WorldWideScience

Sample records for 3d cone-beam ct

  1. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    OpenAIRE

    Xing Zhao; Jing-jing Hu; Peng Zhang

    2009-01-01

    Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs) has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed...

  2. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2009-01-01

    Full Text Available Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides both projection data and reconstructed image volume into subsets according to geometric symmetries in circular cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared to traditional CPU implementation.

  3. Automatic Calibration Method of Voxel Size for Cone-beam 3D-CT Scanning System

    CERN Document Server

    Yang, Min; Liu, Yipeng; Men, Fanyong; Li, Xingdong; Liu, Wenli; Wei, Dongbo

    2013-01-01

    For cone-beam three-dimensional computed tomography (3D-CT) scanning system, voxel size is an important indicator to guarantee the accuracy of data analysis and feature measurement based on 3D-CT images. Meanwhile, the voxel size changes with the movement of the rotary table along X-ray direction. In order to realize the automatic calibration of the voxel size, a new easily-implemented method is proposed. According to this method, several projections of a spherical phantom are captured at different imaging positions and the corresponding voxel size values are calculated by non-linear least square fitting. Through these interpolation values, a linear equation is obtained, which reflects the relationship between the rotary table displacement distance from its nominal zero position and the voxel size. Finally, the linear equation is imported into the calibration module of the 3D-CT scanning system, and when the rotary table is moving along X-ray direction, the accurate value of the voxel size is dynamically expo...

  4. Prediction of position estimation errors for 3D target trajetories estimated from cone-beam CT projections

    DEFF Research Database (Denmark)

    Poulsen, Per Rugaard; Cho, Byungchul; Keall, Paul

    2010-01-01

    The three-dimensional (3D) trajectory of an implanted tumor marker can be estimated from its projected 2D trajectory in a set of cone-beam CT (CBCT) projections by a probability-based method[1]. The uncertainty in the position estimation depends on the trajectory and varies along a given trajectory...

  5. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    Science.gov (United States)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory.

  6. Evaluation of accuracy of 3D reconstruction images using multi-detector CT and cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Ja [Graduate School of Clinical Dentistry, Hallym University, Seoul (Korea, Republic of); Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2012-03-15

    This study was performed to determine the accuracy of linear measurements on three-dimensional (3D) images using multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). MDCT and CBCT were performed using 24 dry skulls. Twenty-one measurements were taken on the dry skulls using digital caliper. Both types of CT data were imported into OnDemand software and identification of landmarks on the 3D surface rendering images and calculation of linear measurements were performed. Reproducibility of the measurements was assessed using repeated measures ANOVA and ICC, and the measurements were statistically compared using a Student t-test. All assessments under the direct measurement and image-based measurements on the 3D CT surface rendering images using MDCT and CBCT showed no statistically difference under the ICC examination. The measurements showed no differences between the direct measurements of dry skull and the image-based measurements on the 3D CT surface rendering images (P>.05). Three-dimensional reconstructed surface rendering images using MDCT and CBCT would be appropriate for 3D measurements.

  7. Gambaran densitas kamar pulpa gigi sulung menggunakan cone beam CT-3D (Description of pulp chamber density in deciduous teeth using cone beam CT-3D)

    OpenAIRE

    Herdiyati Y; Epsilawati L; Oscandar F; Nurianingsih R

    2013-01-01

    Background: Dental caries is the most common chronic diseases. Detection of caries is needed, especially on the deciduous teeth. An examination such as radiological examination is essential. The radiographic figures distinguish radiolucent of the crown. Digital radiography cone beam computed tomography (CBCT) is able to show a more detailed picture. Purpose: This study was aimed to get value of the density of pulp chamber of caries and non caries deciduous teeth using CBCT radiographs. Method...

  8. How accurate are the fusion of cone-beam CT and 3-D stereophotographic images?

    Directory of Open Access Journals (Sweden)

    Yasas S N Jayaratne

    Full Text Available BACKGROUND: Cone-beam Computed Tomography (CBCT and stereophotography are two of the latest imaging modalities available for three-dimensional (3-D visualization of craniofacial structures. However, CBCT provides only limited information on surface texture. This can be overcome by combining the bone images derived from CBCT with 3-D photographs. The objectives of this study were 1 to evaluate the feasibility of integrating 3-D Photos and CBCT images 2 to assess degree of error that may occur during the above processes and 3 to identify facial regions that would be most appropriate for 3-D image registration. METHODOLOGY: CBCT scans and stereophotographic images from 29 patients were used for this study. Two 3-D images corresponding to the skin and bone were extracted from the CBCT data. The 3-D photo was superimposed on the CBCT skin image using relatively immobile areas of the face as a reference. 3-D colour maps were used to assess the accuracy of superimposition were distance differences between the CBCT and 3-D photo were recorded as the signed average and the Root Mean Square (RMS error. PRINCIPAL FINDINGS: The signed average and RMS of the distance differences between the registered surfaces were -0.018 (±0.129 mm and 0.739 (±0.239 mm respectively. The most errors were found in areas surrounding the lips and the eyes, while minimal errors were noted in the forehead, root of the nose and zygoma. CONCLUSIONS: CBCT and 3-D photographic data can be successfully fused with minimal errors. When compared to RMS, the signed average was found to under-represent the registration error. The virtual 3-D composite craniofacial models permit concurrent assessment of bone and soft tissues during diagnosis and treatment planning.

  9. Gambaran densitas kamar pulpa gigi sulung menggunakan cone beam CT-3D (Description of pulp chamber density in deciduous teeth using cone beam CT-3D

    Directory of Open Access Journals (Sweden)

    Herdiyati Y

    2013-06-01

    Full Text Available Background: Dental caries is the most common chronic diseases. Detection of caries is needed, especially on the deciduous teeth. An examination such as radiological examination is essential. The radiographic figures distinguish radiolucent of the crown. Digital radiography cone beam computed tomography (CBCT is able to show a more detailed picture. Purpose: This study was aimed to get value of the density of pulp chamber of caries and non caries deciduous teeth using CBCT radiographs. Methods: The study was conducted by using simple descriptive. The samples were all the data CBCT of pediatric patients aged 7-10 years who visited the Dental Hospital of the Faculty of Dentistry, University of Padjadjaran. The samples were teeth with single and double root. Results: The results showed that the value of the normal pulp density is 422.56 Hu, while the condition of caries decreased becomes -77.89 Hu. Conclusion: The tooth with caries showed a lower density than the non caries/tooth.Latar belakang: Karies gigi merupakan penyakit kronis yang sering terjadi. Deteksi terhadap karies sangat diperlukan terutama pada gigi decidius. Pemeriksaan penunjang berupa pemeriksaan radiologis sangat diperlukan. Secara umum gambaran radiografi dapat membedakan karies berupa gambaran radiolusent pada mahkota. Radiografi digital cone beam computed tomografi (CBCT, merupakan jenis radiografi yang mampu memperlihatkan gambaran yang lebih detail. Tujuan: Penelitian ini bertujuan mendapatkan nilai densitas kamar pulpa gigi sulung yang karies dan non karies menggunakan radiografi CBCT. Metode: Penelitian dilakukan dengan metode simple deskriptif. Sampel penelitian adalah semua data CBCT dari pasien anak berusia 7 - 10 tahun yang berkunjung ke RSGM Fakultas Kedokteran Gigi Universitas Padjadjaran. Gigi yang dianalisa meliputi gigi berakar tunggal dan berakar ganda. Hasil: Hasil penelitian menunjukkan bahwa nilai densitas pulpa normal adalah 422,56 Hu, sedangkan pada kondisi

  10. Use of cone-beam CT and live 3-D needle guidance to facilitate percutaneous nephrostomy and nephrolithotripsy access in children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, C.M. [Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA (United States); Kukreja, Kamlesh [Texas Children' s Hospital, Department of Radiology, Houston, TX (United States); Singewald, Timothy; Johnson, Neil D.; Racadio, John M. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Minevich, Eugene; Reddy, Pramod [Cincinnati Children' s Hospital Medical Center, Department of Urology, Cincinnati, OH (United States)

    2016-04-15

    Gaining access into non-dilated renal collecting systems for percutaneous nephrolithotripsy, particularly in patients with prohibitive body habitus and/or scoliosis, is often challenging using conventional techniques. To evaluate the feasibility of cone-beam CT for percutaneous nephrostomy placement for subsequent percutaneous nephrolithotripsy in children and adolescents. A retrospective review of percutaneous nephrostomy revealed use of cone-beam CT and 3-D guidance in 12 percutaneous nephrostomy procedures for 9 patients between 2006 and 2015. All cone-beam CT-guided percutaneous nephrostomies were for pre-lithotripsy access and all 12 were placed in non-dilated collecting systems. Technical success was 100%. There were no complications. Cone-beam CT with 3-D guidance is a technically feasible technique for percutaneous nephrostomy in children and adolescents, specifically for nephrolithotripsy access in non-dilated collecting systems. (orig.)

  11. Use of cone-beam CT and live 3-D needle guidance to facilitate percutaneous nephrostomy and nephrolithotripsy access in children and adolescents

    International Nuclear Information System (INIS)

    Gaining access into non-dilated renal collecting systems for percutaneous nephrolithotripsy, particularly in patients with prohibitive body habitus and/or scoliosis, is often challenging using conventional techniques. To evaluate the feasibility of cone-beam CT for percutaneous nephrostomy placement for subsequent percutaneous nephrolithotripsy in children and adolescents. A retrospective review of percutaneous nephrostomy revealed use of cone-beam CT and 3-D guidance in 12 percutaneous nephrostomy procedures for 9 patients between 2006 and 2015. All cone-beam CT-guided percutaneous nephrostomies were for pre-lithotripsy access and all 12 were placed in non-dilated collecting systems. Technical success was 100%. There were no complications. Cone-beam CT with 3-D guidance is a technically feasible technique for percutaneous nephrostomy in children and adolescents, specifically for nephrolithotripsy access in non-dilated collecting systems. (orig.)

  12. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    Science.gov (United States)

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  13. A proposed method for accurate 3D analysis of cochlear implant migration using fusion of cone beam CT

    Directory of Open Access Journals (Sweden)

    Guido eDees

    2016-01-01

    Full Text Available IntroductionThe goal of this investigation was to compare fusion of sequential cone beam CT volumes to the gold standard (fiducial registration in order to be able to analyze clinical CI migration with high accuracy in three dimensions. Materials and MethodsPaired time-lapsed cone beam CT volumes were performed on five human cadaver temporal bones and one human subject. These volumes were fused using 3D Slicer 4 and BRAINSFit software. Using a gold standard fiducial technique, the accuracy, robustness and performance time of the fusion process were assessed.Results This proposed fusion protocol achieves a sub voxel mean Euclidean distance of 0.05 millimeter in human cadaver temporal bones and 0.16 millimeter when applied to the described in vivo human synthetic data set in over 95% of all fusions. Performance times are less than two minutes.ConclusionHere a new and validated method based on existing techniques is described which could be used to accurately quantify migration of cochlear implant electrodes.

  14. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    Science.gov (United States)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  15. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy

    NARCIS (Netherlands)

    X. Liang; I. Lambrichts; Y. Sun; K. Denis; B. Hassan; L. Li; R. Pauwels; R. Jacobs

    2010-01-01

    Aim: The study aim was to compare the geometric accuracy of three-dimensional (3D) surface model reconstructions between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: A dry human mandible was scanned with five CBCT systems (NewTom 3G,

  16. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.

    NARCIS (Netherlands)

    Swennen, G.R.; Mommaerts, M.Y.; Abeloos, J.V.S.; Clercq, C. De; Lamoral, P.; Neyt, N.; Casselman, J.W.; Schutyser, F.A.C.

    2009-01-01

    Cone-beam computed tomography (CBCT) is used for maxillofacial imaging. 3D virtual planning of orthognathic and facial orthomorphic surgery requires detailed visualisation of the interocclusal relationship. This study aimed to introduce and evaluate the use of a double CBCT scan procedure with a mod

  17. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.

    Science.gov (United States)

    Swennen, G R J; Mommaerts, M Y; Abeloos, J; De Clercq, C; Lamoral, P; Neyt, N; Casselman, J; Schutyser, F

    2009-01-01

    Cone-beam computed tomography (CBCT) is used for maxillofacial imaging. 3D virtual planning of orthognathic and facial orthomorphic surgery requires detailed visualisation of the interocclusal relationship. This study aimed to introduce and evaluate the use of a double CBCT scan procedure with a modified wax bite wafer to augment the 3D virtual skull model with a detailed dental surface. The impressions of the dental arches and the wax bite wafer were scanned for ten patient separately using a high resolution standardized CBCT scanning protocol. Surface-based rigid registration using ICP (iterative closest points) was used to fit the virtual models on the wax bite wafer. Automatic rigid point-based registration of the wax bite wafer on the patient scan was performed to implement the digital virtual dental arches into the patient's skull model. Probability error histograms showed errors of 3D virtual augmented model of the skull with detailed dental surface.

  18. Development of an advanced 3D cone beam tomographic system

    Science.gov (United States)

    Sire, Pascal; Rizo, Philippe; Martin, M.; Grangeat, Pierre; Morisseau, P.

    Due to its high spatial resolution, the 3D X-ray cone-beam tomograph (CT) maximizes understanding of test object microstructure. In order for the present X-ray CT NDT system to control ceramics and ceramic-matrix composites, its spatial resolution must exceed 50 microns. Attention is given to two experimental data reconstructions that have been conducted to illustrate system capabilities.

  19. Imagens em 2D e 3D geradas pela TC Cone-Beam e radiografias convencionais: qual a mais confiável? 2D / 3D Cone-Beam CT images or conventional radiography: which is more reliable?

    Directory of Open Access Journals (Sweden)

    Carolina Perez Couceiro

    2010-10-01

    Full Text Available OBJETIVO: comparar a confiabilidade de identificação dos pontos visualizados sobre radiografias cefalométricas convencionais e sobre imagens geradas pela Tomografia Computadorizada Cone-Beam em 2D e 3D. MÉTODOS: o material constou de imagens obtidas através do tomógrafo computadorizado Cone-Beam, em norma lateral, em 2D e 3D, impressas em papel fotográfico; e radiografias cefalométricas laterais, realizadas na mesma clínica radiológica e no mesmo dia, de dois pacientes pertencentes aos arquivos do Curso de Especialização em Ortodontia da Faculdade de Odontologia da Universidade Federal Fluminense (UFF. Dez alunos do Curso de Especialização em Ortodontia da UFF identificaram pontos de referência sobre papel de acetato transparente e foram feitas medições das seguintes variáveis cefalométricas: ANB, FMIA, IMPA, FMA, ângulo interincisal, 1-NA (mm e ¯1-NB (mm. Em seguida, foram calculadas médias aritméticas, desvios-padrão e coeficientes de variância de cada variável para os dois pacientes. RESULTADOS E CONCLUSÃO: os valores das medições realizadas a partir de imagens em 3D apresentaram menor dispersão, sugerindo que essas imagens são mais confiáveis quanto à identificação de alguns pontos cefalométricos. Entretanto, como as imagens em 3D impressas utilizadas no presente estudo não permitiram a visualização de pontos intracranianos, torna-se necessário que softwares específicos sejam elaborados para que esse tipo de exame possa se tornar rotineiro na clínica ortodôntica.OBJECTIVE: To compare the reliability of two different methods used for viewing and identifying cephalometric landmarks, i.e., (a using conventional cephalometric radiographs, and (b using 2D and 3D images generated by Cone-Beam Computed Tomography. METHODS: The material consisted of lateral view 2D and 3D images obtained by Cone-Beam Computed Tomography printed on photo paper, and lateral cephalometric radiographs, taken in the same

  20. Comparative evaluation of a novel 3D segmentation algorithm on in-treatment radiotherapy cone beam CT images

    Science.gov (United States)

    Price, Gareth; Moore, Chris

    2007-03-01

    Image segmentation and delineation is at the heart of modern radiotherapy, where the aim is to deliver as high a radiation dose as possible to a cancerous target whilst sparing the surrounding healthy tissues. This, of course, requires that a radiation oncologist dictates both where the tumour and any nearby critical organs are located. As well as in treatment planning, delineation is of vital importance in image guided radiotherapy (IGRT): organ motion studies demand that features across image databases are accurately segmented, whilst if on-line adaptive IGRT is to become a reality, speedy and correct target identification is a necessity. Recently, much work has been put into the development of automatic and semi-automatic segmentation tools, often using prior knowledge to constrain some grey level, or derivative thereof, interrogation algorithm. It is hoped that such techniques can be applied to organ at risk and tumour segmentation in radiotherapy. In this work, however, we make the assumption that grey levels do not necessarily determine a tumour's extent, especially in CT where the attenuation coefficient can often vary little between cancerous and normal tissue. In this context we present an algorithm that generates a discontinuity free delineation surface driven by user placed, evidence based support points. In regions of sparse user supplied information, prior knowledge, in the form of a statistical shape model, provides guidance. A small case study is used to illustrate the method. Multiple observers (between 3 and 7) used both the presented tool and a commercial manual contouring package to delineate the bladder on a serially imaged (10 cone beam CT volumes ) prostate patient. A previously presented shape analysis technique is used to quantitatively compare the observer variability.

  1. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xin, E-mail: Xin.Liang@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); College of Stomatology, Dalian Medical University (China); Lambrichts, Ivo, E-mail: Ivo.Lambrichts@uhasselt.b [Department of Basic Medical Sciences, Histology and Electron Microscopy, Faculty of Medicine, University of Hasselt, Diepenbeek (Belgium); Sun Yi, E-mail: Sunyihello@hotmail.co [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Denis, Kathleen, E-mail: kathleen.denis@groept.b [Department of Industrial Sciences and Techology-Engineering (IWT), XIOS Hogeschool Limburg, Hasselt (Belgium); Hassan, Bassam, E-mail: b.hassan@acta.n [Department of Oral Radiology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam (Netherlands); Li Limin, E-mail: Limin.Li@uz.kuleuven.b [Department of Paediatric Dentistry and Special Dental Care, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Pauwels, Ruben, E-mail: Ruben.Pauwels@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Jacobs, Reinhilde, E-mail: Reinhilde.Jacobs@uz.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium)

    2010-08-15

    Aim: The study aim was to compare the geometric accuracy of three-dimensional (3D) surface model reconstructions between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: A dry human mandible was scanned with five CBCT systems (NewTom 3G, Accuitomo 3D, i-CAT, Galileos, Scanora 3D) and one MSCT scanner (Somatom Sensation 16). A 3D surface bone model was created from the six systems. The reference (gold standard) 3D model was obtained with a high resolution laser surface scanner. The 3D models from the five systems were compared with the gold standard using a point-based rigid registration algorithm. Results: The mean deviation from the gold standard for MSCT was 0.137 mm and for CBCT were 0.282, 0.225, 0.165, 0.386 and 0.206 mm for the i-CAT, Accuitomo, NewTom, Scanora and Galileos, respectively. Conclusion: The results show that the accuracy of CBCT 3D surface model reconstructions is somewhat lower but acceptable comparing to MSCT from the gold standard.

  2. 3D Cone Beam Volumetric Tomography Dedicated to Maxillofacial Radiology

    OpenAIRE

    Masoud Varshosaz

    2009-01-01

      "nThe 3D cone beam volume/computed tomography (CBVT/CBCT) has been designed for imaging the hard tissues of the maxillofacial region, although it has been used in some era of medical imaging for many years. CBVT is capable of providing a sub-millimeter resolution with the short scanning time of mostly less than 20 seconds and radiation dosages reportedly up to 15 times lower than those of spiral CT scans. In less than a decade, CBVT has revolutionized oral and maxillofacial ra...

  3. 3D cone-beam CT guidance, a novel technique in renal biopsy - results in 41 patients with suspected renal masses

    Energy Technology Data Exchange (ETDEWEB)

    Braak, Sicco J.; Heesewijk, Johannes P.M. van; Strijen, Marco J.L. van [St Antonius Hospital, Department of Radiology, PO Box 2500, Nieuwegein (Netherlands); Melick, Harm H.E. van; Onaca, Mircea G. [St Antonius Hospital, Department of Urology, Nieuwegein (Netherlands)

    2012-11-15

    To determine whether 3D cone-beam computed tomography (CBCT) guidance allows safe and accurate biopsy of suspected small renal masses (SRM), especially in hard-to-reach anatomical locations. CBCT guidance was used to perform 41 stereotactic biopsy procedures of lesions that were inaccessible for ultrasound guidance or CT guidance. In CBCT guidance, a 3D-volume data set is acquired by rotating a C-arm flat-panel detector angiosystem around the patient. In the data set, a needle trajectory is determined and, after co-registration, a fusion image is created from fluoroscopy and a slice from the data set, enabling the needle to be positioned in real time. Of the 41 lesions, 22 were malignant, 17 were benign, and 2 were nondiagnostic. The two nondiagnostic lesions proved to be renal cell carcinoma. There was no growth during follow-up imaging of the benign lesions (mean 29 months). This resulted in a sensitivity, specificity, PPV, NPV, and accuracy of 91.7, 100, 100, 89.5, and 95.1%, respectively. Mean dose-area product value was 44.0 Gy.cm{sup 2} (range 16.5-126.5). There was one minor bleeding complication. With CBCT guidance, safe and accurate biopsy of a suspected SRM is feasible, especially in hard-to-reach locations of the kidney. (orig.)

  4. Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors

    Directory of Open Access Journals (Sweden)

    Sweeney Reinhart A

    2012-06-01

    Full Text Available Abstract Background To analyze the accuracy and inter-observer variability of image-guidance (IG using 3D or 4D cone-beam CT (CBCT technology in stereotactic body radiotherapy (SBRT for lung tumors. Materials and methods Twenty-one consecutive patients treated with image-guided SBRT for primary and secondary lung tumors were basis for this study. A respiration correlated 4D-CT and planning contours served as reference for all IG techniques. Three IG techniques were performed independently by three radiation oncologists (ROs and three radiotherapy technicians (RTTs. Image-guidance using respiration correlated 4D-CBCT (IG-4D with automatic registration of the planning 4D-CT and the verification 4D-CBCT was considered gold-standard. Results were compared with two IG techniques using 3D-CBCT: 1 manual registration of the planning internal target volume (ITV contour and the motion blurred tumor in the 3D-CBCT (IG-ITV; 2 automatic registration of the planning reference CT image and the verification 3D-CBCT (IG-3D. Image quality of 3D-CBCT and 4D-CBCT images was scored on a scale of 1–3, with 1 being best and 3 being worst quality for visual verification of the IGRT results. Results Image quality was scored significantly worse for 3D-CBCT compared to 4D-CBCT: the worst score of 3 was given in 19 % and 7.1 % observations, respectively. Significant differences in target localization were observed between 4D-CBCT and 3D-CBCT based IG: compared to the reference of IG-4D, tumor positions differed by 1.9 mm ± 0.9 mm (3D vector on average using IG-ITV and by 3.6 mm ± 3.2 mm using IG-3D; results of IG-ITV were significantly closer to the reference IG-4D compared to IG-3D. Differences between the 4D-CBCT and 3D-CBCT techniques increased significantly with larger motion amplitude of the tumor; analogously, differences increased with worse 3D-CBCT image quality scores. Inter-observer variability was largest in SI direction and was

  5. Fusion of cone-beam CT and 3D photographic images for soft tissue simulation in maxillofacial surgery

    Science.gov (United States)

    Chung, Soyoung; Kim, Joojin; Hong, Helen

    2016-03-01

    During maxillofacial surgery, prediction of the facial outcome after surgery is main concern for both surgeons and patients. However, registration of the facial CBCT images and 3D photographic images has some difficulties that regions around the eyes and mouth are affected by facial expressions or the registration speed is low due to their dense clouds of points on surfaces. Therefore, we propose a framework for the fusion of facial CBCT images and 3D photos with skin segmentation and two-stage surface registration. Our method is composed of three major steps. First, to obtain a CBCT skin surface for the registration with 3D photographic surface, skin is automatically segmented from CBCT images and the skin surface is generated by surface modeling. Second, to roughly align the scale and the orientation of the CBCT skin surface and 3D photographic surface, point-based registration with four corresponding landmarks which are located around the mouth is performed. Finally, to merge the CBCT skin surface and 3D photographic surface, Gaussian-weight-based surface registration is performed within narrow-band of 3D photographic surface.

  6. Cone beam CT, wat moet ik ermee?

    NARCIS (Netherlands)

    R. Hoogeveen

    2013-01-01

    De cone beam-ct-scan (cbct-scan) maakt een opmars in de tandheelkunde vanwege de toegevoegde waarde van de derde dimensie in de diagnostiek. Deze extra informatie wordt verkregen ten koste van een hogere stralenbelasting en een daarmee gepaard gaand hoger risico voor de patiënt. Om de clinicus te he

  7. WE-G-18A-04: 3D Dictionary Learning Based Statistical Iterative Reconstruction for Low-Dose Cone Beam CT Imaging

    International Nuclear Information System (INIS)

    Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm in a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential

  8. 3D Cone Beam Volumetric Tomography Dedicated to Maxillofacial Radiology

    Directory of Open Access Journals (Sweden)

    Masoud Varshosaz

    2009-01-01

    Full Text Available   "nThe 3D cone beam volume/computed tomography (CBVT/CBCT has been designed for imaging the hard tissues of the maxillofacial region, although it has been used in some era of medical imaging for many years. CBVT is capable of providing a sub-millimeter resolution with the short scanning time of mostly less than 20 seconds and radiation dosages reportedly up to 15 times lower than those of spiral CT scans. In less than a decade, CBVT has revolutionized oral and maxillofacial radiology and is known as the “Standard of Care”. Although development was initially directed towards multiplanar viewing for dental implant and orthodontic treatment planning, secondary applications in other areas continue to expand such as maxillo-facial trauma, temporomandibular joint disorders, sinuse pathosis and upper airway evaluation. The intent of this presentation is to provide an overview of CBVT technology, advantages and disadvantages compared to the other modalities such as 2D images and medical CT and examples of justified cases in the oral & maxillofacial region.   

  9. Novel utilization of 3D technology and the hybrid operating theatre: Peri-operative assessment of posterior sterno-clavicular dislocation using cone beam CT

    International Nuclear Information System (INIS)

    A patient with a medial and posterior dislocation of the right sterno-clavicular (SC) joint and displacement of the trachea and brachiocephalic artery by the medial head of the clavicle underwent general anaesthetic in the operating theatre for an open reduction procedure. The surgeon initially attempted a closed reduction, but this required imaging to check SC alignment. The patient was transferred to an adjacent hybrid operating theatre for imaging. Cone beam computed tomography (CBCT) was performed, which successfully demonstrated a significant reduction in the dislocation of the SC joint. The trachea and brachiocephalic artery were no longer compressed or displaced. This case study demonstrates an alternative to the patient being transferred to the medical imaging department for multi-slice CT. It also describes a novel use of the hybrid operating theatre and its CBCT capabilities

  10. Scatter corrections for cone beam optical CT

    Energy Technology Data Exchange (ETDEWEB)

    Olding, Tim; Holmes, Oliver [Department of Physics, Queen' s University (United Kingdom); Schreiner, L John [Medical Physics Department, Cancer Centre of Southeastern Ontario (Canada)], E-mail: Tim.Olding@krcc.on.ca

    2009-05-01

    Cone beam optical computed tomography (OptCT) employing the VISTA scanner (Modus Medical, London, ON) has been shown to have significant promise for fast, three dimensional imaging of polymer gel dosimeters. One distinct challenge with this approach arises from the combination of the cone beam geometry, a diffuse light source, and the scattering polymer gel media, which all contribute scatter signal that perturbs the accuracy of the scanner. Beam stop array (BSA), beam pass array (BPA) and anti-scatter polarizer correction methodologies have been employed to remove scatter signal from OptCT data. These approaches are investigated through the use of well-characterized phantom scattering solutions and irradiated polymer gel dosimeters. BSA corrected scatter solutions show good agreement in attenuation coefficient with the optically absorbing dye solutions, with considerable reduction of scatter-induced cupping artifact at high scattering concentrations. The application of BSA scatter corrections to a polymer gel dosimeter lead to an overall improvement in the number of pixel satisfying the (3%, 3mm) gamma value criteria from 7.8% to 0.15%.

  11. Diagnosis and Endodontic Management of Fused Mandibular Second Molar and Paramolar with Concrescent Supernumerary Tooth Using Cone-beam CT and 3-D Printing Technology: A Case Report.

    Science.gov (United States)

    Kato, Hiroshi; Kamio, Takashi

    2015-01-01

    Supernumerary teeth in the molar area are classified as paramolars or distomolars based on location. They occur frequently in the maxilla, but only rarely in the mandible. These teeth are frequently fused with adjacent teeth. When this occurs, the pulp cavities may also be connected. This makes diagnosis and planning of endodontic treatment extremely difficult. Here we report a case of a mandibular second molar fused with a paramolar, necessitating dental pulp treatment. Intraoral and panoramic radiographs were obtained for an evaluation and diagnosis. Although the images revealed a supernumerary tooth-like structure between the posterior area of the mandibular second molar and mandibular third molar, it was difficult to confirm the morphology of the tooth root apical area. Subsequent cone-beam computed tomography (CBCT) revealed that the supernumerary tooth-like structure was concrescent with the root apical area of the mandibular second molar. Based on these findings, the diagnosis was a fused mandibular second molar and paramolar with a concrescent supernumerary tooth. A 3-dimensional (3-D) printer was used to produce models based on the CBCT data to aid in treatment planning and explanation of the proposed procedures to the patient. These models allowed the complicated morphology involved to be clearly viewed, which facilitated a more precise diagnosis and better treatment planning than would otherwise have been possible. These technologies were useful in obtaining informed consent from the patient, promoting 3-D morphological understanding, and facilitating simulation of endodontic treatment. PMID:26370578

  12. Radiation Exposure of Patients by Cone Beam CT during Endobronchial Navigation - A Phantom Study

    OpenAIRE

    Hohenforst-Schmidt, Wolfgang; Banckwitz, Rosemarie; Zarogoulidis, Paul; Vogl, Thomas; Darwiche, Kaid; Goldberg, Eugene; Huang, Haidong; Simoff, Michael; Li, Qiang; Browning, Robert; Freitag, Lutz; Turner, J. Francis; Pivert, Patrick Le; Yarmus, Lonny; Zarogoulidis, Konstantinos

    2014-01-01

    Rationale: Cone Beam Computed Tomography imaging has become increasingly important in many fields of interventional therapies. Objective: Lung navigation study which is an uncommon soft tissue approach. Methods: As no effective organ radiation dose levels were available for this kind of Cone Beam Computed Tomography application we simulated in our DynaCT (Siemens AG, Forchheim, Germany) suite 2 measurements including 3D acquisition and again for 3D acquisition and 4 endobronchial navigation m...

  13. Influence of Head Motion on the Accuracy of 3D Reconstruction with Cone-Beam CT: Landmark Identification Errors in Maxillofacial Surface Model.

    Directory of Open Access Journals (Sweden)

    Kyung-Min Lee

    Full Text Available The purpose of this study was to investigate the influence of head motion on the accuracy of three-dimensional (3D reconstruction with cone-beam computed tomography (CBCT scan.Fifteen dry skulls were incorporated into a motion controller which simulated four types of head motion during CBCT scan: 2 horizontal rotations (to the right/to the left and 2 vertical rotations (upward/downward. Each movement was triggered to occur at the start of the scan for 1 second by remote control. Four maxillofacial surface models with head motion and one control surface model without motion were obtained for each skull. Nine landmarks were identified on the five maxillofacial surface models for each skull, and landmark identification errors were compared between the control model and each of the models with head motion.Rendered surface models with head motion were similar to the control model in appearance; however, the landmark identification errors showed larger values in models with head motion than in the control. In particular, the Porion in the horizontal rotation models presented statistically significant differences (P < .05. Statistically significant difference in the errors between the right and left side landmark was present in the left side rotation which was opposite direction to the scanner rotation (P < .05.Patient movement during CBCT scan might cause landmark identification errors on the 3D surface model in relation to the direction of the scanner rotation. Clinicians should take this into consideration to prevent patient movement during CBCT scan, particularly horizontal movement.

  14. Using cone-beam CT as a low-dose 3D imaging technique for the extremities: initial experience in 50 subjects

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ambrose J.; Chang, Connie Y.; Palmer, William E. [Massachusetts General Hospital, Department of Radiology, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Thomas, Bijoy J. [Universal College of Medical Sciences, Department of Radiology, Bhairahawa (Nepal); MacMahon, Peter J. [Mater Misericordiae University Hospital, Department of Radiology, Dublin 7 (Ireland)

    2015-06-01

    To prospectively evaluate a dedicated extremity cone-beam CT (CBCT) scanner in cases with and without orthopedic hardware by (1) comparing its imaging duration and image quality to those of radiography and multidetector CT (MDCT) and (2) comparing its radiation dose to that of MDCT. Written informed consent was obtained for all subjects for this IRB-approved, HIPAA-compliant study. Fifty subjects with (1) fracture of small bones, (2) suspected intraarticular fracture, (3) fracture at the site of complex anatomy, or (4) a surgical site difficult to assess with radiography alone were recruited and scanned on an extremity CBCT scanner prior to FDA approval. Same-day radiographs were performed in all subjects. Some subjects also underwent MDCT within 1 month of CBCT. Imaging duration and image quality were compared between CBCT and radiographs. Imaging duration, effective radiation dose, and image quality were compared between CBCT and MDCT. Fifty-one CBCT scans were performed in 50 subjects. Average imaging duration was shorter for CBCT than radiographs (4.5 min vs. 6.6 min, P = 0.001, n = 51) and MDCT (7.6 min vs. 10.9 min, P = 0.01, n = 7). Average estimated effective radiation dose was less for CBCT than MDCT (0.04 mSv vs. 0.13 mSv, P = 0.02, n = 7). CBCT images yielded more diagnostic information than radiographs in 23/51 cases and more diagnostic information than MDCT in 1/7 cases, although radiographs were superior for detecting hardware complications. CBCT performs high-resolution imaging of the extremities using less imaging time than radiographs and MDCT and lower radiation dose than MDCT. (orig.)

  15. Compressed-sensing (CS)-based 3D image reconstruction in cone-beam CT (CBCT) for low-dose, high-quality dental X-ray imaging

    Science.gov (United States)

    Lee, M. S.; Kim, H. J.; Cho, H. S.; Hong, D. K.; Je, U. K.; Oh, J. E.; Park, Y. O.; Lee, S. H.; Cho, H. M.; Choi, S. I.; Koo, Y. S.

    2013-09-01

    The most popular reconstruction algorithm for cone-beam computed tomography (CBCT) is based on the computationally-inexpensive filtered-backprojection (FBP) method. However, that method usually requires dense projections over the Nyquist samplings, which imposes severe restrictions on the imaging doses. Moreover, the algorithm tends to produce cone-beam artifacts as the cone angle is increased. Several variants of the FBP-based algorithm have been developed to overcome these difficulties, but problems with the cone-beam reconstruction still remain. In this study, we considered a compressed-sensing (CS)-based reconstruction algorithm for low-dose, high-quality dental CBCT images that exploited the sparsity of images with substantially high accuracy. We implemented the algorithm and performed systematic simulation works to investigate the imaging characteristics. CBCT images of high quality were successfully reconstructed by using the built-in CS-based algorithm, and the image qualities were evaluated quantitatively in terms of the universal-quality index (UQI) and the slice-profile quality index (SPQI).We expect the reconstruction algorithm developed in the work to be applicable to current dental CBCT systems, to reduce imaging doses, and to improve the image quality further.

  16. Towards cone-beam CT thermometry

    Science.gov (United States)

    Li, Ming; Abi-Jaoudeh, Nadine; Kapoor, Ankur; Kadoury, Samuel; Xu, Sheng; Noordhoek, Niels; Radaelli, Alessandro; Carelsen, Bart; Wood, Bradford J.

    2013-03-01

    Temperature monitoring and therefore the final treatment zone achieved during a cone-beam CT (CBCT) guided ablation can prevent overtreatment and undertreatment. A novel method is proposed to detect changes in consecutive CBCT images obtained from projection reconstructions during an ablation procedure. The possibility is explored of using this method to generate thermometry maps from CBCT images, which can be used as an input function for ablation treatment planning. This novel method uses a baseline and an intermittent CBCT scan, which are routinely acquired to confirm the needle position and monitor progress of the ablation. Accurate registration is required and assumed in vitro and ex vivo. A Wronskian change detector algorithm is applied on the compensated images to obtain a difference image between the intermittent and baseline scans. Finally, a thermal map created by applying a calibration determined experimentally is used to obtain the corresponding temperature at each pixel or voxel. We applied Wronskian change detector to detect the difference of two CBCT images, which have low signal to noise ratio, and calibrate Wronskian change model to temperature data using a gel phantom. We tested the temperature mapping with water and gel phantoms as well as pig shoulder. The experimental results show this method can detect temperature change within 5°C for a voxel size of 1mm3 (within clinical relevancy), and by consequence delineate the ablation zone. The preliminary experimental results show that CBCT thermometry is possible and promising, but may require pre-processing, such as registration for motion compensation between the baseline and intermittent scans. Further, quantitative evaluations have to be conducted for validation prior to clinical assessment and translation. CBCT is a widely available technology that could make thermometry clinically practical as an enabling component of iterative ablation treatment planning.

  17. Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph

    Energy Technology Data Exchange (ETDEWEB)

    Madhav, P; Crotty, D J; Tornai, M P [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); McKinley, R L [Zumatek Incorporated, Chapel Hill, NC 27519 (United States)], E-mail: priti.madhav@duke.edu

    2009-06-21

    A compact dedicated 3D breast SPECT-CT (mammotomography) system is currently under development. In its initial prototype, the cone-beam CT sub-system is restricted to a fixed-tilt circular rotation around the patient's pendant breast. This study evaluated stationary-tilt angles for the CT sub-system that will enable maximal volumetric sampling and viewing of the breast and chest wall. Images of geometric/anthropomorphic phantoms were acquired using various fixed-tilt circular and 3D sinusoidal trajectories. The iteratively reconstructed images showed more distortion and attenuation coefficient inaccuracy from tilted cone-beam orbits than from the complex trajectory. Additionally, line profiles illustrated cupping artifacts in planes distal to the central plane of the tilted cone-beam, otherwise not apparent for images acquired with complex trajectories. This indicates that undersampled cone-beam data may be an additional cause of cupping artifacts. High-frequency objects could be distinguished for all trajectories, but their shapes and locations were corrupted by out-of-plane frequency information. Although more acrylic balls were visualized with a fixed-tilt and nearly flat cone-beam at the posterior of the breast, 3D complex trajectories have less distortion and more complete sampling throughout the reconstruction volume. While complex trajectories would ideally be preferred, negatively fixed-tilt source-detector configuration demonstrates minimally distorted patient images.

  18. Self-calibration of cone-beam CT geometry using 3D-2D image registration: development and application to tasked-based imaging with a robotic C-arm

    Science.gov (United States)

    Ouadah, S.; Stayman, J. W.; Gang, G.; Uneri, A.; Ehtiati, T.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Robotic C-arm systems are capable of general noncircular orbits whose trajectories can be driven by the particular imaging task. However obtaining accurate calibrations for reconstruction in such geometries can be a challenging problem. This work proposes a method to perform a unique geometric calibration of an arbitrary C-arm orbit by registering 2D projections to a previously acquired 3D image to determine the transformation parameters representing the system geometry. Methods: Experiments involved a cone-beam CT (CBCT) bench system, a robotic C-arm, and three phantoms. A robust 3D-2D registration process was used to compute the 9 degree of freedom (DOF) transformation between each projection and an existing 3D image by maximizing normalized gradient information with a digitally reconstructed radiograph (DRR) of the 3D volume. The quality of the resulting "self-calibration" was evaluated in terms of the agreement with an established calibration method using a BB phantom as well as image quality in the resulting CBCT reconstruction. Results: The self-calibration yielded CBCT images without significant difference in spatial resolution from the standard ("true") calibration methods (p-value >0.05 for all three phantoms), and the differences between CBCT images reconstructed using the "self" and "true" calibration methods were on the order of 10-3 mm-1. Maximum error in magnification was 3.2%, and back-projection ray placement was within 0.5 mm. Conclusion: The proposed geometric "self" calibration provides a means for 3D imaging on general noncircular orbits in CBCT systems for which a geometric calibration is either not available or not reproducible. The method forms the basis of advanced "task-based" 3D imaging methods now in development for robotic C-arms.

  19. CT thermometry for cone-beam CT guided ablation

    Science.gov (United States)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  20. X-ray cone beam CT system calibration

    Science.gov (United States)

    Sire, Pascal; Rizo, Philippe; Martin, M.

    1993-12-01

    Recently x-ray cone beam computed tomography (CT) has become of interest for nondestructive testing (NDT) of advanced materials. Such a technique takes advantage of the cone beam geometry, to reduce the acquisition time and increase the resolution. Performances of CT systems rely mainly on geometric precision and measurement quality. Inaccurate geometry or incorrect data produce artifacts and blurring which limit the spatial resolution. A precise geometric calibration procedure is required and some corrections must be applied to the raw attenuation data in order to obtain accurate measurements. An x-ray cone beam CT system has been developed at the LETI. This machine was designed to control small parts limited to a few centimeters, with a high spatial resolution close to 30 microns. This paper introduces the machine setup and describes the calibration computing resources involved in the system. Then, we discuss the performances on experimental data.

  1. Simulation and experimental studies of three-dimensional (3D) image reconstruction from insufficient sampling data based on compressed-sensing theory for potential applications to dental cone-beam CT

    Science.gov (United States)

    Je, U. K.; Lee, M. S.; Cho, H. S.; Hong, D. K.; Park, Y. O.; Park, C. K.; Cho, H. M.; Choi, S. I.; Woo, T. H.

    2015-06-01

    In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient sampling data. In computed tomography (CT), for example, image reconstruction from sparse views and/or limited-angle (imaging doses to the patient. In this study, we investigated and implemented a reconstruction algorithm based on the compressed-sensing (CS) theory, which exploits the sparseness of the gradient image with substantially high accuracy, for potential applications to low-dose, high-accurate dental cone-beam CT (CBCT). We performed systematic simulation works to investigate the image characteristics and also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images of superior accuracy from insufficient sampling data and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from insufficient data indicate that the CS-based algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.

  2. Dual resolution cone beam breast CT: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Chen Lingyun; Shen Youtao; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Ge Shuaiping; Liu Xinming; Wang Tianpeng; Yang, Wei T.; Whitman, Gary J.; Shaw, Chris C. [Department of Imaging Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Department of Diagnostic Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Department of Imaging Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2009-09-15

    Purpose: In this study, the authors investigated the feasibility of a dual resolution volume-of-interest (VOI) cone beam breast CT technique and compared two implementation approaches in terms of dose saving and scatter reduction. Methods: With this technique, a lead VOI mask with an opening is inserted between the x-ray source and the breast to deliver x-ray exposure to the VOI while blocking x rays outside the VOI. A CCD detector is used to collect the high resolution projection data of the VOI. Low resolution cone beam CT (CBCT) images of the entire breast, acquired with a flat panel (FP) detector, were used to calculate the projection data outside the VOI with the ray-tracing reprojection method. The Feldkamp-Davis-Kress filtered backprojection algorithm was used to reconstruct the dual resolution 3D images. Breast phantoms with 180 {mu}m and smaller microcalcifications (MCs) were imaged with both FP and FP-CCD dual resolution CBCT systems, respectively. Two approaches of implementing the dual resolution technique, breast-centered approach and VOI-centered approach, were investigated and evaluated for dose saving and scatter reduction with Monte Carlo simulation using a GEANT4 package. Results: The results showed that the breast-centered approach saved more breast absorbed dose than did VOI-centered approach with similar scatter reduction. The MCs in fatty breast phantom, which were invisible with FP CBCT scan, became visible with the FP-CCD dual resolution CBCT scan. Conclusions: These results indicate potential improvement of the image quality inside the VOI with reduced breast dose both inside and outside the VOI.

  3. The effect of scan parameters on cone beam CT trabecular bone microstructural measurements of the human mandible

    OpenAIRE

    Ibrahim, N; Parsa, A.; Hassan, B.; van der Stelt, P; Aartman, I.H.A.; Wismeijer, D.

    2014-01-01

    The objective of this study was to investigate the effect of different cone beam CT scan parameters on trabecular bone microstructure measurements. A human mandibular cadaver was scanned using a cone beam CT (3D Accuitomo 170; J.Morita, Kyota, Japan). 20 cone beam CT images were obtained using 5 different fields of view (4X4 cm, 6x6 cm, 8X8 cm, 10x10 cm and 10X5 cm), 2 types of rotation steps (180 degrees and 360 degrees) and 2 scanning resolutions (standard and high). Image analysis software...

  4. Evaluation of a System for High-Accuracy 3D Image-Based Registration of Endoscopic Video to C-Arm Cone-Beam CT for Image-Guided Skull Base Surgery

    OpenAIRE

    Mirota, Daniel J.; Uneri, Ali; Schafer, Sebastian; Nithiananthan, Sajendra; Reh, Douglas D.; Ishii, Masaru; Gallia, Gary L.; TAYLOR, RUSSELL H.; Hager, Gregory D.; Siewerdsen, Jeffrey H.

    2013-01-01

    The safety of endoscopic skull base surgery can be enhanced by accurate navigation in preoperative computed tomography (CT) or, more recently, intraoperative cone-beam CT (CBCT). The ability to register real-time endoscopic video with CBCT offers an additional advantage by rendering information directly within the visual scene to account for intraoperative anatomical change. However, tracker localization error (~ 1–2 mm) limits the accuracy with which video and tomographic images can be regis...

  5. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    International Nuclear Information System (INIS)

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow. From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.

  6. Cone beam CT for dental and maxillofacial imaging: dose matters.

    Science.gov (United States)

    Pauwels, Ruben

    2015-07-01

    The widespread use of cone-beam CT (CBCT) in dentistry has led to increasing concern regarding justification and optimisation of CBCT exposures. When used as a substitute to multidetector CT (MDCT), CBCT can lead to significant dose reduction; however, low-dose protocols of current-generation MDCTs show that there is an overlap between CBCT and MDCT doses. More importantly, although the 3D information provided by CBCT can often lead to improved diagnosis and treatment compared with 2D radiographs, a routine or excessive use of CBCT would lead to a substantial increase of the collective patient dose. The potential use of CBCT for paediatric patients (e.g. developmental disorders, trauma and orthodontic treatment planning) further increases concern regarding its proper application. This paper provides an overview of justification and optimisation issues in dental and maxillofacial CBCT. The radiation dose in CBCT will be briefly reviewed. The European Commission's Evidence Based Guidelines prepared by the SEDENTEXCT Project Consortium will be summarised, and (in)appropriate use of CBCT will be illustrated for various dental applications. PMID:25805884

  7. Dentomaxillofacial imaging with panoramic views and cone beam CT.

    Science.gov (United States)

    Suomalainen, Anni; Pakbaznejad Esmaeili, Elmira; Robinson, Soraya

    2015-02-01

    Panoramic and intraoral radiographs are the basic imaging modalities used in dentistry. Often they are the only imaging techniques required for delineation of dental anatomy or pathology. Panoramic radiography produces a single image of the maxilla, mandible, teeth, temporomandibular joints and maxillary sinuses. During the exposure the x-ray source and detector rotate synchronously around the patient producing a curved surface tomography. It can be supplemented with intraoral radiographs. However, these techniques give only a two-dimensional view of complicated three-dimensional (3D) structures. As in the other fields of imaging also dentomaxillofacial imaging has moved towards 3D imaging. Since the late 1990s cone beam computed tomography (CBCT) devices have been designed specifically for dentomaxillofacial imaging, allowing accurate 3D imaging of hard tissues with a lower radiation dose, lower cost and easier availability for dentists when compared with multislice CT. Panoramic and intraoral radiographies are still the basic imaging methods in dentistry. CBCT should be used in more demanding cases. In this review the anatomy with the panoramic view will be presented as well as the benefits of the CBCT technique in comparison to the panoramic technique with some examples. Also the basics as well as common errors and pitfalls of these techniques will be discussed. Teaching Points • Panoramic and intraoral radiographs are the basic imaging methods in dentomaxillofacial radiology.• CBCT imaging allows accurate 3D imaging of hard tissues.• CBCT offers lower costs and a smaller size and radiation dose compared with MSCT.• The disadvantages of CBCT imaging are poor soft tissue contrast and artefacts.• The Sedentexct project has developed evidence-based guidelines on the use of CBCT in dentistry. PMID:25575868

  8. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    Energy Technology Data Exchange (ETDEWEB)

    Matenine, Dmitri, E-mail: dmitri.matenine.1@ulaval.ca; Mascolo-Fortin, Julia, E-mail: julia.mascolo-fortin.1@ulaval.ca [Département de physique, de génie physique et d’optique, Université Laval, Québec, Québec G1V 0A6 (Canada); Goussard, Yves, E-mail: yves.goussard@polymtl.ca [Département de génie électrique/Institut de génie biomédical, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, Québec H3C 3A7 (Canada); Després, Philippe, E-mail: philippe.despres@phy.ulaval.ca [Département de physique, de génie physique et d’optique and Centre de recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie and Centre de recherche du CHU de Québec, Québec, Québec G1R 2J6 (Canada)

    2015-11-15

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can

  9. Surgical stent for dental implant using cone beam CT images

    International Nuclear Information System (INIS)

    The purpose of this study is to develop a surgical stent for dental implant procedure that can be easily applied and affordable by using cone beam computerized tomography (CBCT). Aluminum, Teflon-PFA (perfluoroalkoxy), and acetal (polyoxymethylene plastic) were selected as materials for the surgical stent. Among these three materials, the appropriate material was chosen using the CBCT images. The surgical stent, which could be easily placed into an oral cavity, was designed with chosen material. CBCT images of the new surgical stent on mandible were obtained using Alphard-3030 dental CT system (Asahi Roentgen Co., Ltd., Kyoto, Japan). The point of insertion was prescribed on the surgical stent with the multiplanar reconstruction software of OnDemand3D (CyberMed Inc., Seoul, Korea). Guide holes were made at the point of insertion on the surgical stent using newly designed guide jig. CBCT scans was taken for the second time to verify the accuracy of the newly designed surgical stent. Teflon-PFA showed radiologically excellent image characteristics for the surgical stent. High accuracy and reproducibility of implantation were confirmed with the surgical stent. The newly designed surgical stent can lead to the accurate implantation and achieve the clinically predictable result.

  10. Cone beam CT in radiology; DVT in der Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, Florian [ALB FILS KLINIKEN GmbH, Klinik am Eichert, Goeppingen (Germany). Inst. fuer Radiologie

    2013-06-15

    Cone beam computed tomography (CBCT) is a cross-sectional X-ray modality using an imaging system with cone-beam geometry. Unlike CT, the data set is acquired in a single circulation of a C-arm shaped tube-detector unit. Image characteristics vs. exposure dose ratio is similar to conventional CT, but varies widely depending on the CBVT device and the selected settings, and is limited to low dose/high noise applications. Up to now, only few data is available to estimate the clinical value of CBCT. Nevertheless, the use of CBCT is increasing drastically in the recent years, especially in the dental and ENT diagnostic field. For this reason the European Commission recently published guidelines concerning the clinical application of CBCT. These guidelines, as well as clinically relevant technical features of CBCT and examples of the most frequent dental applications are presented in the following article. (orig.)

  11. Practical limitations of cone-beam computed tomography in 3D cephalometry%Practical limitations of cone-beam computed tomography in3D cephalometry

    Institute of Scientific and Technical Information of China (English)

    Janalt Damstra; Zacharias Fourie; Yijin Ren

    2011-01-01

    3D cone beam computed tomography (CBCT) images offer a unique and new appreciation of the anatomical structures and underlying anomalies not possible with conventional radiographs.However,in almost all aspects of CBCT imaging,from utilization to application,inherent limitations and pitfalls exist.Importantly,these inherent limitations and pitfalls have practical implications which need to be addressed before the potential of this technology can be fully realized.The purpose of this review was to explore the current limitations and pitfalls associated with CBCT imaging to allow for better and more accurate understanding of the possibilities this imaging modality could offer,particularly pertaining to 3D cephalometry.

  12. Practical limitations of cone-beam computed tomography in 3D cephalometry

    NARCIS (Netherlands)

    Damstra, Janalt; Fourie, Zacharias; Ren, Yijin

    2011-01-01

    3D cone beam computed tomography (CBCT) images offer a unique and new appreciation of the anatomical structures and underlying anomalies not possible with conventional radiographs. However, in almost all aspects of CBCT imaging, from utilization to application, inherent limitations and pitfalls exis

  13. Reduction of Cone-Beam CT scan time without compromising the accuracy of the image registration in IGRT

    DEFF Research Database (Denmark)

    Westberg, Jonas; Jensen, Henrik R; Bertelsen, Anders;

    2010-01-01

    In modern radiotherapy accelerators are equipped with 3D cone-beam CT (CBCT) which is used to verify patient position before treatment. The verification is based on an image registration between the CBCT acquired just before treatment and the CT scan made for the treatment planning. The purpose...

  14. Comparison of CT numbers between cone-beam CT and multi-detector CT

    International Nuclear Information System (INIS)

    To compare the CT numbers on 3 cone-beam CT (CBCT) images with those on multi-detector CT (MDCT) image using CT phantom and to develop linear regressive equations using CT numbers to material density for all the CT scanner each. Mini CT phantom comprised of five 1 inch thick cylindrical models with 1.125 inches diameter of materials with different densities (polyethylene, polystyrene, plastic water, nylon and acrylic) was used. It was scanned in 3 CBCTs (i-CAT, Alphard VEGA, Implagraphy SC) and 1 MDCT (Somatom Emotion). The images were saved as DICOM format and CT numbers were measured using OnDemand 3D. CT numbers obtained from CBCTs and MDCT images were compared and linear regression analysis was performed for the density, ρ(g/cm3), as the dependent variable in terms of the CT numbers obtained from CBCTs and MDCT images. CT numbers on i-CAT and Implagraphy CBCT images were smaller than those on Somatom Emotion MDCT image (p<0.05). Linear relationship on a range of materials used for this study were ρ=0.001 H+1.07 with R2 value of 0.999 for Somatom Emotion, ρ=0.002 H+1.09 with R2 value of 0.991 for Alphard VEGA, ρ=0.001 H+1.43 with R2 value of 0.980 for i-CAT and ρ=0.001 H+1.30 with R2 value of 0.975 for Implagraphy. CT numbers on i-CAT and Implagraphy CBCT images were not same as those on Somatom Emotion MDCT image. The linear regressive equations to determine the density from the CT numbers with very high correlation coefficient were obtained on three CBCT and MDCT scan.

  15. Region-of-interest reconstruction for a cone-beam dental CT with a circular trajectory

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhanli, E-mail: huzhanli1983@gmail.com [Paul C. Lauterbur Research Center For Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Zou, Jing; Gui, Jianbao; Zheng, Hairong [Paul C. Lauterbur Research Center For Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Xia, Dan, E-mail: dan.xia@siat.ac.cn [Paul C. Lauterbur Research Center For Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China)

    2013-04-21

    Dental CT is the most appropriate and accurate device for preoperative evaluation of dental implantation. It can demonstrate the quantity of bone in three dimensions (3D), the location of important adjacent anatomic structures and the quality of available bone with minimal geometric distortion. Nevertheless, with the rapid increase of dental CT examinations, we are facing the problem of dose reduction without loss of image quality. In this work, backprojection-filtration (BPF) and Feldkamp–Davis–Kress (FDK) algorithm was applied to reconstruct the 3D full image and region-of-interest (ROI) image from complete and truncated circular cone-beam data respectively by computer-simulation. In addition, the BPF algorithm was evaluated based on the 3D ROI-image reconstruction from real data, which was acquired from our developed circular cone-beam prototype dental CT system. The results demonstrated that the ROI-image quality reconstructed from truncated data using the BPF algorithm was comparable to that reconstructed from complete data. The FDK algorithm, however, created artifacts while reconstructing ROI-image. Thus it can be seen, for circular cone-beam dental CT, reducing scanning angular range of the BPF algorithm used for ROI-image reconstruction are helpful for reducing the radiation dose and scanning time. Finally, an analytical method was developed for estimation of the ROI projection area on the detector before CT scanning, which would help doctors to roughly estimate the total radiation dose before the CT examination. -- Highlights: ► BPF algorithm was applied by using dental CT for the first time. ► A method was developed for estimation of projection region before CT scanning. ► Roughly predict the total radiation dose before CT scans. ► Potential reduce imaging radiation dose, scatter, and scanning time.

  16. 3D Quantification of Mandibular Asymmetry through Cone Beam Computed Tomography

    Science.gov (United States)

    Cevidanes, Lucia H.S.; Alhadidi, Abeer; Paniagua, Beatriz; Styner, Martin; Ludlow, John; Mol, Andre; Turvey, Timothy; Proffit, William R.; Rossouw, Paul Emile

    2011-01-01

    Objective To determine if 3D shape analysis precisely diagnoses right and left differences in asymmetry patients Study Design Cone-beam CT data was acquired pretreatment from 20 patients with mandibular asymmetry. 3D shape analysis was used to localize and quantify the extent of virtually simulated asymmetry. Two approaches were used: (1) mirroring on the midsagittal plane determined from landmarks and (2) mirroring on an arbitrary plane, then registering on the cranial base of the original image. The validation presented in this study used simulated data and has been applied to three clinical cases. Results For mirroring on the midsagittal plane there was a >99% probability that the difference between measured and simulated asymmetry was less than 0.5 mm. For mirroring with cranial base registration, there was a >84% probability of differences less than 0.5 mm. Conclusions Mandibular asymmetry can be precisely quantified with both mirroring methods. Cranial base registration has the potential to be used for patients with trauma situations or when key landmarks are unreliable or absent. PMID:21497527

  17. Marker-free lung tumor trajectory estimation from a cone beam CT sinogram

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Geoffrey D [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA (United States); Liang Jian; Yan Di, E-mail: gdhugo@vcu.ed [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States)

    2010-05-07

    An algorithm was developed to estimate the 3D lung tumor position using the projection data forming a cone beam CT sinogram and a template registration method. A pre-existing respiration-correlated CT image was used to generate templates of the target, which were then registered to the individual cone beam CT projections, and estimates of the target position were made for each projection. The registration search region was constrained based on knowledge of the mean tumor position during the cone beam CT scan acquisition. Several template registration algorithms were compared, including correlation coefficient and robust methods such as block correlation, robust correlation coefficient and robust gradient correlation. Robust registration metrics were found to be less sensitive to occlusions such as overlying tissue and the treatment couch. The mean accuracy of the position estimation was 1.4 mm in phantom with a robust registration algorithm. In two research subjects with peripheral tumors, the mean position and mean target excursion were estimated to within 2.0 mm compared to the results obtained with a '4D' registration of 4D image volumes.

  18. Marker-free lung tumor trajectory estimation from a cone beam CT sinogram

    Science.gov (United States)

    Hugo, Geoffrey D.; Liang, Jian; Yan, Di

    2010-05-01

    An algorithm was developed to estimate the 3D lung tumor position using the projection data forming a cone beam CT sinogram and a template registration method. A pre-existing respiration-correlated CT image was used to generate templates of the target, which were then registered to the individual cone beam CT projections, and estimates of the target position were made for each projection. The registration search region was constrained based on knowledge of the mean tumor position during the cone beam CT scan acquisition. Several template registration algorithms were compared, including correlation coefficient and robust methods such as block correlation, robust correlation coefficient and robust gradient correlation. Robust registration metrics were found to be less sensitive to occlusions such as overlying tissue and the treatment couch. The mean accuracy of the position estimation was 1.4 mm in phantom with a robust registration algorithm. In two research subjects with peripheral tumors, the mean position and mean target excursion were estimated to within 2.0 mm compared to the results obtained with a '4D' registration of 4D image volumes.

  19. 三维锥形束CT用于人牙咬痕认定的有效性比较研究%Effectiveness Assessment of 3-D Cone Beam CT Used in Human Bite Marks Identification

    Institute of Scientific and Technical Information of China (English)

    吴砚; 陈新民; 沈韵; 余锦豪; 唐莹; 张以鸣; 朱磊; 徐远志

    2013-01-01

    The present study was aimed to use the 3-D cone beam CT (CBCT) as a new method in human bite marks identification which was carried out in experimental pigskin to assess its effectiveness in our laboratory. Bite marks were digital photographed according to American Board of Forensic Odontology (ABFO) guidelines. In this study, the data of the suspect's dental casts were collected by scanning in two ways: one was after plate scanning, in which the comparison overlays were generated by Adobe Photoshop8. 0 softwares the other was by CBCT, which generated comparison overlays automatically. The bite marks were blind identified with the two kinds of data of the suspect's dental casts respectively. ROC curve was used to analyze the sensitivity, specificity, and 95% confidence interval. The results showed that CBCT method got a larger area under the ROC curve: 0. 784 (SE=0. 074, 95% CI=0. 639-0. 929), and got a very high specificity (specificity 98. 7%, 95% CI=94. 5%-99. 8%). Thus, this study illustrates that the CBCT used in bite mark identification is an effective and accurate tool and has stronger ability to exclude suspects compared with the conventional method, but the comparison process needs further study to enhance its effectiveness in bite mark identification.%将三维锥形束CT(CBCT)用于人牙咬痕的认定,并通过猪皮载体上的实验咬痕开展其有效性分析.咬痕按照美国法医牙科协会(ABFO)指导原则进行数码拍照.嫌疑人牙模采用两种方法扫描采集数据:第一种是扫描仪扫描,再由常规方法Adobe Photoshop8.0软件生成比较overlay;第二种是使用CBCT三维扫描自动生成比较o-verlay.本研究将咬痕的数码相片分别与两种方法采集的牙模数据进行盲法比较认定,评定使用ROC曲线来分析灵敏度、特异度,并计算95%可信区间.结果显示CBCT法获得较大的ROC曲线下面积:0.784(SE=0.074,95%CI=0.639伍0.929);获得相当高的特异度(特异度98.7%,95

  20. Job profiles and responsibilities of cone-beam CT in dentistry

    International Nuclear Information System (INIS)

    The first applications of Cone Beam CT (CBTC) were within the angiographic and radiotherapy. In recent years the CBTC has found its greatest field of application in the dental and maxillofacial surgery and is expected to be used more and more frequently in clinical practice. Wider use of CBTC and reducing costs of equipment purchase was made possible by the development of specific software for 3D reconstruction and hardware that can handle the amount of data to be processed. The technique TC volumetric 'Cone Beam', thanks to the higher resolution capability of the detectors used and the high intrinsic contrast of the bony structures, you can get good quality images with patient doses lower than those usually administered with conventional parameters, from equipment TC traditional (at equal volume irradiated from 5 to 20 times lower).

