WorldWideScience

Sample records for 3d computer modelling

  1. Computer Modelling of 3D Geological Surface

    CERN Document Server

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  2. Computational Challenges of 3D Radiative Transfer in Atmospheric Models

    Science.gov (United States)

    Jakub, Fabian; Bernhard, Mayer

    2017-04-01

    The computation of radiative heating and cooling rates is one of the most expensive components in todays atmospheric models. The high computational cost stems not only from the laborious integration over a wide range of the electromagnetic spectrum but also from the fact that solving the integro-differential radiative transfer equation for monochromatic light is already rather involved. This lead to the advent of numerous approximations and parameterizations to reduce the cost of the solver. One of the most prominent one is the so called independent pixel approximations (IPA) where horizontal energy transfer is neglected whatsoever and radiation may only propagate in the vertical direction (1D). Recent studies implicate that the IPA introduces significant errors in high resolution simulations and affects the evolution and development of convective systems. However, using fully 3D solvers such as for example MonteCarlo methods is not even on state of the art supercomputers feasible. The parallelization of atmospheric models is often realized by a horizontal domain decomposition, and hence, horizontal transfer of energy necessitates communication. E.g. a cloud's shadow at a low zenith angle will cast a long shadow and potentially needs to communication through a multitude of processors. Especially light in the solar spectral range may travel long distances through the atmosphere. Concerning highly parallel simulations, it is vital that 3D radiative transfer solvers put a special emphasis on parallel scalability. We will present an introduction to intricacies computing 3D radiative heating and cooling rates as well as report on the parallel performance of the TenStream solver. The TenStream is a 3D radiative transfer solver using the PETSc framework to iteratively solve a set of partial differential equation. We investigate two matrix preconditioners, (a) geometric algebraic multigrid preconditioning(MG+GAMG) and (b) block Jacobi incomplete LU (ILU) factorization. The

  3. Computational Modelling of Piston Ring Dynamics in 3D

    Directory of Open Access Journals (Sweden)

    Dlugoš Jozef

    2014-12-01

    Full Text Available Advanced computational models of a piston assembly based on the level of virtual prototypes require a detailed description of piston ring behaviour. Considering these requirements, the piston rings operate in regimes that cannot, in general, be simplified into an axisymmetric model. The piston and the cylinder liner do not have a perfect round shape, mainly due to machining tolerances and external thermo-mechanical loads. If the ring cannot follow the liner deformations, a local loss of contact occurs resulting in blow-by and increased consumption of lubricant oil in the engine. Current computational models are unable to implement such effects. The paper focuses on the development of a flexible 3D piston ring model based on the Timoshenko beam theory using the multibody system (MBS. The MBS model is compared to the finite element method (FEM solution.

  4. 3D computer modeling of sitting working place.

    Science.gov (United States)

    Mijović, B; Ujević, D; Skoko, M; Baksa, S

    2002-12-01

    Ergonomic contribution to designing and modeling of sitting working place by use of a computer and computer programs have been presented in this work. The influences of modeling working places on regular posture of a man/woman during work have been reconsidered, so that consumption of energy and fatigue are brought down to a minimum. For that purpose a computer program has been made which with input data on various kinds of work, sex and height of a worker determines the optimal ergonomic parameters during the modeling of a sitting working place. By computer visualisation the values of angle of spine curving have been calculated, the manipulation angle of arms and legs for three anthropometric heights of workers (160 cm, 175 cm and 190 cm). The dimensions of manipulative body space have been established by computerised 3D anthropometric analysis of movement as for example, reach of arms, legs, head, back etc positions. In this process the dimensions of machine and working space surrounding it in respect to optimal utilisation have been put in accordance with the anthropometric size of a man/woman.

  5. Computational model of mesenchymal migration in 3D under chemotaxis.

    Science.gov (United States)

    Ribeiro, F O; Gómez-Benito, M J; Folgado, J; Fernandes, P R; García-Aznar, J M

    2017-01-01

    Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell-matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices - collagen and fibrin - and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL(-1) a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency.

  6. Computational approaches to 3D modeling of RNA

    Energy Technology Data Exchange (ETDEWEB)

    Laing, Christian; Schlick, Tamar, E-mail: schlick@nyu.ed [Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012 (United States)

    2010-07-21

    Many exciting discoveries have recently revealed the versatility of RNA and its importance in a variety of functions within the cell. Since the structural features of RNA are of major importance to their biological function, there is much interest in predicting RNA structure, either in free form or in interaction with various ligands, including proteins, metabolites and other molecules. In recent years, an increasing number of researchers have developed novel RNA algorithms for predicting RNA secondary and tertiary structures. In this review, we describe current experimental and computational advances and discuss recent ideas that are transforming the traditional view of RNA folding. To evaluate the performance of the most recent RNA 3D folding algorithms, we provide a comparative study in order to test the performance of available 3D structure prediction algorithms for an RNA data set of 43 structures of various lengths and motifs. We find that the algorithms vary widely in terms of prediction quality across different RNA lengths and topologies; most predictions have very large root mean square deviations from the experimental structure. We conclude by outlining some suggestions for future RNA folding research. (topical review)

  7. Interactive 3D computer model of the human corneolimbal region

    DEFF Research Database (Denmark)

    Molvaer, Rikke Kongshaug; Andreasen, Arne; Heegaard, Steffen;

    2013-01-01

    in the superior limbal region and one LEC, six LCs and 12 FSPs in the inferior limbal region. Only few LECs, LCs and FSPs were localized nasally and temporally. CONCLUSION: Interactive 3D models are a powerful tool that may help to shed more light on the existence and spatial localization of the different stem......PURPOSE: This study aims to clarify the existence of and to map the localization of different proposed stem cell niches in the corneal limbal region. MATERIALS AND METHODS: One human eye was cut into 2200 consecutive sections. Every other section was stained with haematoxylin and eosin, digitized...... in the limbal region: limbal epithelial crypts (LECs), limbal crypts (LCs) and focal stromal projections (FSPs). In all, eight LECs, 25 LCs and 105 FSPs were identified in the limbal region. The LECs, LCs and FSPs were predominantly located in the superior limbal region with seven LECs, 19 LCs and 93 FSPs...

  8. An Approach to Computer Modeling of Geological Faults in 3D and an Application

    Institute of Scientific and Technical Information of China (English)

    ZHU Liang-feng; HE Zheng; PAN Xin; WU Xin-cai

    2006-01-01

    3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geological faults in 3D is currently a topical research area. Structural modeling techniques of complex geological entities containing reverse faults are discussed and a series of approaches are proposed. The geological concepts involved in computer modeling and visualization of geological fault in 3D are explained, the type of data of geological faults based on geological exploration is analyzed, and a normative database format for geological faults is designed. Two kinds of modeling approaches for faults are compared: a modeling technique of faults based on stratum recovery and a modeling technique of faults based on interpolation in subareas. A novel approach, called the Unified Modeling Technique for stratum and fault, is presented to solve the puzzling problems of reverse faults, syn-sedimentary faults and faults terminated within geological models. A case study of a fault model of bed rock in the Beijing Olympic Green District is presented in order to show the practical result of this method. The principle and the process of computer modeling of geological faults in 3D are discussed and a series of applied technical proposals established. It strengthens our profound comprehension of geological phenomena and the modeling approach, and establishes the basic techniques of 3D geological modeling for practical applications in the field of geosciences.

  9. Time efficient 3-D electromagnetic modeling on massively parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Alumbaugh, D.L.; Newman, G.A.

    1995-08-01

    A numerical modeling algorithm has been developed to simulate the electromagnetic response of a three dimensional earth to a dipole source for frequencies ranging from 100 to 100MHz. The numerical problem is formulated in terms of a frequency domain--modified vector Helmholtz equation for the scattered electric fields. The resulting differential equation is approximated using a staggered finite difference grid which results in a linear system of equations for which the matrix is sparse and complex symmetric. The system of equations is solved using a preconditioned quasi-minimum-residual method. Dirichlet boundary conditions are employed at the edges of the mesh by setting the tangential electric fields equal to zero. At frequencies less than 1MHz, normal grid stretching is employed to mitigate unwanted reflections off the grid boundaries. For frequencies greater than this, absorbing boundary conditions must be employed by making the stretching parameters of the modified vector Helmholtz equation complex which introduces loss at the boundaries. To allow for faster calculation of realistic models, the original serial version of the code has been modified to run on a massively parallel architecture. This modification involves three distinct tasks; (1) mapping the finite difference stencil to a processor stencil which allows for the necessary information to be exchanged between processors that contain adjacent nodes in the model, (2) determining the most efficient method to input the model which is accomplished by dividing the input into ``global`` and ``local`` data and then reading the two sets in differently, and (3) deciding how to output the data which is an inherently nonparallel process.

  10. Automatic procedure for realistic 3D finite element modelling of human brain for bioelectromagnetic computations

    Energy Technology Data Exchange (ETDEWEB)

    Aristovich, K Y; Khan, S H, E-mail: kirill.aristovich.1@city.ac.u [School of Engineering and Mathematical Sciences, City University London, Northampton Square, London EC1V 0HB (United Kingdom)

    2010-07-01

    Realistic computer modelling of biological objects requires building of very accurate and realistic computer models based on geometric and material data, type, and accuracy of numerical analyses. This paper presents some of the automatic tools and algorithms that were used to build accurate and realistic 3D finite element (FE) model of whole-brain. These models were used to solve the forward problem in magnetic field tomography (MFT) based on Magnetoencephalography (MEG). The forward problem involves modelling and computation of magnetic fields produced by human brain during cognitive processing. The geometric parameters of the model were obtained from accurate Magnetic Resonance Imaging (MRI) data and the material properties - from those obtained from Diffusion Tensor MRI (DTMRI). The 3D FE models of the brain built using this approach has been shown to be very accurate in terms of both geometric and material properties. The model is stored on the computer in Computer-Aided Parametrical Design (CAD) format. This allows the model to be used in a wide a range of methods of analysis, such as finite element method (FEM), Boundary Element Method (BEM), Monte-Carlo Simulations, etc. The generic model building approach presented here could be used for accurate and realistic modelling of human brain and many other biological objects.

  11. "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.

    Science.gov (United States)

    Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning.

  12. Generic camera model and its calibration for computational integral imaging and 3D reconstruction.

    Science.gov (United States)

    Li, Weiming; Li, Youfu

    2011-03-01

    Integral imaging (II) is an important 3D imaging technology. To reconstruct 3D information of the viewed objects, modeling and calibrating the optical pickup process of II are necessary. This work focuses on the modeling and calibration of an II system consisting of a lenslet array, an imaging lens, and a charge-coupled device camera. Most existing work on such systems assumes a pinhole array model (PAM). In this work, we explore a generic camera model that accommodates more generality. This model is an empirical model based on measurements, and we constructed a setup for its calibration. Experimental results show a significant difference between the generic camera model and the PAM. Images of planar patterns and 3D objects were computationally reconstructed with the generic camera model. Compared with the images reconstructed using the PAM, the images present higher fidelity and preserve more high spatial frequency components. To the best of our knowledge, this is the first attempt in applying a generic camera model to an II system.

  13. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  14. RF-TSV DESIGN, MODELING AND APPLICATION FOR 3D MULTI-CORE COMPUTER SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Yu Le; Yang Haigang; Xie Yuanlu

    2012-01-01

    The state-of-the-art multi-core computer systems are based on Very Large Scale three Dimensional (3D) Integrated circuits (VLSI).In order to provide high-speed vertical data transmission in such 3D systems,efficient Through-Silicon Via (TSV) technology is critically important.In this paper,various Radio Frequency (RF) TSV designs and models are proposed.Specifically,the Cu-plug TSV with surrounding ground TSVs is used as the baseline structure.For further improvement,the dielectric coaxial and novel air-gap coaxial TSVs are introduced.Using the empirical parameters of these coaxial TSVs,the simulation results are obtained demonstrating that these coaxial RF-TSVs can provide two-order higher of cut-off frequencies than the Cu-plug TSVs.Based on these new RF-TSV technologies,we propose a novel 3D multi-core computer system as well as new architectures for manipulating the interfaces between RF and baseband circuit.Taking into consideration the scaling down of IC manufacture technologies,predictions for the performance of future generations of circuits are made.With simulation results indicating energy per bit and area per bit being reduced by 7% and 11% respectively,we can conclude that the proposed method is a worthwhile guideline for the design of future multi-core computer ICs.

  15. Parallel Adaptive Computation of Blood Flow in a 3D ``Whole'' Body Model

    Science.gov (United States)

    Zhou, M.; Figueroa, C. A.; Taylor, C. A.; Sahni, O.; Jansen, K. E.

    2008-11-01

    Accurate numerical simulations of vascular trauma require the consideration of a larger portion of the vasculature than previously considered, due to the systemic nature of the human body's response. A patient-specific 3D model composed of 78 connected arterial branches extending from the neck to the lower legs is constructed to effectively represent the entire body. Recently developed outflow boundary conditions that appropriately represent the downstream vasculature bed which is not included in the 3D computational domain are applied at 78 outlets. In this work, the pulsatile blood flow simulations are started on a fairly uniform, unstructured mesh that is subsequently adapted using a solution-based approach to efficiently resolve the flow features. The adapted mesh contains non-uniform, anisotropic elements resulting in resolution that conforms with the physical length scales present in the problem. The effects of the mesh resolution on the flow field are studied, specifically on relevant quantities of pressure, velocity and wall shear stress.

  16. Computational Approach to 3D Modeling of the Lymph Node Geometry

    Directory of Open Access Journals (Sweden)

    Alexey Kislitsyn

    2015-05-01

    Full Text Available In this study we present a computational approach to the generation of the major geometric structures of an idealized murine lymph node (LN. In this generation, we consider the major compartments such as the subcapsular sinus, B cell follicles, trabecular and medullar sinuses, blood vessels and the T cell zone with a primary focus on the fibroblastic reticular cell (FRC network. Confocal microscopy data of LN macroscopic structures and structural properties of the FRC network have been generated and utilized in the present model. The methodology sets a library of modules that can be used to assemble a solid geometric LN model and subsequently generate an adaptive mesh model capable of implementing transport phenomena. Overall, based on the use of high-resolution confocal microscopy and morphological analysis of cell 3D reconstructions, we have developed a computational model of the LN geometry, suitable for further investigation in studies of fluid transport and cell migration in this immunologically essential organ.

  17. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  18. 3D modeling method for computer animate based on modified weak structured light method

    Science.gov (United States)

    Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei

    2010-11-01

    A simple and affordable 3D scanner is designed in this paper. Three-dimensional digital models are playing an increasingly important role in many fields, such as computer animate, industrial design, artistic design and heritage conservation. For many complex shapes, optical measurement systems are indispensable to acquiring the 3D information. In the field of computer animate, such an optical measurement device is too expensive to be widely adopted, and on the other hand, the precision is not as critical a factor in that situation. In this paper, a new cheap 3D measurement system is implemented based on modified weak structured light, using only a video camera, a light source and a straight stick rotating on a fixed axis. For an ordinary weak structured light configuration, one or two reference planes are required, and the shadows on these planes must be tracked in the scanning process, which destroy the convenience of this method. In the modified system, reference planes are unnecessary, and size range of the scanned objects is expanded widely. A new calibration procedure is also realized for the proposed method, and points cloud is obtained by analyzing the shadow strips on the object. A two-stage ICP algorithm is used to merge the points cloud from different viewpoints to get a full description of the object, and after a series of operations, a NURBS surface model is generated in the end. A complex toy bear is used to verify the efficiency of the method, and errors range from 0.7783mm to 1.4326mm comparing with the ground truth measurement.

  19. Computationally efficient perturbative forward modeling for 3D multispectral bioluminescence and fluorescence tomography

    Science.gov (United States)

    Dutta, Joyita; Ahn, Sangtae; Li, Changqing; Chaudhari, Abhijit J.; Cherry, Simon R.; Leahy, Richard M.

    2008-03-01

    The forward problem of optical bioluminescence and fluorescence tomography seeks to determine, for a given 3D source distribution, the photon density on the surface of an animal. Photon transport through tissues is commonly modeled by the diffusion equation. The challenge, then, is to accurately and efficiently solve the diffusion equation for a realistic animal geometry and heterogeneous tissue types. Fast analytical solvers are available that can be applied to arbitrary geometries but assume homogeneity of tissue optical properties and hence have limited accuracy. The finite element method (FEM) with volume tessellation allows reasonably accurate modeling of both animal geometry and tissue heterogeneity, but this approach is computationally intensive. The computational challenge is heightened when one is working with multispectral data to improve source localization and conditioning of the inverse problem. Here we present a fast forward model based on the Born approximation that falls in between these two approaches. Our model introduces tissue heterogeneity as perturbations in diffusion and absorption coefficients at rectangular grid points inside a mouse atlas. These reflect as a correction term added to the homogeneous forward model. We have tested our model by performing source localization studies first with a biolumnescence simulation setup and then with an experimental setup using a fluorescent source embedded in an inhomogeneous phantom that mimicks tissue optical properties.

  20. The Effects of 3D Computer Modelling on Conceptual Change about Seasons and Phases of the Moon

    Science.gov (United States)

    Kucukozer, Huseyin

    2008-01-01

    In this study, prospective science teachers' misconceptions about the seasons and the phases of the Moon were determined, and then the effects of 3D computer modelling on their conceptual changes were investigated. The topics were covered in two classes with a total of 76 students using a predict-observe-explain strategy supported by 3D computer…

  1. Segmentation process significantly influences the accuracy of 3D surface models derived from cone beam computed tomography

    NARCIS (Netherlands)

    Fourie, Zacharias; Damstra, Janalt; Schepers, Rutger H; Gerrits, Pieter; Ren, Yijin

    2012-01-01

    AIMS: To assess the accuracy of surface models derived from 3D cone beam computed tomography (CBCT) with two different segmentation protocols. MATERIALS AND METHODS: Seven fresh-frozen cadaver heads were used. There was no conflict of interests in this study. CBCT scans were made of the heads and 3D

  2. The influence of the segmentation process on 3D measurements from cone beam computed tomography-derived surface models

    NARCIS (Netherlands)

    Engelbrecht, Willem P.; Fourie, Zacharias; Damstra, Janalt; Gerrits, Peter O.; Ren, Yijin

    2013-01-01

    To compare the accuracy of linear and angular measurements between cephalometric and anatomic landmarks on surface models derived from 3D cone beam computed tomography (CBCT) with two different segmentation protocols was the aim of this study. CBCT scans were made of cadaver heads and 3D surface mod

  3. 3-D Computational Modelling of Oblique Continental Collision near South Island, New Zealand

    Science.gov (United States)

    Karatun, L.; Pysklywec, R. N.

    2015-12-01

    The research explores the highly oblique continental convergence at the South Island of New Zealand, considering the fundamental geodynamic mechanisms of sub-crustal lithospheric deformation during the orogenesis. In addition to the high velocity of along-strike plate motion, the oppositely verging subduction zones bounding the collision make the problem inherently three-dimensional. To study such factors during orogenesis, we conduct 3D computational modelling and present the results of a series of new experiments configured for the oblique South Island collision. The geodynamic modelling uses ASPECT - a robust highly-scalable and extendable geodynamic code featuring adaptive mesh refinement and complex rheologies. The model domain is defined by a box with prescribed velocities on the left and right faces with varied ratio of convergent versus strike-slip components, periodic boundary conditions for the front and back faces, free surface on top, and free slip at the bottom. Two different rheology types are used: brittle (pressure-, strain rate-, and material strength-dependent) for crust and visco-plastic (temperature-, pressure- and strain rate-dependent) for mantle. The obtained results provide insight into the behaviour of the lithosphere under the situation of young oblique convergence. We focus on the development of the mantle lithosphere, considering how the morphology of the sub-crustal orogenic root evolves during the convergent/strike-slip plate motions. The numerical experiments explore the dependence of this process on such factors as ratio of convergent versus strike-slip motion at the plate boundary, and rheological parameters of crust and mantle. The behaviour of the crust is also tracked to determine how the deep 3D tectonics may manifest at the surface.

  4. Generating 3D anatomically detailed models of the retina from OCT data sets: implications for computational modelling

    Science.gov (United States)

    Shalbaf, Farzaneh; Dokos, Socrates; Lovell, Nigel H.; Turuwhenua, Jason; Vaghefi, Ehsan

    2015-12-01

    Retinal prosthesis has been proposed to restore vision for those suffering from the retinal pathologies that mainly affect the photoreceptors layer but keep the inner retina intact. Prior to costly risky experimental studies computational modelling of the retina will help to optimize the device parameters and enhance the outcomes. Here, we developed an anatomically detailed computational model of the retina based on OCT data sets. The consecutive OCT images of individual were subsequently segmented to provide a 3D representation of retina in the form of finite elements. Thereafter, the electrical properties of the retina were modelled by implementing partial differential equation on the 3D mesh. Different electrode configurations, that is bipolar and hexapolar configurations, were implemented and the results were compared with the previous computational and experimental studies. Furthermore, the possible effects of the curvature of retinal layers on the current steering through the retina were proposed and linked to the clinical observations.

  5. Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling.

    Science.gov (United States)

    Bates, Karl T; Manning, Phillip L; Hodgetts, David; Sellers, William I

    2009-01-01

    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future

  6. Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling.

    Directory of Open Access Journals (Sweden)

    Karl T Bates

    Full Text Available Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize

  7. UAV and Computer Vision in 3D Modeling of Cultural Heritage in Southern Italy

    Science.gov (United States)

    Barrile, Vincenzo; Gelsomino, Vincenzo; Bilotta, Giuliana

    2017-08-01

    On the Waterfront Italo Falcomatà of Reggio Calabria you can admire the most extensive tract of the walls of the Hellenistic period of ancient city of Rhegion. The so-called Greek Walls are one of the most significant and visible traces of the past linked to the culture of Ancient Greece in the site of Reggio Calabria territory. Over the years this stretch of wall has always been a part, to the reconstruction of Reggio after the earthquake of 1783, the outer walls at all times, restored countless times, to cope with the degradation of the time and the adjustments to the technical increasingly innovative and sophisticated siege. They were the subject of several studies on history, for the study of the construction techniques and the maintenance and restoration of the same. This note describes the methodology for the implementation of a three-dimensional model of the Greek Walls conducted by the Geomatics Laboratory, belonging to DICEAM Department of University “Mediterranea” of Reggio Calabria. 3D modeling we made is based on imaging techniques, such as Digital Photogrammetry and Computer Vision, by using a drone. The acquired digital images were then processed using commercial software Agisoft PhotoScan. The results denote the goodness of the technique used in the field of cultural heritage, attractive alternative to more expensive and demanding techniques such as laser scanning.

  8. Computational Graph Model for 3D Cells Tracking in Zebra Fish Datasets

    Science.gov (United States)

    Zhang, Lelin; Xiong, Hongkai; Zhao, Yang; Zhang, Kai; Zhou, Xiaobo

    2007-11-01

    This paper leads to a novel technique for tracking and identification of zebra-fish cells in 3D image sequences, extending graph-based multi-objects tracking algorithm to 3D applications. As raised in previous work of 2D graph-based method, separated cells are modeled as vertices that connected by edges. Then the tracking work is simplified to that of vertices matching between graphs generated from consecutive frames. Graph-based tracking is composed of three steps: graph generation, initial source vertices selection and graph saturation. To satisfy demands in this work separated cell records are segmented from original datasets using 3D level-set algorithms. Besides, advancements are achieved in each of the step including graph regulations, multi restrictions on source vertices and enhanced flow quantifications. Those strategies make a good compensation for graph-based multi-objects tracking method in 2D space. Experiments are carried out in 3D datasets sampled from zebra fish, results of which shows that this enhanced method could be potentially applied to tracking of objects with diverse features.

  9. 3D finite element models of shoulder muscles for computing lines of actions and moment arms.

    Science.gov (United States)

    Webb, Joshua D; Blemker, Silvia S; Delp, Scott L

    2014-01-01

    Accurate representation of musculoskeletal geometry is needed to characterise the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account for the large attachment areas, muscle-muscle interactions and complex muscle fibre trajectories typical of shoulder muscles. To better represent shoulder muscle geometry, we developed 3D finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fibre paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fibre moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the 3D model of supraspinatus showed that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators. Including the effects of large attachment regions and 3D mechanical interactions of muscle fibres constrains muscle motion, generates more realistic muscle paths and allows deeper analysis of shoulder muscle function.

  10. Development, Verification and Use of Gust Modeling in the NASA Computational Fluid Dynamics Code FUN3D

    Science.gov (United States)

    Bartels, Robert E.

    2012-01-01

    This paper presents the implementation of gust modeling capability in the CFD code FUN3D. The gust capability is verified by computing the response of an airfoil to a sharp edged gust. This result is compared with the theoretical result. The present simulations will be compared with other CFD gust simulations. This paper also serves as a users manual for FUN3D gust analyses using a variety of gust profiles. Finally, the development of an Auto-Regressive Moving-Average (ARMA) reduced order gust model using a gust with a Gaussian profile in the FUN3D code is presented. ARMA simulated results of a sequence of one-minus-cosine gusts is shown to compare well with the same gust profile computed with FUN3D. Proper Orthogonal Decomposition (POD) is combined with the ARMA modeling technique to predict the time varying pressure coefficient increment distribution due to a novel gust profile. The aeroelastic response of a pitch/plunge airfoil to a gust environment is computed with a reduced order model, and compared with a direct simulation of the system in the FUN3D code. The two results are found to agree very well.

  11. Error propagation in the computation of volumes in 3D city models with the Monte Carlo method

    NARCIS (Netherlands)

    Biljecki, F.; Ledoux, H.; Stoter, J.

    2014-01-01

    This paper describes the analysis of the propagation of positional uncertainty in 3D city models to the uncertainty in the computation of their volumes. Current work related to error propagation in GIS is limited to 2D data and 2D GIS operations, especially of rasters. In this research we have (1) d

  12. Computed tomography study of VAPEX process in laboratory 3D model

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.Q.; Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory; Salama, D. [Nexen Inc., Calgary, AB (Canada)

    2008-07-01

    This paper provided details of a 3-D laboratory model of the VAPEX process that used computerized tomography (CT) to examine vapour chamber expansion behaviour in longitudinal and radial directions. The model was comprised of an aluminum cylinder with 2 slotted tubes installed inside to act as injection and production wells. Propane was used as a solvent with heavy oil. The results of experiments conducted with the model showed that the V shape vapour chamber expansion pattern predicted by the 2-D model was a localized phenomenon. The dominant characteristic of the vapour chamber was an overriding of the injected solvent at the top of the model. The overriding was attributed to gravity segregation. The study also showed that longitudinal expansion was more significant than upwards expansion during the early stages of the VAPEX process. Oil production performance was then examined using different solvent injection rates. An analysis of the CT images was conducted to obtain model porosity, density, and oil saturation profiles. The study demonstrated that pressure cycles caused oil to be produced intermittently. Oil swelling by solvent gas dissolution was an important recovery mechanism. It was concluded that solvent soaking can be used to recover additional residual oil during the VAPEX process. 19 refs., 1 tab., 24 figs.

  13. Facial reconstruction using 3-D computer graphics.

    Science.gov (United States)

    Vanezi, P; Vanezis, M; McCombe, G; Niblett, T

    2000-02-14

    Facial reconstruction using 3-D computer graphics is being used in our institute as a routine procedure in forensic cases as well as for skulls of historical and archaeological interest. Skull and facial data from living subjects is acquired using an optical laser scanning system. For the production of the reconstructed image, we employ facial reconstruction software which is constructed using the TCL/Tk scripting language, the latter making use of the C3D system. The computer image may then be exported to enable the production of a solid model, employing, for example, stereolithography. The image can also be modified within an identikit system which allows the addition of facial features as appropriate.

  14. Voxelization Algorithms for Geospatial Applications: Computational methods for voxelating spatial datasets of 3D city models containing 3D surface, curve and point data models

    NARCIS (Netherlands)

    Nourian Ghadikolaee, P.; Goncalves, R.; Zlatanova, S.; Arroyo Ohori, G.A.K.; Vu Vo, A.

    2016-01-01

    Voxel representations have been used for years in scientific computation and medical imaging. The main focus of our research is to provide easy access to methods for making large-scale voxel models of built environment for environmental modelling studies while ensuring they are spatially correct, me

  15. Lagrangian Finite Element Method for 3D Time-Dependent Viscoelastic Flow Computations using Integral Models

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    2000-01-01

    The 3D-LIM has as yet been used to simulate the following two three-dimensional problems. First, the method has been used to simulete for viscoelastic end-plate instability that occurs under certain conditions in the transient filament stretching apparatus for pressure sensitive adhesives...... (polymeric melts) and polymeric solutions. Secondly, the 3D-LIM has also been applied to calculate the inflation of a thick sheet of a polymer melt into an elliptic cylinder. These problems all include free surfaces. As the governing equations are solved for the particle positions, the motion of surfaces can...... be followed easily even in 3D viscoelastic flow....

  16. A computational model for estimating tumor margins in complementary tactile and 3D ultrasound images

    Science.gov (United States)

    Shamsil, Arefin; Escoto, Abelardo; Naish, Michael D.; Patel, Rajni V.

    2016-03-01

    Conventional surgical methods are effective for treating lung tumors; however, they impose high trauma and pain to patients. Minimally invasive surgery is a safer alternative as smaller incisions are required to reach the lung; however, it is challenging due to inadequate intraoperative tumor localization. To address this issue, a mechatronic palpation device was developed that incorporates tactile and ultrasound sensors capable of acquiring surface and cross-sectional images of palpated tissue. Initial work focused on tactile image segmentation and fusion of position-tracked tactile images, resulting in a reconstruction of the palpated surface to compute the spatial locations of underlying tumors. This paper presents a computational model capable of analyzing orthogonally-paired tactile and ultrasound images to compute the surface circumference and depth margins of a tumor. The framework also integrates an error compensation technique and an algebraic model to align all of the image pairs and to estimate the tumor depths within the tracked thickness of a palpated tissue. For validation, an ex vivo experimental study was conducted involving the complete palpation of 11 porcine liver tissues injected with iodine-agar tumors of varying sizes and shapes. The resulting tactile and ultrasound images were then processed using the proposed model to compute the tumor margins and compare them to fluoroscopy based physical measurements. The results show a good negative correlation (r = -0.783, p = 0.004) between the tumor surface margins and a good positive correlation (r = 0.743, p = 0.009) between the tumor depth margins.

  17. Cardiac tissue structure. Electric field interactions in polarizing the heart: 3D computer models and applications

    Science.gov (United States)

    Entcheva, Emilia

    1998-11-01

    The goal of this research is to investigate the interactions between the cardiac tissue structure and applied electric fields in producing complex polarization patterns. It is hypothesized that the response of the heart in the conditions of strong electric shocks, as those applied in defibrillation, is dominated by mechanisms involving the cardiac muscle structure perceived as a continuum. Analysis is carried out in three-dimensional models of the heart with detailed fiber architecture. Shock-induced transmembrane potentials are calculated using the bidomain model in its finite element implementation. The major new findings of this study can be summarized as follows: (1) The mechanisms of polarization due to cardiac fiber curvature and fiber rotation are elucidated in three-dimensional ellipsoidal hearts of variable geometry; (2) Results are presented showing that the axis of stimulation and the polarization axis on a whole heart level might differ significantly due to geometric and anisotropic factors; (3) Virtual electrode patterns are demonstrated numerically inside the ventricular wall in internal defibrillation conditions. The role of the tissue-bath interface in shaping the shock-induced polarization is revealed; (4) The generation of 3D phase singularity scrolls by shock-induced intramural virtual electrode patterns is proposed as evidence for a possible new mechanism for the failure to defibrillate. The results of this study emphasize the role of unequal anisotropy in the intra- and extracellular domains, as well as the salient fiber architecture characteristics, such as curvature and transmural rotation, in polarizing the myocardium. Experimental support of the above findings was actively sought and found in recent optical mapping studies using voltage-sensitive dyes. If validated in vivo, these findings would significantly enrich the prevailing concepts about the mechanisms of stimulation and defibrillation of the heart.

  18. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A 3D hierarchical computational model of deformation and stiffness of wood, which takes into account the structures of wood at several scale levels (cellularity, multilayered nature of cell walls, composite-like structures of the wall layers) is developed. At the mesoscale, the softwood cell...... is presented as a 3D hexagon-shape-tube with multilayered walls. The layers in the softwood cell are considered as considered as composite reinforced by microfibrils (celluloses). The elastic properties of the layers are determined with Halpin–Tsai equations, and introduced into mesoscale finite element...... cellular model. With the use of the developed hierarchical model, the influence of the microstructure, including microfibril angles (MFAs, which characterizes the orientation of the cellulose fibrils with respect to the cell axis), the thickness of the cell wall, the shape of the cell cross...

