in considering patients for these treatments.

  6. Late Gastrointestinal Toxicity After Dose-Escalated Conformal Radiotherapy for Early Prostate Cancer: Results From the UK Medical Research Council RT01 Trial (ISRCTN47772397)

    International Nuclear Information System (INIS)

    Purpose: In men with localized prostate cancer, dose-escalated conformal radiotherapy (CFRT) improves efficacy outcomes at the cost of increased toxicity. We present a detailed analysis to provide further information about the incidence and prevalence of late gastrointestinal side effects. Methods and Materials: The UK Medical Research Council RT01 trial included 843 men with localized prostate cancer, who were treated for 6 months with neoadjuvant radiotherapy and were randomly assigned to either 64-Gy or 74-Gy CFRT. Toxicity was evaluated before CFRT and during long-term follow-up using Radiation Therapy Oncology Group (RTOG) grading, the Late Effects on Normal Tissue: Subjective, Objective, Management (LENT/SOM) scale, and Royal Marsden Hospital assessment scores. Patients regularly completed Functional Assessment of Cancer Therapy--Prostate (FACT-P) and University of California, Los Angeles, Prostate Cancer Index (UCLA-PCI) questionnaires. Results: In the dose-escalated group, the hazard ratio (HR) for rectal bleeding (LENT/SOM grade ≥2) was 1.55 (95% CI, 1.17-2.04); for diarrhea (LENT/SOM grade ≥2), the HR was 1.79 (95% CI, 1.10-2.94); and for proctitis (RTOG grade ≥2), the HR was 1.64 (95% CI, 1.20-2.25). Compared to baseline scores, the prevalence of moderate and severe toxicities generally increased up to 3 years and than lessened. At 5 years, the cumulative incidence of patient-reported severe bowel problems was 6% vs. 8% (standard vs. escalated, respectively) and severe distress was 4% vs. 5%, respectively. Conclusions: There is a statistically significant increased risk of various adverse gastrointestinal events with dose-escalated CFRT. This remains at clinically acceptable levels, and overall prevalence ultimately decreases with duration of follow-up.

  7. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  8. 3D Harmonic Echocardiography:

    NARCIS (Netherlands)

    M.M. Voormolen

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  9. Independent dose calculation of the Tps Iplan in radiotherapy conformed with MLC; Calculo independiente de dosis del TPS Iplan en radioterapia conformada con MLC

    Energy Technology Data Exchange (ETDEWEB)

    Adrada, A.; Tello, Z.; Medina, L.; Garrigo, E.; Venencia, D., E-mail: jorge.alberto.adrada@gmail.com [Instituto Privado de Radioterapia, Obispo Oro 423, X5000BFI Cordoba (Argentina)

    2014-08-15

    The systems utilization of independent dose calculation in three dimensional-Conformal Radiation Therapy (3D-Crt) treatments allows a direct verification of the treatments times. The utilization of these systems allows diminishing the probability of errors occurrence generated by the treatment planning system (Tps), allowing a detailed analysis of the dose to delivering and review of the normalization point (Np) or prescription. The independent dose calculation is realized across the knowledge of dosimetric parameters of the treatment machine and particular characteristics of every individual field. The aim of this work is develops a calculation system of punctual doses for isocentric fields conformed with multi-leaf collimation systems (MLC), where the dose calculation is in conformity with the suggested ones by ICRU Report No. 42, 1987. Calculation software was realized in C ++ under a free platform of programming (Code::Blocks). The system uses files in format Rtp, exported from the Tps to systems of record and verification (Lantis). This file contains detailed information of the dose, Um, position of the MLC sheets and collimators for every field of treatment. The size of equivalent field is obtained from the positions of every sheet; the effective depth of calculation can be introduced from the dosimetric report of the Tps or automatically from the DFS of the field. The 3D coordinates of the isocenter and the Np for the treatment plan must be introduced manually. From this information the system looks the dosimetric parameters and calculates the Um. The calculations were realized in two accelerators a NOVALIS Tx (Varian) with 120 sheets of high definition (hd-MLC) and a PRIMUS Optifocus (Siemens) with 82 sheets. 705 patients were analyzed for a total of 1082, in plans made for both equipment s, the average uncertainty with regard to the calculation of the Tps is-0.43% ± 2.42% in a range between [-7.90 %, 7.50 %]. The major uncertainty was in Np near of the