  1. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning

    Science.gov (United States)

    Thomas, T. Hannah Mary; Devakumar, D.; Purnima, S.; Ravindran, B. Paul

    2009-04-01

    Potential areas where megavoltage computed tomography (MVCT) could be used are second- and third-phase treatment planning in 3D conformal radiotherapy and IMRT, adaptive radiation therapy, single fraction palliative treatment and for the treatment of patients with metal prostheses. A feasibility study was done on using MV cone beam CT (CBCT) images generated by proprietary 3D reconstruction software based on the FDK algorithm for megavoltage treatment planning. The reconstructed images were converted to a DICOM file set. The pixel values of megavoltage cone beam computed tomography (MV CBCT) were rescaled to those of kV CT for use with a treatment planning system. A calibration phantom was designed and developed for verification of geometric accuracy and CT number calibration. The distance measured between two marker points on the CBCT image and the physical dimension on the phantom were in good agreement. Point dose verification for a 10 cm × 10 cm beam at a gantry angle of 0° and SAD of 100 cm were performed for a 6 MV beam for both kV and MV CBCT images. The point doses were found to vary between ±6.1% of the dose calculated from the kV CT image. The isodose curves for 6 MV for both kV CT and MV CBCT images were within 2% and 3 mm distance-to-agreement. A plan with three beams was performed on MV CBCT, simulating a treatment plan for cancer of the pituitary. The distribution obtained was compared with those corresponding to that obtained using the kV CT. This study has shown that treatment planning with MV cone beam CT images is feasible.

  2. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, T Hannah Mary; Purnima, S; Ravindran, B Paul [Department of Radiotherapy, Christian Medical College, Vellore (India); Devakumar, D [Department of Nuclear Medicine, Christian Medical College, Vellore (India)], E-mail: paul@cmcvellore.ac.in

    2009-04-07

    Potential areas where megavoltage computed tomography (MVCT) could be used are second- and third-phase treatment planning in 3D conformal radiotherapy and IMRT, adaptive radiation therapy, single fraction palliative treatment and for the treatment of patients with metal prostheses. A feasibility study was done on using MV cone beam CT (CBCT) images generated by proprietary 3D reconstruction software based on the FDK algorithm for megavoltage treatment planning. The reconstructed images were converted to a DICOM file set. The pixel values of megavoltage cone beam computed tomography (MV CBCT) were rescaled to those of kV CT for use with a treatment planning system. A calibration phantom was designed and developed for verification of geometric accuracy and CT number calibration. The distance measured between two marker points on the CBCT image and the physical dimension on the phantom were in good agreement. Point dose verification for a 10 cm x 10 cm beam at a gantry angle of 0{sup 0} and SAD of 100 cm were performed for a 6 MV beam for both kV and MV CBCT images. The point doses were found to vary between {+-}6.1% of the dose calculated from the kV CT image. The isodose curves for 6 MV for both kV CT and MV CBCT images were within 2% and 3 mm distance-to-agreement. A plan with three beams was performed on MV CBCT, simulating a treatment plan for cancer of the pituitary. The distribution obtained was compared with those corresponding to that obtained using the kV CT. This study has shown that treatment planning with MV cone beam CT images is feasible.

  3. Image quality of a cone beam O-arm 3D imaging system

    Science.gov (United States)

    Zhang, Jie; Weir, Victor; Lin, Jingying; Hsiung, Hsiang; Ritenour, E. Russell

    2009-02-01

    The O-arm is a cone beam imaging system designed primarily to support orthopedic surgery and is also used for image-guided and vascular surgery. Using a gantry that can be opened or closed, the O-arm can function as a 2-dimensional (2D) fluoroscopy device or collect 3-dimensional (3D) volumetric imaging data like a CT system. Clinical applications of the O-arm in spine surgical procedures, assessment of pedicle screw position, and kyphoplasty procedures show that the O-arm 3D mode provides enhanced imaging information compared to radiographs or fluoroscopy alone. In this study, the image quality of an O-arm system was quantitatively evaluated. A 20 cm diameter CATPHAN 424 phantom was scanned using the pre-programmed head protocols: small/medium (120 kVp, 100 mAs), large (120 kVp, 128 mAs), and extra-large (120 kVp, 160 mAs) in 3D mode. High resolution reconstruction mode (512×512×0.83 mm) was used to reconstruct images for the analysis of low and high contrast resolution, and noise power spectrum. MTF was measured using the point spread function. The results show that the O-arm image is uniform but with a noise pattern which cannot be removed by simply increasing the mAs. The high contrast resolution of the O-arm system was approximately 9 lp/cm. The system has a 10% MTF at 0.45 mm. The low-contrast resolution cannot be decided due to the noise pattern. For surgery where locations of a structure are emphasized over a survey of all image details, the image quality of the O-arm is well accepted clinically.

  4. Extracting respiratory signals from thoracic cone beam CT projections

    CERN Document Server

    Yan, Hao; Yin, Wotao; Pan, Tinsu; Ahmad, Moiz; Mou, Xuanqin; Cervino, Laura; Jia, Xun; Jiang, Steve B

    2012-01-01

    Patient respiratory signal associated with the cone beam CT (CBCT) projections is important for lung cancer radiotherapy. In contrast to monitoring an external surrogate of respiration, such signal can be extracted directly from the CBCT projections. In this paper, we propose a novel local principle component analysis (LPCA) method to extract the respiratory signal by distinguishing the respiration motion-induced content change from the gantry rotation-induced content change in the CBCT projections. The LPCA method is evaluated by comparing with three state-of-the-art projection-based methods, namely, the Amsterdam Shroud (AS) method, the intensity analysis (IA) method, and the Fourier-transform based phase analysis (FT-p) method. The clinical CBCT projection data of eight patients, acquired under various clinical scenarios, were used to investigate the performance of each method. We found that the proposed LPCA method has demonstrated the best overall performance for cases tested and thus is a promising tech...

  5. Study of effective dose of various protocols in equipment cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Soares, M. R.; Maia, A. F. [Universidade Federale de Sergipe, Departamento de Fisica, Cidade Universitaria Prof. Jose Aloisio de Campos, Marechal Rondon s/n, Jardim Rosa Elze, 49-100000 Sao Cristovao, Sergipe (Brazil); Batista, W. O. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho, Salvador, 40301015 Bahia (Brazil); Caldas, L. V. E.; Lara, P. A., E-mail: mrs2206@gmail.com [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    Currently the cone beam computed tomography is widely used in various procedures of dental radiology. Although the doses values associated with the procedures of cone beam CT are low compared to typical values associated with dental radiology procedure in multi slices CT. However can be high compared to typical values of other techniques commonly used in dental radiology. The present scenario is a very wide range of designs of equipment and, consequently, lack of uniformity in all parameters associated with x-ray generation and geometry. In this context, this study aimed to evaluate and calculate the absorbed dose in organs and tissues relevant and estimate effective dose for different protocols with different geometries of exposure in five cone beam CT equipment. For this, a female Alderson anthropomorphic phantom, manufactured by Radiology Support Devices was used. The phantom was irradiated with 26 dosimeters LiF: Mg, Ti (TLD-100), inserted in organs and tissues along the layers forming the head and neck of the phantom. The equipment used, in this present assessment, was: i-CAT Classical, Kodak 9000 3D, Gendex GXCB 500, Sirona Orthophos X G 3D and Planmeca Pro Max 3D. The effective doses were be determined by the ICRP 103 weighting factors. The values were between 7.0 and 111.5 micro Sv, confirming the broad dose range expected due to the diversity of equipment and protocols used in each equipment. The values of effective dose per Fov size were: between 7 and 51.2 micro Sv for located Fov; between 17.6 and 52.0 micro Sv for medium Fov; and between 11.5 and 43.1 micro Sv to large Fov (maxillofacial). In obtaining the effective dose the measurements highlighted a relevance contribution of dose absorbed by the remaining organs (36%), Salivary glands (30%), thyroid (12%) and bone marrow (12%). (Author)

  6. Automated volume of interest delineation and rendering of cone beam CT images in interventional cardiology

    Science.gov (United States)

    Lorenz, Cristian; Schäfer, Dirk; Eshuis, Peter; Carroll, John; Grass, Michael

    2012-02-01

    Interventional C-arm systems allow the efficient acquisition of 3D cone beam CT images. They can be used for intervention planning, navigation, and outcome assessment. We present a fast and completely automated volume of interest (VOI) delineation for cardiac interventions, covering the whole visceral cavity including mediastinum and lungs but leaving out rib-cage and spine. The problem is addressed in a model based approach. The procedure has been evaluated on 22 patient cases and achieves an average surface error below 2mm. The method is able to cope with varying image intensities, varying truncations due to the limited reconstruction volume, and partially with heavy metal and motion artifacts.

  7. Quality control and patient dosimetry in dental cone beam CT

    International Nuclear Information System (INIS)

    This paper presents the initial experience in performing quality control and patient dose measurements in a cone beam computed tomography (CT) scanner (ILUMATM Ultra, IMTEC Imaging, USA) for oral and maxillofacial radiology. The X-ray tube and the generator were tested first, including the kVp accuracy and precision, and the half-value layer (HVL). The following tests specific for panoramic dental systems were also performed: tube output, beam size and beam alignment to the detector. The tests specific for CT included measurements of noise and CT numbers in water and in air, as well as the homogeneity of CT numbers. The most appropriate dose quantity was found to be the air kerma-area product (KAP) measured with a KAP-metre installed at the tube exit. KAP values were found to vary from 110 to 185 μGy m2 for available adult protocols and to be 54 μGy m2 for the paediatric protocol. The effective dose calculated with the software PCXMC (STUK (Finland)) was 0.05 mSv for children and 0.09-0.16 mSv for adults. (authors)

  8. Evaluation of pixel value of dental cone beam CT

    International Nuclear Information System (INIS)

    CT number derived from medical CT (MDCT) is effective for evaluating the quality of bone. On the other hand, in dental cone beam CT (CBCT), it is questionable whether the pixel value of the CBCT reflects the quality of bone. To investigate this matter, we prepared a dry skull with gypsum markers attached at different positions, scanned by MDCT and CBCT, and compared the CT number or pixel value between gypsum markers. Sixteen gypsum markers were attached on labial and buccal sites of maxillary and mandibular bone of a dry skull. They were scanned by a MDCT and three dental CBCT devices. The CT numbers or pixel values of gypsum markers measured by CT devices were examined, and their position and CT device dependencies were compared and discussed. In the case of MDCT, the average CT number and standard deviation of 16 markers was 2,011±79. In the case of CBCT, pixel value was 2,815±305. The pixel value changed significantly by a slight change in position of the dry skull. Similar results were obtained for other CBCT devices. These results are considered to be due mainly to the scattered beams in the CBCT. The incident beam extends conically-shaped in the CBCT and there is much beam scattering depending on the position of the measured object, causing pixel values to deviate. Flat panel detector equipped in the CBCT is not effective to defend scattered beam on the edges of the detector. An effective device such as a collimator to eliminate beam scattering or software to compensate for beam scattering needs to be developed. (author)

  9. A new cone-beam computed tomography system for dental applications with innovative 3D software

    Energy Technology Data Exchange (ETDEWEB)

    Pasini, Alessandro; Bianconi, D.; Rossi, A. [University of Bologna, Department of Physics, Bologna (Italy); NECTAR Imaging srl Imola (Italy); Casali, F. [University of Bologna, Department of Physics, Bologna (Italy); Bontempi, M. [CEFLA Dental Group Imola (Italy)

    2007-02-15

    Objective Cone beam computed tomography (CBCT) is an important image technique for oral surgery (dentoalveolar surgery and dental implantology) and maxillofacial applications. This technique requires compact sized scanners with a relatively low radiation dosage, which makes them suitable for imaging of the craniofacial region. This article aims to present the concept and the preliminary findings obtained with the prototype of a new CBCT scanner with dedicated 3D software, specifically designed for dental imaging. Methods The prototype implements an X-ray tube with a nominal focal spot of 0.5 mm operating at 70-100 kVp and 1-4 mA. The detector is a 6 in. image intensifier coupled with a digital CCD camera. Dosimetry was performed on a RANDO anthropomorphic phantom using Beryllium Oxide thermo-luminescent dosimeters positioned in the phantom in the following site: eyes, thyroid, skin (lips, cheeks, back of the neck), brain, mandible, maxilla and parotid glands. Doses were measured using four configurations, changing the field-of-view (4'' and 6'') and acquisition time (10 and 20 s) of the CBCT. Acquisitions were performed with different parameters regarding the x-ray tube, pixel size and acquisition geometries to evaluate image quality in relation to modulation transfer function (MTF), noise and geometric accuracy. Results The prototype was able to acquire a complete maxillofacial scan in 10-15 s. The CT reconstruction algorithm delivered images that were judged to have high quality, allowing for precise volume rendering. The radiation dose was determined to be 1-1.5 times that of the dose applied during conventional dental panoramic studies. Conclusion Preliminary studies using the CBCT prototype indicate that this device provides images with acceptable diagnostic content at a relatively low radiation dosage, if compared to systems currently available on the market. (orig.)

  10. A simple optical cone beam CT set-up for gel 'readout'

    Energy Technology Data Exchange (ETDEWEB)

    Ravindran, B P; Visalatchi, S; Brindha, S [Department of Radiation Oncology, Christian Medical College, Vellore India 632 004 (India)

    2004-01-01

    In this study we have attempted to setup a simple optical cone beam CT using the geometry used by Wolodzko et al and Jordan et al using an Intel webcam. This approach of recording transmission images of the gel is the inverse of x-ray cone beam CT if you consider only the rays, which contribute to image formation. This simple optical cone beam CT could be setup with minimum cost and could be used to demonstrate the principle of optical CT for teaching and if further investigated could be a potential optical readout device for gel dosimetry.

  11. Point spread function modeling and images restoration for cone-beam CT

    OpenAIRE

    Zhang, Hua; Huang, Kuidong; Shi, Yikai; Xu, Zhe

    2014-01-01

    X-ray cone-beam computed tomography (CT) has the notable features such as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection images degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed firstly. The general PSF model of cone-beam CT is established, and based on it, the...

  12. Dose optimisation for intraoperative cone-beam flat-detector CT in paediatric spinal surgery

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Asger Greval [Region of Northern Jutland, Department of X-ray Physics, Broenderslev (Denmark); Eiskjaer, Soeren; Kaspersen, Jon [Aalborg University Hospital, The Spinal Unit, Department of Orthopaedic Surgery, Aalborg (Denmark)

    2012-08-15

    During surgery for spinal deformities, accurate placement of pedicle screws may be guided by intraoperative cone-beam flat-detector CT. The purpose of this study was to identify appropriate paediatric imaging protocols aiming to reduce the radiation dose in line with the ALARA principle. Using O-arm registered (Medtronic, Inc.), three paediatric phantoms were employed to measure CTDI{sub w} doses with default and lowered exposure settings. Images from 126 scans were evaluated by two spinal surgeons and scores were compared (Kappa statistics). Effective doses were calculated. The recommended new low-dose 3-D spine protocols were then used in 15 children. The lowest acceptable exposure as judged by image quality for intraoperative use was 70 kVp/40 mAs, 70 kVp/80 mAs and 80 kVp/40 mAs for the 1-, 5- and 12-year-old-equivalent phantoms respectively (kappa = 0,70). Optimised dose settings reduced CTDI{sub w} doses 89-93%. The effective dose was 0.5 mSv (91-94,5% reduction). The optimised protocols were used clinically without problems. Radiation doses for intraoperative 3-D CT using a cone-beam flat-detector scanner could be reduced at least 89% compared to manufacturer settings and still be used to safely navigate pedicle screws. (orig.)

  13. Radiographic evaluation of dentigerous cyst with cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Chan; Lee, Wan; Lee, Byung Do [School of Dentisity, Wonkwang University, Iksan (Korea, Republic of)

    2010-09-15

    The purpose of this study was to accurately analyze the radiographic characteristics of dentigerous cyst (DC) with multiplanar images of cone beam computed tomography (CBCT). Thirty eight radiographically and histopathologically proven cases of DCs were analyzed with panoramic radiograph and CBCT, retrospectively. The radiographic CT pattern, symmetry of radiolucency around the unerupted tooth crown, ratio of long length to short length, degree of cortical bone alternation, effects on adjacent tooth, and cyst size were analyzed. Relative frequencies of these radiographic features were evaluated. In order to compare the CBCT features of DC with those of odontogenic keratocyst (OKC), 9 cases of OKCs were analyzed with the same method radiographically. DCs consisted of thirty unilocular cases (79.0%), seven lobulated cases (18.4%) and one multilocular case (2.6%). Eight were asymmetric (21.0%) and thirty were symmetric (79.0%). Maxillary DC showed rounder shape than mandibular DC (L/S ratio; maxilla 1.32, mandible 1.67). Alternations of lingual cortical bone (14 cases, 48.2%) were more frequent than those of buccal side (7 cases, 24.1%). CBCT images of DC showed definite root resorption and bucco-lingual tooth displacement. These findings were hardly observed on panoramic radiographs of DCs. Comparison of CBCT features of DC with those of OKC showed several different features. CBCT images of DC showed various characteristic radiographic features. Therefore, CBCT can be helpful for the diagnosis of DC radiographically.

  14. CT to Cone-beam CT Deformable Registration With Simultaneous Intensity Correction

    OpenAIRE

    Zhen, Xin; Gu, Xuejun; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B

    2012-01-01

    Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the orig...

  15. Superposição automatizada de modelos tomográficos tridimensionais em cirurgia ortognática Superimposition of 3D cone-beam CT models in orthognathic surgery

    Directory of Open Access Journals (Sweden)

    Alexandre Trindade Simões da Motta

    2010-04-01

    Full Text Available INTRODUÇÃO: as limitações na avaliação quantitativa e qualitativa de deslocamentos cirúrgicos pelos métodos bidimensionais podem ser superadas através de tomografias volumétricas e ferramentas de imagens tridimensionais. OBJETIVOS: a metodologia descrita neste trabalho permite avaliar as mudanças nas posições de côndilos, ramos, mento, maxila e da dentição após a cirurgia ortognática através de tomografias computadorizadas de feixe cônico (Cone Beam Computed Tomography, CBCT antes e após o procedimento cirúrgico. MÉTODOS: são construídos modelos 3D que possibilitam superposições tendo a base do crânio pré-cirúrgica como referência, utilizando-se um método automático que identifica e compara a escala de cinza dos voxels de duas estruturas tridimensionais, eliminando a necessidade do operador marcar os pontos anatômicos. Então, as distâncias entre as superfícies anatômicas são computadas, no mesmo indivíduo, entre as duas fases. A avaliação das direções de deslocamento das estruturas é determinada visualmente pelos métodos de mapas coloridos e de semitransparências. CONCLUSÕES: conclui-se que a metodologia apresentada, que utiliza softwares de domínio público, mostra vantagens na avaliação longitudinal de pacientes ortocirúrgicos, quando comparada aos métodos radiográficos convencionais, uma vez que as imagens geradas não apresentam magnificações ou sobreposições de estruturas e a maioria dos passos são automatizados, o que torna os procedimentos de mensuração mais precisos, além de disponibilizar uma maior quantidade de informações ao clínico ou pesquisador.INTRODUCTION: Limitations of 2D quantitative and qualitative evaluation of surgical displacements can be overcome by CBCT and three-dimensional imaging tools. OBJECTIVES: The method described in this study allows the assessment of changes in the condyles, rami, chin, maxilla and dentition by the comparison of CBCT scans before

  16. Dynamic bowtie filter for cone-beam/multi-slice CT.

    Directory of Open Access Journals (Sweden)

    Fenglin Liu

    Full Text Available A pre-patient attenuator ("bowtie filter" or "bowtie" is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB filled in with heavy liquid and a weakly attenuating bowtie (WB immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV. The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection.

  17. Dynamic bowtie filter for cone-beam/multi-slice CT.

    Science.gov (United States)

    Liu, Fenglin; Yang, Qingsong; Cong, Wenxiang; Wang, Ge

    2014-01-01

    A pre-patient attenuator ("bowtie filter" or "bowtie") is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB) filled in with heavy liquid and a weakly attenuating bowtie (WB) immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV). The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection. PMID:25051067

  18. Ring artifacts removal via spatial sparse representation in cone beam CT

    Science.gov (United States)

    Li, Zhongyuan; Li, Guang; Sun, Yi; Luo, Shouhua

    2016-03-01

    This paper is about the ring artifacts removal method in cone beam CT. Cone beam CT images often suffer from disturbance of ring artifacts which caused by the non-uniform responses of the elements in detectors. Conventional ring artifacts removal methods focus on the correlation of the elements and the ring artifacts' structural characteristics in either sinogram domain or cross-section image. The challenge in the conventional methods is how to distinguish the artifacts from the intrinsic structures; hence they often give rise to the blurred image results due to over processing. In this paper, we investigate the characteristics of the ring artifacts in spatial space, different from the continuous essence of 3D texture feature of the scanned objects, the ring artifacts are displayed discontinuously in spatial space, specifically along z-axis. Thus we can easily recognize the ring artifacts in spatial space than in cross-section. As a result, we choose dictionary representation for ring artifacts removal due to its high sensitivity to structural information. We verified our theory both in spatial space and coronal-section, the experimental results demonstrate that our methods can remove the artifacts efficiently while maintaining image details.

  19. Upper airway alterations/abnormalities in a case series of obstructive sleep apnea patients identified with cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, Y.; Shintaku, W.H.; Clark, G.T. [Orofacial Pain/Oral Medicine Center, Div. of Diagnostic Sciences, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Enciso, R. [Div. of Craniofacial Sciences and Therapeutics, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Ogawa, T. [Dept. of Fixed Prosthodontic Dentistry, Tsurumi Univ., School of Dental Medicine, Tsurumi (Japan)

    2007-06-15

    There are many factors that influence the configuration of the upper airway and may contribute to the development of obstructive sleep apnea (OSA). This paper presents a series of 12 consecutive OSA cases where various upper airway alteration/abnormalities were identified using 3D anatomic reconstructions generated from cone-beam CT (CBCT) images. Some cases exhibited more than one type of abnormality and below we describe each of the six types identified with CBCT in this case series. (orig.)

  20. Evaluation of positioning errors of the patient using cone beam CT megavoltage; Evaluacion de errores de posicionamiento del paciente mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Zucca Aparicio, D.; Perez Moreno, J. M.; Minambres Moro, A.

    2013-07-01

    Image-guided radiation therapy allows you to assess and fix the positioning of the patient in the treatment unit, thus reducing the uncertainties due to the positioning of the patient. This work assesses errors systematic and errors of randomness from the corrections made to a series of patients of different diseases through a protocol off line of cone beam CT (CBCT) megavoltage. (Author)

  1. Dose indices in dental cone beam CT and correlation with dose–area product

    Science.gov (United States)

    Araki, K; Patil, S; Endo, A; Okano, T

    2013-01-01

    Objectives: In the 2011 project “Safety and efficacy of a new and emerging dental X-ray modality (SEDENTEXCT)”, it was suggested that dose index (DI) and dose–area product (DAP) could be easily measured and used as diagnostic reference levels (DRLs), which would help in the management of radiation doses to patients in optimum exposure settings. Such indices could be directly related to effective dose. The purposes of this study, therefore, were to measure and calculate the DI and DAP in cone beam CT (CBCT) machines and to evaluate the correlation between the two. Methods: Dose measurements were performed on three-dimensional cone beam CT (3D-CBCT) machines [3D Accuitomo (J. Morita Mfg. Corp., Kyoto, Japan), Veraviewepocs (J. Morita Mfg. Corp.) and CS9300 (Carestream, New York, NY)] by exposing a cylindrical poly-methyl methacrylate (PMMA) phantom using a CT ionization chamber. These dose measurements were used for the calculation of Dose Indices 1 and 2, according to the methodology suggested by SEDENTEXCT. The DAP was measured using a DAP meter that was attached to the detector to cover the entire irradiated area. Results: The DI1 ranged from 53.6 mR to 216.6 mR, the DI2 ranged from 77.1 mR to 325.0 mR and the DAP ranged from 101.1 mGy cm2 to 457.9 mGy cm2, depending on the machines and exposure settings. Index 2 had a better correlation with the DAP than Index 1. Conclusions: The DIs and DAP proposed by SEDENTEXCT may be useful for establishing DRLs for dental CBCT machines; however, further studies are necessary to determine which of these indices provide accurate dose estimates proportionally relating to the effective dose. PMID:23520392

  2. Iodized oil uptake assessment with cone-beam CT in chemoembolization of small hepatocellular carcinomas

    Institute of Scientific and Technical Information of China (English)

    Ung Bae Jeon; Jun Woo Lee; Ki Seok Choo; Chang Won Kim; Suk Kim; Tae Hong Lee; Yeon Joo Jeong; Dae Hwan Kang

    2009-01-01

    AIM: To evaluate the utility of assessing iodized oil uptake with cone-beam computed tomography (CT) in transarterial chemoembolization (TACE) for small hepatocellular carcinoma (HCC). METHODS: Cone-beam CT provided by a biplane flatpanel detector angiography suite was performed on eighteen patients (sixteen men and two women; 41-76 years; mean age, 58.9 years) directly after TACE for small HCC (26 nodules under 30 mm; mean diameter, 11.9 mm; range, 5-28 mm). The pre-procedural locations of the tumors were evaluated using triphasic multi-detector row helical computed tomography (MDCT). The tumor locations on MDCT and the iodized oil uptake by the tumors were analyzed on cone-beam CT and on spot image directly after the procedures. RESULTS: All lesions on preprocedural MDCT were detected using iodized oil uptake in the lesions on conebeam CT (sensitivity 100%, 26/26). Spot image depicted iodized oil uptake in 22 of the lesions (sensitivity 85%). The degree of iodized oil uptake was overestimated (9%, 2/22) or underestimated (14%, 3/22) on spot image in five nodules compared with that of cone-beam CT. CONCLUSION: Cone-beam CT is a useful and convenient tool for assessing the iodized oil uptake of small hepatic tumors (< 3 cm) directly after TACE.

  3. Reduced Circular Sinusoidal Cone-beam CT for Industrial Applications

    OpenAIRE

    XIA, DAN; Cho, Seungryong; Pan, Xiaochuan

    2009-01-01

    Cone-beam computed tomography (CBCT) plays an important role in industrial, nondestructive testing applications not to mention in medical applications. Circular scanning configuration is widely used for its mechanical simplicity and for readily available and efficient reconstruction algorithms based on the Feldkamp algorithm. However, due to the lack of data sufficiency, circular CBCT does not guarantee image accuracy, and is not free from image artifacts related to the cone-angle and axial v...

  4. Dose calculation accuracy using cone-beam CT (CBCT) for pelvic adaptive radiotherapy

    Science.gov (United States)

    Guan, Huaiqun; Dong, Hang

    2009-10-01

    This study is to evaluate the dose calculation accuracy using Varian's cone-beam CT (CBCT) for pelvic adaptive radiotherapy. We first calibrated the Hounsfield Unit (HU) to electron density (ED) for CBCT using a mini CT QC phantom embedded into an IMRT QA phantom. We then used a Catphan 500 with an annulus around it to check the calibration. The combined CT QC and IMRT phantom provided correct HU calibration, but not Catphan with an annulus. For the latter, not only was the Teflon an incorrect substitute for bone, but the inserts were also too small to provide correct HUs for air and bone. For the former, three different scan ranges (6 cm, 12 cm and 20.8 cm) were used to investigate the HU dependence on the amount of scatter. To evaluate the dose calculation accuracy, CBCT and plan-CT for a pelvic phantom were acquired and registered. The single field plan, 3D conformal and IMRT plans were created on both CT sets. Without inhomogeneity correction, the two CT generated nearly the same plan. With inhomogeneity correction, the dosimetric difference between the two CT was mainly from the HU calibration difference. The dosimetric difference for 6 MV was found to be the largest for the single lateral field plan (maximum 6.7%), less for the 3D conformal plan (maximum 3.3%) and the least for the IMRT plan (maximum 2.5%). Differences for 18 MV were generally 1-2% less. For a single lateral field, calibration with 20.8 cm achieved the minimum dosimetric difference. For 3D and IMRT plans, calibration with a 12 cm range resulted in better accuracy. Because Catphan is the standard QA phantom for the on-board imager (OBI) device, we specifically recommend not using it for the HU calibration of CBCT.

  5. Circle plus Partial Helical Scan Scheme for a Flat Panel Detector-Based Cone Beam Breast X-Ray CT

    OpenAIRE

    Dong Yang; Ruola Ning; Weixing Cai

    2009-01-01

    Flat panel detector-based cone beam breast CT (CBBCT) can provide 3D image of the scanned breast with 3D isotropic spatial resolution, overcoming the disadvantage of the structure superimposition associated with X-ray projection mammography. It is very difficult for Mammography to detect a small carcinoma (a few millimeters in size) when the tumor is occult or in dense breast. CBBCT featured with circular scan might be the most desirable mode in breast imaging due to its simple geometrical co...

  6. Cone beam CT findings of retromolar canals: Report of cases and literature review

    International Nuclear Information System (INIS)

    A retromolar canal is an anatomical variation in the mandible. As it includes the neurovascular bundle, local anesthetic insufficiency can occur, and an injury of the retromolar canal during dental surgery in the mandible may result in excessive bleeding, paresthesia, and traumatic neuroma. Using imaging analysis software, we evaluated the cone-beam computed tomography (CT) images of two Korean patients who presented with retromolar canals. Retromolar canals were detectable on the sagittal and cross-sectional images of cone-beam CT, but not on the panoramic radiographs of the patients. Therefore, the clinician should pay particular attention to the identification of retromolar canals by preoperative radiographic examination, and additional cone beam CT scanning would be recommended.

  7. Cone beam CT findings of retromolar canals: Report of cases and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Sun [Dept. of Dental Hygiene, Eulji University, Seongnam (Korea, Republic of); Park, Chang Seo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Yonsei University, Seoul (Korea, Republic of)

    2013-12-15

    A retromolar canal is an anatomical variation in the mandible. As it includes the neurovascular bundle, local anesthetic insufficiency can occur, and an injury of the retromolar canal during dental surgery in the mandible may result in excessive bleeding, paresthesia, and traumatic neuroma. Using imaging analysis software, we evaluated the cone-beam computed tomography (CT) images of two Korean patients who presented with retromolar canals. Retromolar canals were detectable on the sagittal and cross-sectional images of cone-beam CT, but not on the panoramic radiographs of the patients. Therefore, the clinician should pay particular attention to the identification of retromolar canals by preoperative radiographic examination, and additional cone beam CT scanning would be recommended.

  8. Modulation transfer function determination using the edge technique for cone-beam micro-CT

    Science.gov (United States)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Lu, Hongbing

    2016-03-01

    Evaluating spatial resolution is an essential work for cone-beam computed tomography (CBCT) manufacturers, prototype designers or equipment users. To investigate the cross-sectional spatial resolution for different transaxial slices with CBCT, the slanted edge technique with a 3D slanted edge phantom are proposed and implemented on a prototype cone-beam micro-CT. Three transaxial slices with different cone angles are under investigation. An over-sampled edge response function (ERF) is firstly generated from the intensity of the slightly tiled air to plastic edge in each row of the transaxial reconstruction image. Then the oversampled ESF is binned and smoothed. The derivative of the binned and smoothed ERF gives the line spread function (LSF). At last the presampled modulation transfer function (MTF) is calculated by taking the modulus of the Fourier transform of the LSF. The spatial resolution is quantified with the spatial frequencies at 10% MTF level and full-width-half-maximum (FWHM) value. The spatial frequencies at 10% of MTFs are 3.1+/-0.08mm-1, 3.0+/-0.05mm-1, and 3.2+/-0.04mm-1 for the three transaxial slices at cone angles of 3.8°, 0°, and -3.8° respectively. The corresponding FWHMs are 252.8μm, 261.7μm and 253.6μm. Results indicate that cross-sectional spatial resolution has no much differences when transaxial slices being 3.8° away from z=0 plane for the prototype conebeam micro-CT.

  9. Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?

    Energy Technology Data Exchange (ETDEWEB)

    Cazzato, Roberto Luigi, E-mail: r.cazzato@unicampus.it; Battistuzzi, Jean-Benoit, E-mail: j.battistuzzi@bordeaux.unicancer.fr; Catena, Vittorio, E-mail: vittoriocatena@gmail.com [Institut Bergonié, Department of Radiology (France); Grasso, Rosario Francesco, E-mail: r.grasso@unicampus.it; Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Università Campus Bio-Medico di Roma, Department of Radiology and Diagnostic Imaging (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Università Campus Bio-Medico di Roma, Unit of Measurements and Biomedical Instrumentations, Biomedical Engineering Laboratory (Italy); Buy, Xavier, E-mail: x.buy@bordeaux.unicancer.fr; Palussiere, Jean, E-mail: j.palussiere@bordeaux.unicancer.fr [Institut Bergonié, Department of Radiology (France)

    2015-10-15

    AimTo compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours.Materials and MethodsPatients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (<10, 10–20, >20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported.ResultsForty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = −9.45, t = −3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %).ConclusionCBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.

  10. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT) Part I. On subjective image quality

    NARCIS (Netherlands)

    X. Liang; R. Jacobs; B. Hassan; L.M. Li; R. Pauwels; L. Corpas; P.C. Souza; W. Martens; A. Alonso; I. Lambrichts

    2010-01-01

    Aims: To compare image quality and visibility of anatomical structures in the mandible between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: One dry mandible was scanned with five CBCT scanners (Accuitomo 3D, i-CAT, NewTom 3G, Galileo

  11. Cone beam CT evaluation of patient set-up accuracy as a QA tool

    DEFF Research Database (Denmark)

    Nielsen, Morten; Bertelsen, Anders; Westberg, Jonas;

    2009-01-01

    Purpose. To quantify by means of cone beam CT the random and systematic uncertainty involved in radiotherapy, and to determine if this information can be used for e.g. technical quality assurance, evaluation of patient immobilization and determination of margins for the treatment planning. Patients...... and methods. Eighty four cancer patients have been cone beam CT scanned at treatment sessions 1, 2, 3, 10 and 20. Translational and rotational errors are analyzed. Results and conclusions. For the first three treatment sessions the mean translational error in the AP direction is 1 mm; this indicates a small...

  12. An optimization-based method for geometrical calibration in cone-beam CT without dedicated phantoms

    Science.gov (United States)

    Panetta, D.; Belcari, N.; DelGuerra, A.; Moehrs, S.

    2008-07-01

    In this paper we present a new method for the determination of geometrical misalignments in cone-beam CT scanners, from the analysis of the projection data of a generic object. No a priori knowledge of the object shape and positioning is required. We show that a cost function, which depends on the misalignment parameters, can be defined using the projection data and that such a cost function has a local minimum in correspondence to the actual parameters of the system. Hence, the calibration of the scanner can be carried out by minimizing the cost function using standard optimization techniques. The method is developed for a particular class of 3D object functions, for which the redundancy of the fan beam sinogram in the transaxial midplane can be extended to cone-beam projection data, even at wide cone angles. The method has an approximated validity for objects which do not belong to that class; in that case, a suitable subset of the projection data can be selected in order to compute the cost function. We show by numerical simulations that our method is capable to determine with high accuracy the most critical misalignment parameters of the scanner, i.e., the transversal shift and the skew of the detector. Additionally, the detector slant can be determined. Other parameters such as the detector tilt, the longitudinal shift and the error in the source-detector distance cannot be determined with our method, as the proposed cost function has a very weak dependence on them. However, due to the negligible influence of these latter parameters in the reconstructed image quality, they can be kept fixed at estimated values in both calibration and reconstruction processes without compromising the final result. A trade-off between computational cost and calibration accuracy must be considered when choosing the data subset used for the computation of the cost function. Results on real data of a mouse femur as obtained with a small animal micro-CT are shown as well, proving

  13. Protocol of image guided off-line using cone beam CT megavoltage; Protocolo de imagen guiada off-line mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Perez Moreno, J. M.; Zucca Aparicio, D.; Minambres Moro, A.

    2013-07-01

    The goal of image guided protocols offline is to reduce systematic errors in positioning of the patient in the treatment unit, being more important than the random errors, since the systematic have one contribution in the margin of the CTV to the PTV. This paper proposes a protocol for image guided offline with the different actions to take with their threshold values evaluated previously by anatomic location in a sample of 474 patients and 4821Cone beam Megavoltaje CT (CBCT). (Author)

  14. Detectability of hepatic tumors during 3D post-processed ultrafast cone-beam computed tomography

    Science.gov (United States)

    Paul, Jijo; Vogl, Thomas J.; Chacko, Annamma

    2015-10-01

    To evaluate hepatic tumor detection using ultrafast cone-beam computed tomography (UCBCT) cross-sectional and 3D post-processed image datasets. 657 patients were examined using UCBCT during hepatic transarterial chemoembolization (TACE), and data were collected retrospectively from January 2012 to September 2014. Tumor detectability, diagnostic ability, detection accuracy and sensitivity were examined for different hepatic tumors using UCBCT cross-sectional, perfusion blood volume (PBV) and UCBCT-MRI (magnetic resonance imaging) fused image datasets. Appropriate statistical tests were used to compare collected sample data. Fused image data showed the significantly higher (all P  color display. Fused image data produced 100% tumor sensitivity due to the simultaneous availability of MRI and UCBCT information during tumor diagnosis. Fused image data produced excellent hepatic tumor sensitivity, detectability and diagnostic ability compared to other datasets assessed. Fused image data is extremely reliable and useful compared to UCBCT cross-sectional or PBV image datasets to depict hepatic tumors during TACE. Partial anatomical visualization on cross-sectional images was compensated by fused image data during tumor diagnosis.

  15. Detectability of hepatic tumors during 3D post-processed ultrafast cone-beam computed tomography

    International Nuclear Information System (INIS)

    To evaluate hepatic tumor detection using ultrafast cone-beam computed tomography (UCBCT) cross-sectional and 3D post-processed image datasets.657 patients were examined using UCBCT during hepatic transarterial chemoembolization (TACE), and data were collected retrospectively from January 2012 to September 2014. Tumor detectability, diagnostic ability, detection accuracy and sensitivity were examined for different hepatic tumors using UCBCT cross-sectional, perfusion blood volume (PBV) and UCBCT–MRI (magnetic resonance imaging) fused image datasets. Appropriate statistical tests were used to compare collected sample data.Fused image data showed the significantly higher (all P  <  0.05) diagnostic ability for hepatic tumors compared to UCBCT or PBV image data. The detectability of small hepatic tumors (<5 mm) was significantly reduced (all P  <  0.05) using UCBCT cross-sectional images compared to MRI or fused image data; however, PBV improved tumor detectability using a color display. Fused image data produced 100% tumor sensitivity due to the simultaneous availability of MRI and UCBCT information during tumor diagnosis.Fused image data produced excellent hepatic tumor sensitivity, detectability and diagnostic ability compared to other datasets assessed. Fused image data is extremely reliable and useful compared to UCBCT cross-sectional or PBV image datasets to depict hepatic tumors during TACE. Partial anatomical visualization on cross-sectional images was compensated by fused image data during tumor diagnosis. (paper)

  16. Motion tolerant iterative reconstruction algorithm for cone-beam helical CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hisashi; Goto, Taiga; Hirokawa, Koichi; Miyazaki, Osamu [Hitachi Medical Corporation, Chiba-ken (Japan). CT System Div.

    2011-07-01

    We have developed a new advanced iterative reconstruction algorithm for cone-beam helical CT. The features of this algorithm are: (a) it uses separable paraboloidal surrogate (SPS) technique as a foundation for reconstruction to reduce noise and cone-beam artifact, (b) it uses a view weight in the back-projection process to reduce motion artifact. To confirm the improvement of our proposed algorithm over other existing algorithm, such as Feldkamp-Davis-Kress (FDK) or SPS algorithm, we compared the motion artifact reduction, image noise reduction (standard deviation of CT number), and cone-beam artifact reduction on simulated and clinical data set. Our results demonstrate that the proposed algorithm dramatically reduces motion artifacts compared with the SPS algorithm, and decreases image noise compared with the FDK algorithm. In addition, the proposed algorithm potentially improves time resolution of iterative reconstruction. (orig.)

  17. Comparative evaluation of the accuracy of linear measurements between cone beam computed tomography and 3D microtomography

    OpenAIRE

    Francesca Mangione; Deborah Meleo; Marco Talocco; Raffaella Pecci; Luciano Pacifici; Rossella Bedini

    2013-01-01

    OBJECTIVE: The aim of this study was to evaluate the influence of artifacts on the accuracy of linear measurements estimated with a common cone beam computed tomography (CBCT) system used in dental clinical practice, by comparing it with microCT system as standard reference. MATERIALS AND METHODS: Ten bovine bone cylindrical samples containing one implant each, able to provide both points of reference and image quality degradation, have been scanned by CBCT and microCT systems. Thanks to the ...

  18. Investigation of respiration induced intra- and inter-fractional tumour motion using a standard Cone Beam CT

    DEFF Research Database (Denmark)

    Gottlieb, Karina Lindberg; Hansen, Christian R; Hansen, Olfred;

    2010-01-01

    To investigate whether a standard Cone beam CT (CBCT) scan can be used to determined the intra- and inter-fractional tumour motion for lung tumours that have infiltrated the mediastinum.......To investigate whether a standard Cone beam CT (CBCT) scan can be used to determined the intra- and inter-fractional tumour motion for lung tumours that have infiltrated the mediastinum....

  19. Effect of anatomical backgrounds on detectability in volumetric cone beam CT images

    Science.gov (United States)

    Han, Minah; Park, Subok; Baek, Jongduk

    2016-03-01

    As anatomical noise is often a dominating factor affecting signal detection in medical imaging, we investigate the effects of anatomical backgrounds on signal detection in volumetric cone beam CT images. Signal detection performances are compared between transverse and longitudinal planes with either uniform or anatomical backgrounds. Sphere objects with diameters of 1mm, 5mm, 8mm, and 11mm are used as the signals. Three-dimensional (3D) anatomical backgrounds are generated using an anatomical noise power spectrum, 1/fβ, with β=3, equivalent to mammographic background [1]. The mean voxel value of the 3D anatomical backgrounds is used as an attenuation coefficient of the uniform background. Noisy projection data are acquired by the forward projection of the uniform and anatomical 3D backgrounds with/without sphere lesions and by the addition of quantum noise. Then, images are reconstructed by an FDK algorithm [2]. For each signal size, signal detection performances in transverse and longitudinal planes are measured by calculating the task SNR of a channelized Hotelling observer with Laguerre-Gauss channels. In the uniform background case, transverse planes yield higher task SNR values for all sphere diameters but 1mm. In the anatomical background case, longitudinal planes yield higher task SNR values for all signal diameters. The results indicate that it is beneficial to use longitudinal planes to detect spherical signals in anatomical backgrounds.

  20. Point spread function modeling and images restoration for cone-beam CT

    CERN Document Server

    Zhang, Hua; Shi, Yikai; Xu, Zhe

    2014-01-01

    X-ray cone-beam computed tomography (CT) has the notable features such as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection images degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed firstly. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection images restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection images restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasib...

  1. Correction of scatter in megavoltage cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Spies, L. [Deutsches Krebsforschungszentrum, 69120 Heidelberg (Germany). E-mail: lothar.spies at philips.com; Ebert, M.; Groh, B.A.; Hesse, B.M.; Bortfeld, T. [Deutsches Krebsforschungszentrum, 69120 Heidelberg (Germany)

    2001-03-01

    The role of scatter in a cone-beam computed tomography system using the therapeutic beam of a medical linear accelerator and a commercial electronic portal imaging device (EPID) is investigated. A scatter correction method is presented which is based on a superposition of Monte Carlo generated scatter kernels. The kernels are adapted to both the spectral response of the EPID and the dimensions of the phantom being scanned. The method is part of a calibration procedure which converts the measured transmission data acquired for each projection angle into water-equivalent thicknesses. Tomographic reconstruction of the projections then yields an estimate of the electron density distribution of the phantom. It is found that scatter produces cupping artefacts in the reconstructed tomograms. Furthermore, reconstructed electron densities deviate greatly (by about 30%) from their expected values. The scatter correction method removes the cupping artefacts and decreases the deviations from 30% down to about 8%. (author)

  2. Development of a cone-beam CT system for radiological technologist education

    International Nuclear Information System (INIS)

    For radiological technologists, it is very important to understand the principle of computed tomography (CT) and CT artifacts derived from mechanical and electrical failure. In this study, a CT system for educating radiological technologists was developed. The system consisted of a cone-beam CT scanner and educational software. The cone-beam CT scanner has a simple structure, using a micro-focus X-ray tube and an indirect-conversion flat panel detector. For the educational software, we developed various educational functions of image reconstruction and reconstruction parameters as well as CT artifacts. In the experiments, the capabilities of the system were evaluated using an acrylic phantom. We verified that the system produced the expected results. (author)

  3. Time-resolved cardiac cone beam CT using an interventional C-arm system

    NARCIS (Netherlands)

    Schomberg, H.

    2012-01-01

    It is both desirable and challenging to make interventional C-arm systems fit for cardiac cone beam CT. A number of methods towards thisgoal have been proposed, some of which even attempt to generate 4Dimages of the beating heart. A promising candidate of this type, proposed earlier by this author,

  4. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement.

    NARCIS (Netherlands)

    Guerrero, M.E.; Jacobs, R.; Loubele, M.; Schutyser, F.A.C.; Suetens, P.; Steenberghe, D van

    2006-01-01

    Orofacial diagnostic imaging has grown dramatically in recent years. As the use of endosseous implants has revolutionized oral rehabilitation, a specialized technique has become available for the preoperative planning of oral implant placement: cone beam computed tomography (CT). This imaging techno

  5. Influence of cone beam CT scanning parameters on grey value measurements at an implant site

    NARCIS (Netherlands)

    A. Parsa; N. Ibrahim; B. Hassan; A. Motroni; P. van der Stelt; D. Wismeijer

    2013-01-01

    Objectives: The aim of this study was to determine the grey value variation at the implant site with different scan settings, including field of view (FOV), spatial resolution, number of projections, exposure time and dose selections in two cone beam CT (CBCT) systems and to compare the results with

  6. The application of cone-beam CT in the aging of bone calluses: a new perspective?

    Science.gov (United States)

    Cappella, A; Amadasi, A; Gaudio, D; Gibelli, D; Borgonovo, S; Di Giancamillo, M; Cattaneo, C

    2013-11-01

    In the forensic and anthropological fields, the assessment of the age of a bone callus can be crucial for a correct analysis of injuries in the skeleton. To our knowledge, the studies which have focused on this topic are mainly clinical and still leave much to be desired for forensic purposes, particularly in looking for better methods for aging calluses in view of criminalistic applications. This study aims at evaluating the aid cone-beam CT can give in the investigation of the inner structure of fractures and calluses, thus acquiring a better knowledge of the process of bone remodeling. A total of 13 fractures (three without callus formation and ten with visible callus) of known age from cadavers were subjected to radiological investigations with digital radiography (DR) (conventional radiography) and cone-beam CT with the major aim of investigating the differences between DR and tomographic images when studying the inner and outer structures of bone healing. Results showed how with cone-beam CT the structure of the callus is clearly visible with higher specificity and definition and much more information on mineralization in different sections and planes. These results could lay the foundation for new perspectives on bone callus evaluation and aging with cone-beam CT, a user-friendly and skillful technique which in some instances can also be used extensively on the living (e.g., in cases of child abuse) with reduced exposition to radiation. PMID:23389391

  7. Influence of scan setting selections on root canal visibility with cone beam CT

    NARCIS (Netherlands)

    B.A. Hassan; J. Payam; B. Juyanda; P. van der Stelt; P.R. Wesselink

    2012-01-01

    Objectives The aim of this study was to assess the influence of scan setting selection, including field of view (FOV) ranging from small to large, number of projections and scan modes on the visibility of the root canal with cone beam CT (CBCT). Methods One human mandible cadaver was scanned with CB

  8. Noise power properties of a cone-beam CT system for breast cancer detection

    OpenAIRE

    Yang, Kai; Kwan, Alexander L.C.; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M.

    2008-01-01

    The noise power properties of a cone-beam computed tomography (CT) system dedicated for breast cancer detection were investigated. Uniform polyethylene cylinders of various diameters were scanned under different system acquisition conditions. Noise power spectra were calculated from difference data generated by subtraction between two identical scans. Multidimensional noise power spectra (NPS) were used as the metric to evaluate the noise properties of the breast CT (bCT) under different syst...

  9. Analysis of a 3D imaging device by reconstruction from cone beam X ray radiographs

    International Nuclear Information System (INIS)

    The aim of our study is to analyse the principle of a 3D imaging device which attempts to restore the local density on a cuberill from a set of digital radiographs taken around the object. We have to use a ponctual radiation source to localize the acquisition lines. Therefore the attenuation measurements are modelled by the cone beam X ray transform. In the analysis of the inverse problem, we work out two inversion diagrams which compute the original function, the image of the object, by a sequence of transforms. The theoretical and algorithmical difficulty comes from the fact that, even in the simple case of a circular acquisition trajectory, the cone-shaped geometry prohibits splitting the problem into a superposition of reconstructions in two dimensions. We describe a novel theoretical framework based on the Radon transform. In this new representation space, it becomes possible by a rebinning operation to redistribute the integral values associated to planes from the coordinates system linked to source positions to the spherical coordinates system of the domain. To ensure this shift of space, we have established two formulas, the first approximate but leading to faster processing, related to the Radon transform, the second exact, related to the first derivative of the Radon transform. The inversion of these transforms completes the reconstruction. We state a theorem where we present the hypothesis under which the exact diagram does restore the original function. These are not verified for a circular trajectory, owing to a shadow zone in the Radon domain associated to the planes which intersect the object but not the trajectory. We propose either to restore the missing information or to use an oscillating trajectory

  10. Observer Reliability of Three-Dimensional Cephalometric Landmark Identification on Cone-Beam CT

    Science.gov (United States)

    de Oliveira, Ana Emilia F.; Cevidanes, Lucia Helena S.; Phillips, Ceib; Motta, Alexandre; Burke, Brandon; Tyndall, Donald

    2009-01-01

    Objective To evaluate reliability in 3D landmark identification using Cone-Beam CT. Study Design Twelve pre-surgery CBCTs were randomly selected from 159 orthognathic surgery patients. Three observers independently repeated three times the identification of 30 landmarks in the sagittal, coronal, and axial slices. A mixed effects ANOVA model estimated the Intraclass Correlations (ICC) and assessed systematic bias. Results The ICC was >0.9 for 86% of intra-observer assessments and 66% of inter-observer assessments. Only 1% of intra-observer and 3% of inter-observer coefficients were <0.45. The systematic difference among observers was greater in X and Z than in Y dimensions, but the maximum mean difference was quite small. Conclusion Overall, the intra- and inter-observer reliability was excellent. 3D landmark identification using CBCT can offer consistent and reproducible data, if a protocol for operator training and calibration is followed. This is particularly important for landmarks not easily specified in all three planes of space. PMID:18718796

  11. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Normand, E-mail: normand.robert@sri.utoronto.ca; Polack, George G.; Sethi, Benu; Rowlands, John A. [Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Crystal, Eugene [Division of Cardiology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize

  12. Cone-beam CT in diagnosis of scaphoid fractures

    International Nuclear Information System (INIS)

    This prospective study investigated the sensitivity of cone beam computed tomography (CBCT), a low dose technique recently made available for extremity examinations, in detecting scaphoid fractures. Magnetic resonance imaging (MRI) was used as gold standard for scaphoid fractures. A total of 95 patients with a clinically suspected scaphoid fracture were examined with radiography and CBCT in the acute setting. A negative CBCT exam was followed by an MRI within 2 weeks. When a scaphoid fracture was detected on MRI a new CBCT was performed. Radiography depicted seven scaphoid fractures, all of which were also seen with CBCT. CBCT detected another four scaphoid fractures. With MRI another five scaphoid fractures were identified that were not seen with radiography or with CBCT. These were also not visible on the reexamination CBCT. Sensitivity for radiography was 44, 95 % confidence interval 21-69 %, and for CBCT 69 %, 95 % confidence interval 41-88 % (p = 0.12). Several non-scaphoid fractures in the carpal region were identified, radiography and CBCT depicted 7 and 34, respectively (p < 0.0001). CBCT is a superior alternative to radiography, entailing more accurate diagnoses of carpal region fractures, and thereby requiring fewer follow-up MRI examinations. However, CBCT cannot be used to exclude scaphoid fractures, since MRI identified additional occult scaphoid fractures. (orig.)

  13. Cone-beam CT in diagnosis of scaphoid fractures

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, Rolf; Lapidus, Gunilla; Baecklund, Jenny [Capio St Goeran' s Hospital, Department of Radiology, Stockholm (Sweden); Skorpil, Mikael [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm (Sweden)

    2016-02-15

    This prospective study investigated the sensitivity of cone beam computed tomography (CBCT), a low dose technique recently made available for extremity examinations, in detecting scaphoid fractures. Magnetic resonance imaging (MRI) was used as gold standard for scaphoid fractures. A total of 95 patients with a clinically suspected scaphoid fracture were examined with radiography and CBCT in the acute setting. A negative CBCT exam was followed by an MRI within 2 weeks. When a scaphoid fracture was detected on MRI a new CBCT was performed. Radiography depicted seven scaphoid fractures, all of which were also seen with CBCT. CBCT detected another four scaphoid fractures. With MRI another five scaphoid fractures were identified that were not seen with radiography or with CBCT. These were also not visible on the reexamination CBCT. Sensitivity for radiography was 44, 95 % confidence interval 21-69 %, and for CBCT 69 %, 95 % confidence interval 41-88 % (p = 0.12). Several non-scaphoid fractures in the carpal region were identified, radiography and CBCT depicted 7 and 34, respectively (p < 0.0001). CBCT is a superior alternative to radiography, entailing more accurate diagnoses of carpal region fractures, and thereby requiring fewer follow-up MRI examinations. However, CBCT cannot be used to exclude scaphoid fractures, since MRI identified additional occult scaphoid fractures. (orig.)

  14. Measurement of small lesions near metallic implants with mega-voltage cone beam CT

    Science.gov (United States)

    Grigorescu, Violeta; Prevrhal, Sven; Pouliot, Jean

    2008-03-01

    Metallic objects severely limit diagnostic CT imaging because of their high X-ray attenuation in the diagnostic energy range. In contrast, radiation therapy linear accelerators now offer CT imaging with X-ray energies in the megavolt range, where the attenuation coefficients of metals are significantly lower. We hypothesized that Mega electron-Voltage Cone-Beam CT (MVCT) implemented on a radiation therapy linear accelerator can detect and quantify small features in the vicinity of metallic implants with accuracy comparable to clinical Kilo electron-Voltage CT (KVCT) for imaging. Our test application was detection of osteolytic lesions formed near the metallic stem of a hip prosthesis, a condition of severe concern in hip replacement surgery. Both MVCT and KVCT were used to image a phantom containing simulated osteolytic bone lesions centered around a Chrome-Cobalt hip prosthesis stem with hemispherical lesions with sizes and densities ranging from 0.5 to 4 mm radius and 0 to 500 mg•cm -3, respectively. Images for both modalities were visually graded to establish lower limits of lesion visibility as a function of their size. Lesion volumes and mean density were determined and compared to reference values. Volume determination errors were reduced from 34%, on KVCT, to 20% for all lesions on MVCT, and density determination errors were reduced from 71% on KVCT to 10% on MVCT. Localization and quantification of lesions was improved with MVCT imaging. MVCT offers a viable alternative to clinical CT in cases where accurate 3D imaging of small features near metallic hardware is critical. These results need to be extended to other metallic objects of different composition and geometry.

  15. Shading correction algorithm for improvement of cone-beam CT images in radiotherapy

    OpenAIRE

    Marchant, T. E.; Moore, C. J.; Rowbottom, C G; Mackay, R. I.; Williams, P.C.

    2008-01-01

    Cone-beam CT (CBCT) images have recently become an established modality for treatment verification in radiotherapy. However, identification of soft-tissue structures and the calculation of dose distributions based on CBCT images is often obstructed by image artefacts and poor consistency of density calibration. A robust method for voxel-by-voxel enhancement of CBCT images using a priori knowledge from the planning CT scan has been developed and implemented. CBCT scans were enhanced using a lo...

  16. A new algorithm for geometric self-calibration in cone-beam CT

    International Nuclear Information System (INIS)

    Geometric misalignment leads to severe artifacts in computed tomography (CT). We suggest a general theory for identification of unknown geometric parameters in cone-beam CT and derive a new computational algorithm to obtain the geometric parameters directly from the scan data. In contrast to many existing approaches, our method requires no dedicated calibration devices and allows us to calibrate the system using an arbitrary phantom or even the patient data. The theory is based on the formalism of the consistency conditions for linear integral operators; the algorithm makes use of the quadratic optimization of the consistency conditions. In the practice, the suggested approach can be viewed as a new concept of 'self-calibration', where the user does not need to be aware of the calibration procedure and plays no role in it, which can be a great advantage in applications of cone-beam CT in interventional radiology and radiotherapy. (orig.)

  17. Task-driven image acquisition and reconstruction in cone-beam CT.

    Science.gov (United States)

    Gang, Grace J; Stayman, J Webster; Ehtiati, Tina; Siewerdsen, Jeffrey H

    2015-04-21

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d') is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ± 30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d' for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d' by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the tilt

  18. Segmentation of cone-beam CT using a hidden Markov random field with informative priors

    Science.gov (United States)

    Moores, M.; Hargrave, C.; Harden, F.; Mengersen, K.

    2014-03-01

    Cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. The rich sources of prior information in IGRT are incorporated into a hidden Markov random field model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk. The voxel labels are estimated using iterated conditional modes. The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom. The mean voxel-wise misclassification rate was 6.2%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.

  19. Implementation of the FDK algorithm for cone-beam CT on the cell broadband engine architecture

    Science.gov (United States)

    Scherl, Holger; Koerner, Mario; Hofmann, Hannes; Eckert, Wieland; Kowarschik, Markus; Hornegger, Joachim

    2007-03-01

    In most of today's commercially available cone-beam CT scanners, the well known FDK method is used for solving the 3D reconstruction task. The computational complexity of this algorithm prohibits its use for many medical applications without hardware acceleration. The brand-new Cell Broadband Engine Architecture (CBEA) with its high level of parallelism is a cost-efficient processor for performing the FDK reconstruction according to the medical requirements. The programming scheme, however, is quite different to any standard personal computer hardware. In this paper, we present an innovative implementation of the most time-consuming parts of the FDK algorithm: filtering and back-projection. We also explain the required transformations to parallelize the algorithm for the CBEA. Our software framework allows to compute the filtering and back-projection in parallel, making it possible to do an on-the-fly-reconstruction. The achieved results demonstrate that a complete FDK reconstruction is computed with the CBEA in less than seven seconds for a standard clinical scenario. Given the fact that scan times are usually much higher, we conclude that reconstruction is finished right after the end of data acquisition. This enables us to present the reconstructed volume to the physician in real-time, immediately after the last projection image has been acquired by the scanning device.

  20. Actively triggered 4d cone-beam CT acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Martin F.; Wisotzky, Eric [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Oelfke, Uwe; Nill, Simeon [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  1. Reducing metal artifacts in cone-beam CT images by preprocessing projection data

    International Nuclear Information System (INIS)

    Purpose: Computed tomography (CT) streak artifacts caused by metallic implants remain a challenge for the automatic processing of image data. The impact of metal artifacts in the soft-tissue region is magnified in cone-beam CT (CBCT), because the soft-tissue contrast is usually lower in CBCT images. The goal of this study was to develop an effective offline processing technique to minimize the effect. Methods and Materials: The geometry calibration cue of the CBCT system was used to track the position of the metal object in projection views. The three-dimensional (3D) representation of the object can be established from only two user-selected viewing angles. The position of the shadowed region in other views can be tracked by projecting the 3D coordinates of the object. Automatic image segmentation was used followed by a Laplacian diffusion method to replace the pixels inside the metal object with the boundary pixels. The modified projection data were then used to reconstruct a new CBCT image. The procedure was tested in phantoms, prostate cancer patients with implanted gold markers and metal prosthesis, and a head-and-neck patient with dental amalgam in the teeth. Results: Both phantom and patient studies demonstrated that the procedure was able to minimize the metal artifacts. Soft-tissue visibility was improved near or away from the metal object. The processing time was 1-2 s per projection. Conclusion: We have implemented an effective metal artifact-suppressing algorithm to improve the quality of CBCT images

  2. A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Per Rugaard; Fledelius, Walther; Keall, Paul J.; Weiss, Elisabeth; Lu Jun; Brackbill, Emily; Hugo, Geoffrey D. [Department of Oncology, Aarhus University Hospital, Nr Brogade 44, 8000 Aarhus C (Denmark); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Sydney Medical School-Central, University of Sydney, NSW 2006 (Australia); Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2011-04-15

    Purpose: Implanted markers are commonly used in radiotherapy for x-ray based target localization. The projected marker position in a series of cone-beam CT (CBCT) projections can be used to estimate the three dimensional (3D) target trajectory during the CBCT acquisition. This has important applications in tumor motion management such as motion inclusive, gating, and tumor tracking strategies. However, for irregularly shaped markers, reliable segmentation is challenged by large variations in the marker shape with projection angle. The purpose of this study was to develop a semiautomated method for robust and reliable segmentation of arbitrarily shaped radiopaque markers in CBCT projections. Methods: The segmentation method involved the following three steps: (1) Threshold based segmentation of the marker in three to six selected projections with large angular separation, good marker contrast, and uniform background; (2) construction of a 3D marker model by coalignment and backprojection of the threshold-based segmentations; and (3) construction of marker templates at all imaging angles by projection of the 3D model and use of these templates for template-based segmentation. The versatility of the segmentation method was demonstrated by segmentation of the following structures in the projections from two clinical CBCT scans: (1) Three linear fiducial markers (Visicoil) implanted in or near a lung tumor and (2) an artificial cardiac valve in a lung cancer patient. Results: Automatic marker segmentation was obtained in more than 99.9% of the cases. The segmentation failed in a few cases where the marker was either close to a structure of similar appearance or hidden behind a dense structure (data cable). Conclusions: A robust template-based method for segmentation of arbitrarily shaped radiopaque markers in CBCT projections was developed.