  19. Modeling and Analysis of a Lunar Space Reactor with the Computer Code RELAP5-3D/ATHENA

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, Juan J [ORNL; Qualls, A L [ORNL

    2008-01-01

    The transient analysis 3-dimensional (3-D) computer code RELAP5-3D/ATHENA has been employed to model and analyze a space reactor of 180 kW(thermal), 40 kW (net, electrical) with eight Stirling engines (SEs). Each SE will generate over 6 kWe; the excess power will be needed for the pumps and other power management devices. The reactor will be cooled by NaK (a eutectic mixture of sodium and potassium which is liquid at ambient temperature). This space reactor is intended to be deployed over the surface of the Moon or Mars. The reactor operating life will be 8 to 10 years. The RELAP5-3D/ATHENA code is being developed and maintained by Idaho National Laboratory. The code can employ a variety of coolants in addition to water, the original coolant employed with early versions of the code. The code can also use 3-D volumes and 3-D junctions, thus allowing for more realistic representation of complex geometries. A combination of 3-D and 1-D volumes is employed in this study. The space reactor model consists of a primary loop and two secondary loops connected by two heat exchangers (HXs). Each secondary loop provides heat to four SEs. The primary loop includes the nuclear reactor with the lower and upper plena, the core with 85 fuel pins, and two vertical heat exchangers (HX). The maximum coolant temperature of the primary loop is 900 K. The secondary loops also employ NaK as a coolant at a maximum temperature of 877 K. The SEs heads are at a temperature of 800 K and the cold sinks are at a temperature of ~400 K. Two radiators will be employed to remove heat from the SEs. The SE HXs surrounding the SE heads are of annular design and have been modeled using 3-D volumes. These 3-D models have been used to improve the HX design by optimizing the flows of coolant and maximizing the heat transferred to the SE heads. The transients analyzed include failure of one or more Stirling engines, trip of the reactor pump, and trips of the secondary loop pumps feeding the HXs of the

  20. ALGEBRAIC TURBULENCE MODEL WITH MEMORY FOR COMPUTATION OF 3-D TURBULENT BOUNDARY LAYERS WITH VALIDATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept-wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses.

  1. Computer system to manage information rigs by 3D electronic models; Sistema computacional para administrar la informacion de plataformas petroleras mediante modelos electronicos 3D

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Bustos, Jesus; Segura Ozuna, Victor Octavio [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2012-06-22

    The evolution and incorporation of new hardware technologies, as well as recent advances in computer systems have enabled the development of applications of computer aided design of most complete scope, such as those used for the design of industrial process plants. This article describes a software system developed to complement the capabilities of one of these systems for the design of process plants. A 3D electronic model is generated through the user interface of the design system that at the same time gives the user the ability to generate, publish, review and control the engineering document that are generated during the entire life cycle of a marine oil platform, a very particular type of industrial process plant. This way, the user obtains not only a tool for the design of an industrial plant, but also a system for managing information and engineering documents that are developed. This allows the user to do a more efficient job by putting at his disposal and in the same system, all documents and information required to perform his duty. [Spanish] La evolucion e incorporacion de nuevas tecnologias de hardware, junto con los avances recientes en sistemas de computo ha permitido el desarrollo de aplicaciones de interesante diseno de computo de mayor alcance, tales como los que se emplean en las plantas de procesos industriales. Este articulo describe un sistema de software desarrollado para complementar las capacidades de uno de estos sistemas para el diseno de proceso. Un modelo electronico se genera por medio de la interfaz de usuario del sistema de diseno, que al mismo tiempo da al usuario la capacidad para crear, publicar, revisar y controlar los documentos de ingenieria que se producen durante el ciclo de vida completo de una plataforma marina petrolera, un tipo muy particular de planta de proceso industrial. De este modo, el usuario no solo obtiene una herramienta para el diseno de una planta industrial, sino tambien un sistema para manejar informacion y

  2. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  3. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  4. Effects of Electrode Position on Spatiotemporal Auditory Nerve Fiber Responses: A 3D Computational Model Study

    Directory of Open Access Journals (Sweden)

    Soojin Kang

    2015-01-01

    Full Text Available A cochlear implant (CI is an auditory prosthesis that enables hearing by providing electrical stimuli through an electrode array. It has been previously established that the electrode position can influence CI performance. Thus, electrode position should be considered in order to achieve better CI results. This paper describes how the electrode position influences the auditory nerve fiber (ANF response to either a single pulse or low- (250 pulses/s and high-rate (5,000 pulses/s pulse-trains using a computational model. The field potential in the cochlea was calculated using a three-dimensional finite-element model, and the ANF response was simulated using a biophysical ANF model. The effects were evaluated in terms of the dynamic range, stochasticity, and spike excitation pattern. The relative spread, threshold, jitter, and initiated node were analyzed for single-pulse response; and the dynamic range, threshold, initiated node, and interspike interval were analyzed for pulse-train stimuli responses. Electrode position was found to significantly affect the spatiotemporal pattern of the ANF response, and this effect was significantly dependent on the stimulus rate. We believe that these modeling results can provide guidance regarding perimodiolar and lateral insertion of CIs in clinical settings and help understand CI performance.

  5. Practical algorithms for 3D computer graphics

    CERN Document Server

    Ferguson, R Stuart

    2013-01-01

    ""A valuable book to accompany any course that mixes the theory and practice of 3D graphics. The book's web site has many useful programs and code samples.""-Karen Rafferty, Queen's University, Belfast""The topics covered by this book are backed by the OpenFX modeling and animation software. This is a big plus in that it provides a practical perspective and encourages experimentation. … [This] will offer students a more interesting and hands-on learning experience, especially for those wishing to pursue a career in computer game development.""-Naganand Madhavapeddy, GameDeveloper>

  6. Parametrizable cameras for 3D computational steering

    NARCIS (Netherlands)

    Mulder, J.D.; Wijk, J.J. van

    1997-01-01

    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  7. Patient-specific reconstruction utilizing computer assisted 3D modelling for partial bone flap defect in hybrid cranioplasty

    Science.gov (United States)

    Hueh, Low Peh; Abdullah, Johari Yap; Abdullah, Abdul Manaf; Yahya, Suzana; Idris, Zamzuri; Mohamad, Dasmawati

    2016-12-01

    Autologous cranioplasty using a patient's original bone flap remain the commonest practice nowadays. However, partial bone flap defect is commonly encountered. Replacing the bone flap with pre-moulded synthetic bone flap is costly and not affordable to many patients. Hence most of the small to medium size defect was topped up with alloplastic material on a free hand basis intra-operatively which often resulted in inaccurate implant approximation with unsatisfactory cosmetic result. This study aims to evaluate implant accuracy and cosmetic outcome of cranioplasty candidates who underwent partial bone flap reconstruction utilising computer assisted 3D modelling. 3D images of the skull were obtained from post-craniectomy axial 1-mm spiral computed tomography (CT) scans and a virtual 3D model was generated using the Materialise Mimics software. The Materialise 3-Matic was then utilised to design a patient-specific implant. Prefabrication of the implant was performed by the 3D Objet printer, and a negative gypsum mold was created with the prefabricated cranial implant. Intraoperatively, a hybrid polymethyl methacrylate (PMMA)-autologous cranial implant was produced using the gypsum mold, and fit into the cranial defect. This study is still ongoing at the moment. To date, two men has underwent partial bone flap reconstruction utilising this technique and both revealed satisfactory implant alignment with favourable cosmesis. Mean implant size was 12cm2, and the mean duration of intraoperative reconstruction for the partial bone flap defect was 40 minutes. No significant complication was reported. As a conclusion, this new technique and approach resulted in satisfactory implant alignment and favourable cosmetic outcome. However, more study samples are needed to increase the validity of the study results.

  8. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair.

    Science.gov (United States)

    Xu, Ning; Ye, Xiaojian; Wei, Daixu; Zhong, Jian; Chen, Yuyun; Xu, Guohua; He, Dannong

    2014-09-10

    The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects.

  9. Casting directly from a computer model by using advanced simulation software FLOW-3D Cast ®

    Directory of Open Access Journals (Sweden)

    M. Sirviö

    2009-01-01

    Full Text Available ConiferRob - A patternless casting technique, originally conceived at VTT Technical Research Centre of Finland and furtherdeveloped at its spin-off company, Simtech Systems, offers up to 40% savings in product development costs, and up to two months shorterdevelopment times compared to conventional techniques. Savings of this order can be very valuable on today's highly competitivemarkets. Casting simulation is commonly used for designing of casting systems. However, most of the software are today old fashioned and predicting just shrinkage porosity. Flow Science, VTT and Simtech have developed new software called FLOW-3D Cast ® , whichcan simulate surface defects, air entrainment, filters, core gas problems and even a cavitation.

  10. Voxelization algorithms for geospatial applications: Computational methods for voxelating spatial datasets of 3D city models containing 3D surface, curve and point data models.

    Science.gov (United States)

    Nourian, Pirouz; Gonçalves, Romulo; Zlatanova, Sisi; Ohori, Ken Arroyo; Vu Vo, Anh

    2016-01-01

    Voxel representations have been used for years in scientific computation and medical imaging. The main focus of our research is to provide easy access to methods for making large-scale voxel models of built environment for environmental modelling studies while ensuring they are spatially correct, meaning they correctly represent topological and semantic relations among objects. In this article, we present algorithms that generate voxels (volumetric pixels) out of point cloud, curve, or surface objects. The algorithms for voxelization of surfaces and curves are a customization of the topological voxelization approach [1]; we additionally provide an extension of this method for voxelization of point clouds. The developed software has the following advantages:•It provides easy management of connectivity levels in the resulting voxels.•It is not dependant on any external library except for primitive types and constructs; therefore, it is easy to integrate them in any application.•One of the algorithms is implemented in C++ and C for platform independence and efficiency.

  11. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  12. RHOCUBE: 3D density distributions modeling code

    Science.gov (United States)

    Nikutta, Robert; Agliozzo, Claudia

    2016-11-01

    RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

  13. 3D Computer Graphics and Nautical Charts

    OpenAIRE

    Porathe, Thomas

    2011-01-01

    This paper gives an overview of an ongoing project using real-time 3D visualization to display nautical charts in a way used by 3D computer games. By displaying the map in an egocentric perspective the need to make cognitively demanding mental rotations are suggested to be removed, leading to faster decision-making and less errors. Experimental results support this hypothesis. Practical tests with limited success have been performed this year.

  14. Simplified 3D model of a PWR reactor vessel using fluid dynamics code ANSYS CFX computational; Modelo simplificado 3D de la vasija de un reactor PWR mediante el codigo de dinamica de fluidos computacional ANSYS CFX

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.; Miro, R.; Barrachina, T.; Verdu, G.

    2011-07-01

    This paper presents the results from the calculation of the steady state simulation with model of CFD (computational fluid dynamic) operating under conditions of operation at full power (Hot Full Power). Development and the CFD model results show the usefulness of these codes for calculating 3D of the variable thermohydraulics of these reactors.

  15. 3D Modeling Engine Representation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  16. 3D face modeling, analysis and recognition

    CERN Document Server

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  17. Modeling warm dense matter experiments using the 3D ALE-AMR code and the move toward exascale computing

    Directory of Open Access Journals (Sweden)

    Koniges Alice

    2013-11-01

    Full Text Available The Neutralized Drift Compression Experiment II (NDCX II is an induction accelerator planned for initial commissioning in 2012. The final design calls for a 3 MeV, Li+ ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The NDCX II will be used in studies of material in the warm dense matter (WDM regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. We discuss recent efforts to adapt the 3D ALE-AMR code to model WDM experiments on NDCX II. The code, which combines Arbitrary Lagrangian Eulerian (ALE hydrodynamics with Adaptive Mesh Refinement (AMR, has physics models that include ion deposition, radiation hydrodynamics, thermal diffusion, anisotropic material strength with material time history, and advanced models for fragmentation. Experiments at NDCX-II will explore the process of bubble and droplet formation (two-phase expansion of superheated metal solids using ion beams. Experiments at higher temperatures will explore equation of state and heavy ion fusion beam-to-target energy coupling efficiency. Ion beams allow precise control of local beam energy deposition providing uniform volumetric heating on a timescale shorter than that of hydrodynamic expansion. We also briefly discuss the effects of the move to exascale computing and related computational changes on general modeling codes in fusion.

  18. Computational Fluid Dynamic Analyses for the High-Lift Common Research Model Using the USM3D and FUN3D Flow Solvers

    Science.gov (United States)

    Rivers, Melissa; Hunter, Craig; Vatsa, Veer

    2017-01-01

    Two Navier-Stokes codes were used to compute flow over the High-Lift Common Research Model (HL-CRM) in preparation for a wind tunnel test to be performed at the NASA Langley Research Center 14-by-22-Foot Subsonic Tunnel in fiscal year 2018. Both flight and wind tunnel conditions were simulated by the two codes at set Mach numbers and Reynolds numbers over a full angle-of-attack range for three configurations: cruise, landing and takeoff. Force curves, drag polars and surface pressure contour comparisons are shown for the two codes. The lift and drag curves compare well for the cruise configuration up to 10deg angle of attack but not as well for the other two configurations. The drag polars compare reasonably well for all three configurations. The surface pressure contours compare well for some of the conditions modeled but not as well for others.

  19. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations

    Science.gov (United States)

    Freniere, Cole; Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.

  20. Resist loss in 3D compact modeling

    Science.gov (United States)

    Zheng, Xin; Huang, Jensheng; Chin, Fook; Kazarian, Aram; Kuo, Chun-Chieh

    2012-03-01

    An enhancement to compact modeling capability to include photoresist (PR) loss at different heights is developed and discussed. A hypsometric map representing 3-D resist profile was built by applying a first principle approximation to estimate the "energy loss" from the resist top to any other plane of interest as a proportional corresponding change in model threshold, which is analogous to a change in exposure dose. The result is compared and validated with 3D rigorous modeling as well as SEM images. Without increase in computation time, this compact model can construct 3D resist profiles capturing resist profile degradation at any vertical plane. Sidewall angle and standing wave information can also be granted from the vertical profile reconstruction. Since this method does not change any form of compact modeling, it can be integrated to validation and correction without any additional work.

  1. Correlation of 3D Shift and 3D Tilt of the Patella in Patients With Recurrent Dislocation of the Patella and Healthy Volunteers: An In Vivo Analysis Based on 3-Dimensional Computer Models.

    Science.gov (United States)

    Yamada, Yuzo; Toritsuka, Yukiyoshi; Nakamura, Norimasa; Horibe, Shuji; Sugamoto, Kazuomi; Yoshikawa, Hideki; Shino, Konsei

    2017-08-01

    The concepts of lateral deviation and lateral inclination of the patella, characterized as shift and tilt, have been applied in combination to evaluate patellar malalignment in patients with patellar dislocation. It is not reasonable, however, to describe the 3-dimensional (3D) positional relation between the patella and the femur according to measurements made on 2-dimensional (2D) images. The current study sought to clarify the relation between lateral deviation and inclination of the patella in patients with recurrent dislocation of the patella (RDP) by redefining them via 3D computer models as 3D shift and 3D tilt. Descriptive laboratory study. Altogether, 60 knees from 56 patients with RDP and 15 knees from 10 healthy volunteers were evaluated. 3D shift and tilt of the patella were analyzed with 3D computer models created by magnetic resonance imaging scans obtained at 10° intervals of knee flexion (0°-50°). 3D shift was defined as the spatial distance between the patellar reference point and the midsagittal plane of the femur; it is expressed as a percentage of the interepicondylar width. 3D tilt was defined as the spatial angle between the patellar reference plane and the transepicondylar axis. Correlations between the 2 parameters were assessed with the Pearson correlation coefficient. The patients' mean Pearson correlation coefficient was 0.895 ± 0.186 (range, -0.073 to 0.997; median, 0.965). In all, 56 knees (93%) had coefficients >0.7 (strong correlation); 1 knee (2%), >0.4 (moderate correlation); 2 knees (3%), >0.2 (weak correlation); and 1 knee (2%), correlation). The mean correlation coefficient of the healthy volunteers was 0.645 ± 0.448 (range, -0.445 to 0.982; median, 0.834). A statistically significant difference was found in the distribution of the correlation coefficients between the patients and the healthy volunteers ( P = .0034). When distribution of the correlation coefficients obtained by the 3D analyses was compared with that by the 2

  2. Post processing of 3D models for 3D printing

    OpenAIRE

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  3. Bayesian 3D X-ray computed tomography image reconstruction with a scaled Gaussian mixture prior model

    Science.gov (United States)

    Wang, Li; Gac, Nicolas; Mohammad-Djafari, Ali

    2015-01-01

    In order to improve quality of 3D X-ray tomography reconstruction for Non Destructive Testing (NDT), we investigate in this paper hierarchical Bayesian methods. In NDT, useful prior information on the volume like the limited number of materials or the presence of homogeneous area can be included in the iterative reconstruction algorithms. In hierarchical Bayesian methods, not only the volume is estimated thanks to the prior model of the volume but also the hyper parameters of this prior. This additional complexity in the reconstruction methods when applied to large volumes (from 5123 to 81923 voxels) results in an increasing computational cost. To reduce it, the hierarchical Bayesian methods investigated in this paper lead to an algorithm acceleration by Variational Bayesian Approximation (VBA) [1] and hardware acceleration thanks to projection and back-projection operators paralleled on many core processors like GPU [2]. In this paper, we will consider a Student-t prior on the gradient of the image implemented in a hierarchical way [3, 4, 1]. Operators H (forward or projection) and Ht (adjoint or back-projection) implanted in multi-GPU [2] have been used in this study. Different methods will be evalued on synthetic volume "Shepp and Logan" in terms of quality and time of reconstruction. We used several simple regularizations of order 1 and order 2. Other prior models also exists [5]. Sometimes for a discrete image, we can do the segmentation and reconstruction at the same time, then the reconstruction can be done with less projections.

  4. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    Science.gov (United States)

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    Documentation of archaeological excavation sites with conventional methods and tools such as hand drawings, measuring tape and archaeological notes is time consuming. This process is prone to human errors and the quality of the documentation depends on the qualification of the archaeologist on site. Use of modern technology and methods in 3D surveying and 3D robotics facilitate and improve this process. Computer-aided systems and databases improve the documentation quality and increase the speed of data acquisition. 3D laser scanning is the state of the art in modelling archaeological excavation sites, historical sites and even entire cities or landscapes. Modern laser scanners are capable of data acquisition of up to 1 million points per second. This provides a very detailed 3D point cloud of the environment. 3D point clouds and 3D models of an excavation site provide a better representation of the environment for the archaeologist and for documentation. The point cloud can be used both for further studies on the excavation and for the presentation of results. This paper introduces a Computer aided system for labelling archaeological excavations in 3D (CASTLE3D). Consisting of a set of tools for recording and georeferencing the 3D data from an excavation site, CASTLE3D is a novel documentation approach in industrial archaeology. It provides a 2D and 3D visualisation of the data and an easy-to-use interface that enables the archaeologist to select regions of interest and to interact with the data in both representations. The 2D visualisation and a 3D orthogonal view of the data provide cuts of the environment that resemble the traditional hand drawings. The 3D perspective view gives a realistic view of the environment. CASTLE3D is designed as an easy-to-use on-site semantic mapping tool for archaeologists. Each project contains a predefined set of semantic information that can be used to label findings in the data. Multiple regions of interest can be joined under

  5. Automatic Plant Annotation Using 3D Computer Vision

    DEFF Research Database (Denmark)

    Nielsen, Michael

    in active shape modeling of weeds for weed detection. Occlusion and overlapping leaves were main problems for this kind of work. Using 3D computer vision it was possible to separate overlapping crop leaves from weed leaves using the 3D information from the disparity maps. The results of the 3D......In this thesis 3D reconstruction was investigated for application in precision agriculture where previous work focused on low resolution index maps where each pixel represents an area in the field and the index represents an overall crop status in that area. 3D reconstructions of plants would allow...... for more detailed descriptions of the state of the crops analogous to the way humans evaluate crop health, i.e. by looking at the canopy structure and check for discolorations at specific locations on the plants. Previous research in 3D reconstruction methods based on cameras has focused on rigid...

  6. A cubic interpolation pipeline for fast computation of 3D deformation fields modeled using B-splines

    Science.gov (United States)

    Castro-Pareja, Carlos R.; Shekhar, Raj

    2006-02-01

    Fast computation of 3D deformation fields is critical to bringing the application of automated elastic image registration algorithms to routine clinical practice. However, it lies beyond the computational power of current microprocessors; therefore requiring implementations using either massively parallel computers or application-specific hardware accelerators. The use of massively parallel computers in a clinical setting is not practical or cost-effective, therefore making the use of hardware accelerators necessary. We present a hardware pipeline that allows accelerating the computation of 3D deformation fields to speeds up to two orders of magnitude faster than software implementations on current workstations and about 64 times faster than other previously reported architectures. The pipeline implements a version of the free-form deformation calculation algorithm, which is optimized to minimize the number of arithmetic operations required to calculate the transformation of a given set of neighboring voxels, thereby achieving an efficient and compact implementation in hardware which allows its use as part of a larger system.

  7. [Computer-assisted 3D phonetography].

    Science.gov (United States)

    Neuschaefer-Rube, C; Klajman, S

    1996-10-01

    Profiles of fundamental frequency sound pressure levels and voice duration are measured separately in clinical practice. It was the aim of the present study to combine the two examinations, in order to estimate the relationship between pitch, sound pressure level and voice duration and to develop a new computer-assisted graph. A three-dimensional (3D) wireframe phonogram was constructed based on SPL profiles to obtain a general view of the parameters recorded. We have termed this "phonetography". Variable further projections were selected for the analysis of different aspects of parametric relationships. The results in 21 healthy volunteers and 4 patients with hyperfunctional dysphonias demonstrated that there were three typical figures of the 3D phonograms produced, depending on the relationship between voice duration when soft ("piano") compared to loud ("forte"). In one-third of the healthy volunteers, the values of the piano voice duration were greater than those of forte for almost all pitches examined. In two-thirds of the healthy subjects the values of forte voice duration were partly greater, as were those of piano voice duration. All of the patients showed voice duration values greater for forte than for piano. The results of the study demonstrate that the 3D phonogram is a useful tool for obtaining new insights into various relationships of voice parameters.

  8. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xin, E-mail: Xin.Liang@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); College of Stomatology, Dalian Medical University (China); Lambrichts, Ivo, E-mail: Ivo.Lambrichts@uhasselt.b [Department of Basic Medical Sciences, Histology and Electron Microscopy, Faculty of Medicine, University of Hasselt, Diepenbeek (Belgium); Sun Yi, E-mail: Sunyihello@hotmail.co [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Denis, Kathleen, E-mail: kathleen.denis@groept.b [Department of Industrial Sciences and Techology-Engineering (IWT), XIOS Hogeschool Limburg, Hasselt (Belgium); Hassan, Bassam, E-mail: b.hassan@acta.n [Department of Oral Radiology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam (Netherlands); Li Limin, E-mail: Limin.Li@uz.kuleuven.b [Department of Paediatric Dentistry and Special Dental Care, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Pauwels, Ruben, E-mail: Ruben.Pauwels@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Jacobs, Reinhilde, E-mail: Reinhilde.Jacobs@uz.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium)

    2010-08-15

    Aim: The study aim was to compare the geometric accuracy of three-dimensional (3D) surface model reconstructions between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: A dry human mandible was scanned with five CBCT systems (NewTom 3G, Accuitomo 3D, i-CAT, Galileos, Scanora 3D) and one MSCT scanner (Somatom Sensation 16). A 3D surface bone model was created from the six systems. The reference (gold standard) 3D model was obtained with a high resolution laser surface scanner. The 3D models from the five systems were compared with the gold standard using a point-based rigid registration algorithm. Results: The mean deviation from the gold standard for MSCT was 0.137 mm and for CBCT were 0.282, 0.225, 0.165, 0.386 and 0.206 mm for the i-CAT, Accuitomo, NewTom, Scanora and Galileos, respectively. Conclusion: The results show that the accuracy of CBCT 3D surface model reconstructions is somewhat lower but acceptable comparing to MSCT from the gold standard.

  9. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  10. Bayesian 3D X-ray computed tomography image reconstruction with a scaled Gaussian mixture prior model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Gac, Nicolas; Mohammad-Djafari, Ali [Laboratoire des Signaux et Systèmes 3, Rue Joliot-Curie 91192 Gif sur Yvette (France)

    2015-01-13

    In order to improve quality of 3D X-ray tomography reconstruction for Non Destructive Testing (NDT), we investigate in this paper hierarchical Bayesian methods. In NDT, useful prior information on the volume like the limited number of materials or the presence of homogeneous area can be included in the iterative reconstruction algorithms. In hierarchical Bayesian methods, not only the volume is estimated thanks to the prior model of the volume but also the hyper parameters of this prior. This additional complexity in the reconstruction methods when applied to large volumes (from 512{sup 3} to 8192{sup 3} voxels) results in an increasing computational cost. To reduce it, the hierarchical Bayesian methods investigated in this paper lead to an algorithm acceleration by Variational Bayesian Approximation (VBA) [1] and hardware acceleration thanks to projection and back-projection operators paralleled on many core processors like GPU [2]. In this paper, we will consider a Student-t prior on the gradient of the image implemented in a hierarchical way [3, 4, 1]. Operators H (forward or projection) and H{sup t} (adjoint or back-projection) implanted in multi-GPU [2] have been used in this study. Different methods will be evalued on synthetic volume 'Shepp and Logan' in terms of quality and time of reconstruction. We used several simple regularizations of order 1 and order 2. Other prior models also exists [5]. Sometimes for a discrete image, we can do the segmentation and reconstruction at the same time, then the reconstruction can be done with less projections.

  11. Efficient computation of the spontaneous decay rate of arbitrarily shaped 3D nanosized resonators: a Krylov model-order reduction approach

    NARCIS (Netherlands)

    Zimmerling, J.T.; Wei, L.; Urbach, H.P.; Remis, R.F.

    2016-01-01

    We present a Krylov model-order reduction approach to efficiently compute the spontaneous decay (SD) rate of arbitrarily shaped 3D nanosized resonators. We exploit the symmetry of Maxwell’s equations to efficiently construct so-called reduced-order models that approximate the SD rate of a quantum

  12. Linking microscopic spatial patterns of tissue destruction in emphysema to macroscopic decline in stiffness using a 3D computational model.

    Directory of Open Access Journals (Sweden)

    Harikrishnan Parameswaran

    2011-04-01

    Full Text Available Pulmonary emphysema is a connective tissue disease characterized by the progressive destruction of alveolar walls leading to airspace enlargement and decreased elastic recoil of the lung. However, the relationship between microscopic tissue structure and decline in stiffness of the lung is not well understood. In this study, we developed a 3D computational model of lung tissue in which a pre-strained cuboidal block of tissue was represented by a tessellation of space filling polyhedra, with each polyhedral unit-cell representing an alveolus. Destruction of alveolar walls was mimicked by eliminating faces that separate two polyhedral either randomly or in a spatially correlated manner, in which the highest force bearing walls were removed at each step. Simulations were carried out to establish a link between the geometries that emerged and the rate of decline in bulk modulus of the tissue block. The spatially correlated process set up by the force-based destruction lead to a significantly faster rate of decline in bulk modulus accompanied by highly heterogeneous structures than the random destruction pattern. Using the Karhunen-Loève transformation, an estimator of the change in bulk modulus from the first four moments of airspace cell volumes was setup. Simulations were then obtained for tissue destruction with different idealized alveolar geometry, levels of pre-strain, linear and nonlinear elasticity assumptions for alveolar walls and also mixed destruction patterns where both random and force-based destruction occurs simultaneously. In all these cases, the change in bulk modulus from cell volumes was accurately estimated. We conclude that microscopic structural changes in emphysema and the associated decline in tissue stiffness are linked by the spatial pattern of the destruction process.

  13. Sensing and compressing 3-D models

    Energy Technology Data Exchange (ETDEWEB)

    Krumm, J. [Sandia National Labs., Albuquerque, NM (United States). Intelligent System Sensors and Controls Dept.

    1998-02-01

    The goal of this research project was to create a passive and robust computer vision system for producing 3-D computer models of arbitrary scenes. Although the authors were unsuccessful in achieving the overall goal, several components of this research have shown significant potential. Of particular interest is the application of parametric eigenspace methods for planar pose measurement of partially occluded objects in gray-level images. The techniques presented provide a simple, accurate, and robust solution to the planar pose measurement problem. In addition, the representational efficiency of eigenspace methods used with gray-level features were successfully extended to binary features, which are less sensitive to illumination changes. The results of this research are presented in two papers that were written during the course of this project. The papers are included in sections 2 and 3. The first section of this report summarizes the 3-D modeling efforts.

  14. Contributions of the musculus uvulae to velopharyngeal closure quantified with a 3D multi-muscle computational model

    Science.gov (United States)

    Inouye, Joshua M.; Lin, Kant Y.; Perry, Jamie L.; Blemker, Silvia S.

    2016-01-01

    The convexity of the dorsal surface of the velum is critical for normal velopharyngeal (VP) function and is largely attributed to the levator veli palatini (LVP) and musculus uvulae (MU). Studies have correlated a concave or flat nasal velar surface to symptoms of VP dysfunction including hypernasality and nasal air emission. In the context of surgical repair of cleft palates, the MU has been given relatively little attention in the literature compared with the larger LVP. A greater understanding of the mechanics of the MU will provide insight into understanding the influence of a dysmorphic MU, as seen in cleft palate, as it relates to VP function. The purpose of this study was to quantify the contributions of the MU to VP closure in a computational model. We created a novel 3D finite element model of the VP mechanism from MRI data collected from an individual with healthy non-cleft VP anatomy. The model components included the velum, posterior pharyngeal wall (PPW), LVP, and MU. Simulations were based on the muscle and soft tissue mechanical properties from the literature. We found that, similar to previous hypotheses, the MU acts as i) a space-occupying structure and ii) a velar extensor. As a space-occupying structure, the MU helps to nearly triple the midline VP contact length. As a velar extensor, the MU acting alone without the LVP decreases the VP distance 62%. Furthermore, activation of the MU decreases the LVP activation required for closure almost three-fold, from 20% (without MU) to 8% (with MU). Our study suggests that any possible salvaging and anatomical reconstruction of viable MU tissue in a cleft patient may improve VP closure due to its mechanical function. In the absence or dysfunction of MU tissue, implantation of autologous or engineered tissues at the velar midline, as a possible substitute for the MU, may produce a geometric convexity more favorable to VP closure. In the future, more complex models will provide further insight into optimal

  15. Illustrating the disassembly of 3D models

    KAUST Repository

    Guo, Jianwei

    2013-10-01

    We present a framework for the automatic disassembly of 3D man-made models and the illustration of the disassembly process. Given an assembled 3D model, we first analyze the individual parts using sharp edge loops and extract the contact faces between each pair of neighboring parts. The contact faces are then used to compute the possible moving directions of each part. We then present a simple algorithm for clustering the sets of the individual parts into meaningful sub-assemblies, which can be used for a hierarchical decomposition. We take the stability of sub-assemblies into account during the decomposition process by considering the upright orientation of the input models. Our framework also provides a user-friendly interface to enable the superimposition of the constraints for the decomposition. Finally, we visualize the disassembly process by generating an animated sequence. The experiments demonstrate that our framework works well for a variety of complex models. © 2013 Elsevier Ltd.

  16. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy

    NARCIS (Netherlands)

    Liang, X.; Lambrichts, I.; Sun, Y.; Denis, K.; Hassan, B.; Li, L.; Pauwels, R.; Jacobs, R.

    2010-01-01

    Aim: The study aim was to compare the geometric accuracy of three-dimensional (3D) surface model reconstructions between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: A dry human mandible was scanned with five CBCT systems (NewTom 3G,

  17. CUDA programs for GPU computing of Swendsen-Wang multi-cluster spin flip algorithm: 2D and 3D Ising, Potts, and XY models

    CERN Document Server

    Komura, Yukihiro

    2014-01-01

    We present sample CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm. We deal with the classical spin models; the Ising model, the $q$-state Potts model, and the classical XY model. As for the lattice, both the 2D (square) lattice and the 3D (simple cubic) lattice are treated. We already reported the idea of the GPU implementation for 2D models [Comput. Phys. Commun. 183 (2012) 1155-1161]. We here explain the details of sample programs, and discuss the performance of the present GPU implementation for the 3D Ising and XY models. We also show the calculated results of the moment ratio for these models, and discuss phase transitions.

  18. Teaching Reform and Practice in Engineering Drawing Based on 3D Modeling with Computer%Teaching Reform and Practice in Engineering Drawing Based on 3D Modeling with Computer

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-hua; HAO Yu-xin

    2011-01-01

    Based on the necessity of three dimensional modeling with computer in teaching reform, this paper is the summarization of reform practice of teaching engineering drawing in our institute. The teaching reform begins with three dimensional modeling that used computer instead of board. On the basis of target of teaching reform, set of teaching content, arrangement of class hour and teaching method, the research of teaching practice have been done, and very good effects in teaching of engineering drawing have been achieved.