  10. The contribution of three-dimensional intensity-modulated conformational radiotherapy (IMRT) in the Hodgkin disease: dosimetric study comparing tomo-therapy and three-dimensional conformation radiotherapy; Apport de la radiotherapie conformationnelle tridimensionnelle avec modulation d'intensite (RCMI) dans la maladie de Hodgkin: etude dosimetrique comparant une tomotherapie et une radiotherapie conformationnelle tridimensionnelle

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, D.; Meyer, P.; Niederst, C.; Karamanoukian, D.; Noel, G. [Centre de lutte contre le cancer Paul-Strauss, 67 - Strasbourg (France); Bourahla, K. [Service de medecine nucleaire, centre Paul-Strauss, 67 - Strasbourg (France); Ame, S. [Service d' onco-hematologie, CHU Strasbourg, 67 - Strasbourg (France)

    2010-10-15

    A risk of cancer induced by chemotherapy or radiotherapy has been observed on a long term for patients suffering from the Hodgkin disease. The age at the time of irradiation and a high dose delivered in the breast could be the major risk factors for breast cancers. The authors report the results of the use of an IMRT which reduces these high doses. Notably, the planning target volume (PTV) is significantly better with the IMRT. The authors discuss the volume distribution of low doses for different organs. A long term monitoring is still required to confirm the interest of using IMRT. Short communication

  11. Later Outcomes and Alpha/Beta Estimate From Hypofractionated Conformal Three-Dimensional Radiotherapy Versus Standard Fractionation for Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Leborgne, Felix [Department of Radiation Oncology, Hospital Italiano, Montevideo (Uruguay); Fowler, Jack, E-mail: jackfowlersbox@gmail.com [Department of Human Oncology, University of Wisconsin Medical School, Madison, WI (United States); Leborgne, Jose H.; Mezzera, Julieta [Department of Radiation Oncology, Hospital Italiano, Montevideo (Uruguay)

    2012-03-01

    Purpose: Now that the follow-up time has exceeded 5 years, an estimate of the {alpha}/{beta} ratio can be presented. The additional late outcomes in patients treated with three-dimensional conformal external beam radiotherapy for localized prostate cancer using a hypofractionated vs. a standard fractionation regimen are reported from this prospective nonrandomized contemporary comparison. Methods and Materials: A total of 114 nonrandomized patients chose hypofractionation delivered in 20 fractions of 3 Gy or 3.15 Gy (mean 3.06 Gy) for localized prostate cancer within a median overall time of 32 days (range, 29-49) using four fractions weekly. A total of 160 comparable patients were contemporarily treated within a median of 55 days (range 49-66). The median follow-up was 66 months (range, 24-95) for the hypofractionated arm and 63 months (range, 36-92) for the standard arm. The percentage of patients in the low-, medium-, and high-risk groups was 36%, 46%, and 18% in the hypofractionated arm and 44%, 50%, and 6% in standard arm (2 Gy), respectively. Results: The 5-year actuarial biochemical absence of disease (prostate-specific antigen nadir + 2 ng/mL) and disease-free survival rate was the same at 89% in both arms, making the {alpha}/{beta} calculation unambiguous. The point ratio of {alpha}/{beta} was 1.86 (95% confidence interval, 0.7-5.1 Gy). The 95% confidence interval was determined entirely by the binomial confidence limits in the numbers of patients. Rectal reactions of grade 3 and 4 occurred in 1 of 114 (hypofractionated) and 2 of 160 (standard) patients. Conclusions: The presented three-dimensional conformal regimen was acceptable, and the {alpha}/{beta} value was 1.8, in agreement with other very recent low meta-analyses (reviewed in the '' section).