  3. Dental cone beam ct and its justified use in oral health care

    OpenAIRE

    Jacobs, R.

    2011-01-01

    While dental 2D radiology is still the most frequent diagnostic tool, the inherent nature of jaws and teeth might surely benefit from 3D diagnosis. Nowadays, dental cone beam computed tomography may offer high quality images at low radiation doses and costs. Yet, effective dose ranges of CBCT machines may easily vary from 10-1200 micro - sievert, being an equivalent of 2 to 240 dental panoramic radiographs. The same holds true for diagnostic image quality, which exhibits a huge variation amon...

  4. MR cone-beam CT fusion image overlay for fluoroscopically guided percutaneous biopsies in pediatric patients.

    Science.gov (United States)

    Thakor, Avnesh S; Patel, Premal A; Gu, Richard; Rea, Vanessa; Amaral, Joao; Connolly, Bairbre L

    2016-03-01

    Lesions only visible on magnetic resonance (MR) imaging cannot easily be targeted for image-guided biopsy using ultrasound or X-rays but instead require MR guidance with MR-compatible needles and long procedure times (acquisition of multiple MR sequences). We developed an alternative method for performing these difficult biopsies in a standard interventional suite, by fusing MR with cone-beam CT images. The MR cone-beam CT fusion image is then used as an overlay to guide a biopsy needle to the target area under live fluoroscopic guidance. Advantages of this technique include (i) the ability for it to be performed in a conventional interventional suite, (ii) three-dimensional planning of the needle trajectory using cross-sectional imaging, (iii) real-time fluoroscopic guidance for needle trajectory correction and (iv) targeting within heterogeneous lesions based on MR signal characteristics to maximize the potential biopsy yield.

  5. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    Science.gov (United States)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and

  6. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    .9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.

  7. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    OpenAIRE

    Kuo Men; Jian-Rong Dai; Ming-Hui Li; Xin-Yuan Chen; Ke Zhang; Yuan Tian; Peng Huang; Ying-Jie Xu

    2015-01-01

    Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT) device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned ...

  8. Feasibility study on effect and stability of adaptive radiotherapy on kilovoltage cone beam CT:

    OpenAIRE

    Yadav, Poonam; Ramasubramanian, Velayudham; Paliwal, Bhudatt R.

    2011-01-01

    Background We have analyzed the stability of CT to density curve of kilovoltage cone-beam computerized tomography (kV CBCT) imaging modality over the period of six months. We also, investigated the viability of using image value to density table (IVDT) generated at different time, for adaptive radiotherapy treatment planning. The consequences of target volume change and the efficacy of kV CBCT for adaptive planning issues is investigated. Materials and methods. Standard electron density phant...

  9. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    OpenAIRE

    Sorapong Aootaphao; Thongvigitmanee, Saowapak S.; Jartuwat Rajruangrabin; Chalinee Thanasupsombat; Tanapon Srivongsa; Pairash Thajchayapong

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter ...

  10. The effect of cone beam CT (CBCT) on therapeutic decision-making in endodontics

    OpenAIRE

    Mota de Almeida, F. J.; Knutsson, K; Flygare, Lennart

    2014-01-01

    Objectives: The aim was to assess to what extent cone beam CT (CBCT) used in accordance with current European Commission guidelines in a normal clinical setting has an impact on therapeutic decisions in a population referred for endodontic problems. Methods: The study includes data of consecutively examined patients collected from October 2011 to December 2012. From 2 different endodontic specialist clinics, 57 patients were referred for a CBCT examination using criteria in accordance with cu...

  11. Fast Scatter Artifacts Correction for Cone-Beam CT without System Modification and Repeat Scan

    OpenAIRE

    Zhao, Wei; Zhu, Jun; Wang, Luyao

    2015-01-01

    We provide a fast and accurate scatter artifacts correction algorithm for cone beam CT (CBCT) imaging. The method starts with an estimation of coarse scatter profile for a set of CBCT images. A total-variation denoising algorithm designed specifically for Poisson signal is then applied to derive the final scatter distribution. Qualitatively and quantitatively evaluations using Monte Carlo (MC) simulations, experimental CBCT phantom data, and \\emph{in vivo} human data acquired for a clinical i...

  12. Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dae Kyo; Lee, Sang Chul; Huh, Kyung Hoe; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2012-06-15

    The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. The effective dose was the highest for Somatom Sensation 10 (425.84 {mu}Sv), followed by AZ3000CT (332.4 {mu}Sv), Somatom Emotion 6 (199.38 {mu}Sv), and 3D eXaM (111.6 {mu}Sv); it was the lowest for Implagraphy (83.09 {mu}Sv). The CBCT showed significant variation in dose level with different device. The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.

  13. CT to cone-beam CT deformable registration with simultaneous intensity correction

    Science.gov (United States)

    Zhen, Xin; Gu, Xuejun; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.

    2012-11-01

    Computed tomography (CT) to cone-beam CT (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called deformation with intensity simultaneously corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer graphics processing units in compute unified device architecture (CUDA) programming environment. The performance of DISC is evaluated on a simulated patient case and six clinical head-and-neck cancer patient data. It is found that DISC is robust against the CBCT artifacts and intensity inconsistency and significantly improves the registration accuracy when compared with the original demons.

  14. Design and development of C-arm based cone-beam CT for image-guided interventions: initial results

    Science.gov (United States)

    Chen, Guang-Hong; Zambelli, Joseph; Nett, Brian E.; Supanich, Mark; Riddell, Cyril; Belanger, Barry; Mistretta, Charles A.

    2006-03-01

    X-ray cone-beam computed tomography (CBCT) is of importance in image-guided intervention (IGI) and image-guided radiation therapy (IGRT). In this paper, we present a cone-beam CT data acquisition system using a GE INNOVA 4100 (GE Healthcare Technologies, Waukesha, Wisconsin) clinical system. This new cone-beam data acquisition mode was developed for research purposes without interfering with any clinical function of the system. It provides us a basic imaging pipeline for more advanced cone-beam data acquisition methods. It also provides us a platform to study and overcome the limiting factors such as cone-beam artifacts and limiting low contrast resolution in current C-arm based cone-beam CT systems. A geometrical calibration method was developed to experimentally determine parameters of the scanning geometry to correct the image reconstruction for geometric non-idealities. Extensive phantom studies and some small animal studies have been conducted to evaluate the performance of our cone-beam CT data acquisition system.

  15. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT)

    International Nuclear Information System (INIS)

    Aims: To compare image quality and visibility of anatomical structures in the mandible between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: One dry mandible was scanned with five CBCT scanners (Accuitomo 3D, i-CAT, NewTom 3G, Galileos, Scanora 3D) and one MSCT system (Somatom Sensation 16) using 13 different scan protocols. Visibility of 11 anatomical structures and overall image noise were compared between CBCT and MSCT. Five independent observers reviewed the CBCT and the MSCT images in the three orthographic planes (axial, sagittal and coronal) and assessed image quality on a five-point scale. Results: Significant differences were found in the visibility of the different anatomical structures and image noise level between MSCT and CBCT and among the five CBCT systems (p = 0.0001). Delicate structures such as trabecular bone and periodontal ligament were significantly less visible and more variable among the systems in comparison with other anatomical structures (p = 0.0001). Visibility of relatively large structures such as mandibular canal and mental foramen was satisfactory for all devices. The Accuitomo system was superior to MSCT and all other CBCT systems in depicting anatomical structures while MSCT was superior to all other CBCT systems in terms of reduced image noise. Conclusions: CBCT image quality is comparable or even superior to MSCT even though some variability exists among the different CBCT systems in depicting delicate structures. Considering the low radiation dose and high-resolution imaging, CBCT could be beneficial for dentomaxillofacial radiology.

  16. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT)

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xin, E-mail: Xin.Liang@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); College of Stomatology, Dalian Medical University (China); Jacobs, Reinhilde, E-mail: Reinhilde.Jacobs@uz.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Hassan, Bassam, E-mail: b.hassan@acta.n [Department of Oral Radiology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam (Netherlands); Li Limin, E-mail: Limin.Li@uz.kuleuven.b [Department of Paediatric Dentistry and Special Dental Care, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Pauwels, Ruben, E-mail: Ruben.Pauwels@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Corpas, Livia, E-mail: LiviaCorpas@gmail.co [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Souza, Paulo Couto, E-mail: Paulo.CoutoSouza@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Martens, Wendy, E-mail: wendy.martens@uhasselt.b [Department of Basic Medical Sciences, Faculty of Medicine, University of Hasselt, Diepenbeek (Belgium); Shahbazian, Maryam, E-mail: Maryam.Shahbazian@student.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Alonso, Arie, E-mail: ariel.alonso@uhasselt.b [Department of Biostatistics and Statistical Bioinformatics, Universiteit Hasselt (Belgium)

    2010-08-15

    Aims: To compare image quality and visibility of anatomical structures in the mandible between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: One dry mandible was scanned with five CBCT scanners (Accuitomo 3D, i-CAT, NewTom 3G, Galileos, Scanora 3D) and one MSCT system (Somatom Sensation 16) using 13 different scan protocols. Visibility of 11 anatomical structures and overall image noise were compared between CBCT and MSCT. Five independent observers reviewed the CBCT and the MSCT images in the three orthographic planes (axial, sagittal and coronal) and assessed image quality on a five-point scale. Results: Significant differences were found in the visibility of the different anatomical structures and image noise level between MSCT and CBCT and among the five CBCT systems (p = 0.0001). Delicate structures such as trabecular bone and periodontal ligament were significantly less visible and more variable among the systems in comparison with other anatomical structures (p = 0.0001). Visibility of relatively large structures such as mandibular canal and mental foramen was satisfactory for all devices. The Accuitomo system was superior to MSCT and all other CBCT systems in depicting anatomical structures while MSCT was superior to all other CBCT systems in terms of reduced image noise. Conclusions: CBCT image quality is comparable or even superior to MSCT even though some variability exists among the different CBCT systems in depicting delicate structures. Considering the low radiation dose and high-resolution imaging, CBCT could be beneficial for dentomaxillofacial radiology.

  17. Reconstruction-plane-dependent weighted FDK algorithm for cone beam volumetric CT

    Science.gov (United States)

    Tang, Xiangyang; Hsieh, Jiang

    2005-04-01

    The original FDK algorithm has been extensively employed in medical and industrial imaging applications. With an increased cone angle, cone beam (CB) artifacts in images reconstructed by the original FDK algorithm deteriorate, since the circular trajectory does not satisfy the so-called data sufficiency condition (DSC). A few "circular plus" trajectories have been proposed in the past to reduce CB artifacts by meeting the DSC. However, the circular trajectory has distinct advantages over other scanning trajectories in practical CT imaging, such as cardiac, vascular and perfusion applications. In addition to looking into the DSC, another insight into the CB artifacts of the original FDK algorithm is the inconsistency between conjugate rays that are 180° apart in view angle. The inconsistence between conjugate rays is pixel dependent, i.e., it varies dramatically over pixels within the image plane to be reconstructed. However, the original FDK algorithm treats all conjugate rays equally, resulting in CB artifacts that can be avoided if appropriate view weighting strategy is exercised. In this paper, a modified FDK algorithm is proposed, along with an experimental evaluation and verification, in which the helical body phantom and a humanoid head phantom scanned by a volumetric CT (64 x 0.625 mm) are utilized. Without extra trajectories supplemental to the circular trajectory, the modified FDK algorithm applies reconstruction-plane-dependent view weighting on projection data before 3D backprojection, which reduces the inconsistency between conjugate rays by suppressing the contribution of one of the conjugate rays with a larger cone angle. Both computer-simulated and real phantom studies show that, up to a moderate cone angle, the CB artifacts can be substantially suppressed by the modified FDK algorithm, while advantages of the original FDK algorithm, such as the filtered backprojection algorithm structure, 1D ramp filtering, and data manipulation efficiency, can be

  18. CT to Cone-beam CT Deformable Registration With Simultaneous Intensity Correction

    CERN Document Server

    Zhen, Xin; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B

    2012-01-01

    Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer g...

  19. Deformable image registration of CT and truncated cone-beam CT for adaptive radiation therapy

    Science.gov (United States)

    Zhen, Xin; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.

    2013-11-01

    Truncation of a cone-beam computed tomography (CBCT) image, mainly caused by the limited field of view (FOV) of CBCT imaging, poses challenges to the problem of deformable image registration (DIR) between computed tomography (CT) and CBCT images in adaptive radiation therapy (ART). The missing information outside the CBCT FOV usually causes incorrect deformations when a conventional DIR algorithm is utilized, which may introduce significant errors in subsequent operations such as dose calculation. In this paper, based on the observation that the missing information in the CBCT image domain does exist in the projection image domain, we propose to solve this problem by developing a hybrid deformation/reconstruction algorithm. As opposed to deforming the CT image to match the truncated CBCT image, the CT image is deformed such that its projections match all the corresponding projection images for the CBCT image. An iterative forward-backward projection algorithm is developed. Six head-and-neck cancer patient cases are used to evaluate our algorithm, five with simulated truncation and one with real truncation. It is found that our method can accurately register the CT image to the truncated CBCT image and is robust against image truncation when the portion of the truncated image is less than 40% of the total image. Part of this work was presented at the 54th AAPM Annual Meeting (Charlotte, NC, USA, 29 July-2 August 2012).

  20. Anatomical background and generalized detectability in tomosynthesis and cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Gang, G. J.; Tward, D. J.; Lee, J.; Siewerdsen, J. H. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9 (Canada) and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2010-05-15

    Purpose: Anatomical background presents a major impediment to detectability in 2D radiography as well as 3D tomosynthesis and cone-beam CT (CBCT). This article incorporates theoretical and experimental analysis of anatomical background ''noise'' in cascaded systems analysis of 2D and 3D imaging performance to yield ''generalized'' metrics of noise-equivalent quanta (NEQ) and detectability index as a function of the orbital extent of the (circular arc) source-detector orbit. Methods: A physical phantom was designed based on principles of fractal self-similarity to exhibit power-law spectral density ({kappa}/f{sup {beta}}) comparable to various anatomical sites (e.g., breast and lung). Background power spectra [S{sub B}(f)] were computed as a function of source-detector orbital extent, including tomosynthesis ({approx}10 deg. - 180 deg.) and CBCT (180 deg. +fan to 360 deg.) under two acquisition schemes: (1) Constant angular separation between projections (variable dose) and (2) constant total number of projections (constant dose). The resulting S{sub B} was incorporated in the generalized NEQ, and detectability index was computed from 3D cascaded systems analysis for a variety of imaging tasks. Results: The phantom yielded power-law spectra within the expected spatial frequency range, quantifying the dependence of clutter magnitude ({kappa}) and correlation ({beta}) with increasing tomosynthesis angle. Incorporation of S{sub B} in the 3D NEQ provided a useful framework for analyzing the tradeoffs among anatomical, quantum, and electronic noise with dose and orbital extent. Distinct implications are posed for breast and chest tomosynthesis imaging system design--applications varying significantly in {kappa} and {beta}, and imaging task and, therefore, in optimal selection of orbital extent, number of projections, and dose. For example, low-frequency tasks (e.g., soft-tissue masses or nodules) tend to benefit from larger orbital

  1. REVIEW OF RECENT DEVELOPMENTS IN CONE-BEAM CT RECONSTRUCTION ALGORITHMS FOR LONG-OBJECT PROBLEM

    Directory of Open Access Journals (Sweden)

    Kai Zeng

    2011-05-01

    Full Text Available Long-object problem and short-object problem both deal with reconstruction problems with truncated conebeam CT projections acquired with a helical path. They have significantly less practical limitations than original exact cone-beam CT reconstruction algorithms which the cone-beam must cover the whole object. The short-object problem can be defined as reconstruction of the whole object having a finite support in the axial direction with helical scan extends a little bit above and below the object's support. However the longobject problem is to reconstruct the central region of interest (ROI of a long object having an infinite support in the axial direction with helical scan extends a little a bit above and below the ROI. Although the short-object problem is more difficult to solve than the conventional exact reconstruction with non-truncated projections, the long-object problem presents greater challenge to researchers. Recently, with the great development of panel detector technology and computer technology, more and more researchers have been inspired to work on it. Because of great practical value of long-object algorithms, this paper focuses on the review and discussion of recent developments in long-object algorithms. All Long-object algorithms are classified as exact and approximate algorithms. After going briefly over the history of cone-beam algorithms, some novel cone-beam long-object algorithms are introduced, such as: Tam's algorithm, PImethod, PHI-method, etc. Then, the methods described are being compared and discussed.

  2. Reduction of beam hardening artifacts in cone-beam CT imaging via SMART-RECON algorithm

    Science.gov (United States)

    Li, Yinsheng; Garrett, John; Chen, Guang-Hong

    2016-03-01

    When an automatic exposure control is introduced in C-arm cone beam CT data acquisition, the spectral inconsistencies between acquired projection data are exacerbated. As a result, conventional water/bone correction schemes are not as effective as in conventional diagnostic x-ray CT acquisitions with a fixed tube potential. In this paper, a new method was proposed to reconstruct several images with different degrees of spectral consistency and thus different levels of beam hardening artifacts. The new method relies neither on prior knowledge of the x-ray beam spectrum nor on prior compositional information of the imaging object. Numerical simulations were used to validate the algorithm.

  3. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Tselikas, Lambros, E-mail: lambros.tselikas@gmail.com; Joskin, Julien, E-mail: j.joskin@gmail.com [Gustave Roussy, Interventional Radiology Department (France); Roquet, Florian, E-mail: florianroquet@hotmail.com [Gustave Roussy, Biostatistics Department (France); Farouil, Geoffroy, E-mail: g.farouil@gmail.com [Gustave Roussy, Interventional Radiology Department (France); Dreuil, Serge, E-mail: serge.dreuil@gustaveroussy.fr [Gustave Roussy, Medical Physics Department (France); Hakimé, Antoine, E-mail: thakime@yahoo.com; Teriitehau, Christophe, E-mail: cteriitehau@me.com [Gustave Roussy, Interventional Radiology Department (France); Auperin, Anne, E-mail: anne.auperin@gustaveroussy.fr [Gustave Roussy, Biostatistics Department (France); Baere, Thierry de, E-mail: thierry.debaere@gustaveroussy.fr; Deschamps, Frederic, E-mail: frederic.deschamps@gustaveroussy.fr [Gustave Roussy, Interventional Radiology Department (France)

    2015-02-15

    PurposeThis study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).MethodsSixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.ResultsAll biopsies were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).ConclusionsFP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.

  4. Variation of patient imaging doses with scanning parameters for linac-integrated kilovoltage cone beam CT.

    Science.gov (United States)

    Liao, Xiongfei; Wang, Yunlai; Lang, Jinyi; Wang, Pei; Li, Jie; Ge, Ruigang; Yang, Jack

    2015-01-01

    To evaluate the Elekta kilovoltage CBCT doses and the associated technical protocols with patient dosimetry estimation. Image guidance technique with cone-beam CT (CBCT) in radiation oncology on a daily basis can deliver a significant dose to the patient. To evaluate the patient dose from LINAC-integrated kV cone beam CT imaging in image-guided radiotherapy. CT dose index (CTDI) were measured with PTW TM30009 CT ion chamber in air, in head phantom and body phantom, respectively; with different combinations of tube voltage, current, exposure time per frame, collimator and gantry rotation range. Dose length products (DLP) were subsequently calculated to account for volume integration effects. The CTDI and DLP were also compared to AcQSim™ simulator CT for routine clinical protocols. Both CTDIair and CTDIw depended quadratically on the voltage, while linearly on milliampere x seconds (mAs) settings. It was shown that CTDIw and DLP had very close relationship with the collimator settings and the gantry rotation ranges. Normalized CTDIw for Elekta XVI™ CBCT was lower than that of ACQSim simulator CT owing to its pulsed radiation output characteristics. CTDIw can be used to assess the patient dose in CBCT due to its simplicity for measurement and reproducibility. Regular measurement should be performed in QA & QC program. Optimal image parameters should be chosen to reduce patient dose during CBCT. PMID:26405932

  5. Task-based modeling and optimization of a cone-beam CT scanner for musculoskeletal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, P.; Zbijewski, W.; Gang, G. J.; Ding, Y.; Stayman, J. W.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2 M9 (Canada); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Carestream Health, Rochester, New York 14615 (United States); Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21287 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2 M9 (Canada) and Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21287 (United States)

    2011-10-15

    Purpose: This work applies a cascaded systems model for cone-beam CT imaging performance to the design and optimization of a system for musculoskeletal extremity imaging. The model provides a quantitative guide to the selection of system geometry, source and detector components, acquisition techniques, and reconstruction parameters. Methods: The model is based on cascaded systems analysis of the 3D noise-power spectrum (NPS) and noise-equivalent quanta (NEQ) combined with factors of system geometry (magnification, focal spot size, and scatter-to-primary ratio) and anatomical background clutter. The model was extended to task-based analysis of detectability index (d') for tasks ranging in contrast and frequency content, and d' was computed as a function of system magnification, detector pixel size, focal spot size, kVp, dose, electronic noise, voxel size, and reconstruction filter to examine trade-offs and optima among such factors in multivariate analysis. The model was tested quantitatively versus the measured NPS and qualitatively in cadaver images as a function of kVp, dose, pixel size, and reconstruction filter under conditions corresponding to the proposed scanner. Results: The analysis quantified trade-offs among factors of spatial resolution, noise, and dose. System magnification (M) was a critical design parameter with strong effect on spatial resolution, dose, and x-ray scatter, and a fairly robust optimum was identified at M {approx} 1.3 for the imaging tasks considered. The results suggested kVp selection in the range of {approx}65-90 kVp, the lower end (65 kVp) maximizing subject contrast and the upper end maximizing NEQ (90 kVp). The analysis quantified fairly intuitive results--e.g., {approx}0.1-0.2 mm pixel size (and a sharp reconstruction filter) optimal for high-frequency tasks (bone detail) compared to {approx}0.4 mm pixel size (and a smooth reconstruction filter) for low-frequency (soft-tissue) tasks. This result suggests a specific

  6. Linearity of patient positioning detection. A phantom study of skin markers, cone beam computed tomography, and 3D ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Ballhausen, Hendrik; Hieber, Sheila; Li, Minglun; Belka, Claus; Reiner, Michael [University Hospital of LMU, Department of Radiation Oncology, Munich (Germany); Parodi, Katia [Ludwig-Maximilian-University, Department of Experimental Physics - Medical Physics, Munich (Germany)

    2015-05-01

    Three-dimensional ultrasound (3D-US) is a modality complementary to kilovoltage cone beam computed tomography (kV-CBCT) and skin markers for patient positioning detection. This study compares the linearity of evaluations based on measurements using a modern 3D-US system (Elekta Clarity {sup registered}; Elekta, Stockholm, Sweden), a kV-CBCT system (Elekta iView {sup registered}), and skin markers. An investigator deliberately displaced a multimodal phantom by up to ± 30 mm along different axes. The following data points were acquired: 27 along the lateral axis, 29 along the longitudinal axis, 27 along the vertical axis, and 27 along the space diagonal. At each of these 110 positions, the displacements according to skin' markers were recorded and scans were performed using both 3D-US and kV-CBCT. Shifts were detected by matching bony anatomy or soft tissue density to a reference planning CT in the case of kV-CBCT and for 3D-US, by matching ultrasound volume data to a reference planning volume. A consensus value was calculated from the average of the four modalities. With respect to this consensus value, the linearity (offset and regression coefficient, i.e., slope), average offset, systematic error, and random error of all four modalities were calculated for each axis. Linearity was similar for all four modalities, with regression coefficients between 0.994 and 1.012, and all offsets below 1 mm. The systematic errors of skin markers and 3D-US were higher than for kV-CBCT, but random errors were similar. In particular, 3D-US demonstrated an average offset of 0.36 mm to the right, 0.08 mm inferiorly, and 0.15 mm anteriorly; the systematic error was 0.36 mm laterally, 0.35 mm longitudinally, and 0.22 mm vertically; the random error was 0.15 mm laterally, 0.30 mm longitudinally, and 0.12 mm vertically. A total of 109 out of 110 (99 %) 3D-US measurements were within 1 mm of the consensus value on either axis. The linearity of 3D-US was no worse than that of skin

  7. Cone Beam Breast CT with a Flat Panel Detector- Simulation, Implementation and Demonstration.

    Science.gov (United States)

    Shaw, Chris; Chen, Lingyun; Altunbas, Mastafa; Tu, Shuju; Wang, Tian-Peng; Lai, Chao-Jen; Cheenu Kappadath, S; Meng, Yang; Liu, Xinming

    2005-01-01

    This paper describes our experiences in the simulation, implementation and application of a flat panel detector based cone beam computed tomography (CT) imaging system for dedicated 3-D breast imaging. In our simulation study, the breast was analytically modeled as a cylinder of breast tissue loosely molded into cylindrical shape with embedded soft tissue masses and calcifications. Attenuation coefficients for various types of breast tissue, soft tissue masses and calcifications were estimated for various kVp's to generate simulated image signals. Projection images were computed to incorporate x-ray attenuation, geometric magnification, x-ray detection, detector blurring, image pixelization and digitization. Based on the x-ray kVp/filtration used, transmittance through the phantom, detective quantum efficiency (DQE), exposure level, and imaging geometry, the photon fluence was estimated and used to compute the quantum noise level on a pixel-by-pixel basis for various dose levels at the isocenter. This estimated noise level was then used with a random number generator to generate and add a fluctuation component to the noiseless transmitted image signal. The noise carrying projection images were then convolved with a Gaussian-like kernel, computed from measured 1-D line spread function (LSF) to simulate detector blurring. Additional 2-D Gaussian filtering was applied to the projection images and tested for improving the detection of soft tissue masses and calcifications in the reconstructed images. Reconstruction was performed using the Feldkamp filtered backprojection algorithm. All simulations were performed on a 24 PC (2.4 GHz Dual-Xeon CPU) cluster with MPI parallel programming. PMID:17281227

  8. Direct aneurysm sac catheterization and embolization of an enlarging internal iliac aneurysm using cone-beam CT

    Science.gov (United States)

    Merchant, Monish; Shah, Rohan; Resnick, Scott

    2015-01-01

    Since cone-beam computed tomography (CT) has been adapted for use with a C-arm system it has brought volumetric CT capabilities in the interventional suite. Although cone-beam CT image resolution is far inferior to that generated by traditional CT scanners, the system offers the ability to place an access needle into position under tomographic guidance and use the access to immediately begin a fluoroscopic procedure without moving the patient. We describe a case of a “jailed” enlarging internal iliac artery aneurysm secondary to abdominal aortic aneurysm repair, in which direct percutaneous puncture of the internal iliac artery aneurysm sac was performed under cone-beam CT guidance. PMID:25858522

  9. Accuracy of trabecular bone microstructural measurement at planned dental implant sites using cone-beam CT datasets

    NARCIS (Netherlands)

    N. Ibrahim; A. Parsa; B. Hassan; P. van der Stelt; I.H.A. Aartman; D. Wismeijer

    2014-01-01

    Objective Cone-beam CT (CBCT) images are infrequently utilized for trabecular bone microstructural measurement due to the system's limited resolution. The aim of this study was to determine the accuracy of CBCT for measuring trabecular bone microstructure in comparison with micro CTCT). Materials

  10. Deformable registration of CT and cone-beam CT by local CBCT intensity correction

    Science.gov (United States)

    Park, Seyoun; Plishker, William; Shekhar, Raj; Quon, Harry; Wong, John; Lee, Junghoon

    2015-03-01

    In this paper, we propose a method to accurately register CT to cone-beam CT (CBCT) by iteratively correcting local CBCT intensity. CBCT is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. To address this issue, we correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. This correction-registration step is repeated until the result image converges. We tested the proposed method on eight head-and-neck cancer cases and compared its performance with state-of-the-art registration methods, Bspline, demons, and optical flow, which are widely used for CT-CBCT registration. Normalized mutual-information (NMI), normalized cross-correlation (NCC), and structural similarity (SSIM) were computed as similarity measures for the performance evaluation. Our method produced overall NMI of 0.59, NCC of 0.96, and SSIM of 0.93, outperforming existing methods by 3.6%, 2.4%, and 2.8% in terms of NMI, NCC, and SSIM scores, respectively. Experimental results show that our method is more consistent and roust than existing algorithms, and also computationally efficient with faster convergence.

  11. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    Energy Technology Data Exchange (ETDEWEB)

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); and others

    2011-04-15

    Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm

  12. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    International Nuclear Information System (INIS)

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  13. Linac-integrated 4D cone beam CT: first experimental results

    Science.gov (United States)

    Dietrich, Lars; Jetter, Siri; Tücking, Thomas; Nill, Simeon; Oelfke, Uwe

    2006-06-01

    A new online imaging approach, linac-integrated cone beam CT (CBCT), has been developed over the past few years. It has the advantage that a patient can be examined in their treatment position directly before or during a radiotherapy treatment. Unfortunately, respiratory organ motion, one of the largest intrafractional organ motions, often leads to artefacts in the reconstructed 3D images. One way to take this into account is to register the breathing phase during image acquisition for a phase-correlated image reconstruction. Therefore, the main focus of this work is to present a system which has the potential to investigate the correlation between internal (movement of the diaphragm) and external (data of a respiratory gating system) information about breathing phase and amplitude using an inline CBCT scanner. This also includes a feasibility study about using the acquired information for a respiratory-correlated 4D CBCT reconstruction. First, a moving lung phantom was used to develop and to specify the required methods which are based on an image reconstruction using only projections belonging to a certain moving phase. For that purpose, the corresponding phase has to be detected for each projection. In the case of the phantom, an electrical signal allows one to track the movement in real time. The number of projections available for the image reconstruction depends on the breathing phase and the size of the position range from which projections should be used for the reconstruction. The narrower this range is, the better the inner structures can be located, but also the noise of the images increases due to the limited number of projections. This correlation has also been analysed. In a second step, the methods were clinically applied using data sets of patients with lung tumours. In this case, the breathing phase was detected by an external gating system (AZ-733V, Anzai Medical Co.) based on a pressure sensor attached to the patient's abdominal region with a

  14. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    Science.gov (United States)

    Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.

    2013-07-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  15. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT

    Directory of Open Access Journals (Sweden)

    Jintao Zhao

    2015-09-01

    Full Text Available The quality of Computed Tomography (CT images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration.

  16. Image characteristics of cone beam computed tomography using a CT performance phantom

    International Nuclear Information System (INIS)

    To evaluate the characteristics of (widely used) cone beam computed tomography (CBCT) images. Images were obtained with CT performance phantoms (The American Association of Physicists in Medicine; AAPM). CT phantom as the destination by using PSR 9000N TM dental CT system (Asahi Roentgen Ind. Co., Ltd., Japan) and i-CAT CBCT (Imaging Science International Inc., USA) that have different kinds of detectors and field of view, and compared these images with the CT number for linear attenuation, contrast resolution, and spatial resolution. CT number of both PSR 9000N TM dental CT system and i-CAT CBCT did not conform to the base value of CT performance phantom. The contrast of i-CAT CBCT is higher than that of PSR 9000N TM dental CT system. Both contrasts were increased according to thickness of cross section. Spatial resolution and shapes of reappearance was possible up to 0.6 mm in PSR 9000N TM dental CT system and up to 1.0 mm in i-CAT CBCT. Low contrast resolution in region of low contrast sensitivity revealed low level at PSR 9000N TM dental CT system and i-CAT CBCT. CBCT images revealed higher spatial resolution, however, contrast resolution in region of low contrast sensitivity was the inferiority of image characteristics

  17. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    DEFF Research Database (Denmark)

    Thing, Rune Slot; Bernchou, Uffe; Mainegra-Hing, Ernesto;

    2016-01-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five...

  18. Dose cone-beam CT alter treatment plans? Comparison of preoperative implant planning using panoramic versus cone-beam CT images

    International Nuclear Information System (INIS)

    The present study was performed to compare the planning of implant placement based on panoramic radiography (PAN) and cone-beam computed tomography (CBCT) images, and to study the impact of the image dataset on the treatment planning. One hundred five partially edentulous patients (77 males, 28 females, mean age: 46 years, range: 26-67 years) seeking oral implant rehabilitation were referred for presurgical imaging. Imaging consisted of PAN and CBCT imaging. Four observers planned implant treatment based on the two-dimensional (2D) image datasets and at least one month later on the three-dimensional (3D) image dataset. Apart from presurgical diagnostic and dimensional measurement tasks, the observers needed to indicate the surgical confidence levels and assess the image quality in relation to the presurgical needs. All observers confirmed that both imaging modalities (PAN and CBCT) gave similar values when planning implant diameter. Also, the results showed no differences between both imaging modalities for the length of implants with an anterior location. However, significant differences were found in the length of implants with a posterior location. For implant dimensions, longer lengths of the implants were planned with PAN, as confirmed by two observers. CBCT provided images with improved scores for subjective image quality and surgical confidence levels. Within the limitations of this study, there was a trend toward PAN-based preoperative planning of implant placement leading towards the use of longer implants within the posterior jaw bone.

  19. Dose cone-beam CT alter treatment plans? Comparison of preoperative implant planning using panoramic versus cone-beam CT images

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Maria Eugenia; Jacobs, Reinhilde [Dept. of Oral and Maxillofacial Surgery, University Hospitals, Leuven (Belgium); Norge, Jorge; Castro, Carmen [Master of Periodontology, Universidad San Martin de Porres, Lima (Peru)

    2014-06-15

    The present study was performed to compare the planning of implant placement based on panoramic radiography (PAN) and cone-beam computed tomography (CBCT) images, and to study the impact of the image dataset on the treatment planning. One hundred five partially edentulous patients (77 males, 28 females, mean age: 46 years, range: 26-67 years) seeking oral implant rehabilitation were referred for presurgical imaging. Imaging consisted of PAN and CBCT imaging. Four observers planned implant treatment based on the two-dimensional (2D) image datasets and at least one month later on the three-dimensional (3D) image dataset. Apart from presurgical diagnostic and dimensional measurement tasks, the observers needed to indicate the surgical confidence levels and assess the image quality in relation to the presurgical needs. All observers confirmed that both imaging modalities (PAN and CBCT) gave similar values when planning implant diameter. Also, the results showed no differences between both imaging modalities for the length of implants with an anterior location. However, significant differences were found in the length of implants with a posterior location. For implant dimensions, longer lengths of the implants were planned with PAN, as confirmed by two observers. CBCT provided images with improved scores for subjective image quality and surgical confidence levels. Within the limitations of this study, there was a trend toward PAN-based preoperative planning of implant placement leading towards the use of longer implants within the posterior jaw bone.

  20. Comparative evaluation of cone-beam CT equipment with micro-CT in the visualization of root canal system

    OpenAIRE

    Bence Tamas Szabo; Levente Pataky; Regina Mikusi; Pal Fejerdy; Csaba Dobo-Nagy

    2012-01-01

    The aim of this study was to compare three different cone-beam CT (CBCT) instruments used in dental clinical practice with micro-CT as gold standard. Three female monkeys’ (Macaca fascicularis) skulls were selected and scanned by the tested CBCT-s. The most apical visible root canal level on the CBCT images was used as reference level (RL). After the image acquisition by CBCT-s dental jaw sections were scanned by micro-CT at a resolution of 17 μm. Out of the left second and third molars 25 ro...

  1. Dedicated scanner for laboratory investigations on cone-beam CT/SPECT imaging of the breast

    International Nuclear Information System (INIS)

    We describe the design, realization and basic tests of a prototype Cone-Beam Breast Computed Tomography (CBBCT) scanner, combined with a SPECT head consisting of a compact pinhole gamma camera based on a photon counting CdTe hybrid pixel detector. The instrument features a 40 μm focal spot X-ray tube, a 50 μm pitch flat panel detector and a 1-mm-thick, 55 μm pitch CdTe pixel detector. Preliminary imaging tests of the separate CT and gamma-ray units are presented showing a resolution in CT of 3.2 mm-1 at a radial distance of 50 mm from the rotation axis and that the 5 and 8 mm hot masses (99mTc labeled with a 15:1 activity ratio with respect to the background) can be detected in planar gamma-ray imaging with a contrast-to-noise ratio of about 4.

  2. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    Energy Technology Data Exchange (ETDEWEB)

    Toftegaard, Jakob, E-mail: jaktofte@rm.dk; Fledelius, Walther; Worm, Esben S.; Poulsen, Per R. [Department of Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Seghers, Dieter; Huber, Michael; Brehm, Marcus [Varian Medical Systems, Imaging Laboratory GmbH, Baden-Daettwil 5405 (Switzerland); Elstrøm, Ulrik V. [Department of Medical Physics, Aarhus University Hospital, Aarhus 8000 (Denmark)

    2014-12-15

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  3. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    International Nuclear Information System (INIS)

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  4. Investigation of saddle trajectories for cardiac CT imaging in cone-beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Jed D [Department of Radiology, University of Utah, Salt Lake City, UT 84112 (United States); Noo, Frederic [Department of Radiology, University of Utah, Salt Lake City, UT 84112 (United States); Kudo, H [Department of Computer Science, Graduate School of Systems and Information Engineering, University of Tsukuba (Japan)

    2004-06-07

    This paper investigates cone-beam tomography for a wide class of x-ray source trajectories called saddles. In particular, a mathematical analysis of the number of intersections between a saddle and an arbitrary plane is given. This analysis demonstrates that axially truncated cone-beam projections acquired along a saddle can be used for exact reconstruction at any point in a large volume. The reconstruction can be achieved either using a new algorithm presented herein or using a formula recently introduced by Katsevich (2003 Int. J. Math. Math. Sci. 21 1305-21). The shape of the reconstructed volume and the properties of saddles make saddles attractive for cardiac imaging. Three examples of saddles are presented with a discussion of implementation on devices similar to modern C-arm systems and multislice CT scanners. Reconstruction with one of these saddles has been tested using computer-simulated data, with and without truncation. The imaged phantom for the truncated data is a FORBILD head phantom (representing the heart) that has been modified and embedded inside the FORBILD thorax phantom. The non-truncated data were generated by excluding the thorax. The reconstructed images demonstrate the accuracy of the mathematical results.

  5. Frequency of infraossal aproximal bone defects in maxilla and mandibulla, found with 3D cone beam volumetric tomography

    International Nuclear Information System (INIS)

    Periodontal disease is characterized with two types of bone resorption: horizontal and vertical. The latter is responsible for formation of intraossal bone defects (ID). These defects are treated by regenerative periodontal therapy. The 'golden standard' for their diagnosis is a full set of intraoral radiographs, followed by ortopantomographic (OPG) images. With the introduction of 3D cone beam volumetric tomography (CVT) method, which is highly sensitive, many limitations of 2D images are overwhelmed. The aim of the study was to the ability of 3D VCT to discover ID in comparison with 2D OPG; 2) To describe the ID by: sex, age. number of teeth, tooth number, degree of alveolar bone resorption, depth of ID, width of ID, angle of ID, Tooth condition with ID The study used 121 patients who had visited FDM - Plovdiv. 47,1% were man and 52,9% women. Their age was form 11 to 99 years. 2698 were evaluated. We accepted ID with depth (INFRA) >3mm. Images were acquired with Galileos (Sirona). First were studied the 2D images for ID and then again with the help of 3D CVT after which the parameters of the ID were recorded. With 2D and 3D were found correspondingly: ID in 20 (16,5%) and 49 (40.5%) patients; 45 (1.66%) and 113 (4.18%) in teeth, with statistical significance (p<0.0001). ID were mainly prevalent in lower jaw (62.8%), and in molars 47,37,36 (26.5%). We found statistically significant more ID with the increase of age and degree of alveolar bone resorption. 3D CVT is significantly more sensitive than 2D OPG. It is advisable that this method is used more frequently in periodontology for diagnosis and evaluation of treatment effect

  6. Role of C-arm cone-beam CT in chemoembolization for hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Cheol [Dept. of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul (Korea, Republic of)

    2015-02-15

    With the advent of C-arm cone-beam computed tomography (CBCT), minimally-invasive procedures in the angiography suite made a new leap beyond the limitations of 2-dimensional (D) angiography alone. C-arm CBCT can help interventional radiologists in several ways with the treatment of hepatocellular carcinoma (HCC); visualization of small tumors and tumor-feeding arteries, identification of occult lesion and 3D configuration of tortuous hepatic arteries, assurance of completeness of chemoembolization, suggestion of presence of extrahepatic collateral arteries supplying HCCs, and prevention of nontarget embolization. With more improvements in the technology, C-arm CBCT may be essential in all kinds of interventional procedures in the near future.

  7. Comparative evaluation of the accuracy of linear measurements between cone beam computed tomography and 3D microtomography

    Directory of Open Access Journals (Sweden)

    Francesca Mangione

    2013-09-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the influence of artifacts on the accuracy of linear measurements estimated with a common cone beam computed tomography (CBCT system used in dental clinical practice, by comparing it with microCT system as standard reference. MATERIALS AND METHODS: Ten bovine bone cylindrical samples containing one implant each, able to provide both points of reference and image quality degradation, have been scanned by CBCT and microCT systems. Thanks to the software of the two systems, for each cylindrical sample, two diameters taken at different levels, by using implants different points as references, have been measured. Results have been analyzed by ANOVA and a significant statistically difference has been found. RESULTS AND DISCUSSION: Due to the obtained results, in this work it is possible to say that the measurements made with the two different instruments are still not statistically comparable, although in some samples were obtained similar performances and therefore not statistically significant. CONCLUSION: With the improvement of the hardware and software of CBCT systems, in the near future the two instruments will be able to provide similar performances.

  8. Image-domain shading correction for cone-beam CT without prior patient information.

    Science.gov (United States)

    Fan, Qiyong; Lu, Bo; Park, Justin C; Niu, Tianye; Li, Jonathan G; Liu, Chihray; Zhu, Lei

    2015-01-01

    In the era of high-precision radiotherapy, cone-beam CT (CBCT) is frequently utilized for on-board treatment guidance. However, CBCT images usually contain severe shading artifacts due to strong photon scatter from illumination of a large volume and non-optimized patient-specific data measurements, limiting the full clinical applications of CBCT. Many algorithms have been proposed to alleviate this problem by data correction on projections. Sophisticated methods have also been designed when prior patient information is available. Nevertheless, a standard, efficient, and effective approach with large applicability remains elusive for current clinical practice. In this work, we develop a novel algorithm for shading correction directly on CBCT images. Distinct from other image-domain correction methods, our approach does not rely on prior patient information or prior assumption of patient data. In CBCT, projection errors (mostly from scatter and non-ideal usage of bowtie filter) result in dominant low-frequency shading artifacts in image domain. In circular scan geometry, these artifacts often show global or local radial patterns. Hence, the raw CBCT images are first preprocessed into the polar coordinate system. Median filtering and polynomial fitting are applied on the transformed image to estimate the low-frequency shading artifacts (referred to as the bias field) angle-by-angle and slice-by-slice. The low-pass filtering process is done firstly along the angular direction and then the radial direction to preserve image contrast. The estimated bias field is then converted back to the Cartesian coordinate system, followed by 3D low-pass filtering to eliminate possible high-frequency components. The shading-corrected image is finally obtained as the uncorrected volume divided by the bias field. The proposed algorithm was evaluated on CBCT images of a pelvis patient and a head patient. Mean CT number values and spatial non-uniformity on the reconstructed images were

  9. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    CERN Document Server

    Jones, Bernard L; Miften, Moyed

    2015-01-01

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. Resu...

  10. Scattering correction based on regularization de-convolution for Cone-Beam CT

    CERN Document Server

    Xie, Shi-peng

    2016-01-01

    In Cone-Beam CT (CBCT) imaging systems, the scattering phenomenon has a significant impact on the reconstructed image and is a long-lasting research topic on CBCT. In this paper, we propose a simple, novel and fast approach for mitigating scatter artifacts and increasing the image contrast in CBCT, belonging to the category of convolution-based method in which the projected data is de-convolved with a convolution kernel. A key step in this method is how to determine the convolution kernel. Compared with existing methods, the estimation of convolution kernel is based on bi-l1-l2-norm regularization imposed on both the intermediate the known scatter contaminated projection images and the convolution kernel. Our approach can reduce the scatter artifacts from 12.930 to 2.133.

  11. A Model-Based Scatter Artifacts Correction for Cone Beam CT

    CERN Document Server

    Zhao, Wei; Zhu, Jun; Wang, Luyao; Xing, Lei

    2016-01-01

    The purpose of this work is to provide a fast and accurate scatter artifacts correction algorithm for cone beam CT (CBCT) imaging. The method starts with an estimation of coarse scatter profiles for a set of CBCT data in either image domain or projection domain. A denoising algorithm designed specifically for Poisson signals is then applied to derive the final scatter distribution. Qualitative and quantitative evaluations using thorax and abdomen phantoms with Monte Carlo (MC) simulations, experimental Catphan phantom data, and in vivo human data acquired for a clinical image guided radiation therapy were performed. Results show that the proposed algorithm can significantly reduce scatter artifacts and recover the correct HU in either projection domain or image domain. For the MC thorax phantom study, four components segmentation yield the best results, while the results of three components segmentation are still acceptable. For the Catphan phantom data, the mean value over all pixels in the residual image is...

  12. Simulation of Cone Beam CT System Based on Monte Carlo Method

    CERN Document Server

    Wang, Yu; Cao, Ruifen; Hu, Liqin; Li, Bingbing

    2014-01-01

    Adaptive Radiation Therapy (ART) was developed based on Image-guided Radiation Therapy (IGRT) and it is the trend of photon radiation therapy. To get a better use of Cone Beam CT (CBCT) images for ART, the CBCT system model was established based on Monte Carlo program and validated against the measurement. The BEAMnrc program was adopted to the KV x-ray tube. Both IOURCE-13 and ISOURCE-24 were chosen to simulate the path of beam particles. The measured Percentage Depth Dose (PDD) and lateral dose profiles under 1cm water were compared with the dose calculated by DOSXYZnrc program. The calculated PDD was better than 1% within the depth of 10cm. More than 85% points of calculated lateral dose profiles was within 2%. The correct CBCT system model helps to improve CBCT image quality for dose verification in ART and assess the CBCT image concomitant dose risk.

  13. Fast Scatter Artifacts Correction for Cone-Beam CT without System Modification and Repeat Scan

    CERN Document Server

    Zhao, Wei; Wang, Luyao

    2015-01-01

    We provide a fast and accurate scatter artifacts correction algorithm for cone beam CT (CBCT) imaging. The method starts with an estimation of coarse scatter profile for a set of CBCT images. A total-variation denoising algorithm designed specifically for Poisson signal is then applied to derive the final scatter distribution. Qualitatively and quantitatively evaluations using Monte Carlo (MC) simulations, experimental CBCT phantom data, and \\emph{in vivo} human data acquired for a clinical image guided radiation therapy were performed. Results show that the proposed algorithm can significantly reduce scatter artifacts and recover the correct HU within either projection domain or image domain. Further test shows the method is robust with respect to segmentation procedure.

  14. Radiochromic film thickness correction with convergent cone- beam optical CT scanner

    International Nuclear Information System (INIS)

    A cone-beam optical computed tomography (CT) scanner was modified by replacing the diffuse planar yellow light emitting diode (LED) source with violet and red LEDs and a large Fresnel lens. The narrow band sources provided transmission images of radiochromic EBT2 film at 420 and 633 nm, with air as a reference. The dose image was not detectable with the violet source. This demonstrated spectral independence of the two images. Assuming attenuation at 420 nm was dominated by absorption from yellow dye in the active film layer allowed a relative thickness image to be calculated. By scaling the 633 nm optical density image for relative thickness, non-uniformities in the recorded dose distribution due to film thickness variations, were removed

  15. Using condition and usefulness of dental cone-beam CT in endodontic treatment

    International Nuclear Information System (INIS)

    This study evaluated the condition and usefulness of the dental cone-beam CT (3DX) in clinical endodontic treatments. Images from 55 examinations of 49 patients obtained using 3DX during an 11-month period were evaluated retrospectively to identify the usefulness of this modality compared with periapical or panoramic radiographs. The main indication for using of 3DX was diagnosis of root fracture in 65% of the examinations, second was the presence and expansion of periapical lesion in 22%, and third was to detect the canal system or root abnormality in 13%. The 3DX visualizes bony anatomical structures precisely and detects the presence and expansion of periapical lesions and the canal system of each root of mulirooted teeth that cannot easily be observed by intraoral radiography or panoramic radiography. The results of this study suggest that 3DX is a useful and reliable tool for endodontic treatments. (author)

  16. Image and surgery-related costs comparing cone beam CT and panoramic imaging before removal of impacted mandibular third molars

    DEFF Research Database (Denmark)

    Petersen, Lars Bo; Olsen, Kim Rose; Christensen, Jennifer Heather;

    2014-01-01

    Objectives: The aim of this prospective clinical study was to derive the absolute and relative costs of cone beam CT (CBCT) and panoramic imaging before removal of an impacted mandibular third molar. Furthermore, the study aimed to analyse the influence of different cost-setting scenarios...

  17. A dual centre study of setup accuracy for thoracic patients based on Cone-Beam CT data

    DEFF Research Database (Denmark)

    Nielsen, Tine B; Hansen, Vibeke N; Westberg, Jonas;

    2011-01-01

    BACKGROUND AND PURPOSE: To compare setup uncertainties at two different institutions by using identical imaging and analysis techniques for thoracic patients with different fixation equipments. METHODS AND MATERIALS: Patient registration results from Cone-Beam CT (CBCT) scans of 174 patients were...

  18. Radiation dose response of normal lung assessed by Cone Beam CT - a potential tool for biologically adaptive radiation therapy

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Schytte, Tine; Bentzen, Søren M;

    2011-01-01

    Density changes of healthy lung tissue during radiotherapy as observed by Cone Beam CT (CBCT) might be an early indicator of patient specific lung toxicity. This study investigates the time course of CBCT density changes and tests for a possible correlation with locally delivered dose....

  19. Influence of object location in different FOVs on trabecular bone microstructure measurements of human mandible: a cone beam CT study

    NARCIS (Netherlands)

    N. Ibrahim; A. Parsa; B. Hassan; P. van der Stelt; I.H.A. Aartman; P. Nambiar

    2014-01-01

    The aim of this study was to assess the influence of different object locations in different fields of view (FOVs) of two cone beam CT (CBCT) systems on trabecular bone microstructure measurements of a human mandible. A block of dry human mandible was scanned at five different locations (centre, lef

  20. Visibility of microcalcifications in CCD-based cone beam CT: a preliminary study

    Science.gov (United States)

    Shen, Youtao; Chen, Lingyun; Ge, Shuaiping; Yi, Ying; Han, Tao; Zhong, Yuncheng; Lai, Chao-Jen; Liu, Xinming; Wang, Tianpeng; Shaw, Chris C.

    2009-02-01

    In this work, we investigated the visibility of microcalcifications in CCD-based cone beam CT (CBCT) breast imaging. A paraffin cylinder with a diameter of 135 mm and a thickness of 40 mm was used to simulate a 100% adipose breast. Calcium carbonate grains, ranging from 140-150 to 200-212 μm in size, were used to simulate the microcalcifications. Groups of 25 same size microcalcifications were arranged into 5 × 5 clusters. Each cluster was embedded at the center of a smaller (15 mm diameter) cylindrical paraffin phantom, which were inserted into a hole at the center of the breast phantom. The breast phantom with the simulated microcalcifications was scanned on a bench top experimental CCDbased cone beam CT system at various exposure levels with two CCD cameras: Hamamatsu's C4742-56-12ER and Dalsa 99-66-0000-00. 300 projection images were acquired over 360° and reconstructed with Feldkamp's backprojection algorithm using a ramp filter. The images were reviewed by 6 readers independently. The ratios of visible microcalcifications were recorded and averaged over all readers. These ratios were plotted as the function of measured image signal-to-noise ratio (SNR) for various scans. It was found that 94% visibility was achieved for 200-212 μm calcifications at an SNR of 48.2 while 50% visibility was achieved for 200-212, 180-200, 160-180, 150-160 and 140-150 μm calcifications at an SNR of 25.0, 35.3, 38.2, 42.2 and 64.4, respectively.

  1. Automatic tracking of implanted fiducial markers in cone beam CT projection images

    Energy Technology Data Exchange (ETDEWEB)

    Marchant, T. E.; Skalski, A.; Matuszewski, B. J. [Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom and Manchester Academic Health Science Centre, University of Manchester, Manchester M20 4BX (United Kingdom); AGH University of Science and Technology, al. A. Mickiewicza 30, Krakow 30-059 (Poland); School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston PR1 2HE (United Kingdom)

    2012-03-15

    Purpose: This paper describes a novel method for simultaneous intrafraction tracking of multiple fiducial markers. Although the proposed method is generic and can be adopted for a number of applications including fluoroscopy based patient position monitoring and gated radiotherapy, the tracking results presented in this paper are specific to tracking fiducial markers in a sequence of cone beam CT projection images. Methods: The proposed method is accurate and robust thanks to utilizing the mean shift and random sampling principles, respectively. The performance of the proposed method was evaluated with qualitative and quantitative methods, using data from two pancreatic and one prostate cancer patients and a moving phantom. The ground truth, for quantitative evaluation, was calculated based on manual tracking preformed by three observers. Results: The average dispersion of marker position error calculated from the tracking results for pancreas data (six markers tracked over 640 frames, 3840 marker identifications) was 0.25 mm (at iscoenter), compared with an average dispersion for the manual ground truth estimated at 0.22 mm. For prostate data (three markers tracked over 366 frames, 1098 marker identifications), the average error was 0.34 mm. The estimated tracking error in the pancreas data was < 1 mm (2 pixels) in 97.6% of cases where nearby image clutter was detected and in 100.0% of cases with no nearby image clutter. Conclusions: The proposed method has accuracy comparable to that of manual tracking and, in combination with the proposed batch postprocessing, superior robustness. Marker tracking in cone beam CT (CBCT) projections is useful for a variety of purposes, such as providing data for assessment of intrafraction motion, target tracking during rotational treatment delivery, motion correction of CBCT, and phase sorting for 4D CBCT.

  2. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance

    Energy Technology Data Exchange (ETDEWEB)

    Dang, H.; Otake, Y.; Schafer, S.; Stayman, J. W.; Kleinszig, G.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen 91052 (Germany); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States)

    2012-10-15

    Purpose: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model registration method in which the ARM is a predefined tool, and the second is a Free-Form method in which the ARM is freely configurable. Methods: Studies were performed using a prototype C-arm for CBCT and a surgical tracking system. A simple ARM was designed with markers comprising a tungsten sphere within infrared reflectors to permit detection of markers in both x-ray projections and by an infrared tracker. The Known-Model method exercised a predefined specification of the ARM in combination with 3D-2D registration to estimate the transformation that yields the optimal match between forward projection of the ARM and the measured projection images. The Free-Form method localizes markers individually in projection data by a robust Hough transform approach extended from previous work, backprojected to 3D image coordinates based on C-arm geometric calibration. Image-domain point sets were transformed to world coordinates by rigid-body point-based registration. The robustness and registration accuracy of each method was tested in comparison to manual registration across a range of body sites (head, thorax, and abdomen) of interest in CBCT-guided surgery, including cases with interventional tools in the radiographic scene. Results: The automatic methods exhibited similar target registration error (TRE) and were comparable or superior to manual registration for placement of the ARM within {approx}200 mm of C-arm isocenter. Marker localization in projection data was robust across all

  3. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    Energy Technology Data Exchange (ETDEWEB)

    Siewerdsen, Jeffrey H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Traylor Building, Room 718, 720 Rutland Avenue, Baltimore, MD 21205 (United States)

    2011-08-21

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  4. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    Science.gov (United States)

    Siewerdsen, Jeffrey H.

    2011-08-01

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions—for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in

  5. Cervical vertebral column morphology in patients with obstructive sleep apnoea assessed using lateral cephalograms and cone beam CT. A comparative study

    DEFF Research Database (Denmark)

    Sonnesen, L; Jensen, K E; Petersson, A R;

    2013-01-01

    OBJECTIVES: Few studies have described morphological deviations in obstructive sleep apnoea (OSA) patients on two-dimensional (2D) lateral cephalograms, and the reliability of 2D radiographs has been discussed. The objective is to describe the morphology of the cervical vertebral column on cone...... beam CT (CBCT) in adult patients with OSA and to compare 2D lateral cephalograms with three-dimensional (3D) CBCT images. METHODS: For all 57 OSA patients, the cervical vertebral column morphology was evaluated on lateral cephalograms and CBCT images and compared according to fusion anomalies...

  6. Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-03-01

    Full Text Available Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT. We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1 FDK reconstruction using raw projection data; 2 Rigid Registration of planning CT to the FDK results; 3 MC scatter calculation at sparse view angles using the planning CT; 4 Interpolation of the calculated scatter signals to other angles; 5 Removal of scatter from the raw projections; 6 FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this

  7. Arthrographic examination for temporomandibular joint (TMJ) by limited cone beam X-CT for dental use (Ortho-CT)

    International Nuclear Information System (INIS)

    TMJ arthrography has been performed with a surgical X-ray television system (fluoroscope) and a tomographic apparatus for patients with disturbance of opening of the mouth. Limited cone beam X-CT for dental use (Ortho-CT) developed by Arai et al. is small and very effective for the small maxillofacial area. We performed TMJ arthrography by using Ortho-CT for TMD patients, and obtained good results, compared with those of MRI. Objects were 13 joints in 12 patients diagnosed as having TMD. As a result, there was a high percentage of agreement with figure and position of the articular disk and it was certain that Ortho-CT had the accuracy similar to that of MRI, because there was no statistically significant difference. We conclude that Ortho-CT is very effective for TMJ arthrography. (author)

  8. Circle Plus Partial Helical Scan Scheme for a Flat Panel Detector-Based Cone Beam Breast X-Ray CT

    Directory of Open Access Journals (Sweden)

    Dong Yang

    2009-01-01

    Full Text Available Flat panel detector-based cone beam breast CT (CBBCT can provide 3D image of the scanned breast with 3D isotropic spatial resolution, overcoming the disadvantage of the structure superimposition associated with X-ray projection mammography. It is very difficult for Mammography to detect a small carcinoma (a few millimeters in size when the tumor is occult or in dense breast. CBBCT featured with circular scan might be the most desirable mode in breast imaging due to its simple geometrical configuration and potential applications in functional imaging. An inherited large cone angle in CBBCT, however, will yield artifacts in the reconstruction images when only a single circular scan is employed. These artifacts usually manifest themselves as density drop and object geometrical distortion that are more noticeable in the reconstructed image areas that are further away from the circular scanning plane. In order to combat this drawback, a circle plus partial helical scan scheme is proposed. An exact circle plus straight line scan scheme is also conducted in computer simulation for the purpose of comparison. Computer simulations using a numerical breast phantom demonstrated the practical feasibility of this new scheme and correction to those artifacts to a certain degree.

  9. Radiologic study of the healing process of the extracted socket of beagle dogs using cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Won; Lee, Won; Lee, Byung Do [Department of Oral and Maxillofacial Radiology, School of Dentistry, Wonkwang University, Iksan (Korea, Republic of); Kim, De Sok [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-03-15

    To longitudinally observe the healing process of extracted socket and the alterations of the residual ridge in healthy adult dogs using cone beam CT (CBCT). The mandibular premolars of two beagle dogs were removed and the extraction sites were covered with the gingival tissue. CBCTs (3D X-ray CT scanner, Alphard vega, Asahi Co.) were taken at baseline and at 1 week interval for 12 weeks. Radiographic density of extracted wounds was measured on normalized images with a custom-made image analysis program. The amount of alveolar crestal resorption after the teeth extraction was measured with a reformatted three-dimensional image using CBCT. Bony healing pattern of extracted wound of each group was also longitudinally observed and analyzed. Dimensional changes occurred during the first 6 weeks following the extraction of dogs' mandibular premolars. The reduction of the height of residual ridge was more pronounced at the buccal than at the lingual aspect of the extraction socket. Radiographic density of extracted wounds increased by week 4, but the change in density stabilized after week 6. New bone formation was observed at the floor and the peripheral side of extracted socket from week 1. The entrance of extracted socket was sealed by a hard-tissue bridge at week 5. The healing process of extracted wound involved a series of events including new bone formation and residual ridge resorption.

  10. A comparative study for spatial resolution and subjective image characteristics of a multi-slice CT and a cone-beam CT for dental use

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi, E-mail: hiro.orad@tmd.ac.jp [Oral and Maxillofacial Radiology, Division of Oral Restitution, Graduate School, Tokyo Medical and Dental University, 5-45 Yushima 1-chome, Bunkyo-ku, Tokyo 1138549 (Japan); Honda, Eiichi [Oral and Maxillofacial Radiology, Division of Oral Health Sciences, The University of Tokushima Graduate School (Japan); Tetsumura, Akemi; Kurabayashi, Tohru [Oral and Maxillofacial Radiology, Division of Oral Restitution, Graduate School, Tokyo Medical and Dental University, 5-45 Yushima 1-chome, Bunkyo-ku, Tokyo 1138549 (Japan)

    2011-03-15

    Purpose: Multi-slice CT (MSCT) and cone-beam CT (CBCT) are widely used in dental practice. This study compared the spatial resolution of these CT systems to elucidate which CT modalities should be selected for various clinical cases. Materials and methods: As MSCT and CBCT apparatuses, Somatom Sensation 64 and 3D Accuitomo instruments, respectively, were used. As an objective evaluation of spatial resolution of these CT systems, modulation transfer function (MTF) analysis was performed employing an over-sampling method. The results of MTF analysis were confirmed with a line-pair test using CATPHAN. As a subjective evaluation, a microstructure visualization ability study was performed using a Jcl:SD rat and a head CT phantom. Results: MTF analysis showed that for the in-plane direction, the z-axis ultrahigh resolution mode (zUHR) of the Sensation 64 and 3D Accuitomo instruments had higher spatial resolutions than the conventional mode (64x) of the Sensation 64, but for the longitudinal direction, the 3D Accuitomo had clearly higher spatial resolution than either mode of the Sensation 64. A line-pair test study and microstructure visualization ability studies confirmed the results for MTF analysis. However, images of the rat and the CT phantom revealed that the 3D Accuitomo demonstrated the failure to visualize the soft tissues along with aliasing and beam-hardening artifacts, which were not observed in the Sensation 64. Conclusions: This study successfully applied spatial resolution analysis using MSCT and CBCT systems in a comparative manner. These findings could help in deciding which CT modality should be selected for various clinical cases.