  19. Vision models for 3D surfaces

    Science.gov (United States)

    Mitra, Sunanda

    1992-11-01

    Different approaches to computational stereo to represent human stereo vision have been developed over the past two decades. The Marr-Poggio theory of human stereo vision is probably the most widely accepted model of the human stereo vision. However, recently developed motion stereo models which use a sequence of images taken by either a moving camera or a moving object provide an alternative method of achieving multi-resolution matching without the use of Laplacian of Gaussian operators. While using image sequences, the baseline between two camera positions for a image pair is changed for the subsequent image pair so as to achieve different resolution for each image pair. Having different baselines also avoids the inherent occlusion problem in stereo vision models. The advantage of using multi-resolution images acquired by camera positioned at different baselines over those acquired by LOG operators is that one does not have to encounter spurious edges often created by zero-crossings in the LOG operated images. Therefore in designing a computer vision system, a motion stereo model is more appropriate than a stereo vision model. However, in some applications where only a stereo pair of images are available, recovery of 3D surfaces of natural scenes are possible in a computationally efficient manner by using cepstrum matching and regularization techniques. Section 2 of this paper describes a motion stereo model using multi-scale cepstrum matching for the detection of disparity between image pairs in a sequence of images and subsequent recovery of 3D surfaces from depth-map obtained by a non convergent triangulation technique. Section 3 presents a 3D surface recovery technique from a stereo pair using cepstrum matching for disparity detection and cubic B-splines for surface smoothing. Section 4 contains the results of 3D surface recovery using both of the techniques mentioned above. Section 5 discusses the merit of 2D cepstrum matching and cubic B

  20. Multi-view and 3D deformable part models.

    Science.gov (United States)

    Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt

    2015-11-01

    As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ).

  1. Practical rendering and computation with Direct3D 11

    CERN Document Server

    Zink, Jason; Hoxley, Jack

    2011-01-01

    Practical Rendering and Computation with Direct3D 11 packs in documentation and in-depth coverage of basic and high-level concepts related to using Direct 3D 11 and is a top pick for any serious programming collection. … perfect for a wide range of users. Any interested in computation and multicore models will find this packed with examples and technical applications.-Midwest Book Review, October 2011The authors have generously provided us with an optimal blend of concepts and philosophy, illustrative figures to clarify the more difficult points, and source code fragments to make the ideas con

  2. Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pannala, S; D' Azevedo, E; Zacharia, T

    2002-02-26

    The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of

  3. 3D space analysis of dental models

    Science.gov (United States)

    Chuah, Joon H.; Ong, Sim Heng; Kondo, Toshiaki; Foong, Kelvin W. C.; Yong, Than F.

    2001-05-01

    Space analysis is an important procedure by orthodontists to determine the amount of space available and required for teeth alignment during treatment planning. Traditional manual methods of space analysis are tedious and often inaccurate. Computer-based space analysis methods that work on 2D images have been reported. However, as the space problems in the dental arch exist in all three planes of space, a full 3D analysis of the problems is necessary. This paper describes a visualization and measurement system that analyses 3D images of dental plaster models. Algorithms were developed to determine dental arches. The system is able to record the depths of the Curve of Spee, and quantify space liabilities arising from a non-planar Curve of Spee, malalignment and overjet. Furthermore, the difference between total arch space available and the space required to arrange the teeth in ideal occlusion can be accurately computed. The system for 3D space analysis of the dental arch is an accurate, comprehensive, rapid and repeatable method of space analysis to facilitate proper orthodontic diagnosis and treatment planning.

  4. Robust hashing for 3D models

    Science.gov (United States)

    Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin

    2014-02-01

    3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.

  5. FROM 3D MODEL DATA TO SEMANTICS

    Directory of Open Access Journals (Sweden)

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  6. The 3D-city model

    DEFF Research Database (Denmark)

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  7. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  8. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  9. [Potentials of 3D-modeling in reconstructive orbital surgery].

    Science.gov (United States)

    Butsan, S B; Khokhlachev, S B; Ĭigitaliev, Sh N; Zaiakin, Ia A

    2012-01-01

    A technique of bone reconstructive surgery of orbitofrontonasomalar region using 3D-modeling based on multispiral computer tomography data is presented. The efficacy of intraoperative templates created using 3D-modeling was showed for harvesting and modeling of bone calvarial autografts. The steps of reconstructive procedure are explained in details for repair of medial and inferior orbital fractures.

  10. Lagrangian Finite Element Method for 3D time-dependent viscoelastic flow computation using integral constitutive models

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    2000-01-01

    Lagrangian Integral Method) is a finite element method where Galerkons method is used for solving the governing equation in rectangular coordinates numerically. In the present implementation the velocity and pressure fields are approximated with tri-linear and constant shape functions, respectivly.The 3D LIM......) and polymeric solutions. Secondly, the 3D-LIM has also been applied to calculate the inflation of a thick sheet of a polymeric melt into a elliptic cylinder. These problems all include free surfaces. As the governing equations are solved for the particle positions, the motion of surfaces can be followed easily......A new technique for the numerical 3D simulation of time dependent flow of viscoelastic fluid is presented. The technique is based on a Lagrangian kinematics description of the fluid flow. The fluid is described by the Rivlin Sawyer integral constitutive equation. The method (referred to as the 3D...

  11. Deposit 3D modeling and application

    Institute of Scientific and Technical Information of China (English)

    LUO Zhou-quan; LIU Xiao-ming; SU Jia-hong; WU Ya-bin; LIU Wang-ping

    2007-01-01

    By the aid of the international mining software SURPAC, a geologic database for a multi-metal mine was established, 3D models of the surface, geologic fault, ore body, cavity and the underground openings were built, and the volume of the cavity of the mine based on the cavity 3D model was calculated. In order to compute the reserves, a grade block model was built and each metal element grade was estimated using Ordinary Kriging. Then, the reserve of each metal element and every sublevel of the mine was worked out. Finally, the calculated result of each metal reserve to its actual prospecting reserve was compared, and the results show that they are all almost equal to each other. The absolute errors of Sn, Pb, and Zn reserves are only 1.45%, 1.59% and 1.62%,respectively. Obviously, the built models are reliable and the calculated results of reserves are correct. They can be used to assist the geologic and mining engineers of the mine to do research work of reserves estimation, mining design, plan making and so on.

  12. Infra Red 3D Computer Mouse

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour; Stoustrup, Jakob

    2000-01-01

    of bandwidth, the signals are designed by means of the wavelet and the Rudin-Shapiro transforms. This also allows for easy separation of simultaneously made measurements. The measured intensities are converted to an 3D position by a neural net. The principle also applies to other applications, for instance...

  13. A non-CFD modeling system for computing 3D wind and concentration fields in urban environments

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Matthew A [Los Alamos National Laboratory; Brown, Michael J [Los Alamos National Laboratory; Williams, Michael D [Los Alamos National Laboratory; Gowardhan, Akshay [Los Alamos National Laboratory; Pardyjak, Eric R [UNIV OF UTAH

    2010-01-01

    The Quick Urban & Industrial Complex (QUIC) Dispersion Modeling System has been developed to rapidly compute the transport and dispersion of toxic agent releases in the vicinity of buildings. It is composed of an empirical-diagnostic wind solver, an 'urbanized' Lagrangian random-walk model, and a graphical user interface. The code has been used for homeland security and environmental air pollution applications. In this paper, we discuss the wind solver methodology and improvements made to the original Roeckle schemes in order to better capture flow fields in dense built-up areas. The mode1-computed wind and concentration fields are then compared to measurements from several field experiments. Improvements to the QUIC Dispersion Modeling System have been made to account for the inhomogeneous and complex building layouts found in large cities. The logic that has been introduced into the code is described and comparisons of model output to full-scale outdoor urban measurements in Oklahoma City and New York City are given. Although far from perfect, the model agreed fairly well with measurements and in many cases performed equally to CFD codes.

  14. Sectional depiction of the pelvic floor by CT, MR imaging and sheet plastination: computer-aided correlation and 3D model

    Energy Technology Data Exchange (ETDEWEB)

    Beyersdorff, D.; Taupitz, M.; Hamm, B. [Dept. of Radiology, Humboldt Univ., Berlin (Germany); Schiemann, T. [Inst. for Mathematics and Computer Science in Medicine, University of Hamburg (Germany); Kooijman, H. [Philips Medical Systems, Hamburg (Germany); Nicolas, V. [Dept. of Radiology and Nuclear Medicine, BG Kliniken Bergmannsheil, Bochum (Germany)

    2001-04-01

    The structures of the pelvic floor are clinically important but difficult to assess. To facilitate the understanding of the complicated pelvic floor anatomy on sectional images obtained by CT and MR imaging, and to make the representation more vivid, a computer-aided 3D model was created from a male and a female torso to develop a teaching tool. A male and a female cadaver torso were investigated by means of CT, MR imaging, and serial-section sheet plastination. A 3D reconstruction of the pelvic floor and adjacent structures was performed by fusion of CT and MR imaging data sets with sheet plastination sections. Corresponding sections from all three methods could be compared and visualized in their 3D context. Sheet plastination allows distinction of connective tissue, muscles, and pelvic organs down to a microscopic level. In combination with CT, MR imaging, and sheet plastination a 3D model of the pelvic floor offers a better understanding of the complex pelvic anatomy. This knowledge may be applied in the diagnostic imaging of urinary incontinence or prolapse and prior to prostate surgery. (orig.)

  15. 3D computer visualization and animation of CANDU reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Qian, T.; Echlin, M.; Tonner, P.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1999-07-01

    Three-dimensional (3D) computer visualization and animation models of typical CANDU reactor cores (Darlington, Point Lepreau) have been developed using world-wide-web (WWW) browser based tools: JavaScript, hyper-text-markup language (HTML) and virtual reality modeling language (VRML). The 3D models provide three-dimensional views of internal control and monitoring structures in the reactor core, such as fuel channels, flux detectors, liquid zone controllers, zone boundaries, shutoff rods, poison injection tubes, ion chambers. Animations have been developed based on real in-core flux detector responses and rod position data from reactor shutdown. The animations show flux changing inside the reactor core with the drop of shutoff rods and/or the injection of liquid poison. The 3D models also provide hypertext links to documents giving specifications and historical data for particular components. Data in HTML format (or other format such as PDF, etc.) can be shown in text, tables, plots, drawings, etc., and further links to other sources of data can also be embedded. This paper summarizes the use of these WWW browser based tools, and describes the resulting 3D reactor core static and dynamic models. Potential applications of the models are discussed. (author)

  16. Computer-aided classification of liver tumors in 3D ultrasound images with combined deformable model segmentation and support vector machine

    Science.gov (United States)

    Lee, Myungeun; Kim, Jong Hyo; Park, Moon Ho; Kim, Ye-Hoon; Seong, Yeong Kyeong; Cho, Baek Hwan; Woo, Kyoung-Gu

    2014-03-01

    In this study, we propose a computer-aided classification scheme of liver tumor in 3D ultrasound by using a combination of deformable model segmentation and support vector machine. For segmentation of tumors in 3D ultrasound images, a novel segmentation model was used which combined edge, region, and contour smoothness energies. Then four features were extracted from the segmented tumor including tumor edge, roundness, contrast, and internal texture. We used a support vector machine for the classification of features. The performance of the developed method was evaluated with a dataset of 79 cases including 20 cysts, 20 hemangiomas, and 39 hepatocellular carcinomas, as determined by the radiologist's visual scoring. Evaluation of the results showed that our proposed method produced tumor boundaries that were equal to or better than acceptable in 89.8% of cases, and achieved 93.7% accuracy in classification of cyst and hemangioma.

  17. From medical imaging data to 3D printed anatomical models.

    Science.gov (United States)

    Bücking, Thore M; Hill, Emma R; Robertson, James L; Maneas, Efthymios; Plumb, Andrew A; Nikitichev, Daniil I

    2017-01-01

    Anatomical models are important training and teaching tools in the clinical environment and are routinely used in medical imaging research. Advances in segmentation algorithms and increased availability of three-dimensional (3D) printers have made it possible to create cost-efficient patient-specific models without expert knowledge. We introduce a general workflow that can be used to convert volumetric medical imaging data (as generated by Computer Tomography (CT)) to 3D printed physical models. This process is broken up into three steps: image segmentation, mesh refinement and 3D printing. To lower the barrier to entry and provide the best options when aiming to 3D print an anatomical model from medical images, we provide an overview of relevant free and open-source image segmentation tools as well as 3D printing technologies. We demonstrate the utility of this streamlined workflow by creating models of ribs, liver, and lung using a Fused Deposition Modelling 3D printer.

  18. Advanced computational tools for 3-D seismic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Glover, C.W.; Protopopescu, V.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-06-01

    The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advance in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.

  19. 3D-GNOME: an integrated web service for structural modeling of the 3D genome.

    Science.gov (United States)

    Szalaj, Przemyslaw; Michalski, Paul J; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz

    2016-07-08

    Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/.

  20. 3-D Human Modeling and Animation

    CERN Document Server

    Ratner, Peter

    2012-01-01

    3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea

  1. Digital relief generation from 3D models

    Science.gov (United States)

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian

    2016-09-01

    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  2. An Automatic Registration Algorithm for 3D Maxillofacial Model

    Science.gov (United States)

    Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng

    2016-09-01

    3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.

  3. A Hybrid 3D Indoor Space Model

    Science.gov (United States)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  4. A Hybrid 3D Indoor Space Model

    Directory of Open Access Journals (Sweden)

    A. Jamali

    2016-10-01

    Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  5. 3D Stratigraphic Modeling of Central Aachen

    Science.gov (United States)

    Dong, M.; Neukum, C.; Azzam, R.; Hu, H.

    2010-05-01

    Since 1980s, advanced computer hardware and software technologies, as well as multidisciplinary research have provided possibilities to develop advanced three dimensional (3D) simulation software for geosciences application. Some countries, such as USA1) and Canada2) 3), have built up regional 3D geological models based on archival geological data. Such models have played huge roles in engineering geology2), hydrogeology2) 3), geothermal industry1) and so on. In cooperating with the Municipality of Aachen, the Department of Engineering Geology of RWTH Aachen University have built up a computer-based 3D stratigraphic model of 50 meter' depth for the center of Aachen, which is a 5 km by 7 km geologically complex area. The uncorrelated data from multi-resources, discontinuous nature and unconformable connection of the units are main challenges for geological modeling in this area. The reliability of 3D geological models largely depends on the quality and quantity of data. Existing 1D and 2D geological data were collected, including 1) approximately 6970 borehole data of different depth compiled in Microsoft Access database and MapInfo database; 2) a Digital Elevation Model (DEM); 3) geological cross sections; and 4) stratigraphic maps in 1m, 2m and 5m depth. Since acquired data are of variable origins, they were managed step by step. The main processes are described below: 1) Typing errors of borehole data were identified and the corrected data were exported to Variowin2.2 to distinguish duplicate points; 2) The surface elevation of borehole data was compared to the DEM, and differences larger than 3m were eliminated. Moreover, where elevation data missed, it was read from the DEM; 3) Considerable data were collected from municipal constructions, such as residential buildings, factories, and roads. Therefore, many boreholes are spatially clustered, and only one or two representative points were picked out in such areas; After above procedures, 5839 boreholes with -x

  6. Documentation of a computer program to simulate lake-aquifer interaction using the MODFLOW ground water flow model and the MOC3D solute-transport model

    Science.gov (United States)

    Merritt, Michael L.; Konikow, Leonard F.

    2000-01-01

    Heads and flow patterns in surficial aquifers can be strongly influenced by the presence of stationary surface-water bodies (lakes) that are in direct contact, vertically and laterally, with the aquifer. Conversely, lake stages can be significantly affected by the volume of water that seeps through the lakebed that separates the lake from the aquifer. For these reasons, a set of computer subroutines called the Lake Package (LAK3) was developed to represent lake/aquifer interaction in numerical simulations using the U.S. Geological Survey three-dimensional, finite-difference, modular ground-water flow model MODFLOW and the U.S. Geological Survey three-dimensional method-of-characteristics solute-transport model MOC3D. In the Lake Package described in this report, a lake is represented as a volume of space within the model grid which consists of inactive cells extending downward from the upper surface of the grid. Active model grid cells bordering this space, representing the adjacent aquifer, exchange water with the lake at a rate determined by the relative heads and by conductances that are based on grid cell dimensions, hydraulic conductivities of the aquifer material, and user-specified leakance distributions that represent the resistance to flow through the material of the lakebed. Parts of the lake may become ?dry? as upper layers of the model are dewatered, with a concomitant reduction in lake surface area, and may subsequently rewet when aquifer heads rise. An empirical approximation has been encoded to simulate the rewetting of a lake that becomes completely dry. The variations of lake stages are determined by independent water budgets computed for each lake in the model grid. This lake budget process makes the package a simulator of the response of lake stage to hydraulic stresses applied to the aquifer. Implementation of a lake water budget requires input of parameters including those representing the rate of lake atmospheric recharge and evaporation

  7. Automatic balancing of 3D models

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...

  8. Multi-level spherical moments based 3D model retrieval

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; HE Yuan-jun

    2006-01-01

    In this paper a novel 3D model retrieval method that employs multi-level spherical moment analysis and relies on voxelization and spherical mapping of the 3D models is proposed. For a given polygon-soup 3D model, first a pose normalization step is done to align the model into a canonical coordinate frame so as to define the shape representation with respect to this orientation. Afterward we rasterize its exterior surface into cubical voxel grids, then a series of homocentric spheres with their center superposing the center of the voxel grids cut the voxel grids into several spherical images. Finally moments belonging to each sphere are computed and the moments of all spheres constitute the descriptor of the model. Experiments showed that Euclidean distance based on this kind of feature vector can distinguish different 3D models well and that the 3D model retrieval system based on this arithmetic yields satisfactory performance.

  9. Measuring Visual Closeness of 3-D Models

    KAUST Repository

    Gollaz Morales, Jose Alejandro

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  10. Computer animation for articulated 3D characters

    NARCIS (Netherlands)

    Kiss, S.

    2002-01-01

    We present a review of the computer animation literature, mainly concentrating on articulated characters and at least some degree of interactivity or real time simulation. Advances in dierent techniques such as key-frame, motion capture (also known as mocap), dynamics, inverse kinematics (IK), contr

  11. Computer Animation for Articulated 3D Characters

    NARCIS (Netherlands)

    Kiss, S.

    2002-01-01

    We present a review of the computer animation literature, mainly concentrating on articulated characters and at least some degree of interactivity or real time simulation. Advances in dierent techniques such as key-frame, motion capture (also known as mocap), dynamics, inverse kinematics (IK),

  12. Comparison of different material models of articular cartilage in 3D computational modeling of the knee: Data from the Osteoarthritis Initiative (OAI).

    Science.gov (United States)

    Klets, Olesya; Mononen, Mika E; Tanska, Petri; Nieminen, Miika T; Korhonen, Rami K; Saarakkala, Simo

    2016-12-08

    The intricate properties of articular cartilage and the complexity of the loading environment are some of the key challenges in developing models for biomechanical analysis of the knee joint. Fibril-reinforced poroelastic (FRPE) material models have been reported to accurately capture characteristic responses of cartilage during dynamic and static loadings. However, high computational and time costs associated with such advanced models limit applicability of FRPE models when multiple subjects need to be analyzed. If choosing simpler material models, it is important to show that they can still produce truthful predictions. Therefore, the aim of this study was to compare depth-dependent maximum principal stresses and strains within articular cartilage in the 3D knee joint between FRPE material models and simpler isotropic elastic (IE), isotropic poroelastic (IPE) and transversely isotropic poroelastic (TIPE) material models during simulated gait cycle. When cartilage-cartilage contact pressures were matched between the models (15% allowed difference), maximum principal stresses in the IE, IPE and TIPE models were substantially lower than those in the FRPE model (by more than 50%, TIPE model being closest to the FRPE model), and stresses occurred only in compression in the IE model. Additional simulations were performed to find material parameters for the TIPE model (due to its anisotropic nature) that would yield maximum principal stresses similar to the FRPE model. The modified homogeneous TIPE model was in a better agreement with the homogeneous FRPE model, and the average and maximum differences in maximum principal stresses throughout the depth of cartilage were 7% and 9%, respectively, in the lateral compartment and 9% and 11% in the medial compartment. This study revealed that it is possible to match simultaneously maximum principal stresses and strains of cartilage between non-fibril-reinforced and fibril-reinforced knee joint models during gait. Depending on

  13. EDGE REMOVAL OF 3D POLYGONAL MODEL USING MAYA API

    Directory of Open Access Journals (Sweden)

    SAMEER ARORA

    2010-09-01

    Full Text Available In various applications of computer graphics, 3D polygonal modeling is used, which consists millions of triangular polygon. In this polygon attributes – vertices, edges and faces’ details are to be stored. In order to control the processing time, storing space, and transfer speed, it is often required to reduce the information ofthese polygonal 3D models. In this paper an effort is made to reduce the number of edges. There are various methods to reduce faces and edges of these 3D models. A C++ dynamic link library as Maya Plugin has been created to remove number of edges of 3D triangular polygon model using the Quadric Error Metrics (QEM in MAYA v2010 x64 API. QEM allows fast and accurate geometric simplification of 3D models.

  14. A computer-assisted 3D model for analyzing the aggregation of tumorigenic cells reveals specialized behaviors and unique cell types that facilitate aggregate coalescence.

    Directory of Open Access Journals (Sweden)

    Amanda Scherer

    Full Text Available We have developed a 4D computer-assisted reconstruction and motion analysis system, J3D-DIAS 4.1, and applied it to the reconstruction and motion analysis of tumorigenic cells in a 3D matrix. The system is unique in that it is fast, high-resolution, acquires optical sections using DIC microscopy (hence there is no associated photoxicity, and is capable of long-term 4D reconstruction. Specifically, a z-series at 5 μm increments can be acquired in less than a minute on tissue samples embedded in a 1.5 mm thick 3D Matrigel matrix. Reconstruction can be repeated at intervals as short as every minute and continued for 30 days or longer. Images are converted to mathematical representations from which quantitative parameters can be derived. Application of this system to cancer cells from established lines and fresh tumor tissue has revealed unique behaviors and cell types not present in non-tumorigenic lines. We report here that cells from tumorigenic lines and tumors undergo rapid coalescence in 3D, mediated by specific cell types that we have named "facilitators" and "probes." A third cell type, the "dervish", is capable of rapid movement through the gel and does not adhere to it. These cell types have never before been described. Our data suggest that tumorigenesis in vitro is a developmental process involving coalescence facilitated by specialized cells that culminates in large hollow spheres with complex architecture. The unique effects of select monoclonal antibodies on these processes demonstrate the usefulness of the model for analyzing the mechanisms of anti-cancer drugs.

  15. Multifractal modelling and 3D lacunarity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hanen, Akkari, E-mail: bettaieb.hanen@topnet.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Imen, Bhouri, E-mail: bhouri_imen@yahoo.f [Unite de recherche ondelettes et multifractals, Faculte des sciences (Tunisia); Asma, Ben Abdallah, E-mail: asma.babdallah@cristal.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Patrick, Dubois, E-mail: pdubois@chru-lille.f [INSERM, U 703, Lille (France); Hedi, Bedoui Mohamed, E-mail: medhedi.bedoui@fmm.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia)

    2009-09-28

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  16. Multifractal modelling and 3D lacunarity analysis

    Science.gov (United States)

    Hanen, Akkari; Imen, Bhouri; Asma, Ben Abdallah; Patrick, Dubois; Hédi, Bedoui Mohamed

    2009-09-01

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the “Relative Differential Box Counting” was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  17. 3-D computational model of poly (lactic acid)/halloysite nanocomposites: Predicting elastic properties and stress analysis

    DEFF Research Database (Denmark)

    De Silva, R. T.; Pasbakhsh, Pooria; Goh, K. L.

    2014-01-01

    models, as well as models with hollow and solid cylinder-like reinforcements with varied amounts of HNTs. A unit cell model with cylindrical reinforcements (representing HNTs) and at least 30 inclusions gave promising results, provided the model includes actual information about HNT's size ranges...

  18. BEAMS3D Neutral Beam Injection Model

    Science.gov (United States)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  19. APPLICATION OF 3D MODELING IN 3D PRINTING FOR THE LOWER JAW RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Yu. Yu. Dikov

    2015-01-01

    Full Text Available Aim of study: improvement of functional and aesthetic results of microsurgery reconstructions of the lower jaw due to the use of the methodology of 3D modeling and 3D printing. Application of this methodology has been demonstrated on the example of treatment of 4 patients with locally distributed tumors of the mouth cavity, who underwent excision of the tumor with simultaneous reconstruction of the lower jaw with revascularized fibular graft.Before, one patient has already undergo segmental resection of the lower jaw with the defect replacement with the avascular ileac graft and a reconstruction plate. Then, a relapse of the disease and lysis of the graft has developed with him. Modeling of the graft according to the shape of the lower jaw was performed by making osteotomies of the bone part of the graft using three-dimensional virtual models created by computed tomography data. Then these 3D models were printed with a 3D printer of plastic with the scale of 1:1 with the fused deposition modeling (FDM technology and were used during the surgery in the course of modeling of the graft. Sterilizing of the plastic model was performed in the formalin chamber.This methodology allowed more specific reconstruction of the resected fragment of the lower jaw and get better functional and aesthetic results and prepare patients to further dental rehabilitation. Advantages of this methodology are the possibility of simultaneous performance of stages of reconstruction and resection and shortening of the time of surgery.

  20. COMPUTER MODELING IN DEFORM-3D FOR ANALYSIS OF PLASTIC FLOW IN HIGH-SPEED HOT EXTRUSION OF BIMETALLIC FORMATIVE PARTS OF DIE TOOLING

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2015-01-01

    Full Text Available The modern development of industrial production is closely connected with the use of science-based and high technologies to ensure competitiveness of the manufactured products on the world market. There is also much tension around an energy- and resource saving problem which can be solved while introducing new technological processes and  creation of new materials that provide productivity increase through automation and improvement of tool life. Development and implementation of such technologies are rather often considered as time-consuming processes  which are connected with complex calculations and experimental investigations. Implementation of a simulation modelling for materials processing using modern software products serves an alternative to experimental and theoretical methods of research.The aim of this paper is to compare experimental results while obtaining bimetallic samples of a forming tool through the method of speed hot extrusion and the results obtained with the help of computer simulation using DEFORM-3D package and a finite element method. Comparative analysis of plastic flow of real and model samples has shown that the obtained models provide high-quality and reliable picture of plastic flow during high-speed hot extrusion. Modeling in DEFORM-3D make it possible to eliminate complex calculations and significantly reduce a number of experimental studies while developing new technological processes.

  1. 3D Modelling of Kizildag Monument

    Science.gov (United States)

    Karauguz, Güngör; Kalayci, İbrahim; Öğütcü, Sermet

    2016-10-01

    The most important cultural property that the nations possess is their historical accumulation, and bringing these to light, taking measures to preserve them or at least maintain the continuity of transferring them to next generations by means of recent technic and technology, ought to be the business of present generations. Although, nowadays, intensive documentation and archiving studies are done by means of classical techniques, besides studies towards preserving historical objects, modelling one-to-one or scaled modelling were not possible until recently. Computing devices and the on-going reflection of this, which is acknowledged as digital technology, is widely used in many areas and makes it possible to document and archive historical works. Even virtual forms in quantitative environments can be transferred to next generations in a scaled and one-to-one modelled way. Within this scope, every single artefact categorization belonging to any era or civilization present in our country can be considered in separate study areas. Furthermore, any work or likewise can be evaluated in separate categories. Also, it is possible to construct travelable virtual 3D museums that make it possible to visit these artefacts. Under the auspices of these technologies, it is quite possible to construct single virtual indoor museums or also, at the final stage, a 3D travelable open-air museum, a platform or more precisely, to establish a data system that spreads all over the country on a broad spectrum. With a long-termed, significant and extensive study and a substantial organization, such a data system can be established, which also serves as a serious infrastructure for alternative tourism possibilities. Located beside a stepped altar and right above the Kizildag IV inscription, the offering pot is destructed and rolled away a few meters to the south slope of the mould. Every time visiting these artefacts with our undergraduate students, unfortunately, we observe more

  2. Enhanced methods for computing spectra from CO5BOLD models using Linfor3D. Molecular bands in metal-poor stars

    CERN Document Server

    Gallagher, A J; Caffau, E; Bonifacio, P; Ludwig, H -G; Freytag, B

    2016-01-01

    Molecular features such as the G-band, CN-band and NH-band are important diagnostics for measuring a star's carbon and nitrogen abundances, especially in metal-poor stars where atomic lines are no longer visible in stellar spectra. Unlike atomic transitions, molecular features tend to form in bands, which cover large wavelength regions in a spectrum. While it is a trivial matter to compute carbon and nitrogen molecular bands under the assumption of 1D, it is extremely time consuming in 3D. In this contribution to the 2016 CO5BOLD workshop we review the improvements made to the 3D spectral synthesis code Linfor3D, and discuss the new challenges found when computing molecular features in 3D.

  3. Regional seismic wavefield computation on a 3-D heterogeneous Earth model by means of coupled traveling wave synthesis

    Science.gov (United States)

    Pollitz, F.F.

    2002-01-01

    I present a new algorithm for calculating seismic wave propagation through a three-dimensional heterogeneous medium using the framework of mode coupling theory originally developed to perform very low frequency (f seismic wavefield computation. It is a Greens function approach for multiple scattering within a defined volume and employs a truncated traveling wave basis set using the locked mode approximation. Interactions between incident and scattered wavefields are prescribed by mode coupling theory and account for the coupling among surface waves, body waves, and evanescent waves. The described algorithm is, in principle, applicable to global and regional wave propagation problems, but I focus on higher frequency (typically f ??????0.25 Hz) applications at regional and local distances where the locked mode approximation is best utilized and which involve wavefields strongly shaped by propagation through a highly heterogeneous crust. Synthetic examples are shown for P-SV-wave propagation through a semi-ellipsoidal basin and SH-wave propagation through a fault zone.

  4. 3D gender recognition using cognitive modeling

    DEFF Research Database (Denmark)

    Fagertun, Jens; Andersen, Tobias; Hansen, Thomas

    2013-01-01

    We use 3D scans of human faces and cognitive modeling to estimate the “gender strength”. The “gender strength” is a continuous class variable of the gender, superseding the traditional binary class labeling. To visualize some of the visual trends humans use when performing gender classification, ...

  5. Constructing Arguments with 3-D Printed Models

    Science.gov (United States)

    McConnell, William; Dickerson, Daniel

    2017-01-01

    In this article, the authors describe a fourth-grade lesson where 3-D printing technologies were not only a stimulus for engagement but also served as a modeling tool providing meaningful learning opportunities. Specifically, fourth-grade students construct an argument that animals' external structures function to support survival in a particular…

  6. Parallel computing helps 3D depth imaging, processing

    Energy Technology Data Exchange (ETDEWEB)

    Nestvold, E. O. [IBM, Houston, TX (United States); Su, C. B. [IBM, Dallas, TX (United States); Black, J. L. [Landmark Graphics, Denver, CO (United States); Jack, I. G. [BP Exploration, London (United Kingdom)

    1996-10-28

    The significance of 3D seismic data in the petroleum industry during the past decade cannot be overstated. Having started as a technology too expensive to be utilized except by major oil companies, 3D technology is now routinely used by independent operators in the US and Canada. As with all emerging technologies, documentation of successes has been limited. There are some successes, however, that have been summarized in the literature in the recent past. Key technological developments contributing to this success have been major advances in RISC workstation technology, 3D depth imaging, and parallel computing. This article presents the basic concepts of parallel seismic computing, showing how it impacts both 3D depth imaging and more-conventional 3D seismic processing.

  7. Fingering convection induced by atomic diffusion in stars: 3D numerical computations and applications to stellar models

    Energy Technology Data Exchange (ETDEWEB)

    Zemskova, Varvara [Department of Marine Sciences, University of North Carolina at Chapel Hill, 3202 Venable Hall, CB 3300, Chapel Hill, NC 27599-3300 (United States); Garaud, Pascale [Department of Applied Mathematics and Statistics, Baskin School of Engineering, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Deal, Morgan; Vauclair, Sylvie [Institut de Recherche en Astrophysique et Planétologie, 14 avenue Edouard Belin, Université de Toulouse, F-31400-Toulouse (France)

    2014-11-10

    Iron-rich layers are known to form in the stellar subsurface through a combination of gravitational settling and radiative levitation. Their presence, nature, and detailed structure can affect the excitation process of various stellar pulsation modes and must therefore be modeled carefully in order to better interpret Kepler asteroseismic data. In this paper, we study the interplay between atomic diffusion and fingering convection in A-type stars, as well as its role in the establishment and evolution of iron accumulation layers. To do so, we use a combination of three-dimensional idealized numerical simulations of fingering convection (which neglect radiative transfer and complex opacity effects) and one-dimensional realistic stellar models. Using the three-dimensional simulations, we first validate the mixing prescription for fingering convection recently proposed by Brown et al. (within the scope of the aforementioned approximation) and identify what system parameters (total mass of iron, iron diffusivity, thermal diffusivity, etc.) play a role in the overall evolution of the layer. We then implement the Brown et al. prescription in the Toulouse-Geneva Evolution Code to study the evolution of the iron abundance profile beneath the stellar surface. We find, as first discussed by Théado et al., that when the concurrent settling of helium is ignored, this accumulation rapidly causes an inversion in the mean molecular weight profile, which then drives fingering convection. The latter mixes iron with the surrounding material very efficiently, and the resulting iron layer is very weak. However, taking helium settling into account partially stabilizes the iron profile against fingering convection, and a large iron overabundance can accumulate. The opacity also increases significantly as a result, and in some cases it ultimately triggers dynamical convection. The direct effects of radiative acceleration on the dynamics of fingering convection (especially in the

  8. 3D Image Modelling and Specific Treatments in Orthodontics Domain

    Directory of Open Access Journals (Sweden)

    Dionysis Goularas

    2007-01-01

    Full Text Available In this article, we present a 3D specific dental plaster treatment system for orthodontics. From computer tomography scanner images, we propose first a 3D image modelling and reconstruction method of the Mandible and Maxillary based on an adaptive triangulation allowing management of contours meant for the complex topologies. Secondly, we present two specific treatment methods directly achieved on obtained 3D model allowing the automatic correction for the setting in occlusion of the Mandible and the Maxillary, and the teeth segmentation allowing more specific dental examinations. Finally, these specific treatments are presented via a client/server application with the aim of allowing a telediagnosis and treatment.