  12. Later Outcomes and Alpha/Beta Estimate From Hypofractionated Conformal Three-Dimensional Radiotherapy Versus Standard Fractionation for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Purpose: Now that the follow-up time has exceeded 5 years, an estimate of the α/β ratio can be presented. The additional late outcomes in patients treated with three-dimensional conformal external beam radiotherapy for localized prostate cancer using a hypofractionated vs. a standard fractionation regimen are reported from this prospective nonrandomized contemporary comparison. Methods and Materials: A total of 114 nonrandomized patients chose hypofractionation delivered in 20 fractions of 3 Gy or 3.15 Gy (mean 3.06 Gy) for localized prostate cancer within a median overall time of 32 days (range, 29–49) using four fractions weekly. A total of 160 comparable patients were contemporarily treated within a median of 55 days (range 49-66). The median follow-up was 66 months (range, 24–95) for the hypofractionated arm and 63 months (range, 36–92) for the standard arm. The percentage of patients in the low-, medium-, and high-risk groups was 36%, 46%, and 18% in the hypofractionated arm and 44%, 50%, and 6% in standard arm (2 Gy), respectively. Results: The 5-year actuarial biochemical absence of disease (prostate-specific antigen nadir + 2 ng/mL) and disease-free survival rate was the same at 89% in both arms, making the α/β calculation unambiguous. The point ratio of α/β was 1.86 (95% confidence interval, 0.7–5.1 Gy). The 95% confidence interval was determined entirely by the binomial confidence limits in the numbers of patients. Rectal reactions of grade 3 and 4 occurred in 1 of 114 (hypofractionated) and 2 of 160 (standard) patients. Conclusions: The presented three-dimensional conformal regimen was acceptable, and the α/β value was 1.8, in agreement with other very recent low meta-analyses (reviewed in the “” section).

  13. Minimal Massive 3D Gravity Unitarity Redux

    OpenAIRE

    Arvanitakis, Alex S.; Townsend, Paul K

    2015-01-01

    A geometrical analysis of the bulk and anti-de Sitter boundary unitarity conditions of 3D "Minimal Massive Gravity" (MMG) (which evades the "bulk/boundary clash" of Topologically Massive Gravity) is used to extend and simplify previous results, showing that unitarity selects, up to equivalence, a connected region in parameter space. We also initiate the study of flat-space holography for MMG. Its relevant flat space limit is a deformation of 3D conformal gravity; the deformation is both non-l...

  14. Flexydos3D: A new deformable anthropomorphic 3D dosimeter readout with optical CT scanning

    Science.gov (United States)

    De Deene, Yves; Hill, Robin; Skyt, Peter S.; Booth, Jeremy

    2015-01-01

    A new deformable polydimethylsiloxane (PDMS) based dosimeter is proposed that can be cast in an anthropomorphic shape and that can be used for 3D radiation dosimetry of deformable targets. The new material has additional favorable characteristics as it is tissue equivalent for high-energy photons, easy to make and is non-toxic. In combination with dual wavelength optical scanning, it is a powerful dosimeter for dose verification of image gated or organ tracked radiotherapy with moving and deforming targets.

  15. The early toxicity of escalated versus standard dose conformal radiotherapy with neo-adjuvant androgen suppression for patients with localised prostate cancer: Results from the MRC RT01 trial (ISRCTN47772397)

    International Nuclear Information System (INIS)

    Background: Five-year disease-free survival rates for localised prostate cancer following standard doses of conventional radical external beam radiotherapy are around 80%. Conformal radiotherapy (CFRT) raises the possibility that radiotherapy doses can be increased and long-term efficacy outcomes improved, with safety an important consideration. Methods: MRC RT01 is a randomised controlled trial of 862 men with localised prostate cancer comparing Standard CFRT (64 Gy/32 f) versus Escalated CFRT (74 Gy/37 f), both administered with neo-adjuvant androgen suppression. Early toxicity was measured using physician-reported instruments (RTOG, LENT/SOM, Royal Marsden Scales) and patient-reported questionnaires (MOS SF-36, UCLA Prostate Cancer Index, FACT-P). Results: Overall early radiotherapy toxicity was similar, apart from increased bladder, bowel and sexual toxicity, in the Escalated Group during a short immediate post-radiotherapy period. Toxicity in both groups had abated by week 12. Using RTOG Acute Toxicity scores, cumulative Grade ≥2 bladder and bowel toxicity was 38% and 30% for Standard Group and 39% and 33% in Escalated Group, respectively. Urinary frequency (Royal Marsden Scale) improved in both groups from pre-androgen suppression to 6 months post-radiotherapy (p < 0.001), but bowel and sexual functioning deteriorated. This pattern was supported by patient-completed assessments. Six months after starting radiotherapy the incidence of RTOG Grade ≥2 side-effects was low (<1%); but there were six reports of rectal ulceration (6 Escalated Group), six haematuria (5 Escalated Group) and eight urethral stricture (6 Escalated Group). Conclusions: The two CFRT schedules with neo-adjuvant androgen suppression have broadly similar early toxicity profiles except for the immediate post-RT period. At 6 months and compared to before hormone therapy, bladder symptoms improved, whereas bowel and sexual symptoms worsened. These assessments of early treatment safety will be