  11. Data consistency-driven scatter kernel optimization for x-ray cone-beam CT

    International Nuclear Information System (INIS)

    Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation. (paper)

  12. Magnitude and effects of X-ray scatter of a cone-beam micro-CT for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Y.C. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Jan, M.L. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Chen, K.W. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Cheng, Y.D. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Chuang, K.S. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Fu, Y.K. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China)]. E-mail: fufrank@iner.gov.tw

    2006-12-20

    We have developed a micro-CT system to provide high-resolution and anatomic information to combine with a microPET'' (registered) R4 system. This study was to evaluate the magnitude and effects of scatter for low kVp X-ray in this cone-beam micro-CT system. Slit collimators were used to simulate fan-beam micro-CT for comparison. The magnitudes of X-ray scatter were measured using the beam-stop method and were estimated by polynomial-fitting extrapolation to 0 mm size of stoppers. The scatter-to-primary ratio at center of the cone-beam system were 45% and 20% for rat and mouse phantoms, respectively, and were reduced to 5.86% and 4.2% in fan-beam geometric setup. The effects of X-ray scatter on image uniformity and contrast ratio were evaluated also. The uniformity response was examined by the profile of the reconstructed image. The degrees of 'cupping' in the fan-beam and cone-beam conditions were 1.75% and 3.81%, respectively, in rat phantom. A contrast phantom consisting of four inserts with physical densities similar to that of acrylic was used for measuring the effect of X-ray scatter on image contrast. Contrast ratios of the inserts and acrylic in cone-beam setup degraded 36.9% in average compared with fan-beam setup. A tumor-bearing mouse was scanned by the micro-CT system. The tumor-to-background contrast ratios were measured to be 0.331 and 0.249, respectively, with fan-beam and cone-beam setups.

  13. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT.

    Science.gov (United States)

    Aootaphao, Sorapong; Thongvigitmanee, Saowapak S; Rajruangrabin, Jartuwat; Thanasupsombat, Chalinee; Srivongsa, Tanapon; Thajchayapong, Pairash

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM) method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS) software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT) data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain. PMID:27022608

  14. Beam hardening correction for a cone-beam CT system and its effect on spatial resolution

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; WEI Long; YU Zhong-Qiang; FU Guo-Tao; SUN Cui-Li; WANG Yan-Fang; WEI Cun-Feng; CAO Da-Quan; QUE Jie-Min; TANG Xiao; SHI Rong-Jian

    2011-01-01

    In this paper,we present a beam hardening correction (BHC) method in three-dimension space for a cone-beam computed tomography (CBCT) system in a mono-material case and investigate its effect on the spatial resolution.Due to the polychromatic character of the X-ray spectrum used,cupping and streak artifacts called beam hardening artifacts arise in the reconstructed CT images,causing reduced image quality.In addition,enhanced edges are introduced in the reconstructed CT images because of the beam hardening effect.The spatial resolution of the CBCT system is calculated from the edge response function (ERF) on different planes in space.Thus,in the CT images with beam hardening artifacts,enhanced ERFs will be extracted to calculate the modulation transfer function (MTF),obtaining a better spatial resolution that deviates from the real value.Reasonable spatial resolution can be obtained after reducing the artifacts.The 10% MTF value and the full width at half maximum (FWHM) of the point spread function with and without BHC are presented.

  15. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    Directory of Open Access Journals (Sweden)

    Sorapong Aootaphao

    2016-01-01

    Full Text Available Soft tissue images from portable cone beam computed tomography (CBCT scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain.

  16. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Gu, Xuejun [Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-8808 (United States)

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion

  17. Development of the three dimensional image display program for limited cone beam X-ray CT for dental use (Ortho-CT)

    International Nuclear Information System (INIS)

    We have already developed and reported a limited cone beam X-ray CT system for dental use (Ortho-CT). This system has been used clinically since 1997. In this study, we report a 3D surface display program for Ortho-CT which has been newly-developed by the authors. The 3D surface display software has been developed using visual C++ (Microsoft Co. WA. USA) and a personal computer (Pentium 450MHz Intel Co. CA USA, Windows NT 4.0 Microsoft WA. USA). In this software, the 3D surface images are recorded as AVI files and can be displayed on the personal computer. The 3D images can be rotated and a stepwise change of the threshold voxel value for binary image formation can be automatically used. We have applied these 3D surface images to clinical studies from January 1999 to May 1999 at the Radiology section in our Dental hospital. The images can be displayed very easily in personal computers using AVI files. Thirty-five cases have been reconstructed using 3D surface images in this way. The 3D surface image is useful in the diagnosis of fractures of the mandibular head and impacted teeth. Only teeth are observed when a relative threshold voxel value is set at a high level such as about 0.37. When the threshold is changed to a lower value (about 0.3), we can observe both teeth and the surface of the bone. We have developed a 3D surface display program for personal computers. The images are useful for the diagnosis of the pathosis in the maxillofacial region. (author)

  18. Axial 3D region of interest reconstruction using weighted cone beam BPF/DBPF algorithm cascaded with adequately oriented orthogonal butterfly filtering

    Science.gov (United States)

    Tang, Shaojie; Tang, Xiangyang

    2016-03-01

    Axial cone beam (CB) computed tomography (CT) reconstruction is still the most desirable in clinical applications. As the potential candidates with analytic form for the task, the back projection-filtration (BPF) and the derivative backprojection filtered (DBPF) algorithms, in which Hilbert filtering is the common algorithmic feature, are originally derived for exact helical and axial reconstruction from CB and fan beam projection data, respectively. These two algorithms have been heuristically extended for axial CB reconstruction via adoption of virtual PI-line segments. Unfortunately, however, streak artifacts are induced along the Hilbert filtering direction, since these algorithms are no longer accurate on the virtual PI-line segments. We have proposed to cascade the extended BPF/DBPF algorithm with orthogonal butterfly filtering for image reconstruction (namely axial CB-BPP/DBPF cascaded with orthogonal butterfly filtering), in which the orientation-specific artifacts caused by post-BP Hilbert transform can be eliminated, at a possible expense of losing the BPF/DBPF's capability of dealing with projection data truncation. Our preliminary results have shown that this is not the case in practice. Hence, in this work, we carry out an algorithmic analysis and experimental study to investigate the performance of the axial CB-BPP/DBPF cascaded with adequately oriented orthogonal butterfly filtering for three-dimensional (3D) reconstruction in region of interest (ROI).

  19. Comparative evaluation of cone-beam CT equipment with micro-CT in the visualization of root canal system

    Directory of Open Access Journals (Sweden)

    Bence Tamas Szabo

    2012-01-01

    Full Text Available The aim of this study was to compare three different cone-beam CT (CBCT instruments used in dental clinical practice with micro-CT as gold standard. Three female monkeys’ (Macaca fascicularis skulls were selected and scanned by the tested CBCT-s. The most apical visible root canal level on the CBCT images was used as reference level (RL. After the image acquisition by CBCT-s dental jaw sections were scanned by micro-CT at a resolution of 17 μm. Out of the left second and third molars 25 root canals were selected and analysed by three observers at RL and following cross sectional parameters were determined: area of the lumen, major and minor diameters, aspect ratio and mean thickness. Results suggest that only high resolution CBCT instruments allow dentists detecting the full length of the root canal.

  20. SU-E-T-161: Evaluation of Dose Calculation Based On Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Abe, T; Nakazawa, T; Saitou, Y; Nakata, A; Yano, M [Graduate School of Medicine, Sapporo Medical University, Sapporo, Hokkaido (Japan); Tateoka, K [Graduate School of Medicine, Sapporo Medical University, Sapporo, Hokkaido (Japan); Radiation Therapy Research Institute, Social Medical Corporation Teishinkai, Sapporo, Hokkaido (Japan); Fujimoto, K [Radiation Therapy Research Institute, Social Medical Corporation Teishinkai, Sapporo, Hokkaido (Japan); Sakata, K [Graduate School of Medicine, Sapporo Medical University, Sapporo, Hokkaido (Japan); Sapporo Medical University, Sapporo, Hokkaido (Japan)

    2014-06-01

    Purpose: The purpose of this study is to convert pixel values in cone-beam CT (CBCT) using histograms of pixel values in the simulation CT (sim-CT) and the CBCT images and to evaluate the accuracy of dose calculation based on the CBCT. Methods: The sim-CT and CBCT images immediately before the treatment of 10 prostate cancer patients were acquired. Because of insufficient calibration of the pixel values in the CBCT, it is difficult to be directly used for dose calculation. The pixel values in the CBCT images were converted using an in-house program. A 7 fields treatment plans (original plan) created on the sim-CT images were applied to the CBCT images and the dose distributions were re-calculated with same monitor units (MUs). These prescription doses were compared with those of original plans. Results: In the results of the pixel values conversion in the CBCT images,the mean differences of pixel values for the prostate,subcutaneous adipose, muscle and right-femur were −10.78±34.60, 11.78±41.06, 29.49±36.99 and 0.14±31.15 respectively. In the results of the calculated doses, the mean differences of prescription doses for 7 fields were 4.13±0.95%, 0.34±0.86%, −0.05±0.55%, 1.35±0.98%, 1.77±0.56%, 0.89±0.69% and 1.69±0.71% respectively and as a whole, the difference of prescription dose was 1.54±0.4%. Conclusion: The dose calculation on the CBCT images achieve an accuracy of <2% by using this pixel values conversion program. This may enable implementation of efficient adaptive radiotherapy.

  1. Dedicated scanner for laboratory investigations on cone-beam CT/SPECT imaging of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Mettivier, Giovanni, E-mail: mettivier@na.infn.i [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, I-80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy); Russo, Paolo, E-mail: russo@na.infn.i [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, I-80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy); Cesarelli, Mario; Ospizio, Roberto [Dipartimento di Ingegneria Biomedica, Elettronica e delle Telecomunicazioni, Universita di Napoli Federico II, I-80125 Napoli (Italy); Passeggio, Giuseppe; Roscilli, Lorenzo; Pontoriere, Giuseppe; Rocco, Raffaele [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy)

    2011-02-11

    We describe the design, realization and basic tests of a prototype Cone-Beam Breast Computed Tomography (CBBCT) scanner, combined with a SPECT head consisting of a compact pinhole gamma camera based on a photon counting CdTe hybrid pixel detector. The instrument features a 40 {mu}m focal spot X-ray tube, a 50 {mu}m pitch flat panel detector and a 1-mm-thick, 55 {mu}m pitch CdTe pixel detector. Preliminary imaging tests of the separate CT and gamma-ray units are presented showing a resolution in CT of 3.2 mm{sup -1} at a radial distance of 50 mm from the rotation axis and that the 5 and 8 mm hot masses ({sup 99m}Tc labeled with a 15:1 activity ratio with respect to the background) can be detected in planar gamma-ray imaging with a contrast-to-noise ratio of about 4.

  2. 锥形束 CT 融合三维面像评估正颌术后软硬组织的变化%Feasibility of integrating 3D photos and cone-beam computed tomography images used to evaluate changes of soft and hard tissue after orthognathic surgery

    Institute of Scientific and Technical Information of China (English)

    王哲; 朱榴宁; 周琳; 伊彪

    2016-01-01

    目的:探讨锥形束 CT(cone-beam computed tomography,CBCT)融合三维面像用于研究牙颌面畸形患者正颌术后软硬组织变化的可行性,并应用此方法初步测量各软硬组织标志点手术前后的位置变化。方法:选取10例牙颌面畸形患者,分别于术前(T0)和术后3个月(T1)拍摄大视野 CBCT 和三维面像。利用 MIMICS 和 Geomagic Studio 软件对图像进行处理分析,将 CBCT 进行阈值分割并与三维面像融合,生成新的三维立体模型,探讨该方法可行性。使用3D 色谱分析(3D color map)和测量平均距离对 CBCT 与三维面像配准过程的误差进行定性和定量分析。通过 CBCT 骨组织配准,将新生成的手术前后三维模型置于同一空间坐标系,测量各标志点[鼻尖点(prona-sale,Prn )、鼻下点(subnasale,Sn)、上唇突点(labrale superior,Ls)、前鼻棘点(anterior nasal spine,ANS)、上齿槽座点(subspinale,A)、上中切牙点(upper incisor edge,UIE)]手术前后位置变化。结果:CBCT 融合三维面像用于研究正颌术后软硬组织变化具有可行性,配准误差在0.3 mm 以内,通过3D 色谱分析直观看到,面部区域配准良好。正颌术后唇部各标志点(Ls、ANS、A、UIE)位置差异有统计学意义(P <0.05),而鼻部标志点(Prn、Sn)位置差异无统计学意义(P >0.1)。结论:CBCT 融合三维面像作为一种新方法可以用于临床研究正颌术后软硬组织变化,具有较高的精确度和可重复性。正颌术后唇部软硬组织标志点位置明显变化,而鼻部标志点位置受正颌手术影响较小。%Objective:To evaluate the feasibility of integrating 3D photos and cone-beam computed tomography (CBCT)images and to assess the degree of error that may occur during the above process,and to analyze soft and hard tissue changes after orthognathic surgery using this new method

  3. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Insoo; Han, Bumsoo [EB Tech, Co., Ltd., 550 Yongsan-dong, Yuseong-gu, Daejeon 305-500 (Korea, Republic of)

    2015-11-15

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  4. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    International Nuclear Information System (INIS)

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  5. CUSTOMISATION OF A MONTE CARLO DOSIMETRY TOOL FOR DENTAL CONE-BEAM CT SYSTEMS.

    Science.gov (United States)

    Stratis, A; Zhang, G; Lopez-Rendon, X; Jacobs, R; Bogaerts, R; Bosmans, H

    2016-06-01

    A versatile EGSnrc Monte Carlo (MC) framework, initially designed to explicitly simulate X-ray tubes and record the output data into phase space data files, was modified towards dental cone-beam computed tomography (CBCT) dosimetric applications by introducing equivalent sources. Half value layer (HVL) measurements were conducted to specify protocol-specific energy spectra. Air kerma measurements were carried out with an ionisation chamber positioned against the X-ray tube to obtain the total filtration attenuation characteristics. The framework is applicable to bowtie and non-bowtie inherent filtrations, and it accounts for the anode heel effect and the total filtration of the tube housing. The code was adjusted to the Promax 3D Max (Planmeca, Helsinki, Finland) dental CBCT scanner. For each clinical protocol, calibration factors were produced to allow absolute MC dose calculations. The framework was validated by comparing MC calculated doses and measured doses in a cylindrical water phantom. Validation results demonstrate the reliability of the framework for dental CBCT dosimetry purposes. PMID:26922781

  6. GPU-based Cone Beam CT Reconstruction via Total Variation Regularization

    CERN Document Server

    Jia, Xun; Lewis, John; Li, Ruijiang; Gu, Xuejun; Men, Chunhua; Jiang, Steve B

    2010-01-01

    Cone-beam CT (CBCT) reconstruction is of central importance in image guided radiation therapy due to its broad applications in many clinical contexts. However, the high image dose in CBCT scans is a clinical concern, especially when it is used repeatedly for patient setup purposes before each radiotherapy treatment fraction. A desire for lower imaging does has motivated a vast amount of interest in the CBCT reconstruction based on a small number of X-ray projections. Recently, advances in image processing and compressed sensing have led to tremendous success in recovering signals based on extremely low sampling rates, laying the mathematical foundation for reconstructing CBCT from few projections. In this paper, we present our recent development on a GPU-based iterative algorithm for the highly under-sampled CBCT reconstruction problem. We considered an energy functional consisting of a data fidelity term and a regularization term of a total variation norm. In order to solve our model, we developed a modified...

  7. A GPU Tool for Efficient, Accurate, and Realistic Simulation of Cone Beam CT Projections

    CERN Document Server

    Jia, Xun; Cervino, Laura; Folkerts, Michael; Jiang, Steve B

    2012-01-01

    Simulation of x-ray projection images plays an important role in cone beam CT (CBCT) related research projects. A projection image contains primary signal, scatter signal, and noise. It is computationally demanding to perform accurate and realistic computations for all of these components. In this work, we develop a package on GPU, called gDRR, for the accurate and efficient computations of x-ray projection images in CBCT under clinically realistic conditions. The primary signal is computed by a tri-linear ray-tracing algorithm. A Monte Carlo (MC) simulation is then performed, yielding the primary signal and the scatter signal, both with noise. A denoising process is applied to obtain a smooth scatter signal. The noise component is then obtained by combining the difference between the MC primary and the ray-tracing primary signals, and the difference between the MC simulated scatter and the denoised scatter signals. Finally, a calibration step converts the calculated noise signal into a realistic one by scali...

  8. Clinical usefulness of c-arm cone-beam CT inpercutaneous drainage of inaccessible abscess

    Energy Technology Data Exchange (ETDEWEB)

    So, Young Ho; Choi, Young Ho; Woo, Hyun Sik; Moon, Min Hoan; Sung, Chang Kyu [Dept. of Radiology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Hur, Bo Yun [Dept. of Radiology, National Cancer Center, Goyang (Korea, Republic of)

    2015-08-15

    The objective of this study was to evaluate the usefulness of C-arm cone-beam CT (CBCT) in drainage of inaccessible abscesses. To identify the trajectory of the needle or guide wire, CBCT was performed on 21 patients having an inaccessible abscess. CBCT was repeated until proper targeting of the abscess was achieved, before the insertion of a large bore catheter. The etiology, location of the abscess, causes of inaccessibility, radiation dose, technical and clinical success rates of drainage, and any complications confronted, were evaluated. A total of 29 CBCTs were performed for 21 abscesses. Postoperative and non-postoperative abscesses were 9 (42.9%) and 12 (57.1%) in number, respectively. Direct puncture was performed in 18 cases. In 3 cases, the surgical drain or the fistula opening was used as an access route. The causes of inaccessibility were narrow safe window due to adjacent or overlying organs (n = 9), irregularly dispersed abscess (n = 7), deep location with poor sonographic visualization (n = 4), and remote location of the abscess from surgical drain (n = 1). Technical and clinical successes were 95.5% and 100%, respectively. Cumulative air kerma and dose-area product were 21.62 ± 5.41 mGy and 9179.87 ± 2337.70 mGycm2, respectively. There were no procedure related complications. CBCT is a useful technique for identifying the needle and guide wire during drainage of inaccessible abscess.

  9. GPU-based Iterative Cone Beam CT Reconstruction Using Tight Frame Regularization

    CERN Document Server

    Jia, Xun; Lou, Yifei; Jiang, Steve B

    2010-01-01

    X-ray imaging dose from serial cone-beam CT (CBCT) scans raises a clinical concern in most image guided radiation therapy procedures. It is the goal of this paper to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight frame (TF) based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512x512x70 can be reconstructed in about ~139 sec. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm leads to much higher CBCT quality than those obtained from a conventional FDK algorithm in the context of undersamp...

  10. Soft tissue visualization using a highly efficient megavoltage cone beam CT imaging system

    Science.gov (United States)

    Ghelmansarai, Farhad A.; Bani-Hashemi, Ali; Pouliot, Jean; Calderon, Ed; Hernandez, Paco; Mitschke, Matthias; Aubin, Michelle; Bucci, Kara

    2005-04-01

    Recent developments in two-dimensional x-ray detector technology have made volumetric Cone Beam CT (CBCT) a feasible approach for integration with conventional medical linear accelerators. The requirements of a robust image guidance system for radiation therapy include the challenging combination of soft tissue sensitivity with clinically reasonable doses. The low contrast objects may not be perceptible with MV energies due to the relatively poor signal to noise ratio (SNR) performance. We have developed an imaging system that is optimized for MV and can acquire Megavoltage CBCT images containing soft tissue contrast using a 6MV x-ray beam. This system is capable of resolving relative electron density as low as 1% with clinically acceptable radiation doses. There are many factors such as image noise, x-ray scatter, improper calibration and acquisitions that have a profound effect on the imaging performance of CBCT and in this study attempts were made to optimize these factors in order to maximize the SNR. A QC-3V phantom was used to determine the contrast to noise ratio (CNR) and f50 of a single 2-D projection. The computed f50 was 0.43 lp/mm and the CNR for a radiation dose of 0.02cGy was 43. Clinical Megavoltage CBCT images acquired with this system demonstrate that anatomical structures such as the prostate in a relatively large size patient are visible using radiation doses in range of 6 to 8cGy.

  11. Scatter correction method for cone-beam CT based on interlacing-slit scan

    Science.gov (United States)

    Huang, Kui-Dong; Zhang, Hua; Shi, Yi-Kai; Zhang, Liang; Xu, Zhe

    2014-09-01

    Cone-beam computed tomography (CBCT) has the notable features of high efficiency and high precision, and is widely used in areas such as medical imaging and industrial non-destructive testing. However, the presence of the ray scatter reduces the quality of CT images. By referencing the slit collimation approach, a scatter correction method for CBCT based on the interlacing-slit scan is proposed. Firstly, according to the characteristics of CBCT imaging, a scatter suppression plate with interlacing slits is designed and fabricated. Then the imaging of the scatter suppression plate is analyzed, and a scatter correction calculation method for CBCT based on the image fusion is proposed, which can splice out a complete set of scatter suppression projection images according to the interlacing-slit projection images of the left and the right imaging regions in the scatter suppression plate, and simultaneously complete the scatter correction within the flat panel detector (FPD). Finally, the overall process of scatter suppression and correction is provided. The experimental results show that this method can significantly improve the clarity of the slice images and achieve a good scatter correction.

  12. Prostate image-guided radiotherapy by megavolt cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Zucca, Sergio; Carau, Barbara; Solla, Ignazio; Garibaldi, Elisabetta; Farace, Paolo; Lay, Giancarlo; Meleddu, Gianfranco; Gabriele, Pietro [Regional Oncological Hospital, Cagliari (Italy). Dept. of Radiooncology

    2011-08-15

    To test megavolt cone-beam CT (MV-CBCT) in order to evaluate setup errors in prostate radiotherapy. The setup of 9 patients was verified weekly by electronic portal imaging (EPI) and MV-CBCT, both performed in the same treatment session. EPI were compared with digitally reconstructed radiographies (DRRs). MV-CBCTs were matched to simulation CTs by manual registration based on bone markers (BMR), by manual registration based on soft tissues (STR) - rectum, bladder, and seminal vesicles - and by automatic registration (AR) performed by a mutual information algorithm. Shifts were evaluated along the three main axes: anteroposterior (AP), craniocaudal (CC), and laterolateral (LL). Finally, in 4 additional patients showing intraprostatic calcifications, the calcification mismatch error was used to evaluate the three MV-CBCT matching methods. A total of 50 pairs of orthogonal EPIs and 50 MV-CBCTs were analyzed. Assuming an overall tolerance of 2 mm, no significant differences were observed comparing EPI vs BMR in any axis. A significant difference (p < 0.001) was observed along the AP axis comparing EPI vs AR and EPI vs STR. On the calcification data set (22 measures), the calcification mismatch along the AP direction was significantly lower (p < 0.05) after STR than after BMR or AR. Bone markers were not an effective surrogate of the target position and significant differences were observed comparing EPI or BMR vs STR, supporting the assessment of soft tissue position by MVCBs to verify and correct patient setup in prostate radiotherapy. (orig.)

  13. Automatic delineation of body contours on cone-beam CT images using a delineation booster

    Science.gov (United States)

    Stippel, G.; van Rooijen, D. C.; Crezee, J.; Bel, A.

    2012-07-01

    In radiotherapy, cone-beam computerized tomography (CBCT) scans are used for position correction for various tumour sites. At the start of the treatment, a CT scan that serves as input for a treatment planning is acquired. A CBCT scan is made prior to the irradiation of the tumour. Because there might be significant interfractional tumour movement, online recalculation of the dose improves decision making on how to proceed. A prerequisite for such recalculation is an accurately delineated body contour. In this note, we present an automatic delineation method for the body contour in the unprocessed CBCT scans, that employs a novel delineation boosting technique. The main idea of this technique is to construct an accurate delineation by combining the strength of several edge detectors in an innovative way. Quantitative validation reveals that the algorithm performs comparably with the manual delineations of two trained observers. Furthermore, because of the generic nature of the delineation boosting procedure, the algorithm can easily be extended with additional edge detectors to further increase the accuracy. Finally, the processing time of one scan when delineated manually is 3 h, and the total processing time is 24 min for one scan if the algorithm is used in its present form. Current investigation includes the conversion of the Matlab algorithm to C++ and the development of a visual tool to quickly detect which automatically delineated slices need manual correction. From this we expect further speeding up of the process, allowing online computation.

  14. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    Directory of Open Access Journals (Sweden)

    Kuo Men

    2015-01-01

    Full Text Available Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images. Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously. Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation.

  15. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    Science.gov (United States)

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  16. High-performance soft-tissue imaging in extremity cone-beam CT

    Science.gov (United States)

    Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Muhit, A.; Thawait, G.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2014-03-01

    Purpose: Clinical performance studies of an extremity cone-beam CT (CBCT) system indicate excellent bone visualization, but point to the need for improvement of soft-tissue image quality. To this end, a rapid Monte Carlo (MC) scatter correction is proposed, and Penalized Likelihood (PL) reconstruction is evaluated for noise management. Methods: The accelerated MC scatter correction involved fast MC simulation with low number of photons implemented on a GPU (107 photons/sec), followed by Gaussian kernel smoothing in the detector plane and across projection angles. PL reconstructions were investigated for reduction of imaging dose for projections acquired at ~2 mGy. Results: The rapid scatter estimation yielded root-mean-squared-errors of scatter projections of ~15% of peak scatter intensity for 5ṡ106 photons/projection (runtime ~0.5 sec/projection) and 25% improvement in fat-muscle contrast in reconstructions of a cadaveric knee. PL reconstruction largely restored soft-tissue visualization at 2 mGy dose to that of 10 mGy FBP image. Conclusion: The combination of rapid (5-10 minutes/scan) MC-based, patient-specific scatter correction and PL reconstruction offers an important means to overcome the current limitations of extremity CBCT in soft-tissue imaging.

  17. Radiotherapy dose calculation on KV cone-beam CT image for lung tumor using the CIRS calibration

    OpenAIRE

    Ma, ChangSheng; Cao, Jianping; Yin, Yong; Zhu, Jian

    2014-01-01

    On-board kilovoltage (KV) cone-beam computed tomography (CBCT) images are used predominantly for the setup of patients' positioning. The image data can also potentially be used for dose calculation with the precise calibration of Hounsfield units (HU) to electron density (HU-density). CBCT calibration was analyzed in this study. A clinical treatment planning system was employed for CT and KV CBCT image to dose calculations and subsequent comparisons. Two HU-density tables were generated using...

  18. Theoretical aspects of implementation of kilovoltage cone-beam CT onboard linear accelerator for image-guided radiotherapy.

    Science.gov (United States)

    Rodríguez Cordón, Marta; Ferrer Albiach, Carlos

    2009-08-01

    The main objective of image-guided radiation therapy (IGRT) equipment is to reduce and correct inherent errors in external radiotherapy processes. At the present time, there are different IGRT systems available, but here we will refer exclusively to the kilovoltage cone-beam CT onboard linear accelerator (CBkVCT) and the different aspects that, from a clinical point of view, should be taken into consideration before the implementation of this equipment.

  19. Variations in cone beam CT numbers as a function of patient size: in vivo demonstration in bladder cancer patients

    International Nuclear Information System (INIS)

    Full text: We determined Hounsfield numbers, using cone beam CT (CBCT), in the bladder of 27 muscle invasive bladder cancer patients treated with online adaptive radiotherapy using a Varian linear accelerator. The CBCT number of urine was found to increase by 130 from the thinnest to the largest patient (249 mm to 346 mm average diameter) demonstrating the effect of patient size on Hounsfield number in CBCT in vivo.

  20. Clinical use of cone beam CT in impacted maxillary tooth extraction and artifistulation%锥形束CT定位埋伏牙的临床应用

    Institute of Scientific and Technical Information of China (English)

    董辉; 冯春丽; 孙蕾; 祁森荣; 夏登胜

    2011-01-01

    目的 探讨锥形束CT影像和三维重建技术在辅助埋伏牙拔除和正畸开窗牙牵引术中的作用.方法 选择53颗常规曲面断层片难以确定埋伏牙空间位置的患者进行锥形束CT扫描,其中对5例复杂埋伏牙的CT图像进行三维重建.45例埋伏牙依据CT图像选择不同手术入路行拔牙术,8例埋伏牙采用颌骨开窗牵引术.结果 螺旋CT影像对正确选择埋伏牙拔除的手术入路具有良好的指导作用;CT三维重建图像能清楚地显示埋伏牙的牙体形态、唇腭向位置以及和邻牙的关系,正确指导手术开窗牵引的入路和开窗牵引装置的固定.结论 锥形束CT和三维重建技术在显示埋伏牙的位置和牙体形态上明显优于传统的曲面断层和根尖片.%Objective To evaluate the value of cone beam CT and three-dimensional reconstruction in impacted maxillary tooth extraction and artifistulation. Methods Fifty-three patients with impacted maxillary teeth were included and examined by cone beam CT, and 3D reconstruction was conducted in five of them . Results The cone beam CT images clearly denmonstrated the location of the teeth and provided help in the impacted tooth extraction. The threedimensional reconstruction technique guided and simplified the procedure of artifistulation. Conclusion Cone beam CT has more advantages in assistance of impacted tooth extraction and artifistulation in orthodontics compared with traditional panoramic radiography.

  1. Estimating cancer risk from dental cone-beam CT exposures based on skin dosimetry

    International Nuclear Information System (INIS)

    The aim of this study was to measure entrance skin doses on patients undergoing cone-beam computed tomography (CBCT) examinations, to establish conversion factors between skin and organ doses, and to estimate cancer risk from CBCT exposures. 266 patients (age 8–83) were included, involving three imaging centres. CBCT scans were acquired using the SCANORA 3D (Soredex, Tuusula, Finland) and NewTom 9000 (QR, Verona, Italy). Eight thermoluminescent dosimeters were attached to the patient's skin at standardized locations. Using previously published organ dose estimations on various CBCTs with an anthropomorphic phantom, correlation factors to convert skin dose to organ doses were calculated and applied to estimate patient organ doses. The BEIR VII age- and gender-dependent dose-risk model was applied to estimate the lifetime attributable cancer risk. For the SCANORA 3D, average skin doses over the eight locations varied between 484 and 1788 µGy. For the NewTom 9000 the range was between 821 and 1686 µGy for Centre 1 and between 292 and 2325 µGy for Centre 2. Entrance skin dose measurements demonstrated the combined effect of exposure and patient factors on the dose. The lifetime attributable cancer risk, expressed as the probability to develop a radiation-induced cancer, varied between 2.7 per million (age >60) and 9.8 per million (age 8–11) with an average of 6.0 per million. On average, the risk for female patients was 40% higher. The estimated radiation risk was primarily influenced by the age at exposure and the gender, pointing out the continuing need for justification and optimization of CBCT exposures, with a specific focus on children. (paper)

  2. Estimating cancer risk from dental cone-beam CT exposures based on skin dosimetry

    Science.gov (United States)

    Pauwels, Ruben; Cockmartin, Lesley; Ivanauskaité, Deimante; Urbonienė, Ausra; Gavala, Sophia; Donta, Catherine; Tsiklakis, Kostas; Jacobs, Reinhilde; Bosmans, Hilde; Bogaerts, Ria; Horner, Keith; SEDENTEXCT Project Consortium, The

    2014-07-01

    The aim of this study was to measure entrance skin doses on patients undergoing cone-beam computed tomography (CBCT) examinations, to establish conversion factors between skin and organ doses, and to estimate cancer risk from CBCT exposures. 266 patients (age 8-83) were included, involving three imaging centres. CBCT scans were acquired using the SCANORA 3D (Soredex, Tuusula, Finland) and NewTom 9000 (QR, Verona, Italy). Eight thermoluminescent dosimeters were attached to the patient's skin at standardized locations. Using previously published organ dose estimations on various CBCTs with an anthropomorphic phantom, correlation factors to convert skin dose to organ doses were calculated and applied to estimate patient organ doses. The BEIR VII age- and gender-dependent dose-risk model was applied to estimate the lifetime attributable cancer risk. For the SCANORA 3D, average skin doses over the eight locations varied between 484 and 1788 µGy. For the NewTom 9000 the range was between 821 and 1686 µGy for Centre 1 and between 292 and 2325 µGy for Centre 2. Entrance skin dose measurements demonstrated the combined effect of exposure and patient factors on the dose. The lifetime attributable cancer risk, expressed as the probability to develop a radiation-induced cancer, varied between 2.7 per million (age >60) and 9.8 per million (age 8-11) with an average of 6.0 per million. On average, the risk for female patients was 40% higher. The estimated radiation risk was primarily influenced by the age at exposure and the gender, pointing out the continuing need for justification and optimization of CBCT exposures, with a specific focus on children.

  3. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    Science.gov (United States)

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  4. A Novel Markerless Technique to Evaluate Daily Lung Tumor Motion Based on Conventional Cone-Beam CT Projection Data

    International Nuclear Information System (INIS)

    Purpose: In this study, we present a novel markerless technique, based on cone beam computed tomography (CBCT) raw projection data, to evaluate lung tumor daily motion. Method and Materials: The markerless technique, which uses raw CBCT projection data and locates tumors directly on every projection, consists of three steps. First, the tumor contour on the planning CT is used to create digitally reconstructed radiographs (DRRs) at every projection angle. Two sets of DRRs are created: one showing only the tumor, and another with the complete anatomy without the tumor. Second, a rigid two-dimensional image registration is performed to register the DRR set without the tumor to the CBCT projections. After the registration, the projections are subtracted from the DRRs, resulting in a projection dataset containing primarily tumor. Finally, a second registration is performed between the subtracted projection and tumor-only DRR. The methodology was evaluated using a chest phantom containing a moving tumor, and retrospectively in 4 lung cancer patients treated by stereotactic body radiation therapy. Tumors detected on projection images were compared with those from three-dimensional (3D) and four-dimensional (4D) CBCT reconstruction results. Results: Results in both static and moving phantoms demonstrate that the accuracy is within 1 mm. The subsequent application to 22 sets of CBCT scan raw projection data of 4 lung cancer patients includes about 11,000 projections, with the detected tumor locations consistent with 3D and 4D CBCT reconstruction results. This technique reveals detailed lung tumor motion and provides additional information than conventional 4D images. Conclusion: This technique is capable of accurately characterizing lung tumor motion on a daily basis based on a conventional CBCT scan. It provides daily verification of the tumor motion to ensure that these motions are within prior estimation and covered by the treatment planning volume.

  5. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  6. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    International Nuclear Information System (INIS)

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm3 volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water

  7. High-performance C-arm cone-beam CT guidance of thoracic surgery

    Science.gov (United States)

    Schafer, Sebastian; Otake, Yoshito; Uneri, Ali; Mirota, Daniel J.; Nithiananthan, Sajendra; Stayman, J. W.; Zbijewski, Wojciech; Kleinszig, Gerhard; Graumann, Rainer; Sussman, Marc; Siewerdsen, Jeffrey H.

    2012-02-01

    Localizing sub-palpable nodules in minimally invasive video-assisted thoracic surgery (VATS) presents a significant challenge. To overcome inherent problems of preoperative nodule tagging using CT fluoroscopic guidance, an intraoperative C-arm cone-beam CT (CBCT) image-guidance system has been developed for direct localization of subpalpable tumors in the OR, including real-time tracking of surgical tools (including thoracoscope), and video-CBCT registration for augmentation of the thoracoscopic scene. Acquisition protocols for nodule visibility in the inflated and deflated lung were delineated in phantom and animal/cadaver studies. Motion compensated reconstruction was implemented to account for motion induced by the ventilated contralateral lung. Experience in CBCT-guided targeting of simulated lung nodules included phantoms, porcine models, and cadavers. Phantom studies defined low-dose acquisition protocols providing contrast-to-noise ratio sufficient for lung nodule visualization, confirmed in porcine specimens with simulated nodules (3-6mm diameter PE spheres, ~100-150HU contrast, 2.1mGy). Nodule visibility in CBCT of the collapsed lung, with reduced contrast according to air volume retention, was more challenging, but initial studies confirmed visibility using scan protocols at slightly increased dose (~4.6-11.1mGy). Motion compensated reconstruction employing a 4D deformation map in the backprojection process reduced artifacts associated with motion blur. Augmentation of thoracoscopic video with renderings of the target and critical structures (e.g., pulmonary artery) showed geometric accuracy consistent with camera calibration and the tracking system (2.4mm registration error). Initial results suggest a potentially valuable role for CBCT guidance in VATS, improving precision in minimally invasive, lungconserving surgeries, avoid critical structures, obviate the burdens of preoperative localization, and improve patient safety.

  8. Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction

    Science.gov (United States)

    Wang, Adam S.; Webster Stayman, J.; Otake, Yoshito; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L.; Khanna, A. Jay; Siewerdsen, Jeffrey H.

    2014-02-01

    The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (˜40-80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4-2.2× over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ˜1.7 mGy and benefits from 50% sparsity at dose below ˜1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose.

  9. Regularization design for high-quality cone-beam CT of intracranial hemorrhage using statistical reconstruction

    Science.gov (United States)

    Dang, H.; Stayman, J. W.; Xu, J.; Sisniega, A.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-03-01

    Intracranial hemorrhage (ICH) is associated with pathologies such as hemorrhagic stroke and traumatic brain injury. Multi-detector CT is the current front-line imaging modality for detecting ICH (fresh blood contrast 40-80 HU, down to 1 mm). Flat-panel detector (FPD) cone-beam CT (CBCT) offers a potential alternative with a smaller scanner footprint, greater portability, and lower cost potentially well suited to deployment at the point of care outside standard diagnostic radiology and emergency room settings. Previous studies have suggested reliable detection of ICH down to 3 mm in CBCT using high-fidelity artifact correction and penalized weighted least-squared (PWLS) image reconstruction with a post-artifact-correction noise model. However, ICH reconstructed by traditional image regularization exhibits nonuniform spatial resolution and noise due to interaction between the statistical weights and regularization, which potentially degrades the detectability of ICH. In this work, we propose three regularization methods designed to overcome these challenges. The first two compute spatially varying certainty for uniform spatial resolution and noise, respectively. The third computes spatially varying regularization strength to achieve uniform "detectability," combining both spatial resolution and noise in a manner analogous to a delta-function detection task. Experiments were conducted on a CBCT test-bench, and image quality was evaluated for simulated ICH in different regions of an anthropomorphic head. The first two methods improved the uniformity in spatial resolution and noise compared to traditional regularization. The third exhibited the highest uniformity in detectability among all methods and best overall image quality. The proposed regularization provides a valuable means to achieve uniform image quality in CBCT of ICH and is being incorporated in a CBCT prototype for ICH imaging.

  10. Five-dimensional motion compensation for respiratory and cardiac motion with cone-beam CT of the thorax region

    Science.gov (United States)

    Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc

    2016-03-01

    We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.

  11. Increasing Cone-beam projection usage by temporal fitting

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Hansen, Mads Fogtmann; Larsen, Rasmus

    2010-01-01

    A Cone-beam CT system can be used to image the lung region. The system records 2D projections which will allow 3D reconstruction however a reconstruction based on all projections will lead to a blurred reconstruction in regions were respiratory motion occur. To avoid this the projections are typi......A Cone-beam CT system can be used to image the lung region. The system records 2D projections which will allow 3D reconstruction however a reconstruction based on all projections will lead to a blurred reconstruction in regions were respiratory motion occur. To avoid this the projections...... measurements. It has been suggested in [8] to circumvent the Cone beam CT(CBCT) reconstruction by utilizing an ordinary planning CT instead and learning its deformation from the CBCT projection data. The main problem with this approach is that pathological changes can cause problems. Alternatively as suggested...

  12. A new method to determine the projected coordinate origin of a cone-beam CT system using elliptical projection

    Institute of Scientific and Technical Information of China (English)

    YANG Min; JIN Xu-Ling; LI Bao-Lei

    2010-01-01

    In order to determine the projected coordinate origin in the cone-beam CT scanning system with respect to the Feldkamp-Davis-Kress(FDK)algorithm,we propose a simple yet feasible method to accurately measure the projected coordinate origin.This method was established on the basis of the theory that the projection of a spherical object in the cone-beam field is an ellipse.We first utilized image processing and the least square estimation method to get each major axis of the elliptical Digital Radiography(DR)projections of a group of spherical objects.Then we determined the intersection point of the group of major axis by solving an over-determined equation set that was composed by the major axis equations of all the elliptical projections.Based on the experimental results,this new method was proved to be easy to implement in practical scanning systems with high accuracy and anti-noise capability.

  13. Volumetric cone-beam CT system based on a 41x41 cm2 flat-panel imager

    Science.gov (United States)

    Jaffray, David A.; Siewerdsen, Jeffrey H.

    2001-06-01

    Cone-beam computed tomography (CBCT) based upon large-area flat-panel imager (FPI) technology is a flexible and adaptable technology that offers large field-of-view (FOV), high spatial resolution, and soft-tissue imaging. The imaging performance of FPI-based cone-beam CT has been evaluated on a computer-controlled bench-top system using an early prototype FPI with a small FOV (20.5 X 20.5 cm2). These investigations demonstrate the potential of this exciting technology. In this report, imaging performance is evaluated using a production grade large-area FPI (41 X 41 cm2) for which the manufacturer has achieved a significant reduction in additive noise. This reduction in additive noise results in a substantial improvement in detective quantum efficiency (DQE) at low exposures. The spatial resolution over the increased FOV of the cone-beam CT system is evaluated by imaging a fine steel wire placed at various locations within the volume of reconstruction. The measured modulation transfer function (MTF) of the system demonstrates spatial frequency pass beyond 1 mm-1 (10% modulation) with a slight degradation at points off the source plane. In addition to investigations of imaging performance, progress has also been made in the integration of this technology with a medical linear accelerator for on-line image-guided radiation therapy. Unlike the bench-top system, this implementation must contend with significant geometric non-idealities caused by gravity-induced flex of the x-ray tube and FPI support assemblies. A method of characterizing and correcting these non-idealities has been developed. Images of an anthropomorphic head phantom qualitatively demonstrate the excellent spatial resolution and large FOV achievable with the cone-beam approach in the clinical implementation.

  14. High-quality four-dimensional cone-beam CT by deforming prior images

    Science.gov (United States)

    Wang, Jing; Gu, Xuejun

    2013-01-01

    Due to a limited number of projections at each phase, severe view aliasing artifacts are present in four-dimensional cone beam computed tomography (4D-CBCT) when reconstruction is performed using conventional algorithms. In this work, we aim to obtain high-quality 4D-CBCT of lung cancer patients in radiation therapy by deforming the planning CT. The deformation vector fields (DVF) to deform the planning CT are estimated through matching the forward projection of the deformed prior image and measured on-treatment CBCT projection. The estimation of the DVF is formulated as an unconstrained optimization problem, where the objective function to be minimized is the sum of the squared difference between the forward projection of the deformed planning CT and the measured 4D-CBCT projection. A nonlinear conjugate gradient method is used to solve the DVF. As the number of the variables in the DVF is much greater than the number of measurements, the solution to such a highly ill-posed problem is very sensitive to the initials during the optimization process. To improve the estimation accuracy of DVF, we proposed a new strategy to obtain better initials for the optimization. In this strategy, 4D-CBCT is first reconstructed by total variation minimization. Demons deformable registration is performed to register the planning CT and the 4D-CBCT reconstructed by total variation minimization. The resulted DVF from demons registration is then used as the initial parameters in the optimization process. A 4D nonuniform rotational B-spline-based cardiac-torso (NCAT) phantom and a patient 4D-CBCT are used to evaluate the algorithm. Image quality of 4D-CBCT is substantially improved by using the proposed strategy in both NCAT phantom and patient studies. The proposed method has the potential to improve the temporal resolution of 4D-CBCT. Improved 4D-CBCT can better characterize the motion of lung tumors and will be a valuable tool for image-guided adaptive radiation therapy.

  15. Validation of a deformable image registration technique for cone beam CT-based dose verification

    Energy Technology Data Exchange (ETDEWEB)

    Moteabbed, M., E-mail: mmoteabbed@partners.org; Sharp, G. C.; Wang, Y.; Trofimov, A.; Efstathiou, J. A.; Lu, H.-M. [Massachusetts General Hospital, Boston, Massachusetts 02114 and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-01-15

    Purpose: As radiation therapy evolves toward more adaptive techniques, image guidance plays an increasingly important role, not only in patient setup but also in monitoring the delivered dose and adapting the treatment to patient changes. This study aimed to validate a method for evaluation of delivered intensity modulated radiotherapy (IMRT) dose based on multimodal deformable image registration (DIR) for prostate treatments. Methods: A pelvic phantom was scanned with CT and cone-beam computed tomography (CBCT). Both images were digitally deformed using two realistic patient-based deformation fields. The original CT was then registered to the deformed CBCT resulting in a secondary deformed CT. The registration quality was assessed as the ability of the DIR method to recover the artificially induced deformations. The primary and secondary deformed CT images as well as vector fields were compared to evaluate the efficacy of the registration method and it’s suitability to be used for dose calculation. PLASTIMATCH, a free and open source software was used for deformable image registration. A B-spline algorithm with optimized parameters was used to achieve the best registration quality. Geometric image evaluation was performed through voxel-based Hounsfield unit (HU) and vector field comparison. For dosimetric evaluation, IMRT treatment plans were created and optimized on the original CT image and recomputed on the two warped images to be compared. The dose volume histograms were compared for the warped structures that were identical in both warped images. This procedure was repeated for the phantom with full, half full, and empty bladder. Results: The results indicated mean HU differences of up to 120 between registered and ground-truth deformed CT images. However, when the CBCT intensities were calibrated using a region of interest (ROI)-based calibration curve, these differences were reduced by up to 60%. Similarly, the mean differences in average vector field

  16. Library-based scatter correction for dedicated cone beam breast CT: a feasibility study

    Science.gov (United States)

    Shi, Linxi; Vedantham, Srinivasan; Karellas, Andrew; Zhu, Lei

    2016-04-01

    Purpose: Scatter errors are detrimental to cone-beam breast CT (CBBCT) accuracy and obscure the visibility of calcifications and soft-tissue lesions. In this work, we propose practical yet effective scatter correction for CBBCT using a library-based method and investigate its feasibility via small-group patient studies. Method: Based on a simplified breast model with varying breast sizes, we generate a scatter library using Monte-Carlo (MC) simulation. Breasts are approximated as semi-ellipsoids with homogeneous glandular/adipose tissue mixture. On each patient CBBCT projection dataset, an initial estimate of scatter distribution is selected from the pre-computed scatter library by measuring the corresponding breast size on raw projections and the glandular fraction on a first-pass CBBCT reconstruction. Then the selected scatter distribution is modified by estimating the spatial translation of the breast between MC simulation and the clinical scan. Scatter correction is finally performed by subtracting the estimated scatter from raw projections. Results: On two sets of clinical patient CBBCT data with different breast sizes, the proposed method effectively reduces cupping artifact and improves the image contrast by an average factor of 2, with an efficient processing time of 200ms per conebeam projection. Conclusion: Compared with existing scatter correction approaches on CBBCT, the proposed library-based method is clinically advantageous in that it requires no additional scans or hardware modifications. As the MC simulations are pre-computed, our method achieves a high computational efficiency on each patient dataset. The library-based method has shown great promise as a practical tool for effective scatter correction on clinical CBBCT.

  17. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Bernard L., E-mail: bernard.jones@ucdenver.edu; Westerly, David; Miften, Moyed [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)

    2015-02-15

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. The authors developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. The accuracies of the proposed methods were evaluated by comparing the known and calculated BB trajectories in phantom-simulated clinical scenarios using abdominal tumor volumes. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square trajectory errors averaged 3.8% ± 1.1% of the marker amplitude. Dosimetric calculations using Phase methods were more accurate, with mean absolute error less than 0.5%, and with error less than 1% in the highest-noise trajectory. MC-based trajectories prevent the overestimation of dose, but when viewed in an absolute sense, add a small amount of dosimetric error (<0.1%). Conclusions: Marker trajectory and target dose-of-the-day were accurately calculated using CBCT projections. This technique provides a method to evaluate highly mobile tumors using ordinary CBCT data, and could facilitate better strategies to mitigate or compensate for motion during

  18. Metal artefact reduction for a dental cone beam CT image using image segmentation and backprojection filters

    International Nuclear Information System (INIS)

    Full text: Due to low dose delivery and fast scanning, the dental Cone Beam CT (CBCT) is the latest technology being implanted for a range of dental imaging. The presence of metallic objects including amalgam or gold fillings in the mouth produces an intuitive image for human jaws. The feasibility of a fast and accurate approach for metal artefact reduction for dental CBCT is investigated. The current study investigates the metal artefact reduction using image segmentation and modification of several sinigrams. In order to reduce metal effects such as beam hardening, streak artefact and intense noises, the application of several algorithms is evaluated. The proposed method includes three stages: preprocessing, reconstruction and post-processing. In the pre-processing stage, in order to reduce the noise level, several phase and frequency filters were applied. At the second stage, based on the specific sinogram achieved for each segment, spline interpolation and weighting backprojection filters were applied to reconstruct the original image. A three-dimensional filter was then applied on reconstructed images, to improve the image quality. Results showed that compared to other available filters, standard frequency filters have a significant influence in the preprocessing stage (ΔHU = 48 ± 6). In addition, with the streak artefact, the probability of beam hardening artefact increases. t e post-processing stage, the application of three-dimensional filters improves the quality of reconstructed images (See Fig. I). Conclusion The proposed method reduces metal artefacts especially where there are more than one metal implanted in the region of interest.

  19. SU-E-I-11: A New Cone-Beam CT System for Bedside Head Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H; Zeng, W; Xu, P; Wang, Z; Xing, X; Sun, M [Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Jiangsu (China)

    2015-06-15

    Purpose: To design and develop a new mobile cone-beam CT (CBCT) system for head imaging with good soft-tissue visibility, to be used bedside in ICU and neurosurgery department to monitor treatment and operation outcome in brain patients. Methods: The imaging chain consists of a 30cmx25cm amorphous silicon flat panel detector and a pulsed, stationary anode monoblock x-ray source of 100kVp at a maximal tube current of 10mA. The detector and source are supported on motorized mechanisms to provide detector lateral shift and source angular tilt, enabling a centered digital radiographic imaging mode and half-fan CBCT, while maximizing the use of the x-ray field and keep the source to detector distance short. A focused linear anti-scatter grid is mounted on the detector, and commercial software with scatter and other corrective algorithms is used for data processing and image reconstruction. The gantry rotates around a horizontal axis, and is able to adjust its height for different patient table positions. Cables are routed through a custom protective sleeve over a large bore with an in-plane twister band, facilitating single 360-degree rotation without a slip-ring at a speed up to 5 seconds per rotation. A UPS provides about 10 minutes of operation off the battery when unplugged. The gantry is on locked casters, whose brake is control by two push handles on both sides for easy reposition. The entire system is designed to have a light weight and a compact size for excellent maneuverability. Results: System design is complete and main imaging components are tested. Initial results will be presented and discussed later in the presentation. Conclusion: A new mobile CBCT system for head imaging is being developed. With its compact size, a large bore, and quality design, it is expected to be a useful imaging tool for bedside uses. The work is supported by a grant from Chinese Academy of Sciences.

  20. Automatic intrinsic cardiac and respiratory gating from cone-beam CT scans of the thorax region

    Science.gov (United States)

    Hahn, Andreas; Sauppe, Sebastian; Lell, Michael; Kachelrieß, Marc

    2016-03-01

    We present a new algorithm that allows for raw data-based automated cardiac and respiratory intrinsic gating in cone-beam CT scans. It can be summarized in three steps: First, a median filter is applied to an initially reconstructed volume. The forward projection of this volume contains less motion information and is subtracted from the original projections. This results in new raw data that contain only moving and not static anatomy like bones, that would otherwise impede the cardiac or respiratory signal acquisition. All further steps are applied to these modified raw data. Second, the raw data are cropped to a region of interest (ROI). The ROI in the raw data is determined by the forward projection of a binary volume of interest (VOI) that includes the diaphragm for respiratory gating and most of the edge of the heart for cardiac gating. Third, the mean gray value in this ROI is calculated for every projection and the respiratory/cardiac signal is acquired using a bandpass filter. Steps two and three are carried out simultaneously for 64 or 1440 overlapping VOI inside the body for the respiratory or cardiac signal respectively. The signals acquired from each ROI are compared and the most consistent one is chosen as the desired cardiac or respiratory motion signal. Consistency is assessed by the standard deviation of the time between two maxima. The robustness and efficiency of the method is evaluated using simulated and measured patient data by computing the standard deviation of the mean signal difference between the ground truth and the intrinsic signal.

  1. SU-E-I-11: A New Cone-Beam CT System for Bedside Head Imaging

    International Nuclear Information System (INIS)

    Purpose: To design and develop a new mobile cone-beam CT (CBCT) system for head imaging with good soft-tissue visibility, to be used bedside in ICU and neurosurgery department to monitor treatment and operation outcome in brain patients. Methods: The imaging chain consists of a 30cmx25cm amorphous silicon flat panel detector and a pulsed, stationary anode monoblock x-ray source of 100kVp at a maximal tube current of 10mA. The detector and source are supported on motorized mechanisms to provide detector lateral shift and source angular tilt, enabling a centered digital radiographic imaging mode and half-fan CBCT, while maximizing the use of the x-ray field and keep the source to detector distance short. A focused linear anti-scatter grid is mounted on the detector, and commercial software with scatter and other corrective algorithms is used for data processing and image reconstruction. The gantry rotates around a horizontal axis, and is able to adjust its height for different patient table positions. Cables are routed through a custom protective sleeve over a large bore with an in-plane twister band, facilitating single 360-degree rotation without a slip-ring at a speed up to 5 seconds per rotation. A UPS provides about 10 minutes of operation off the battery when unplugged. The gantry is on locked casters, whose brake is control by two push handles on both sides for easy reposition. The entire system is designed to have a light weight and a compact size for excellent maneuverability. Results: System design is complete and main imaging components are tested. Initial results will be presented and discussed later in the presentation. Conclusion: A new mobile CBCT system for head imaging is being developed. With its compact size, a large bore, and quality design, it is expected to be a useful imaging tool for bedside uses. The work is supported by a grant from Chinese Academy of Sciences

  2. Image-based motion compensation for high-resolution extremities cone-beam CT

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  3. Should image rotation be addressed during routine cone-beam CT quality assurance?

    Science.gov (United States)

    Ayan, Ahmet S.; Lin, Haibo; Yeager, Caitlyn; Deville, Curtiland; McDonough, James; Zhu, Timothy C.; Anderson, Nathan; Bar Ad, Voichita; Lu, Hsiao-Ming; Both, Stefan

    2013-02-01

    The purpose of this study is to investigate whether quality assurance (QA) for cone-beam computed tomography (CBCT) image rotation is necessary in order to ensure the accuracy of CBCT based image-guided radiation therapy (IGRT) and adaptive radiotherapy (ART). Misregistration of angular coordinates during CBCT acquisition may lead to a rotated reconstructed image. If target localization is performed based on this image, an under- or over-dosage of the target volume (TV) and organs at risk (OARs) may occur. Therefore, patient CT image sets were rotated by 1° up to 3° and the treatment plans were recalculated to quantify changes in dose-volume histograms. A computer code in C++ was written to model the TV displacement and overlap area of an ellipse shape at the target and dose prescription levels corresponding to the image rotation. We investigated clinical scenarios in IGRT and ART in order to study the implications of image rotation on dose distributions for: (1) lateral TV and isocenter (SBRT), (2) central TV and isocenter (IMRT), (3) lateral TV and isocenter (IMRT). Mathematical analysis showed the dose coverage of TV depends on its shape, size, location, and orientation relative to the isocenter. Evaluation of three first scenario for θ = 1° showed variations in TV D95 in the context of IGRT and ART when compared to the original plan were within 2.7 ± 2.6% and 7.7 ± 6.9% respectively while variations in the second and third scenarios were less significant (evaluated. However a larger degree of variation was found in terms of minimum and maximum doses for target and OARs. The rotation of CBCT image data sets may have significant dosimetric consequences in IGRT and ART. The TV's location relative to isocenter and shape determine the extent of alterations in dose indicators. Our findings suggest that a CBCT QA criterion of 1° would be a reasonable action level to ensure accurate dose delivery.

  4. Fast radioactive seed localization in intraoperative cone beam CT for low-dose-rate prostate brachytherapy

    Science.gov (United States)

    Hu, Yu-chi; Xiong, Jian-ping; Cohan, Gilad; Zaider, Marco; Mageras, Gig; Zelefsky, Michael

    2013-03-01

    A fast knowledge-based radioactive seed localization method for brachytherapy was developed to automatically localize radioactive seeds in an intraoperative volumetric cone beam CT (CBCT) so that corrections, if needed, can be made during prostate implant surgery. A transrectal ultrasound (TRUS) scan is acquired for intraoperative treatment planning. Planned seed positions are transferred to intraoperative CBCT following TRUS-to-CBCT registration using a reference CBCT scan of the TRUS probe as a template, in which the probe and its external fiducial markers are pre-segmented and their positions in TRUS are known. The transferred planned seeds and probe serve as an atlas to reduce the search space in CBCT. Candidate seed voxels are identified based on image intensity. Regions are grown from candidate voxels and overlay regions are merged. Region volume and intensity variance is checked against known seed volume and intensity profile. Regions meeting the above criteria are flagged as detected seeds; otherwise they are flagged as likely seeds and sorted by a score that is based on volume, intensity profile and distance to the closest planned seed. A graphical interface allows users to review and accept or reject likely seeds. Likely seeds with approximately twice the seed volume are automatically split. Five clinical cases are tested. Without any manual correction in seed detection, the method performed the localization in 5 seconds (excluding registration time) for a CBCT scan with 512×512×192 voxels. The average precision rate per case is 99% and the recall rate is 96% for a total of 416 seeds. All false negative seeds are found with 15 in likely seeds and 1 included in a detected seed. With the new method, updating of calculations of dose distribution during the procedure is possible and thus facilitating evaluation and improvement of treatment quality.

  5. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    Science.gov (United States)

    Wang, Jing; Gu, Xuejun

    2014-03-01

    Image reconstruction and motion model estimation in four dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4DCBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR). The proposed SMEIR algorithm consists of two alternating steps: 1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and 2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction (SART) technique coupled with total variation minimization. During the forward- and back-projection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The SMEIR algorithm improves image reconstruction accuracy of 4D-CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D-CBCT reconstruction and motion estimation.

  6. Evaluation of robustness of maximum likelihood cone-beam CT reconstruction with total variation regularization

    Science.gov (United States)

    Stsepankou, D.; Arns, A.; Ng, S. K.; Zygmanski, P.; Hesser, J.

    2012-10-01

    The objective of this paper is to evaluate an iterative maximum likelihood (ML) cone-beam computed tomography (CBCT) reconstruction with total variation (TV) regularization with respect to the robustness of the algorithm due to data inconsistencies. Three different and (for clinical application) typical classes of errors are considered for simulated phantom and measured projection data: quantum noise, defect detector pixels and projection matrix errors. To quantify those errors we apply error measures like mean square error, signal-to-noise ratio, contrast-to-noise ratio and streak indicator. These measures are derived from linear signal theory and generalized and applied for nonlinear signal reconstruction. For quality check, we focus on resolution and CT-number linearity based on a Catphan phantom. All comparisons are made versus the clinical standard, the filtered backprojection algorithm (FBP). In our results, we confirm and substantially extend previous results on iterative reconstruction such as massive undersampling of the number of projections. Errors of projection matrix parameters of up to 1° projection angle deviations are still in the tolerance level. Single defect pixels exhibit ring artifacts for each method. However using defect pixel compensation, allows up to 40% of defect pixels for passing the standard clinical quality check. Further, the iterative algorithm is extraordinarily robust in the low photon regime (down to 0.05 mAs) when compared to FPB, allowing for extremely low-dose image acquisitions, a substantial issue when considering daily CBCT imaging for position correction in radiotherapy. We conclude that the ML method studied herein is robust under clinical quality assurance conditions. Consequently, low-dose regime imaging, especially for daily patient localization in radiation therapy is possible without change of the current hardware of the imaging system.

  7. Antiscatter grids in mobile C-arm cone-beam CT: Effect on image quality and dose

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, S.; Stayman, J.W.; Zbijewski, W.; Schmidgunst, C.; Kleinszig, G.; Siewerdsen, J.H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen, Bavaria 91052 (Germany); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States) and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2012-01-15

    Purpose: X-ray scatter is a major detriment to image quality in cone-beam CT (CBCT). Existing geometries exhibit strong differences in scatter susceptibility with more compact geometries, e.g., dental or musculoskeletal, benefiting from antiscatter grids, whereas in more extended geometries, e.g., IGRT, grid use carries tradeoffs in image quality per unit dose. This work assesses the tradeoffs in dose and image quality for grids applied in the context of low-dose CBCT on a mobile C-arm for image-guided surgery. Methods: Studies were performed on a mobile C-arm equipped with a flat-panel detector for high-quality CBCT. Antiscatter grids of grid ratio (GR) 6:1-12:1, 40 lp/cm, were tested in ''body'' surgery, i.e., spine, using protocols for bone and soft-tissue visibility in the thoracic and abdominal spine. Studies focused on grid orientation, CT number accuracy, image noise, and contrast-to-noise ratio (CNR) in quantitative phantoms at constant dose. Results: There was no effect of grid orientation on possible gridline artifacts, given accurate angle-dependent gain calibration. Incorrect calibration was found to result in gridline shadows in the projection data that imparted high-frequency artifacts in 3D reconstructions. Increasing GR reduced errors in CT number from 31%, thorax, and 37%, abdomen, for gridless operation to 2% and 10%, respectively, with a 12:1 grid, while image noise increased by up to 70%. The CNR of high-contrast objects was largely unaffected by grids, but low-contrast soft-tissues suffered reduction in CNR, 2%-65%, across the investigated GR at constant dose. Conclusions: While grids improved CT number accuracy, soft-tissue CNR was reduced due to attenuation of primary radiation. CNR could be restored by increasing dose by factors of {approx}1.6-2.5 depending on GR, e.g., increase from 4.6 mGy for the thorax and 12.5 mGy for the abdomen without antiscatter grids to approximately 12 mGy and 30 mGy, respectively, with a high

  8. Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications

    International Nuclear Information System (INIS)

    Purpose: To evaluate the radiation exposure for operating personel associated with rotational flat-panel angiography and C-arm cone beam CT. Materials and methods: Using a dedicated angiography-suite, 2D and 3D examinations of the liver were performed on a phantom to generate scattered radiation. Exposure was measured with a dosimeter at predefined heights (eye, thyroid, breast, gonads and knee) at the physician's location. Analysis included 3D procedures with a field of view (FOV) of 24 cm × 18 cm (8 s/rotation, 20 s/rotation and 5 s/2 rotations), and 47 cm × 18 cm (16 s/2 rotations) and standard 2D angiography (10 s, FOV 24 cm × 18 cm). Results: Measurements showed the highest radiation dose at the eye and thyroid level. In comparison to 2D-DSA (3.9 μSv eye-exposure), the 3D procedures caused an increased radiation exposure both in standard FOV (8 s/rotation: 28.0 μSv, 20 s/rotation: 79.3 μSv, 5 s/2 rotations: 32.5 μSv) and large FOV (37.6 μSv). Proportional distributions were measured for the residual heights. With the use of lead glass, irradiation of the eye lens was reduced to 0.2 μSv (2D DSA) and 10.6 μSv (3D technique with 20 s/rotation). Conclusion: Rotational flat-panel angiography and C-arm cone beam applications significantly increase radiation exposure to the attending operator in comparison to 2D angiography. Our study indicates that the physician should wear protective devices and leave the examination room when performing 3D examinations.