  9. 3D-model building of the jaw impression

    Science.gov (United States)

    Ahmed, Moumen T.; Yamany, Sameh M.; Hemayed, Elsayed E.; Farag, Aly A.

    1997-03-01

    A novel approach is proposed to obtain a record of the patient's occlusion using computer vision. Data acquisition is obtained using intra-oral video cameras. The technique utilizes shape from shading to extract 3D information from 2D views of the jaw, and a novel technique for 3D data registration using genetic algorithms. The resulting 3D model can be used for diagnosis, treatment planning, and implant purposes. The overall purpose of this research is to develop a model-based vision system for orthodontics to replace traditional approaches. This system will be flexible, accurate, and will reduce the cost of orthodontic treatments.

  10. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Science.gov (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  11. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  12. 3D Model Retrieval Based on Semantic and Shape Indexes

    CERN Document Server

    Kassimi, My Abdellah

    2011-01-01

    The size of 3D models used on the web or stored in databases is becoming increasingly high. Then, an efficient method that allows users to find similar 3D objects for a given 3D model query has become necessary. Keywords and the geometry of a 3D model cannot meet the needs of users' retrieval because they do not include the semantic information. In this paper, a new method has been proposed to 3D models retrieval using semantic concepts combined with shape indexes. To obtain these concepts, we use the machine learning methods to label 3D models by k-means algorithm in measures and shape indexes space. Moreover, semantic concepts have been organized and represented by ontology language OWL and spatial relationships are used to disambiguate among models of similar appearance. The SPARQL query language has been used to question the information displayed in this language and to compute the similarity between two 3D models. We interpret our results using the Princeton Shape Benchmark Database and the results show ...

  13. Debris Dispersion Model Using Java 3D

    Science.gov (United States)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  14. a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud

    Science.gov (United States)

    Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng

    2016-06-01

    This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  15. 使用计算机视觉的3D模型动作记录器%3D Model Action Recording System Using Computer Visions

    Institute of Scientific and Technical Information of China (English)

    丁志远

    2013-01-01

    该文旨在完成一款基于计算机视觉的3D模型动作记录器,即计算机通过摄像头获取人体运动视频并检测跟踪,之后通过处理数据控制3D模型,从而将人体动作进行记录保存。文章主要围绕运动目标检测、运动目标跟踪和3D建模三个方面展开研究。运动目标检测方面使用OpenCV(Open Source Computer Vision Library)提供的背景差分算法对目标进行分析并提取差分元素;运动目标跟踪方面则研究了常用的Camshift跟踪算法,实现对运动目标的连续跟踪以及识别从而保证动作记录器的连贯性;3D建模部分则使用3Dmax进行建立模型以及骨骼动画的制作处理,并使用Ogremax导出模型;而模型的骨骼动画则由OGRE导入测试环境并根据之前的处理结果进行相应的控制,从而实现人体运动的动作记录。%This paper present a 3D model action recording system using computer visions. A computer captures human motion videos with a network camera and conduct further detection and tracking of the video resources, then a 3D model was created based on the recorded data results. The action recording system includes motion target detection, motion target tracking and 3D modeling. OpenCV is used in the motion target detection where background image difference algorithm is used to analyze the moving target and extract different elements. For the motion target tracking, the Camshift tracking algorithm is used to realize continuous tracking and recognition of moving objects and ensure good performance of the action recorder. In our implementa-tion, 3Dmax is used to build the 3D model and skeletal animations, where Ogremax is used to export models, and then to im-port the skeletal animations into the test enviroment. The evaluations show that our motion recognition and recording system has good performance in one aspect, and can obtain accurate result on the other aspect.

  16. Image based 3D city modeling : Comparative study

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  17. Collaborative annotation of 3D crystallographic models.

    Science.gov (United States)

    Hunter, J; Henderson, M; Khan, I

    2007-01-01

    This paper describes the AnnoCryst system-a tool that was designed to enable authenticated collaborators to share online discussions about 3D crystallographic structures through the asynchronous attachment, storage, and retrieval of annotations. Annotations are personal comments, interpretations, questions, assessments, or references that can be attached to files, data, digital objects, or Web pages. The AnnoCryst system enables annotations to be attached to 3D crystallographic models retrieved from either private local repositories (e.g., Fedora) or public online databases (e.g., Protein Data Bank or Inorganic Crystal Structure Database) via a Web browser. The system uses the Jmol plugin for viewing and manipulating the 3D crystal structures but extends Jmol by providing an additional interface through which annotations can be created, attached, stored, searched, browsed, and retrieved. The annotations are stored on a standardized Web annotation server (Annotea), which has been extended to support 3D macromolecular structures. Finally, the system is embedded within a security framework that is capable of authenticating users and restricting access only to trusted colleagues.

  18. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS

    Science.gov (United States)

    Haas, K.A.; Warner, J.C.

    2009-01-01

    Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales. ?? 2008 Elsevier Ltd.

  19. 3D Modelling with Structured Light GAMMA Calibration

    Directory of Open Access Journals (Sweden)

    Eser Sert

    2014-01-01

    Full Text Available Structured light method is one of the non-contact measurement methods used for high resolution and high sensitive 3D modeling. In this method, a projector, camera and computer are used. Projector projects patterns that are generated with specific coding strategies onto the object that will be 3D modeled. Camera receives these patterns. By processing the images received by the camera, object is 3D modeled. Light intensity that is emitted from the projector generally not a linear function of the signal input. This causes brightness problems in the patterns projected. Thus, images received from the camera needs to the gamma corrected. In this study, gamma calibration method is proposed to overcome this problem. Test results show that proposed calibration system improves the accuracy and quality of the 3D modeling.

  20. 3-D Radiative Transfer Modeling of Structured Winds in Massive Hot Stars with Wind3D

    CERN Document Server

    Lobel, A; Blomme, R

    2010-01-01

    We develop 3-D models of the structured winds of massive hot stars with the Wind3D radiative transfer (RT) code. We investigate the physical properties of large-scale structures observed in the wind of the B-type supergiant HD 64760 with detailed line profile fits to Discrete Absorption Components (DACs) and rotational modulations observed with IUE in Si IV {\\lambda}1395. We develop parameterized input models Wind3D with large-scale equatorial wind density- and velocity-structures, or so-called `Co-rotating Interaction Regions' (CIRs) and `Rotational Modulation Regions' (RMRs). The parameterized models offer important advantages for high-performance RT calculations over ab-initio hydrodynamic input models. The acceleration of the input model calculations permits us to simulate and investigate a wide variety of physical conditions in the extended winds of massive hot stars. The new modeling method is very flexible for constraining the dynamic and geometric wind properties of RMRs in HD 64760. We compute that t...

  1. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    Directory of Open Access Journals (Sweden)

    Yong Xia

    2015-01-01

    Full Text Available Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation and the other is the diffusion term of the monodomain model (partial differential equation. Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

  2. Quantification of the accuracy of MRI generated 3D models of long bones compared to CT generated 3D models.

    Science.gov (United States)

    Rathnayaka, Kanchana; Momot, Konstantin I; Noser, Hansrudi; Volp, Andrew; Schuetz, Michael A; Sahama, Tony; Schmutz, Beat

    2012-04-01

    Orthopaedic fracture fixation implants are increasingly being designed using accurate 3D models of long bones based on computer tomography (CT). Unlike CT, magnetic resonance imaging (MRI) does not involve ionising radiation and is therefore a desirable alternative to CT. This study aims to quantify the accuracy of MRI-based 3D models compared to CT-based 3D models of long bones. The femora of five intact cadaver ovine limbs were scanned using a 1.5 T MRI and a CT scanner. Image segmentation of CT and MRI data was performed using a multi-threshold segmentation method. Reference models were generated by digitising the bone surfaces free of soft tissue with a mechanical contact scanner. The MRI- and CT-derived models were validated against the reference models. The results demonstrated that the CT-based models contained an average error of 0.15 mm while the MRI-based models contained an average error of 0.23 mm. Statistical validation shows that there are no significant differences between 3D models based on CT and MRI data. These results indicate that the geometric accuracy of MRI based 3D models was comparable to that of CT-based models and therefore MRI is a potential alternative to CT for generation of 3D models with high geometric accuracy.

  3. Design for scalability in 3D computer graphics architectures

    DEFF Research Database (Denmark)

    Holten-Lund, Hans Erik

    2002-01-01

    This thesis describes useful methods and techniques for designing scalable hybrid parallel rendering architectures for 3D computer graphics. Various techniques for utilizing parallelism in a pipelines system are analyzed. During the Ph.D study a prototype 3D graphics architecture named Hybris has...... been developed. Hybris is a prototype rendering architeture which can be tailored to many specific 3D graphics applications and implemented in various ways. Parallel software implementations for both single and multi-processor Windows 2000 system have been demonstrated. Working hardware...... as a case study and an application of the Hybris graphics architecture....

  4. 3D-DART: a DNA structure modelling server

    NARCIS (Netherlands)

    van Dijk, M.; Bonvin, A.M.J.J.

    2009-01-01

    There is a growing interest in structural studies of DNA by both experimental and computational approaches. Often, 3D-structural models of DNA are required, for instance, to serve as templates for homology modeling, as starting structures for macro-molecular docking or as scaffold for NMR structure

  5. Simplified 3d City Models from LIDAR

    Science.gov (United States)

    Lesparre, J.; Gorte, B. G. H.

    2012-07-01

    Aerial laser scan data is widely used to produce 2 1/2D digital elevation models automatically. However, creating full 3D city models from this data is a complex task. A simplified 3D model, like a 2 1/2D model with vertical walls will be easier to produce automatically, especially when the model is not produced to look nice, but just to give realistic results in an analysis or a simulation. To be able to include vertical walls in a 2 1/2D model we extend the TIN data structure in such way that the height of a vertex is stored implicitly in a way that allows multiple heights and efficient processing at the same time. To generate the city model we first apply data reduction in planar areas of an initial TIN. Next, we segment the TIN into planar segments for the ground, walls and roof planes. Finally, we intersect the segments to obtain a 2 1/2D model with slightly slanted walls, which should be adjusted to become exactly vertical. The results for simulated point cloud data are near-perfect. Real aerial laser scan data are more challenging, but the method still gives promising results.

  6. Computational and methodological developments towards 3D full waveform inversion

    Science.gov (United States)

    Etienne, V.; Virieux, J.; Hu, G.; Jia, Y.; Operto, S.

    2010-12-01

    Full waveform inversion (FWI) is one of the most promising techniques for seismic imaging. It relies on a formalism taking into account every piece of information contained in the seismic data as opposed to more classical techniques such as travel time tomography. As a result, FWI is a high resolution imaging process able to reach a spatial accuracy equal to half a wavelength. FWI is based on a local optimization scheme and therefore the main limitation concerns the starting model which has to be closed enough to the real one in order to converge to the global minimum. Another counterpart of FWI is the required computational resources when considering models and frequencies of interest. The task becomes even more tremendous when one tends to perform the inversion using the elastic equation instead of using the acoustic approximation. This is the reason why until recently most studies were limited to 2D cases. In the last few years, due to the increase of the available computational power, FWI has focused a lot of interests and continuous efforts towards inversion of 3D models, leading to remarkable applications up to the continental scale. We investigate the computational burden induced by FWI in 3D elastic media and propose some strategic features leading to the reduction of the numerical cost while providing a great flexibility in the inversion parametrization. First, in order to release the memory requirements, we developed our FWI algorithm in the frequency domain and take benefit of the wave-number redundancy in the seismic data to process a quite reduced number of frequencies. To do so, we extract frequency solutions from time marching techniques which are efficient for 3D structures. Moreover, this frequency approach permits a multi-resolution strategy by proceeding from low to high frequencies: the final model at one frequency is used as the starting model for the next frequency. This procedure overcomes partially the non-linear behavior of the inversion

  7. Modeling And Position Control Of Scara Type 3D Printer

    Directory of Open Access Journals (Sweden)

    Ahmet Saygamp305n Ogulmuamp351

    2015-08-01

    Full Text Available In this work a scara robot type 3D printer system is dynamically modeled and position control of the system is realized. For this aim computer aided design model of three degrees of freedom robotic system is created using SolidWorks program then obtained model is exported to MATLABSimMechanics software for position control. Also mathematical model of servo motors used in robotic 3D printer system is included in control methodology to design proportional controllers. Uncontrolled and controlled position results are simulated and given in the form of the graphics.

  8. Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening

    Directory of Open Access Journals (Sweden)

    Warltier David C

    2005-10-01

    Full Text Available Abstract Introduction The success of vascular stents in the restoration of blood flow is limited by restenosis. Recent data generated from computational fluid dynamics (CFD models suggest that the vascular geometry created by an implanted stent causes local alterations in wall shear stress (WSS that are associated with neointimal hyperplasia (NH. Foreshortening is a potential limitation of stent design that may affect stent performance and the rate of restenosis. The angle created between axially aligned stent struts and the principal direction of blood flow varies with the degree to which the stent foreshortens after implantation. Methods In the current investigation, we tested the hypothesis that stent foreshortening adversely influences the distribution of WSS and WSS gradients using time-dependent 3D CFD simulations of normal arteries based on canine coronary artery measurements of diameter and blood flow. WSS and WSS gradients were calculated using conventional techniques in ideal (16 mm and progressively foreshortened (14 and 12 mm stented computational vessels. Results Stent foreshortening increased the intrastrut area of the luminal surface exposed to low WSS and elevated spatial WSS gradients. Progressive degrees of stent foreshortening were also associated with strut misalignment relative to the direction of blood flow as indicated by analysis of near-wall velocity vectors. Conclusion The current results suggest that foreshortening may predispose the stented vessel to a higher risk of neointimal hyperplasia.

  9. Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy.

    Science.gov (United States)

    Xia, J; Ip, H H; Samman, N; Wang, D; Kot, C S; Yeung, R W; Tideman, H

    2000-02-01

    A computer-assisted three-dimensional virtual osteotomy system for orthognathic surgery (CAVOS) is presented. The virtual reality workbench is used for surgical planning. The surgeon immerses in a virtual reality environment with stereo eyewear, holds a virtual "scalpel" (3D Mouse) and operates on a "real" patient (3D visualization) to obtain pre-surgical prediction (3D bony segment movements). Virtual surgery on a computer-generated 3D head model is simulated and can be visualized from any arbitrary viewing point in a personal computer system.

  10. 3D modeling of buildings outstanding sites

    CERN Document Server

    Héno, Rapha?le

    2014-01-01

    Conventional topographic databases, obtained by capture on aerial or spatial images provide a simplified 3D modeling of our urban environment, answering the needs of numerous applications (development, risk prevention, mobility management, etc.). However, when we have to represent and analyze more complex sites (monuments, civil engineering works, archeological sites, etc.), these models no longer suffice and other acquisition and processing means have to be implemented. This book focuses on the study of adapted lifting means for "notable buildings". The methods tackled in this book cover las

  11. 3D Modelling of Biological Systems for Biomimetics

    Institute of Scientific and Technical Information of China (English)

    Shujun Zhang; Kevin Hapeshi; Ashok K. Bhattacharya

    2004-01-01

    With the advanced development of computer-based enabling technologies, many engineering, medical, biology,chemistry, physics and food science etc have developed to the unprecedented levels, which lead to many research and development interests in various multi-discipline areas. Among them, biomimetics is one of the most promising and attractive branches of study. Biomimetics is a branch of study that uses biological systems as a model to develop synthetic systems.To learn from nature, one of the fundamental issues is to understand the natural systems such animals, insects, plants and human beings etc. The geometrical characterization and representation of natural systems is an important fundamental work for biomimetics research. 3D modeling plays a key role in the geometrical characterization and representation, especially in computer graphical visualization. This paper firstly presents the typical procedure of 3D modelling methods and then reviews the previous work of 3D geometrical modelling techniques and systems developed for industrial, medical and animation applications. Especially the paper discusses the problems associated with the existing techniques and systems when they are applied to 3D modelling of biological systems. Based upon the discussions, the paper proposes some areas of research interests in 3D modelling of biological systems and for Biomimetics.

  12. 3D measurement system based on computer-generated gratings

    Science.gov (United States)

    Zhu, Yongjian; Pan, Weiqing; Luo, Yanliang

    2010-08-01

    A new kind of 3D measurement system has been developed to achieve the 3D profile of complex object. The principle of measurement system is based on the triangular measurement of digital fringe projection, and the fringes are fully generated from computer. Thus the computer-generated four fringes form the data source of phase-shifting 3D profilometry. The hardware of system includes the computer, video camera, projector, image grabber, and VGA board with two ports (one port links to the screen, another to the projector). The software of system consists of grating projection module, image grabbing module, phase reconstructing module and 3D display module. A software-based synchronizing method between grating projection and image capture is proposed. As for the nonlinear error of captured fringes, a compensating method is introduced based on the pixel-to-pixel gray correction. At the same time, a least square phase unwrapping is used to solve the problem of phase reconstruction by using the combination of Log Modulation Amplitude and Phase Derivative Variance (LMAPDV) as weight. The system adopts an algorithm from Matlab Tool Box for camera calibration. The 3D measurement system has an accuracy of 0.05mm. The execution time of system is 3~5s for one-time measurement.

  13. 3D Model Generation From the Engineering Drawing

    Science.gov (United States)

    Vaský, Jozef; Eliáš, Michal; Bezák, Pavol; Červeňanská, Zuzana; Izakovič, Ladislav

    2010-01-01

    The contribution deals with the transformation of engineering drawings in a paper form into a 3D computer representation. A 3D computer model can be further processed in CAD/CAM system, it can be modified, archived, and a technical drawing can be then generated from it as well. The transformation process from paper form to the data one is a complex and difficult one, particularly owing to the different types of drawings, forms of displayed objects and encountered errors and deviations from technical standards. The algorithm for 3D model generating from an orthogonal vector input representing a simplified technical drawing of the rotational part is described in this contribution. The algorithm was experimentally implemented as ObjectARX application in the AutoCAD system and the test sample as the representation of the rotational part was used for verificaton.

  14. Automatically Creating Design Models from 3D Anthropometry Data

    CERN Document Server

    Wuhrer, Stefanie; Bose, Prosenjit

    2011-01-01

    When designing a product that needs to fit the human shape, designers often use a small set of 3D models, called design models, either in physical or digital form, as representative shapes to cover the shape variabilities of the population for which the products are designed. Until recently, the process of creating these models has been an art involving manual interaction and empirical guesswork. The availability of the 3D anthropometric databases provides an opportunity to create design models optimally. In this paper, we propose a novel way to use 3D anthropometric databases to generate design models that represent a given population for design applications such as the sizing of garments and gear. We generate the representative shapes by solving a covering problem in a parameter space. Well-known techniques in computational geometry are used to solve this problem. We demonstrate the method using examples in designing glasses and helmets.

  15. Coarse-grained modeling of RNA 3D structure.

    Science.gov (United States)

    Dawson, Wayne K; Maciejczyk, Maciej; Jankowska, Elzbieta J; Bujnicki, Janusz M

    2016-07-01

    Functional RNA molecules depend on three-dimensional (3D) structures to carry out their tasks within the cell. Understanding how these molecules interact to carry out their biological roles requires a detailed knowledge of RNA 3D structure and dynamics as well as thermodynamics, which strongly governs the folding of RNA and RNA-RNA interactions as well as a host of other interactions within the cellular environment. Experimental determination of these properties is difficult, and various computational methods have been developed to model the folding of RNA 3D structures and their interactions with other molecules. However, computational methods also have their limitations, especially when the biological effects demand computation of the dynamics beyond a few hundred nanoseconds. For the researcher confronted with such challenges, a more amenable approach is to resort to coarse-grained modeling to reduce the number of data points and computational demand to a more tractable size, while sacrificing as little critical information as possible. This review presents an introduction to the topic of coarse-grained modeling of RNA 3D structures and dynamics, covering both high- and low-resolution strategies. We discuss how physics-based approaches compare with knowledge based methods that rely on databases of information. In the course of this review, we discuss important aspects in the reasoning process behind building different models and the goals and pitfalls that can result.

  16. Volume Sculpting: Intuitive, Interactive 3D Shape Modelling

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas

    A system for interactive modelling of 3D shapes on a computer is presented. The system is intuitive and has a flat learning curve. It is especially well suited to the creation of organic shapes and shapes of complex topology. The interaction is simple; the user can either add new shape features...

  17. Design and Implementation of 3D Model Database for General-Purpose 3D GIS

    Institute of Scientific and Technical Information of China (English)

    XU Weiping; ZHU Qing; DU Zhiqiang; ZHANG Yeting

    2010-01-01

    To improve the reusability of three-dimensional (3D) models and simplify the complexity of natural scene reconstruction, this paper presents a 3D model database for universal 3D GIS. After the introduction of its extensible function architecture,accompanied by the conclusion of implicit spatial-temporal hierarchy of models in any reconstructed scene of 3D GIS for general purpose, several key issues are discussed in detail, such as the storage and management of 3D models and related retrieval and load method, as well as the interfaces for further on-demand development. Finally, the validity and feasibility of this model database are proved through its application in the development of 3D visualization system of railway operation.

  18. 3D Vectorial Time Domain Computational Integrated Photonics

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, J S; Bond, T C; Koning, J M; Stowell, M L

    2007-02-16

    The design of integrated photonic structures poses considerable challenges. 3D-Time-Domain design tools are fundamental in enabling technologies such as all-optical logic, photonic bandgap sensors, THz imaging, and fast radiation diagnostics. Such technologies are essential to LLNL and WFO sponsors for a broad range of applications: encryption for communications and surveillance sensors (NSA, NAI and IDIV/PAT); high density optical interconnects for high-performance computing (ASCI); high-bandwidth instrumentation for NIF diagnostics; micro-sensor development for weapon miniaturization within the Stockpile Stewardship and DNT programs; and applications within HSO for CBNP detection devices. While there exist a number of photonics simulation tools on the market, they primarily model devices of interest to the communications industry. We saw the need to extend our previous software to match the Laboratory's unique emerging needs. These include modeling novel material effects (such as those of radiation induced carrier concentrations on refractive index) and device configurations (RadTracker bulk optics with radiation induced details, Optical Logic edge emitting lasers with lateral optical inputs). In addition we foresaw significant advantages to expanding our own internal simulation codes: parallel supercomputing could be incorporated from the start, and the simulation source code would be accessible for modification and extension. This work addressed Engineering's Simulation Technology Focus Area, specifically photonics. Problems addressed from the Engineering roadmap of the time included modeling the Auston switch (an important THz source/receiver), modeling Vertical Cavity Surface Emitting Lasers (VCSELs, which had been envisioned as part of fast radiation sensors), and multi-scale modeling of optical systems (for a variety of applications). We proposed to develop novel techniques to numerically solve the 3D multi-scale propagation problem for both the

  19. Gis-Based Smart Cartography Using 3d Modeling

    Science.gov (United States)

    Malinverni, E. S.; Tassetti, A. N.

    2013-08-01

    3D City Models have evolved to be important tools for urban decision processes and information systems, especially in planning, simulation, analysis, documentation and heritage management. On the other hand existing and in use numerical cartography is often not suitable to be used in GIS because not geometrically and topologically correctly structured. The research aim is to 3D structure and organize a numeric cartography for GIS and turn it into CityGML standardized features. The work is framed around a first phase of methodological analysis aimed to underline which existing standard (like ISO and OGC rules) can be used to improve the quality requirement of a cartographic structure. Subsequently, from this technical specifics, it has been investigated the translation in formal contents, using an owner interchange software (SketchUp), to support some guide lines implementations to generate a GIS3D structured in GML3. It has been therefore predisposed a test three-dimensional numerical cartography (scale 1:500, generated from range data captured by 3D laser scanner), tested on its quality according to the previous standard and edited when and where necessary. Cad files and shapefiles are converted into a final 3D model (Google SketchUp model) and then exported into a 3D city model (CityGML LoD1/LoD2). The GIS3D structure has been managed in a GIS environment to run further spatial analysis and energy performance estimate, not achievable in a 2D environment. In particular geometrical building parameters (footprint, volume etc.) are computed and building envelop thermal characteristics are derived from. Lastly, a simulation is carried out to deal with asbestos and home renovating charges and show how the built 3D city model can support municipal managers with risk diagnosis of the present situation and development of strategies for a sustainable redevelop.

  20. 3D Model Optimization of Four-Facet Drill for 3D Drilling Simulation

    Directory of Open Access Journals (Sweden)

    Buranský Ivan

    2016-09-01

    Full Text Available The article is focused on optimization of four-facet drill for 3D drilling numerical modelling. For optimization, the process of reverse engineering by PowerShape software was used. The design of four-facet drill was created in NumrotoPlus software. The modified 3D model of the drill was used in the numerical analysis of cutting forces. Verification of the accuracy of 3D models for reverse engineering was implemented using the colour deviation maps. The CAD model was in the STEP format. For simulation software, 3D model in the STEP format is ideal. STEP is a solid model. Simulation software automatically splits the 3D model into finite elements. The STEP model was therefore more suitable than the STL model.

  1. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    DEFF Research Database (Denmark)

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah;

    2014-01-01

    are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a sub-interval of the ([0,1]) interval to the corresponding...... method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban...... web standards. However, these 3D city models consume much more storage compared to two dimensional (2 D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access...

  2. 3D artefact for concurrent scale calibration in Computed Tomography

    DEFF Research Database (Denmark)

    Stolfi, Alessandro; De Chiffre, Leonardo

    2016-01-01

    A novel artefact for calibration of the scale in 3D X-ray Computed Tomography (CT) is presented. The artefact comprises a carbon fibre tubular structure on which a number of reference ruby spheres are glued. The artefact is positioned and scanned together with the workpiece inside the CT scanner ...

  3. 3D Printing device adaptable to Computer Numerical Control (CNC)

    OpenAIRE

    Gardan, Julien; DANESI, Frédéric; Roucoules, Lionel; Schneider, A

    2014-01-01

    This article presents the development of a 3D printing device for the additive manufacturing adapted to a CNC machining. The application involves the integration of a specific printing head. Additive manufacturing technology is most commonly used for modeling, prototyping, tooling through an exclusive machine or 3D printer. A global review and analysis of technologies show the additive manufacturing presents little independent solutions [6][9]. The problem studied especially the additive manu...

  4. Anvendt 3D modellering og parametrisk formgivning

    DEFF Research Database (Denmark)

    Hermund, Anders

    2011-01-01

    hjælpe med at identificere problemer og fordele, og fokusere på vigtigheden af at være i stand til at påvirke udviklingen af moderne 3D teknologier og systemer i en plausibel retning for kvaliteten af fremtidens arkitektoniske projekter. Forskningsspørgsmål er: Hvorledes kan en diagrammatisk metode sikre...... kreativitet i det parametriske system? Denne Ph.d. afhandling søger at skabe en teoretisk ramme, med henblik på at identificere og klarlægge nye potentialer for anvendt 3D modellering og parametrisk formgivningspraksis. Efter at have fået denne klarhed, er det nødvendigt at drøfte anvendelse og etik i de nye...... kommunikationsmidler og gennem interviews og praksis-baseret forskning etablere et brugbart fundament ud fra disse erfaringer. Den digitale udvikling skal ses som en helhed, der tager del i samspillet mellem både en historisk tradition og en langsigtet vision. Et værktøj, og en metode, der med mulighederne...

  5. Protein 3D structure computed from evolutionary sequence variation.

    Directory of Open Access Journals (Sweden)

    Debora S Marks

    Full Text Available The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org. This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of

  6. Protein 3D structure computed from evolutionary sequence variation.

    Science.gov (United States)

    Marks, Debora S; Colwell, Lucy J; Sheridan, Robert; Hopf, Thomas A; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2011-01-01

    The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α)-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein structures

  7. 3D Printing of Biomolecular Models for Research and Pedagogy

    Science.gov (United States)

    Da Veiga Beltrame, Eduardo; Tyrwhitt-Drake, James; Roy, Ian; Shalaby, Raed; Suckale, Jakob; Pomeranz Krummel, Daniel

    2017-01-01

    The construction of physical three-dimensional (3D) models of biomolecules can uniquely contribute to the study of the structure-function relationship. 3D structures are most often perceived using the two-dimensional and exclusively visual medium of the computer screen. Converting digital 3D molecular data into real objects enables information to be perceived through an expanded range of human senses, including direct stereoscopic vision, touch, and interaction. Such tangible models facilitate new insights, enable hypothesis testing, and serve as psychological or sensory anchors for conceptual information about the functions of biomolecules. Recent advances in consumer 3D printing technology enable, for the first time, the cost-effective fabrication of high-quality and scientifically accurate models of biomolecules in a variety of molecular representations. However, the optimization of the virtual model and its printing parameters is difficult and time consuming without detailed guidance. Here, we provide a guide on the digital design and physical fabrication of biomolecule models for research and pedagogy using open source or low-cost software and low-cost 3D printers that use fused filament fabrication technology. PMID:28362403

  8. Scalable 3D GIS environment managed by 3D-XML-based modeling

    Science.gov (United States)

    Shi, Beiqi; Rui, Jianxun; Chen, Neng

    2008-10-01

    Nowadays, the namely 3D GIS technologies become a key factor in establishing and maintaining large-scale 3D geoinformation services. However, with the rapidly increasing size and complexity of the 3D models being acquired, a pressing needed for suitable data management solutions has become apparent. This paper outlines that storage and exchange of geospatial data between databases and different front ends like 3D models, GIS or internet browsers require a standardized format which is capable to represent instances of 3D GIS models, to minimize loss of information during data transfer and to reduce interface development efforts. After a review of previous methods for spatial 3D data management, a universal lightweight XML-based format for quick and easy sharing of 3D GIS data is presented. 3D data management based on XML is a solution meeting the requirements as stated, which can provide an efficient means for opening a new standard way to create an arbitrary data structure and share it over the Internet. To manage reality-based 3D models, this paper uses 3DXML produced by Dassault Systemes. 3DXML uses opening XML schemas to communicate product geometry, structure and graphical display properties. It can be read, written and enriched by standard tools; and allows users to add extensions based on their own specific requirements. The paper concludes with the presentation of projects from application areas which will benefit from the functionality presented above.

  9. Human in vitro 3D co-culture model to engineer vascularized bone-mimicking tissues combining computational tools and statistical experimental approach.

    Science.gov (United States)

    Bersini, Simone; Gilardi, Mara; Arrigoni, Chiara; Talò, Giuseppe; Zamai, Moreno; Zagra, Luigi; Caiolfa, Valeria; Moretti, Matteo

    2016-01-01

    The generation of functional, vascularized tissues is a key challenge for both tissue engineering applications and the development of advanced in vitro models analyzing interactions among circulating cells, endothelium and organ-specific microenvironments. Since vascularization is a complex process guided by multiple synergic factors, it is critical to analyze the specific role that different experimental parameters play in the generation of physiological tissues. Our goals were to design a novel meso-scale model bridging the gap between microfluidic and macro-scale studies, and high-throughput screen the effects of multiple variables on the vascularization of bone-mimicking tissues. We investigated the influence of endothelial cell (EC) density (3-5 Mcells/ml), cell ratio among ECs, mesenchymal stem cells (MSCs) and osteo-differentiated MSCs (1:1:0, 10:1:0, 10:1:1), culture medium (endothelial, endothelial + angiopoietin-1, 1:1 endothelial/osteo), hydrogel type (100%fibrin, 60%fibrin+40%collagen), tissue geometry (2 × 2 × 2, 2 × 2 × 5 mm(3)). We optimized the geometry and oxygen gradient inside hydrogels through computational simulations and we analyzed microvascular network features including total network length/area and vascular branch number/length. Particularly, we employed the "Design of Experiment" statistical approach to identify key differences among experimental conditions. We combined the generation of 3D functional tissue units with the fine control over the local microenvironment (e.g. oxygen gradients), and developed an effective strategy to enable the high-throughput screening of multiple experimental parameters. Our approach allowed to identify synergic correlations among critical parameters driving microvascular network development within a bone-mimicking environment and could be translated to any vascularized tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. 3D head model classification using optimized EGI

    Science.gov (United States)

    Tong, Xin; Wong, Hau-san; Ma, Bo

    2006-02-01

    With the general availability of 3D digitizers and scanners, 3D graphical models have been used widely in a variety of applications. This has led to the development of search engines for 3D models. Especially, 3D head model classification and retrieval have received more and more attention in view of their many potential applications in criminal identifications, computer animation, movie industry and medical industry. This paper addresses the 3D head model classification problem using 2D subspace analysis methods such as 2D principal component analysis (2D PCA[3]) and 2D fisher discriminant analysis (2DLDA[5]). It takes advantage of the fact that the histogram is a 2D image, and we can extract the most useful information from these 2D images to get a good result accordingingly. As a result, there are two main advantages: First, we can perform less calculation to obtain the same rate of classification; second, we can reduce the dimensionality more than PCA to obtain a higher efficiency.