  16. Massive 3D Supergravity

    CERN Document Server

    Andringa, Roel; de Roo, Mees; Hohm, Olaf; Sezgin, Ergin; Townsend, Paul K

    2009-01-01

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered `massive 3D gravity'. Another is a `new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  17. Massive 3D supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Andringa, Roel; Bergshoeff, Eric A; De Roo, Mees; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: O.Hohm@rug.n, E-mail: sezgin@tamu.ed, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-01-21

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered 'massive 3D gravity'. Another is a 'new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  18. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    ABSTRACT: Lack of productivity in construction is a well known issue. Despite the fact that causes hereof are multiple, the introduction of information technology is a frequently observed response to almost any challenge. ICT in construction is a thoroughly researched matter, however, the current...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  19. Dosimetric comparison of intensity modulated radiotherapy isocentric field plans and field in field (FIF) forward plans in the treatment of breast cancer

    OpenAIRE

    Al-Rahbi, Zakiya Salem; Al Mandhari, Zahid; Ravichandran, Ramamoorthy; Al-Kindi, Fatma; Davis, Cheriyathmanjiyil Anthony; Bhasi, Saju; Satyapal, Namrata; Rajan, Balakrishnan

    2013-01-01

    The present study is aimed at comparing the planning and delivery efficiency between three-dimensional conformal radiotherapy (3D-CRT), field-in-field, forward planned, intensity modulated radiotherapy (FIF-FP-IMRT), and inverse planned intensity modulated radiotherapy (IP-IMRT). Treatment plans of 20 patients with left-sided breast cancer, 10 post-mastectomy treated to a prescribed dose of 45 Gy to the chest wall in 20 fractions, and 10 post-breast-conserving surgery to a prescribed dose of ...

  20. Guideline of stereotactic radiotherapy of body trunk

    International Nuclear Information System (INIS)

    The guideline is issued for safe and effective practice of the stereotactic radiotherapy of body trunk by giving appropriate methodologies and their theoretical backgrounds to radiological stuff concerned, such as doctors, technologists, physicists, quality assurance (QA)/quality control (QC) personnel, and nurses. The issue is motivated by the recent and expected increase of facilities conducting the therapy popularized from its approval by health insurance authorities in 2004, is based on the drafts by the Study Group for improving prognosis of the accurate 3-D radiotherapy organized in the MHLW and by Jap. 3-D Conformal External Beam Radiotherapy Group and, after edition by QA committee of Jap. Soc. Ther. Radiol. Oncol., is herein published by the Society. The guideline is composed mainly from 4 chapters of Introduction, Clinical practice, Physics and technology, and QA/QC of equipments and systems. The second chapter contains, concerning the therapy, its definition, contraindication, application to health insurance (applicable diseases and requirement), target setting, radiation dose and fractionation, risk organs (serial and parallel ones) and dose limits, and progress observation post therapy. The third chapter, its definition and methods, therapeutic planning, and actual performance, and the forth, the principle, essential concept, items particularly needed (dosimetry and mechanical/geometrical accuracy of equipments, equipments for therapy planning, and QA/QC of the system). The guideline is to be revised within 2-3 years hereafter. (R.T.)

  1. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  2. The evolution of rectal and urinary toxicity and immune response in prostate cancer patients treated with two three-dimensional conformal radiotherapy techniques

    International Nuclear Information System (INIS)

    Our research compared whole pelvic (WP) and prostate-only (PO) 3-dimensional conformal radiotherapy (3DCRT) techniques in terms of the incidence and evolution of acute and late toxicity of the rectum and urinary bladder, and identified the PTV-parameters influencing these damages and changes in antitumor immune response. We analyzed 197 prostate cancer patients undergoing 3DCRT for gastrointestinal (GI) and genitourinary (GU) toxicities, and conducted a pilot immunological study including flow cytometry and an NK cell cytotoxicity assay. Acute and late toxicities were recorded according to the RTOG and the LENT-SOMA scales, respectively. Univariate and multivariate analyses were conducted for factors associated with toxicity. In the WP group, an increase of acute rectal toxicity was observed. A higher incidence of late GI/GU toxicity appeared in the PO group. Only 18 patients (WP-7.76% and PO-11.11%) suffered severe late GI toxicity, and 26 patients (WP-11.21% and PO-16.05%) severe late GU toxicity. In the majority of acute toxicity suffering patients, the diminution of late GI/GU toxicity to grade 1 or to no toxicity after radiotherapy was observed. The 3DCRT technique itself, patient age, T stage of TNM classification, surgical intervention, and some dose-volume parameters emerged as important factors in the probability of developing acute and late GI/GU toxicity. The proportion and differentiation of NK cells positively correlated during 3DCRT and negatively so after its completion with dose-volumes of the rectum and urinary bladder. T and NKT cells were down-regulated throughout the whole period. We found a negative correlation between leukocyte numbers and bone marrow irradiated by 44-54 Gy and a positive one for NK cell proportion and doses of 5-25 Gy. The acute GU, late GU, and GI toxicities up-regulated the T cell (CTL) numbers and NK cytotoxicity. Our study demonstrates the association of acute and late damage of the urinary bladder and rectum, with