  9. Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Boris, E-mail: boris.schell@googlemail.com [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Heidenreich, Ralf, E-mail: ralf.heidenreich@roentgen-consult.de [Röntgen-Consult Company, Schulhausstrasse 37, 79199 Kirchzarten (Germany); Heidenreich, Monika, E-mail: info@roentgen-consult.de [Röntgen-Consult Company, Schulhausstrasse 37, 79199 Kirchzarten (Germany); Eichler, Katrin, E-mail: k.eichler@em.uni-frankfurt.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Thalhammer, Axel, E-mail: axel.thalhammer@kgu.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Naeem, Naguib Nagy Naguib, E-mail: nagynnn@yahoo.com [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Vogl, Thomas Josef, E-mail: T.Vogl@em.uni-frankfurt.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Zangos, Stefan, E-mail: Zangos@em.uni-frankfurt.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany)

    2012-12-15

    Purpose: To evaluate the radiation exposure for operating personel associated with rotational flat-panel angiography and C-arm cone beam CT. Materials and methods: Using a dedicated angiography-suite, 2D and 3D examinations of the liver were performed on a phantom to generate scattered radiation. Exposure was measured with a dosimeter at predefined heights (eye, thyroid, breast, gonads and knee) at the physician's location. Analysis included 3D procedures with a field of view (FOV) of 24 cm × 18 cm (8 s/rotation, 20 s/rotation and 5 s/2 rotations), and 47 cm × 18 cm (16 s/2 rotations) and standard 2D angiography (10 s, FOV 24 cm × 18 cm). Results: Measurements showed the highest radiation dose at the eye and thyroid level. In comparison to 2D-DSA (3.9 μSv eye-exposure), the 3D procedures caused an increased radiation exposure both in standard FOV (8 s/rotation: 28.0 μSv, 20 s/rotation: 79.3 μSv, 5 s/2 rotations: 32.5 μSv) and large FOV (37.6 μSv). Proportional distributions were measured for the residual heights. With the use of lead glass, irradiation of the eye lens was reduced to 0.2 μSv (2D DSA) and 10.6 μSv (3D technique with 20 s/rotation). Conclusion: Rotational flat-panel angiography and C-arm cone beam applications significantly increase radiation exposure to the attending operator in comparison to 2D angiography. Our study indicates that the physician should wear protective devices and leave the examination room when performing 3D examinations.

  10. Evaluation of on-board imager cone beam CT hounsfield units for treatment planning using rigid image registration

    OpenAIRE

    Mohamathu Rafic; Paul Ravindran

    2015-01-01

    Purpose: To evaluate the on-board imager cone beam CT (OBI-CBCT) Hounsfield units (HUs) for treatment planning. Materials and Methods: The HU-electron density (eD) calibration for CBCT, the CATphan504 phantom was used, and the CBCT HU (HU CBCT ) consistency was studied by analyzing the CBCT images of Rando phantom and compared with planning CT. The latter study was also performed on CBCT images of 10 H&N patients. For comparison, the structures contoured and treatment plans generated on C...

  11. Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery.

    Science.gov (United States)

    Reaungamornrat, S; Wang, A S; Uneri, A; Otake, Y; Khanna, A J; Siewerdsen, J H

    2014-07-21

    Image-guided spine surgery (IGSS) is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced three properties of a rigid transformation-namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation (D = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear (S = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively

  12. Self-calibration of a cone-beam micro-CT system

    International Nuclear Information System (INIS)

    Use of cone-beam computed tomography (CBCT) is becoming more frequent. For proper reconstruction, the geometry of the CBCT systems must be known. While the system can be designed to reduce errors in the geometry, calibration measurements must still be performed and corrections applied. Investigators have proposed techniques using calibration objects for system calibration. In this study, the authors present methods to calibrate a rotary-stage CB micro-CT (CBμCT) system using only the images acquired of the object to be reconstructed, i.e., without the use of calibration objects. Projection images are acquired using a CBμCT system constructed in the authors' laboratories. Dark- and flat-field corrections are performed. Exposure variations are detected and quantified using analysis of image regions with an unobstructed view of the x-ray source. Translations that occur during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The axis of rotation is determined using registration of antiposed projection images. These techniques were evaluated using data obtained with calibration objects and phantoms. The physical geometric axis of rotation is determined and aligned with the rotational axis (assumed to be the center of the detector plane) used in the reconstruction process. The parameters describing this axis agree to within 0.1 mm and 0.3 deg with those determined using other techniques. Blurring due to residual calibration errors has a point-spread function in the reconstructed planes with a full-width-at-half-maximum of less than 125 μm in a tangential direction and essentially zero in the radial direction for the rotating object. The authors have used this approach on over 100 acquisitions over the past 2 years and have regularly obtained high-quality reconstructions, i.e., without artifacts and no detectable blurring of the reconstructed objects. This self-calibrating approach not only obviates

  13. Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery

    Science.gov (United States)

    Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Khanna, A. J.; Siewerdsen, J. H.

    2014-07-01

    Image-guided spine surgery (IGSS) is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced three properties of a rigid transformation—namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation ({ D} = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear ({ S} = 0.08, compared to 0.36 and 0.44 for uFFD and Demons

  14. A dual cone-beam CT system for image guided radiotherapy: Initial performance characterization

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao; Bowsher, James; Yin Fangfang [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Giles, William [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2013-02-15

    Purpose: The purpose of this study is to evaluate the performance of a recently developed benchtop dual cone-beam computed tomography (CBCT) system with two orthogonally placed tube/detector sets. Methods: The benchtop dual CBCT system consists of two orthogonally placed 40 Multiplication-Sign 30 cm flat-panel detectors and two conventional x-ray tubes with two individual high-voltage generators sharing the same rotational axis. The x-ray source to detector distance is 150 cm and x-ray source to rotational axis distance is 100 cm for both subsystems. The objects are scanned through 200 Degree-Sign of rotation. The dual CBCT system utilized 110 Degree-Sign of projection data from one detector and 90 Degree-Sign from the other while the two individual single CBCTs utilized 200 Degree-Sign data from each detector. The system performance was characterized in terms of uniformity, contrast, spatial resolution, noise power spectrum, and CT number linearity. The uniformities, within the axial slice and along the longitudinal direction, and noise power spectrum were assessed by scanning a water bucket; the contrast and CT number linearity were measured using the Catphan phantom; and the spatial resolution was evaluated using a tungsten wire phantom. A skull phantom and a ham were also scanned to provide qualitative evaluation of high- and low-contrast resolution. Each measurement was compared between dual and single CBCT systems. Results: Compared to single CBCT, the dual CBCT presented: (1) a decrease in uniformity by 1.9% in axial view and 1.1% in the longitudinal view, as averaged for four energies (80, 100, 125, and 150 kVp); (2) comparable or slightly better contrast (0{approx}25 HU) for low-contrast objects and comparable contrast for high-contrast objects; (3) comparable spatial resolution; (4) comparable CT number linearity with R{sup 2}{>=} 0.99 for all four tested energies; (5) lower noise power spectrum in magnitude. Dual CBCT images of the skull phantom and the

  15. The effects of field-of-view and patient size on CT numbers from cone-beam computed tomography

    Science.gov (United States)

    Seet, Katrina Y. T.; Barghi, Arvand; Yartsev, Slav; Van Dyk, Jake

    2009-10-01

    Cone-beam computed tomography (CBCT) is used for patient alignment before treatment and is ideal for use in adaptive radiotherapy to account for tumor shrinkage, organ deformation and weight loss. However, CBCT images are prone to artifacts such as streaking and cupping effects, reducing image quality and CT number accuracy. Our goal was to determine the optimum combination of cone-beam imaging options to increase the accuracy of image CT numbers. Several phantoms with and without inserts of known relative electron densities were imaged using the Varian on-board imaging system. It was found that CT numbers are most influenced by the selection of field-of-view and are dependent on object size and filter type. Image acquisition in half-fan mode consistently produced more accurate CT numbers, regardless of phantom size. Values measured using full-fan mode can differ by up to 7% from planning CT values. No differences were found between CT numbers of all phantom images with low and standard dose modes.

  16. The effects of field-of-view and patient size on CT numbers from cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Seet, Katrina Y T; Barghi, Arvand; Yartsev, Slav; Van Dyk, Jake [London Regional Cancer Program, London Health Sciences Centre, London, Ontario (Canada)], E-mail: slav.yartsev@lhsc.on.ca

    2009-10-21

    Cone-beam computed tomography (CBCT) is used for patient alignment before treatment and is ideal for use in adaptive radiotherapy to account for tumor shrinkage, organ deformation and weight loss. However, CBCT images are prone to artifacts such as streaking and cupping effects, reducing image quality and CT number accuracy. Our goal was to determine the optimum combination of cone-beam imaging options to increase the accuracy of image CT numbers. Several phantoms with and without inserts of known relative electron densities were imaged using the Varian on-board imaging system. It was found that CT numbers are most influenced by the selection of field-of-view and are dependent on object size and filter type. Image acquisition in half-fan mode consistently produced more accurate CT numbers, regardless of phantom size. Values measured using full-fan mode can differ by up to 7% from planning CT values. No differences were found between CT numbers of all phantom images with low and standard dose modes.

  17. C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation

    Science.gov (United States)

    Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E.; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong

    2008-03-01

    The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level.

  18. Comparison of cone-beam CT-guided and CT fluoroscopy-guided transthoracic needle biopsy of lung nodules

    Energy Technology Data Exchange (ETDEWEB)

    Rotolo, Nicola; Imperatori, Andrea; Arlant, Veronica; Dominioni, Lorenzo [Insubria University, Center for Thoracic Surgery, Varese (Italy); Floridi, Chiara; Fontana, Federico; Ierardi, Anna Maria; Mangini, Monica; De Marchi, Giuseppe; Fugazzola, Carlo; Carrafiello, Gianpaolo [Insubria University, Radiology Department, Varese (Italy); Novario, Raffaele [Insubria University, Medical Physics Department, Varese (Italy)

    2016-02-15

    To compare the diagnostic performance of cone-beam CT (CBCT)-guided and CT fluoroscopy (fluoro-CT)-guided technique for transthoracic needle biopsy (TNB) of lung nodules. The hospital records of 319 consecutive patients undergoing 324 TNBs of lung nodules in a single radiology unit in 2009-2013 were retrospectively evaluated. The newly introduced CBCT technology was used to biopsy 123 nodules; 201 nodules were biopsied by conventional fluoro-CT-guided technique. We assessed the performance of the two biopsy systems for diagnosis of malignancy and the radiation exposure. Nodules biopsied by CBCT-guided and by fluoro-CT-guided technique had similar characteristics: size, 20 ± 6.5 mm (mean ± standard deviation) vs. 20 ± 6.8 mm (p = 0.845); depth from pleura, 15 ± 15 mm vs. 15 ± 16 mm (p = 0.595); malignant, 60 % vs. 66 % (p = 0.378). After a learning period, the newly introduced CBCT-guided biopsy system and the conventional fluoro-CT-guided system showed similar sensitivity (95 % and 92 %), specificity (100 % and 100 %), accuracy for diagnosis of malignancy (96 % and 94 %), and delivered non-significantly different median effective doses [11.1 mSv (95 % CI 8.9-16.0) vs. 14.5 mSv (95 % CI 9.5-18.1); p = 0.330]. The CBCT-guided and fluoro-CT-guided systems for lung nodule biopsy are similar in terms of diagnostic performance and effective dose, and may be alternatively used to optimize the available technological resources. (orig.)

  19. High-fidelity artifact correction for cone-beam CT imaging of the brain

    International Nuclear Information System (INIS)

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30–50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ∼4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ∼3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ∼7 to 49.7 HU, in good

  20. High-fidelity artifact correction for cone-beam CT imaging of the brain

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-02-01

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement

  1. Diagnostic accuracy of cone-beam CT in the assessment of mandibular invasion of lower gingival carcinoma: Comparison with conventional panoramic radiography

    International Nuclear Information System (INIS)

    Purpose: To evaluate the diagnostic accuracy of cone-beam CT in assessing mandibular invasion by lower gingival carcinoma and compare it with that of panoramic radiography. Patients and methods: Fifty patients with squamous cell carcinoma of the lower gingiva who were examined by both panoramic radiography and cone-beam CT before surgery were included in this study. Five radiologists used a 6-point rating scale to independently evaluate cone-beam CT and panoramic images for the presence or absence of alveolar bone and mandibular canal involvement by tumor. Using the histopathogical findings as the gold standard, we calculated and compared the area under the receiver operating characteristic curve (Az value) and the sensitivity and specificity of the two imaging modalities. Results: In evaluations of both alveolar bone and mandibular canal involvement, the mean Az value for cone-beam CT (0.918 and 0.977, respectively) was significantly higher than that for panoramic radiography (0.793 and 0.872, respectively). The mean sensitivity for cone-beam CT (89% and 99%, respectively) was significantly higher than that for panoramic radiography (73% and 56%, respectively). There was no significant difference in the mean specificity. While cone-beam CT could provide high-resolution three-dimensional images, the image quality around the alveolar crest was often hampered by severe dental artifacts and image noise, resulting in difficulties in detecting subtle alveolar invasion. Conclusion: Cone-beam CT was significantly superior to panoramic radiography in evaluating mandibular invasion by lower gingival carcinoma. Its diagnostic value in detecting subtle alveolar invasion, however, may be limited by severe dental artifacts and image noise.

  2. Diagnostic accuracy of cone-beam CT in the assessment of mandibular invasion of lower gingival carcinoma: Comparison with conventional panoramic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Momin, Mohammad A. [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: momin.orad@tmd.ac.jp; Okochi, Kiyoshi [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: kiyoshi.orad@tmd.ac.jp; Watanabe, Hiroshi [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: hiro.orad@tmd.ac.jp; Imaizumi, Akiko [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: ima.orad@tmd.ac.jp; Omura, Ken [Oral Surgery, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: omura.osur@tmd.ac.jp; Amagasa, Teruo [Maxillofacial Surgery, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: t-amagasa.mfs@tmd.ac.jp; Okada, Norihiko [Diagnostic Oral Pathology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: nokd.opth@tmd.ac.jp; Ohbayashi, Naoto [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: nao.orad@tmd.ac.jp; Kurabayashi, Tohru [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: kura.orad@tmd.ac.jp

    2009-10-15

    Purpose: To evaluate the diagnostic accuracy of cone-beam CT in assessing mandibular invasion by lower gingival carcinoma and compare it with that of panoramic radiography. Patients and methods: Fifty patients with squamous cell carcinoma of the lower gingiva who were examined by both panoramic radiography and cone-beam CT before surgery were included in this study. Five radiologists used a 6-point rating scale to independently evaluate cone-beam CT and panoramic images for the presence or absence of alveolar bone and mandibular canal involvement by tumor. Using the histopathogical findings as the gold standard, we calculated and compared the area under the receiver operating characteristic curve (Az value) and the sensitivity and specificity of the two imaging modalities. Results: In evaluations of both alveolar bone and mandibular canal involvement, the mean Az value for cone-beam CT (0.918 and 0.977, respectively) was significantly higher than that for panoramic radiography (0.793 and 0.872, respectively). The mean sensitivity for cone-beam CT (89% and 99%, respectively) was significantly higher than that for panoramic radiography (73% and 56%, respectively). There was no significant difference in the mean specificity. While cone-beam CT could provide high-resolution three-dimensional images, the image quality around the alveolar crest was often hampered by severe dental artifacts and image noise, resulting in difficulties in detecting subtle alveolar invasion. Conclusion: Cone-beam CT was significantly superior to panoramic radiography in evaluating mandibular invasion by lower gingival carcinoma. Its diagnostic value in detecting subtle alveolar invasion, however, may be limited by severe dental artifacts and image noise.

  3. TH-A-18C-02: An Electrostatic Model for Assessment of Joint Space Morphology in Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Q; Thawait, G; Gang, G; Zbijewski, W; Riegel, T; Demehri, S; Siewerdsen, J [Johns Hopkins University, Baltimore, MD (United States)

    2014-06-15

    Purpose: High-resolution cone-beam CT (CBCT) of the extremities presents a potentially valuable basis for image-based biomarkers of arthritis, trauma, and risk of injury. We present a new method for 3D joint space analysis that exploits the high isotropic spatial resolution of CBCT and is sensitive to small changes in disease-related morphology. Methods: The approach uses an “electrostatic” model in which joint surfaces (e.g., distal femur and proximal tibia) are labeled as charge densities between which the electric field is solved by approximation to the Laplace equation. The method yields a unique solution determined by the field lines across the “capacitor” and is hypothesized to be more sensitive than conventional (Sharp) scores and immune to degeneracies that limit simple distance-along-axis or closest-point analysis. The algorithm was validated in CBCT phantom images and applied in two clinical scenarios: osteoarthritis (OA, change in loadbearing tibiofemoral joint space); and assessment of injury risk (correlation of 3D joint space to tibial slope). Results: Joint space maps computed from the electrostatic model were accurate to within the voxel size (0.26 mm). The method highlighted subtle regions of morphological change that would likely be missed by conventional scalar metrics. Regions of subtle cartilage erosion were well quantified, and the method confidently discriminated OA and non-OA cohorts. 3D joint space maps correlated well with tibial slope and provide a new basis for principal component analysis of loadbearing injury risk. Runtime was less than 5 min (235×235×121 voxel subvolume in Matlab). Conclusion: A new method for joint space assessment was reported as a possible image-based biomarker of subtle articular change. The algorithm yields accurate quantitation of the joint in a manner that is robust against operator and patient setup variation. The method shows promising initial results in ongoing trials of CBCT in osteoarthritis

  4. Predicting factors for conversion from fluoroscopy guided Percutaneous transthoracic needle biopsy to cone-beam CT guided Percutaneous transthoracic needle biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Ji; Han, Young Min; Jin, Gong Yong; Song, Ji Soo [Chonbuk National Univ., Jeonju (Korea, Republic of)

    2015-10-15

    To evaluate the predicting factors for conversion from fluoroscopy guided percutaneous transthoracic needle biopsy (PTNB) to cone-beam CT guided PTNB. From January 2011 to December 2012, we retrospectively identified 38 patients who underwent cone-beam CT guided PTNB with solid pulmonary lesions, and 76 patients who underwent fluoroscopy guided PTNB were matched to the patients who underwent cone-beam CT guided PTNB for age, sex, and lesion location. We evaluated predicting factors such as, long-axis diameter, short-axis diameter, anterior-posterior diameter, and CT attenuation value of the solid pulmonary lesion affecting conversion from fluoroscopy guided PTNB to cone-beam CT guided PTNB. Pearson χ{sup 2} test, Fisher exact test, and independent t test were used in statistical analyses; in addition, we also used receiver operating characteristics curve to find the proper cut-off values affecting the conversion to cone-beam CT guided PTNB. Short-axis, long-axis, anterior-posterior diameter and CT attenuation value of the solid pulmonary lesion in patients who underwent fluoroscopy guided PTNB were 2.70 ± 1.57 cm, 3.40 ± 1.92 cm, 3.06 ± 1.81 cm, and 35.67 ± 15.70 Hounsfield unit (HU), respectively. Short-axis, long-axis, anterior-posterior diameter and CT attenuation value of the solid pulmonary lesion in patients who underwent cone-beam CT guided PTNB were 1.60 ± 1.30 cm, 2.20 ± 1.45 cm, 1.91 ± 1.99 cm, and 18.32 ± 23.11 HU, respectively. Short-axis, long-axis, anterior-posterior diameter, and CT attenuation value showed a significantly different mean value between the 2 groups (p = 0.001, p < 0.001, p = 0.003, p < 0.001, respectively). Odd ratios of CT attenuation value and short-axis diameter of the solid pulmonary lesion were 0.952 and 0.618, respectively. Proper cut-off values affecting the conversion to cone-beam CT guided PTNB were 1.65 cm (sensitivity 68.4%, specificity 71.1%) in short-axis diameter and 29.50 HU (sensitivity 65.8%, specificity 65

  5. SU-E-I-59: Image Quality and Dose Measurement for Partial Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Abouei, E; Ford, N [University of British Columbia, Vancouver, BC (Canada)

    2014-06-01

    Purpose: To characterize performance of cone beam CT (CBCT) used in dentistry investigating quantitatively the image quality and radiation dose during dental CBCT over different settings for partial rotation of the x-ray tube. Methods: Image quality and dose measurements were done on a variable field of view (FOV) dental CBCT (Carestream 9300). X-ray parameters for clinical settings were adjustable for 2–10 mA, 60–90 kVp, and two optional voxel size values, but time was fixed for each FOV. Image quality was assessed by scanning cylindrical poly-methyl methacrylate (PMMA) image quality phantom (SEDENTEXCT IQ), and then the images were analyzed using ImageJ to calculate image quality parameters such as noise, uniformity, and contrast to noise ratio (CNR). A protocol proposed by SEDENTEXCT, dose index 1 (DI1), was applied to dose measurements obtained using a thimble ionization chamber and cylindrical PMMA dose index phantom (SEDENTEXCT DI). Dose distributions were obtained using Gafchromic film. The phantoms were positioned in the FOV to imitate a clinical positioning. Results: The image noise was 6–12.5% which, when normalized to the difference of mean voxel value of PMMA and air, was comparable between different FOVs. Uniformity was 93.5ß 99.7% across the images. CNR was 1.7–4.2 and 6.3–14.3 for LDPE and Aluminum, respectively. Dose distributions were symmetric about the rotation angle's bisector. For large and medium FOVs at 4 mA and 80–90 kVp, DI1 values were in the range of 1.26–3.23 mGy. DI1 values were between 1.01–1.93 mGy for small FOV (5×5 cm{sup 2}) at 4–5 mA and 75–84 kVp. Conclusion: Noise decreased by increasing kVp, and the CNR increased for each FOV. When FOV size increased, image noise increased and CNR decreased. DI1 values were increased by increasing tube current (mA), tube voltage (kVp), and/or FOV. Funding for this project from NSERC Discovery grant, UBC Faculty of Dentistry Research Equipment Grant and UBC Faculty of

  6. Delayed-Phase Cone-Beam CT Improves Detectability of Intrahepatic Cholangiocarcinoma During Conventional Transarterial Chemoembolization

    Energy Technology Data Exchange (ETDEWEB)

    Schernthaner, Ruediger Egbert [The Johns Hopkins Hospital, Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology (United States); Lin, MingDe [Philips Research North America, Ultrasound and Interventions (United States); Duran, Rafael; Chapiro, Julius; Wang, Zhijun; Geschwind, Jean-François, E-mail: jfg@jhmi.edu [The Johns Hopkins Hospital, Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology (United States)

    2015-08-15

    PurposeTo evaluate the detectability of intrahepatic cholangiocarcinoma (ICC) on dual-phase cone-beam CT (DPCBCT) during conventional transarterial chemoembolization (cTACE) compared to that of digital subtraction angiography (DSA) with respect to pre-procedure contrast-enhanced magnetic resonance imaging (CE-MRI) of the liver.MethodsThis retrospective study included 17 consecutive patients (10 male, mean age 64) with ICC who underwent pre-procedure CE-MRI of the liver, and DSA and DPCBCT (early-arterial phase (EAP) and delayed-arterial phase (DAP)) just before cTACE. The visibility of each ICC lesion was graded by two radiologists on a three-rank scale (complete, partial, and none) on DPCBCT and DSA images, and then compared to pre-procedure CE-MRI.ResultsOf 61 ICC lesions, only 45.9 % were depicted by DSA, whereas EAP- and DAP-CBCT yielded a significantly higher detectability rate of 73.8 % and 93.4 %, respectively (p < 0.01). Out of the 33 lesions missed on DSA, 18 (54.5 %) and 30 (90.9 %) were revealed on EAP- and DAP-CBCT images, respectively. DSA depicted only one lesion that was missed by DPCBCT due to streak artifacts caused by a prosthetic mitral valve. DAP-CBCT identified significantly more lesions than EAP-CBCT (p < 0.01). Conversely, EAP-CBCT did not detect lesions missed by DAP-CBCT. For complete lesion visibility, DAP-CBCT yielded significantly higher detectability (78.7 %) compared to EAP (31.1 %) and DSA (21.3 %) (p < 0.01).ConclusionDPCBCT, and especially the DAP-CBCT, significantly improved the detectability of ICC lesions during cTACE compared to DSA. We recommend the routine use of DAP-CBCT in patients with ICC for per-procedure detectability and treatment planning in the setting of TACE.

  7. Dose measurements for dental cone-beam CT: a comparison with MSCT and panoramic imaging

    Science.gov (United States)

    Deman, P.; Atwal, P.; Duzenli, C.; Thakur, Y.; Ford, N. L.

    2014-06-01

    To date there is a lack of published information on appropriate methods to determine patient doses from dental cone-beam computed tomography (CBCT) equipment. The goal of this study is to apply and extend the methods recommended in the American Association of Physicists in Medicine (AAPM) Report 111 for CBCT equipment to characterize dose and effective dose for a range of dental imaging equipment. A protocol derived from the one proposed by Dixon et al (2010 Technical Report 111, American Association of Physicist in Medicine, MD, USA), was applied to dose measurements of multi-slice CT, dental CBCT (small and large fields of view (FOV)) and a dental panoramic system. The computed tomography dose index protocol was also performed on the MSCT to compare both methods. The dose distributions in a cylindrical polymethyl methacrylate phantom were characterized using a thimble ionization chamber and Gafchromic™ film (beam profiles). Gafchromic™ films were used to measure the dose distribution in an anthropomorphic phantom. A method was proposed to extend dose estimates to planes superior and inferior to the central plane. The dose normalized to 100 mAs measured in the center of the phantom for the large FOV dental CBCT (11.4 mGy/100 mAs) is two times lower than that of MSCT (20.7 mGy/100 mAs) for the same FOV, but approximately 15 times higher than for a panoramic system (0.6 mGy/100 mAs). The effective dose per scan (in clinical conditions) found for the dental CBCT are 167.60 ± 3.62, 61.30 ± 3.88 and 92.86 ± 7.76 mSv for the Kodak 9000 (fixed scan length of 3.7 cm), and the iCAT Next Generation for 6 cm and 13 cm scan lengths respectively. The method to extend the dose estimates from the central slice to superior and inferior slices indicates a good agreement between theory and measurement. The Gafchromic™ films provided useful beam profile data and 2D distributions of dose in phantom.

  8. Dose measurements for dental cone-beam CT: a comparison with MSCT and panoramic imaging

    International Nuclear Information System (INIS)

    To date there is a lack of published information on appropriate methods to determine patient doses from dental cone-beam computed tomography (CBCT) equipment. The goal of this study is to apply and extend the methods recommended in the American Association of Physicists in Medicine (AAPM) Report 111 for CBCT equipment to characterize dose and effective dose for a range of dental imaging equipment. A protocol derived from the one proposed by Dixon et al (2010 Technical Report 111, American Association of Physicist in Medicine, MD, USA), was applied to dose measurements of multi-slice CT, dental CBCT (small and large fields of view (FOV)) and a dental panoramic system. The computed tomography dose index protocol was also performed on the MSCT to compare both methods. The dose distributions in a cylindrical polymethyl methacrylate phantom were characterized using a thimble ionization chamber and Gafchromic™ film (beam profiles). Gafchromic™ films were used to measure the dose distribution in an anthropomorphic phantom. A method was proposed to extend dose estimates to planes superior and inferior to the central plane. The dose normalized to 100 mAs measured in the center of the phantom for the large FOV dental CBCT (11.4 mGy/100 mAs) is two times lower than that of MSCT (20.7 mGy/100 mAs) for the same FOV, but approximately 15 times higher than for a panoramic system (0.6 mGy/100 mAs). The effective dose per scan (in clinical conditions) found for the dental CBCT are 167.60 ± 3.62, 61.30 ± 3.88 and 92.86 ± 7.76 mSv for the Kodak 9000 (fixed scan length of 3.7 cm), and the iCAT Next Generation for 6 cm and 13 cm scan lengths respectively. The method to extend the dose estimates from the central slice to superior and inferior slices indicates a good agreement between theory and measurement. The Gafchromic™ films provided useful beam profile data and 2D distributions of dose in phantom. (paper)

  9. Improved compressed sensing-based cone-beam CT reconstruction using adaptive prior image constraints

    Science.gov (United States)

    Lee, Ho; Xing, Lei; Davidi, Ran; Li, Ruijiang; Qian, Jianguo; Lee, Rena

    2012-04-01

    Volumetric cone-beam CT (CBCT) images are acquired repeatedly during a course of radiation therapy and a natural question to ask is whether CBCT images obtained earlier in the process can be utilized as prior knowledge to reduce patient imaging dose in subsequent scans. The purpose of this work is to develop an adaptive prior image constrained compressed sensing (APICCS) method to solve this problem. Reconstructed images using full projections are taken on the first day of radiation therapy treatment and are used as prior images. The subsequent scans are acquired using a protocol of sparse projections. In the proposed APICCS algorithm, the prior images are utilized as an initial guess and are incorporated into the objective function in the compressed sensing (CS)-based iterative reconstruction process. Furthermore, the prior information is employed to detect any possible mismatched regions between the prior and current images for improved reconstruction. For this purpose, the prior images and the reconstructed images are classified into three anatomical regions: air, soft tissue and bone. Mismatched regions are identified by local differences of the corresponding groups in the two classified sets of images. A distance transformation is then introduced to convert the information into an adaptive voxel-dependent relaxation map. In constructing the relaxation map, the matched regions (unchanged anatomy) between the prior and current images are assigned with smaller weight values, which are translated into less influence on the CS iterative reconstruction process. On the other hand, the mismatched regions (changed anatomy) are associated with larger values and the regions are updated more by the new projection data, thus avoiding any possible adverse effects of prior images. The APICCS approach was systematically assessed by using patient data acquired under standard and low-dose protocols for qualitative and quantitative comparisons. The APICCS method provides an

  10. Dose and scatter characteristics of a novel cone beam CT system for musculoskeletal extremities

    Science.gov (United States)

    Zbijewski, W.; Sisniega, A.; Vaquero, J. J.; Muhit, A.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2012-03-01

    A novel cone-beam CT (CBCT) system has been developed with promising capabilities for musculoskeletal imaging (e.g., weight-bearing extremities and combined radiographic / volumetric imaging). The prototype system demonstrates diagnostic-quality imaging performance, while the compact geometry and short scan orbit raise new considerations for scatter management and dose characterization that challenge conventional methods. The compact geometry leads to elevated, heterogeneous x-ray scatter distributions - even for small anatomical sites (e.g., knee or wrist), and the short scan orbit results in a non-uniform dose distribution. These complex dose and scatter distributions were investigated via experimental measurements and GPU-accelerated Monte Carlo (MC) simulation. The combination provided a powerful basis for characterizing dose distributions in patient-specific anatomy, investigating the benefits of an antiscatter grid, and examining distinct contributions of coherent and incoherent scatter in artifact correction. Measurements with a 16 cm CTDI phantom show that the dose from the short-scan orbit (0.09 mGy/mAs at isocenter) varies from 0.16 to 0.05 mGy/mAs at various locations on the periphery (all obtained at 80 kVp). MC estimation agreed with dose measurements within 10-15%. Dose distribution in patient-specific anatomy was computed with MC, confirming such heterogeneity and highlighting the elevated energy deposition in bone (factor of ~5-10) compared to soft-tissue. Scatter-to-primary ratio (SPR) up to ~1.5-2 was evident in some regions of the knee. A 10:1 antiscatter grid was found earlier to result in significant improvement in soft-tissue imaging performance without increase in dose. The results of MC simulations elucidated the mechanism behind scatter reduction in the presence of a grid. A ~3-fold reduction in average SPR was found in the MC simulations; however, a linear grid was found to impart additional heterogeneity in the scatter distribution

  11. SU-E-I-59: Image Quality and Dose Measurement for Partial Cone-Beam CT

    International Nuclear Information System (INIS)

    Purpose: To characterize performance of cone beam CT (CBCT) used in dentistry investigating quantitatively the image quality and radiation dose during dental CBCT over different settings for partial rotation of the x-ray tube. Methods: Image quality and dose measurements were done on a variable field of view (FOV) dental CBCT (Carestream 9300). X-ray parameters for clinical settings were adjustable for 2–10 mA, 60–90 kVp, and two optional voxel size values, but time was fixed for each FOV. Image quality was assessed by scanning cylindrical poly-methyl methacrylate (PMMA) image quality phantom (SEDENTEXCT IQ), and then the images were analyzed using ImageJ to calculate image quality parameters such as noise, uniformity, and contrast to noise ratio (CNR). A protocol proposed by SEDENTEXCT, dose index 1 (DI1), was applied to dose measurements obtained using a thimble ionization chamber and cylindrical PMMA dose index phantom (SEDENTEXCT DI). Dose distributions were obtained using Gafchromic film. The phantoms were positioned in the FOV to imitate a clinical positioning. Results: The image noise was 6–12.5% which, when normalized to the difference of mean voxel value of PMMA and air, was comparable between different FOVs. Uniformity was 93.5ß 99.7% across the images. CNR was 1.7–4.2 and 6.3–14.3 for LDPE and Aluminum, respectively. Dose distributions were symmetric about the rotation angle's bisector. For large and medium FOVs at 4 mA and 80–90 kVp, DI1 values were in the range of 1.26–3.23 mGy. DI1 values were between 1.01–1.93 mGy for small FOV (5×5 cm2) at 4–5 mA and 75–84 kVp. Conclusion: Noise decreased by increasing kVp, and the CNR increased for each FOV. When FOV size increased, image noise increased and CNR decreased. DI1 values were increased by increasing tube current (mA), tube voltage (kVp), and/or FOV. Funding for this project from NSERC Discovery grant, UBC Faculty of Dentistry Research Equipment Grant and UBC Faculty of Dentistry S

  12. Improved Scatter Correction in X-Ray Cone Beam CT with Moving Beam Stop Array Using Johns' Equation

    CERN Document Server

    Yan, Hao; Tang, Shaojie; Xu, Qiong

    2014-01-01

    In this paper, an improved scatter correction with moving beam stop array (BSA) for x-ray cone beam (CB) CT is proposed. Firstly, correlation between neighboring CB views is deduced based on John's Equation. Then, correlation-based algorithm is presented to complement the incomplete views by using the redundancy (over-determined information) in CB projections. Finally, combining the algorithm with scatter correction method using moving BSA, where part of primary radiation is blocked and incomplete projections are acquired, an improved correction method is proposed. Effectiveness and robustness is validated by Monte Carlo (MC) simulation with EGSnrc on humanoid phantom.

  13. Performance evaluation of the backprojection filtered (BPF) algorithm in circular fan-beam and cone-beam CT

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this article we introduce an exact backprojecfion filtered (BPF) type reconstruction algorithm for cone-beam scans based on Zou and Pan's work. The algorithm can reconstruct images using only the projection data passing through the parallel PI-line segments in reduced scans. Computer simulations and practical experiments are carried out to evaluate this algorithm. The BPF algorithm has a higher computational efficiency than the famous FDK algorithm. The BPF algorithm is evaluated using the practical CT projection data on a 450 keV X-ray CT system with a flat-panel detector (FPD). From the practical experiments, we get the spatial resolution of this CT system. The algorithm could achieve the spatial resolution of 2.4 lp/mm and satisfies the practical applications in industrial CT inspection.

  14. Performance evaluation and optimization of BM4D-AV denoising algorithm for cone-beam CT images

    Science.gov (United States)

    Huang, Kuidong; Tian, Xiaofei; Zhang, Dinghua; Zhang, Hua

    2015-12-01

    The broadening application of cone-beam Computed Tomography (CBCT) in medical diagnostics and nondestructive testing, necessitates advanced denoising algorithms for its 3D images. The block-matching and four dimensional filtering algorithm with adaptive variance (BM4D-AV) is applied to the 3D image denoising in this research. To optimize it, the key filtering parameters of the BM4D-AV algorithm are assessed firstly based on the simulated CBCT images and a table of optimized filtering parameters is obtained. Then, considering the complexity of the noise in realistic CBCT images, possible noise standard deviations in BM4D-AV are evaluated to attain the chosen principle for the realistic denoising. The results of corresponding experiments demonstrate that the BM4D-AV algorithm with optimized parameters presents excellent denosing effect on the realistic 3D CBCT images.

  15. Low-Dose Megavoltage Cone-Beam CT imaging using Thick, Segmented Scintillators

    OpenAIRE

    El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua; Choroszucha, Richard B.; Jiang, Hao; Liu, Langechuan

    2011-01-01

    Megavoltage, cone-beam computed tomography (MV CBCT) employing an electronic portal imaging device (EPID) is a highly promising technique for providing soft-tissue visualization in image-guided radiotherapy. However, current EPIDs based on active matrix flat-panel imagers (AMFPIs), which are regarded as the gold standard for portal imaging and referred to as conventional MV AMFPIs, require high radiation doses to achieve this goal due to poor x-ray detection efficiency (~2% at 6 MV). To overc...

  16. Bone Forming Potential of An-Organic Bovine Bone Graft: A Cone Beam CT study

    OpenAIRE

    Uzbek, Usman Haider; Rahman, Shaifulizan Ab; Alam, Mohammad Khursheed; gillani, syed wasif

    2014-01-01

    Purpose: An-organic bovine bone graft is a xenograft with the potential of bone formation. The aim of this study was to evaluate the bone density using cone beam computed tomography scans around functional endosseous implant in the region of both augmented maxillary sinus with the an-organic bovine bone graft and the alveolar bone over which the graft was placed to provide space for the implants.

  17. An Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering

    Directory of Open Access Journals (Sweden)

    Ming Yan

    2006-01-01

    Full Text Available FDK algorithm is a well-known 3D (three-dimensional approximate algorithm for CT (computed tomography image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction.

  18. Physical performance and image optimization of megavoltage cone-beam CT

    International Nuclear Information System (INIS)

    Megavoltage cone-beam CT (MVCBCT) is the most recent addition to the in-room CT systems developed for image-guided radiation therapy. The first generation MVCBCT system consists of a 6 MV treatment x-ray beam produced by a conventional linear accelerator equipped with a flat panel amorphous silicon detector. The objective of this study was to evaluate the physical performance of MVCBCT in order to optimize the system acquisition and reconstruction parameters for image quality. MVCBCT acquisitions were performed with the clinical system but images were reconstructed and analyzed with a separate research workstation. The geometrical stability and the positioning accuracy of the system were evaluated by comparing geometrical calibrations routinely performed over a period of 12 months. The beam output and detector intensity stability during MVCBCT acquisition were also evaluated by analyzing in-air acquisitions acquired at different exposure levels. Several system parameters were varied to quantify their impact on image quality including the exposure (2.7, 4.5, 9.0, 18.0, and 54.0 MU), the craniocaudal imaging length (2, 5, 15, and 27.4 cm), the voxel size (0.5, 1, and 2 mm), the slice thickness (1, 3, and 5 mm), and the phantom size. For the reconstruction algorithm, the study investigated the effect of binning, averaging and diffusion filtering of raw projections as well as three different projection filters. A head-sized water cylinder was used to measure and improve the uniformity of MVCBCT images. Inserts of different electron densities were placed in a water cylinder to measure the contrast-to-noise ratio (CNR). The spatial resolution was obtained by measuring the point-spread function of the system using an iterative edge blurring technique. Our results showed that the geometric stability and accuracy of MVCBCT were better than 1 mm over a period of 12 months. Beam intensity variations per projection of up to 35.4% were observed for a 2.7 MU MVCBCT acquisition

  19. Physical performance and image optimization of megavoltage cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Olivier; Aubry, Jean-Francois; Aubin, Michele; Chen, Josephine; Descovich, Martina; Hashemi, Ali-Bani; Pouliot, Jean [Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158 (United States); Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 (United States); Siemens Oncology Care Systems, Concord, California 94520 (United States); Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158 (United States)

    2009-04-15

    Megavoltage cone-beam CT (MVCBCT) is the most recent addition to the in-room CT systems developed for image-guided radiation therapy. The first generation MVCBCT system consists of a 6 MV treatment x-ray beam produced by a conventional linear accelerator equipped with a flat panel amorphous silicon detector. The objective of this study was to evaluate the physical performance of MVCBCT in order to optimize the system acquisition and reconstruction parameters for image quality. MVCBCT acquisitions were performed with the clinical system but images were reconstructed and analyzed with a separate research workstation. The geometrical stability and the positioning accuracy of the system were evaluated by comparing geometrical calibrations routinely performed over a period of 12 months. The beam output and detector intensity stability during MVCBCT acquisition were also evaluated by analyzing in-air acquisitions acquired at different exposure levels. Several system parameters were varied to quantify their impact on image quality including the exposure (2.7, 4.5, 9.0, 18.0, and 54.0 MU), the craniocaudal imaging length (2, 5, 15, and 27.4 cm), the voxel size (0.5, 1, and 2 mm), the slice thickness (1, 3, and 5 mm), and the phantom size. For the reconstruction algorithm, the study investigated the effect of binning, averaging and diffusion filtering of raw projections as well as three different projection filters. A head-sized water cylinder was used to measure and improve the uniformity of MVCBCT images. Inserts of different electron densities were placed in a water cylinder to measure the contrast-to-noise ratio (CNR). The spatial resolution was obtained by measuring the point-spread function of the system using an iterative edge blurring technique. Our results showed that the geometric stability and accuracy of MVCBCT were better than 1 mm over a period of 12 months. Beam intensity variations per projection of up to 35.4% were observed for a 2.7 MU MVCBCT acquisition

  20. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry. PMID:19889800

  1. Registration of the Cone Beam CT and Blue-Ray Scanned Dental Model Based on the Improved ICP Algorithm

    Directory of Open Access Journals (Sweden)

    Xue Mei

    2014-01-01

    Full Text Available Multimodality image registration and fusion has complementary significance for guiding dental implant surgery. As the needs of the different resolution image registration, we develop an improved Iterative Closest Point (ICP algorithm that focuses on the registration of Cone Beam Computed Tomography (CT image and high-resolution Blue-light scanner image. The proposed algorithm includes two major phases, coarse and precise registration. Firstly, for reducing the matching interference of human subjective factors, we extract feature points based on curvature characteristics and use the improved three point’s translational transformation method to realize coarse registration. Then, the feature point set and reference point set, obtained by the initial registered transformation, are processed in the precise registration step. Even with the unsatisfactory initial values, this two steps registration method can guarantee the global convergence and the convergence precision. Experimental results demonstrate that the method has successfully realized the registration of the Cone Beam CT dental model and the blue-ray scanner model with higher accuracy. So the method could provide researching foundation for the relevant software development in terms of the registration of multi-modality medical data.

  2. The Reconstruction Toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the Insight Toolkit (ITK)

    Science.gov (United States)

    Rit, S.; Vila Oliva, M.; Brousmiche, S.; Labarbe, R.; Sarrut, D.; Sharp, G. C.

    2014-03-01

    We propose the Reconstruction Toolkit (RTK, http://www.openrtk.org), an open-source toolkit for fast cone-beam CT reconstruction, based on the Insight Toolkit (ITK) and using GPU code extracted from Plastimatch. RTK is developed by an open consortium (see affiliations) under the non-contaminating Apache 2.0 license. The quality of the platform is daily checked with regression tests in partnership with Kitware, the company supporting ITK. Several features are already available: Elekta, Varian and IBA inputs, multi-threaded Feldkamp-David-Kress reconstruction on CPU and GPU, Parker short scan weighting, multi-threaded CPU and GPU forward projectors, etc. Each feature is either accessible through command line tools or C++ classes that can be included in independent software. A MIDAS community has been opened to share CatPhan datasets of several vendors (Elekta, Varian and IBA). RTK will be used in the upcoming cone-beam CT scanner developed by IBA for proton therapy rooms. Many features are under development: new input format support, iterative reconstruction, hybrid Monte Carlo / deterministic CBCT simulation, etc. RTK has been built to freely share tomographic reconstruction developments between researchers and is open for new contributions.

  3. A Statistical Approach to Motion Compensated Cone Beam Reconstruction

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Hansen, Mads Fogtmann; Larsen, Rasmus

    2010-01-01

    One of the problems arising in radiotherapy planning is the quality of CT planning data. In the following attention is giving to the cone-beam scanning geometry where reconstruction of a 3D volume based on 2D projections, using the classic Feldkamp-Davis-Kress (FDK) algorithm requires a large...

  4. A statistical approach to motion compensated cone-beam

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Hansen, Mads Fogtmann; Larsen, Rasmus

    One of the problems arising in radiotherapy planning is the quality of CT planning data. In the following attention is giving to the cone-beam scanning geometry where reconstruction of a 3D volume based on 2D projections, using the classic Feldkamp-Davis-Kress (FDK) algorithm requires a large...

  5. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method

    International Nuclear Information System (INIS)

    Purpose: Four-dimensional cone beam computed tomography (4D-CBCT) has been developed to provide respiratory phase-resolved volumetric imaging in image guided radiation therapy. Conventionally, it is reconstructed by first sorting the x-ray projections into multiple respiratory phase bins according to a breathing signal extracted either from the projection images or some external surrogates, and then reconstructing a 3D CBCT image in each phase bin independently using FDK algorithm. This method requires adequate number of projections for each phase, which can be achieved using a low gantry rotation or multiple gantry rotations. Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. 4D-CBCT images at different breathing phases share a lot of redundant information, because they represent the same anatomy captured at slightly different temporal points. Taking this redundancy along the temporal dimension into account can in principle facilitate the reconstruction in the situation of inadequate number of projection images. In this work, the authors propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. Methods: The authors define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward–backward splitting algorithm and a Gauss–Jacobi iteration method are employed to solve the problems. The algorithms implementation

  6. Radiobiologically optimized couch shift: A new localization paradigm using cone-beam CT for prostate radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yimei, E-mail: yhuang2@hfhs.org; Gardner, Stephen J.; Wen, Ning; Zhao, Bo; Gordon, James; Brown, Stephen; Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Health System, 2799 W Grand Boulevard, Detroit, Michigan 48202 (United States)

    2015-10-15

    Purpose: To present a novel positioning strategy which optimizes radiation delivery by utilizing radiobiological response knowledge and evaluate its use during prostate external beam radiotherapy. Methods: Five patients with low or intermediate risk prostate cancer were evaluated retrospectively in this IRB-approved study. For each patient, a VMAT plan with one 358° arc was generated on the planning CT (PCT) to deliver 78 Gy in 39 fractions. Five representative pretreatment cone beam CTs (CBCT) were selected for each patient. The CBCT images were registered to PCT by a human observer, which consisted of an initial automated registration with three degrees-of-freedom, followed by manual adjustment for agreement at the prostate/rectal wall interface. To determine the optimal treatment position for each CBCT, a search was performed centering on the observer-matched position (OM-position) utilizing a score function based on radiobiological and dosimetric indices (EUD{sub prostate}, D99{sub prostate}, NTCP{sub rectum}, and NTCP{sub bladder}) for the prostate, rectum, and bladder. We termed the optimal treatment position the radiobiologically optimized couch shift position (ROCS-position). Results: The dosimetric indices, averaged over the five patients’ treatment plans, were (mean ± SD) 79.5 ± 0.3 Gy (EUD{sub prostate}), 78.2 ± 0.4 Gy (D99{sub prostate}), 11.1% ± 2.7% (NTCP{sub rectum}), and 46.9% ± 7.6% (NTCP{sub bladder}). The corresponding values from CBCT at the OM-positions were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.8 ± 0.7 Gy (D99{sub prostate}), 12.1% ± 5.6% (NTCP{sub rectum}), and 51.6% ± 15.2% (NTCP{sub bladder}), respectively. In comparison, from CBCT at the ROCS-positions, the dosimetric indices were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.3 ± 0.6 Gy (D99{sub prostate}), 8.0% ± 3.3% (NTCP{sub rectum}), and 46.9% ± 15.7% (NTCP{sub bladder}). Excessive NTCP{sub rectum} was observed on Patient 5 (19.5% ± 6.6%) corresponding to localization at OM

  7. Evaluation of Sparse-view Reconstruction from Flat-panel-detector Cone-beam CT

    OpenAIRE

    Bian, J.; Siewerdsen, J. H.; Han, X.; Sidky, E. Y.; Prince, J. L.; Pelizzari, C. A.; Pan, X.

    2010-01-01

    Flat-panel-detector X-ray cone-beam computed tomography (CBCT) is used in a rapidly increasing host of imaging applications, including image-guided surgery and radiotherapy. The purpose of the work is to investigate and evaluate image reconstruction from data collected at projection views significantly fewer than what is used in current CBCT imaging. Specifically, we carried out imaging experiments by use of a bench-top CBCT system that was designed to mimic imaging conditions in image-guided...

  8. A dedicated cone-beam CT system for musculoskeletal extremities imaging: Design, optimization, and initial performance characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zbijewski, W.; De Jean, P.; Prakash, P.; Ding, Y.; Stayman, J. W.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Machado, A.; Carrino, J. A.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Carestream Health, Rochester, New York 14615 (United States); The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2011-08-15

    Purpose: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. Methods: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Results: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a {approx}55 cm source-to-detector distance; 1.3 magnification; a

  9. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI

    DEFF Research Database (Denmark)

    Zimmermann, S. J.; Rowshanfarzad, P.; Ebert, M. A.;

    2015-01-01

    ) and the radiation field centre (RFC) is calculated. A software package was developed for accurate calculation of the linac isocentre position. This requires precise determination of the position of the ball bearing and the RFC. Results: Data were acquired for 6 MV, 18 MV and flattening filter free (FFF) 6 MV FFF...... radiation isocentre prior to routine use of the cone-beam CT system. The isocentre determination method used in the XVI software is not available to users. The aim of this work is to perform an independent evaluation of the Elekta XVI 4.5 software for isocentre verification with focus on the robustness...... iView GT software. Two images were acquired at each cardinal gantry angle (-180o, -90o , 0o, 90o) at two opposing collimator angles. The images were exported to the conebeam CT software XVI 4.5 where the difference between the ball bearing position in the XYZ-room coordinates (IEC61217...

  10. Evaluation of the linearity characteristic of the cone-beam CT fixed on the Varian 23EX linear accelerator

    International Nuclear Information System (INIS)

    Objective: To investigate the CT number linearity of the cone-beam CT (CBCT) images at the different spatial locations in the scanning area. Methods: The Catphan 504 phantom at the different locations are scanned repeatedly using the CBCT on the Varian 23EX linear accelerator. The phantom is located the isocenter point, eccentric 3 cm, eccentric 6 cm, and different points on the z-axis successively on the accelerator. The scanned mode is the standard head mode. The reconstructive thickness is 2.5 cm. The different densities inserts of CTP 4.4 module on the different locations are measured via Eclips treatment planning system (TPS) and computed by Matlab 7.0 and the CT linear fitting are then processed. In order to understand better the linear distribution along with the value of CT in the spatial distribution the results are compared with the fan-beam CT. Results: Phantom studies show that: CBCT has good linearity performance not only under the standard header (body) of the scanning conditions, but also on such locations including the cross-sectional, the sagittal, the coronal plane and the eccentric position (R2>0.953). Bowtie filtration device dose not change the CT linearity but changes the value of CT. Conclusions: The linearity of X-ray CBCT on the Varian linear accelerator is favorable. CBCT will be used in the TPS dose calculation via further correction of the CT value. (authors)

  11. SU-E-J-92: On-Line Cone Beam CT Based Planning for Emergency and Palliative Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Held, M; Morin, O; Pouliot, J [UC San Francisco, San Francisco, CA (United States)

    2014-06-01

    Purpose: To evaluate and develop the feasibility of on-line cone beam CT based planning for emergency and palliative radiotherapy treatments. Methods: Subsequent to phantom studies, a case library of 28 clinical megavoltage cone beam CT (MVCBCT) was built to assess dose-planning accuracies on MVCBCT for all anatomical sites. A simple emergency treatment plan was created on the MVCBCT and copied to its reference CT. The agreement between the dose distributions of each image pair was evaluated by the mean dose difference of the dose volume and the gamma index of the central 2D axial plane. An array of popular urgent and palliative cases was also evaluated for imaging component clearance and field-of-view. Results: The treatment cases were categorized into four groups (head and neck, thorax/spine, pelvis and extremities). Dose distributions for head and neck treatments were predicted accurately in all cases with a gamma index of >95% for 2% and 2 mm criteria. Thoracic spine treatments had a gamma index as low as 60% indicating a need for better uniformity correction and tissue density calibration. Small anatomy changes between CT and MVCBCT could contribute to local errors. Pelvis and sacral spine treatment cases had a gamma index between 90% and 98% for 3%/3 mm criteria. The limited FOV became an issue for large pelvis patients. Imaging clearance was difficult for cases where the tumor was positioned far off midline. Conclusion: The MVCBCT based dose planning and delivery approach is feasible in many treatment cases. Dose distributions for head and neck patients are unrestrictedly predictable. Some FOV restrictions apply to other treatment sites. Lung tissue is most challenging for accurate dose calculations given the current imaging filters and corrections. Additional clinical cases for extremities need to be included in the study to assess the full range of site-specific planning accuracies. This work is supported by Siemens.

  12. Deformable image registration for contour propagation from CT to cone-beam CT scans in radiotherapy of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Thor, Maria; Muren, Ludvig Paul (Clinical Inst., Aarhus Univ., Aarhus (Denmark); Dept. of Medical Physics, Aarhus Univ. Hospital, Aarhus (Denmark); Dept. of Oncology, Aarhus Univ. Hospital, Aarhus (Denmark)), e-mail: mariator@rm.dk; Petersen, Joergen B. B. (Dept. of Medical Physics, Aarhus Univ. Hospital, Aarhus (Denmark)); Bentzen, Lise; Hoeyer, Morten (Dept. of Oncology, Aarhus Univ. Hospital, Aarhus (Denmark))

    2011-08-15

    Background and purpose. Daily organ motion occurring during the course of radiotherapy in the pelvic region leads to uncertainties in the doses delivered to the tumour and the organs at risk. Motion patterns include both volume and shape changes, calling for deformable image registration (DIR), in approaches involving dose accumulation and adaptation. In this study, we tested the performance of a DIR application for contour propagation from the treatment planning computed tomography (pCT) to repeat cone-beam CTs (CBCTs) for a set of prostate cancer patients. Material and methods. The prostate, rectum and bladder were delineated in the pCT and in six to eight repeat CBCTs for each of five patients. The pCT contours were propagated onto the corresponding CBCT using the Multi-modality Image Registration and Segmentation application, resulting in 36 registrations. Prior to the DIR, a rigid registration was performed. The algorithm used for the DIR was based on a 'demons' algorithm and the performance of it was examined quantitatively using the Dice similarity coefficient (DSC) and qualitatively as visual slice-by-slice scoring by a radiation oncologist grading the deviations in shape and/or distance relative to the anatomy. Results. The average DSC (range) for the DIR over all scans and patients was 0.80 (0.65-0.87) for prostate, 0.77 (0.63-0.87) for rectum and 0.73 (0.34-0.91) for bladder, while the corresponding DSCs for the rigid registrations were 0.77 (0.65-0.86), 0.71 (0.55-0.82) and 0.64 (0.33-0.87). The percentage of propagated contours of good/acceptable quality was 45% for prostate; 20% for rectum and 33% for bladder. For the bladder, there was an association between the average DSC and the different scores of the qualitative evaluation. Conclusions. DIR improved the performance of pelvic organ contour propagation from the pCT to CBCTs as compared to rigid registration only. Still, a large fraction of the propagated rectum and bladder contours were

  13. Organ doses can be estimated from the computed tomography (CT) dose index for cone-beam CT on radiotherapy equipment.

    Science.gov (United States)

    Martin, Colin J; Abuhaimed, Abdullah; Sankaralingam, Marimuthu; Metwaly, Mohamed; Gentle, David J

    2016-06-01

    Cone beam computed tomography (CBCT) systems are fitted to radiotherapy linear accelerators and used for patient positioning prior to treatment by image guided radiotherapy (IGRT). Radiotherapists' and radiographers' knowledge of doses to organs from CBCT imaging is limited. The weighted CT dose index for a reference beam of width 20 mm (CTDIw,ref) is displayed on Varian CBCT imaging equipment known as an On-Board Imager (OBI) linked to the Truebeam linear accelerator. This has the potential to provide an indication of organ doses. This knowledge would be helpful for guidance of radiotherapy clinicians preparing treatments. Monte Carlo simulations of imaging protocols for head, thorax and pelvic scans have been performed using EGSnrc/BEAMnrc, EGSnrc/DOSXYZnrc, and ICRP reference computational male and female phantoms to derive the mean absorbed doses to organs and tissues, which have been compared with values for the CTDIw,ref displayed on the CBCT scanner console. Substantial variations in dose were observed between male and female phantoms. Nevertheless, the CTDIw,ref gave doses within  ±21% for the stomach and liver in thorax scans and 2  ×  CTDIw,ref can be used as a measure of doses to breast, lung and oesophagus. The CTDIw,ref could provide indications of doses to the brain for head scans, and the colon for pelvic scans. It is proposed that knowledge of the link between CTDIw for CBCT should be promoted and included in the training of radiotherapy staff. PMID:26975735

  14. Robust scatter correction method for cone-beam CT using an interlacing-slit plate

    CERN Document Server

    Huang, Kuidong; Zhang, Dinghua; Zhang, Hua; Shi, Wenlong

    2015-01-01

    Cone-beam computed tomography (CBCT) has been widely used in medical imaging and industrial nondestructive testing, but the presence of scattered radiation will cause significant reduction of image quality. In this article, a robust scatter correction method for CBCT using an interlacing-slit plate (ISP) is carried out for convenient practice. Firstly, a Gaussian filtering method is proposed to compensate the missing data of the inner scatter image, and simultaneously avoid too-large values of calculated inner scatter and smooth the inner scatter field. Secondly, an interlacing-slit scan without detector gain correction is carried out to enhance the practicality and convenience of the scatter correction method. Finally, a denoising step for scatter-corrected projection images is added in the process flow to control the noise amplification. The experimental results show that the improved method can not only make the scatter correction more robust and convenient, but also achieve a good quality of scatter-corre...

  15. CBCT在口腔正畸领域的应用%The Applications of Cone Beam CT in Orthodontics

    Institute of Scientific and Technical Information of China (English)

    牛茜楠; 冯雪

    2012-01-01

    The comprehensive use of cone beam CT in orthodontics is reviewed in this article, such as mini-implant, impacted teeth, TMJ, and airway volume. At the meantime, the advantages of CBCT are discussed, compared with traditional 2-dimensional image technology.%CBCT作为一种新兴辅助诊断技术,近年来广泛应用于口腔领域,本文对CBCT在口腔正畸学领域的多方面应用进行了综合阐述,包括微种植钉、阻生牙、颞下颌关节、气道和软组织分析等,同时通过与传统影像技术的对比,进一步展示了CBCT的独特优势.

  16. Accurate IMRT fluence verification for prostate cancer patients using 'in-vivo' measured EPID images and in-room acquired kilovoltage cone-beam CT scans

    NARCIS (Netherlands)

    A.S.A.M. Ali (Ali Sid Ahmed M.); M.L.P. Dirkx (Maarten); R.M. Cools (Ruud); B.J.M. Heijmen (Ben)

    2013-01-01

    textabstractBackground: To investigate for prostate cancer patients the comparison of 'in-vivo' measured portal dose images (PDIs) with predictions based on a kilovoltage cone-beam CT scan (CBCT), acquired during the same treatment fraction, as an alternative for pre-treatment verification. For eval

  17. SU-D-207-01: Markerless Respiratory Motion Tracking with Contrast Enhanced Thoracic Cone Beam CT Projections

    Energy Technology Data Exchange (ETDEWEB)

    Chao, M; Yuan, Y; Rosenzweig, K; Lo, Y [The Mount Sinai Medical Center, New York, NY (United States); Brousmiche, S [Ion Beam Application, Louvain-la-neuve (Belgium)

    2015-06-15

    Purpose: To develop a novel technique to enhance the image contrast of clinical cone beam CT projections and extract respiratory signals based on anatomical motion using the modified Amsterdam Shroud (AS) method to benefit image guided radiation therapy. Methods: Thoracic cone beam CT projections acquired prior to treatment were preprocessed to increase their contrast for better respiratory signal extraction. Air intensity on raw images was firstly estimated and then applied to correct the projections to generate new attenuation images that were subsequently improved with deeper anatomy feature enhancement through taking logarithm operation, derivative along superior-inferior direction, respectively. All pixels on individual post-processed two dimensional images were horizontally summed to one column and all projections were combined side by side to create an AS image from which patient’s respiratory signal was extracted. The impact of gantry rotation on the breathing signal rendering was also investigated. Ten projection image sets from five lung cancer patients acquired with the Varian Onboard Imager on 21iX Clinac (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Results: Application of the air correction on raw projections showed that more than an order of magnitude of contrast enhancement was achievable. The typical contrast on the raw projections is around 0.02 while that on attenuation images could greater than 0.5. Clear and stable breathing signal can be reliably extracted from the new images while the uncorrected projection sets failed to yield clear signals most of the time. Conclusion: Anatomy feature plays a key role in yielding breathing signal from the projection images using the AS technique. The air correction process facilitated the contrast enhancement significantly and attenuation images thus obtained provides a practical solution to obtaining markerless breathing motion tracking.