  11. NASA's 3D Flight Computer for Space Applications

    Science.gov (United States)

    Alkalai, Leon

    2000-01-01

    The New Millennium Program (NMP) Integrated Product Development Team (IPDT) for Microelectronics Systems was planning to validate a newly developed 3D Flight Computer system on its first deep-space flight, DS1, launched in October 1998. This computer, developed in the 1995-97 time frame, contains many new computer technologies previously never used in deep-space systems. They include: advanced 3D packaging architecture for future low-mass and low-volume avionics systems; high-density 3D packaged chip-stacks for both volatile and non-volatile mass memory: 400 Mbytes of local DRAM memory, and 128 Mbytes of Flash memory; high-bandwidth Peripheral Component Interface (Per) local-bus with a bridge to VME; high-bandwidth (20 Mbps) fiber-optic serial bus; and other attributes, such as standard support for Design for Testability (DFT). Even though this computer system did not complete on time for delivery to the DS1 project, it was an important development along a technology roadmap towards highly integrated and highly miniaturized avionics systems for deep-space applications. This continued technology development is now being performed by NASA's Deep Space System Development Program (also known as X2000) and within JPL's Center for Integrated Space Microsystems (CISM).

  12. Regional geothermal 3D modelling in Denmark

    Science.gov (United States)

    Poulsen, S. E.; Balling, N.; Bording, T. S.; Nielsen, S. B.

    2012-04-01

    In the pursuit of sustainable and low carbon emission energy sources, increased global attention has been given to the exploration and exploitation of geothermal resources within recent decades. In 2009 a national multi-disciplinary geothermal research project was established. As a significant part of this project, 3D temperature modelling is to be carried out, with special emphasis on temperatures of potential geothermal reservoirs in the Danish area. The Danish subsurface encompasses low enthalpy geothermal reservoirs of mainly Triassic and Jurassic age. Geothermal plants at Amager (Copenhagen) and Thisted (Northern Jutland) have the capacity of supplying the district heating network with up to 14 MW and 7 MW, respectively, by withdrawing warm pore water from the Gassum (Lower Jurassic/Upper Triassic) and Bunter (Lower Triassic) sandstone reservoirs, respectively. Explorative studies of the subsurface temperature regime typically are based on a combination of observations and modelling. In this study, the open-source groundwater modelling code MODFLOW is modified to simulate the subsurface temperature distribution in three dimensions by taking advantage of the mathematical similarity between saturated groundwater flow (Darcy flow) and heat conduction. A numerical model of the subsurface geology in Denmark is built and parameterized from lithological information derived from joint interpretation of seismic surveys and borehole information. Boundary conditions are constructed from knowledge about the heat flow from the Earth's interior and the shallow ground temperature. Matrix thermal conductivities have been estimated from analysis of high-resolution temperature logs measured in deep wells and porosity-depth relations are included using interpreted main lithologies. The model takes into account the dependency of temperature and pressure on thermal conductivity. Moreover, a transient model based correction of the paleoclimatic thermal disturbance caused by the

  13. Computer Graphics Teaching Support using X3D: Extensible 3D Graphics for Web Authors

    OpenAIRE

    Brutzman, Don

    2008-01-01

    X3D is the ISO-standard scene-graph language for interactive 3D graphics on the Web. A new course is available for teaching the fundamentals of 3D graphics using Extensible 3D (X3D). Resources include a detailed textbook, an authoring tool, hundreds of example scenes, and detailed slidesets covering each chapter. The published book is commercially available, while all other course-module resources are provided online free under open-source licenses. Numerous other commercial and o...

  14. GEOSPATIAL MODELLING APPROACH FOR 3D URBAN DENSIFICATION DEVELOPMENTS

    Directory of Open Access Journals (Sweden)

    O. Koziatek

    2016-06-01

    Full Text Available With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D. The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE, and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI’s CityEngine software and the Computer Generated Architecture (CGA language.

  15. Geospatial Modelling Approach for 3d Urban Densification Developments

    Science.gov (United States)

    Koziatek, O.; Dragićević, S.; Li, S.

    2016-06-01

    With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.

  16. Exploring hypotheses of the actions of TGF-beta1 in epidermal wound healing using a 3D computational multiscale model of the human epidermis.

    Directory of Open Access Journals (Sweden)

    Tao Sun

    Full Text Available In vivo and in vitro studies give a paradoxical picture of the actions of the key regulatory factor TGF-beta1 in epidermal wound healing with it stimulating migration of keratinocytes but also inhibiting their proliferation. To try to reconcile these into an easily visualized 3D model of wound healing amenable for experimentation by cell biologists, a multiscale model of the formation of a 3D skin epithelium was established with TGF-beta1 literature-derived rule sets and equations embedded within it. At the cellular level, an agent-based bottom-up model that focuses on individual interacting units (keratinocytes was used. This was based on literature-derived rules governing keratinocyte behavior and keratinocyte/ECM interactions. The selection of these rule sets is described in detail in this paper. The agent-based model was then linked with a subcellular model of TGF-beta1 production and its action on keratinocytes simulated with a complex pathway simulator. This multiscale model can be run at a cellular level only or at a combined cellular/subcellular level. It was then initially challenged (by wounding to investigate the behavior of keratinocytes in wound healing at the cellular level. To investigate the possible actions of TGF-beta1, several hypotheses were then explored by deliberately manipulating some of these rule sets at subcellular levels. This exercise readily eliminated some hypotheses and identified a sequence of spatial-temporal actions of TGF-beta1 for normal successful wound healing in an easy-to-follow 3D model. We suggest this multiscale model offers a valuable, easy-to-visualize aid to our understanding of the actions of this key regulator in wound healing, and provides a model that can now be used to explore pathologies of wound healing.

  17. Communicating long-span timber structures with 3D computer visualization

    OpenAIRE

    Janols, Henrik

    2005-01-01

    One of the reasons for the low amount of timber in construction is a general lack of knowledge about timber engineering and how timber can be used to its full advantage. In this thesis the focus is 3D computer visualisation (3D VIZ) of non-residential long-span timber structures, used for storage, industry and sports where 3D VIZ is defined as a process where a 3D-model is enhanced with environmental information e.g. texture maps and realistic light effects. An area of interest is the possibi...

  18. Efficient 3D scene modeling and mosaicing

    CERN Document Server

    Nicosevici, Tudor

    2013-01-01

    This book proposes a complete pipeline for monocular (single camera) based 3D mapping of terrestrial and underwater environments. The aim is to provide a solution to large-scale scene modeling that is both accurate and efficient. To this end, we have developed a novel Structure from Motion algorithm that increases mapping accuracy by registering camera views directly with the maps. The camera registration uses a dual approach that adapts to the type of environment being mapped.   In order to further increase the accuracy of the resulting maps, a new method is presented, allowing detection of images corresponding to the same scene region (crossovers). Crossovers then used in conjunction with global alignment methods in order to highly reduce estimation errors, especially when mapping large areas. Our method is based on Visual Bag of Words paradigm (BoW), offering a more efficient and simpler solution by eliminating the training stage, generally required by state of the art BoW algorithms.   Also, towards dev...

  19. Approaches for a 3D assessment of pavement evenness data based on 3D vehicle models

    Directory of Open Access Journals (Sweden)

    Andreas Ueckermann

    2015-04-01

    Full Text Available Pavements are 3D in their shape. They can be captured in three dimensions by modern road mapping equipment which allows for the assessment of pavement evenness in a more holistic way as opposed to current practice which divides into longitudinal and transversal evenness. It makes sense to use 3D vehicle models to simulate the effects of 3D surface data on certain functional criteria like pavement loading, cargo loading and driving comfort. In order to evaluate the three criteria mentioned two vehicle models have been created: a passenger car used to assess driving comfort and a truck-semitrailer submodel used to assess pavement and cargo loading. The vehicle models and their application to 3D surface data are presented. The results are well in line with existing single-track (planar models. Their advantage over existing 1D/2D models is demonstrated by the example of driving comfort evaluation. Existing “geometric” limit values for the assessment of longitudinal evenness in terms of the power spectral density could be used to establish corresponding limit values for the dynamic response, i.e. driving comfort, pavement loading and cargo loading. The limit values are well in line with existing limit values based on planar vehicle models. They can be used as guidelines for the proposal of future limit values. The investigations show that the use of 3D vehicle models is an appropriate and meaningful way of assessing 3D evenness data gathered by modern road mapping systems.

  20. Dynamic 3D computed tomography scanner for vascular imaging

    Science.gov (United States)

    Lee, Mark K.; Holdsworth, David W.; Fenster, Aaron

    2000-04-01

    A 3D dynamic computed-tomography (CT) scanner was developed for imaging objects undergoing periodic motion. The scanner system has high spatial and sufficient temporal resolution to produce quantitative tomographic/volume images of objects such as excised arterial samples perfused under physiological pressure conditions and enables the measurements of the local dynamic elastic modulus (Edyn) of the arteries in the axial and longitudinal directions. The system was comprised of a high resolution modified x-ray image intensifier (XRII) based computed tomographic system and a computer-controlled cardiac flow simulator. A standard NTSC CCD camera with a macro lens was coupled to the electro-optically zoomed XRII to acquire dynamic volumetric images. Through prospective cardiac gating and computer synchronized control, a time-resolved sequence of 20 mm thick high resolution volume images of porcine aortic specimens during one simulated cardiac cycle were obtained. Performance evaluation of the scanners illustrated that tomographic images can be obtained with resolution as high as 3.2 mm-1 with only a 9% decrease in the resolution for objects moving at velocities of 1 cm/s in 2D mode and static spatial resolution of 3.55 mm-1 with only a 14% decrease in the resolution in 3D mode for objects moving at a velocity of 10 cm/s. Application of the system for imaging of intact excised arterial specimens under simulated physiological flow/pressure conditions enabled measurements of the Edyn of the arteries with a precision of +/- kPa for the 3D scanner. Evaluation of the Edyn in the axial and longitudinal direction produced values of 428 +/- 35 kPa and 728 +/- 71 kPa, demonstrating the isotropic and homogeneous viscoelastic nature of the vascular specimens. These values obtained from the Dynamic CT systems were not statistically different (p less than 0.05) from the values obtained by standard uniaxial tensile testing and volumetric measurements.

  1. RNA and protein 3D structure modeling: similarities and differences.

    Science.gov (United States)

    Rother, Kristian; Rother, Magdalena; Boniecki, Michał; Puton, Tomasz; Bujnicki, Janusz M

    2011-09-01

    In analogy to proteins, the function of RNA depends on its structure and dynamics, which are encoded in the linear sequence. While there are numerous methods for computational prediction of protein 3D structure from sequence, there have been very few such methods for RNA. This review discusses template-based and template-free approaches for macromolecular structure prediction, with special emphasis on comparison between the already tried-and-tested methods for protein structure modeling and the very recently developed "protein-like" modeling methods for RNA. We highlight analogies between many successful methods for modeling of these two types of biological macromolecules and argue that RNA 3D structure can be modeled using "protein-like" methodology. We also highlight the areas where the differences between RNA and proteins require the development of RNA-specific solutions.

  2. 3D Geological Model for "LUSI" - a Deep Geothermal System

    Science.gov (United States)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  3. Generation and use of human 3D-CAD models

    Science.gov (United States)

    Grotepass, Juergen; Speyer, Hartmut; Kaiser, Ralf

    2002-05-01

    Individualized Products are one of the ten mega trends of the 21st Century with human modeling as the key issue for tomorrow's design and product development. The use of human modeling software for computer based ergonomic simulations within the production process increases quality while reducing costs by 30- 50 percent and shortening production time. This presentation focuses on the use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production. Today, the entire production chain can be designed, individualized models generated and analyzed in 3D computer environments. Anthropometric design for ergonomics is matched to human needs, thus preserving health. Ergonomic simulation includes topics as human vision, reachability, kinematics, force and comfort analysis and international design capabilities. In German more than 17 billions of Mark are moved to other industries, because clothes do not fit. Individual clothing tailored to the customer's preference means surplus value, pleasure and perfect fit. The body scanning technology is the key to generation and use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production.

  4. Building 3D models with modo 701

    CERN Document Server

    García, Juan Jiménez

    2013-01-01

    The book will focus on creating a sample application throughout the book, building gradually from chapter to chapter.If you are new to the 3D world, this is the key to getting started with a modern software in the modern visualization industry. Only minimal previous knowledge is needed.If you have some previous knowledge about 3D content creation, you will find useful tricks that will differentiate the learning experience from a typical user manual from this, a practical guide concerning the most common problems and situations and how to solve them.

  5. Robust 3D reconstruction system for human jaw modeling

    Science.gov (United States)

    Yamany, Sameh M.; Farag, Aly A.; Tazman, David; Farman, Allan G.

    1999-03-01

    This paper presents a model-based vision system for dentistry that will replace traditional approaches used in diagnosis, treatment planning and surgical simulation. Dentistry requires accurate 3D representation of the teeth and jaws for many diagnostic and treatment purposes. For example orthodontic treatment involves the application of force systems to teeth over time to correct malocclusion. In order to evaluate tooth movement progress, the orthodontists monitors this movement by means of visual inspection, intraoral measurements, fabrication of plastic models, photographs and radiographs, a process which is both costly and time consuming. In this paper an integrate system has been developed to record the patient's occlusion using computer vision. Data is acquired with an intraoral video camera. A modified shape from shading (SFS) technique, using perspective projection and camera calibration, is used to extract accurate 3D information from a sequence of 2D images of the jaw. A new technique for 3D data registration, using a Grid Closest Point transform and genetic algorithms, is used to register the SFS output. Triangulization is then performed, and a solid 3D model is obtained via a rapid prototype machine.

  6. Computing Radiative Transfer in a 3D Medium

    Science.gov (United States)

    Von Allmen, Paul; Lee, Seungwon

    2012-01-01

    A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.

  7. A 3-D shape model of Interamnia

    Science.gov (United States)

    Sato, Isao

    2015-08-01

    A 3-D shape model of the sixth largest of the main belt asteroids, (704) Interamnia, is presented. The model is reproduced from its two stellar occultation observations and six lightcurves between 1969 and 2011. The first stellar occultation was the occultation of TYC 234500183 on 1996 December 17 observed from 13 sites in the USA. An elliptical cross section of (344.6±9.6km)×(306.2±9.1km), for position angle P=73.4±12.5 was fitted. The lightcurve around the occultation shows that the peak-to-peak amplitude was 0.04 mag. and the occultation phase was just before the minimum. The second stellar occultation was the occultation of HIP 036189 on 2003 March 23 observed from 39 sites in Japan and Hawaii. An elliptical cross section of (349.8±0.9km)×(303.7±1.7km), for position angle P=86.0±1.1 was fitted. A companion of 8.5 mag. of the occulted star was discovered whose separation is 12±2 mas (milli-arcseconds), P=148±11 . A combined analysis of rotational lightcurves and occultation chords can return more information than can be obtained with either technique alone. From follow-up photometric observations of the asteroid between 2003 and 2011, its rotation period is determined to be 8.728967167±0.00000007 hours, which is accurate enough to fix the rotation phases at other occultation events. The derived north pole is λ2000=259±8, β2000=-50±5 (retrograde rotation); the lengths of the three principal axes are 2a=361.8±2.8km, 2b=324.4±5.0km, 2c=297.3±3.5km, and the mean diameter is D=326.8±3.0km. Supposing the mass of Interamnia as (3.5±0.9)×10-11 solar masses, the density is then ρ=3.8±1.0 g cm-3.

  8. 3D ultrasound computer tomography: update from a clinical study

    Science.gov (United States)

    Hopp, T.; Zapf, M.; Kretzek, E.; Henrich, J.; Tukalo, A.; Gemmeke, H.; Kaiser, C.; Knaudt, J.; Ruiter, N. V.

    2016-04-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging method for breast cancer diagnosis. We developed a 3D USCT system and tested it in a pilot study with encouraging results: 3D USCT was able to depict two carcinomas, which were present in contrast enhanced MRI volumes serving as ground truth. To overcome severe differences in the breast shape, an image registration was applied. We analyzed the correlation between average sound speed in the breast and the breast density estimated from segmented MRIs and found a positive correlation with R=0.70. Based on the results of the pilot study we now carry out a successive clinical study with 200 patients. For this we integrated our reconstruction methods and image post-processing into a comprehensive workflow. It includes a dedicated DICOM viewer for interactive assessment of fused USCT images. A new preview mode now allows intuitive and faster patient positioning. We updated the USCT system to decrease the data acquisition time by approximately factor two and to increase the penetration depth of the breast into the USCT aperture by 1 cm. Furthermore the compute-intensive reflectivity reconstruction was considerably accelerated, now allowing a sub-millimeter volume reconstruction in approximately 16 minutes. The updates made it possible to successfully image first patients in our ongoing clinical study.

  9. Development of 3D statistical mandible models for cephalometric measurements

    OpenAIRE

    2012-01-01

    Purpose The aim of this study was to provide sex-matched three-dimensional (3D) statistical shape models of the mandible, which would provide cephalometric parameters for 3D treatment planning and cephalometric measurements in orthognathic surgery. Materials and Methods The subjects used to create the 3D shape models of the mandible included 23 males and 23 females. The mandibles were segmented semi-automatically from 3D facial CT images. Each individual mandible shape was reconstructed as a ...

  10. Weapon identification using antemortem computed tomography with virtual 3D and rapid prototype modeling--a report in a case of blunt force head injury.

    Science.gov (United States)

    Woźniak, Krzysztof; Rzepecka-Woźniak, Ewa; Moskała, Artur; Pohl, Jerzy; Latacz, Katarzyna; Dybała, Bogdan

    2012-10-10

    A frequent request of a prosecutor referring to forensic autopsy is to determine the mechanism of an injury and to identify the weapons used to cause those injuries. This task could be problematic in many ways, including changes in the primary injury caused by medical intervention and the process of healing. To accomplish this task, the forensic pathologist has to gather all possible information during the post-mortem examination. The more data is collected, the easier it is to obtain an accurate answer to the prosecutor's question. The authors present a case of head injuries that the victim sustained under unknown circumstances. The patient underwent neurosurgical treatment which resulted in alteration of the bone fracture pattern. The only way to evaluate this injury was to analyze antemortem clinical data, especially CT scans, with virtual 3D reconstruction of the fractured skull. A physical model of a part of the broken skull was created with the use of 3D printing. These advanced techniques, applied for the first time in Poland for forensic purposes, allowed investigators to extract enough data to develop a hypothesis about the mechanism of injury and the weapon most likely used. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Tensor3D: A computer graphics program to simulate 3D real-time deformation and visualization of geometric bodies

    Science.gov (United States)

    Pallozzi Lavorante, Luca; Dirk Ebert, Hans

    2008-07-01

    Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.

  12. Method for modeling post-mortem biometric 3D fingerprints

    Science.gov (United States)

    Rajeev, Srijith; Shreyas, Kamath K. M.; Agaian, Sos S.

    2016-05-01

    Despite the advancements of fingerprint recognition in 2-D and 3-D domain, authenticating deformed/post-mortem fingerprints continue to be an important challenge. Prior cleansing and reconditioning of the deceased finger is required before acquisition of the fingerprint. The victim's finger needs to be precisely and carefully operated by a medium to record the fingerprint impression. This process may damage the structure of the finger, which subsequently leads to higher false rejection rates. This paper proposes a non-invasive method to perform 3-D deformed/post-mortem finger modeling, which produces a 2-D rolled equivalent fingerprint for automated verification. The presented novel modeling method involves masking, filtering, and unrolling. Computer simulations were conducted on finger models with different depth variations obtained from Flashscan3D LLC. Results illustrate that the modeling scheme provides a viable 2-D fingerprint of deformed models for automated verification. The quality and adaptability of the obtained unrolled 2-D fingerprints were analyzed using NIST fingerprint software. Eventually, the presented method could be extended to other biometric traits such as palm, foot, tongue etc. for security and administrative applications.

  13. 3D Modeling Techniques for Print and Digital Media

    Science.gov (United States)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  14. CityGML - Interoperable semantic 3D city models

    Science.gov (United States)

    Gröger, Gerhard; Plümer, Lutz

    2012-07-01

    relationship to other standards from the fields of computer graphics and computer-aided architectural design and to the prospective INSPIRE model are discussed, as well as the impact CityGML has and is having on the software industry, on applications of 3D city models, and on science generally.

  15. Integrating 3D modeling, photogrammetry and design

    CERN Document Server

    Foster, Shaun

    2014-01-01

    This book looks at the convergent nature of technology and its relationship to the field of photogrammetry and 3D design. This is a facet of a broader discussion of the nature of technology itself and the relationship of technology to art, as well as an examination of the educational process. In the field of technology-influenced design-based education it is natural to push for advanced technology, yet within a larger institution the constraints of budget and adherence to tradition must be accepted. These opposing forces create a natural balance; in some cases constraints lead to greater creat

  16. 3D modeling of metallic grain growth

    Energy Technology Data Exchange (ETDEWEB)

    George, D.; Carlson, N.; Gammel, J.T.; Kuprat, A.

    1999-06-01

    This paper will describe simulating metallic grain growth using the Gradient Weighted Moving Finite Elements code, GRAIN3D. The authors also describe the set of mesh topology change operations developed to respond to changes in the physical topology such as the collapse of grains and to maintain uniform calculational mesh quality. Validation of the method is demonstrated by comparison to analytic calculations. The authors present results of multigrain simulations where grain boundaries evolve by mean curvature motion and include results which incorporate grain boundary orientation dependence.

  17. 3D facial geometric features for constrained local model

    NARCIS (Netherlands)

    Cheng, Shiyang; Zafeiriou, Stefanos; Asthana, Akshay; Pantic, Maja

    2014-01-01

    We propose a 3D Constrained Local Model framework for deformable face alignment in depth image. Our framework exploits the intrinsic 3D geometric information in depth data by utilizing robust histogram-based 3D geometric features that are based on normal vectors. In addition, we demonstrate the fusi

  18. 3-D numerical modelling of flow around a groin

    DEFF Research Database (Denmark)

    Miller, R.; Roulund, A.; Sumer, B. Mutlu

    2003-01-01

    A 3-D flow code, EllipSys3D, has been implemented to simulate the 3-D flow around a groin in steady current. The k  turbulence model has been used for closure. Two kinds of groins are considered: (1) A vertical-wall groin, and (2) A groin with a side slope. Steady-flow simulations were conducted...

  19. 3D modeling based on CityEngine

    Science.gov (United States)

    Jia, Guangyin; Liao, Kaiju

    2017-03-01

    Currently, there are many 3D modeling softwares, like 3DMAX, AUTOCAD, and more populous BIM softwares represented by REVIT. CityEngine modeling software introduced in this paper can fully utilize the existing GIS data and combine other built models to make 3D modeling on internal and external part of buildings in a rapid and batch manner, so as to improve the 3D modeling efficiency.

  20. Glasses for 3D ultrasound computer tomography: phase compensation

    Science.gov (United States)

    Zapf, M.; Hopp, T.; Ruiter, N. V.

    2016-03-01

    Ultrasound Computer Tomography (USCT), developed at KIT, is a promising new imaging system for breast cancer diagnosis, and was successfully tested in a pilot study. The 3D USCT II prototype consists of several hundreds of ultrasound (US) transducers on a semi-ellipsoidal aperture. Spherical waves are sequentially emitted by individual transducers and received in parallel by many transducers. Reflectivity volumes are reconstructed by synthetic aperture focusing (SAFT). However, straight forward SAFT imaging leads to blurred images due to system imperfections. We present an extension of a previously proposed approach to enhance the images. This approach includes additional a priori information and system characteristics. Now spatial phase compensation was included. The approach was evaluated with a simulation and clinical data sets. An increase in the image quality was observed and quantitatively measured by SNR and other metrics.

  1. Time- and Computation-Efficient Calibration of MEMS 3D Accelerometers and Gyroscopes

    Directory of Open Access Journals (Sweden)

    Sara Stančin

    2014-08-01

    Full Text Available We propose calibration methods for microelectromechanical system (MEMS 3D accelerometers and gyroscopes that are efficient in terms of time and computational complexity. The calibration process for both sensors is simple, does not require additional expensive equipment, and can be performed in the field before or between motion measurements. The methods rely on a small number of defined calibration measurements that are used to obtain the values of 12 calibration parameters. This process enables the static compensation of sensor inaccuracies. The values detected by the 3D sensor are interpreted using a generalized 3D sensor model. The model assumes that the values detected by the sensor are equal to the projections of the measured value on the sensor sensitivity axes. Although this finding is trivial for 3D accelerometers, its validity for 3D gyroscopes is not immediately apparent; thus, this paper elaborates on this latter topic. For an example sensor device, calibration parameters were established using calibration measurements of approximately 1.5 min in duration for the 3D accelerometer and 2.5 min in duration for the 3D gyroscope. Correction of each detected 3D value using the established calibration parameters in further measurements requires only nine addition and nine multiplication operations.

  2. Time- and computation-efficient calibration of MEMS 3D accelerometers and gyroscopes.

    Science.gov (United States)

    Stančin, Sara; Tomažič, Sašo

    2014-08-13

    We propose calibration methods for microelectromechanical system (MEMS) 3D accelerometers and gyroscopes that are efficient in terms of time and computational complexity. The calibration process for both sensors is simple, does not require additional expensive equipment, and can be performed in the field before or between motion measurements. The methods rely on a small number of defined calibration measurements that are used to obtain the values of 12 calibration parameters. This process enables the static compensation of sensor inaccuracies. The values detected by the 3D sensor are interpreted using a generalized 3D sensor model. The model assumes that the values detected by the sensor are equal to the projections of the measured value on the sensor sensitivity axes. Although this finding is trivial for 3D accelerometers, its validity for 3D gyroscopes is not immediately apparent; thus, this paper elaborates on this latter topic. For an example sensor device, calibration parameters were established using calibration measurements of approximately 1.5 min in duration for the 3D accelerometer and 2.5 min in duration for the 3D gyroscope. Correction of each detected 3D value using the established calibration parameters in further measurements requires only nine addition and nine multiplication operations.

  3. 3D tumor models: history, advances and future perspectives.

    Science.gov (United States)

    Benien, Parul; Swami, Archana

    2014-05-01

    Evaluation of cancer therapeutics by utilizing 3D tumor models, before clinical studies, could be more advantageous than conventional 2D tumor models (monolayer cultures). The 3D systems mimic the tumor microenvironment more closely than 2D systems. The following review discusses the various 3D tumor models present today with the advantages and limitations of each. 3D tumor models replicate the elements of a tumor microenvironment such as hypoxia, necrosis, angiogenesis and cell adhesion. The review introduces application of techniques such as microfluidics, imaging and tissue engineering to improve the 3D tumor models. Despite their tremendous potential to better screen chemotherapeutics, 3D tumor models still have a long way to go before they are used commonly as in vitro tumor models in pharmaceutical industrial research.

  4. Life in 3D is never flat: 3D models to optimise drug delivery.

    Science.gov (United States)

    Fitzgerald, Kathleen A; Malhotra, Meenakshi; Curtin, Caroline M; O' Brien, Fergal J; O' Driscoll, Caitriona M

    2015-10-10

    The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Development of 3D statistical mandible models for cephalometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Goo; Yi, Won Jin; Hwang, Soon Jung; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il [School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Hong, Helen; Yoo, Ji Hyun [Division of Multimedia Engineering, Seoul Women' s University, Seoul (Korea, Republic of)

    2012-09-15

    The aim of this study was to provide sex-matched three-dimensional (3D) statistical shape models of the mandible, which would provide cephalometric parameters for 3D treatment planning and cephalometric measurements in orthognathic surgery. The subjects used to create the 3D shape models of the mandible included 23 males and 23 females. The mandibles were segmented semi-automatically from 3D facial CT images. Each individual mandible shape was reconstructed as a 3D surface model, which was parameterized to establish correspondence between different individual surfaces. The principal component analysis (PCA) applied to all mandible shapes produced a mean model and characteristic models of variation. The cephalometric parameters were measured directly from the mean models to evaluate the 3D shape models. The means of the measured parameters were compared with those from other conventional studies. The male and female 3D statistical mean models were developed from 23 individual mandibles, respectively. The male and female characteristic shapes of variation produced by PCA showed a large variability included in the individual mandibles. The cephalometric measurements from the developed models were very close to those from some conventional studies. We described the construction of 3D mandibular shape models and presented the application of the 3D mandibular template in cephalometric measurements. Optimal reference models determined from variations produced by PCA could be used for craniofacial patients with various types of skeletal shape.

  6. 3D-printer visualization of neuron models

    Directory of Open Access Journals (Sweden)

    Robert A McDougal

    2015-06-01

    Full Text Available Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the wireframe tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG. We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases.

  7. 3D-printer visualization of neuron models.

    Science.gov (United States)

    McDougal, Robert A; Shepherd, Gordon M

    2015-01-01

    Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases.

  8. AUTOMATIC MESH GENERATION OF 3-D GEOMETRIC MODELS

    Institute of Scientific and Technical Information of China (English)

    刘剑飞

    2003-01-01

    In this paper the presentation of the ball-packing method is reviewed,and a scheme to generate mesh for complex 3-D geometric models is given,which consists of 4 steps:(1)create nodes in 3-D models by ball-packing method,(2)connect nodes to generate mesh by 3-D Delaunay triangulation,(3)retrieve the boundary of the model after Delaunay triangulation,(4)improve the mesh.

  9. Business Models for Future Networked 3D Services

    OpenAIRE

    Bøhler, Marianne

    2011-01-01

    3-Dimensional (3D) technology has seen an increasingly widespread use over the last years, although the concept of 3D has been around for many years. Large studio movies being released in 3D and the development of 3DTVs and 3D games are the major reasons for its increasing popularity. The purpose of this thesis is to specify future collaboration space services based on the use of autostereoscopic 3D technology and propose possible business models. The collaboration spaces are geographically s...

  10. Statistical Model of the 3-D Braided Composites Strength

    Institute of Scientific and Technical Information of China (English)

    XIAO Laiyuan; ZUO Weiwei; CAI Ganwei; LIAO Daoxun

    2007-01-01

    Based on the statistical model for the tensile statistical strength of unidirectional composite materials and the stress analysis of 3-D braided composites, a new method is proposed to calculate the tensile statistical strength of the 3-D braided composites. With this method, the strength of 3-D braided composites can be calculated with very large accuracy, and the statistical parameters of 3-D braided composites can be determined. The numerical result shows that the tensile statistical strength of 3-D braided composites can be predicted using this method.

  11. 3D COMPUTER SIMULATION FOR LIGNIFICATION OF ANCIENT CHINESE TIMBER BUILDINGS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A pioneer research work was carried out by investigators engaged in surveying and mapping for describing ancient Chinese timber buildings by 3D frame graphs w ith a computer.Users can know the structural layers and the assembly process of the se buildings if the frame graphs are processed further with a computer model.Th is can be implemented by computer simulation technique.This technique display t he raw data on the screen of a computer and interactively manage them by combini ng technologies from computer graphics and image processing,multi-media technol ogy,artificial intelligence,highly parallel real-time computation technique an d human behavior science.This paper presents the implementing procedure of ligni fi cation simulation for large-sized wooden buildings as well as 3D dynamic assembl y of these buildings under the 3DS MAX environment.The results from computer sim ulation are also shown in the paper.

  12. Vel-IO 3D: A tool for 3D velocity model construction, optimization and time-depth conversion in 3D geological modeling workflow

    Science.gov (United States)

    Maesano, Francesco E.; D'Ambrogi, Chiara

    2017-02-01

    We present Vel-IO 3D, a tool for 3D velocity model creation and time-depth conversion, as part of a workflow for 3D model building. The workflow addresses the management of large subsurface dataset, mainly seismic lines and well logs, and the construction of a 3D velocity model able to describe the variation of the velocity parameters related to strong facies and thickness variability and to high structural complexity. Although it is applicable in many geological contexts (e.g. foreland basins, large intermountain basins), it is particularly suitable in wide flat regions, where subsurface structures have no surface expression. The Vel-IO 3D tool is composed by three scripts, written in Python 2.7.11, that automate i) the 3D instantaneous velocity model building, ii) the velocity model optimization, iii) the time-depth conversion. They determine a 3D geological model that is consistent with the primary geological constraints (e.g. depth of the markers on wells). The proposed workflow and the Vel-IO 3D tool have been tested, during the EU funded Project GeoMol, by the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain. The final 3D model showed the efficiency of the workflow and Vel-IO 3D tool in the management of large amount of data both in time and depth domain. A 4 layer-cake velocity model has been applied to a several thousand (5000-13,000 m) thick succession, with 15 horizons from Triassic up to Pleistocene, complicated by a Mesozoic extensional tectonics and by buried thrusts related to Southern Alps and Northern Apennines.