  3. Hippocampal sparing radiotherapy for pediatric medulloblastoma: impact of treatment margins and treatment technique

    DEFF Research Database (Denmark)

    Brodin, N. Patrik; af Rosenschold, Per Munck; Blomstrand, Malin;

    2014-01-01

    BackgroundWe investigated how varying the treatment margin and applying hippocampal sparing and proton therapy impact the risk of neurocognitive impairment in pediatric medulloblastoma patients compared with current standard 3D conformal radiotherapy.MethodsWe included 17 pediatric medulloblastoma...... boost. Neurocognitive impairment risk was estimated based on dose-response models from pediatric CNS malignancy survivors and compared among different margins and treatment techniques.ResultsMean hippocampal dose and corresponding risk of cognitive impairment were decreased with decreasing treatment...

  4. PET/CT fusion in radiotherapy planning for lung cancer - case reports

    OpenAIRE

    Erak Marko Đ.; Mitrić Milana; Đuran Branislav; Tešanović Dušanka; Vasiljev Sanja

    2016-01-01

    Introduction. Application of imaging methods, namely computed tomography (CT), magnetic resonance imaging (MRI) and in recent years positron emission tomography-computed tomography (PET/CT), and the progress of computer technology have allowed the construction of effective computerized systems for treatment planning (TPS) and introducing the concept of virtual simulation in 3D conformal radiotherapy planning. Case report. We hereby presented two patients wi...

  5. 三维适形放疗治疗T4期食管癌预后分析%Prognosis of T4 Esophageal Carcinoma with Three-dimensional Conformal Radiotherapy

    Institute of Scientific and Technical Information of China (English)

    王玉祥; 祝淑钗; 邱嵘; 苏景伟; 沈文斌

    2011-01-01

    Objective To explore the prognosis and the related factors in T4 esophageal carcinoma with three-dimensional conformal radiotherapy (3D-CRT). Methods One hundred and thirty patients with esophageal cancer were treated with 3D-CRT with total irradiation dose of 50~ 76 Gy. Gender, age, location of primary tumor, the different bite, the lesion length in barium esophagogram, the largest diameter of lesion in CT scanning image, metastasis of lymph node, M stage, dose of irradiation, chemotherapy and recent efficacy were used as analysis factors for Cox regression univariate and multivariate analysis. Results After radiotherapy, CR was in 34, PR in 83 and NR in 13 patients; and the rate of total efficiency(CR+ PR) was 90%. l-,3-and 4- year survival rates and median was 57. 69%, 22. 73%, 16. 92% and 14. 2 months, respectively. With univariate analysis, location of primary tumor, the different bite, the lesion length in barium esophagogram, the largest diameter of lesion in CT scanning image, metastasis of lymph node or organ, and recent efficacy were related with prognosis of esophaeal cancer after 3D-CRT (P<0. 05); but gender, age, dose of irradiation and chemotherapy were not related with prognosis of esophaeal cancer(P>0. 05). With multivariate analysis, location of primary tumor, different bite, lesion length in barium esophagogram, metastasis of lymph node and M stage were independent prognostic factors. Conclusion For patients at T4 stage esophageal cancer with 3D-CRT, the main prognostic factors were location of primary tumor, different bite, the lesion length in barium esophagogram, metastasis of lymph node and M stage%目的 探讨T4期食管癌三维适形放疗的疗效及预后影响因素.方法 130例T4期食管癌接受三维适形放疗,放疗剂量DT50~76 Gy.将性别、年龄、食管原发肿瘤部位、放疗前进食状况、食管造影显示病变长度、CT显示瘤体最大直径、淋巴结转移与否、远处转移与否、放

  6. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-tri