  18. Morphology of bone defects in patient with unilateral cleft lip and palate. Cone beam x-ray CT evaluation

    International Nuclear Information System (INIS)

    Orthodontic treatment planning of the cleft lip and palate vary according to the morphology of the alveolar bone and palatal bone. The purpose of this study is to evaluate the three-dimensional anatomy of the alveolar and palatal bone in children with complete unilateral cleft lip and palate. Thirty-three nonsyndromic consecutive patients with complete unilateral cleft lip and palate were treated by the cleft palate team at Showa University. Each patient had lip and palate surgeries at Showa University. Cone beam CT radiographs (CB MercuRay, Hitachi) were taken prior to secondary bone grafting, and were classified according to the method of Kita et al. 1997. Cone beam CT radiographs showed multiple types of alveolar and palatal bone morphology, and focused on special types described in the method of Kita et al. It was most frequently found that bone defects in the alveolar crest showed similar patterns in both buccal and palatal aspect, and the buccal bone defect in the nasal floor was larger than the palatal bone defect in the nasal floor. In 80% of the patients, the palatal bone defect showed similar patterns in both anterior and posterior aspects, and the anterior palatal bone defect was smaller than the posterior palatal bone defect. In addition, inadequate bone bridges were frequently found at the cleft site. It is suggested that patients with unilateral cleft lip and palate have various types of alveolar and palatal bone morphology, and are required to take three-dimensional radiographic X-rays prior to any orthodontic treatment. (author)

  19. SU-D-207-01: Markerless Respiratory Motion Tracking with Contrast Enhanced Thoracic Cone Beam CT Projections

    International Nuclear Information System (INIS)

    Purpose: To develop a novel technique to enhance the image contrast of clinical cone beam CT projections and extract respiratory signals based on anatomical motion using the modified Amsterdam Shroud (AS) method to benefit image guided radiation therapy. Methods: Thoracic cone beam CT projections acquired prior to treatment were preprocessed to increase their contrast for better respiratory signal extraction. Air intensity on raw images was firstly estimated and then applied to correct the projections to generate new attenuation images that were subsequently improved with deeper anatomy feature enhancement through taking logarithm operation, derivative along superior-inferior direction, respectively. All pixels on individual post-processed two dimensional images were horizontally summed to one column and all projections were combined side by side to create an AS image from which patient’s respiratory signal was extracted. The impact of gantry rotation on the breathing signal rendering was also investigated. Ten projection image sets from five lung cancer patients acquired with the Varian Onboard Imager on 21iX Clinac (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Results: Application of the air correction on raw projections showed that more than an order of magnitude of contrast enhancement was achievable. The typical contrast on the raw projections is around 0.02 while that on attenuation images could greater than 0.5. Clear and stable breathing signal can be reliably extracted from the new images while the uncorrected projection sets failed to yield clear signals most of the time. Conclusion: Anatomy feature plays a key role in yielding breathing signal from the projection images using the AS technique. The air correction process facilitated the contrast enhancement significantly and attenuation images thus obtained provides a practical solution to obtaining markerless breathing motion tracking

  20. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    Science.gov (United States)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images.

  1. Magnitude and clinical relevance of translational and rotational patient setup errors: A cone-beam CT study

    International Nuclear Information System (INIS)

    Purpose: To establish volume imaging using an on-board cone-beam CT (CB-CT) scanner for evaluation of three-dimensional patient setup errors. Methods and Materials: The data from 24 patients were included in this study, and the setup errors using 209 CB-CT studies and 148 electronic portal images were analyzed and compared. The effect of rotational errors alone, translational errors alone, and combined rotational and translational errors on target coverage and sparing of organs at risk was investigated. Results: Translational setup errors using the CB-CT scanner and an electronic portal imaging device differed 2o were recorded in 3.7% of pelvic tumors, 26.4% of thoracic tumors, and 12.4% of head-and-neck tumors; the corresponding maximal rotational errors were 5o, 8o, and 6o. No correlation between the magnitude of translational and rotational setup errors was observed. For patients with elongated target volumes and sharp dose gradients to adjacent organs at risk, both translational and rotational errors resulted in considerably decreased target coverage and highly increased doses to the organs at risk compared with the initial treatment plan. Conclusions: The CB-CT scanner has been successfully established for the evaluation of patient setup errors, and its feasibility in day-to-day clinical practice has been demonstrated. Our results have indicated that rotational errors are of clinical significance for selected patients receiving high-precision radiotherapy

  2. 锥形束CT在埋伏牙拔除中的临床应用%Clinical use of cone beam CT in extraction of impacted tooth

    Institute of Scientific and Technical Information of China (English)

    陈井鑫; 邓伟; 王鸿; 符良斌; 甘成文

    2012-01-01

    目的:评价锥形束CT (CBCT)在颌骨埋伏牙诊断和治疗中的临床价值.方法:对常规口腔全景片和咬合片不能清楚定位的埋伏牙20例患者进行锥形束CT扫描获得高分辨率影像,并使用专用软件“i-View”进行任意断面的观察.结果:本组共23颗埋伏牙被精确定位,并根据“i-View”软件分析最佳手术入路后均顺利拔除埋伏牙.结论:锥形束CT是检查埋伏牙准确有效的方法,在埋伏牙拔除的方案制定中有重要的指导价值.%Objective To investigate the value of diagnosisand treatment of the impacted teeth in jaw bones by Cone-beam CT. Methods Cone-beam CT was applied to localize impacted teeth in jaw bones in 20 cases that can not be localized exactly by Oral panoramic and occlusal film.And we observeany section by"i-View"software. Results Cone-beam CT was applied tolocalizeexactly in 23 cases of impacted teeth in jaw bones. The impacted teeth in jaw bones were successfully removed. Conclusion Cone-beam CT is aneffective method to check impacted teeth. Cone-beam CT has an important guiding valuein removing impacted teeth.

  3. Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: a pilot study.

    NARCIS (Netherlands)

    Loubele, M.; Maes, F.; Schutyser, F.A.C.; Marchal, G.; Jacobs, R.; Suetens, P.

    2006-01-01

    OBJECTIVES: The objective of this study was to quantitatively assess the quality of jawbone models generated from cone beam computed tomography (CBCT) by comparison with similar models obtained from multislice spiral computed tomography (MSCT). MATERIAL AND METHODS: Three case studies were performed

  4. Improving Image Quality of On-Board Cone-Beam CT in Radiation Therapy Using Image Information Provided by Planning Multi-Detector CT: A Phantom Study

    OpenAIRE

    Yang, Ching-Ching; Chen, Fong-Lin; Lo, Yeh-Chi

    2016-01-01

    Purpose The aim of this study was to improve the image quality of cone-beam computed tomography (CBCT) mounted on the gantry of a linear accelerator used in radiation therapy based on the image information provided by planning multi-detector CT (MDCT). Methods MDCT-based shading correction for CBCT and virtual monochromatic CT (VMCT) synthesized using the dual-energy method were performed. In VMCT, the high-energy data were obtained from CBCT, while the low-energy data were obtained from MDCT...

  5. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Mozzo, P. [Dept. of Medical Physics, University Hospital, Verona (Italy); Procacci, C.; Tacconi, A.; Tinazzi Martini, P.; Bergamo Andreis, I.A. [Dept. of Radiology, University Hospital, Verona (Italy)

    1998-12-01

    The objective of this paper is to present a new type of volumetric CT which uses the cone-beam technique instead of traditional fan-beam technique. The machine is dedicated to the dento-maxillo-facial imaging, particularly for planning in the field of implantology. The main characteristics of the unit are presented with reference to the technical parameters as well as the software performance. Images obtained are reported as various 2D sections of a volume reconstruction. Also, measurements of the geometric accuracy and the radiation dose absorbed by the patient are obtained using specific phantoms. Absorbed dose is compared with that given off by spiral CT. Geometric accuracy, evaluated with reference to various reconstruction modalities and different spatial orientations, is 0.8-1 % for width measurements and 2.2 % for height measurements. Radiation dose absorbed during the scan shows different profiles in central and peripheral axes. As regards the maximum value of the central profile, dose from the new unit is approximately one sixth that of traditional spiral CT. The new system appears to be very promising in dento-maxillo-facial imaging and, due to the good ratio between performance and low cost, together with low radiation dose, very interesting in view of large-scale use of the CT technique in such diagnostic applications. (orig.) With 10 figs., 3 tabs., 15 refs.

  6. Quantification of dental prostheses on cone-beam CT images by the Taguchi method.

    Science.gov (United States)

    Kuo, Rong-Fu; Fang, Kwang-Ming; Ty, Wong; Hu, Chia Yu

    2016-01-01

    The gray values accuracy of dental cone-beam computed tomography (CBCT) is affected by dental metal prostheses. The distortion of dental CBCT gray values could lead to inaccuracies of orthodontic and implant treatment. The aim of this study was to quantify the effect of scanning parameters and dental metal prostheses on the accuracy of dental cone-beam computed tomography (CBCT) gray values using the Taguchi method. Eight dental model casts of an upper jaw including prostheses, and a ninth prosthesis-free dental model cast, were scanned by two dental CBCT devices. The mean gray value of the selected circular regions of interest (ROIs) were measured using dental CBCT images of eight dental model casts and were compared with those measured from CBCT images of the prosthesis-free dental model cast. For each image set, four consecutive slices of gingiva were selected. The seven factors (CBCTs, occlusal plane canting, implant connection, prosthesis position, coping material, coping thickness, and types of dental restoration) were used to evaluate scanning parameter and dental prostheses effects. Statistical methods of signal to noise ratio (S/N) and analysis of variance (ANOVA) with 95% confidence were applied to quantify the effects of scanning parameters and dental prostheses on dental CBCT gray values accuracy. For ROIs surrounding dental prostheses, the accuracy of CBCT gray values were affected primarily by implant connection (42%), followed by type of restoration (29%), prostheses position (19%), coping material (4%), and coping thickness (4%). For a single crown prosthesis (without support of implants) placed in dental model casts, gray value differences for ROIs 1-9 were below 12% and gray value differences for ROIs 13-18 away from pros-theses were below 10%. We found the gray value differences set to be between 7% and 8% for regions next to a single implant-supported titanium prosthesis, and between 46% and 59% for regions between double implant

  7. Experimental study on the application of a compressed-sensing (CS) algorithm to dental cone-beam CT (CBCT) for accurate, low-dose image reconstruction

    Science.gov (United States)

    Oh, Jieun; Cho, Hyosung; Je, Uikyu; Lee, Minsik; Kim, Hyojeong; Hong, Daeki; Park, Yeonok; Lee, Seonhwa; Cho, Heemoon; Choi, Sungil; Koo, Yangseo

    2013-03-01

    In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient data. In computed tomography (CT); for example, image reconstruction from few views would enable fast scanning with reduced doses to the patient. In this study, we investigated and implemented an efficient reconstruction method based on a compressed-sensing (CS) algorithm, which exploits the sparseness of the gradient image with substantially high accuracy, for accurate, low-dose dental cone-beam CT (CBCT) reconstruction. We applied the algorithm to a commercially-available dental CBCT system (Expert7™, Vatech Co., Korea) and performed experimental works to demonstrate the algorithm for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images from several undersampled data and evaluated the reconstruction quality in terms of the universal-quality index (UQI). Experimental demonstrations of the CS-based reconstruction algorithm appear to show that it can be applied to current dental CBCT systems for reducing imaging doses and improving the image quality.

  8. Segmentation of large periapical lesions toward dental computer-aided diagnosis in cone-beam CT scans

    Science.gov (United States)

    Rysavy, Steven; Flores, Arturo; Enciso, Reyes; Okada, Kazunori

    2008-03-01

    This paper presents an experimental study for assessing the applicability of general-purpose 3D segmentation algorithms for analyzing dental periapical lesions in cone-beam computed tomography (CBCT) scans. In the field of Endodontics, clinical studies have been unable to determine if a periapical granuloma can heal with non-surgical methods. Addressing this issue, Simon et al. recently proposed a diagnostic technique which non-invasively classifies target lesions using CBCT. Manual segmentation exploited in their study, however, is too time consuming and unreliable for real world adoption. On the other hand, many technically advanced algorithms have been proposed to address segmentation problems in various biomedical and non-biomedical contexts, but they have not yet been applied to the field of dentistry. Presented in this paper is a novel application of such segmentation algorithms to the clinically-significant dental problem. This study evaluates three state-of-the-art graph-based algorithms: a normalized cut algorithm based on a generalized eigen-value problem, a graph cut algorithm implementing energy minimization techniques, and a random walks algorithm derived from discrete electrical potential theory. In this paper, we extend the original 2D formulation of the above algorithms to segment 3D images directly and apply the resulting algorithms to the dental CBCT images. We experimentally evaluate quality of the segmentation results for 3D CBCT images, as well as their 2D cross sections. The benefits and pitfalls of each algorithm are highlighted.

  9. Breathing Motion Analysis Based on Cone Beam CT Images%基于Cone Beam CT图像的呼吸运动分析

    Institute of Scientific and Technical Information of China (English)

    白相志; 周付根

    2008-01-01

    呼吸运动是有一定规律性的运动,传统呼吸运动模型用公式描述,不能准确反映不同病人的特点或同一病人不同时期的特点,无法满足实时准确分析的需要.为此,我们提出了一种通过跟踪病人自由呼吸状态下所采集的Cone Beam CT图像序列中的横隔膜的运动来建立病人呼吸运动模型的方法.该方法建立的模型与传统的呼吸运动理论模型非常相似,证明了它是可行且有效的,同时该方法更能实时准确地反映病人的呼吸运动规律,具有很高的临床实用价值.

  10. Cone-beam CT analysis of patients with obstructive sleep apnea compared to normal controls

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Allison; Kalathingal Sajitha; De Rossi, Scott [Dept. of Oral Health and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta (United States); Cohen, Ruben [Park Avenue Oral and Facial Surgery, New York (United States); Loony, Stephen [Dept. of Biostatistics and Epidemiology, Augusta University Medical College of Georgia, Augusta (United States)

    2016-03-15

    To evaluate the upper airway dimensions of obstructive sleep apnea (OSA) and control subjects using a cone-beam computed tomography (CBCT) unit commonly applied in clinical practice in order to assess airway dimensions in the same fashion as that routinely employed in a clinical setting. This was a retrospective analysis utilizing existing CBCT scans to evaluate the dimensions of the upper airway in OSA and control subjects. The CBCT data of sixteen OSA and sixteen control subjects were compared. The average area, average volume, total volume, and total length of the upper airway were computed. Width and anterior-posterior (AP) measurements were obtained on the smallest axial slice. OSA subjects had a significantly smaller average airway area, average airway volume, total airway volume, and mean airway width. OSA subjects had a significantly larger airway length measurement. The mean A-P distance was not significantly different between groups. OSA subjects have a smaller upper airway compared to controls with the exception of airway length. The lack of a significant difference in the mean A-P distance may indicate that patient position during imaging (upright vs. supine) can affect this measurement. Comparison of this study with a future prospective study design will allow for validation of these results.

  11. Direct comparison of conventional radiography and cone-beam CT in small bone and joint trauma

    Energy Technology Data Exchange (ETDEWEB)

    Smet, E. de [Antwerp University Hospital, Department of Radiology, Edegem (Belgium); Praeter, G. de [Sint-Maartenziekenhuis, Department of Radiology, Duffel (Belgium); Verstraete, K.L.A. [Ghent University Hospital, Department of Radiology, Ghent (Belgium); Wouters, K. [Antwerp University Hospital, Department of Scientific Coordination and Biostatistics, Edegem (Belgium); Beuckeleer, Luc de [GZA Sint-Augustinus, Department of Radiology, Wilrijk (Belgium); Vanhoenacker, F.M.H.M. [Antwerp University Hospital, Department of Radiology, Edegem (Belgium); Sint-Maartenziekenhuis, Department of Radiology, Duffel (Belgium); Ghent University Hospital, Department of Radiology, Ghent (Belgium)

    2015-08-15

    To compare the diagnostic value of cone-beam computed tomography (CBCT) and conventional radiography (CR) after acute small bone or joint trauma. Between March 2013 and January 2014, 231 patients with recent small bone or joint trauma underwent CR and subsequent CBCT. CR and CBCT examinations were independently assessed by two readers, blinded to the result of the other modality. The total number of fractures as well as the number of complex fractures were compared, and inter- and intraobserver agreement for CBCT was calculated. In addition, radiation doses and evaluation times for both modalities were noted and statistically compared. Fracture detection on CBCT increased by 35 % and 37 % for reader 1 and reader 2, respectively, and identification of complex fractures increased by 236 % and 185 %. Interobserver agreement for CBCT was almost perfect, as was intraobserver agreement for reader 1. The intraobserver agreement for reader 2 was substantial. Radiation doses and evaluation time were significantly higher for CBCT. CBCT detects significantly more small bone and joint fractures, in particular complex fractures, than CR. In the majority of cases, the clinical implication of the additionally detected fractures is limited, but in some patients (e.g., fracture-dislocations), the management is significantly influenced by these findings. As the radiation dose for CBCT substantially exceeds that of CR, we suggest adhering to CR as the first-line examination after small bone and joint trauma and keeping CBCT for patients with clinical-radiographic discordance or suspected complex fractures in need of further (preoperative) assessment. (orig.)

  12. Occurrence of maxillary sinus abnormalities detected by cone beam CT in asymptomatic patients

    Directory of Open Access Journals (Sweden)

    Rege Inara Carneiro

    2012-08-01

    Full Text Available Abstract Background Although cone beam computed tomography (CBCT images of the maxillofacial region allow the inspection of the entire volume of the maxillary sinus (MS, identifying anatomic variations and abnormalities in the image volume, this is frequently neglected by oral radiologists when interpreting images of areas at a distance from the dentoalveolar region, such as the full anatomical aspect of the MS. The aim of this study was to investigate maxillary sinus abnormalities in asymptomatic patients by using CBCT. Methods 1113 CBCT were evaluated by two examiners and identification of abnormalities, the presence of periapical lesions and proximity to the lower sinus wall were recorded. Data were analyzed using descriptive statistics, chi-square tests and Kappa statistics. Results Abnormalities were diagnosed in 68.2% of cases (kappa = 0.83. There was a significant difference between genders (p Conclusions Abnormalities in maxillary sinus emphasizes how important it is for the dentomaxillofacial radiologist to undertake an interpretation of the whole volume of CBCT images.

  13. Robust scatter correction method for cone-beam CT using an interlacing-slit plate

    Science.gov (United States)

    Huang, Kui-Dong; Xu, Zhe; Zhang, Ding-Hua; Zhang, Hua; Shi, Wen-Long

    2016-06-01

    Cone-beam computed tomography (CBCT) has been widely used in medical imaging and industrial nondestructive testing, but the presence of scattered radiation will cause significant reduction of image quality. In this article, a robust scatter correction method for CBCT using an interlacing-slit plate (ISP) is carried out for convenient practice. Firstly, a Gaussian filtering method is proposed to compensate the missing data of the inner scatter image, and simultaneously avoid too-large values of calculated inner scatter and smooth the inner scatter field. Secondly, an interlacing-slit scan without detector gain correction is carried out to enhance the practicality and convenience of the scatter correction method. Finally, a denoising step for scatter-corrected projection images is added in the process flow to control the noise amplification The experimental results show that the improved method can not only make the scatter correction more robust and convenient, but also achieve a good quality of scatter-corrected slice images. Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (2012ZX04007021), Aeronautical Science Fund of China (2014ZE53059), and Fundamental Research Funds for Central Universities of China (3102014KYJD022)

  14. A feasibility study for megavoltage cone beam CT using a commercial EPID

    International Nuclear Information System (INIS)

    This study used a standard commercial electronic portal imaging device (EPID) area detector attached to an isocentric linear accelerator and the Feldkamp algorithm to produce cone beam tomographic reconstructions. The EPID has a active area of 32.5x32.5cm2, and can record 12-bit images using two monitor units (MU), with a resolution of 2.1x2.0mm2 FWHM. Since the EPID was not large enough to record the full patient projection at about 1.5 geometric magnification, it was necessary to offset the detector to collect half-cone projections. Corrections are required to convert pixel values into units of exit dose and to realign the projections to overcome the ±4 mm support arm sag. With a geometric magnification of 1.5 the sensitive volume is a cylinder of radius 21 cm and length 17 cm. Unfortunately, the patient couch contains metal bed support rails that lie just outside this cylinder, and produce streak artefacts in the reconstruction. Using 90 views the system delivers a central dose of 90 cGy, and has a density resolution of 4%. (author)

  15. Application of cone-beam CT in root morphology observation of human maxillary anterior teeth

    International Nuclear Information System (INIS)

    Objective: To detect the root curvature and diameter in human maxillary anterior teeth by cone-beam computed tomography (CBCT) and to provide some anatomical parameters related to post-core design. Methods: A total of 129 human maxillary anterior teeth were selected and analyzed. The three-dimensional images of these teeth were obtained by multiplanar reconstructions (MPR) technique of CBCT, and the root curvature and diameter were observed and measured by dedicated software. Results: The mean labio-lingual root curvature degree of maxillary central incisors was significantly smaller than those of maxillary lateral incisors and canines (χ2=6.592, P=0.037), while the labio-lingual root curvature radius was significantly larger than those of other groups (χ2=8.504, P=0.014). There were significant differences in the root length distribution of the mesio-distal curved part between the three different maxillary anterior teeth groups (χ2=13.910, P=0.008). The mean diameter measured labio-lingually was significantly different from that measured mesiodistally in various groups (P=0.000). Conclusion: There are differences in root morphology of 129 human maxillary anterior teeth, and the root curvatures and diameters of human maxillary anterior teeth present differently in CBCT. (authors)

  16. Cone-beam CT analysis of patients with obstructive sleep apnea compared to normal controls

    Science.gov (United States)

    Cohen, Ruben; Looney, Stephen; Kalathingal, Sajitha; De Rossi, Scott

    2016-01-01

    Purpose To evaluate the upper airway dimensions of obstructive sleep apnea (OSA) and control subjects using a cone-beam computed tomography (CBCT) unit commonly applied in clinical practice in order to assess airway dimensions in the same fashion as that routinely employed in a clinical setting. Materials and Methods This was a retrospective analysis utilizing existing CBCT scans to evaluate the dimensions of the upper airway in OSA and control subjects. The CBCT data of sixteen OSA and sixteen control subjects were compared. The average area, average volume, total volume, and total length of the upper airway were computed. Width and anterior-posterior (AP) measurements were obtained on the smallest axial slice. Results OSA subjects had a significantly smaller average airway area, average airway volume, total airway volume, and mean airway width. OSA subjects had a significantly larger airway length measurement. The mean A-P distance was not significantly different between groups. Conclusion OSA subjects have a smaller upper airway compared to controls with the exception of airway length. The lack of a significant difference in the mean A-P distance may indicate that patient position during imaging (upright vs. supine) can affect this measurement. Comparison of this study with a future prospective study design will allow for validation of these results. PMID:27051634

  17. Radiotherapy dose calculation on KV cone-beam CT image for lung tumor using the CIRS calibration.

    Science.gov (United States)

    Ma, Changsheng; Cao, Jianping; Yin, Yong; Zhu, Jian

    2014-01-01

    On-board kilovoltage (KV) cone-beam computed tomography (CBCT) images are used predominantly for the setup of patients' positioning. The image data can also potentially be used for dose calculation with the precise calibration of Hounsfield units (HU) to electron density (HU-density). CBCT calibration was analyzed in this study. A clinical treatment planning system was employed for CT and KV CBCT image to dose calculations and subsequent comparisons. Two HU-density tables were generated using the Computerized Imaging Reference Systems (CIRS) phantom. The results showed that a maximum ∼4% dose discrepancy was observed for inserts. The single field isodose curves were very close. The lung clinical patient study indicated that the volume of lung tumor that achieved the prescribed dose in CBCT was lower than in the CT plan. Our study showed that the dosimetric accuracy of CBCT-based dose calculation for lung tumor is acceptable only for the purpose of dosimetric checks with calibration applied. KV CBCT images cannot replace traditional CT images for dose calculation accuracy. PMID:26766975

  18. A new method for x-ray scatter correction: first assessment on a cone-beam CT experimental setup

    Energy Technology Data Exchange (ETDEWEB)

    Rinkel, J [CEA-LETI MINATEC, Division of Micro Technologies for Biology and Healthcare, 38054 Grenoble Cedex 09 (France); Gerfault, L [CEA-LETI MINATEC, Division of Micro Technologies for Biology and Healthcare, 38054 Grenoble Cedex 09 (France); Esteve, F [INSERM U647-RSRM, ESRF, BP200, 38043 Grenoble Cedex 09 (France); Dinten, J-M [CEA-LETI MINATEC, Division of Micro Technologies for Biology and Healthcare, 38054 Grenoble Cedex 09 (France)

    2007-08-07

    Cone-beam computed tomography (CBCT) enables three-dimensional imaging with isotropic resolution and a shorter acquisition time compared to a helical CT scanner. Because a larger object volume is exposed for each projection, scatter levels are much higher than in collimated fan-beam systems, resulting in cupping artifacts, streaks and quantification inaccuracies. In this paper, a general method to correct for scatter in CBCT, without supplementary on-line acquisition, is presented. This method is based on scatter calibration through off-line acquisition combined with on-line analytical transformation based on physical equations, to adapt calibration to the object observed. The method was tested on a PMMA phantom and on an anthropomorphic thorax phantom. The results were validated by comparison to simulation for the PMMA phantom and by comparison to scans obtained on a commercial multi-slice CT scanner for the thorax phantom. Finally, the improvements achieved with the new method were compared to those obtained using a standard beam-stop method. The new method provided results that closely agreed with the simulation and with the conventional CT scanner, eliminating cupping artifacts and significantly improving quantification. Compared to the beam-stop method, lower x-ray doses and shorter acquisition times were needed, both divided by a factor of 9 for the same scatter estimation accuracy.

  19. Modeling and design of a cone-beam CT head scanner using task-based imaging performance optimization

    Science.gov (United States)

    Xu, J.; Sisniega, A.; Zbijewski, W.; Dang, H.; Stayman, J. W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-04-01

    Detection of acute intracranial hemorrhage (ICH) is important for diagnosis and treatment of traumatic brain injury, stroke, postoperative bleeding, and other head and neck injuries. This paper details the design and development of a cone-beam CT (CBCT) system developed specifically for the detection of low-contrast ICH in a form suitable for application at the point of care. Recognizing such a low-contrast imaging task to be a major challenge in CBCT, the system design began with a rigorous analysis of task-based detectability including critical aspects of system geometry, hardware configuration, and artifact correction. The imaging performance model described the three-dimensional (3D) noise-equivalent quanta using a cascaded systems model that included the effects of scatter, scatter correction, hardware considerations of complementary metal-oxide semiconductor (CMOS) and flat-panel detectors (FPDs), and digitization bit depth. The performance was analyzed with respect to a low-contrast (40-80 HU), medium-frequency task representing acute ICH detection. The task-based detectability index was computed using a non-prewhitening observer model. The optimization was performed with respect to four major design considerations: (1) system geometry (including source-to-detector distance (SDD) and source-to-axis distance (SAD)); (2) factors related to the x-ray source (including focal spot size, kVp, dose, and tube power); (3) scatter correction and selection of an antiscatter grid; and (4) x-ray detector configuration (including pixel size, additive electronics noise, field of view (FOV), and frame rate, including both CMOS and a-Si:H FPDs). Optimal design choices were also considered with respect to practical constraints and available hardware components. The model was verified in comparison to measurements on a CBCT imaging bench as a function of the numerous design parameters mentioned above. An extended geometry (SAD  =  750 mm, SDD  =  1100

  20. Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Kazunori, E-mail: kazokada@sfsu.edu [Department of Computer Science, San Francisco State University, San Francisco, California 94132 (United States); Rysavy, Steven [Biomedical and Health Informatics Program, University of Washington, Seattle, Washington 98195 (United States); Flores, Arturo [Computer Science and Engineering, University of California, San Diego, California 92093 (United States); Linguraru, Marius George [Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC 20010 and Departments of Radiology and Pediatrics, George Washington University, Washington, DC 20037 (United States)

    2015-04-15

    Purpose: This paper proposes a novel application of computer-aided diagnosis (CAD) to an everyday clinical dental challenge: the noninvasive differential diagnosis of periapical lesions between periapical cysts and granulomas. A histological biopsy is the most reliable method currently available for this differential diagnosis; however, this invasive procedure prevents the lesions from healing noninvasively despite a report that they may heal without surgical treatment. A CAD using cone-beam computed tomography (CBCT) offers an alternative noninvasive diagnostic tool which helps to avoid potentially unnecessary surgery and to investigate the unknown healing process and rate for the lesions. Methods: The proposed semiautomatic solution combines graph-based random walks segmentation with machine learning-based boosted classifiers and offers a robust clinical tool with minimal user interaction. As part of this CAD framework, the authors provide two novel technical contributions: (1) probabilistic extension of the random walks segmentation with likelihood ratio test and (2) LDA-AdaBoost: a new integration of weighted linear discriminant analysis to AdaBoost. Results: A dataset of 28 CBCT scans is used to validate the approach and compare it with other popular segmentation and classification methods. The results show the effectiveness of the proposed method with 94.1% correct classification rate and an improvement of the performance by comparison with the Simon’s state-of-the-art method by 17.6%. The authors also compare classification performances with two independent ground-truth sets from the histopathology and CBCT diagnoses provided by endodontic experts. Conclusions: Experimental results of the authors show that the proposed CAD system behaves in clearer agreement with the CBCT ground-truth than with histopathology, supporting the Simon’s conjecture that CBCT diagnosis can be as accurate as histopathology for differentiating the periapical lesions.

  1. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

    Science.gov (United States)

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E.; Lo, Yeh-Chi

    2016-04-01

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as  -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients.

  2. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques.

    Science.gov (United States)

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E; Lo, Yeh-Chi

    2016-04-21

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients. PMID:27008349

  3. Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans

    International Nuclear Information System (INIS)

    Purpose: This paper proposes a novel application of computer-aided diagnosis (CAD) to an everyday clinical dental challenge: the noninvasive differential diagnosis of periapical lesions between periapical cysts and granulomas. A histological biopsy is the most reliable method currently available for this differential diagnosis; however, this invasive procedure prevents the lesions from healing noninvasively despite a report that they may heal without surgical treatment. A CAD using cone-beam computed tomography (CBCT) offers an alternative noninvasive diagnostic tool which helps to avoid potentially unnecessary surgery and to investigate the unknown healing process and rate for the lesions. Methods: The proposed semiautomatic solution combines graph-based random walks segmentation with machine learning-based boosted classifiers and offers a robust clinical tool with minimal user interaction. As part of this CAD framework, the authors provide two novel technical contributions: (1) probabilistic extension of the random walks segmentation with likelihood ratio test and (2) LDA-AdaBoost: a new integration of weighted linear discriminant analysis to AdaBoost. Results: A dataset of 28 CBCT scans is used to validate the approach and compare it with other popular segmentation and classification methods. The results show the effectiveness of the proposed method with 94.1% correct classification rate and an improvement of the performance by comparison with the Simon’s state-of-the-art method by 17.6%. The authors also compare classification performances with two independent ground-truth sets from the histopathology and CBCT diagnoses provided by endodontic experts. Conclusions: Experimental results of the authors show that the proposed CAD system behaves in clearer agreement with the CBCT ground-truth than with histopathology, supporting the Simon’s conjecture that CBCT diagnosis can be as accurate as histopathology for differentiating the periapical lesions

  4. Robust primary modulation-based scatter estimation for cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Ritschl, Ludwig, E-mail: ludwig.ritschl@ziehm-eu.com [Ziehm Imaging, Nürnberg 90451 (Germany); Fahrig, Rebecca [Radiological Science Laboratory, Stanford University, 1201 Welch Road Palo Alto, Stanford, California 94304 (United States); Knaup, Michael; Maier, Joscha; Kachelrieß, Marc [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany)

    2015-01-15

    Purpose: Scattered radiation is one of the major problems facing image quality in flat detector cone-beam computed tomography (CBCT). Previously, a new scatter estimation and correction method using primary beam modulation has been proposed. The original image processing technique used a frequency-domain-based analysis, which proved to be sensitive to the accuracy of the modulator pattern both spatially and in amplitude as well as to the frequency of the modulation pattern. In addition, it cannot account for penumbra effects that occur, for example, due to the finite focal spot size and the scatter estimate can be degraded by high-frequency components of the primary image. Methods: In this paper, the authors present a new way to estimate the scatter using primary modulation. It is less sensitive to modulator nonidealities and most importantly can handle arbitrary modulator shapes and changes in modulator attenuation. The main idea is that the scatter estimation can be expressed as an optimization problem, which yields a separation of the scatter and the primary image. The method is evaluated using simulated and experimental CBCT data. The scattering properties of the modulator itself are analyzed using a Monte Carlo simulation. Results: All reconstructions show strong improvements of image quality. To quantify the results, all images are compared to reference images (ideal simulations and collimated scans). Conclusions: The proposed modulator-based scatter reduction algorithm may open the field of flat detector-based imaging to become a quantitative modality. This may have significant impact on C-arm imaging and on image-guided radiation therapy.

  5. Assessment of contrast enhanced respiration managed cone-beam CT for image guided radiotherapy of intrahepatic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Nikolaj K. G., E-mail: nkyj@regionsjaelland.dk [Physics and Engineering, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Stewart, Errol [Radiology, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Imaging Research Lab, Robarts Research Institute, London, Ontario N6A 5B7 (Canada); Imaging Program, Lawson Health Research Institute, London, Ontario N6C 2R5 (Canada); Lock, Michael; Fisher, Barbara [Radiation Oncology, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Kozak, Roman [Radiology, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Chen, Jeff [Physics and Engineering, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Lee, Ting-Yim [Radiology, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Imaging Research Lab, Robarts Research Institute, London, Ontario N6A 5B7 (Canada); Imaging Program, Lawson Health Research Institute, London, Ontario N6C 2R5 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Wong, Eugene [Physics and Engineering, London Regional Cancer Program, London, Ontario N6A3K7 (Canada); Department of Oncology, University of Western Ontario, London, Ontario N6A 4L6 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2014-05-15

    Purpose: Contrast enhancement and respiration management are widely used during image acquisition for radiotherapy treatment planning of liver tumors along with respiration management at the treatment unit. However, neither respiration management nor intravenous contrast is commonly used during cone-beam CT (CBCT) image acquisition for alignment prior to radiotherapy. In this study, the authors investigate the potential gains of injecting an iodinated contrast agent in combination with respiration management during CBCT acquisition for liver tumor radiotherapy. Methods: Five rabbits with implanted liver tumors were subjected to CBCT with and without motion management and contrast injection. The acquired CBCT images were registered to the planning CT to determine alignment accuracy and dosimetric impact. The authors developed a simulation tool for simulating contrast-enhanced CBCT images from dynamic contrast enhanced CT imaging (DCE-CT) to determine optimal contrast injection protocols. The tool was validated against contrast-enhanced CBCT of the rabbit subjects and was used for five human patients diagnosed with hepatocellular carcinoma. Results: In the rabbit experiment, when neither motion management nor contrast was used, tumor centroid misalignment between planning image and CBCT was 9.2 mm. This was reduced to 2.8 mm when both techniques were employed. Tumors were not visualized in clinical CBCT images of human subjects. Simulated contrast-enhanced CBCT was found to improve tumor contrast in all subjects. Different patients were found to require different contrast injections to maximize tumor contrast. Conclusions: Based on the authors’ animal study, respiration managed contrast enhanced CBCT improves IGRT significantly. Contrast enhanced CBCT benefits from patient specific tracer kinetics determined from DCE-CT.

  6. Assessment of contrast enhanced respiration managed cone-beam CT for image guided radiotherapy of intrahepatic tumors

    International Nuclear Information System (INIS)

    Purpose: Contrast enhancement and respiration management are widely used during image acquisition for radiotherapy treatment planning of liver tumors along with respiration management at the treatment unit. However, neither respiration management nor intravenous contrast is commonly used during cone-beam CT (CBCT) image acquisition for alignment prior to radiotherapy. In this study, the authors investigate the potential gains of injecting an iodinated contrast agent in combination with respiration management during CBCT acquisition for liver tumor radiotherapy. Methods: Five rabbits with implanted liver tumors were subjected to CBCT with and without motion management and contrast injection. The acquired CBCT images were registered to the planning CT to determine alignment accuracy and dosimetric impact. The authors developed a simulation tool for simulating contrast-enhanced CBCT images from dynamic contrast enhanced CT imaging (DCE-CT) to determine optimal contrast injection protocols. The tool was validated against contrast-enhanced CBCT of the rabbit subjects and was used for five human patients diagnosed with hepatocellular carcinoma. Results: In the rabbit experiment, when neither motion management nor contrast was used, tumor centroid misalignment between planning image and CBCT was 9.2 mm. This was reduced to 2.8 mm when both techniques were employed. Tumors were not visualized in clinical CBCT images of human subjects. Simulated contrast-enhanced CBCT was found to improve tumor contrast in all subjects. Different patients were found to require different contrast injections to maximize tumor contrast. Conclusions: Based on the authors’ animal study, respiration managed contrast enhanced CBCT improves IGRT significantly. Contrast enhanced CBCT benefits from patient specific tracer kinetics determined from DCE-CT

  7. Evaluation of on-board imager cone beam CT hounsfield units for treatment planning using rigid image registration

    Directory of Open Access Journals (Sweden)

    Mohamathu Rafic

    2015-01-01

    Full Text Available Purpose: To evaluate the on-board imager cone beam CT (OBI-CBCT Hounsfield units (HUs for treatment planning. Materials and Methods: The HU-electron density (eD calibration for CBCT, the CATphan504 phantom was used, and the CBCT HU (HU CBCT consistency was studied by analyzing the CBCT images of Rando phantom and compared with planning CT. The latter study was also performed on CBCT images of 10 H&N patients. For comparison, the structures contoured and treatment plans generated on CT were transferred on to the CBCT after registration. The treatment plans were compared using gamma (g index analysis and the plan comparison dose volume histograms (DVH PlanComp . Results: Although the HU-eD calibration curves of both the planning CT and CBCT were found to be linear, differences in mean HU values were found in the region of interest (ROI corresponding to Acrylic, Derlin, and Teflon, viz., 144 ± 11 HU, 193 ± 5 HU, and 257 ± 7 HU respectively. For all the cases, the consistency and reproducibility of HU CBCT values for low density medium agreed the HU CT except at regions of high density. Overall g-evaluation showed more than 94% pixels pass rate and DVH results showed small difference in the DVH PlanComp, Rando, and large differences in DVH PlanComp, patient for structures contoured at peripheral regions (PV of CBCT images. Conclusions: We conclude that the pixel-to-pixel HU corrections for entire range of eD are not necessary for OBI-CBCT images. Application of local correction in the high-density and penumbral regions would facilitate the use of CBCT images for routine treatment planning.

  8. Low-dose megavoltage cone-beam CT imaging using thick, segmented scintillators

    Science.gov (United States)

    El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua; Choroszucha, Richard B.; Jiang, Hao; Liu, Langechuan

    2011-03-01

    Megavoltage, cone-beam computed tomography (MV CBCT) employing an electronic portal imaging device (EPID) is a highly promising technique for providing soft-tissue visualization in image-guided radiotherapy. However, current EPIDs based on active matrix flat-panel imagers (AMFPIs), which are regarded as the gold standard for portal imaging and referred to as conventional MV AMFPIs, require high radiation doses to achieve this goal due to poor x-ray detection efficiency (~2% at 6 MV). To overcome this limitation, the incorporation of thick, segmented, crystalline scintillators, as a replacement for the phosphor screens used in these AMFPIs, has been shown to significantly improve the detective quantum efficiency (DQE) performance, leading to improved image quality for projection imaging at low dose. Toward the realization of practical AMFPIs capable of low dose, soft-tissue visualization using MV CBCT imaging, two prototype AMFPIs incorporating segmented scintillators with ~11 mm thick CsI:Tl and Bi4Ge3O12 (BGO) crystals were evaluated. Each scintillator consists of 120 × 60 crystalline elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm. The prototypes were evaluated using a bench-top CBCT system, allowing the acquisition of 180 projection, 360° tomographic scans with a 6 MV radiotherapy photon beam. Reconstructed images of a spatial resolution phantom, as well as of a water-equivalent phantom, embedded with tissue equivalent objects having electron densities (relative to water) varying from ~0.28 to ~1.70, were obtained down to one beam pulse per projection image, corresponding to a scan dose of ~4 cGy--a dose similar to that required for a single portal image obtained from a conventional MV AMFPI. By virtue of their significantly improved DQE, the prototypes provided low contrast visualization, allowing clear delineation of an object with an electron density difference of ~2.76%. Results of contrast, noise and contrast

  9. Assessment of protocols in cone beam CT with symmetric and asymmetric beam using effective dose and Pka

    International Nuclear Information System (INIS)

    The cone beam CT is an emerging technology in dental radiology with significant differences the point of view of design technology between the various manufacturers on the world market. This study aims to evaluate and compare protocols with similar purposes in a cone beam CT scanner using TLDs and air kerma - area product (Pka) as kerma index. Measurements were performed on two protocols used to obtain the image the maxilla-mandible in equipment Gendex GXCB 500: Protocol [GX1] extended diameter and asymmetric beam (14 cm x 8.5 cm - maxilla / mandible) and protocol [GX2] symmetrical beam (8.5 cm x 8.5 cm - maxillary / mandible). Was used LiF dosimeters (TLD 100) inserted into a female anthropomorphic phantom manufactured by Radiology Support Devices. For all protocols evaluated the value of Pka using a meter Diamentor E2 and PTW system Radcal Rapidose. The results obtained for Effective Dose / Pka these measurements were separated by protocol image. Protocol [GX1]: 44.5 μSv/478 mGy cm2; protocol [GX2]: 54.8 μSv/507 mGy cm2. These values indicate that the relationship between the diameter of the image acquired in the protocol [GX1] and the diameter of the image in the protocol [GX2] is equal to 1.65, the Effective Dose for the first protocol has lower value at 18%. Pka values reveal very similar results between the two protocols, although, common sense leads to the interpretation that imaging protocols with field of view (Fov) of large diameters imply high values of effective dose when compared to small diameters. However, in this particular case, this is not true due to the asymmetrical beam technology. Conclude that for the cases where the scanner uses asymmetric beam to obtain images with large diameters that cover the entire face there are advantages from the point of view of reducing the exposure of patients with respect to the use of symmetrical beam and / or to Fov images with a smaller diameter. (Author)

  10. Assessment of protocols in cone beam CT with symmetric and asymmetric beam using effective dose and P{sub ka}

    Energy Technology Data Exchange (ETDEWEB)

    Batista, W. O.; Linhares de O, M. V. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho, Salvador, 40301015 Bahia (Brazil); Soares, M. R.; Maia, A. F. [Universidade Federal de Sergipe, Departamento de Fisica, Cidade Universitaria Prof. Jose Aloisio de Campos, Marechal Rondon s/n, Jardim Rosa Elze, 49-100000 Sao Cristovao, Sergipe (Brazil); Caldas, L. V. E., E-mail: wilsonottobatista@gmail.com [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    The cone beam CT is an emerging technology in dental radiology with significant differences the point of view of design technology between the various manufacturers on the world market. This study aims to evaluate and compare protocols with similar purposes in a cone beam CT scanner using TLDs and air kerma - area product (P{sub ka}) as kerma index. Measurements were performed on two protocols used to obtain the image the maxilla-mandible in equipment Gendex GXCB 500: Protocol [GX1] extended diameter and asymmetric beam (14 cm x 8.5 cm - maxilla / mandible) and protocol [GX2] symmetrical beam (8.5 cm x 8.5 cm - maxillary / mandible). Was used LiF dosimeters (TLD 100) inserted into a female anthropomorphic phantom manufactured by Radiology Support Devices. For all protocols evaluated the value of P{sub ka} using a meter Diamentor E2 and PTW system Radcal Rapidose. The results obtained for Effective Dose / P{sub ka} these measurements were separated by protocol image. Protocol [GX1]: 44.5 μSv/478 mGy cm{sup 2}; protocol [GX2]: 54.8 μSv/507 mGy cm{sup 2}. These values indicate that the relationship between the diameter of the image acquired in the protocol [GX1] and the diameter of the image in the protocol [GX2] is equal to 1.65, the Effective Dose for the first protocol has lower value at 18%. P{sub ka} values reveal very similar results between the two protocols, although, common sense leads to the interpretation that imaging protocols with field of view (Fov) of large diameters imply high values of effective dose when compared to small diameters. However, in this particular case, this is not true due to the asymmetrical beam technology. Conclude that for the cases where the scanner uses asymmetric beam to obtain images with large diameters that cover the entire face there are advantages from the point of view of reducing the exposure of patients with respect to the use of symmetrical beam and / or to Fov images with a smaller diameter. (Author)

  11. SU-E-J-153: Reconstructing 4D Cone Beam CT Images for Clinical QA of Lung SABR Treatments

    International Nuclear Information System (INIS)

    Purpose: To verify that the planned Primary Target Volume (PTV) and Internal Gross Tumor Volume (IGTV) fully enclose a moving lung tumor volume as visualized on a pre-SABR treatment verification 4D Cone Beam CT. Methods: Daily 3DCBCT image sets were acquired immediately prior to treatment for 10 SABR lung patients using the on-board imaging system integrated into a Varian TrueBeam (v1.6: no 4DCBCT module available). Respiratory information was acquired during the scan using the Varian RPM system. The CBCT projections were sorted into 8 bins offline, both by breathing phase and amplitude, using in-house software. An iterative algorithm based on total variation minimization, implemented in the open source reconstruction toolkit (RTK), was used to reconstruct the binned projections into 4DCBCT images. The relative tumor motion was quantified by tracking the centroid of the tumor volume from each 4DCBCT image. Following CT-CBCT registration, the planning CT volumes were compared to the location of the CBCT tumor volume as it moves along its breathing trajectory. An overlap metric quantified the ability of the planned PTV and IGTV to contain the tumor volume at treatment. Results: The 4DCBCT reconstructed images visibly show the tumor motion. The mean overlap between the planned PTV (IGTV) and the 4DCBCT tumor volumes was 100% (94%), with an uncertainty of 5% from the 4DCBCT tumor volume contours. Examination of the tumor motion and overlap metric verify that the IGTV drawn at the planning stage is a good representation of the tumor location at treatment. Conclusion: It is difficult to compare GTV volumes from a 4DCBCT and a planning CT due to image quality differences. However, it was possible to conclude the GTV remained within the PTV 100% of the time thus giving the treatment staff confidence that SABR lung treatements are being delivered accurately

  12. Initial experience of percutaneous transthoracic needle biopsy of lung nodules using C-arm cone-beam CT systems

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Kwang Nam; Goo, Jin Mo; Lee, Hyun Ju; Lee, Youkyung; Kim, Jung Im; Choi, So Young; Kim, Hyo-Cheol [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea); Park, Chang Min [Seoul National University Hospital, Department of Radiology, Seoul (Korea); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea)

    2010-09-15

    To describe our initial experience with percutaneous transthoracic biopsy (PCNB) of lung nodules using C-arm cone-beam CT (CBCT). Seventy-one consecutive patients with lung nodules of 30 mm or smaller underwent CBCT-guided PCNB using a coaxial cutting needle. We evaluated the procedure time, coaxial introducer dwell time, the numbers of pleural passages, coaxial introducer repositionings and CT acquisitions, as well as the technical success rate and radiation doses. Diagnostic accuracy, sensitivity, specificity and incidence of complications were also evaluated. PCNB was performed for 71 nodules: 63 solid, 6 part-solid and 2 ground-glass nodules. The procedure time, coaxial introducer dwell time, numbers of pleural passages, coaxial introducer repositionings and CT acquisitions were 17.9 {+-} 5.9 min, 8.7 {+-} 3.8 min, 1.1 {+-} 0.4, 0.2 {+-} 0.5 and 2.9 {+-} 0.7, respectively. The technical success rate was 100% and the radiation dose was 272 {+-} 116 mGy. Thirty-six nodules (50.7%) were diagnosed as malignant, 25 (35.2%) as benign and 10 (14.1%) as indeterminate. Diagnostic accuracy, sensitivity, specificity and incidence of complications were 98.4%, 97%, 100% and 38%, respectively. Complications included pneumothorax in 18 patients (25.4%), haemoptysis in 10 (14.1%) and chest pain in one (1.4%). Under CBCT guidance, PCNB of lung nodules can be performed accurately, providing both real-time fluoroscopic guidance and CT imaging capabilities. (orig.)

  13. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    Science.gov (United States)

    Wu, T.-H.; Liang, C.-H.; Wu, J.-K.; Lien, C.-Y.; Yang, B.-H.; Huang, Y.-H.; Lee, J. J. S.

    2009-07-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18F-fluorodeoxyglucose (18F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  14. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, T-H [Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, No. 110, Sec.1, Jianguo N.Rd, Taichung City 40201, Taiwan (China); Liang, C-H [Agfa Healthcare Systems Taiwan Co., Ltd., 6F, 237 Sung Chiang Road, Taipei, 104 Taiwan (China); Wu, J-K [Division of Radiation Oncology, Department of Oncology, and Cancer Research Center, National Taiwan University Hospital, No.7 Chung San South Road, Taipei, 104 Taiwan (China); Lien, C-Y [Institute of Biomedical Engineering, National Yang Ming University, No. 155, Sec.2, Linong Street, Taipei, 112 Taiwan (China); Yang, B-H; Lee, J J S [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, No. 155, Sec.2, Linong Street, Taipei, 112 Taiwan (China); Huang, Y-H [Department of Medical Imaing and Radiological Sciences, I-Shou University, No. 8, Yida Rd., Yanchao Township, Kaohsiung County 82445, Taiwan (China)], E-mail: jslee@ym.edu.tw

    2009-07-15

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT

  15. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    International Nuclear Information System (INIS)

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18F-fluorodeoxyglucose (18F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  16. High-resolution helical cone-beam micro-CT with theoretically-exact reconstruction from experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Varslot, T.; Kingston, A.; Myers, G.; Sheppard, A. [Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2011-10-15

    conventional circular scan micro-CT. Conclusions: Autofocus-corrected, theoretically-exact cone-beam reconstruction is a viable option for reducing acquisition time in high-resolution micro-CT imaging. It also opens up the possibility of efficiently imaging long objects.

  17. 4D cone beam CT-based dose assessment for SBRT lung cancer treatment

    Science.gov (United States)

    Cai, Weixing; Dhou, Salam; Cifter, Fulya; Myronakis, Marios; Hurwitz, Martina H.; Williams, Christopher L.; Berbeco, Ross I.; Seco, Joao; Lewis, John H.

    2016-01-01

    The purpose of this research is to develop a 4DCBCT-based dose assessment method for calculating actual delivered dose for patients with significant respiratory motion or anatomical changes during the course of SBRT. To address the limitation of 4DCT-based dose assessment, we propose to calculate the delivered dose using time-varying (‘fluoroscopic’) 3D patient images generated from a 4DCBCT-based motion model. The method includes four steps: (1) before each treatment, 4DCBCT data is acquired with the patient in treatment position, based on which a patient-specific motion model is created using a principal components analysis algorithm. (2) During treatment, 2D time-varying kV projection images are continuously acquired, from which time-varying ‘fluoroscopic’ 3D images of the patient are reconstructed using the motion model. (3) Lateral truncation artifacts are corrected using planning 4DCT images. (4) The 3D dose distribution is computed for each timepoint in the set of 3D fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach is validated using six modified XCAT phantoms with lung tumors and different respiratory motions derived from patient data. The estimated doses are compared to that calculated using ground-truth XCAT phantoms. For each XCAT phantom, the calculated delivered tumor dose values generally follow the same trend as that of the ground truth and at most timepoints the difference is less than 5%. For the overall delivered dose, the normalized error of calculated 3D dose distribution is generally less than 3% and the tumor D95 error is less than 1.5%. XCAT phantom studies indicate the potential of the proposed method to accurately estimate 3D tumor dose distributions for SBRT lung treatment based on 4DCBCT imaging and motion modeling. Further research is necessary to investigate its performance for clinical patient data.

  18. GPU-based Fast Cone Beam CT Reconstruction from Undersampled and Noisy Projection Data via Total Variation

    CERN Document Server

    Jia, Xun; Li, Ruijiang; Song, William Y; Jiang, Steve B

    2010-01-01

    Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. To lower the imaging dose, we have developed a fast GPU-based CBCT reconstruction algorithm. The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. We developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. Multi-grid technique is also employed. It is found that 20~40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 sec on a NVIDIA Tesla C1060 GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studi...

  19. A fast GPU-based approach to branchless distance-driven projection and back-projection in cone beam CT

    Science.gov (United States)

    Schlifske, Daniel; Medeiros, Henry

    2016-03-01

    Modern CT image reconstruction algorithms rely on projection and back-projection operations to refine an image estimate in iterative image reconstruction. A widely-used state-of-the-art technique is distance-driven projection and back-projection. While the distance-driven technique yields superior image quality in iterative algorithms, it is a computationally demanding process. This has a detrimental effect on the relevance of the algorithms in clinical settings. A few methods have been proposed for enhancing the distance-driven technique in order to take advantage of modern computer hardware. This paper explores a two-dimensional extension of the branchless method proposed by Samit Basu and Bruno De Man. The extension of the branchless method is named "pre-integration" because it achieves a significant performance boost by integrating the data before the projection and back-projection operations. It was written with Nvidia's CUDA platform and carefully designed for massively parallel GPUs. The performance and the image quality of the pre-integration method were analyzed. Both projection and back-projection are significantly faster with preintegration. The image quality was analyzed using cone beam image reconstruction algorithms within Jeffrey Fessler's Image Reconstruction Toolbox. Images produced from regularized, iterative image reconstruction algorithms using the pre-integration method show no significant impact to image quality.

  20. Intraoperative imaging for patient safety and QA: detection of intracranial hemorrhage using C-arm cone-beam CT

    Science.gov (United States)

    Schafer, Sebastian; Wang, Adam; Otake, Yoshito; Stayman, J. W.; Zbijewski, Wojciech; Kleinszig, Gerhard; Xia, Xuewei; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2013-03-01

    Intraoperative imaging could improve patient safety and quality assurance (QA) via the detection of subtle complications that might otherwise only be found hours after surgery. Such capability could therefore reduce morbidity and the need for additional intervention. Among the severe adverse events that could be more quickly detected by high-quality intraoperative imaging is acute intracranial hemorrhage (ICH), conventionally assessed using post-operative CT. A mobile C-arm capable of high-quality cone-beam CT (CBCT) in combination with advanced image reconstruction techniques is reported as a means of detecting ICH in the operating room. The system employs an isocentric C-arm with a flat-panel detector in dual gain mode, correction of x-ray scatter and beam-hardening, and a penalized likelihood (PL) iterative reconstruction method. Performance in ICH detection was investigated using a quantitative phantom focusing on (non-contrast-enhanced) blood-brain contrast, an anthropomorphic head phantom, and a porcine model with injection of fresh blood bolus. The visibility of ICH was characterized in terms of contrast-to-noise ratio (CNR) and qualitative evaluation of images by a neurosurgeon. Across a range of size and contrast of the ICH as well as radiation dose from the CBCT scan, the CNR was found to increase from ~2.2-3.7 for conventional filtered backprojection (FBP) to ~3.9-5.4 for PL at equivalent spatial resolution. The porcine model demonstrated superior ICH detectability for PL. The results support the role of high-quality mobile C-arm CBCT employing advanced reconstruction algorithms for detecting subtle complications in the operating room at lower radiation dose and lower cost than intraoperative CT scanners and/or fixedroom C-arms. Such capability could present a potentially valuable aid to patient safety and QA.

  1. Assessment of image quality in soft tissue and bone visualization tasks for a dedicated extremity cone-beam CT system

    Energy Technology Data Exchange (ETDEWEB)

    Demehri, S. [Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Johns Hopkins Outpatient Center, JHOC 5168, Musculoskeletal Radiology, Baltimore, MD (United States); Muhit, A.; Zbijewski, W.; Stayman, J.W. [Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD (United States); Yorkston, J.; Packard, N.; Senn, R.; Yang, D.; Foos, D. [Carestream Health, Rochester, NY (United States); Thawait, G.K.; Fayad, L.M.; Chhabra, A.; Carrino, J.A. [Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Siewerdsen, J.H. [Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD (United States)

    2015-06-01

    To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80kVp-108mAs for CBCT; 120kVp- 300mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated ''excellent'' or ''good'' (median scores 5 and 4) for ''bone'' and ''soft tissue'' visualization tasks. Hand CBCT images were rated ''excellent'' or ''adequate'' (median scores 5 and 3) for ''bone'' and ''soft tissue'' visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ∝ 0.26-0.92), and interobserver agreement was fair to moderate (κ ∝ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. (orig.)

  2. Dosimetric accuracy of the cone-beam CT-based treatment planning of the Vero system: a phantom study.

    Science.gov (United States)

    Yohannes, Indra; Prasetio, Heru; Kallis, Karoline; Bert, Christoph

    2016-01-01

    We report an investigation on the accuracy of dose calculation based on the cone-beam computed tomography (CBCT) images of the nonbowtie filter kV imaging system of the Vero linear accelerator. Different sets of materials and tube voltages were employed to generate the Hounsfield unit lookup tables (HLUTs) for both CBCT and fan-beam CT (FBCT) systems. The HLUTs were then implemented for the dose calculation in a treatment planning system (TPS). Dosimetric evaluation was carried out on an in-house-developed cube phantom that consists of water-equivalent slabs and inhomogeneity inserts. Two independent dosimeters positioned in the cube phantom were used in this study for point-dose and two-dimensional (2D) dose distribution measurements. The differences of HLUTs from various materials and tube voltages in both CT systems resulted in differences in dose calculation accuracy. We found that the higher the tube voltage used to obtain CT images, the better the point-dose calculation and the gamma passing rate of the 2D dose distribution agree to the values determined in the TPS. Moreover, the insert materials that are not tissue-equivalent led to higher dose-calculation inaccuracy. There were negligible differences in dosimetric evaluation between the CBCT- and FBCT-based treatment planning if the HLUTs were generated using the tissue-equivalent materials. In this study, the CBCT images of the Vero system from a complex inhomogeneity phantom can be applied for the TPS dose calculation if the system is calibrated using tissue-equivalent materials scanned at high tube voltage (i.e., 120 kV). PMID:27455496

  3. Patient-specific scatter correction for flat-panel detector-based cone-beam CT imaging

    Science.gov (United States)

    Zhao, Wei; Brunner, Stephen; Niu, Kai; Schafer, Sebastian; Royalty, Kevin; Chen, Guang-Hong

    2015-02-01

    A patient-specific scatter correction algorithm is proposed to mitigate scatter artefacts in cone-beam CT (CBCT). The approach belongs to the category of convolution-based methods in which a scatter potential function is convolved with a convolution kernel to estimate the scatter profile. A key step in this method is to determine the free parameters introduced in both scatter potential and convolution kernel using a so-called calibration process, which is to seek for the optimal parameters such that the models for both scatter potential and convolution kernel is able to optimally fit the previously known coarse estimates of scatter profiles of the image object. Both direct measurements and Monte Carlo (MC) simulations have been proposed by other investigators to achieve the aforementioned rough estimates. In the present paper, a novel method has been proposed and validated to generate the needed coarse scatter profile for parameter calibration in the convolution method. The method is based upon an image segmentation of the scatter contaminated CBCT image volume, followed by a reprojection of the segmented image volume using a given x-ray spectrum. The reprojected data is subtracted from the scatter contaminated projection data to generate a coarse estimate of the needed scatter profile used in parameter calibration. The method was qualitatively and quantitatively evaluated using numerical simulations and experimental CBCT data acquired on a clinical CBCT imaging system. Results show that the proposed algorithm can significantly reduce scatter artefacts and recover the correct CT number. Numerical simulation results show the method is patient specific, can accurately estimate the scatter, and is robust with respect to segmentation procedure. For experimental and in vivo human data, the results show the CT number can be successfully recovered and anatomical structure visibility can be significantly improved.

  4. 锥形束CT对牛牙症诊断价值的探讨%Application of cone beam CT in the diagnosis of taurodontism

    Institute of Scientific and Technical Information of China (English)

    衡士超; 程勇; 李波; 肖丽珍

    2013-01-01

    One case of laurodonlism with tooth inlernal resorplion and root fraclure was diagnosed by cone beam CT( CBCT) . The cases is reporled and the significance of CBCT in the diagnosis of laurodonlism is disscused.%用锥形束CT辅助诊断牛牙症根折伴牙内吸收1例,锥形束CT对该症的诊断和治疗方面有重要指导意义.

  5. Cone-beam CT技术及其在口腔正畸学中的应用进展%Current advance in application of cone-beam CT in orthodontics

    Institute of Scientific and Technical Information of China (English)

    王婷; 厉松

    2011-01-01

    在正畸的诊断治疗过程中,cone-beam CT已广泛应用于口腔界的各个领域,本文旨在对cone-beamCT的原理、特点及其在口腔正畸领域中的应用进行综述,以期增加正畸医师对于Cone-beam CT的理解.

  6. Cone beam breast CT with multiplanar and three dimensional visualization in differentiating breast masses compared with mammography

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Binghui [Department of Radiology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai 200072 (China); Zhang, Xiaohua [Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627 (United States); Cai, Weixing [Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY 14642 (United States); Conover, David [Koning Corporation, West Henrietta, NY 14586 (United States); Ning, Ruola, E-mail: ruola_ning@urmc.rochester.edu [Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY 14642 (United States)

    2015-01-15

    Objective: This pilot study was to evaluate cone beam breast computed tomography (CBBCT) with multiplanar and three dimensional (3D) visualization in differentiating breast masses in comparison with two-view mammograms. Methods: Sixty-five consecutive female patients (67 breasts) were scanned by CBBCT after conventional two-view mammography (Hologic, Motarget, compression factor 0.8). For CBBCT imaging, three hundred (1024 × 768 × 16 b) two-dimensional (2D) projection images were acquired by rotating the x-ray tube and a flat panel detector (FPD) 360 degree around one breast. Three-dimensional CBBCT images were reconstructed from the 2D projections. Visage CS 3.0 and Amira 5.2.2 were used to visualize reconstructed CBBCT images. Results: Eighty-five breast masses in this study were evaluated and categorized under the breast imaging reporting and data system (BI-RADS) according to plain CBBCT images and two-view mammograms, respectively, prior to biopsy. BI-RADS category of each breast was compared with biopsy histopathology. The results showed that CBBCT with multiplanar and 3D visualization would be helpful to identify the margin and characteristics of breast masses. The category variance ratios for CBBCT under the BI-RADS were 23.5% for malignant tumors (MTs) and 27.3% for benign lesions in comparison with pathology, which were evidently closer to the histopathology results than those of two-view mammograms, p value <0.01. With the receiver operating characteristic (ROC) curve analysis, the area under the curve (AUC) of CBBCT was 0.911, larger than that (AUC 0.827) of two-view mammograms, p value <0.01. Conclusion: CBBCT will be a distinctive noninvasive technology in differentiating and categorizing breast masses under BI-RADS. CBBCT may be considerably more effective to identify breast masses, especially some small, uncertain or multifocal masses than conventional two-view mammography.