  13. Image-Based 3D Face Modeling System

    Directory of Open Access Journals (Sweden)

    Vladimir Vezhnevets

    2005-08-01

    Full Text Available This paper describes an automatic system for 3D face modeling using frontal and profile images taken by an ordinary digital camera. The system consists of four subsystems including frontal feature detection, profile feature detection, shape deformation, and texture generation modules. The frontal and profile feature detection modules automatically extract the facial parts such as the eye, nose, mouth, and ear. The shape deformation module utilizes the detected features to deform the generic head mesh model such that the deformed model coincides with the detected features. A texture is created by combining the facial textures augmented from the input images and the synthesized texture and mapped onto the deformed generic head model. This paper provides a practical system for 3D face modeling, which is highly automated by aggregating, customizing, and optimizing a bunch of individual computer vision algorithms. The experimental results show a highly automated process of modeling, which is sufficiently robust to various imaging conditions. The whole model creation including all the optional manual corrections takes only 2∼3 minutes.

  14. 3D finite element model for treatment of cleft lip

    Science.gov (United States)

    Jiao, Chun; Hong, Dongming; Lu, Hongbing; Wang, Jianqi; Lin, Qin; Liang, Zhengrong

    2009-02-01

    Cleft lip is a congenital facial deformity with high occurrence rate in China. Surgical procedure involving Millard or Tennison methods is usually employed for treatment of cleft lip. However, due to the elasticity of the soft tissues and the mechanical interaction between skin and maxillary, the occurrence rate of facial abnormality or dehisce is still high after the surgery, leading to multiple operations of the patient. In this study, a framework of constructing a realistic 3D finite element model (FEM) for the treatment of cleft lip has been established. It consists of two major steps. The first one is the reconstruction of a 3D geometrical model of the cleft lip from scanning CT data. The second step is the build-up of a FEM for cleft lip using the geometric model, where the material property of all the tetrahedrons was calculated from the CT densities directly using an empirical curve. The simulation results demonstrated (1) the deformation procedure of the model step-by-step when forces were applied, (2) the stress distribution inside the model, and (3) the displacement of all elements in the model. With the computer simulation, the minimal force of having the cleft be repaired is predicted, as well as whether a given force sufficient for the treatment of a specific individual. It indicates that the proposed framework could integrate the treatment planning with stress analysis based on a realistic patient model.

  15. 3D Computer aided treatment planning in endodontics.

    Science.gov (United States)

    van der Meer, Wicher J; Vissink, Arjan; Ng, Yuan Ling; Gulabivala, Kishor

    2016-02-01

    Obliteration of the root canal system due to accelerated dentinogenesis and dystrophic calcification can challenge the achievement of root canal treatment goals. This paper describes the application of 3D digital mapping technology for predictable navigation of obliterated canal systems during root canal treatment to avoid iatrogenic damage of the root. Digital endodontic treatment planning for anterior teeth with severely obliterated root canal systems was accomplished with the aid of computer software, based on cone beam computer tomography (CBCT) scans and intra-oral scans of the dentition. On the basis of these scans, endodontic guides were created for the planned treatment through digital designing and rapid prototyping fabrication. The custom-made guides allowed for an uncomplicated and predictable canal location and management. The method of digital designing and rapid prototyping of endodontic guides allows for reliable and predictable location of root canals of teeth with calcifically metamorphosed root canal systems. The endodontic directional guide facilitates difficult endodontic treatments at little additional cost. Copyright © 2016. Published by Elsevier Ltd.

  16. 3D scene modeling from multiple range views

    Science.gov (United States)

    Sequeira, Vitor; Goncalves, Joao G. M.; Ribeiro, M. Isabel

    1995-09-01

    This paper presents a new 3D scene analysis system that automatically reconstructs the 3D geometric model of real-world scenes from multiple range images acquired by a laser range finder on board of a mobile robot. The reconstruction is achieved through an integrated procedure including range data acquisition, geometrical feature extraction, registration, and integration of multiple views. Different descriptions of the final 3D scene model are obtained: a polygonal triangular mesh, a surface description in terms of planar and biquadratics surfaces, and a 3D boundary representation. Relevant experimental results from the complete 3D scene modeling are presented. Direct applications of this technique include 3D reconstruction and/or update of architectual or industrial plans into a CAD model, design verification of buildings, navigation of autonomous robots, and input to virtual reality systems.

  17. Accuracy and benefits of 3D bone surface modelling: a comparison of two methods of surface data acquisition reconstructed by laser scanning and computed tomography outputs.

    Science.gov (United States)

    Brzobohatá, Hana; Prokop, Josef; Horák, Martin; Jancárek, Alexandr; Velemínská, Jana

    2012-09-01

    The aim of this study is to compare two different methods of frontal bone surface model acquisition. Three dimensional models acquired by laser scanning were compared with models of the same bones acquired by virtual replicas reconstructed from a sequence of computed tomography (CT) images. The influence of volumetric CT data processing (namely thresholding), which immediately preceded the generation of the three-dimensional surface model, was also considered and explored in detail in one sample. Despite identifying certain areas where both models showed deviations across all samples, their conformity can be generally classified as satisfactory, and the differences can be regarded as minimal. The average deviation of registered surface models was 0.27 mm for 90% of the data, and its value was therefore very close to the resolution of the laser scanner used.

  18. Discrete Method of Images for 3D Radio Propagation Modeling

    Science.gov (United States)

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  19. A 3D Geometry Model Search Engine to Support Learning

    Science.gov (United States)

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  20. 3D-SoftChip: A Novel Architecture for Next-Generation Adaptive Computing Systems

    Directory of Open Access Journals (Sweden)

    Lee Mike Myung-Ok

    2006-01-01

    Full Text Available This paper introduces a novel architecture for next-generation adaptive computing systems, which we term 3D-SoftChip. The 3D-SoftChip is a 3-dimensional (3D vertically integrated adaptive computing system combining state-of-the-art processing and 3D interconnection technology. It comprises the vertical integration of two chips (a configurable array processor and an intelligent configurable switch through an indium bump interconnection array (IBIA. The configurable array processor (CAP is an array of heterogeneous processing elements (PEs, while the intelligent configurable switch (ICS comprises a switch block, 32-bit dedicated RISC processor for control, on-chip program/data memory, data frame buffer, along with a direct memory access (DMA controller. This paper introduces the novel 3D-SoftChip architecture for real-time communication and multimedia signal processing as a next-generation computing system. The paper further describes the advanced HW/SW codesign and verification methodology, including high-level system modeling of the 3D-SoftChip using SystemC, being used to determine the optimum hardware specification in the early design stage.

  1. Development of an online radiative module for the computation of aerosol optical properties in 3-D atmospheric models: validation during the EUCAARI campaign

    Directory of Open Access Journals (Sweden)

    B. Aouizerats

    2010-06-01

    Full Text Available Obtaining a good description of aerosol optical properties for a physically and chemically complex evolving aerosol is computationally very expensive at present. The goal of this work is to propose a new numerical module computing the optical properties for complex aerosol particles at low numerical cost so that it can be implemented in atmospheric models. This method aims to compute the optical properties online as a function of a given complex refractive index deduced from the aerosol chemical composition and the size parameters corresponding to the particles.

    The construction of look-up tables from the imaginary and the real part of the complex refractive index and size parameters will also be explained. This approach is validated for observations acquired during the EUCAARI campaign on the Cabauw tower during May 2008 and its computing cost is also estimated.

    These comparisons show that the module manages to reproduce the scattering and absorbing behaviour of the aerosol during most of the fifteen-day period of observation with a very cheap computationally cost.

  2. 3D RECORDING FOR 2D DELIVERING – THE EMPLOYMENT OF 3D MODELS FOR STUDIES AND ANALYSES –

    Directory of Open Access Journals (Sweden)

    A. Rizzi

    2012-09-01

    Full Text Available In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d’Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino. APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying

  3. 3D computation of non-linear eddy currents: Variational method and superconducting cubic bulk

    Science.gov (United States)

    Pardo, Enric; Kapolka, Milan

    2017-09-01

    Computing the electric eddy currents in non-linear materials, such as superconductors, is not straightforward. The design of superconducting magnets and power applications needs electromagnetic computer modeling, being in many cases a three-dimensional (3D) problem. Since 3D problems require high computing times, novel time-efficient modeling tools are highly desirable. This article presents a novel computing modeling method based on a variational principle. The self-programmed implementation uses an original minimization method, which divides the sample into sectors. This speeds-up the computations with no loss of accuracy, while enabling efficient parallelization. This method could also be applied to model transients in linear materials or networks of non-linear electrical elements. As example, we analyze the magnetization currents of a cubic superconductor. This 3D situation remains unknown, in spite of the fact that it is often met in material characterization and bulk applications. We found that below the penetration field and in part of the sample, current flux lines are not rectangular and significantly bend in the direction parallel to the applied field. In conclusion, the presented numerical method is able to time-efficiently solve fully 3D situations without loss of accuracy.

  4. Testing Mercury Porosimetry with 3D Printed Porosity Models

    Science.gov (United States)

    Hasiuk, F.; Ewing, R. P.; Hu, Q.

    2014-12-01

    Mercury intrusion porosimetry is one of the most widely used techniques to study the porous nature of a geological and man-made materials. In the geosciences, it is commonly used to describe petroleum reservoir and seal rocks as well as to grade aggregates for the design of asphalt and portland cement concretes. It's wide utility stems from its ability to characterize a wide range of pore throat sizes (from nanometers to around a millimeter). The fundamental physical model underlying mercury intrusion porosimetry, the Washburn Equation, is based on the assumption that rock porosity can be described as a bundle of cylindrical tubes. 3D printing technology, also known as rapid prototyping, allows the construction of intricate and accurate models, exactly what is required to build models of rock porosity. We evaluate the applicability of the Washburn Equation by comparing properties (like porosity, pore and pore throat size distribution, and surface area) computed on digital porosity models (built from CT data, CAD designs, or periodic geometries) to properties measured via mercury intrusion porosimetry on 3D printed versions of the same digital porosity models.

  5. Simulation of current generation in a 3-D plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, F.S.; Dawson, J.M. [Univ. of California, Los Angeles, CA (United States)

    1996-12-31

    Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the A{sub {parallel}} {circ} v{sub {parallel}} term in the test charge`s Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle`s parallel velocity. This is the basis for the {open_quotes}preferential loss{close_quotes} mechanism described in the work by Nunan et al. In our previous 2+{1/2}D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+{1/2}D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+{1/2}D and the 3D calculations. We will present our 3D results at the meeting.

  6. Numerical 3-D Modelling of Overflows

    DEFF Research Database (Denmark)

    Larsen, Torben; Nielsen, L.; Jensen, B.;

    2008-01-01

    The present study uses laboratory experiments to evaluate the reliability of two types of numerical models of sewers systems: - 1-dimensional model based on the extended Saint-Venant equation including the term for curvature of the water surface (the so-called Boussinesq approximation) - 2- and 3...

  7. 3D modeling for the generation of virtual heritage

    Directory of Open Access Journals (Sweden)

    Francisco Díaz Gómez

    2015-10-01

    Full Text Available The present article is focused on the generation of virtual 3D contents from cultural heritage. Its main structure is divided in two well-defined blocks: the first one focused in the generation of 3D models, analyzing the most used technologies of 3D measuring in the cultural heritage, the most important software applications for the management of the 3D models obtained and the generation of the target contents; and a second block for exposing two case studies showing potential of these technologies, previously shown, for approaching the cultural heritage to both the general public and researchers, due to the development of the information and communication technologies.

  8. NASA 3D Models: Cassini Assembly

    Data.gov (United States)

    National Aeronautics and Space Administration — Includes orbiter from CAD models. Accurate (to a fault) except no thermal blanketing is shown (this would cover most of the central structure of the spacecraft)....

  9. Active Shapes for Automatic 3D Modeling of Buildings

    NARCIS (Netherlands)

    Sirmacek, B.; Lindenbergh, R.C.

    2015-01-01

    Recent technological developments help us to acquire high quality 3D measurements of our urban environment. However, these measurements, which come as point clouds or Digital Surface Models (DSM), do not directly give 3D geometrical models of buildings. In addition to that, they are not suitable for

  10. Complex crustal structures: their 3D grav/mag modelling and 3D printing

    Science.gov (United States)

    Götze, Hans-Jürgen; Schmidt, Sabine; Menzel, Peter

    2017-04-01

    Our new techniques for modelling and visualization are user-friendly because they are highly interactive, ideally real-time and topology conserving and can be used for both flat and spherical models in 3D. These are important requirements for joint inversion for gravity and magnetic modelling of fields and their derivatives, constrained by seismic and structural input from independent data sources. A borehole tool for magnetic and gravity modelling will also be introduced. We are already close to satisfying the demand of treating several geophysical methods in a single model for subsurface evaluation purposes and aim now for fulfilling most of the constraints: consistency of modelling results and measurements and geological plausibility as well. For 3D modelling, polyhedrons built by triangles are used. All elements of the gravity and magnetic tensors can be included. In the modelling interface, after geometry changes the effect on the model is quickly updated because only the changed triangles have to be recalculated. Because of the triangular model structure, our approach can handle complex structures very well and flexible (e.g. overhangs of salt domes or plumes). For regional models, the use of spherical geometries and calculations is necessary and available. 3D visualization is performed with a 3D-printer (Ultimaker 2) and gives new insights into even rather complicated Earth subsurface structures. Inversion can either be run over the whole model, but typically it is used in smaller parts of the model, helping to solve local problems and/or proving/disproving local hypotheses. The basic principles behind this interactive approach are high performance optimized algorithms (CMA-ES: Covariance-matrix-adoption-evolution-strategy). The efficiency of the algorithm is rather good in terms of stable convergence due to topological model validity. Potential field modelling is always influenced by edge effects. To avoid this, a simple but very robust method has been

  11. Weight prediction of broiler chickens using 3D computer vision

    DEFF Research Database (Denmark)

    Mortensen, Anders Krogh; Lisouski, Pavel; Ahrendt, Peter

    2016-01-01

    a platform weigher which may also include ill birds. In the current study, a fully-automatic 3D camera-based weighing system for broilers have been developed and evaluated in a commercial production environment. Specifically, a low-cost 3D camera (Kinect) that directly returned a depth image was employed...

  12. Exploiting Textured 3D Models for Developing Serious Games

    Science.gov (United States)

    Kontogianni, G.; Georgopoulos, A.

    2015-08-01

    Digital technologies have affected significantly many fields of computer graphics such as Games and especially the field of the Serious Games. These games are usually used for educational proposes in many fields such as Health Care, Military applications, Education, Government etc. Especially Digital Cultural Heritage is a scientific area that Serious Games are applied and lately many applications appear in the related literature. Realistic 3D textured models which have been produced using different photogrammetric methods could be a useful tool for the creation of Serious Game applications in order to make the final result more realistic and close to the reality. The basic goal of this paper is how 3D textured models which are produced by photogrammetric methods can be useful for developing a more realistic environment of a Serious Game. The application of this project aims at the creation of an educational game for the Ancient Agora of Athens. The 3D models used vary not only as far as their production methods (i.e. Time of Flight laser scanner, Structure from Motion, Virtual historical reconstruction etc.) is concerned, but also as far as their era as some of them illustrated according to their existing situation and some others according to how these monuments looked like in the past. The Unity 3D® game developing environment was used for creating this application, in which all these models were inserted in the same file format. For the application two diachronic virtual tours of the Athenian Agora were produced. The first one illustrates the Agora as it is today and the second one at the 2nd century A.D. Finally the future perspective for the evolution of this game is presented which includes the addition of some questions that the user will be able to answer. Finally an evaluation is scheduled to be performed at the end of the project.

  13. Simulation of AIMS measurements using rigorous mask 3D modeling

    Science.gov (United States)

    Chou, Chih-Shiang; Huang, Hsu-Ting; Chu, Fu-Sheng; Chu, Yuan-Chih; Huang, Wen-Chun; Liu, Ru-Gun; Gau, Tsai-Sheng

    2015-03-01

    Aerial image measurement system (AIMSTM) has been widely used for wafer level inspection of mask defects. Reported inspection flows include die-to-die (D2D) and die-to-database (D2DB) methods. For patterns that do not repeat in another die, only the D2DB approach is applicable. The D2DB method requires accurate simulation of AIMS measurements for a mask pattern. An optical vectorial model is needed to depict the mask diffraction effect in this simulation. To accurately simulate the imaging results, a rigorous electro-magnetic field (EMF) model is essential to correctly take account of the EMF scattering induced by the mask topography, which is usually called the mask 3D effect. In this study, the mask 3D model we use is rigorous coupled-wave analysis (RCWA), which calculates the diffraction fields from a single plane wave incidence. A hybrid Hopkins-Abbe method with RCWA is used to calculate the EMF diffraction at a desired accuracy level while keeping the computation time practical. We will compare the speed of the hybrid Hopkins-Abbe method to the rigorous Abbe method. The matching between simulation and experiment is more challenging for AIMS than CD-SEM because its measurements provide full intensity information. Parameters in the mask 3D model such as film stack thickness or film optical properties, is optimized during the fitting process. We will report the fitting results of AIMS images for twodimensional structures with various pitches. By accurately simulating the AIMS measurements, it provides a necessary tool to perform the mask inspection using the D2DB approach and to accurately predict the mask defects.

  14. Numerical modeling of 3-D terrain effect on MT field

    Institute of Scientific and Technical Information of China (English)

    徐世浙; 阮百尧; 周辉; 陈乐寿; 徐师文

    1997-01-01

    Using the boundary element method, the numerical modeling problem of three-dimensional terrain effect on magnetotelluric (MT) field is solved. This modeling technique can be run on PC in the case of adopting special net division. The result of modeling test for 2-D terrain by this modeling technique is basically coincident with that by 2-D modeling technique, but there is a great difference between the results of 3-D and 2-D modeling for 3-D terrain.

  15. An Automated 3d Indoor Topological Navigation Network Modelling

    Science.gov (United States)

    Jamali, A.; Rahman, A. A.; Boguslawski, P.; Gold, C. M.

    2015-10-01

    Indoor navigation is important for various applications such as disaster management and safety analysis. In the last decade, indoor environment has been a focus of wide research; that includes developing techniques for acquiring indoor data (e.g. Terrestrial laser scanning), 3D indoor modelling and 3D indoor navigation models. In this paper, an automated 3D topological indoor network generated from inaccurate 3D building models is proposed. In a normal scenario, 3D indoor navigation network derivation needs accurate 3D models with no errors (e.g. gap, intersect) and two cells (e.g. rooms, corridors) should touch each other to build their connections. The presented 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. For reducing time and cost of indoor building data acquisition process, Trimble LaserAce 1000 as surveying instrument is used. The modelling results were validated against an accurate geometry of indoor building environment which was acquired using Trimble M3 total station.

  16. Optimisation of coronary vascular territorial 3D echocardiographic strain imaging using computed tomography

    DEFF Research Database (Denmark)

    de Knegt, Martina Chantal; Fuchs, A; Weeke, P;

    2016-01-01

    Current echocardiographic assessments of coronary vascular territories use the 17-segment model and are based on general assumptions of coronary vascular distribution. Fusion of 3D echocardiography (3DE) with multidetector computed tomography (MDCT) derived coronary anatomy may provide a more acc...

  17. Several Strategies on 3D Modeling of Manmade Objects

    Institute of Scientific and Technical Information of China (English)

    SHAO Zhenfeng; LI Deren; CHENG Qimin

    2004-01-01

    Several different strategies of 3D modeling are adopted for different kinds of manmade objects. Firstly, for those manmade objects with regular structure, if 2D information is available and elevation information can be obtained conveniently, then 3D modeling of them can be executed directly. Secondly, for those manmade objects with complicated structure comparatively and related stereo images pair can be acquired, in the light of topology-based 3D model we finish 3D modeling of them by integrating automatic and semi-automatic object extraction. Thirdly, for the most complicated objects whose geometrical information cannot be got from stereo images pair completely, we turn to topological 3D model based on CAD.

  18. Highway 3D model from image and lidar data

    Science.gov (United States)

    Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan

    2014-05-01

    We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.

  19. Beyond 3D culture models of cancer

    Science.gov (United States)

    Tanner, Kandice; Gottesman, Michael M.

    2016-01-01

    The mechanisms underlying the spatiotemporal evolution of tumor ecosystems present a challenge in evaluating drug efficacy. In this Perspective, we address the use of three-dimensional in vitro culture models to delineate the dynamic interplay between the tumor and the host microenvironment in an effort to attain realistic platforms for assessing pharmaceutical efficacy in patients. PMID:25877888

  20. RELAP5-3D Compressor Model

    Energy Technology Data Exchange (ETDEWEB)

    James E. Fisher; Cliff B. Davis; Walter L. Weaver

    2005-06-01

    A compressor model has been implemented in the RELAP5-3D© code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power.

  1. Thermal-stress analysis of ceramic laminate veneer restorations with different incisal preparations using micro-computed tomography-based 3D finite element models.

    Science.gov (United States)

    Celebi, Alper Tunga; Icer, Esra; Eren, Meltem Mert; Baykasoglu, Cengiz; Mugan, Ata; Yildiz, Esra

    2017-11-01

    Main objective of this study is to investigate the thermal behavior of ceramic laminate veneer restorations of the maxillary central incisor with different incisal preparations such as butt joint and palatinal chamfer using finite element method. In addition, it is also aimed to understand the effect of different thermal loads which simulates hot and cold liquid imbibing in the mouth. Three-dimensional solid models of the sound tooth and prepared veneer restorations were obtained using micro-computed tomography images. Each ceramic veneer restoration was made up of ceramic, luting resin cement and adhesive layer which were generated based on the scanned images using computer-aided design software. Our solid model also included the remaining dental tissues such as periodontal ligament and surrounding cortical and spongy bones. Time-dependent linear thermal analyses were carried out to compare temperature changes and stress distributions of the sound and restored tooth models. The liquid is firstly in contact with the crown area where the maximum stresses were obtained. For the restorations, stresses on palatinal surfaces were found larger than buccal surfaces. Through interior tissues, the effect of thermal load diminished and smaller stress distributions were obtained near pulp and root-dentin regions. We found that the palatinal chamfer restoration presents comparatively larger stresses than the butt joint preparation. In addition, cold thermal loading showed larger temperature changes and stress distributions than those of hot thermal loading independent from the restoration technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Modeling of a PWR using 3D components; Modelado de un PWR mediante componentes 3D

    Energy Technology Data Exchange (ETDEWEB)

    Mesado, C.; Garcia-Fenoll, M.; Miro, R.; Barrachina, T.; Verdu, G.

    2013-07-01

    The simulation of the behavior of the nucleus in nuclear reactors is especially important in the design, operation and safety of the plant. It is such importance that it has been decided to make a model of a nuclear reactor fully 3D. This has been used trailers codes TRACE v5.0 patch 3/PARCS v3.0. In addition, the model has been validated with another model of the same reactor through the attached code basis/PARCS2.7.

  3. Material stiffness parameters as potential predictors of presence of left ventricle myocardial infarction: 3D echo-based computational modeling study.

    Science.gov (United States)

    Fan, Longling; Yao, Jing; Yang, Chun; Wu, Zheyang; Xu, Di; Tang, Dalin

    2016-04-05

    Ventricle material properties are difficult to obtain under in vivo conditions and are not readily available in the current literature. It is also desirable to have an initial determination if a patient had an infarction based on echo data before more expensive examinations are recommended. A noninvasive echo-based modeling approach and a predictive method were introduced to determine left ventricle material parameters and differentiate patients with recent myocardial infarction (MI) from those without. Echo data were obtained from 10 patients, 5 with MI (Infarct Group) and 5 without (Non-Infarcted Group). Echo-based patient-specific computational left ventricle (LV) models were constructed to quantify LV material properties. All patients were treated equally in the modeling process without using MI information. Systolic and diastolic material parameter values in the Mooney-Rivlin models were adjusted to match echo volume data. The equivalent Young's modulus (YM) values were obtained for each material stress-strain curve by linear fitting for easy comparison. Predictive logistic regression analysis was used to identify the best parameters for infract prediction. The LV end-systole material stiffness (ES-YMf) was the best single predictor among the 12 individual parameters with an area under the receiver operating characteristic (ROC) curve of 0.9841. LV wall thickness (WT), material stiffness in fiber direction at end-systole (ES-YMf) and material stiffness variation (∆YMf) had positive correlations with LV ejection fraction with correlation coefficients r = 0.8125, 0.9495 and 0.9619, respectively. The best combination of parameters WT + ∆YMf was the best over-all predictor with an area under the ROC curve of 0.9951. Computational modeling and material stiffness parameters may be used as a potential tool to suggest if a patient had infarction based on echo data. Large-scale clinical studies are needed to validate these preliminary findings.

  4. Modelling Polymer Deformation during 3D Printing

    Science.gov (United States)

    McIlroy, Claire; Olmsted, Peter

    Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.

  5. Virtual 3d City Modeling: Techniques and Applications

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3

  6. Modeling open nanophotonic systems using the Fourier modal method: Generalization to 3D Cartesian coordinates

    DEFF Research Database (Denmark)

    Häyrynen, Teppo; Østerkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz

    2017-01-01

    . Am. A 33, 1298 (2016)]. Here, we generalize the approach to three-dimensional (3D) Cartesian coordinates allowing for the modeling of rectangular geometries in open space. The open boundary condition is a consequence of having an infinite computational domain described using basis functions...... convergence enabling more accurate and efficient modeling of open 3D nanophotonic structures....

  7. The description and validation of a computationally-Efficient CH4-CO-OH (ECCOHv1.01 chemistry module for 3-D model applications

    Directory of Open Access Journals (Sweden)

    Y. F. Elshorbany

    2015-11-01

    Full Text Available We present the Efficient CH4-CO-OH chemistry module (ECCOH that allows for the simulation of the methane, carbon monoxide and hydroxyl radical (CH4-CO-OH system, within a chemistry climate model, carbon cycle model, or earth system model. The computational efficiency of the module allows many multi-decadal sensitivity simulations of the CH4-CO-OH system, which primarily determines the global atmospheric oxidizing capacity. This capability is important for capturing the nonlinear feedbacks of the CH4-CO-OH system and understanding the perturbations to methane, CO and OH and the concomitant impacts on climate. We implemented the ECCOH chemistry module into the NASA GEOS-5 Atmospheric Global Circulation Model (AGCM, performed multiple sensitivity simulations of the CH4-CO-OH system over two decades, and evaluated the model output with surface and satellite datasets of methane and CO. The favorable comparison of output from the ECCOH chemistry module (as configured in the GEOS-5 AGCM with observations demonstrates the fidelity of the module for use in scientific research.

  8. 3-D Modeling of a Nearshore Dye Release

    Science.gov (United States)

    Maxwell, A. R.; Hibler, L. F.; Miller, L. M.

    2006-12-01

    The usage of computer modeling software in predicting the behavior of a plume discharged into deep water is well established. Nearfield plume spreading in coastal areas with complex bathymetry is less commonly studied; in addition to geometry, some of the difficulties of this environment include: tidal exchange, temperature, and salinity gradients. Although some researchers have applied complex hydrodynamic models to this problem, nearfield regions are typically modeled by calibration of an empirical or expert system model. In the present study, the 3D hydrodynamic model Delft3D-FLOW was used to predict the advective transport from a point release in Sequim Bay, Washington. A nested model approach was used, wherein a coarse model using a mesh extending to nearby tide gages (cell sizes up to 1 km) was run over several tidal cycles in order to provide boundary conditions to a smaller area. The nested mesh (cell sizes up to 30 m) was forced on two open boundaries using the water surface elevation derived from the coarse model. Initial experiments with the uncalibrated model were conducted in order to predict plume propagation based on the best available field data. Field experiments were subsequently carried out by releasing rhodamine dye into the bay at near-peak flood tidal current and near high slack tidal conditions. Surface and submerged releases were carried out from an anchored vessel. Concurrently collected data from the experiment include temperature, salinity, dye concentration, and hyperspectral imagery, collected from boats and aircraft. A REMUS autonomous underwater vehicle was used to measure current velocity and dye concentration at varying depths, as well as to acquire additional bathymetric information. Preliminary results indicate that the 3D hydrodynamic model offers a reasonable prediction of plume propagation speed and shape. A sensitivity analysis is underway to determine the significant factors in effectively using the model as a predictive tool

  9. Kongsfjorden-MIKE 3D model

    Science.gov (United States)

    Przyborska, Anna; Kosecki, Szymon; Jakacki, Jaromir

    2014-05-01

    Kongsfjorden is a West Svalbard fjord with a surface area of about 210 km2. It is obvious that the depths of the outer and central basins are influenced by the open sea, under influence of West Spitsbergen Current (WSC), which curry out warm Atlantic water and cold East Spitsbergen Current, while the shallower, inner basin has a large glacial outflow and its maximum depths do not exceed 100 m. Freshwater stored in Spitsbergen glaciers have strong influence on local hydrology and physical fjord conditions. Both, local and shelf conditions have impact on state of the fjord. External forces like tides, velocities at the boundary and atmospheric forces together with sources of cold and dens fresh water in the fjords will give reliable representation of physical conditions in Kongsfjorden. Modeling could help to solve this problem and we have hope that we find answer which one is the most important for local conditions in fjord. Calculations of balances between cold fresh water and warm and salt will provide additional information that could help to answer the main question of the GAME (Growing of the Arctic Marine Ecosystem) project - what is the reaction of physically controlled Arctic marine ecosystem to temperature rise.

  10. Design for scalability in 3D computer graphics architectures

    DEFF Research Database (Denmark)

    Holten-Lund, Hans Erik

    2002-01-01

    been developed. Hybris is a prototype rendering architeture which can be tailored to many specific 3D graphics applications and implemented in various ways. Parallel software implementations for both single and multi-processor Windows 2000 system have been demonstrated. Working hardware/software...... codesign implementations of Hybris for standard-cell based ASIC (simulated) and FPGA technologies have been demonstrated, using manual co-synthesis for translation of a Virtual Prototyping architecture specification written in C into both optimized C source for software and into to a synthesizable VHDL...... specification for hardware implementation. A flexible VRML 97 3D scene graph engine with a Java interface and C++ interface has been implemented to allow flexible integration of the rendering technology into Java and C++ applications. A 3D medical visualization workstation prototype (3D-Med) is examined...

  11. NoSQL Based 3D City Model Management System

    Science.gov (United States)

    Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.

    2014-04-01

    To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.

  12. DESIGN OF 3D MODEL OF CUSTOMIZED ANATOMICALLY ADJUSTED IMPLANTS

    OpenAIRE

    Miodrag Manić; Zoran Stamenković; Milorad Mitković; Miloš Stojković; Duncan E.T. Shephard

    2015-01-01

    Design and manufacturing of customized implants is a field that has been rapidly developing in recent years. This paper presents an originally developed method for designing a 3D model of customized anatomically adjusted implants. The method is based upon a CT scan of a bone fracture. A CT scan is used to generate a 3D bone model and a fracture model. Using these scans, an indicated location for placing the implant is recognized and the design of a 3D model of customized implants is made. Wit...

  13. Focus for 3D city models should be on interoperability

    DEFF Research Database (Denmark)

    Bodum, Lars; Kjems, Erik; Jaegly, Marie Michele Helena

    2006-01-01

    3D city models have become a very popular commodity for cities in general. The politicians and/or the administrative management have in the last few years been very active when it comes to investments in dimensionality, and the models come in many different forms and for many specific or non...... of interoperability. Verisimilarity would in this case mean a 3D model with close resemblance to reality and based on modelling principles from CAD and scenes from this, build with focus on photorealism. Interoperability would mean a 3D model that included semantics in form of an object model and an ontology...... that would make it useful for other purposes than visualisation. Time has come to try to change this trend and to convince the municipalities that interoperability and semantics are important issues for the future. It is important for them to see that 3D modelling, mapping and geographic information...

  14. 3D Finite Difference Modelling of Basaltic Region

    Science.gov (United States)

    Engell-Sørensen, L.

    2003-04-01

    The main purpose of the work was to generate realistic data to be applied for testing of processing and migration tools for basaltic regions. The project is based on the three - dimensional finite difference code (FD), TIGER, made by Sintef. The FD code was optimized (parallelized) by the author, to run on parallel computers. The parallel code enables us to model large-scale realistic geological models and to apply traditional seismic and micro seismic sources. The parallel code uses multiple processors in order to manipulate subsets of large amounts of data simultaneously. The general anisotropic code uses 21 elastic coefficients. Eight independent coefficients are needed as input parameters for the general TI medium. In the FD code, the elastic wave field computation is implemented by a higher order FD solution to the elastic wave equation and the wave fields are computed on a staggered grid, shifted half a node in one or two directions. The geological model is a gridded basalt model, which covers from 24 km to 37 km of a real shot line in horizontal direction and from the water surface to the depth of 3.5 km. The 2frac {1}{2}D model has been constructed using the compound modeling software from Norsk Hydro. The vertical parameter distribution is obtained from observations in two wells. At The depth of between 1100 m to 1500 m, a basalt horizon covers the whole sub surface layers. We have shown that it is possible to simulate a line survey in realistic (3D) geological models in reasonable time by using high performance computers. The author would like to thank Norsk Hydro, Statoil, GEUS, and SINTEF for very helpful discussions and Parallab for being helpful with the new IBM, p690 Regatta system.