  7. Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation

    Science.gov (United States)

    Yang, Yong; Schreibmann, Eduard; Li, Tianfang; Wang, Chuang; Xing, Lei

    2007-02-01

    On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. Here we evaluate the achievable accuracy in using a kV CBCT for dose calculation. Relative electron density as a function of HU was obtained for both planning CT (pCT) and CBCT using a Catphan-600 calibration phantom. The CBCT calibration stability was monitored weekly for 8 consecutive weeks. A clinical treatment planning system was employed for pCT- and CBCT-based dose calculations and subsequent comparisons. Phantom and patient studies were carried out. In the former study, both Catphan-600 and pelvic phantoms were employed to evaluate the dosimetric performance of the full-fan and half-fan scanning modes. To evaluate the dosimetric influence of motion artefacts commonly seen in CBCT images, the Catphan-600 phantom was scanned with and without cyclic motion using the pCT and CBCT scanners. The doses computed based on the four sets of CT images (pCT and CBCT with/without motion) were compared quantitatively. The patient studies included a lung case and three prostate cases. The lung case was employed to further assess the adverse effect of intra-scan organ motion. Unlike the phantom study, the pCT of a patient is generally acquired at the time of simulation and the anatomy may be different from that of CBCT acquired at the time of treatment delivery because of organ deformation. To tackle the problem, we introduced a set of modified CBCT images (mCBCT) for each patient, which possesses the geometric information of the CBCT but the electronic density distribution mapped from the pCT with the help of a BSpline deformable image registration software. In the patient study, the dose computed with the mCBCT was used as a surrogate of the 'ground truth'. We found that the CBCT electron density calibration curve differs moderately from that of pCT. No

  8. Cone-beam CT with a flat-panel detector on a mobile C-arm: preclinical investigation in image-guided surgery of the head and neck

    Science.gov (United States)

    Siewerdsen, J. H.; Chan, Y.; Rafferty, M. A.; Moseley, D. J.; Jaffray, D. A.; Irish, J. C.

    2005-04-01

    A promising imaging platform for combined low-dose fluoroscopy and cone-beam CT (CBCT) guidance of interventional procedures has been developed in our laboratory. Based on a mobile isocentric C-arm (Siemens PowerMobil) incorporating a high-performance flat-panel detector (Varian PaxScan 4030CB), the system demonstrates sub-mm 3D spatial resolution and soft-tissue visibility with field of view sufficient for head and body sites. For pre-clinical studies in head neck tumor surgery, we hypothesize that the 3D intraoperative information provided by CBCT permits precise, aggressive techniques with improved avoidance of critical structures. The objectives include: 1) quantify improvement in surgical performance achieved with CBCT guidance compared to open and endoscopic techniques; and 2) investigate specific, challenging surgical tasks under CBCT guidance. Investigations proceed from an idealized phantom model to cadaveric specimens. A novel surgical performance evaluation method based on statistical decision theory is applied to excision and avoidance tasks. Analogous to receiver operating characteristic (ROC) analysis in medical imaging, the method quantifies surgical performance in terms of Lesion-Excised (True-Positve), Lesion-Remaining (False-Negative), Normal-Excised (False-Positive), and Normal-Remaining (True-Negative) fractions. Conservative and aggressive excision and avoidance tasks are executed in 12 cadaveric specimens with and without CBCT guidance, including: dissection through dura, preservation of posterior lamina, ethmoid air cells removal, exposure of peri-orbita, and excision of infiltrated bone in the skull base (clivus). Intraoperative CBCT data was found to dramatically improve surgical performance and confidence in the execution of such tasks. Pre-clinical investigation of this platform in head and neck surgery, as well as spinal, trauma, biopsy, and other nonvascular procedures, is discussed.

  9. Implant planning and placement using optical scanning and cone beam CT technology

    NARCIS (Netherlands)

    J.M. van der Zel

    2008-01-01

    There is a growing interest in minimally invasive implant therapy as a standard prosthodontic treatment, providing complete restoration of occlusal function. A new treatment method (CADDIMA), which combines both computerized tomographic (CT) and optical laser-scan data for planning and design of sur

  10. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT

    NARCIS (Netherlands)

    A. Parsa; N. Ibrahim; B. Hassan; P. van der Stelt; D. Wismeijer

    2015-01-01

    Objectives The first purpose of this study was to analyze the correlation between bone volume fraction (BV/TV) and calibrated radiographic bone density Hounsfield units (HU) in human jaws, derived from micro-CT and multislice computed tomography (MSCT), respectively. The second aim was to assess the

  11. TH-A-18C-04: Ultrafast Cone-Beam CT Scatter Correction with GPU-Based Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y [UT Southwestern Medical Center, Dallas, TX (United States); Southern Medical University, Guangzhou (China); Bai, T [UT Southwestern Medical Center, Dallas, TX (United States); Xi' an Jiaotong University, Xi' an (China); Yan, H; Ouyang, L; Wang, J; Pompos, A; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Zhou, L [Southern Medical University, Guangzhou (China)

    2014-06-15

    Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT). We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC) simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstructions within 30 seconds. Methods: The method consists of six steps: 1) FDK reconstruction using raw projection data; 2) Rigid Registration of planning CT to the FDK results; 3) MC scatter calculation at sparse view angles using the planning CT; 4) Interpolation of the calculated scatter signals to other angles; 5) Removal of scatter from the raw projections; 6) FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC scatter noise caused by low photon numbers. The method is validated on head-and-neck cases with simulated and clinical data. Results: We have studied impacts of photo histories, volume down sampling factors on the accuracy of scatter estimation. The Fourier analysis was conducted to show that scatter images calculated at 31 angles are sufficient to restore those at all angles with <0.1% error. For the simulated case with a resolution of 512×512×100, we simulated 10M photons per angle. The total computation time is 23.77 seconds on a Nvidia GTX Titan GPU. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU. Similar results were found for a real patient case. Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. The whole process of scatter correction and reconstruction is accomplished within 30 seconds. This study is supported in part by NIH (1R01CA154747-01), The Core Technology Research

  12. Computed tomography from photon statistics to modern cone-beam CT

    CERN Document Server

    Buzug, T M

    2008-01-01

    Tis book provides an overview of X-ray technology, the historic developmental milestones of modern CT systems, and gives a comprehensive insight into the main reconstruction methods used in computed tomography. Te basis of reconstr- tion is, undoubtedly, mathematics. However, the beauty of computed tomography cannot be understood without a detailed knowledge of X-ray generation, photon- matter interaction, X-ray detection, photon statistics, as well as fundamental signal processing concepts and dedicated measurement systems. Terefore, the reader will ?nd a number of references to these basic d

  13. Development and validation of a hybrid simulation technique for cone beam CT: application to an oral imaging system

    Science.gov (United States)

    Zhang, G.; Pauwels, R.; Marshall, N.; Shaheen, E.; Nuyts, J.; Jacobs, R.; Bosmans, H.

    2011-09-01

    This paper proposes a hybrid technique to simulate the complete chain of an oral cone beam computed tomography (CBCT) system for the study of both radiation dose and image quality. The model was developed around a 3D Accuitomo 170 unit (J Morita, Japan) with a tube potential range of 60-90 kV. The Monte Carlo technique was adopted to simulate the x-ray generation, filtration and collimation. Exact dimensions of the bow-tie filter were estimated iteratively using experimentally acquired flood images. Non-flat radiation fields for different exposure settings were mediated via 'phase spaces'. Primary projection images were obtained by ray tracing at discrete energies and were fused according to the two-dimensional energy modulation templates derived from the phase space. Coarse Monte Carlo simulations were performed for scatter projections and the resulting noisy images were smoothed by Richardson-Lucy fitting. Resolution and noise characteristics of the flat panel detector were included using the measured modulation transfer function (MTF) and the noise power spectrum (NPS), respectively. The Monte Carlo dose calculation was calibrated in terms of kerma free-in-air about the isocenter, using an ionization chamber, and was subsequently validated by comparison against the measured air kerma in water at various positions of a cylindrical water phantom. The resulting dose discrepancies were found artifact pattern in comparison to experimentally acquired images, with <5% difference for voxel values of the aluminum and air insert regions and <3% difference for voxel uniformity across the homogeneous PMMA region. The detector simulation by use of the MTF and NPS data exhibited a big influence on noise and the sharpness of the resulting images. The hybrid simulation technique is flexible and has wide applicability to CBCT systems.

  14. Noise study on cone-beam CT FDK image reconstruction by improved area-simulating-volume technique

    Science.gov (United States)

    Liu, Yan; Wang, Jin; Zhang, Hao; Fan, Yi; Liang, Zhengrong

    2014-03-01

    Previous studies have reported that the volume-weighting technique has advantages over the linear interpolation technique for cone-beam computed tomography (CBCT) image reconstruction. However, directly calculating the intersecting volume between the pencil beam X-ray and the object is a challenge due to the computational complexity. Inspired by previous works in area-simulating volume (ASV) technique for 3D positron emission tomography, we proposed an improved ASV (IASV) technique, which can fast calculate the geometric probability of the intersection between the pencil beam and the object. In order to show the improvements of using IASV technique in volumeweighting based Feldkamp-Davis-Kress (VW-FDK) algorithm compared to the conventional linear interpolation technique based FDK algorithm (LI-FDK), the variances images from both theoretical prediction and empirical determination are described basing on the assumption of the uncorrelated and stationary noise for each detector bin. In digital phantom study, both of the theoretically predicted variance images and the empirically determined variance images concurred and demonstrated that the VW-FDK algorithm can result in uniformly distributed noise across the FOV. In the physical phantom study, the performance enhancements by the VW-FDK algorithm were quantitatively evaluated by the contrast-noise-ratio (CNR) merit. The CNR values from the VW-FDK result were about 40% higher than the conventional LI-FDK result. Therefore it can be concluded that the VW-FDK algorithm can efficiently address the non-uniformity noise and suppress noise level of the reconstructed images.

  15. [Metal artefact on head and neck cone-beam CT images].

    Science.gov (United States)

    Kovacs, Miklós; Fejérdy, Pál; Dobó, Nagy Csaba

    2008-10-01

    There are only a few factors, where the properties of the CBCT is inferior compared to conventional CT. One of these properties is the low contrast resolution, which has an importance in the discrimination of different soft tissues. Another difference is the image quality degrading effect by metal objects. This latter factor has much higher importance in head and neck region CBCT application. The metal artifact is closely related to other types of artifacts, like beam-hardening and x-ray photon scattering artifacts. In some of the cases, metal artifacts can be avoided by the proper adjustment of the scanning parameters, but sometimes the problem overgrows the possibilities. The current pre- and post-processing algorithms used for the correction of different artifacts can improve the image quality, but these algorithms are not the ultimate solution to the problem. The introduction of iterative reconstruction algorithms into the CBCT market will effectively reduce the most CT artifacts, however, the spread of this algorithms are set back because of the insufficient computational power of today's PCs. Another advantage of the use of iterative algorithms is that the patient dose could be significantly reduced.

  16. A practical cone-beam CT scatter correction method with optimized Monte Carlo simulations for image-guided radiation therapy

    Science.gov (United States)

    Xu, Yuan; Bai, Ti; Yan, Hao; Ouyang, Luo; Pompos, Arnold; Wang, Jing; Zhou, Linghong; Jiang, Steve B.; Jia, Xun

    2015-05-01

    Cone-beam CT (CBCT) has become the standard image guidance tool for patient setup in image-guided radiation therapy. However, due to its large illumination field, scattered photons severely degrade its image quality. While kernel-based scatter correction methods have been used routinely in the clinic, it is still desirable to develop Monte Carlo (MC) simulation-based methods due to their accuracy. However, the high computational burden of the MC method has prevented routine clinical application. This paper reports our recent development of a practical method of MC-based scatter estimation and removal for CBCT. In contrast with conventional MC approaches that estimate scatter signals using a scatter-contaminated CBCT image, our method used a planning CT image for MC simulation, which has the advantages of accurate image intensity and absence of image truncation. In our method, the planning CT was first rigidly registered with the CBCT. Scatter signals were then estimated via MC simulation. After scatter signals were removed from the raw CBCT projections, a corrected CBCT image was reconstructed. The entire workflow was implemented on a GPU platform for high computational efficiency. Strategies such as projection denoising, CT image downsampling, and interpolation along the angular direction were employed to further enhance the calculation speed. We studied the impact of key parameters in the workflow on the resulting accuracy and efficiency, based on which the optimal parameter values were determined. Our method was evaluated in numerical simulation, phantom, and real patient cases. In the simulation cases, our method reduced mean HU errors from 44 to 3 HU and from 78 to 9 HU in the full-fan and the half-fan cases, respectively. In both the phantom and the patient cases, image artifacts caused by scatter, such as ring artifacts around the bowtie area, were reduced. With all the techniques employed, we achieved computation time of less than 30 s including the

  17. SU-D-207-06: Clinical Validations of Shading Correction for Cone-Beam CT Using Planning CT as a Prior

    International Nuclear Information System (INIS)

    Purpose: Current cone-beam CT (CBCT) images contain severe shading artifacts mainly due to scatter, hindering their quantitative use in current radiation therapy. We have previously proposed an effective shading correction method for CBCT using planning CT (pCT) as prior knowledge. In this work, we investigate the method robustness via statistical analyses on studies of a large patient group and compare the performance with that of a state-of-the-art method implemented on the current commercial radiation therapy machine -- the Varian Truebeam system. Methods: Since radiotherapy patients routinely undergo multiple-detector CT (MDCT) scans in the planning procedure, we use the high-quality pCT as “free” prior knowledge for CBCT image improvement. The CBCT image with no correction is first spatially registered with the pCT. Primary CBCT projections are estimated via forward projections of the registered image. The low frequency errors in the projections, which stem from mainly scatter, are estimated by filtering the difference between original line integral and the estimated scatter projections. The corrected CBCT image is then reconstructed from the scatter corrected projections. The proposed method is evaluated on 40 cancer patients. Results: On all patient images, we compare errors on CT number, spatial non-uniformity (SNU) and image contrast, using pCT as the ground truth. T-tests show that our algorithm improves over the Varian method on CBCT accuracies of CT number and SNU with 90% confident. The average CT number error is reduced from 54.8 HU on the Varian method to 40.9 HU, and the SNU error is reduced from 7.7% to 3.8%. There is no obvious improvement on image contrast. Conclusion: Large-group patient studies show that the proposed pCT-based algorithm outperforms the Varian method of the Truebeam system on CBCT shading correction, by providing CBCT images with higher CT number accuracy and greater image uniformity

  18. SU-D-207-06: Clinical Validations of Shading Correction for Cone-Beam CT Using Planning CT as a Prior

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, T; Zhu, L [Georgia Institute of Technology, Atlanta, GA (Georgia); Wei, J [Landauer Medical Physics, Newnan, GA (United States)

    2015-06-15

    Purpose: Current cone-beam CT (CBCT) images contain severe shading artifacts mainly due to scatter, hindering their quantitative use in current radiation therapy. We have previously proposed an effective shading correction method for CBCT using planning CT (pCT) as prior knowledge. In this work, we investigate the method robustness via statistical analyses on studies of a large patient group and compare the performance with that of a state-of-the-art method implemented on the current commercial radiation therapy machine -- the Varian Truebeam system. Methods: Since radiotherapy patients routinely undergo multiple-detector CT (MDCT) scans in the planning procedure, we use the high-quality pCT as “free” prior knowledge for CBCT image improvement. The CBCT image with no correction is first spatially registered with the pCT. Primary CBCT projections are estimated via forward projections of the registered image. The low frequency errors in the projections, which stem from mainly scatter, are estimated by filtering the difference between original line integral and the estimated scatter projections. The corrected CBCT image is then reconstructed from the scatter corrected projections. The proposed method is evaluated on 40 cancer patients. Results: On all patient images, we compare errors on CT number, spatial non-uniformity (SNU) and image contrast, using pCT as the ground truth. T-tests show that our algorithm improves over the Varian method on CBCT accuracies of CT number and SNU with 90% confident. The average CT number error is reduced from 54.8 HU on the Varian method to 40.9 HU, and the SNU error is reduced from 7.7% to 3.8%. There is no obvious improvement on image contrast. Conclusion: Large-group patient studies show that the proposed pCT-based algorithm outperforms the Varian method of the Truebeam system on CBCT shading correction, by providing CBCT images with higher CT number accuracy and greater image uniformity.

  19. Cone-beam CT-guided radiotherapy in the management of lung cancer. Diagnostic and therapeutic value

    Energy Technology Data Exchange (ETDEWEB)

    Elsayad, Khaled; Kriz, Jan; Reinartz, Gabriele; Scobioala, Sergiu; Ernst, Iris; Haverkamp, Uwe; Eich, Hans Theodor [University Hospital of Muenster, Department of Radiation Oncology, Muenster (Germany)

    2016-02-15

    Recent studies have demonstrated an increase in the necessity of adaptive planning over the course of lung cancer radiation therapy (RT) treatment. In this study, we evaluated intrathoracic changes detected by cone-beam CT (CBCT) in lung cancer patients during RT. A total of 71 lung cancer patients treated with fractionated CBCT-guided RT were evaluated. Intrathoracic changes and plan adaptation priority (AP) scores were compared between small cell lung cancer (SCLC, n = 13) and non-small cell lung cancer (NSCLC, n = 58) patients. The median cumulative radiation dose administered was 54 Gy (range 30-72 Gy) and the median fraction dose was 1.8 Gy (range 1.8-3.0 Gy). All patients were subjected to a CBCT scan at least weekly (range 1-5/week). We observed intrathoracic changes in 83 % of the patients over the course of RT [58 % (41/71) regression, 17 % (12/71) progression, 20 % (14/71) atelectasis, 25 % (18/71) pleural effusion, 13 % (9/71) infiltrative changes, and 10 % (7/71) anatomical shift]. Nearly half, 45 % (32/71), of the patients had one intrathoracic soft tissue change, 22.5 % (16/71) had two, and three or more changes were observed in 15.5 % (11/71) of the patients. Plan modifications were performed in 60 % (43/71) of the patients. Visual volume reduction did correlate with the number of CBCT scans acquired (r = 0.313, p = 0.046) and with the timing of chemotherapy administration (r = 0.385, p = 0.013). Weekly CBCT monitoring provides an adaptation advantage in patients with lung cancer. In this study, the monitoring allowed for plan adaptations due to tumor volume changes and to other anatomical changes. (orig.) [German] Neuere Studien haben eine zunehmende Notwendigkeit der adaptiven Bestrahlungsplanung im Verlauf der Bestrahlungsserie bei Patienten mit Lungenkrebs nachgewiesen. In der vorliegenden Studie haben wir intrathorakale Aenderungen mittels Cone-beam-CT (CBCT) bei Lungenkrebspatienten waehrend der Radiotherapie (RT) analysiert. Analysiert wurden

  20. Dose and detectability for a cone-beam C-arm CT system revisited

    International Nuclear Information System (INIS)

    Purpose: The authors had previously published measurements of the detectability of disk-shaped contrast objects in images obtained from a C-arm CT system. A simple approach based on Rose's criterion was used to scale the date, assuming the threshold for the smallest diameter detected should be inversely proportional to (dose)1/2. A more detailed analysis based on recent theoretical modeling of C-arm CT images is presented in this work. Methods: The signal and noise propagations in a C-arm based CT system have been formulated by other authors using cascaded systems analysis. They established a relationship between detectability and the noise equivalent quanta. Based on this model, the authors obtained a relation between x-ray dose and the diameter of the smallest disks detected. A closed form solution was established by assuming no rebinning and no resampling of data, with low additive noise and using a ramp filter. For the case when no such assumptions were made, a numerically calculated solution using previously reported imaging and reconstruction parameters was obtained. The detection probabilities for a range of dose and kVp values had been measured previously. These probabilities were normalized to a single dose of 56.6 mGy using the Rose-criteria-based relation to obtain a universal curve. Normalizations based on the new numerically calculated relationship were compared to the measured results. Results: The theoretical and numerical calculations have similar results and predict the detected diameter size to be inversely proportional to (dose)1/3 and (dose)1/2.8, respectively. The normalized experimental curves and the associated universal plot using the new relation were not significantly different from those obtained using the Rose-criterion-based normalization. Conclusions: From numerical simulations, the authors found that the diameter of detected disks depends inversely on the cube root of the dose. For observer studies for disks larger than 4 mm, the cube

  1. Dose and detectability for a cone-beam C-arm CT system revisited

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Arundhuti; Yoon, Sungwon; Fahrig, Rebecca [Department of Radiology, Lucas MRS Center, Stanford University, 1201 Welch Road, Palo Alto, California 94305 (United States)

    2010-05-15

    Purpose: The authors had previously published measurements of the detectability of disk-shaped contrast objects in images obtained from a C-arm CT system. A simple approach based on Rose's criterion was used to scale the date, assuming the threshold for the smallest diameter detected should be inversely proportional to (dose){sup 1/2}. A more detailed analysis based on recent theoretical modeling of C-arm CT images is presented in this work. Methods: The signal and noise propagations in a C-arm based CT system have been formulated by other authors using cascaded systems analysis. They established a relationship between detectability and the noise equivalent quanta. Based on this model, the authors obtained a relation between x-ray dose and the diameter of the smallest disks detected. A closed form solution was established by assuming no rebinning and no resampling of data, with low additive noise and using a ramp filter. For the case when no such assumptions were made, a numerically calculated solution using previously reported imaging and reconstruction parameters was obtained. The detection probabilities for a range of dose and kVp values had been measured previously. These probabilities were normalized to a single dose of 56.6 mGy using the Rose-criteria-based relation to obtain a universal curve. Normalizations based on the new numerically calculated relationship were compared to the measured results. Results: The theoretical and numerical calculations have similar results and predict the detected diameter size to be inversely proportional to (dose){sup 1/3} and (dose){sup 1/2.8}, respectively. The normalized experimental curves and the associated universal plot using the new relation were not significantly different from those obtained using the Rose-criterion-based normalization. Conclusions: From numerical simulations, the authors found that the diameter of detected disks depends inversely on the cube root of the dose. For observer studies for disks

  2. Size-specific dose estimates (SSDE) for a prototype orthopedic cone-beam CT system

    Science.gov (United States)

    Richard, Samuel; Packard, Nathan; Yorkston, John

    2014-03-01

    Patient specific dose evaluation and reporting is becoming increasingly important for x-ray imaging systems. Even imaging systems with lower patient dose such as CBCT scanners for extremities can benefit from accurate and size-specific dose assessment and reporting. This paper presents CTDI dose measurements performed on a prototype CBCT extremity imaging system across a range of body part sizes (5, 10, 16, and 20 cm effective diameter) and kVp (70, 80, and 90 kVp - with 0.1 mm Cu added filtration). The ratio of the CTDI measurements for the 5, 10, and 20 cm phantoms to the CTDI measurements for the 16 cm phantom were calculated and results were compared to size-specific dose estimates conversion factors (AAPM Report 204), which were evaluated on a conventional CT scanner. Due to the short scan nature of the system (220 degree acquisition angle), the dependence of CTDI values on the initial angular orientation of the phantom with respect to the imager was also evaluated. The study demonstrated that for a 220 degree acquisition sequence, the initial angular position of the conventional CTDI phantom with respect to the scanner does not significantly affect CTDI measurements (varying by less than 2% overall across the range of possible initial angular positions). The size-specific conversion factor was found to be comparable to the Report 204 factors for the large phantom size (20 cm) but lower, by up to 12%, for the 5 cm phantom (i.e., 1.35 for CBCT vs 1.54 for CT). The factors dependence on kVp was minimal, but dependence on kVp was most significant for smaller diameters. These results indicate that specific conversion factors need to be used for CBCT systems with short scans in order to provide more accurate dose reporting across the range of body sizes found in extremity scanners.

  3. Nonlinear Statistical Reconstruction for Flat-Panel Cone-Beam CT with Blur and Correlated Noise Models

    Science.gov (United States)

    Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster

    2016-01-01

    Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications. PMID:27110051

  4. Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy.

    Science.gov (United States)

    Bian, Junguo; Sharp, Gregory C; Park, Yang-Kyun; Ouyang, Jinsong; Bortfeld, Thomas; El Fakhri, Georges

    2016-05-01

    It is well-known that projections acquired over an angular range slightly over 180° (so-called short scan) are sufficient for fan-beam reconstruction. However, due to practical imaging conditions (projection data and reconstruction image discretization, physical factors, and data noise), the short-scan reconstructions may have different appearances and properties from the full-scan (scans over 360°) reconstructions. Nevertheless, short-scan configurations have been used in applications such as cone-beam CT (CBCT) for head-neck-cancer image-guided radiation therapy (IGRT) that only requires a small field of view due to the potential reduced imaging time and dose. In this work, we studied the image quality trade-off for full, short, and full/short scan configurations with both conventional filtered-backprojection (FBP) reconstruction and iterative reconstruction algorithms based on total-variation (TV) minimization for head-neck-cancer IGRT. Anthropomorphic and Catphan phantoms were scanned at different exposure levels with a clinical scanner used in IGRT. Both visualization- and numerical-metric-based evaluation studies were performed. The results indicate that the optimal exposure level and number of views are in the middle range for both FBP and TV-based iterative algorithms and the optimization is object-dependent and task-dependent. The optimal view numbers decrease with the total exposure levels for both FBP and TV-based algorithms. The results also indicate there are slight differences between FBP and TV-based iterative algorithms for the image quality trade-off: FBP seems to be more in favor of larger number of views while the TV-based algorithm is more robust to different data conditions (number of views and exposure levels) than the FBP algorithm. The studies can provide a general guideline for image-quality optimization for CBCT used in IGRT and other applications. PMID:27032676

  5. SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); Guo, X [University of Texas at Dallas, Richardson, TX (United States)

    2015-06-15

    Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed.

  6. Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy

    Science.gov (United States)

    Bian, Junguo; Sharp, Gregory C.; Park, Yang-Kyun; Ouyang, Jinsong; Bortfeld, Thomas; El Fakhri, Georges

    2016-05-01

    It is well-known that projections acquired over an angular range slightly over 180° (so-called short scan) are sufficient for fan-beam reconstruction. However, due to practical imaging conditions (projection data and reconstruction image discretization, physical factors, and data noise), the short-scan reconstructions may have different appearances and properties from the full-scan (scans over 360°) reconstructions. Nevertheless, short-scan configurations have been used in applications such as cone-beam CT (CBCT) for head-neck-cancer image-guided radiation therapy (IGRT) that only requires a small field of view due to the potential reduced imaging time and dose. In this work, we studied the image quality trade-off for full, short, and full/short scan configurations with both conventional filtered-backprojection (FBP) reconstruction and iterative reconstruction algorithms based on total-variation (TV) minimization for head-neck-cancer IGRT. Anthropomorphic and Catphan phantoms were scanned at different exposure levels with a clinical scanner used in IGRT. Both visualization- and numerical-metric-based evaluation studies were performed. The results indicate that the optimal exposure level and number of views are in the middle range for both FBP and TV-based iterative algorithms and the optimization is object-dependent and task-dependent. The optimal view numbers decrease with the total exposure levels for both FBP and TV-based algorithms. The results also indicate there are slight differences between FBP and TV-based iterative algorithms for the image quality trade-off: FBP seems to be more in favor of larger number of views while the TV-based algorithm is more robust to different data conditions (number of views and exposure levels) than the FBP algorithm. The studies can provide a general guideline for image-quality optimization for CBCT used in IGRT and other applications.

  7. Cone-beam CT-guided radiotherapy in the management of lung cancer. Diagnostic and therapeutic value

    International Nuclear Information System (INIS)

    Recent studies have demonstrated an increase in the necessity of adaptive planning over the course of lung cancer radiation therapy (RT) treatment. In this study, we evaluated intrathoracic changes detected by cone-beam CT (CBCT) in lung cancer patients during RT. A total of 71 lung cancer patients treated with fractionated CBCT-guided RT were evaluated. Intrathoracic changes and plan adaptation priority (AP) scores were compared between small cell lung cancer (SCLC, n = 13) and non-small cell lung cancer (NSCLC, n = 58) patients. The median cumulative radiation dose administered was 54 Gy (range 30-72 Gy) and the median fraction dose was 1.8 Gy (range 1.8-3.0 Gy). All patients were subjected to a CBCT scan at least weekly (range 1-5/week). We observed intrathoracic changes in 83 % of the patients over the course of RT [58 % (41/71) regression, 17 % (12/71) progression, 20 % (14/71) atelectasis, 25 % (18/71) pleural effusion, 13 % (9/71) infiltrative changes, and 10 % (7/71) anatomical shift]. Nearly half, 45 % (32/71), of the patients had one intrathoracic soft tissue change, 22.5 % (16/71) had two, and three or more changes were observed in 15.5 % (11/71) of the patients. Plan modifications were performed in 60 % (43/71) of the patients. Visual volume reduction did correlate with the number of CBCT scans acquired (r = 0.313, p = 0.046) and with the timing of chemotherapy administration (r = 0.385, p = 0.013). Weekly CBCT monitoring provides an adaptation advantage in patients with lung cancer. In this study, the monitoring allowed for plan adaptations due to tumor volume changes and to other anatomical changes. (orig.)

  8. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI

    Science.gov (United States)

    Riis, Hans L.; Moltke, Lars N.; Zimmermann, Sune J.; Ebert, Martin A.; Rowshanfarzad, Pejman

    2016-06-01

    Accurate determination of the megavoltage (MV) radiation isocentre of a linear accelerator (linac) is an important task in radiotherapy. The localization of the MV radiation isocentre is crucial for correct calibration of the in-room lasers and the cone-beam CT scanner used for patient positioning prior to treatment. Linac manufacturers offer tools for MV radiation isocentre localization. As a user, there is no access to the documentation for the underlying method and calculation algorithm used in the commercial software. The idea of this work was to evaluate the accuracy of the software tool for MV radiation isocentre calculation as delivered by Elekta using independent software. The image acquisition was based on the scheme designed by the manufacturer. Eight MV images were acquired in each series of a ball-bearing (BB) phantom attached to the treatment couch. The images were recorded at cardinal angles of the gantry using the electronic portal imaging device (EPID). Eight Elekta linacs with three different types of multileaf collimators (MLCs) were included in the test. The influence of MLC orientation, x-ray energy, and phantom modifications were examined. The acquired images were analysed using the Elekta x-ray volume imaging (XVI) software and in-house developed (IHD) MATLAB code. Results from the two different software were compared. A discrepancy in the longitudinal direction of the isocentre localization was found averaging 0.23 mm up to a maximum of 0.75 mm. The MLC orientation or the phantom asymmetry in the longitudinal direction do not appear to cause the discrepancy. The main cause of the differences could not be clearly identified. However, it is our opinion that the commercial software delivered by the linac manufacturer should be improved to reach better stability and precise results in the MV radiation isocentre calculations.

  9. Design and characterization of a dedicated cone-beam CT scanner for detection of acute intracranial hemorrhage

    Science.gov (United States)

    Xu, J.; Sisniega, A.; Zbijewski, W.; Dang, H.; Stayman, J. W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-03-01

    Purpose: Prompt and reliable detection of intracranial hemorrhage (ICH) has substantial clinical impact in diagnosis and treatment of stroke and traumatic brain injury. This paper describes the design, development, and preliminary performance characterization of a dedicated cone-beam CT (CBCT) head scanner prototype for imaging of acute ICH. Methods: A task-based image quality model was used to analyze the detectability index as a function of system configuration, and hardware design was guided by the results of this model-based optimization. A robust artifact correction pipeline was developed using GPU-accelerated Monte Carlo (MC) scatter simulation, beam hardening corrections, detector veiling glare, and lag deconvolution. An iterative penalized weighted least-squares (PWLS) reconstruction framework with weights adjusted for artifact-corrected projections was developed. Various bowtie filters were investigated for potential dose and image quality benefits, with a MC-based tool providing estimates of spatial dose distribution. Results: The initial prototype will feature a source-detector distance of 1000 mm and source-axis distance of 550 mm, a 43x43 cm2 flat panel detector, and a 15° rotating anode x-ray source with 15 kW power and 0.6 focal spot size. Artifact correction reduced image nonuniformity by ~250 HU, and PWLS reconstruction with modified weights improved the contrast to noise ratio by 20%. Inclusion of a bowtie filter can potentially reduce dose by 50% and improve CNR by 25%. Conclusions: A dedicated CBCT system capable of imaging millimeter-scale acute ICH was designed. Preliminary findings support feasibility of point-of-care applications in TBI and stroke imaging, with clinical studies beginning on a prototype.

  10. SU-D-12A-06: A Comprehensive Parameter Analysis for Low Dose Cone-Beam CT Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W [UT Southwestern Medical Center, Dallas, TX (United States); Southern Medical University, Guangzhou (China); Yan, H; Gu, X; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Bai, T [UT Southwestern Medical Center, Dallas, TX (United States); Xi' an Jiaotong University, Xi' an (China); Zhou, L [Southern Medical University, Guangzhou (China)

    2014-06-01

    Purpose: There is always a parameter in compressive sensing based iterative reconstruction (IR) methods low dose cone-beam CT (CBCT), which controls the weight of regularization relative to data fidelity. A clear understanding of the relationship between image quality and parameter values is important. The purpose of this study is to investigate this subject based on experimental data and a representative advanced IR algorithm using Tight-frame (TF) regularization. Methods: Three data sets of a Catphan phantom acquired at low, regular and high dose levels are used. For each tests, 90 projections covering a 200-degree scan range are used for reconstruction. Three different regions-of-interest (ROIs) of different contrasts are used to calculate contrast-to-noise ratios (CNR) for contrast evaluation. A single point structure is used to measure modulation transfer function (MTF) for spatial-resolution evaluation. Finally, we analyze CNRs and MTFs to study the relationship between image quality and parameter selections. Results: It was found that: 1) there is no universal optimal parameter. The optimal parameter value depends on specific task and dose level. 2) There is a clear trade-off between CNR and resolution. The parameter for the best CNR is always smaller than that for the best resolution. 3) Optimal parameters are also dose-specific. Data acquired under a high dose protocol require less regularization, yielding smaller optimal parameter values. 4) Comparing with conventional FDK images, TF-based CBCT images are better under a certain optimally selected parameters. The advantages are more obvious for low dose data. Conclusion: We have investigated the relationship between image quality and parameter values in the TF-based IR algorithm. Preliminary results indicate optimal parameters are specific to both the task types and dose levels, providing guidance for selecting parameters in advanced IR algorithms. This work is supported in part by NIH (1R01CA154747-01)

  11. Nonlinear statistical reconstruction for flat-panel cone-beam CT with blur and correlated noise models

    Science.gov (United States)

    Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster

    2016-03-01

    Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications.

  12. Influence of object location in cone beam computed tomography (NewTom 5G and 3D Accuitomo 170) on gray value measurements at an implant site

    NARCIS (Netherlands)

    A. Parsa; N. Ibrahim; B. Hassan; P. van der Stelt; D. Wismeijer

    2014-01-01

    Objectives The aim of this study was to determine the gray value variation at an implant site with different object location within the selected field of view (FOV) in two cone beam computed tomography (CBCT) scanners. Methods A 1-cm-thick section from the edentulous region of a dry human mandible w

  13. Investigation into image quality and dose for different patient geometries with multiple cone-beam CT systems

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Stephen J., E-mail: sgardne8@hfhs.org [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States); Studenski, Matthew T. [Department of Radiation Oncology, University of Miami - Miller School of Medicine, Miami, Florida 33136 (United States); Giaddui, Tawfik; Galvin, James; Yu, Yan; Xiao, Ying [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States); Cui, Yunfeng [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-03-15

    Purpose: To provide quantitative and qualitative image quality metrics and imaging dose for modern Varian On-board Imager (OBI) (ver. 1.5) and Elekta X-ray Volume Imager (XVI) (ver. 4.5R) cone-beam computed tomography (CBCT) systems in a clinical adaptive radiation therapy environment by accounting for varying patient thickness. Methods: Image quality measurements were acquired with Catphan 504 phantom (nominal diameter and with additional 10 cm thickness) for OBI and XVI systems and compared to planning CT (pCT) (GE LightSpeed). Various clinical protocols were analyzed for the OBI and XVI systems and analyzed using image quality metrics, including spatial resolution, low contrast detectability, uniformity, and HU sensitivity. Imaging dose measurements were acquired in Wellhofer Scanditronix i'mRT phantom at nominal phantom diameter and with additional 4 cm phantom diameter using GafChromic XRQA2 film. Calibration curves were generated using previously published in-air Air Kerma calibration method. Results: The OBI system full trajectory scans exhibited very little dependence on phantom thickness for accurate HU calculation, while half-trajectory scans with full-fan filter exhibited dependence of HU calculation on phantom thickness. The contrast-to-noise ratio (CNR) for the OBI scans decreased with additional phantom thickness. The uniformity of Head protocol scan was most significantly affected with additional phantom thickness. The spatial resolution and CNR compared favorably with pCT, while the uniformity of the OBI system was slightly inferior to pCT. The OBI scan protocol dose levels for nominal phantom thickness at the central portion of the phantom were 2.61, 0.72, and 1.88 cGy, and for additional phantom thickness were 1.95, 0.48, and 1.52 cGy, for the Pelvis, Thorax, and Spotlight protocols, respectively. The XVI system scans exhibited dependence on phantom thickness for accurate HU calculation regardless of trajectory. The CNR for the XVI scans

  14. Evaluation of deformable image registration for contour propagation between CT and cone-beam CT images in adaptive head and neck radiotherapy.

    Science.gov (United States)

    Li, X; Zhang, Y Y; Shi, Y H; Zhou, L H; Zhen, X

    2016-04-29

    Deformable image registration (DIR) is a critical technic in adaptive radiotherapy (ART) to propagate contours between planning computerized tomography (CT) images and treatment CT/Cone-beam CT (CBCT) image to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR) contours mapping, seven intensity-based DIR strategies are tested on the planning CT and weekly CBCT images from six Head & Neck cancer patients who underwent a 6 ∼ 7 weeks intensity-modulated radiation therapy (IMRT). Three similarity metrics, i.e. the Dice similarity coefficient (DSC), the percentage error (PE) and the Hausdorff distance (HD), are employed to measure the agreement between the propagated contours and the physician delineated ground truths. It is found that the performance of all the evaluated DIR algorithms declines as the treatment proceeds. No statistically significant performance difference is observed between different DIR algorithms (p> 0.05), except for the double force demons (DFD) which yields the worst result in terms of DSC and PE. For the metric HD, all the DIR algorithms behaved unsatisfactorily with no statistically significant performance difference (p= 0.273). These findings suggested that special care should be taken when utilizing the intensity-based DIR algorithms involved in this study to deform OAR contours between CT and CBCT, especially for those organs with low contrast. PMID:27259084

  15. Using cone-beam CT projection images to estimate the average and complete trajectory of a fiducial marker moving with respiration

    Science.gov (United States)

    Becker, N.; Smith, W. L.; Quirk, S.; Kay, I.

    2010-12-01

    Stereotactic body radiotherapy of lung cancer often makes use of a static cone-beam CT (CBCT) image to localize a tumor that moves during the respiratory cycle. In this work, we developed an algorithm to estimate the average and complete trajectory of an implanted fiducial marker from the raw CBCT projection data. After labeling the CBCT projection images based on the breathing phase of the fiducial marker, the average trajectory was determined by backprojecting the fiducial position from images of similar phase. To approximate the complete trajectory, a 3D fiducial position is estimated from its position in each CBCT project image as the point on the source-image ray closest to the average position at the same phase. The algorithm was tested with computer simulations as well as phantom experiments using a gold seed implanted in a programmable phantom capable of variable motion. Simulation testing was done on 120 realistic breathing patterns, half of which contained hysteresis. The average trajectory was reconstructed with an average root mean square (rms) error of less than 0.1 mm in all three directions, and a maximum error of 0.5 mm. The complete trajectory reconstruction had a mean rms error of less than 0.2 mm, with a maximum error of 4.07 mm. The phantom study was conducted using five different respiratory patterns with the amplitudes of 1.3 and 2.6 cm programmed into the motion phantom. These complete trajectories were reconstructed with an average rms error of 0.4 mm. There is motion information present in the raw CBCT dataset that can be exploited with the use of an implanted fiducial marker to sub-millimeter accuracy. This algorithm could ultimately supply the internal motion of a lung tumor at the treatment unit from the same dataset currently used for patient setup.

  16. Using cone-beam CT projection images to estimate the average and complete trajectory of a fiducial marker moving with respiration

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N; Smith, W L; Quirk, S [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Kay, I, E-mail: nathan.becker@albertahealthservices.ab.c [Medical Physics, Cape Breton Cancer Centre, Sydney, Nova Scotia (Canada)

    2010-12-21

    Stereotactic body radiotherapy of lung cancer often makes use of a static cone-beam CT (CBCT) image to localize a tumor that moves during the respiratory cycle. In this work, we developed an algorithm to estimate the average and complete trajectory of an implanted fiducial marker from the raw CBCT projection data. After labeling the CBCT projection images based on the breathing phase of the fiducial marker, the average trajectory was determined by backprojecting the fiducial position from images of similar phase. To approximate the complete trajectory, a 3D fiducial position is estimated from its position in each CBCT project image as the point on the source-image ray closest to the average position at the same phase. The algorithm was tested with computer simulations as well as phantom experiments using a gold seed implanted in a programmable phantom capable of variable motion. Simulation testing was done on 120 realistic breathing patterns, half of which contained hysteresis. The average trajectory was reconstructed with an average root mean square (rms) error of less than 0.1 mm in all three directions, and a maximum error of 0.5 mm. The complete trajectory reconstruction had a mean rms error of less than 0.2 mm, with a maximum error of 4.07 mm. The phantom study was conducted using five different respiratory patterns with the amplitudes of 1.3 and 2.6 cm programmed into the motion phantom. These complete trajectories were reconstructed with an average rms error of 0.4 mm. There is motion information present in the raw CBCT dataset that can be exploited with the use of an implanted fiducial marker to sub-millimeter accuracy. This algorithm could ultimately supply the internal motion of a lung tumor at the treatment unit from the same dataset currently used for patient setup.

  17. Evaluation of craniofacial asymmetry based on cone-beam CT image%应用锥束计算机体层摄影术评价颅颌面的不对称

    Institute of Scientific and Technical Information of China (English)

    张晓芸; 许天民

    2013-01-01

    Cone-beam CT ( CBCT) was developed for the three-dimensional (3D) imaging of the max-illofacial area and has become popular in dentistry, orthodontics, and maxillofacial surgery. The advantages of CBCT include less radiation exposure (than conventional CT) , less artifacts, and submillimeter spatial resolution. CBCT has been shown to produce accurate 3D images of the craniofacial region and a 1 -to-1 image-to-reality ratio, which has greatly reduced errors of frontal cephalometry and improved our a-bility to diagnose asymmetry. Several new analyses to diagnose asymmetries on 3D images described in recent literature were reviewed, including 3D linear and angular measurements, mirror-image analysis ( superimposition of the mirror image of the anatomically correct part of the anatomy over the deformity) , 3D cephalometric analysis based on constructing an individual coordinate system for each facial unit or element (local coordinate systems) to differentiate them from the world coordinate system ( whole head orientation) , and method of application of asymmetry indices.

  18. Optimizing cone beam CT scatter estimation in egs_cbct for a clinical and virtual chest phantom

    DEFF Research Database (Denmark)

    Slot Thing, Rune; Mainegra-Hing, Ernesto

    2014-01-01

    PURPOSE: Cone beam computed tomography (CBCT) image quality suffers from contamination from scattered photons in the projection images. Monte Carlo simulations are a powerful tool to investigate the properties of scattered photons.egs_cbct, a recent EGSnrc user code, provides the ability...

  19. Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector

    International Nuclear Information System (INIS)

    Purpose: To investigate the effect of the number of projection views on image noise in cone-beam CT (CBCT) with a flat-panel detector. Methods: This fairly fundamental consideration in CBCT system design and operation was addressed experimentally (using a phantom presenting a uniform medium as well as statistically motivated “clutter”) and theoretically (using a cascaded systems model describing CBCT noise) to elucidate the contributing factors of quantum noise (σQ), electronic noise (σE), and view aliasing (σview). Analysis included investigation of the noise, noise-power spectrum, and modulation transfer function as a function of the number of projections (Nproj), dose (Dtot), and voxel size (bvox). Results: The results reveal a nonmonotonic relationship between image noise andNproj at fixed total dose: for the CBCT system considered, noise decreased with increasing Nproj due to reduction of view sampling effects in the regime Nproj proj due to increased electronic noise. View sampling effects were shown to depend on the heterogeneity of the object in a direct analytical relationship to power-law anatomical clutter of the form κ/f β—and a general model of individual noise components (σQ, σE, and σview) demonstrated agreement with measurements over a broad range in Nproj, Dtot, and bvox. Conclusions: The work elucidates fairly basic elements of CBCT noise in a manner that demonstrates the role of distinct noise components (viz., quantum, electronic, and view sampling noise). For configurations fairly typical of CBCT with a flat-panel detector (FPD), the analysis reveals a “sweet spot” (i.e., minimum noise) in the rangeNproj ∼ 250–350, nearly an order of magnitude lower in Nproj than typical of multidetector CT, owing to the relatively high electronic noise in FPDs. The analysis explicitly relates view aliasing and quantum noise in a manner that includes aspects of the object (“clutter”) and imaging chain (including nonidealities of

  20. Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Tianjin University, Tianjin, China 300072 (China); Gang, G. J. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Siewerdsen, J. H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-06-15

    Purpose: To investigate the effect of the number of projection views on image noise in cone-beam CT (CBCT) with a flat-panel detector. Methods: This fairly fundamental consideration in CBCT system design and operation was addressed experimentally (using a phantom presenting a uniform medium as well as statistically motivated “clutter”) and theoretically (using a cascaded systems model describing CBCT noise) to elucidate the contributing factors of quantum noise (σ{sub Q}), electronic noise (σ{sub E}), and view aliasing (σ{sub view}). Analysis included investigation of the noise, noise-power spectrum, and modulation transfer function as a function of the number of projections (N{sub proj}), dose (D{sub tot}), and voxel size (b{sub vox}). Results: The results reveal a nonmonotonic relationship between image noise andN{sub proj} at fixed total dose: for the CBCT system considered, noise decreased with increasing N{sub proj} due to reduction of view sampling effects in the regime N{sub proj} <∼200, above which noise increased with N{sub proj} due to increased electronic noise. View sampling effects were shown to depend on the heterogeneity of the object in a direct analytical relationship to power-law anatomical clutter of the form κ/f {sup β}—and a general model of individual noise components (σ{sub Q}, σ{sub E}, and σ{sub view}) demonstrated agreement with measurements over a broad range in N{sub proj}, D{sub tot}, and b{sub vox}. Conclusions: The work elucidates fairly basic elements of CBCT noise in a manner that demonstrates the role of distinct noise components (viz., quantum, electronic, and view sampling noise). For configurations fairly typical of CBCT with a flat-panel detector (FPD), the analysis reveals a “sweet spot” (i.e., minimum noise) in the rangeN{sub proj} ∼ 250–350, nearly an order of magnitude lower in N{sub proj} than typical of multidetector CT, owing to the relatively high electronic noise in FPDs. The analysis

  1. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    Energy Technology Data Exchange (ETDEWEB)

    Schoot, A. J. A. J. van de, E-mail: a.j.schootvande@amc.uva.nl; Schooneveldt, G.; Wognum, S.; Stalpers, L. J. A.; Rasch, C. R. N.; Bel, A. [Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Hoogeman, M. S. [Department of Radiation Oncology, Daniel den Hoed Cancer Center, Erasmus Medical Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands); Chai, X. [Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Palo Alto, California 94305 (United States)

    2014-03-15

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used to guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation

  2. Architecture of a high-performance surgical guidance system based on C-arm cone-beam CT: software platform for technical integration and clinical translation

    Science.gov (United States)

    Uneri, Ali; Schafer, Sebastian; Mirota, Daniel; Nithiananthan, Sajendra; Otake, Yoshito; Reaungamornrat, Sureerat; Yoo, Jongheun; Stayman, J. Webster; Reh, Douglas; Gallia, Gary L.; Khanna, A. Jay; Hager, Gregory; Taylor, Russell H.; Kleinszig, Gerhard; Siewerdsen, Jeffrey H.

    2011-03-01

    Intraoperative imaging modalities are becoming more prevalent in recent years, and the need for integration of these modalities with surgical guidance is rising, creating new possibilities as well as challenges. In the context of such emerging technologies and new clinical applications, a software architecture for cone-beam CT (CBCT) guided surgery has been developed with emphasis on binding open-source surgical navigation libraries and integrating intraoperative CBCT with novel, application-specific registration and guidance technologies. The architecture design is focused on accelerating translation of task-specific technical development in a wide range of applications, including orthopaedic, head-and-neck, and thoracic surgeries. The surgical guidance system is interfaced with a prototype mobile C-arm for high-quality CBCT and through a modular software architecture, integration of different tools and devices consistent with surgical workflow in each of these applications is realized. Specific modules are developed according to the surgical task, such as: 3D-3D rigid or deformable registration of preoperative images, surgical planning data, and up-to-date CBCT images; 3D-2D registration of planning and image data in real-time fluoroscopy and/or digitally reconstructed radiographs (DRRs); compatibility with infrared, electromagnetic, and video-based trackers used individually or in hybrid arrangements; augmented overlay of image and planning data in endoscopic or in-room video; real-time "virtual fluoroscopy" computed from GPU-accelerated DRRs; and multi-modality image display. The platform aims to minimize offline data processing by exposing quantitative tools that analyze and communicate factors of geometric precision. The system was translated to preclinical phantom and cadaver studies for assessment of fiducial (FRE) and target registration error (TRE) showing sub-mm accuracy in targeting and video overlay within intraoperative CBCT. The work culminates in

  3. Localizing intracavitary brachytherapy applicators from cone-beam CT x-ray projections via a novel iterative forward projection matching algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.; Weiss, Elisabeth; Williamson, Jeffrey F. [Department of Radiation Oncology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2011-02-15

    Purpose: To present a novel method for reconstructing the 3D pose (position and orientation) of radio-opaque applicators of known but arbitrary shape from a small set of 2D x-ray projections in support of intraoperative brachytherapy planning. Methods: The generalized iterative forward projection matching (gIFPM) algorithm finds the six degree-of-freedom pose of an arbitrary rigid object by minimizing the sum-of-squared-intensity differences (SSQD) between the computed and experimentally acquired autosegmented projection of the objects. Starting with an initial estimate of the object's pose, gIFPM iteratively refines the pose parameters (3D position and three Euler angles) until the SSQD converges. The object, here specialized to a Fletcher-Weeks intracavitary brachytherapy (ICB) applicator, is represented by a fine mesh of discrete points derived from complex combinatorial geometric models of the actual applicators. Three pairs of computed and measured projection images with known imaging geometry are used. Projection images of an intrauterine tandem and colpostats were acquired from an ACUITY cone-beam CT digital simulator. An image postprocessing step was performed to create blurred binary applicators only images. To quantify gIFPM accuracy, the reconstructed 3D pose of the applicator model was forward projected and overlaid with the measured images and empirically calculated the nearest-neighbor applicator positional difference for each image pair. Results: In the numerical simulations, the tandem and colpostats positions (x,y,z) and orientations ({alpha},{beta},{gamma}) were estimated with accuracies of 0.6 mm and 2 deg., respectively. For experimentally acquired images of actual applicators, the residual 2D registration error was less than 1.8 mm for each image pair, corresponding to about 1 mm positioning accuracy at isocenter, with a total computation time of less than 1.5 min on a 1 GHz processor. Conclusions: This work describes a novel, accurate

  4. Application of cone-beam CT technology in radiation therapy%锥形束CT在放射治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    王为

    2011-01-01

    影像引导下的放射治疗是近年来出现的一种治疗恶性肿瘤的新技术,而锥形束CT既是一种全新的CT成像技术,又是影像引导下放射治疗系统的关键设备.本文介绍锥形束CT的基本原理及其在放射治疗中的应用现状和研究进展情况,并对锥形束CT图像后处理技术进行综述.%Image-guided radiation therapy has become a brand-new technology for treating cancer in recent years. Conebeam CT is not only a new kind of CT imaging technology, but also the key equipment in the image-guided radiation therapy system. This article introduced the basic principle of cone-beam CT and its application and research progress in radiation therapy, as well as the cone-beam CT image processing techniques.

  5. Development and validation of a hybrid simulation technique for cone beam CT: application to an oral imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G; Marshall, N; Shaheen, E; Bosmans, H [Department of Radiology, University Hospitals Leuven, Herestraat 49, Leuven 3000 (Belgium); Pauwels, R; Jacobs, R [Oral Imaging Center, University Hospitals Leuven, Kapucijnenvoer 33, Leuven 3000 (Belgium); Nuyts, J, E-mail: guozhi.zhang@med.kuleuven.be [Department of Nuclear Medicine, University Hospitals Leuven, Herestraat 49, Leuven 3000 (Belgium)

    2011-09-21

    This paper proposes a hybrid technique to simulate the complete chain of an oral cone beam computed tomography (CBCT) system for the study of both radiation dose and image quality. The model was developed around a 3D Accuitomo 170 unit (J Morita, Japan) with a tube potential range of 60-90 kV. The Monte Carlo technique was adopted to simulate the x-ray generation, filtration and collimation. Exact dimensions of the bow-tie filter were estimated iteratively using experimentally acquired flood images. Non-flat radiation fields for different exposure settings were mediated via 'phase spaces'. Primary projection images were obtained by ray tracing at discrete energies and were fused according to the two-dimensional energy modulation templates derived from the phase space. Coarse Monte Carlo simulations were performed for scatter projections and the resulting noisy images were smoothed by Richardson-Lucy fitting. Resolution and noise characteristics of the flat panel detector were included using the measured modulation transfer function (MTF) and the noise power spectrum (NPS), respectively. The Monte Carlo dose calculation was calibrated in terms of kerma free-in-air about the isocenter, using an ionization chamber, and was subsequently validated by comparison against the measured air kerma in water at various positions of a cylindrical water phantom. The resulting dose discrepancies were found <10% for most cases. Intensity profiles of the experimentally acquired and simulated projection images of the water phantom showed comparable fractional increase over the common area as changing from a small to a large field of view, suggesting that the scatter was accurately accounted. Image validation was conducted using two small phantoms and the built-in quality assurance protocol of the system. The reconstructed simulated images showed high resemblance on contrast resolution, noise appearance and artifact pattern in comparison to experimentally acquired images

  6. Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head

    Science.gov (United States)

    Xu, Jennifer; Sisniega, Alejandro; Zbijewski, Wojciech; Dang, Hao; Webster Stayman, J.; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassillis E.; Siewerdsen, Jeffrey H.

    2016-08-01

    The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5–20% depending on bowtie thickness, but reduced CNR in the periphery by ~10–40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180°  +  fan angle) scan

  7. Tracker-on-C for cone-beam CT-guided surgery: evaluation of geometric accuracy and clinical applications

    Science.gov (United States)

    Reaungamornrat, S.; Otake, Y.; Uneri, A.; Schafer, S.; Mirota, D. J.; Nithiananthan, S.; Stayman, J. W.; Khanna, A. J.; Reh, D. D.; Gallia, G. L.; Taylor, R. H.; Siewerdsen, J. H.

    2012-02-01

    Conventional surgical tracking configurations carry a variety of limitations in line-of-sight, geometric accuracy, and mismatch with the surgeon's perspective (for video augmentation). With increasing utilization of mobile C-arms, particularly those allowing cone-beam CT (CBCT), there is opportunity to better integrate surgical trackers at bedside to address such limitations. This paper describes a tracker configuration in which the tracker is mounted directly on the Carm. To maintain registration within a dynamic coordinate system, a reference marker visible across the full C-arm rotation is implemented, and the "Tracker-on-C" configuration is shown to provide improved target registration error (TRE) over a conventional in-room setup - (0.9+/-0.4) mm vs (1.9+/-0.7) mm, respectively. The system also can generate digitally reconstructed radiographs (DRRs) from the perspective of a tracked tool ("x-ray flashlight"), the tracker, or the C-arm ("virtual fluoroscopy"), with geometric accuracy in virtual fluoroscopy of (0.4+/-0.2) mm. Using a video-based tracker, planning data and DRRs can be superimposed on the video scene from a natural perspective over the surgical field, with geometric accuracy (0.8+/-0.3) pixels for planning data overlay and (0.6+/-0.4) pixels for DRR overlay across all C-arm angles. The field-of-view of fluoroscopy or CBCT can also be overlaid on real-time video ("Virtual Field Light") to assist C-arm positioning. The fixed transformation between the x-ray image and tracker facilitated quick, accurate intraoperative registration. The workflow and precision associated with a variety of realistic surgical tasks were significantly improved using the Tracker-on-C - for example, nearly a factor of 2 reduction in time required for C-arm positioning, reduction or elimination of dose in "hunting" for a specific fluoroscopic view, and confident placement of the x-ray FOV on the surgical target. The proposed configuration streamlines the integration of C

  8. Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head

    Science.gov (United States)

    Xu, Jennifer; Sisniega, Alejandro; Zbijewski, Wojciech; Dang, Hao; Webster Stayman, J.; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassillis E.; Siewerdsen, Jeffrey H.

    2016-08-01

    The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5-20% depending on bowtie thickness, but reduced CNR in the periphery by ~10-40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180°  +  fan angle) scan centered

  9. TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma

    Energy Technology Data Exchange (ETDEWEB)

    Sisniega, A; Zbijewski, W; Stayman, J [Department of Biomedical Engineering, Johns Hopkins University (United States); Yorkston, J [Carestream Health (United States); Aygun, N [Department of Radiology, Johns Hopkins University (United States); Koliatsos, V [Department of Neurology, Johns Hopkins University (United States); Siewerdsen, J [Department of Biomedical Engineering, Johns Hopkins University (United States); Department of Radiology, Johns Hopkins University (United States)

    2014-06-15

    Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced for additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain

  10. Research progress in the application of cone beam CT to periodontics%锥形束CT在牙周病学中的研究进展

    Institute of Scientific and Technical Information of China (English)

    赵海礁; 潘亚萍

    2011-01-01

    锥形束CT(cone-beam computed tomography,CBCT)是目前较有力的牙周病辅助检查方式之一.研究发现,CBCT检查可促进牙周病的诊断、治疗及预后的评价等.近年来,CBCT在牙周病学中的重要作用备受关注本文将对CBCT的成像原理及其在牙周领域中的研究进展进行简要阐述.

  11. New Developments of exact Cone-beam CT Reconstruction Algorithms%锥束CT精确重建算法研究最新进展

    Institute of Scientific and Technical Information of China (English)

    陈志强; 李亮; 康克军; 张丽

    2005-01-01

    第八届三维图像重建及核医疗学国际会议于2005年7月在美国盐湖城召开.该会议是在CT、PET及SPECT图像重建领域最负盛名的会议之一.本文主要介绍在本次会议上提出的几种最新锥束CT精确重建算法,包括MD-FBP算法、R-line算法等;还讨论了这两种精确锥束重建算法的各自优点,并对CT图像重建领域下一步的研究方向做了展望.%The international meeting on fully three-dimensional image reconstruction meeting in radiology and nuclear medicine was hold in July 2005, USA. It is one of the most famous meetings in CT, PET and SPECT image reconstruction field. This paper introduces some novel developments in PET, SPECT and CT imaging upon this meeting. According to our interest, we focus on exact cone-beam CT reconstruction including Minimum data filtered-backprojection algorithm (MD-FBP), the R-line algorithm and so on. In the end, we discuss the different advantages of the above two exact algorithms and research prospects in cone-beam reconstruction.

  12. Evaluation of the resolving potency of a novel reconstruction filter on periodontal ligament space with dental cone-beam CT: a quantitative phantom study

    Science.gov (United States)

    Houno, Yuuki; Hishikawa, Toshimitsu; Gotoh, Ken-ichi; Naitoh, Munetaka; Ariji, Eiichiro; Kodera, Yoshie

    2014-03-01

    Diagnosis of the alveolar bone condition is important for the treatment planning of periodontal disease. Especially the determination of periodontal ligament space is the most important remark because it represents the periodontal tissue support for tooth retention. However, owing to the image blur of the current cone-beam CT (CBCT) imaging technique, the periodontal ligament space is difficult to visualize. In this study, we developed an original periodontal ligament phantom (PLP) and evaluated the image quality of simulated periodontal ligament space using a novel reconstruction filter for CBCT that emphasized high frequency component. PLP was composed from two resin blocks of different materials, the bone equivalent block and the dentine equivalent block. They were assembled to make continuously changing space from 0.0 to 1.0 millimeter that mimics periodontal ligament space. PLP was placed in water and the image was obtained by using Alphard-3030 dental cone-beam CT (Asahi Roentgen Industry Co., Ltd.). Then we reconstructed the projection data with a novel reconstruction filter. The axial images were compared with conventional reconstructed images. In novel filter reconstruction images, 0.4 millimeter of the space width was steadily detected by calculation of pixel value, on the other hand 0.6 millimeter was in conventional images. With our method, the resolving potency of conebeam CT images was improved.