  15. Comparison of 2D and 3D Computational Multiphase Fluid Flow Models of Oxygen Lancing of Pyrometallurgical Furnace Tap-Holes

    Science.gov (United States)

    Erwee, M. W.; Reynolds, Q. G.; Zietsman, J. H.

    2016-06-01

    Furnace tap-holes vary in design depending on the type of furnace and process involved, but they share one common trait: The tap-hole must be opened and closed periodically. In general, tap-holes are plugged with refractory clay after tapping, thereby stopping the flow of molten material. Once a furnace is ready to be tapped, drilling and/or lancing with oxygen are typically used to remove tap-hole clay from the tap-hole. Lancing with oxygen is an energy-intensive, mostly manual process, which affects the performance and longevity of the tap-hole refractory material as well as the processes inside the furnace. Computational modeling offers an opportunity to gain insight into the possible effects of oxygen lancing on various aspects of furnace operation.

  16. 3D model generation using an airborne swarm

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R. A.; Punzo, G.; Macdonald, M. [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G. [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Bolton, G. [National Nuclear Laboratory Limited, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE (United Kingdom)

    2015-03-31

    Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.

  17. Evaluating procedural modelling for 3D models of informal settlements in urban design activities

    Directory of Open Access Journals (Sweden)

    Victoria Rautenbach

    2015-11-01

    Full Text Available Three-dimensional (3D modelling and visualisation is one of the fastest growing application fields in geographic information science. 3D city models are being researched extensively for a variety of purposes and in various domains, including urban design, disaster management, education and computer gaming. These models typically depict urban business districts (downtown or suburban residential areas. Despite informal settlements being a prevailing feature of many cities in developing countries, 3D models of informal settlements are virtually non-existent. 3D models of informal settlements could be useful in various ways, e.g. to gather information about the current environment in the informal settlements, to design upgrades, to communicate these and to educate inhabitants about environmental challenges. In this article, we described the development of a 3D model of the Slovo Park informal settlement in the City of Johannesburg Metropolitan Municipality, South Africa. Instead of using time-consuming traditional manual methods, we followed the procedural modelling technique. Visualisation characteristics of 3D models of informal settlements were described and the importance of each characteristic in urban design activities for informal settlement upgrades was assessed. Next, the visualisation characteristics of the Slovo Park model were evaluated. The results of the evaluation showed that the 3D model produced by the procedural modelling technique is suitable for urban design activities in informal settlements. The visualisation characteristics and their assessment are also useful as guidelines for developing 3D models of informal settlements. In future, we plan to empirically test the use of such 3D models in urban design projects in informal settlements.

  18. Modeling 3D Objects for Navigation Purposes Using Laser Scanning

    Directory of Open Access Journals (Sweden)

    Cezary Specht

    2016-07-01

    Full Text Available The paper discusses the creation of 3d models and their applications in navigation. It contains a review of available methods and geometric data sources, focusing mostly on terrestrial laser scanning. It presents detailed description, from field survey to numerical elaboration, how to construct accurate model of a typical few storey building as a hypothetical reference in complex building navigation. Hence, the paper presents fields where 3d models are being used and their potential new applications.

  19. Beyond Virtual Replicas: 3D Modeling and Maltese Prehistoric Architecture

    Directory of Open Access Journals (Sweden)

    Filippo Stanco

    2013-01-01

    Full Text Available In the past decade, computer graphics have become strategic for the development of projects aimed at the interpretation of archaeological evidence and the dissemination of scientific results to the public. Among all the solutions available, the use of 3D models is particularly relevant for the reconstruction of poorly preserved sites and monuments destroyed by natural causes or human actions. These digital replicas are, at the same time, a virtual environment that can be used as a tool for the interpretative hypotheses of archaeologists and as an effective medium for a visual description of the cultural heritage. In this paper, the innovative methodology and aims and outcomes of a virtual reconstruction of the Borg in-Nadur megalithic temple, carried out by Archeomatica Project of the University of Catania, are offered as a case study for a virtual archaeology of prehistoric Malta.

  20. Analysis of thoracic aorta hemodynamics using 3D particle tracking velocimetry and computational fluid dynamics.

    Science.gov (United States)

    Gallo, Diego; Gülan, Utku; Di Stefano, Antonietta; Ponzini, Raffaele; Lüthi, Beat; Holzner, Markus; Morbiducci, Umberto

    2014-09-22

    Parallel to the massive use of image-based computational hemodynamics to study the complex flow establishing in the human aorta, the need for suitable experimental techniques and ad hoc cases for the validation and benchmarking of numerical codes has grown more and more. Here we present a study where the 3D pulsatile flow in an anatomically realistic phantom of human ascending aorta is investigated both experimentally and computationally. The experimental study uses 3D particle tracking velocimetry (PTV) to characterize the flow field in vitro, while finite volume method is applied to numerically solve the governing equations of motion in the same domain, under the same conditions. Our findings show that there is an excellent agreement between computational and measured flow fields during the forward flow phase, while the agreement is poorer during the reverse flow phase. In conclusion, here we demonstrate that 3D PTV is very suitable for a detailed study of complex unsteady flows as in aorta and for validating computational models of aortic hemodynamics. In a future step, it will be possible to take advantage from the ability of 3D PTV to evaluate velocity fluctuations and, for this reason, to gain further knowledge on the process of transition to turbulence occurring in the thoracic aorta. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. 3D Servicescape Model: Atmospheric Qualities of Virtual Reality Retailing

    Directory of Open Access Journals (Sweden)

    Aasim Munir Dad

    2016-02-01

    Full Text Available The purpose of this paper is to provide a 3D servicescape conceptual model which explores the potential effect of 3D virtual reality retail stores’ environment on shoppers' behaviour. Extensive review of literature within two different domains, namely: servicescape models, and retail atmospherics, was carried out in order to propose a conceptual model. Further, eight detailed interviews were conducted to confirm the stimulus dimension of the conceptual model. A 3D servicescape conceptual model is offered on the basis of stimulus-organism-dimension, which proposes that a 3D virtual reality retail (VRR store environment consists of physical, social, socially symbolic and natural dimensions. These dimensions are proposed to affect shoppers’ behaviour through the mediating variables of emotions (pleasure and arousal. An interrelationship between pleasure and arousal, as mediating variables, is also proposed. This research opens a number of new avenues for further research through the proposed model of shoppers’ behaviour in a VRR store environment. Further, a systematic taxonomy development of VRR store environment is attempted through this proposed model that may prove to be an important step in theory building. A comprehensive 3D service scape model along with a large number of propositions is made to define a 3D VRR store environment.

  2. A method of 3D modeling and codec

    Institute of Scientific and Technical Information of China (English)

    QI Yue; YANG Shen; CAI Su; HOU Fei; SHEN XuKun; ZHAO QinPing

    2009-01-01

    3D modeling and codec of real objects are hot Issues in the field of virtual reality. In this paper, we propose an automatic registration two range Images method and a cycle based automatic global reg-istration algorithm for rapidly and automatically registering all range Images and constructing a real-istic 3D model. Besides, to meet the requirement of huge data transmission over Internet, we present a 3D mesh encoding/decoding method for encoding geometry, topology and attribute data with high compression ratio and supporting progressive transmission. The research results have already been applied successfully in digital museum.

  3. Conceptual Development af a 3D Product Configuration Model

    DEFF Research Database (Denmark)

    Skauge, Jørn

    2006-01-01

    Paper. This project deals with 3D product configuration of a digital building element which has been developed as a prototype in cooperation between a product manufacturer and a research institution in Denmark. The project falls within the concept of product modelling which is more and more used...... in the development of IT-systems that support the procedures in companies and in the building industry. In other words, it is a knowledge-based system that helps companies in their daily work. The aim of the project has been to develop and examine conceptual ideas about 3D modelling configurator used in the company......’s production of steel fire sliding doors. The development of the 3D digital model is based on practical rather than theoretical research. The result of the research is a prototype digital 3D model to be presented live....

  4. Animation of 3D Model of Human Head

    Directory of Open Access Journals (Sweden)

    V. Michalcin

    2007-04-01

    Full Text Available The paper deals with the new algorithm of animation of 3D model of the human head in combination with its global motion. The designed algorithm is very fast and with low calculation requirements, because it does not need the synthesis of the input videosequence for estimation of the animation parameters as well as the parameters of global motion. The used 3D model Candide generates different expressions using its animation units which are controlled by the animation parameters. These ones are estimated on the basis of optical flow without the need of extracting of the feature points in the frames of the input videosequence because they are given by the selected vertices of the animation units of the calibrated 3D model Candide. The established multiple iterations inside the designed animation algorithm of 3D model of the human head between two successive frames significantly improved its accuracy above all for the large motion.

  5. Phase Transition Properties of 3D Potts Models

    CERN Document Server

    Bazavov, Alexei; Dubey, Santosh

    2008-01-01

    Using multicanonical Metropolis simulations we estimate phase transition properties of 3D Potts models for q=4 to 10: The transition temperatures, latent heats, entropy gaps, normalized entropies at the disordered and ordered endpoints, interfacial tensions, and spinodal endpoints.

  6. An integrable 3D lattice model with positive Boltzmann weights

    CERN Document Server

    Mangazeev, Vladimir V; Sergeev, Sergey M

    2013-01-01

    In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Boltzmann weights satisfy the tetrahedron equation, which is a 3D generalisation of the Yang-Baxter equation. The weights depend on a free parameter 0model form a two-parameter commutative family. This is the first example of a solvable 3D lattice model with non-negative Boltzmann weights.

  7. Flat-Panel Detector—Based Volume Computed Tomography: A Novel 3D Imaging Technique to Monitor Osteolytic Bone Lesions in a Mouse Tumor Metastasis Model

    Directory of Open Access Journals (Sweden)

    Jeannine Missbach-Guentner

    2007-09-01

    Full Text Available Skeletal metastasis is an important cause of mortality in patients with breast cancer. Hence, animal models, in combination with various imaging techniques, are in high demand for preclinical assessment of novel therapies. We evaluated the applicability of flat-panel volume computed tomography (fpVCT to noninvasive detection of osteolytic bone metastases that develop in severe immunodeficient mice after intracardial injection of MDA-MB-231 breast cancer cells. A single fpVCT scan at 200-wm isotropic resolution was employed to detect osteolysis within the entire skeleton. Osteolytic lesions identified by fpVCT correlated with Faxitron X-ray analysis and were subsequently confirmed by histopathological examination. Isotropic three-dimensional image data sets obtained by fpVCT were the basis for the precise visualization of the extent of the lesion within the cortical bone and for the measurement of bone loss. Furthermore, fpVCT imaging allows continuous monitoring of growth kinetics for each metastatic site and visualization of lesions in more complex regions of the skeleton, such as the skull. Our findings suggest that fpVCT is a powerful tool that can be used to monitor the occurrence and progression of osteolytic lesions in vivo and can be further developed to monitor responses to antimetastatic therapies over the course of the disease.

  8. FROM CAD MODEL TO 3D PRINT VIA “STL” FILE FORMAT

    National Research Council Canada - National Science Library

    Cătălin IANCU; Daniela IANCU; Alin STĂNCIOIU

    2010-01-01

    The paper work presents the STL file format, which is now used for transferring information from CAD software to a 3D printer, for obtaining the solid model in Rapid prototyping and Computer Aided Manufacturing...

  9. Formal representation of 3D structural geological models

    Science.gov (United States)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle

    2016-05-01

    The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.

  10. Software-based geometry operations for 3D computer graphics

    NARCIS (Netherlands)

    Sima, M.; Iancu, D.; Glossner, J.; Schulte, M.; Mamidi, S.

    2006-01-01

    In order to support a broad dynamic range and a high degree of precision, many of 3D renderings fundamental algorithms have been traditionally performed in floating-point. However, fixed-point data representation is preferable over floatingpoint representation in graphics applications on embedded de

  11. Software-based geometry operations for 3D computer graphics

    NARCIS (Netherlands)

    Sima, M.; Iancu, D.; Glossner, J.; Schulte, M.; Mamidi, S.

    2006-01-01

    In order to support a broad dynamic range and a high degree of precision, many of 3D renderings fundamental algorithms have been traditionally performed in floating-point. However, fixed-point data representation is preferable over floatingpoint representation in graphics applications on embedded

  12. 3D Computer aided treatment planning in endodontics

    NARCIS (Netherlands)

    van der Meer, Wicher J.; Vissink, Arjan; Ng, Yuan Ling; Gulabivala, Kishor

    Objectives: Obliteration of the root canal system due to accelerated dentinogenesis and dystrophic calcification can challenge the achievement of root canal treatment goals. This paper describes the application of 3D digital mapping technology for predictable navigation of obliterated canal systems

  13. Performance Evaluation of 3d Modeling Software for Uav Photogrammetry

    Science.gov (United States)

    Yanagi, H.; Chikatsu, H.

    2016-06-01

    UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algorithms. As a result, only a few studies have been able to evaluate their accuracy using 3D coordinate check points. With this motive, Smart3DCapture and Pix4Dmapper were downloaded from the Internet and commercial software PhotoScan was also employed; investigations were performed in this paper using check points and images obtained from UAV.

  14. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    Science.gov (United States)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  15. 3D Object Recognition Based on Linear Lie Algebra Model

    Institute of Scientific and Technical Information of China (English)

    LI Fang-xing; WU Ping-dong; SUN Hua-fei; PENG Lin-yu

    2009-01-01

    A surface model called the fibre bundle model and a 3D object model based on linear Lie algebra model are proposed.Then an algorithm of 3D object recognition using the linear Lie algebra models is presented.It is a convenient recognition method for the objects which are symmetric about some axis.By using the presented algorithm,the representation matrices of the fibre or the base curve from only finite points of the linear Lie algebra model can be obtained.At last some recognition results of practicalities are given.

  16. Analysis of 3-D images of dental imprints using computer vision

    Science.gov (United States)

    Aubin, Michele; Cote, Jean; Laurendeau, Denis; Poussart, Denis

    1992-05-01

    This paper addressed two important aspects of dental analysis: (1) location and (2) identification of the types of teeth by means of 3-D image acquisition and segmentation. The 3-D images of both maxillaries are acquired using a wax wafer as support. The interstices between teeth are detected by non-linear filtering of the 3-D and grey-level data. Two operators are presented: one for the detection of the interstices between incisors, canines, and premolars and one for those between molars. Teeth are then identified by mapping the imprint under analysis on the computer model of an 'ideal' imprint. For the mapping to be valid, a set of three reference points is detected on the imprint. Then, the points are put in correspondence with similar points on the model. Two such points are chosen based on a least-squares fit of a second-order polynomial of the 3-D data in the area of canines. This area is of particular interest since the canines show a very characteristic shape and are easily detected on the imprint. The mapping technique is described in detail in the paper as well as pre-processing of the 3-D profiles. Experimental results are presented for different imprints.

  17. Combined registration of 3D tibia and femur implant models in 3D magnetic resonance images

    Science.gov (United States)

    Englmeier, Karl-Hans; Siebert, Markus; von Eisenhart-Rothe, Ruediger; Graichen, Heiko

    2008-03-01

    The most frequent reasons for revision of total knee arthroplasty are loosening and abnormal axial alignment leading to an unphysiological kinematic of the knee implant. To get an idea about the postoperative kinematic of the implant, it is essential to determine the position and orientation of the tibial and femoral prosthesis. Therefore we developed a registration method for fitting 3D CAD-models of knee joint prostheses into an 3D MR image. This rigid registration is the basis for a quantitative analysis of the kinematics of knee implants. Firstly the surface data of the prostheses models are converted into a voxel representation; a recursive algorithm determines all boundary voxels of the original triangular surface data. Secondly an initial preconfiguration of the implants by the user is still necessary for the following step: The user has to perform a rough preconfiguration of both remaining prostheses models, so that the fine matching process gets a reasonable starting point. After that an automated gradient-based fine matching process determines the best absolute position and orientation: This iterative process changes all 6 parameters (3 rotational- and 3 translational parameters) of a model by a minimal amount until a maximum value of the matching function is reached. To examine the spread of the final solutions of the registration, the interobserver variability was measured in a group of testers. This variability, calculated by the relative standard deviation, improved from about 50% (pure manual registration) to 0.5% (rough manual preconfiguration and subsequent fine registration with the automatic fine matching process).

  18. 3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.

    Science.gov (United States)

    Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho

    2017-01-01

    Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.

  19. 3D Cadastral Data Model Based on Conformal Geometry Algebra

    Directory of Open Access Journals (Sweden)

    Ji-yi Zhang

    2016-02-01

    Full Text Available Three-dimensional (3D cadastral data models that are based on Euclidean geometry (EG are incapable of providing a unified representation of geometry and topological relations for 3D spatial units in a cadastral database. This lack of unification causes problems such as complex expression structure and inefficiency in the updating of 3D cadastral objects. The inability of current cadastral data models to express cadastral objects in a unified manner can be attributed to the different expressions of dimensional objects. Because the hierarchical Grassmann structure corresponds to the hierarchical structure of dimensions in conformal geometric algebra (CGA, geometric objects in different dimensions can be constructed by outer products in a unified expression form, which enables the direct extension of two-dimensional (2D spatial representations to 3D spatial representations. The multivector structure in CGA can be employed to organize and store different dimensional objects in a multidimensional and unified manner. With the advantages of CGA in multidimensional expressions, a new 3D cadastral data model that is based on CGA is proposed in this paper. The geometries and topological relations of 3D spatial units can be represented in a unified form within the multivector structure. Detailed methods for 3D cadastral data model design based on CGA and data organization in CGA are introduced. The new cadastral data model is tested and analyzed with experimental data. The results indicate that the geometry and topological relations of 3D cadastral objects can be represented in a multidimensional manner with an intuitive topological structure and a unified dimensional expression.

  20. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    Science.gov (United States)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  1. Using 3D Geometric Models to Teach Spatial Geometry Concepts.

    Science.gov (United States)

    Bertoline, Gary R.

    1991-01-01

    An explanation of 3-D Computer Aided Design (CAD) usage to teach spatial geometry concepts using nontraditional techniques is presented. The software packages CADKEY and AutoCAD are described as well as their usefulness in solving space geometry problems. (KR)

  2. Using Computer-Aided Design Software and 3D Printers to Improve Spatial Visualization

    Science.gov (United States)

    Katsio-Loudis, Petros; Jones, Millie

    2015-01-01

    Many articles have been published on the use of 3D printing technology. From prefabricated homes and outdoor structures to human organs, 3D printing technology has found a niche in many fields, but especially education. With the introduction of AutoCAD technical drawing programs and now 3D printing, learners can use 3D printed models to develop…

  3. Using Computer-Aided Design Software and 3D Printers to Improve Spatial Visualization

    Science.gov (United States)

    Katsio-Loudis, Petros; Jones, Millie

    2015-01-01

    Many articles have been published on the use of 3D printing technology. From prefabricated homes and outdoor structures to human organs, 3D printing technology has found a niche in many fields, but especially education. With the introduction of AutoCAD technical drawing programs and now 3D printing, learners can use 3D printed models to develop…

  4. Estimation of shape model parameters for 3D surfaces

    DEFF Research Database (Denmark)

    Erbou, Søren Gylling Hemmingsen; Darkner, Sune; Fripp, Jurgen;

    2008-01-01

    Statistical shape models are widely used as a compact way of representing shape variation. Fitting a shape model to unseen data enables characterizing the data in terms of the model parameters. In this paper a Gauss-Newton optimization scheme is proposed to estimate shape model parameters of 3D s...

  5. Creating physical 3D stereolithograph models of brain and skull.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    Full Text Available The human brain and skull are three dimensional (3D anatomical structures with complex surfaces. However, medical images are often two dimensional (2D and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50 used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine.

  6. 2 types of spicules "observed" in 3D realistic models

    CERN Document Server

    Martínez-Sykora, Juan

    2010-01-01

    Realistic numerical 3D models of the outer solar atmosphere show two different kind of spicule-like phenomena, as also observed on the solar limb. The numerical models are calculated using the 2 types of spicules "observed" in 3D realistic models Oslo Staggered Code (OSC) to solve the full MHD equations with non-grey and NLTE radiative transfer and thermal conduction along the magnetic field lines. The two types of spicules arise as a natural result of the dynamical evolution in the models. We discuss the different properties of these two types of spicules, their differences from observed spicules and what needs to be improved in the models.

  7. Research on 3D Distribution of Meandering River Sand Body Using Sedimentary Facies Method and 3D Geological Modeling

    Institute of Scientific and Technical Information of China (English)

    WU Jian; CAO Dai-yong

    2006-01-01

    Sedimentary facies study is an important method in describing the property and distribution of reservoir. 3D geological modeling is a powerful tool in 3D characterization of geological bodies. By combining the sedimentary facies study with 3D geological modeling to generate 3D sedimentary facies model, the 3D geometry and distribution feature of sand bodies can be more accurately characterized, particularly in 3D view. In Liuchu oilfield of Jizhong depression, the Ed2IV formation was recognized as meandering river deposition facies and five sedimentary facies were identified, which include point bar sand, levee, channel margin, abandoned channel and floodplain. All the 24 sand body facies in Ed2IV were mapped and the 3D sedimentary facies model established based on 2D facies maps. The result shows that the 3D sedimentary facies model is well matched for the research result of sedimentary facies. Being an extension of traditional sedimentary study, the 3D sedimentary facies model can be used to describe the 3D geometry and distribution orders of a single sand body more reliably and more accurately.

  8. Towards Automatic Semantic Labelling of 3D City Models

    Science.gov (United States)

    Rook, M.; Biljecki, F.; Diakité, A. A.

    2016-10-01

    The lack of semantic information in many 3D city models is a considerable limiting factor in their use, as a lot of applications rely on semantics. Such information is not always available, since it is not collected at all times, it might be lost due to data transformation, or its lack may be caused by non-interoperability in data integration from other sources. This research is a first step in creating an automatic workflow that semantically labels plain 3D city model represented by a soup of polygons, with semantic and thematic information, as defined in the CityGML standard. The first step involves the reconstruction of the topology, which is used in a region growing algorithm that clusters upward facing adjacent triangles. Heuristic rules, embedded in a decision tree, are used to compute a likeliness score for these regions that either represent the ground (terrain) or a RoofSurface. Regions with a high likeliness score, to one of the two classes, are used to create a decision space, which is used in a support vector machine (SVM). Next, topological relations are utilised to select seeds that function as a start in a region growing algorithm, to create regions of triangles of other semantic classes. The topological relationships of the regions are used in the aggregation of the thematic building features. Finally, the level of detail is detected to generate the correct output in CityGML. The results show an accuracy between 85 % and 99 % in the automatic semantic labelling on four different test datasets. The paper is concluded by indicating problems and difficulties implying the next steps in the research.

  9. 3D City Models with Different Temporal Characteristica

    DEFF Research Database (Denmark)

    Bodum, Lars

    2005-01-01

    the variation in time is non-synchronous with real-time, usually more effort can be put on the fi delity in relation to the aesthetic and geometric representation. This means that the models are more realistic or contain another level of detail. However, if one looks at virtual environments with an in......3D city models are mostly seen as static or at least as background for various animations types. In the last couple of years, experts have realized that 3D city models (technical maps of the future) should be maintained in order to be used in a continuous and dynamical planning and administration....... Therefore it is important that temporal information is attached to the different parts of a city model so that it can be used as part of metadata for city models. Another and just as important use of time is related to the temporal characteristics of the 3D city models. There is a huge difference between...

  10. 3D Bioprinting of Tissue/Organ Models.

    Science.gov (United States)

    Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson

    2016-04-04

    In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models.

  11. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Gunár, Stanislav; Mackay, Duncan H. [School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom)

    2015-04-20

    We present the first 3D whole-prominence fine structure model. The model combines a 3D magnetic field configuration of an entire prominence obtained from nonlinear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Through the use of a novel radiative transfer visualization technique for the Hα line such plasma-loaded magnetic field model produces synthetic images of the modeled prominence comparable with high-resolution observations. This allows us for the first time to use a single technique to consistently study, in both emission on the limb and absorption against the solar disk, the fine structures of prominences/filaments produced by a magnetic field model.

  12. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI

    DEFF Research Database (Denmark)

    Rispoli, Vinicius C; Nielsen, Jon; Nayak, Krishna S

    2015-01-01

    approach in regularizing 3D flow fields is evaluated. METHODS: The proposed algorithm incorporates both a Newtonian fluid physics model and a linear PC-MRI signal model. The model equations are solved numerically using a modified CFD algorithm. The numerical solution corresponds to the optimal solution......BACKGROUND: Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid...... dynamics (CFD) calculations. CFD provides arbitrarily high resolution, but its accuracy hinges on model assumptions, while velocity fields measured with PC-MRI generally do not satisfy the equations of fluid dynamics, provide limited resolution, and suffer from partial volume effects. The purpose...

  13. Automatic paper sliceform design from 3D solid models.

    Science.gov (United States)

    Le-Nguyen, Tuong-Vu; Low, Kok-Lim; Ruiz, Conrado; Le, Sang N

    2013-11-01

    A paper sliceform or lattice-style pop-up is a form of papercraft that uses two sets of parallel paper patches slotted together to make a foldable structure. The structure can be folded flat, as well as fully opened (popped-up) to make the two sets of patches orthogonal to each other. Automatic design of paper sliceforms is still not supported by existing computational models and remains a challenge. We propose novel geometric formulations of valid paper sliceform designs that consider the stability, flat-foldability and physical realizability of the designs. Based on a set of sufficient construction conditions, we also present an automatic algorithm for generating valid sliceform designs that closely depict the given 3D solid models. By approximating the input models using a set of generalized cylinders, our method significantly reduces the search space for stable and flat-foldable sliceforms. To ensure the physical realizability of the designs, the algorithm automatically generates slots or slits on the patches such that no two cycles embedded in two different patches are interlocking each other. This guarantees local pairwise assembility between patches, which is empirically shown to lead to global assembility. Our method has been demonstrated on a number of example models, and the output designs have been successfully made into real paper sliceforms.

  14. 3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand

    Science.gov (United States)

    Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.

    2015-08-01

    In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.

  15. Arbitrary modeling of TSVs for 3D integrated circuits

    CERN Document Server

    Salah, Khaled; El-Rouby, Alaa

    2014-01-01

    This book presents a wide-band and technology independent, SPICE-compatible RLC model for through-silicon vias (TSVs) in 3D integrated circuits. This model accounts for a variety of effects, including skin effect, depletion capacitance and nearby contact effects. Readers will benefit from in-depth coverage of concepts and technology such as 3D integration, Macro modeling, dimensional analysis and compact modeling, as well as closed form equations for the through silicon via parasitics. Concepts covered are demonstrated by using TSVs in applications such as a spiral inductor?and inductive-based

  16. Shape: A 3D Modeling Tool for Astrophysics.

    Science.gov (United States)

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  17. Mathematical structure of three - dimensional (3D) Ising model

    CERN Document Server

    Zhang, Zhi-dong

    2013-01-01

    An overview of the mathematical structure of the three-dimensional (3D) Ising model is given, from the viewpoints of topologic, algebraic and geometric aspects. By analyzing the relations among transfer matrices of the 3D Ising model, Reidemeister moves in the knot theory, Yang-Baxter and tetrahedron equations, the following facts are illustrated for the 3D Ising model: 1) The complexified quaternion basis constructed for the 3D Ising model represents naturally the rotation in a (3 + 1) - dimensional space-time, as a relativistic quantum statistical mechanics model, which is consistent with the 4-fold integrand of the partition function by taking the time average. 2) A unitary transformation with a matrix being a spin representation in 2^(nlo)-space corresponds to a rotation in 2nlo-space, which serves to smooth all the crossings in the transfer matrices and contributes as the non-trivial topologic part of the partition function of the 3D Ising model. 3) A tetrahedron relation would ensure the commutativity o...

  18. 3D-Digital soil property mapping by geoadditive models

    Science.gov (United States)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  19. An investigation of low-dose 3D scout scans for computed tomography

    Science.gov (United States)

    Gomes, Juliana; Gang, Grace J.; Mathews, Aswin; Stayman, J. Webster

    2017-03-01

    Purpose: Commonly 2D scouts or topograms are used prior to CT scan acquisition. However, low-dose 3D scouts could potentially provide additional information for more effective patient positioning and selection of acquisition protocols. We propose using model-based iterative reconstruction to reconstruct low exposure tomographic data to maintain image quality in both low-dose 3D scouts and reprojected topograms based on those 3D scouts. Methods: We performed tomographic acquisitions on a CBCT test-bench using a range of exposure settings from 16.6 to 231.9 total mAs. Both an anthropomorphic phantom and a 32 cm CTDI phantom were scanned. The penalized-likelihood reconstructions were made using Matlab and CUDA libraries and reconstruction parameters were tuned to determine the best regularization strength and delta parameter. RMS error between reconstructions and the highest exposure reconstruction were computed, and CTDIW values were reported for each exposure setting. RMS error for reprojected topograms were also computed. Results: We find that we are able to produce low-dose (0.417 mGy) 3D scouts that show high-contrast and large anatomical features while maintaining the ability to produce traditional topograms. Conclusions: We demonstrated that iterative reconstruction can mitigate noise in very low exposure CT acquisitions to enable 3D CT scout. Such additional 3D information may lead to improved protocols for patient positioning and acquisition refinements as well as a number of advanced dose reduction strategies that require localization of anatomical features and quantities that are not provided by simple 2D topograms.

  20. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  1. Aortic valve and ascending aortic root modeling from 3D and 3D+t CT

    Science.gov (United States)

    Grbic, Saša; Ionasec, Razvan I.; Zäuner, Dominik; Zheng, Yefeng; Georgescu, Bogdan; Comaniciu, Dorin

    2010-02-01

    Aortic valve disorders are the most frequent form of valvular heart disorders (VHD) affecting nearly 3% of the global population. A large fraction among them are aortic root diseases, such as aortic root aneurysm, often requiring surgical procedures (valve-sparing) as a treatment. Visual non-invasive assessment techniques could assist during pre-selection of adequate patients, planning procedures and afterward evaluation of the same. However state of the art approaches try to model a rather short part of the aortic root, insufficient to assist the physician during intervention planning. In this paper we propose a novel approach for morphological and functional quantification of both the aortic valve and the ascending aortic root. A novel physiological shape model is introduced, consisting of the aortic valve root, leaflets and the ascending aortic root. The model parameters are hierarchically estimated using robust and fast learning-based methods. Experiments performed on 63 CT sequences (630 Volumes) and 20 single phase CT volumes demonstrated an accuracy of 1.45mm and an performance of 30 seconds (3D+t) for this approach. To the best of our knowledge this is the first time a complete model of the aortic valve (including leaflets) and the ascending aortic root, estimated from CT, has been proposed.

  2. Improved CUDA programs for GPU computing of Swendsen-Wang multi-cluster spin flip algorithm: 2D and 3D Ising, Potts, and XY models

    Science.gov (United States)

    Komura, Yukihiro; Okabe, Yutaka

    2016-03-01

    We present new versions of sample CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm. In this update, we add the method of GPU-based cluster-labeling algorithm without the use of conventional iteration (Komura, 2015) to those programs. For high-precision calculations, we also add a random-number generator in the cuRAND library. Moreover, we fix several bugs and remove the extra usage of shared memory in the kernel functions.

  3. Tangible 3D modeling of coherent and themed structures

    DEFF Research Database (Denmark)

    Walther, Jeppe Ullè; Bærentzen, J. Andreas; Aanæs, Henrik

    2016-01-01

    , allows the user to tangibly build structures of greater details than the blocks provide in and of themselves. We show a number of shapes that have been modeled by users and are indicative of the expressive power of the system. Furthermore, we demonstrate the scalability of the tangible interface which......We present CubeBuilder, a system for interactive, tangible 3D shape modeling. CubeBuilder allows the user to create a digital 3D model by placing physical, non-interlocking cubic blocks. These blocks may be placed in a completely arbitrary fashion and combined with other objects. In effect......, this turns the task of 3D modeling into a playful activity that hardly requires any learning on the part of the user. The blocks are registered using a depth camera and entered into the cube graph where each block is a node and adjacent blocks are connected by edges. From the cube graph, we transform...

  4. Support Vector Machine active learning for 3D model retrieval

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user's semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback.

  5. Modeling Electric Current Flow in 3D Fractured Media

    Science.gov (United States)

    Demirel, S.; Roubinet, D.; Irving, J.