  13. Reconstruction of brachytherapy seed positions and orientations from cone-beam CT x-ray projections via a novel iterative forward projection matching method

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.; Weiss, Elisabeth; Williamson, Jeffrey F. [Department of Radiation Oncology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2011-01-15

    Purpose: To generalize and experimentally validate a novel algorithm for reconstructing the 3D pose (position and orientation) of implanted brachytherapy seeds from a set of a few measured 2D cone-beam CT (CBCT) x-ray projections. Methods: The iterative forward projection matching (IFPM) algorithm was generalized to reconstruct the 3D pose, as well as the centroid, of brachytherapy seeds from three to ten measured 2D projections. The gIFPM algorithm finds the set of seed poses that minimizes the sum-of-squared-difference of the pixel-by-pixel intensities between computed and measured autosegmented radiographic projections of the implant. Numerical simulations of clinically realistic brachytherapy seed configurations were performed to demonstrate the proof of principle. An in-house machined brachytherapy phantom, which supports precise specification of seed position and orientation at known values for simulated implant geometries, was used to experimentally validate this algorithm. The phantom was scanned on an ACUITY CBCT digital simulator over a full 660 sinogram projections. Three to ten x-ray images were selected from the full set of CBCT sinogram projections and postprocessed to create binary seed-only images. Results: In the numerical simulations, seed reconstruction position and orientation errors were approximately 0.6 mm and 5 deg., respectively. The physical phantom measurements demonstrated an absolute positional accuracy of (0.78{+-}0.57) mm or less. The {theta} and {phi} angle errors were found to be (5.7{+-}4.9) deg. and (6.0{+-}4.1) deg., respectively, or less when using three projections; with six projections, results were slightly better. The mean registration error was better than 1 mm/6 deg. compared to the measured seed projections. Each test trial converged in 10-20 iterations with computation time of 12-18 min/iteration on a 1 GHz processor. Conclusions: This work describes a novel, accurate, and completely automatic method for reconstructing

  14. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia); Hugo, Geoffrey; Weiss, Elisabeth; Williamson, Jeffrey [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2015-03-15

    Purpose: Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), a novel technique for functional lung imaging. Methods: The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4–6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. Results: The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r{sup -}{sub Inter

  15. Effect of dose reduction on image registration and image quality for cone-beam CT in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Loutfi-Krauss, B.; Koehn, J.; Bluemer, N.; Kara, E.; Scherf, C.; Roedel, C.; Ramm, U.; Licher, J. [Universitaetsklinikum Frankfurt, Klinik fuer Strahlentherapie und Onkologie, Frankfurt am Main (Germany); Freundl, K.; Koch, T. [Sozialstiftung Bamberg - MVZ am Bruderwald, Klinik und Praxis fuer Radioonkologie und Strahlentherapie, Bamberg (Germany)

    2014-09-20

    The additional radiation exposure applied to patients undergoing cone-beam computed tomography (CBCT) for image registration in radiation therapy is of great concern. Since a decrease in CBCT dose is linked to a degradation of image quality, the consequences of dose reduction on the registration process have to be investigated. This paper examines image quality and registration of low-contrast structures on an Elekta XVI for the two treatment areas prostate and chest while gradually decreasing the mAs per frame and the number of projections per CBCT to achieve dose reduction. Ideal results for image quality were obtained for 1.6 mAs/frame and 377 projections in prostate scans and 0.63 mAs/frame and 440 projections in chest images. Lower as well as higher total mAs lead to a decrease in image quality. In spite of poor image quality, registration can be successfully performed even for lowest possible settings. The results for registration allow an extensive dose reduction in both treatment areas. Very low mAs, however, do not qualify for clinical use because subjective judgment of the registration process is impossible. Compared to default presets the use of settings for acceptable image quality already permit a decrease in exposure of about 40 % (29.0 to 16.7 mGy) in prostate scans and 60 % (18.3 to 7.7 mGy) in chest scans. (orig.) [German] Die zusaetzliche Strahlenbelastung von Patienten bei der Lagerungskontrolle mit einer Kegelstrahl-Computertomographie (CBCT) in der Strahlentherapie ist nicht zu vernachlaessigen. Die Reduzierung der Dosis durch das CBCT ist mit einer Verschlechterung der Bildqualitaet verbunden. Aus diesem Grund ist die Untersuchung der Effekte einer Dosisreduktion von grosser Bedeutung. Diese Arbeit untersucht die Bildqualitaet und Bildregistrierung in Bereichen niedrigen Kontrasts mit einem Kegelstrahl CT der Firma Elekta. Betrachtet werden die Behandlungsregionen Prostata und Thorax. Die Dosisreduktion wird durch stufenweise Verringerung der

  16. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: Prospective study in lung

    International Nuclear Information System (INIS)

    Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image

  17. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: Prospective study in lung

    Energy Technology Data Exchange (ETDEWEB)

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S., E-mail: magerasg@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States); Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States)

    2014-10-15

    Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image

  18. A simple method for the quality control of the isocenter of cone beam CT for Elekta Accelerator system Synery; Un metodo sencillo para el control de calidad del isocentro del sistema Cone Beam CT para un acelerador Elekta Synery

    Energy Technology Data Exchange (ETDEWEB)

    Clemente Gutierrez, F.; Perez Vara, C.; Prieto Villacorta, M.

    2013-07-01

    Techniques of image-guided radiation therapy has been spreading over the past years. Cone-beam tomography systems constitute a particular case. As any team that employs ionizing radiation in the diagnosis or treatment of patients, such a system must be seen within a guarantee program of quality according to the recommendations and regulations. In particular, between geometric proofs referred to in such a program for these systems, must be referred to the verification of the coincidence between the isocentres of the treatment unit and the team's image. This work includes the weekly procedure followed for such verification. (Author)

  19. SU-E-J-72: Dosimetric Study of Cone-Beam CT-Based Radiation Treatment Planning Using a Patient-Specific Stepwise CT-Density Table

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S; Le, Q; Mutaf, Y; Yi, B; D’Souza, W [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To assess dose calculation accuracy of cone-beam CT (CBCT) based treatment plans using a patient-specific stepwise CT-density conversion table in comparison to conventional CT-based treatment plans. Methods: Unlike CT-based treatment planning which use fixed CT-density table, this study used patient-specific CT-density table to minimize the errors in reconstructed mass densities due to the effects of CBCT Hounsfield unit (HU) uncertainties. The patient-specific CT-density table was a stepwise function which maps HUs to only 6 classes of materials with different mass densities: air (0.00121g/cm3), lung (0.26g/cm3), adipose (0.95g/cm3), tissue (1.05 g/cm3), cartilage/bone (1.6g/cm3), and other (3g/cm3). HU thresholds to define different materials were adjusted for each CBCT via best match with the known tissue types in these images. Dose distributions were compared between CT-based plans and CBCT-based plans (IMRT/VMAT) for four types of treatment sites: head and neck (HN), lung, pancreas, and pelvis. For dosimetric comparison, PTV mean dose in both plans were compared. A gamma analysis was also performed to directly compare dosimetry in the two plans. Results: Compared to CT-based plans, the differences for PTV mean dose were 0.1% for pelvis, 1.1% for pancreas, 1.8% for lung, and −2.5% for HN in CBCT-based plans. The gamma passing rate was 99.8% for pelvis, 99.6% for pancreas, and 99.3% for lung with 3%/3mm criteria, and 80.5% for head and neck with 5%/3mm criteria. Different dosimetry accuracy level was observed: 1% for pelvis, 3% for lung and pancreas, and 5% for head and neck. Conclusion: By converting CBCT data to 6 classes of materials for dose calculation, 3% of dose calculation accuracy can be achieved for anatomical sites studied here, except HN which had a 5% accuracy. CBCT-based treatment planning using a patient-specific stepwise CT-density table can facilitate the evaluation of dosimetry changes resulting from variation in patient anatomy.

  20. Clinical application of cone beam CT in ambush impacted tooth diagnosis and treatment%CBCT在埋伏阻生牙诊断及治疗中的临床应用

    Institute of Scientific and Technical Information of China (English)

    孔娟; 秦晓中; 任晓旭

    2013-01-01

    Objective: To investigate the value of diagnosisand treatment of the ambush impacted teeth in jaw bones by Cone beam CT. Method; Cone beam CT was applied to localize impacted teeth in jaw bones in 28 cases that can not be localized exactly by Oral panoramic and occlusal film. Preoperative Scaned for all patients with cone beam CT to get high resolution image in preoperation?and use special software for accurate positioning. Result: Cone beam CT was applied tolocalizeexactly in 28 cases of impacted teeth in jaw bones.The impacted teeth in jaw bones were successfully removed or traction to correct position. Conclusion: Cone beam CT is an effective method to check impacted teeth.Cone-beam CT has an important guiding value in removing impacted teeth.%目的:评价锥体束CT(CBCT)在埋伏牙诊断及治疗中的临床应用价值.方法:选择常规全颌曲面断层片和X线牙片不能准确定位的埋伏阻生牙28例,术前对所有患者进行CBCT扫描获得高分辨率影像,并使用专用软件进行准确定位.结果:28颗埋伏阻生牙均被精确定位,采用最佳手术入路后,均顺利拔除或成功牵引至正确位置.结论:CBCT是判断埋伏阻生牙准确位置的有效方法,在埋伏阻生牙诊断及治疗中有重要的临床应用价值.

  1. SU-C-207-03: Optimization of a Collimator-Based Sparse Sampling Technique for Low-Dose Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T; Cho, S [KAIST, Daejon (Korea, Republic of); Kim, I; Han, B [EB Tech Co., Ltd., Daejeon (Korea, Republic of)

    2015-06-15

    Purpose: In computed tomography (CT) imaging, radiation dose delivered to the patient is one of the major concerns. Sparse-view CT takes projections at sparser view angles and provides a viable option to reducing dose. However, a fast power switching of an X-ray tube, which is needed for the sparse-view sampling, can be challenging in many CT systems. We have earlier proposed a many-view under-sampling (MVUS) technique as an alternative to sparse-view CT. In this study, we investigated the effects of collimator parameters on the image quality and aimed to optimize the collimator design. Methods: We used a bench-top circular cone-beam CT system together with a CatPhan600 phantom, and took 1440 projections from a single rotation. The multi-slit collimator made of tungsten was mounted on the X-ray source for beam blocking. For image reconstruction, we used a total-variation minimization (TV) algorithm and modified the backprojection step so that only the measured data through the collimator slits are to be used in the computation. The number of slits and the reciprocation frequency have been varied and the effects of them on the image quality were investigated. We also analyzed the sampling efficiency: the sampling density and data incoherence in each case. We tested three sets of slits with their number of 6, 12 and 18, each at reciprocation frequencies of 10, 30, 50 and 70 Hz/ro. Results: Consistent results in the image quality have been produced with the sampling efficiency, and the optimum condition was found to be using 12 slits at 30 Hz/ro. As image quality indices, we used the CNR and the detectability. Conclusion: We conducted an experiment with a moving multi-slit collimator to realize a sparse-sampled cone-beam CT. Effects of collimator parameters on the image quality have been systematically investigated, and the optimum condition has been reached.

  2. X-ray flat-panel imager (FPI)-based cone-beam volume CT (CBVCT) under a circle-plus-two-arc data acquisition orbit

    Science.gov (United States)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    2001-06-01

    The potential of cone beam volume CT (CBVCT) to improve the data acquisition efficiency for volume tomographic imaging is well recognized. A novel x-ray FPI based CBVCT prototype and its preliminary performance evaluation are presented in this paper. To meet the data sufficiency condition, the CBVCT prototype employs a circle-plus-two-arc orbit accomplished by a tiltable circular gantry. A cone beam filtered back-projection (CB-FBP) algorithm is derived for this data acquisition orbit, which employs a window function in the Radon domain to exclude the redundancy between the Radon information obtained from the circular cone beam (CB) data and that from the arc CB data. The number of projection images along the circular sub-orbit and each arc sub-orbit is 512 and 43, respectively. The reconstruction exactness of the prototype x-ray FPI based CBVCT system is evaluated using a disc phantom in which seven acrylic discs are stacked at fixed intervals. Images reconstructed with this algorithm show that both the contrast and geometric distortion existing in the disc phantom images reconstructed by the Feldkamp algorithm are substantially reduced. Meanwhile, the imaging performance of the prototype, such as modulation transfer function (MTF) and low contrast resolution, are quantitatively evaluated in detail through corresponding phantom studies. Furthermore, the capability of the prototype to reconstruct an ROI within a longitudinally unbounded object is verified. The results obtained from this preliminary performance evaluation encourage an expectation of medical applications of the x-ray FPI based CBVCT under the circle-plus-two-arc data acquisition, particularly the application in image-guided interventional procedures and radiotherapy where the movement of a patient table is to be avoided.

  3. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, Uros; Herk, Marcel van; Ploeger, Lennert S.; Sonke, Jan-Jakob, E-mail: j.sonke@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX (Netherlands)

    2014-06-15

    Purpose: Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. Methods: The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different

  4. Dual-energy cone-beam CT with a flat-panel detector: Effect of reconstruction algorithm on material classification

    Energy Technology Data Exchange (ETDEWEB)

    Zbijewski, W., E-mail: wzbijewski@jhu.edu; Gang, G. J.; Xu, J.; Wang, A. S.; Stayman, J. W. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Taguchi, K.; Carrino, J. A. [Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-02-15

    Purpose: Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. Methods: Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50–200 mg/ml, 3–28.4 mm diameter) and solid iodine inserts (2–10 mg/ml, 3–28.4 mm diameter), as well as a cadaveric knee with intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. Results: Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼88% for FBP and PLQ, and ∼95% for PLTV at 3.1 mGy total dose, increasing to ∼95% for FBP and PLQ, and ∼98% for PLTV at 15.6 mGy total dose. For a

  5. Combined Fluoroscopy- and CT-Guided Transthoracic Needle Biopsy Using a C-Arm Cone-Beam CT System: Comparison with Fluoroscopy-Guided Biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Joo Yeon; Kim, Yoo Kyung; Shim, Sung Shine; Lim, Soo Mee [School of Medicine, Ewha Womans University, Seoul (Korea, Republic of)

    2011-02-15

    The aim of this study was to evaluate the usefulness of combined fluoroscopy- and CT-guided transthoracic needle biopsy (FC-TNB) using a cone beam CT system in comparison to fluoroscopy-guided TNB (F-TNB). We retrospectively evaluated 74 FC-TNB cases (group A) and 97 F-TNB cases (group B) to compare their respective diagnostic accuracies according to the size and depth of the lesion, as well as complications, procedure time, and radiation dose. The sensitivity for malignancy and diagnostic accuracy for small (< 30 mm in size) and deep ({>=} 50 mm in depth) lesions were higher in group A (91% and 94%, 92% and 94%) than in group B (73% and 81%, 84% and 88%), however not statistically significant (p > 0.05). Concerning lesions {>=} 30 mm in size and < 50 mm in depth, both groups displayed similar results (group A, 91% and 92%, 80% and 87%: group B, 90% and 92%, 86% and 90%). Pneumothorax occurred 26% of the time in group A and 14% for group B. The mean procedure time and patient skin dose were significantly higher in group A (13.6 {+-} 4.0 minutes, 157.1 {+-} 76.5 mGy) than in group B (9.0 {+-} 3.5 minutes, 21.9 {+-} 15.2 mGy) (p < 0.05). Combined fluoroscopy- and CT-guided TNB allows the biopsy of small (< 30 mm) and deep lesions ({>=} 50 mm) with high diagnostic accuracy and short procedure times, whereas F-TNB is still a useful method for large and superficial lesions with a low radiation dose

  6. Comparison of physical quality assurance between Scanora 3D and 3D Accuitomo 80 dental CT scanners

    Directory of Open Access Journals (Sweden)

    Ahmed S. Ali

    2015-06-01

    Full Text Available Background: The use of cone beam computed tomography (CBCT in dentistry has proven to be useful in the diagnosis and treatment planning of several oral and maxillofacial diseases. The quality of the resulting image is dictated by many factors related to the patient, unit, and operator. Materials and methods: In this work, two dental CBCT units, namely Scanora 3D and 3D Accuitomo 80, were assessed and compared in terms of quantitative effective dose delivered to specific locations in a dosimetry phantom. Resolution and contrast were evaluated in only 3D Accuitomo 80 using special quality assurance phantoms. Results: Scanora 3D, with less radiation time, showed less dosing values compared to 3D Accuitomo 80 (mean 0.33 mSv, SD±0.16 vs. 0.18 mSv, SD±0.1. Using paired t-test, no significant difference was found in Accuitomo two scan sessions (p>0.05, while it was highly significant in Scanora (p>0.05. The modulation transfer function value (at 2 lp/mm, in both measurements, was found to be 4.4%. The contrast assessment of 3D Accuitomo 80 in the two measurements showed few differences, for example, the grayscale values were the same (SD=0 while the noise level was slightly different (SD=0 and 0.67, respectively. Conclusions: The radiation dose values in these two CBCT units are significantly less than those encountered in systemic CT scans. However, the dose seems to be affected more by changing the field of view rather than the voltage or amperage. The low doses were at the expense of the image quality produced, which was still acceptable. Although the spatial resolution and contrast were inferior to the medical images produced in systemic CT units, the present results recommend adopting CBCTs in maxillofacial imaging because of low radiation dose and adequate image quality.

  7. An Investigation into the Correlation between the Density of Alveolar Bone around Micro-screws and Their Stability with Cone-Beam CT%利用Cone-Beam CT探讨支抗微螺钉周围骨密度与其稳定性的关系

    Institute of Scientific and Technical Information of China (English)

    秦璐; 邵奕奕; 赵颖

    2013-01-01

    目的:利用Cone-Beam CT测量支抗微螺钉周围骨密度值,探讨其与微螺钉稳定性的关系.方法:选取颌骨左右对称植入微螺钉后一侧松动而另一侧稳固的7名(共18枚微螺钉)正畸患者.拍摄CBCT,所得三维影像重建后用OnDemand 3D Application软件对微螺钉骨内部分周围2 mm范围内骨密度(以Hounsfield Unit表示)进行测量,自身对照比较分析双侧对称部位所植入微螺钉周围骨密度测量值间的差异.结果:松动微螺钉与稳定微螺钉骨内部分周围2 mm范围内骨密度无统计学差异,两侧微螺钉钉尖部1/3、钉中部1/3及钉颈部1/3周围骨密度均无统计学差异.结论:微螺钉种植支抗的稳定性与其周围骨密度间未发现明显相关性.%Objective:To study the relationship between the bone mineral density around micro-screws and their stability with Cone-Beam CT.Methods:7 patients who received orthodontic treatment with micro-screw anchorage were selected in this retrospective study.All of them had micro-screws implanted into symmetric locations,one screw became flexible while the other one stable.The total number of the micro-screws in this research was 18.CBCT films were taken after micro-screw were flexible,the DICOM data were reconstructed via OnDemand 3D Application software.The density of 2mm alveolar bone outside the micro-screws was evaluated,presented in Hounsfiled Unit.The difference of alveolar bone density between the loose and stable micro-screws were analyzed with self-control design.Results:No significant difference of the alveolar bone density outside the micro-screws were detected,no matter in the whole body,the tip,middle or neck area of them.Conclusion:No significant correlation between the alveolar bone density around micro-screwsand their stability was found.

  8. Assessment of CT numbers in limited and medium field-of-view scans taken using Accuitomo 170 and Veraviewepocs 3De cone-beam computed tomography scanners

    International Nuclear Information System (INIS)

    To assess the influence of anatomic location on the relationship between computed tomography (CT) number and X-ray attenuation in limited and medium field-of-view (FOV) scans. Tubes containing solutions with different concentrations of K2HPO4 were placed in the tooth sockets of a human head phantom. Cone-beam computed tomography (CBCT) scans were acquired, and CT numbers of the K2HPO4 solutions were measured. The relationship between CT number and K2HPO4 concentration was examined by linear regression analyses. Then, the variation in CT number according to anatomic location was examined. The relationship between K2HPO4 concentration and CT number was strongly linear. The slopes of the linear regressions for the limited FOVs were almost 2-fold lower than those for the medium FOVs. The absolute CT number differed between imaging protocols and anatomic locations. There is a strong linear relationship between X-ray attenuation and CT number. The specific imaging protocol and anatomic location of the object strongly influence this relationship.

  9. Assessment of CT numbers in limited and medium field-of-view scans taken using Accuitomo 170 and Veraviewepocs 3De cone-beam computed tomography scanners

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Matheus L. [Dept. of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Campinas (Brazil); Tosoni, Guilherme M. [Dept. of Oral Diagnosis and Surgery, Araraquara Dental School, Sao Paulo State University, Araraquara (Brazil); Lindsey, David H.; Mendoza, Kristopher; Tetradis, Sotirios; Mallya, Sanjay M. [Section of Oral and Maxillofacial Radiology, School of Dentistry, University of California, Los Angeles (United States)

    2014-12-15

    To assess the influence of anatomic location on the relationship between computed tomography (CT) number and X-ray attenuation in limited and medium field-of-view (FOV) scans. Tubes containing solutions with different concentrations of K2HPO4 were placed in the tooth sockets of a human head phantom. Cone-beam computed tomography (CBCT) scans were acquired, and CT numbers of the K{sub 2}HPO{sub 4} solutions were measured. The relationship between CT number and K{sub 2}HPO{sub 4} concentration was examined by linear regression analyses. Then, the variation in CT number according to anatomic location was examined. The relationship between K{sub 2}HPO{sub 4} concentration and CT number was strongly linear. The slopes of the linear regressions for the limited FOVs were almost 2-fold lower than those for the medium FOVs. The absolute CT number differed between imaging protocols and anatomic locations. There is a strong linear relationship between X-ray attenuation and CT number. The specific imaging protocol and anatomic location of the object strongly influence this relationship.

  10. SU-E-I-10: Investigation On Detectability of a Small Target for Different Slice Direction of a Volumetric Cone Beam CT Image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C; Han, M; Baek, J [Yonsei University, Incheon (Korea, Republic of)

    2015-06-15

    Purpose: To investigate the detectability of a small target for different slice direction of a volumetric cone beam CT image and its impact on dose reduction. Methods: Analytic projection data of a sphere object (1 mm diameter, 0.2/cm attenuation coefficient) were generated and reconstructed by FDK algorithm. In this work, we compared the detectability of the small target from four different backprojection Methods: hanning weighted ramp filter with linear interpolation (RECON 1), hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON 3), and ramp filter with Fourier interpolation (RECON4), respectively. For noise simulation, 200 photons per measurement were used, and the noise only data were reconstructed using FDK algorithm. For each reconstructed volume, axial and coronal slice were extracted and detection-SNR was calculated using channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels. Results: Detection-SNR of coronal images varies for different backprojection methods, while axial images have a similar detection-SNR. Detection-SNR{sup 2} ratios of coronal and axial images in RECON1 and RECON2 are 1.33 and 1.15, implying that the coronal image has a better detectability than axial image. In other words, using coronal slices for the small target detection can reduce the patient dose about 33% and 15% compared to using axial slices in RECON 1 and RECON 2. Conclusion: In this work, we investigated slice direction dependent detectability of a volumetric cone beam CT image. RECON 1 and RECON 2 produced the highest detection-SNR, with better detectability in coronal slices. These results indicate that it is more beneficial to use coronal slice to improve detectability of a small target in a volumetric cone beam CT image. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Program (NIPA-2014-H0201

  11. Multiple helical scans and the reconstruction of over FOV-sized objects in cone-beam CT

    Institute of Scientific and Technical Information of China (English)

    Han Yu; Yan Bin; Li Lei; Yu Chao-Qun; Li Jian-Xin; Bao Shang-Lian

    2012-01-01

    In cone-beam computed tomography (CBCT),there are often cases where the size of the specimen is larger than the field of view (FOV) (referred to as over FOV-sized (OFS)).To acquire the complete projection data for OFS objects,some scan modes have been developed for long objects and short but over-wide objects.However,these modes still cannot meet the requirements for both longitudinally long and transversely wide objects.In this paper,we propose a multiple helical scan mode and a corresponding reconstruction algorithm for both longitudinally long and transversely wide objects.The simulation results show that our model can deal with the problem and that the results are acceptable,while the OFS object is twice as long compared with the FOV in the same latitude.

  12. Reproducibility of Facial Soft Tissue Thickness Measurements Using Cone-Beam CT Images According to the Measurement Methods.

    Science.gov (United States)

    Hwang, Hyeon-Shik; Choe, Seon-Yeong; Hwang, Ji-Sup; Moon, Da-Nal; Hou, Yanan; Lee, Won-Joon; Wilkinson, Caroline

    2015-07-01

    The purpose of this study was to establish the reproducibility of facial soft tissue (ST) thickness measurements by comparing three different measurement methods applied at 32 landmarks on three-dimensional cone-beam computed tomography (CBCT) images. Two observers carried out the measurements of facial ST thickness of 20 adult subjects using CBCT scan data, and inter- and intra-observer reproducibilities were evaluated. The measurement method of "perpendicular to bone" resulted in high inter- and intra-observer reproducibility at all 32 landmarks. In contrast, the "perpendicular to skin" method and "direct" method, which measures a distance between one point on bone and the other point on skin, presented low reproducibility. The results indicate that reproducibility could be increased by identifying the landmarks on hard tissue images, rather than on ST images, and the landmark description used in this study can be used in the establishment of reliable tissue depth data using CBCT images.

  13. C-arm cone beam CT perfusion imaging using the SMART-RECON algorithm to improve temporal sampling density and temporal resolution

    Science.gov (United States)

    Li, Yinsheng; Niu, Kai; Li, Ke; Schafer, Sebastian; Royalty, Kevin; Strother, Charles; Chen, Guang-Hong

    2016-03-01

    In this work, a newly developed reconstruction algorithm, Synchronized MultiArtifact Reduction with Tomographic RECONstruction (SMART-RECON), was applied to C-arm cone beam CT perfusion (CBCTP) imaging. This algorithm contains a special rank regularizer, designed to reduce limited-view artifacts associated with super- short scan reconstructions. As a result, high temporal sampling and temporal resolution image reconstructions were achieved using an interventional C-arm x-ray system. The algorithm was evaluated in terms of the fidelity of the dynamic contrast update curves and the accuracy of perfusion parameters through numerical simulation studies. Results shows that, not only were the dynamic curves accurately recovered (relative root mean square error ∈ [3%, 5%] compared with [13%, 22%] for FBP), but also the noise in the final perfusion maps was dramatically reduced. Compared with filtered backprojection, SMART-RECON generated CBCTP maps with much improved capability in differentiating lesions with perfusion deficits from the surrounding healthy brain tissues.

  14. Quantification and Assessment of Interfraction Setup Errors Based on Cone Beam CT and Determination of Safety Margins for Radiotherapy.

    Directory of Open Access Journals (Sweden)

    Macarena Cubillos Mesías

    Full Text Available To quantify interfraction patient setup-errors for radiotherapy based on cone-beam computed tomography and suggest safety margins accordingly.Positioning vectors of pre-treatment cone-beam computed tomography for different treatment sites were collected (n = 9504. For each patient group the total average and standard deviation were calculated and the overall mean, systematic and random errors as well as safety margins were determined.The systematic (and random errors in the superior-inferior, left-right and anterior-posterior directions were: for prostate, 2.5(3.0, 2.6(3.9 and 2.9(3.9mm; for prostate bed, 1.7(2.0, 2.2(3.6 and 2.6(3.1mm; for cervix, 2.8(3.4, 2.3(4.6 and 3.2(3.9mm; for rectum, 1.6(3.1, 2.1(2.9 and 2.5(3.8mm; for anal, 1.7(3.7, 2.1(5.1 and 2.5(4.8mm; for head and neck, 1.9(2.3, 1.4(2.0 and 1.7(2.2mm; for brain, 1.0(1.5, 1.1(1.4 and 1.0(1.1mm; and for mediastinum, 3.3(4.6, 2.6(3.7 and 3.5(4.0mm. The CTV-to-PTV margins had the smallest value for brain (3.6, 3.7 and 3.3mm and the largest for mediastinum (11.5, 9.1 and 11.6mm. For pelvic treatments the means (and standard deviations were 7.3 (1.6, 8.5 (0.8 and 9.6 (0.8mm.Systematic and random setup-errors were smaller than 5mm. The largest errors were found for organs with higher motion probability. The suggested safety margins were comparable to published values in previous but often smaller studies.

  15. SU-E-P-41: Imaging Coordination of Cone Beam CT, On-Board Image Conjunction with Optical Image Guidance for SBRT Treatment with Respiratory Motion Management

    International Nuclear Information System (INIS)

    Purpose: To spare normal tissue for SBRT lung/liver patients, especially for patients with significant tumor motion, image guided respiratory motion management has been widely implemented in clinical practice. The purpose of this study was to evaluate imaging coordination of cone beam CT, on-board X-ray image conjunction with optical image guidance for SBRT treatment with motion management. Methods: Currently in our clinic a Varian Novlis Tx was utilized for treating SBRT patients implementing CBCT. A BrainLAB X-ray ExacTrac imaging system in conjunction with optical guidance was primarily used for SRS patients. CBCT and X-ray imaging system were independently calibrated with 1.0 mm tolerance. For SBRT lung/liver patients, the magnitude of tumor motion was measured based-on 4DCT and the measurement was analyzed to determine if patients would be beneficial with respiratory motion management. For patients eligible for motion management, an additional CT with breath holding would be scanned and used as primary planning CT and as reference images for Cone beam CT. During the SBRT treatment, a CBCT with pause and continuing technology would be performed with patients holding breath, which may require 3–4 partially scanned CBCT to combine as a whole CBCT depending on how long patients capable of holding breath. After patients being setup by CBCT images, the ExactTrac X-ray imaging system was implemented with patients’ on-board X-ray images compared to breath holding CT-based DRR. Results: For breath holding patients SBRT treatment, after initially localizing patients with CBCT, we then position patients with ExacTrac X-ray and optical imaging system. The observed deviations of real-time optical guided position average at 3.0, 2.5 and 1.5 mm in longitudinal, vertical and lateral respectively based on 35 treatments. Conclusion: The respiratory motion management clinical practice improved our physician confidence level to give tighter tumor margin for sparing normal

  16. SU-E-P-41: Imaging Coordination of Cone Beam CT, On-Board Image Conjunction with Optical Image Guidance for SBRT Treatment with Respiratory Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Campbell, J [INTEGRIS Cancer Institute of Oklahoma, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: To spare normal tissue for SBRT lung/liver patients, especially for patients with significant tumor motion, image guided respiratory motion management has been widely implemented in clinical practice. The purpose of this study was to evaluate imaging coordination of cone beam CT, on-board X-ray image conjunction with optical image guidance for SBRT treatment with motion management. Methods: Currently in our clinic a Varian Novlis Tx was utilized for treating SBRT patients implementing CBCT. A BrainLAB X-ray ExacTrac imaging system in conjunction with optical guidance was primarily used for SRS patients. CBCT and X-ray imaging system were independently calibrated with 1.0 mm tolerance. For SBRT lung/liver patients, the magnitude of tumor motion was measured based-on 4DCT and the measurement was analyzed to determine if patients would be beneficial with respiratory motion management. For patients eligible for motion management, an additional CT with breath holding would be scanned and used as primary planning CT and as reference images for Cone beam CT. During the SBRT treatment, a CBCT with pause and continuing technology would be performed with patients holding breath, which may require 3–4 partially scanned CBCT to combine as a whole CBCT depending on how long patients capable of holding breath. After patients being setup by CBCT images, the ExactTrac X-ray imaging system was implemented with patients’ on-board X-ray images compared to breath holding CT-based DRR. Results: For breath holding patients SBRT treatment, after initially localizing patients with CBCT, we then position patients with ExacTrac X-ray and optical imaging system. The observed deviations of real-time optical guided position average at 3.0, 2.5 and 1.5 mm in longitudinal, vertical and lateral respectively based on 35 treatments. Conclusion: The respiratory motion management clinical practice improved our physician confidence level to give tighter tumor margin for sparing normal

  17. SU-E-J-214: Comparative Assessment On IGRT On Partial Bladder Cancer Treatment Between CT-On-Rails (CTOR) and KV Cone Beam CT (CBCT)

    Energy Technology Data Exchange (ETDEWEB)

    Lin, T; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-01

    Purpose: Image-Guided radiation therapy(IGRT) depends on reliable online patient-specific anatomy information to address random and progressive anatomy changes. Large margins have been suggested to bladder cancer treatment due to large daily bladder anatomy variation. KV Cone beam CT(CBCT) has been used in IGRT localization prevalently; however, its lack of soft tissue contrast makes clinicians hesitate to perform daily soft tissue alignment with CBCT for partial bladder cancer treatment. This study compares the localization uncertainties of bladder cancer IGRT using CTon- Rails(CTOR) and CBCT. Methods: Three T2N0M0 bladder cancer patients (total of 66 Gy to partial bladder alone) were localized daily with either CTOR or CBCT for their entire treatment course. A total of 71 sets of CTOR and 22 sets of CBCT images were acquired and registered with original planning CT scans by radiation therapists and approved by radiation oncologists for the daily treatment. CTOR scanning entailed 2mm slice thickness, 0.98mm axial voxel size, 120kVp and 240mAs. CBCT used a half fan pelvis protocol from Varian OBI system with 2mm slice thickness, 0.98axial voxel size, 125kVp, and 680mAs. Daily localization distribution was compared. Accuracy of CTOR and CBCT on partial bladder alignment was also evaluated by comparing bladder PTV coverage. Results: 1cm all around PTV margins were used in every patient except target superior limit margin to 0mm due to bowel constraint. Daily shifts on CTOR averaged to 0.48, 0.24, 0.19 mms(SI,Lat,AP directions); CBCT averaged to 0.43, 0.09, 0.19 mms(SI,Lat,AP directions). The CTOR daily localization showed superior results of V100% of PTV(102% CTOR vs. 89% CBCT) and bowel(Dmax 69.5Gy vs. 78Gy CBCT). CTOR images showed much higher contrast on bladder PTV alignment. Conclusion: CTOR daily localization for IGRT is more dosimetrically beneficial for partial bladder cancer treatment than kV CBCT localization and provided better soft tissue PTV

  18. SU-E-J-214: Comparative Assessment On IGRT On Partial Bladder Cancer Treatment Between CT-On-Rails (CTOR) and KV Cone Beam CT (CBCT)

    International Nuclear Information System (INIS)

    Purpose: Image-Guided radiation therapy(IGRT) depends on reliable online patient-specific anatomy information to address random and progressive anatomy changes. Large margins have been suggested to bladder cancer treatment due to large daily bladder anatomy variation. KV Cone beam CT(CBCT) has been used in IGRT localization prevalently; however, its lack of soft tissue contrast makes clinicians hesitate to perform daily soft tissue alignment with CBCT for partial bladder cancer treatment. This study compares the localization uncertainties of bladder cancer IGRT using CTon- Rails(CTOR) and CBCT. Methods: Three T2N0M0 bladder cancer patients (total of 66 Gy to partial bladder alone) were localized daily with either CTOR or CBCT for their entire treatment course. A total of 71 sets of CTOR and 22 sets of CBCT images were acquired and registered with original planning CT scans by radiation therapists and approved by radiation oncologists for the daily treatment. CTOR scanning entailed 2mm slice thickness, 0.98mm axial voxel size, 120kVp and 240mAs. CBCT used a half fan pelvis protocol from Varian OBI system with 2mm slice thickness, 0.98axial voxel size, 125kVp, and 680mAs. Daily localization distribution was compared. Accuracy of CTOR and CBCT on partial bladder alignment was also evaluated by comparing bladder PTV coverage. Results: 1cm all around PTV margins were used in every patient except target superior limit margin to 0mm due to bowel constraint. Daily shifts on CTOR averaged to 0.48, 0.24, 0.19 mms(SI,Lat,AP directions); CBCT averaged to 0.43, 0.09, 0.19 mms(SI,Lat,AP directions). The CTOR daily localization showed superior results of V100% of PTV(102% CTOR vs. 89% CBCT) and bowel(Dmax 69.5Gy vs. 78Gy CBCT). CTOR images showed much higher contrast on bladder PTV alignment. Conclusion: CTOR daily localization for IGRT is more dosimetrically beneficial for partial bladder cancer treatment than kV CBCT localization and provided better soft tissue PTV

  19. Four-dimensional Cone Beam CT Reconstruction and Enhancement using a Temporal Non-Local Means Method

    CERN Document Server

    Jia, Xun; Lou, Yifei; Sonke, Jan-Jakob; Jiang, Steve B

    2012-01-01

    Four-dimensional Cone Beam Computed Tomography (4D-CBCT) has been developed to provide respiratory phase resolved volumetric imaging in image guided radiation therapy (IGRT). Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. In this work, we propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. We define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A...

  20. Effect of dose reduction on image registration and image quality for cone-beam CT in radiotherapy

    International Nuclear Information System (INIS)

    The additional radiation exposure applied to patients undergoing cone-beam computed tomography (CBCT) for image registration in radiation therapy is of great concern. Since a decrease in CBCT dose is linked to a degradation of image quality, the consequences of dose reduction on the registration process have to be investigated. This paper examines image quality and registration of low-contrast structures on an Elekta XVI for the two treatment areas prostate and chest while gradually decreasing the mAs per frame and the number of projections per CBCT to achieve dose reduction. Ideal results for image quality were obtained for 1.6 mAs/frame and 377 projections in prostate scans and 0.63 mAs/frame and 440 projections in chest images. Lower as well as higher total mAs lead to a decrease in image quality. In spite of poor image quality, registration can be successfully performed even for lowest possible settings. The results for registration allow an extensive dose reduction in both treatment areas. Very low mAs, however, do not qualify for clinical use because subjective judgment of the registration process is impossible. Compared to default presets the use of settings for acceptable image quality already permit a decrease in exposure of about 40 % (29.0 to 16.7 mGy) in prostate scans and 60 % (18.3 to 7.7 mGy) in chest scans. (orig.)

  1. Estimate of the shielding effect on secondary cancer risk due to cone-beam CT in image-guided radiotherapy

    Science.gov (United States)

    Sung, Jiwon; Baek, Tae Seong; Yoon, Myonggeun; Kim, Dong Wook; Kim, Dong Hyun

    2014-09-01

    This study evaluated the effect of a simple shielding method using a thin lead sheet on the imaging dose caused by cone-beam computed tomography (CBCT) in image-guided radiation therapy (IGRT). Reduction of secondary doses from CBCT was measured using a radio-photoluminescence glass dosimeter (RPLGD) placed inside an anthropomorphic phantom. The entire body, except for the region scanned by using CBCT, was shielded by wrapping it with a 2-mm lead sheet. Changes in secondary cancer risk due to shielding were calculated using BEIR VII models. Doses to out-of-field organs for head-and-neck, chest, and pelvis scans were decreased 15 ~ 100%, 23 ~ 90%, and 23 ~ 98%, respectively, and the average reductions in lifetime secondary cancer risk due to the 2-mm lead shielding were 1.6, 11.5, and 12.7 persons per 100,000, respectively. These findings suggest that a simple, thin-lead-sheet-based shielding method can effectively decrease secondary doses to out-of-field regions for CBCT, which reduces the lifetime cancer risk on average by 9 per 100,000 patients.

  2. 锥形束CT对牙根外吸收早期诊断价值的探讨%Cone Beam CT for Diagnosis of Early Root Resorption

    Institute of Scientific and Technical Information of China (English)

    衡士超; 程勇; 李波; 肖丽珍

    2012-01-01

    Objective: To evaluate the clinical application of CT (cone beam CT, CBCT) in the preparatory diagnosis of root resorption. Methods: Examining the roots of 50 patients by CBCT and periapical digital check) analyzing the cases of teeth in the alveolar bone in the near and far, buccolingual lesions. The image qualities obtained by different methods were identified by double- blind method from 3 imaging experts. 5 -step method nonlinear TOX curve was developed in data-analyzing. Results: The examination of alveolar bone in the near and far, buccolingual lesions by CBCT in 50 cases was effective to diagnose root resorption. The digital periapical check could show the cases in buccolingual lesions, but could not given the determination. The parameter of ROC curve from CBCT image (Az = 0. 90) , which is greater than the parameters got in resolution of digital periapical films (Az = 0. 69), Conclusion: CBCT is available in the pre- diagnosis of root resorption.%目的:探讨锥形束CT(cone beam CT,CBCT)在牙根外吸收早期诊断中的临床应用价值.方法:对50例牙根外吸收的患者应用CBCT和数字化根尖片检查,对患牙在牙槽骨中的近远中向、颊舌向病损情况进行对比分析.由3名影像学专家采用双盲法对不同方法产生的图像质量进行评价,采用5阶法行ROC曲线解析.结果:50例应用CBCT检查得到的图像可准确显示近远中向、颊舌向的牙根外吸收情况;而数字化根尖片只可显示近远中情况,不能准确判断牙根外吸收颊舌向情况.CBCT图像的ROC曲线解析参数(Az=0.90),大于数字化根尖片的解析参数(Az=0.69).结论:CBCT有利于牙根外吸收的早期诊断.

  3. Low-Dose and Scatter-Free Cone-Beam CT Imaging Using a Stationary Beam Blocker in a Single Scan: Phantom Studies

    Directory of Open Access Journals (Sweden)

    Xue Dong

    2013-01-01

    Full Text Available Excessive imaging dose from repeated scans and poor image quality mainly due to scatter contamination are the two bottlenecks of cone-beam CT (CBCT imaging. Compressed sensing (CS reconstruction algorithms show promises in recovering faithful signals from low-dose projection data but do not serve well the needs of accurate CBCT imaging if effective scatter correction is not in place. Scatter can be accurately measured and removed using measurement-based methods. However, these approaches are considered unpractical in the conventional FDK reconstruction, due to the inevitable primary loss for scatter measurement. We combine measurement-based scatter correction and CS-based iterative reconstruction to generate scatter-free images from low-dose projections. We distribute blocked areas on the detector where primary signals are considered redundant in a full scan. Scatter distribution is estimated by interpolating/extrapolating measured scatter samples inside blocked areas. CS-based iterative reconstruction is finally carried out on the undersampled data to obtain scatter-free and low-dose CBCT images. With only 25% of conventional full-scan dose, our method reduces the average CT number error from 250 HU to 24 HU and increases the contrast by a factor of 2.1 on Catphan 600 phantom. On an anthropomorphic head phantom, the average CT number error is reduced from 224 HU to 10 HU in the central uniform area.

  4. The influence of target and patient characteristics on the volume obtained from cone beam CT in lung stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Purpose: To investigate the influence of tumor and patient characteristics on the target volume obtained from cone beam CT (CBCT) in lung stereotactic body radiation therapy (SBRT). Materials and methods: For a given cohort of 71 patients, the internal target volume (ITV) in CBCT obtained from four different datasets was compared with a reference ITV drawn on a four-dimensional CT (4DCT). The significance of the tumor size, location, relative target motion (RM) and patient’s body mass index (BMI) and gender on the adequacy of ITV obtained from CBCT was determined. Results: The median ITV-CBCT was found to be smaller than the ITV-4DCT by 11.8% (range: −49.8 to +24.3%, P < 0.001). Small tumors located in the lower lung were found to have a larger RM than large tumors in the upper lung. Tumors located near the central lung had high CT background which reduced the target contrast near the edges. Tumor location close to center vs. periphery was the only significant factor (P = 0.046) causing underestimation of ITV in CBCT, rather than RM (P = 0.323) and other factors. Conclusions: The current clinical study has identified that the location of tumor is a major source of discrepancy between ITV-CBCT and ITV-4DCT for lung SBRT

  5. Potential of 80-kV high-resolution cone-beam CT imaging combined with an optimized protocol for neurological surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, Seisaku; Hara, Takayuki [Toranomon Hospital, Department of Neurosurgery, Tokyo (Japan); Hamada, Yusuke [Toranomon Hospital, Department of Radiology, Tokyo (Japan); Matsumaru, Yuji [Toranomon Hospital, Department of Neuro-Endovascular Therapy, Tokyo (Japan)

    2014-11-05

    With the development of computed tomography (CT) and magnetic resonance imaging (MRI), the use of conventional X-ray angiography including digital subtraction angiography (DSA) for diagnosis has decreased, as it is an invasive technique with a risk of neurological complications. However, X-ray angiography imaging technologies have progressed markedly, along with the development of endovascular treatments. A newly developed angiography technique using cone-beam CT (CBCT) technology provides higher spatial resolution than conventional CT. Herein, we describe the potential of this technology for neurosurgical operations with reference to clinical cases. Two hundred twenty-five patients who received 80-kV high-resolution CBCT from July 2011 to June 2014 for preoperative examinations were included in this study. For pathognomonical cases, images were taken with suitable reconstruction modes and contrast protocols. Cases were compared with intraoperative findings or images from other modalities. We observed the following pathognomonical types: (1) imaging of the distal dural ring (DDR) and the surrounding structure for paraclinoid aneurysms, (2) imaging of thin blood vessels, and (3) imaging of both brain tumors and their surrounding anatomy. Our devised 80-kV high-resolution CBCT imaging system provided clear visualization of detailed anatomy when compared with other modalities in almost all cases. Only two cases provided poor visualization due to movement artifact. Eighty-kilovolt high-resolution CBCT has the potential to provide detailed anatomy for neurosurgical operations when utilizing suitable modes and contrast protocols. (orig.)

  6. Potential of 80-kV high-resolution cone-beam CT imaging combined with an optimized protocol for neurological surgery

    International Nuclear Information System (INIS)

    With the development of computed tomography (CT) and magnetic resonance imaging (MRI), the use of conventional X-ray angiography including digital subtraction angiography (DSA) for diagnosis has decreased, as it is an invasive technique with a risk of neurological complications. However, X-ray angiography imaging technologies have progressed markedly, along with the development of endovascular treatments. A newly developed angiography technique using cone-beam CT (CBCT) technology provides higher spatial resolution than conventional CT. Herein, we describe the potential of this technology for neurosurgical operations with reference to clinical cases. Two hundred twenty-five patients who received 80-kV high-resolution CBCT from July 2011 to June 2014 for preoperative examinations were included in this study. For pathognomonical cases, images were taken with suitable reconstruction modes and contrast protocols. Cases were compared with intraoperative findings or images from other modalities. We observed the following pathognomonical types: (1) imaging of the distal dural ring (DDR) and the surrounding structure for paraclinoid aneurysms, (2) imaging of thin blood vessels, and (3) imaging of both brain tumors and their surrounding anatomy. Our devised 80-kV high-resolution CBCT imaging system provided clear visualization of detailed anatomy when compared with other modalities in almost all cases. Only two cases provided poor visualization due to movement artifact. Eighty-kilovolt high-resolution CBCT has the potential to provide detailed anatomy for neurosurgical operations when utilizing suitable modes and contrast protocols. (orig.)

  7. Over-exposure correction in knee cone-beam CT imaging with automatic exposure control using a partial low dose scan

    Science.gov (United States)

    Choi, Jang-Hwan; Muller, Kerstin; Hsieh, Scott; Maier, Andreas; Gold, Garry; Levenston, Marc; Fahrig, Rebecca

    2016-03-01

    C-arm-based cone-beam CT (CBCT) systems with flat-panel detectors are suitable for diagnostic knee imaging due to their potentially flexible selection of CT trajectories and wide volumetric beam coverage. In knee CT imaging, over-exposure artifacts can occur because of limitations in the dynamic range of the flat panel detectors present on most CBCT systems. We developed a straightforward but effective method for correction and detection of over-exposure for an Automatic Exposure Control (AEC)-enabled standard knee scan incorporating a prior low dose scan. The radiation dose associated with the low dose scan was negligible (0.0042mSv, 2.8% increase) which was enabled by partially sampling the projection images considering the geometry of the knees and lowering the dose further to be able to just see the skin-air interface. We combined the line integrals from the AEC and low dose scans after detecting over-exposed regions by comparing the line profiles of the two scans detector row-wise. The combined line integrals were reconstructed into a volumetric image using filtered back projection. We evaluated our method using in vivo human subject knee data. The proposed method effectively corrected and detected over-exposure, and thus recovered the visibility of exterior tissues (e.g., the shape and density of the patella, and the patellar tendon), incorporating a prior low dose scan with a negligible increase in radiation exposure.

  8. Model-based cone-beam CT reconstruction for image-guided minimally invasive treatment of hip osteolysis

    Science.gov (United States)

    Otake, Yoshito; Stayman, J. W.; Zbijewski, W.; Murphy, R. J.; Kutzer, M. D.; Taylor, R. H.; Siewerdsen, J. H.; Armand, M.

    2013-03-01

    Purpose: Accurate assessment of the size and location of osteolytic regions is essential in minimally invasive hip revision surgery. Moreover, image-guided robotic intervention for osteolysis treatment requires precise localization of implant components. However, high density metallic implants in proximity to the hip make assessment by either 2D or 3D x-ray imaging difficult. This paper details the initial implementation and evaluation of an advanced model-based conebeam CT (CBCT) reconstruction algorithm to improve guidance and assessment of hip osteolysis treatment. Method: A model-based reconstruction approach called Known Component Reconstruction (KCR) was employed to obtain high-quality reconstruction of regions neighboring metallic implants. KCR incorporates knowledge about the implant shape and material to precisely reconstruct surrounding anatomy while simultaneously estimating implant position. A simulation study involving a phantom generated from a CBCT scan of a cadaveric hip was performed. Registration accuracy in KCR iterations was evaluated as translational and rotational error from the true registration. Improvement in image quality was evaluated using normalized cross correlation (NCC) in two regions of interest (ROIs) about the femoral and acetabular components. Result: The study showed significant improvement in image quality over conventional filtered backprojection (FBP) and penalized-likelihood (PL) reconstruction. The NCC in the two ROIs improved from 0.74 and 0.81 (FBP) to 0.98 and 0.86 (PL) and >0.99 for KCR. The registration error was 0.01 mm in translation (0.02° in rotation) for the acetabular component and 0.01 mm (0.01° rotation) for the femoral component. Conclusions: Application of KCR to imaging hip osteolysis in the presence of the implant offers a promising step toward quantitative assessment in minimally invasive image-guided osteolysis treatment. The method improves image quality (metal artifact reduction), yields a precise

  9. Evaluation of technical quality and periapical health of root-filled teeth by using cone-beam CT

    Directory of Open Access Journals (Sweden)

    Bilge Gülsüm NUR

    2014-12-01

    Full Text Available Objective This study aimed to assess the quality of root fillings, coronal restorations, complications of all root-filled teeth and their association with apical periodontitis (AP detected by cone-beam computed tomography (CBCT images from an adult Turkish subpopulation. Material and Methods The sample for this study consisted of 242 patients (aging from 15 to 72 years with 522 endodontically treated teeth that were assessed for technical quality of the root canal filling and periapical status of the teeth. Additionally, the apical status of each root-filled tooth was assessed according to the gender, dental arch, tooth type and age classification, undetected canals, instrument fracture, root fracture, apical resorption, apical lesion, furcation lesion and type and quality of the coronal structure. Statistical analysis was performed using percentages and chi-square test. Results The success rate of the root canal treatment was of 54.4%. The success rates of adequate and inadequate root canal treatment were not significantly different (p>0.05. Apical periodontitis was found in 228 (45.6% teeth treated for root canals. Higher prevalence of AP was found in patients aging from 20 to 29 years [64 (27% teeth] and in anterior (canines and incisors teeth [97 (41% teeth]. Conclusions The technical quality of root canal filling performed by dental practitioners in a Turkish subpopulation was consistent with a high prevalence of AP. The probable reasons for this failure are multifactorial, and there may be a need for improved undergraduate education and postgraduate courses to improve the clinical skills of dental practitioners in endodontics.

  10. C-arm cone-beam CT virtual navigation-guided percutaneous mediastinal mass biopsy: Diagnostic accuracy and complications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungjin [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Aerospace Medical Group, Air Force Education and Training Command, Jinju (Korea, Republic of); Park, Chang Min; Goo, Jin Mo [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Lee, Sang Min [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of)

    2015-12-15

    To assess the usefulness of C-arm cone-beam computed tomography (CBCT) virtual navigation-guided percutaneous mediastinal mass biopsy in terms of diagnostic accuracy and complication rates. Seventy-eight CBCT virtual navigation-guided percutaneous mediastinal mass biopsies were performed in 75 patients (M:F, 38:37; mean age, 48.55 ± 18.76 years). The procedural details, diagnostic sensitivity, specificity, accuracy and complication rate were investigated. Mean lesion size was 6.80 ± 3.08 cm, skin-to-target distance was 3.67 ± 1.80 cm, core needle biopsy rate was 96.2 % (75/78), needle indwelling time was 9.29 ± 4.34 min, total procedure time was 13.26 ± 5.29 min, number of biopsy specimens obtained was 3.13 ± 1.02, number of CBCTs performed was 3.03 ± 0.68, rate of lesion border discrimination from abutting mediastinal structures on CBCT was 26.9 % (21/78), technical success rate was 100 % (78/78), estimated effective dose was 5.33 ± 4.99 mSv, and the dose area product was 12,723.68 ± 10,665.74 mGy.cm{sup 2}. Among the 78 biopsies, 69 were malignant, 7 were benign and 2 were indeterminate. Diagnostic sensitivity, specificity and accuracy for the diagnosis of malignancies were 97.1 % (67/69), 100 % (7/7) and 97.4 % (74/76), respectively, with a complication rate of 3.85 % (3/78), all of which were small pneumothoraces. CBCT virtual navigation-guided biopsy is a highly accurate and safe procedure for the evaluation of mediastinal lesions. (orig.)

  11. C-arm cone-beam CT virtual navigation-guided percutaneous mediastinal mass biopsy: Diagnostic accuracy and complications

    International Nuclear Information System (INIS)

    To assess the usefulness of C-arm cone-beam computed tomography (CBCT) virtual navigation-guided percutaneous mediastinal mass biopsy in terms of diagnostic accuracy and complication rates. Seventy-eight CBCT virtual navigation-guided percutaneous mediastinal mass biopsies were performed in 75 patients (M:F, 38:37; mean age, 48.55 ± 18.76 years). The procedural details, diagnostic sensitivity, specificity, accuracy and complication rate were investigated. Mean lesion size was 6.80 ± 3.08 cm, skin-to-target distance was 3.67 ± 1.80 cm, core needle biopsy rate was 96.2 % (75/78), needle indwelling time was 9.29 ± 4.34 min, total procedure time was 13.26 ± 5.29 min, number of biopsy specimens obtained was 3.13 ± 1.02, number of CBCTs performed was 3.03 ± 0.68, rate of lesion border discrimination from abutting mediastinal structures on CBCT was 26.9 % (21/78), technical success rate was 100 % (78/78), estimated effective dose was 5.33 ± 4.99 mSv, and the dose area product was 12,723.68 ± 10,665.74 mGy.cm2. Among the 78 biopsies, 69 were malignant, 7 were benign and 2 were indeterminate. Diagnostic sensitivity, specificity and accuracy for the diagnosis of malignancies were 97.1 % (67/69), 100 % (7/7) and 97.4 % (74/76), respectively, with a complication rate of 3.85 % (3/78), all of which were small pneumothoraces. CBCT virtual navigation-guided biopsy is a highly accurate and safe procedure for the evaluation of mediastinal lesions. (orig.)

  12. SU-E-J-151: Dosimetric Evaluation of DIR Mapped Contours for Image Guided Adaptive Radiotherapy with 4D Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Balik, S [Cleveland Clinic Foundation, Cleveland, OH (United States); Weiss, E; Williamson, J; Hugo, G [Virginia Commonwealth University, Richmond, VA (United States); Jan, N; Zhang, L [Virginia Commonwealth University, Richmond, Virginia (United States); Roman, N [San Antonio Precision Center Ctr, San Antonio, TX (United States); Christensen, G [University of Iowa, Iowa City, IA (United States)

    2014-06-01

    Purpose: To estimate dosimetric errors resulting from using contours deformably mapped from planning CT to 4D cone beam CT (CBCT) images for image-guided adaptive radiotherapy of locally advanced non-small cell lung cancer (NSCLC). Methods: Ten locally advanced non-small cell lung cancer (NSCLC) patients underwent one planning 4D fan-beam CT (4DFBCT) and weekly 4DCBCT scans. Multiple physicians delineated the gross tumor volume (GTV) and normal structures in planning CT images and only GTV in CBCT images. Manual contours were mapped from planning CT to CBCTs using small deformation, inverse consistent linear elastic (SICLE) algorithm for two scans in each patient. Two physicians reviewed and rated the DIR-mapped (auto) and manual GTV contours as clinically acceptable (CA), clinically acceptable after minor modification (CAMM) and unacceptable (CU). Mapped normal structures were visually inspected and corrected if necessary, and used to override tissue density for dose calculation. CTV (6mm expansion of GTV) and PTV (5mm expansion of CTV) were created. VMAT plans were generated using the DIR-mapped contours to deliver 66 Gy in 33 fractions with 95% and 100% coverage (V66) to PTV and CTV, respectively. Plan evaluation for V66 was based on manual PTV and CTV contours. Results: Mean PTV V66 was 84% (range 75% – 95%) and mean CTV V66 was 97% (range 93% – 100%) for CAMM scored plans (12 plans); and was 90% (range 80% – 95%) and 99% (range 95% – 100%) for CA scored plans (7 plans). The difference in V66 between CAMM and CA was significant for PTV (p = 0.03) and approached significance for CTV (p = 0.07). Conclusion: The quality of DIR-mapped contours directly impacted the plan quality for 4DCBCT-based adaptation. Larger safety margins may be needed when planning with auto contours for IGART with 4DCBCT images. Reseach was supported by NIH P01CA116602.

  13. Discussion of Cone-beam CT-guided Radiotherapy for Breast Cancer%锥形束CT引导乳腺癌放射治疗的探讨

    Institute of Scientific and Technical Information of China (English)

    叶森林; 梁廷; 荣青碧

    2010-01-01

    目的:探讨锥形束CT(Cone-Beam CT,CBCT)在乳腺癌三维适形或调强放射治疗位置精度保证中的应用.方法:采用Varian-21EX直线加速器机载影像系统(OBI),在适形或调强放射治疗前行锥形束CT扫描,系统自动重建成断层图像,获得患者三维方向的摆位数据,直接与治疗计划CT扫描图像相匹配后得出两者间的误差数据,对误差予以校正后行精确治疗.结果:经锥形束CT扫描并校正后,左右、腹背和头脚方向的位置误差值分别由(1.7±3.25)mm、(0.9±1.27)mm、(2.1±4.31)mm下降至(0.6±1.38)mm、(0.2±0.72)mm、(0.8±1.65)mm.结论:CBCT对于乳腺癌适形或调强放射治疗的精确实施具有重要作用.

  14. Low-contrast visualization in megavoltage cone-beam CT at one beam pulse per projection using thick segmented scintillators

    Science.gov (United States)

    El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua; Choroszucha, Richard B.; Wang, Yi

    2010-04-01

    Megavoltage cone-beam computed tomography (MV CBCT) using an electronic portal imaging device (EPID) is a highly promising technique for providing valuable volumetric information for image guidance in radiotherapy. However, active matrix flat-panel imagers (AMFPIs), which are the established gold standard in portal imaging, require a relatively large dose to create images that are clinically useful. This is a consequence of the inefficiency of the phosphor screens employed in conventional MV AMFPIs, which utilize only ~2% of the incident radiation at 6 MV. Fortunately, the incorporation of thick, segmented scintillators can significantly improve the performance of MV AMFPIs, leading to improved image quality for projection imaging at extremely low dose. It is therefore of interest to explore the performance of such thick scintillators for MV CBCT toward the goal of soft-tissue contrast visualization. In this study, prototype AMFPIs incorporating segmented scintillators based on CsI:Tl and BGO crystals with thicknesses ranging from ~11 to 25 mm have been constructed and evaluated. Each prototype incorporates a detector consisting of a matrix of 120 × 60 scintillator elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm, coupled to an overlying ~1 mm thick Cu plate. The prototype AMFPIs were incorporated into a bench-top CBCT system, allowing the acquisition of tomographic images of a contrast phantom using a 6 MV radiotherapy photon beam. The phantom consists of a water-equivalent (solid water) cylinder, embedded with tissue-equivalent inserts having electron densities, relative to water, varying from ~0.43 to ~1.47. Reconstructed images of the phantom were obtained down to the lowest available dose (one beam pulse per projection), corresponding to a total scan dose of ~4 cGy using 180 projections. In this article, reconstructed images, contrast, noise and contrast-to-noise ratio for the tissue-equivalent objects using the

  15. Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR)

    Science.gov (United States)

    Shieh, Chun-Chien; Kipritidis, John; O'Brien, Ricky T.; Cooper, Benjamin J.; Kuncic, Zdenka; Keall, Paul J.

    2015-01-01

    Total-variation (TV) minimization reconstructions can significantly reduce noise and streaks in thoracic four-dimensional cone-beam computed tomography (4D CBCT) images compared to the Feldkamp-Davis-Kress (FDK) algorithm currently used in practice. TV minimization reconstructions are, however, prone to over-smoothing anatomical details and are also computationally inefficient. The aim of this study is to demonstrate a proof of concept that these disadvantages can be overcome by incorporating the general knowledge of the thoracic anatomy via anatomy segmentation into the reconstruction. The proposed method, referred as the anatomical-adaptive image regularization (AAIR) method, utilizes the adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS) framework, but introduces an additional anatomy segmentation step in every iteration. The anatomy segmentation information is implemented in the reconstruction using a heuristic approach to adaptively suppress over-smoothing at anatomical structures of interest. The performance of AAIR depends on parameters describing the weighting of the anatomy segmentation prior and segmentation threshold values. A sensitivity study revealed that the reconstruction outcome is not sensitive to these parameters as long as they are chosen within a suitable range. AAIR was validated using a digital phantom and a patient scan and was compared to FDK, ASD-POCS and the prior image constrained compressed sensing (PICCS) method. For the phantom case, AAIR reconstruction was quantitatively shown to be the most accurate as indicated by the mean absolute difference and the structural similarity index. For the patient case, AAIR resulted in the highest signal-to-noise ratio (i.e. the lowest level of noise and streaking) and the highest contrast-to-noise ratios for the tumor and the bony anatomy (i.e. the best visibility of anatomical details). Overall, AAIR was much less prone to over-smoothing anatomical details compared to ASD-POCS and did

  16. Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR)

    International Nuclear Information System (INIS)

    Total-variation (TV) minimization reconstructions can significantly reduce noise and streaks in thoracic four-dimensional cone-beam computed tomography (4D CBCT) images compared to the Feldkamp–Davis–Kress (FDK) algorithm currently used in practice. TV minimization reconstructions are, however, prone to over-smoothing anatomical details and are also computationally inefficient. The aim of this study is to demonstrate a proof of concept that these disadvantages can be overcome by incorporating the general knowledge of the thoracic anatomy via anatomy segmentation into the reconstruction. The proposed method, referred as the anatomical-adaptive image regularization (AAIR) method, utilizes the adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS) framework, but introduces an additional anatomy segmentation step in every iteration. The anatomy segmentation information is implemented in the reconstruction using a heuristic approach to adaptively suppress over-smoothing at anatomical structures of interest. The performance of AAIR depends on parameters describing the weighting of the anatomy segmentation prior and segmentation threshold values. A sensitivity study revealed that the reconstruction outcome is not sensitive to these parameters as long as they are chosen within a suitable range. AAIR was validated using a digital phantom and a patient scan and was compared to FDK, ASD-POCS and the prior image constrained compressed sensing (PICCS) method. For the phantom case, AAIR reconstruction was quantitatively shown to be the most accurate as indicated by the mean absolute difference and the structural similarity index. F