    2014-12-01

    The study of fractured rocks is extremely important in a variety of research fields and applications such as hydrogeology, hydrocarbon extraction and long-term storage of toxic waste. As fractures are highly conductive structures in comparison to the surrounding rock, their presence can be either an advantage or a drawback. For hydrocarbon extraction, fractures allow for quick and easy access to the resource whereas for toxic waste storage their presence increases the risk of leakage and migration of pollutants. In both cases, the identification of fracture network characteristics is an essential step. Recently, we have developed an approach for modeling electric current flow in 2D fractured media. This approach is based on a discrete-dual-porosity model where fractures are represented explicitly, the matrix is coarsely discretized into blocks, and current flow exchange between the fractures and matrix is analytically evaluated at the fracture-scale and integrated at the block-scale [1]. Although this approach has shown much promise and has proven its efficiency for 2D simulations, its extension to 3D remains to be addressed. To this end, we assume that fractures can be represented as two-dimensional finite planes embedded in the surrounding matrix, and we express analytically the distribution of electric potential at the fracture scale. This fracture-scale expression takes into account the electric-current-flow exchange with the surrounding matrix and flow conservation is enforced at the fracture intersections. The fracture-matrix exchange is then integrated at the matrix-block scale where the electric current flow conservation at the block boundaries is formulated with a modified finite volume method. With the objective of providing a low-computational-cost modeling approach adapted to 3D simulations in fractured media, our model is (i) validated and compared to existing modeling approaches and, (ii) used to evaluate the impact of the presence of fractures on

  6. Potential of 3D City Models to assess flood vulnerability

    Science.gov (United States)

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi

    2016-04-01

    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of

  7. Massively parallel computers for 3D single-photon-emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.S.; Miller, M.I. (Washington Univ., St. Louis, MO (United States). Electronic Systems and Signals Research Lab.); Miller, T.R.; Wallis, J.W. (Washington Univ., St. Louis, MO (United States). Edward Mallinckrodt Inst. of Radiology)

    1994-03-01

    Since the introduction of the expectation-maximization (EM) algorithm for generating maximum-likelihood (ML) and maximum a posteriori (MAP) estimates in emission tomography, there have been many investigators applying the ML method. However, almost all of the previous work has been restricted to two-dimensional (2D) reconstructions. The major focus and contribution of this paper is to demonstrate a fully three-dimensional (3D) implementation of the MAP method for single-photon-emission computed tomography (SPECT). The 3D reconstruction exhibits an improvement in resolution when compared to the generation of the series of separate 2D slice reconstructions. (Author).

  8. 3D MHD Models of Active Region Loops

    Science.gov (United States)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  9. A 3D computer-aided design system applied to diagnosis and treatment planning in orthodontics and orthognathic surgery.

    Science.gov (United States)

    Motohashi, N; Kuroda, T

    1999-06-01

    The purpose of this article is to describe a newly developed 3D computer-aided design (CAD) system for the diagnostic set-up of casts in orthodontic diagnosis and treatment planning, and its preliminary clinical applications. The system comprises a measuring unit which obtains 3D information from the dental model using laser scanning, and a personal computer to generate the 3D graphics. When measuring the 3D shape of the model, to minimize blind sectors, the model is scanned from two different directions with the slit-ray laser beam by rotating the mounting angle of the model on the measuring device. For computed simulation of tooth movement, the representative planes, defined by the anatomical reference points, are formed for each individual tooth and are arranged along a guideline descriptive of the individual arch form. Subsequently, the 3D shape is imparted to each of the teeth arranged on the representative plane to form an arrangement of the 3D profile. When necessary, orthognathic surgery can be simulated by moving the mandibular dental arch three-dimensionally to establish the optimum occlusal relationship. Compared with hand-made set-up models, the computed diagnostic cast has advantages such as high-speed processing and quantitative evaluation on the amount of 3D movement of the individual tooth relative to the craniofacial plane. Trial clinical applications demonstrated that the use of this system facilitated the otherwise complicated and time-consuming mock surgery for treatment planning in orthognathic surgery.

  10. The computer simulation of 3d gas dynamics in a gas centrifuge

    Science.gov (United States)

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there.

  11. Vhrs Stereo Images for 3d Modelling of Buildings

    Science.gov (United States)

    Bujakiewicz, A.; Holc, M.

    2012-07-01

    The paper presents the project which was carried out in the Photogrammetric Laboratory of Warsaw University of Technology. The experiment is concerned with the extraction of 3D vector data for buildings creation from 3D photogrammetric model based on the Ikonos stereo images. The model was reconstructed with photogrammetric workstation - Summit Evolution combined with ArcGIS 3D platform. Accuracy of 3D model was significantly improved by use for orientation of pair of satellite images the stereo measured tie points distributed uniformly around the model area in addition to 5 control points. The RMS for model reconstructed on base of the RPC coefficients only were 16,6 m, 2,7 m and 47,4 m, for X, Y and Z coordinates, respectively. By addition of 5 control points the RMS were improved to 0,7 m, 0,7 m 1,0 m, where the best results were achieved when RMS were estimated from deviations in 17 check points (with 5 control points)and amounted to 0,4 m, 0,5 m and 0,6 m, for X, Y, and Z respectively. The extracted 3D vector data for buildings were integrated with 2D data of the ground footprints and afterwards they were used for 3D modelling of buildings in Google SketchUp software. The final results were compared with the reference data obtained from other sources. It was found that the shape of buildings (in concern to the number of details) had been reconstructed on level of LoD1, when the accuracy of these models corresponded to the level of LoD2.

  12. VHRS STEREO IMAGES FOR 3D MODELLING OF BUILDINGS

    Directory of Open Access Journals (Sweden)

    A. Bujakiewicz

    2012-07-01

    Full Text Available The paper presents the project which was carried out in the Photogrammetric Laboratory of Warsaw University of Technology. The experiment is concerned with the extraction of 3D vector data for buildings creation from 3D photogrammetric model based on the Ikonos stereo images. The model was reconstructed with photogrammetric workstation – Summit Evolution combined with ArcGIS 3D platform. Accuracy of 3D model was significantly improved by use for orientation of pair of satellite images the stereo measured tie points distributed uniformly around the model area in addition to 5 control points. The RMS for model reconstructed on base of the RPC coefficients only were 16,6 m, 2,7 m and 47,4 m, for X, Y and Z coordinates, respectively. By addition of 5 control points the RMS were improved to 0,7 m, 0,7 m 1,0 m, where the best results were achieved when RMS were estimated from deviations in 17 check points (with 5 control pointsand amounted to 0,4 m, 0,5 m and 0,6 m, for X, Y, and Z respectively. The extracted 3D vector data for buildings were integrated with 2D data of the ground footprints and afterwards they were used for 3D modelling of buildings in Google SketchUp software. The final results were compared with the reference data obtained from other sources. It was found that the shape of buildings (in concern to the number of details had been reconstructed on level of LoD1, when the accuracy of these models corresponded to the level of LoD2.

  13. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  14. Statistical 3D damage accumulation model for ion implant simulators

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Mangas, J.M. E-mail: jesman@ele.uva.es; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M

    2003-04-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  15. 3D computational steering with parametrized geometric objects

    NARCIS (Netherlands)

    Mulder, J.D.; Wijk, J.J. van

    1996-01-01

    Computational Steering is the ultimate goal of interactive simulation: researchers change parameters of their simulation and immediately receive feedback on the effect. We present a general and flexible graphics tool that is part of an environment for Computational Steering developed at CWI. It enab

  16. 3-D Signal Processing in a Computer Vision System

    Science.gov (United States)

    Dongping Zhu; Richard W. Conners; Philip A. Araman

    1991-01-01

    This paper discusses the problem of 3-dimensional image filtering in a computer vision system that would locate and identify internal structural failure. In particular, a 2-dimensional adaptive filter proposed by Unser has been extended to 3-dimension. In conjunction with segmentation and labeling, the new filter has been used in the computer vision system to...

  17. Efficient computation of steady, 3D water-wave patterns

    NARCIS (Netherlands)

    Lewis, M.R.; Koren, B.

    2003-01-01

    Numerical methods for the computation of stationary free surfaces is the subject of much current research in computational engineering. The present report is directed towards free surfaces in maritime engineering. Of interest here are the long steady waves generated by ships, the gravity waves. In t

  18. 3D subsurface temperature model of Europe for geothermal exploration

    NARCIS (Netherlands)

    Limberger, J.; Wees, J.D. van

    2014-01-01

    For the assessment of geothermal resources in Europe we constructed a digital 3D temperature model of the European crust and sedimentary basins, incorporating publicly available temperature data. Using European crustal thickness models and indirect parameters such as surface heat flow measurements,

  19. 3D subsurface temperature model of Europe for geothermal exploration

    NARCIS (Netherlands)

    Limberger, J.; Wees, J.D. van

    2014-01-01

    For the assessment of geothermal resources in Europe we constructed a digital 3D temperature model of the European crust and sedimentary basins, incorporating publicly available temperature data. Using European crustal thickness models and indirect parameters such as surface heat flow measurements,

  20. 3D surface digitizing and modeling development at ITRI

    Science.gov (United States)

    Hsueh, Wen-Jean

    2000-06-01

    This paper gives an overview of the research and development activities in 3D surface digitizing and modeling conducted at the Industrial Technology Research Institute (ITRI) of Taiwan in the past decade. As a major technology and consulting service provider of the area, ITRI has developed 3D laser scanning digitizers ranging from low-cost compacts, industrial CAD/CAM digitizing, to large human body scanner, with in-house 3D surface modeling software to provide total solution in reverse engineering that requires processing capabilities of large number of 3D data. Based on both hardware and software technologies in scanning, merging, registration, surface fitting, reconstruction, and compression, ITRI is now exploring innovative methodologies that provide higher performances, including hardware-based correlation algorithms with advanced camera designs, animation surface model reconstruction, and optical tracking for motion capture. It is expected that the need for easy and fast high-quality 3D information in the near future will grow exponentially, at the same amazing rate as the internet and the human desire for realistic and natural images.

  1. USING 3D COMPUTER MODELING, BOREHOLE GEOPHYSICS, AND HIGH CAPACITY PUMPS TO RESTORE PRODUCTION TO MARGINAL WELLS IN THE EAST TEXAS FIELD

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Bassett

    2003-06-09

    Methods for extending the productive life of marginal wells in the East Texas Field were investigated using advanced computer imaging technology, geophysical tools, and selective perforation of existing wells. Funding was provided by the Department of Energy, TENECO Energy and Schlumberger Wireline and Testing. Drillers' logs for more than 100 wells in proximity to the project lease were acquired, converted to digital format using a numerical scheme, and the data were used to create a 3 Dimensional geological image of the project site. Using the descriptive drillers' logs in numerical format yielded useful cross sections identifying the Woodbine Austin Chalk contact and continuity of sand zones between wells. The geological data provided information about reservoir continuity, but not the amount of remaining oil, this was obtained using selective modern logs. Schlumberger logged the wells through 2 3/8 inch tubing with a new slimhole Reservoir Saturation Tool (RST) which can measure the oil and water content of the existing porosity, using neutron scattering and a gamma ray spectrometer (GST). The tool provided direct measurements of elemental content yielding interpretations of porosity, lithology, and oil and water content, confirming that significant oil saturation still exists, up to 50% in the upper Woodbine sand. Well testing was then begun and at the end of the project new oil was being produced from zones abandoned or bypassed more than 25 years ago.

  2. ON FUNDAMENTAL EVALUATION USING UAV IMAGERY AND 3D MODELING SOFTWARE

    Directory of Open Access Journals (Sweden)

    K. Nakano

    2016-06-01

    Full Text Available Unmanned aerial vehicles (UAVs, which have been widely used in recent years, can acquire high-resolution images with resolutions in millimeters; such images cannot be acquired with manned aircrafts. Moreover, it has become possible to obtain a surface reconstruction of a realistic 3D model using high-overlap images and 3D modeling software such as Context capture, Pix4Dmapper, Photoscan based on computer vision technology such as structure from motion and multi-view stereo. 3D modeling software has many applications. However, most of them seem to not have obtained appropriate accuracy control in accordance with the knowledge of photogrammetry and/or computer vision. Therefore, we performed flight tests in a test field using an UAV equipped with a gimbal stabilizer and consumer grade digital camera. Our UAV is a hexacopter and can fly according to the waypoints for autonomous flight and can record flight logs. We acquired images from different altitudes such as 10 m, 20 m, and 30 m. We obtained 3D reconstruction results of orthoimages, point clouds, and textured TIN models for accuracy evaluation in some cases with different image scale conditions using 3D modeling software. Moreover, the accuracy aspect was evaluated for different units of input image—course unit and flight unit. This paper describes the fundamental accuracy evaluation for 3D modeling using UAV imagery and 3D modeling software from the viewpoint of close-range photogrammetry.

  3. On Fundamental Evaluation Using Uav Imagery and 3d Modeling Software

    Science.gov (United States)

    Nakano, K.; Suzuki, H.; Tamino, T.; Chikatsu, H.

    2016-06-01

    Unmanned aerial vehicles (UAVs), which have been widely used in recent years, can acquire high-resolution images with resolutions in millimeters; such images cannot be acquired with manned aircrafts. Moreover, it has become possible to obtain a surface reconstruction of a realistic 3D model using high-overlap images and 3D modeling software such as Context capture, Pix4Dmapper, Photoscan based on computer vision technology such as structure from motion and multi-view stereo. 3D modeling software has many applications. However, most of them seem to not have obtained appropriate accuracy control in accordance with the knowledge of photogrammetry and/or computer vision. Therefore, we performed flight tests in a test field using an UAV equipped with a gimbal stabilizer and consumer grade digital camera. Our UAV is a hexacopter and can fly according to the waypoints for autonomous flight and can record flight logs. We acquired images from different altitudes such as 10 m, 20 m, and 30 m. We obtained 3D reconstruction results of orthoimages, point clouds, and textured TIN models for accuracy evaluation in some cases with different image scale conditions using 3D modeling software. Moreover, the accuracy aspect was evaluated for different units of input image—course unit and flight unit. This paper describes the fundamental accuracy evaluation for 3D modeling using UAV imagery and 3D modeling software from the viewpoint of close-range photogrammetry.

  4. LIME: 3D visualisation and interpretation of virtual geoscience models

    Science.gov (United States)

    Buckley, Simon; Ringdal, Kari; Dolva, Benjamin; Naumann, Nicole; Kurz, Tobias

    2017-04-01

    Three-dimensional and photorealistic acquisition of surface topography, using methods such as laser scanning and photogrammetry, has become widespread across the geosciences over the last decade. With recent innovations in photogrammetric processing software, robust and automated data capture hardware, and novel sensor platforms, including unmanned aerial vehicles, obtaining 3D representations of exposed topography has never been easier. In addition to 3D datasets, fusion of surface geometry with imaging sensors, such as multi/hyperspectral, thermal and ground-based InSAR, and geophysical methods, create novel and highly visual datasets that provide a fundamental spatial framework to address open geoscience research questions. Although data capture and processing routines are becoming well-established and widely reported in the scientific literature, challenges remain related to the analysis, co-visualisation and presentation of 3D photorealistic models, especially for new users (e.g. students and scientists new to geomatics methods). Interpretation and measurement is essential for quantitative analysis of 3D datasets, and qualitative methods are valuable for presentation purposes, for planning and in education. Motivated by this background, the current contribution presents LIME, a lightweight and high performance 3D software for interpreting and co-visualising 3D models and related image data in geoscience applications. The software focuses on novel data integration and visualisation of 3D topography with image sources such as hyperspectral imagery, logs and interpretation panels, geophysical datasets and georeferenced maps and images. High quality visual output can be generated for dissemination purposes, to aid researchers with communication of their research results. The background of the software is described and case studies from outcrop geology, in hyperspectral mineral mapping and geophysical-geospatial data integration are used to showcase the novel

  5. 3D-model view characterization using equilibrium planes

    OpenAIRE

    Theetten, Adrien; Filali Ansary, Tarik; Vandeborre, Jean-Philippe

    2008-01-01

    International audience; We propose a new method for 3D-mesh model characteristic view selection. It consists in using the views that come from the equilibrium states of a 3D-model: they correspond to the horizontal plane on which an object is stat- ically laying under the effect of gravity. The selected views are then very intuitive for the user. Indeed, to present a query, the user will take a photo or draw a sketch of the object on a table or on a floor, putting thus the object in a static ...

  6. Modelling Gaia CCD pixels with Silvaco 3D engineering software

    CERN Document Server

    Seabroke, G M; Hopkinson, G; Burt, D; Robbins, M; Holland, A

    2010-01-01

    Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia: (1) physically interpreting supplementary buried channel (SBC) capacity measurements (pocket-pumping and first pixel response) in terms of e2v manufacturing doping alignment tolerances; and (2) deriving electron densities within a charge packet as a function of the number of constituent electrons and 3D position within the charge packet as input to microscopic models being developed to simulate radiation damage.

  7. Automatic Generation of 3D Building Models with Multiple Roofs

    Institute of Scientific and Technical Information of China (English)

    Kenichi Sugihara; Yoshitugu Hayashi

    2008-01-01

    Based on building footprints (building polygons) on digital maps, we are proposing the GIS and CG integrated system that automatically generates 3D building models with multiple roofs. Most building polygons' edges meet at right angles (orthogonal polygon). The integrated system partitions orthogonal building polygons into a set of rectangles and places rectangular roofs and box-shaped building bodies on these rectangles. In order to partition an orthogonal polygon, we proposed a useful polygon expression in deciding from which vertex a dividing line is drawn. In this paper, we propose a new scheme for partitioning building polygons and show the process of creating 3D roof models.

  8. Probabilistic reasoning for assembly-based 3D modeling

    KAUST Repository

    Chaudhuri, Siddhartha

    2011-01-01

    Assembly-based modeling is a promising approach to broadening the accessibility of 3D modeling. In assembly-based modeling, new models are assembled from shape components extracted from a database. A key challenge in assembly-based modeling is the identification of relevant components to be presented to the user. In this paper, we introduce a probabilistic reasoning approach to this problem. Given a repository of shapes, our approach learns a probabilistic graphical model that encodes semantic and geometric relationships among shape components. The probabilistic model is used to present components that are semantically and stylistically compatible with the 3D model that is being assembled. Our experiments indicate that the probabilistic model increases the relevance of presented components. © 2011 ACM.

  9. Computational modeling and validation studies of 3-D structure of neuraminidase protein of H1N1 influenza A virus and subsequent in silico elucidation of piceid analogues as its potent inhibitors.

    Science.gov (United States)

    Gupta, Chhedi Lal; Akhtar, Salman; Bajpaib, Preeti; Kandpal, K N; Desai, G S; Tiwari, Ashok K

    2013-01-01

    Emergence of the drug resistant variants of the Influenza A virus in the recent years has aroused a great need for the development of novel neuraminidase inhibitors for controlling the pandemic. The neuraminidase (NA) protein of the influenza virus has been the most potential target for the anti-influenza. However, in the absence of any experimental structure of the drug targeting NA protein of H1N1 influenza A virus as zanamivir and oseltamivir, the comprehensive study of the interaction of the drug molecules with the target protein has been missing. Hence in this study a computational 3-D structure of neuraminidase of H1N1 influenza A virus has been developed using homology modeling technique, and the same was validated for its reliability by ProSA web server in term of energy profile & Z scores and PROCHECK program followed by Ramachandran plot. Further, the developed 3-D model had been employed for docking studies with the class of compounds as Piceid and its analogs. In this context, two novel compounds (ChemBank ID 2110359 and 3075417) were found to be more potent inhibitors of neuraminidase than control drugs as zanamivir and oseltamivir in terms of their robust binding energies, strong inhibition constant (Ki) and better hydrogen bond interactions between the protein-ligand complex. The interaction of these compounds with NA protein has been significantly studied at the molecular level.

  10. Computational modeling of adherent cell growth in a hollow-fiber membrane bioreactor for large-scale 3-D bone tissue engineering.

    Science.gov (United States)

    Mohebbi-Kalhori, Davod; Behzadmehr, Amin; Doillon, Charles J; Hadjizadeh, Afra

    2012-09-01

    The use of hollow-fiber membrane bioreactors (HFMBs) has been proposed for three-dimensional bone tissue growth at the clinical scale. However, to achieve an efficient HFMB design, the relationship between cell growth and environmental conditions must be determined. Therefore, in this work, a dynamic double-porous media model was developed to determine nutrient-dependent cell growth for bone tissue formation in a HFMB. The whole hollow-fiber scaffold within the bioreactor was treated as a porous domain in this model. The domain consisted of two interpenetrating porous regions, including a porous lumen region available for fluid flow and a porous extracapillary space filled with a collagen gel that contained adherent cells for promoting long-term growth into tissue-like mass. The governing equations were solved numerically and the model was validated using previously published experimental results. The contributions of several bioreactor design and process parameters to the performance of the bioreactor were studied. The results demonstrated that the process and design parameters of the HFMB significantly affect nutrient transport and thus cell behavior over a long period of culture. The approach presented here can be applied to any cell type and used to develop tissue engineering hollow-fiber scaffolds.

  11. A New Energy-Based Method for 3-D Finite-Element Nonlinear Flux Linkage computation of Electrical Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2011-01-01

    This paper presents a new method for computation of the nonlinear flux linkage in 3-D finite-element models (FEMs) of electrical machines. Accurate computation of the nonlinear flux linkage in 3-D FEM is not an easy task. Compared to the existing energy-perturbation method, the new technique......-perturbation method. The new method proposed is validated using experimental results on two different permanent magnet machines....

  12. CASE OF SUCCESSFUL APPLICATION OF METHOD FOR 3D VISUALIZATION AND MODELING IN THORACIC ONCOLOGY

    Directory of Open Access Journals (Sweden)

    S. V. Shchadenko

    2016-01-01

    Full Text Available Aim. The application of method of 3D-visualization and modeling in thoracic oncology is described.Materials and methods. The block diagram of system of 3D-visualization and modeling consisting of six stages is shown. The reconstructions of anatomic computer 3D-models of rib cage and tumor were performed for the patient with cancer (plasma cell myeloma. The tumor size and its topographic anatomy relatively to neighboring organs, bones and soft tissues were identified. Results.The obtained data had been used to plan surgical intervention, which was successfully conducted at Thoracic surgery department ofTomskRegionalClinicalHospital. 

  13. A hybrid method for the computation of quasi-3D seismograms.

    Science.gov (United States)

    Masson, Yder; Romanowicz, Barbara

    2013-04-01

    The development of powerful computer clusters and efficient numerical computation methods, such as the Spectral Element Method (SEM) made possible the computation of seismic wave propagation in a heterogeneous 3D earth. However, the cost of theses computations is still problematic for global scale tomography that requires hundreds of such simulations. Part of the ongoing research effort is dedicated to the development of faster modeling methods based on the spectral element method. Capdeville et al. (2002) proposed to couple SEM simulations with normal modes calculation (C-SEM). Nissen-Meyer et al. (2007) used 2D SEM simulations to compute 3D seismograms in a 1D earth model. Thanks to these developments, and for the first time, Lekic et al. (2011) developed a 3D global model of the upper mantle using SEM simulations. At the local and continental scale, adjoint tomography that is using a lot of SEM simulation can be implemented on current computers (Tape, Liu et al. 2009). Due to their smaller size, these models offer higher resolution. They provide us with images of the crust and the upper part of the mantle. In an attempt to teleport such local adjoint tomographic inversions into the deep earth, we are developing a hybrid method where SEM computation are limited to a region of interest within the earth. That region can have an arbitrary shape and size. Outside this region, the seismic wavefield is extrapolated to obtain synthetic data at the Earth's surface. A key feature of the method is the use of a time reversal mirror to inject the wavefield induced by distant seismic source into the region of interest (Robertsson and Chapman 2000). We compute synthetic seismograms as follow: Inside the region of interest, we are using regional spectral element software RegSEM to compute wave propagation in 3D. Outside this region, the wavefield is extrapolated to the surface by convolution with the Green's functions from the mirror to the seismic stations. For now, these

  14. 3D Modeling of Transformer Substation Based on Mapping and 2D Images

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2016-01-01

    Full Text Available A new method for building 3D models of transformer substation based on mapping and 2D images is proposed in this paper. This method segments objects of equipment in 2D images by using k-means algorithm in determining the cluster centers dynamically to segment different shapes and then extracts feature parameters from the divided objects by using FFT and retrieves the similar objects from 3D databases and then builds 3D models by computing the mapping data. The method proposed in this paper can avoid the complex data collection and big workload by using 3D laser scanner. The example analysis shows the method can build coarse 3D models efficiently which can meet the requirements for hazardous area classification and constructions representations of transformer substation.

  15. Space Partitioning for Privacy Enabled 3D City Models

    Science.gov (United States)

    Filippovska, Y.; Wichmann, A.; Kada, M.

    2016-10-01

    Due to recent technological progress, data capturing and processing of highly detailed (3D) data has become extensive. And despite all prospects of potential uses, data that includes personal living spaces and public buildings can also be considered as a serious intrusion into people's privacy and a threat to security. It becomes especially critical if data is visible by the general public. Thus, a compromise is needed between open access to data and privacy requirements which can be very different for each application. As privacy is a complex and versatile topic, the focus of this work particularly lies on the visualization of 3D urban data sets. For the purpose of privacy enabled visualizations of 3D city models, we propose to partition the (living) spaces into privacy regions, each featuring its own level of anonymity. Within each region, the depicted 2D and 3D geometry and imagery is anonymized with cartographic generalization techniques. The underlying spatial partitioning is realized as a 2D map generated as a straight skeleton of the open space between buildings. The resulting privacy cells are then merged according to the privacy requirements associated with each building to form larger regions, their borderlines smoothed, and transition zones established between privacy regions to have a harmonious visual appearance. It is exemplarily demonstrated how the proposed method generates privacy enabled 3D city models.

  16. Vizuelizacija 3D modela geopodataka i njihova primjena : Visualisation of the 3D geodata models and their application

    Directory of Open Access Journals (Sweden)

    Mirko Borisov

    2014-12-01

    Full Text Available U radu se opisuju 3D modeli geopodataka i njihova primjena. Na geodetskim planovima i topografskim kartama najčešće se primjenjuju metode prikaza terena (reljefa pomoću kota i izohipsi. Međutim, sa pojavom novih tehnologija mijenja se način vizualizacije i naglašava koncept 3D modela geopodataka. Pritom, koriste se različiti pojmovi: digitalni model visina (DMV, digitalni model terena (DMT, digitalni model površi (DMP i drugo. Infrastruktura i 3D modeli geopodataka su standardizovani, ali se vizualizacija i detaljnost sadržaja mijenja i usklađuje prema namjeni i razmjeri prikaza. Primjena 3D modela geopodataka u digitalnom obliku (raster ili vektor postaje sve više aktuelna i putem interneta. Zato je važno razlikovati navedene pojmove i odlike 3D modela geopodataka kao i mogućnosti njihove primjene. : This paper describes the 3D geodata models and their application. On geodetic plans and topographic maps commonly applied methods of terrain (relief by spots elevation and contour lines. However, with the advent of new technologies the way of the visualisation is changing and highlights the concept 3D geodata model. Namely, there are different concepts: digital elevation model (DEM, digital terrain model (DTM, digital surface model (DSP and so on. Infrastructure and 3D geodata models are standardized, while the visualization and details of information change and adjust the needs and aspect ratio display. Application of 3D geodata models in digital format (raster or vector is becoming increasingly topical over the internet. Therefore, it is important to distinguish between certain concepts and features of 3D geodata models and the possibility of their application.

  17. Causal Dynamical Triangulation of 3D Tensor Model

    CERN Document Server

    Kawabe, Hiroshi

    2016-01-01

    We extend the string field theory of the two dimensional (2D) generalized causal dynamical triangulation (GCDT) with the Ishibashi-Kawai (IK-) type interaction formulated by the matrix model, to the three dimensional (3D) model of the surface field theory. Based on the loop gas model, we construct a tensor model for the discretized surface field and then apply it the stochastic quantization method. In the double scaling limit, the model is characterized by two scaling dimensions $D$ and $D_N$, the power indices of the minimal length as the scaling parameter. The continuum GCDT model with the IK-type interaction is realized with the similar restriction in the $D_N$-$D$ space, to the 2D model. The distinct property in the 3D model is that the quantum effect contains the IK-type interaction only, while the ordinary splitting interaction is excluded.

  18. A novel mechanotactic 3D modeling of cell morphology

    Science.gov (United States)

    Jamaleddin Mousavi, Seyed; Hamdy Doweidar, Mohamed

    2014-08-01

    Cell morphology plays a critical role in many biological processes, such as cell migration, tissue development, wound healing and tumor growth. Recent investigations demonstrate that, among other stimuli, cells adapt their shapes according to their substrate stiffness. Until now, the development of this process has not been clear. Therefore, in this work, a new three-dimensional (3D) computational model for cell morphology has been developed. This model is based on a previous cell migration model presented by the same authors. The new model considers that during cell-substrate interaction, cell shape is governed by internal cell deformation, which leads to an accurate prediction of the cell shape according to the mechanical characteristic of its surrounding micro-environment. To study this phenomenon, the model has been applied to different numerical cases. The obtained results, which are qualitatively consistent with well-known related experimental works, indicate that cell morphology not only depends on substrate stiffness but also on the substrate boundary conditions. A cell located within an unconstrained soft substrate (several kPa) with uniform stiffness is unable to adhere to its substrate or to send out pseudopodia. When the substrate stiffness increases to tens of kPa (intermediate and rigid substrates), the cell can adequately adhere to its substrate. Subsequently, as the traction forces exerted by the cell increase, the cell elongates and its shape changes. Within very stiff (hard) substrates, the cell cannot penetrate into its substrate or send out pseudopodia. On the other hand, a cell is found to be more elongated within substrates with a constrained surface. However, this elongation decreases when the cell approaches it. It can be concluded that the higher the net traction force, the greater the cell elongation, the larger the cell membrane area, and the less random the cell alignment.

  19. 3-D QSAutogrid/R: an alternative procedure to build 3-D QSAR models. Methodologies and applications.

    Science.gov (United States)

    Ballante, Flavio; Ragno, Rino

    2012-06-25

    Since it first appeared in 1988 3-D QSAR has proved its potential in the field of drug design and activity prediction. Although thousands of citations now exist in 3-D QSAR, its development was rather slow with the majority of new 3-D QSAR applications just extensions of CoMFA. An alternative way to build 3-D QSAR models, based on an evolution of software, has been named 3-D QSAutogrid/R and has been developed to use only software freely available to academics. 3-D QSAutogrid/R covers all the main features of CoMFA and GRID/GOLPE with implementation by multiprobe/multiregion variable selection (MPGRS) that improves the simplification of interpretation of the 3-D QSAR map. The methodology is based on the integration of the molecular interaction fields as calculated by AutoGrid and the R statistical environment that can be easily coupled with many free graphical molecular interfaces such as UCSF-Chimera, AutoDock Tools, JMol, and others. The description of each R package is reported in detail, and, to assess its validity, 3-D QSAutogrid/R has been applied to three molecular data sets of which either CoMFA or GRID/GOLPE models were reported in order to compare the results. 3-D QSAutogrid/R has been used as the core engine to prepare more that 240 3-D QSAR models forming the very first 3-D QSAR server ( www.3d-qsar.com ) with its code freely available through R-Cran distribution.

  20. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    Science.gov (United States)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0

  1. Computer-assisted three-dimensional surgical planning: 3D virtual articulator: technical note.

    Science.gov (United States)

    Ghanai, S; Marmulla, R; Wiechnik, J; Mühling, J; Kotrikova, B

    2010-01-01

    This study presents a computer-assisted planning system for dysgnathia treatment. It describes the process of information gathering using a virtual articulator and how the splints are constructed for orthognathic surgery. The deviation of the virtually planned splints is shown in six cases on the basis of conventionally planned cases. In all cases the plaster models were prepared and scanned using a 3D laser scanner. Successive lateral and posterior-anterior cephalometric images were used for reconstruction before surgery. By identifying specific points on the X-rays and marking them on the virtual models, it was possible to enhance the 2D images to create a realistic 3D environment and to perform virtual repositioning of the jaw. A hexapod was used to transfer the virtual planning to the real splints. Preliminary results showed that conventional repositioning could be replicated using the virtual articulator.

  2. The current status of the development of the technology on 3D computer simulation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Reyoung; Park, Seung Kook; Chung, Un Soo; Jung, Ki Jung

    2002-05-01

    The development background and property of the COSIDA, which is the 3D computer simulation system for the analysis on the dismantling procedure of the nuclear facilities in Japan was reviewed. The function of the visualization on the work area, Kinematics analysis and dismantling scenario analysis, which are the sub systems of the COSIDA, has been investigated. The physical, geometrical and radiological properties were modelled in 2D or 3D in the sub system of the visualization of the work area. In the sub system of the kinematics analysis, the command set on the basic work procedure for the control of the motion of the models at a cyber space was driven. The suitability of the command set was estimated by the application of COSIDA to the programming on the motion of the remote dismantling tools for dismantling the components of the nuclear facilities at cyber space.

  3. Embedding 3D models of biological specimens in PDF publications.

    Science.gov (United States)

    Ruthensteiner, Bernhard; Hess, Martin

    2008-11-01

    By providing two examples, the option for embedding 3D models in electronic versions of life science publications is presented. These examples, presumably representing the first such models published, are developmental stages of an evertebrate (Patella caerulea, Mollusca) and a vertebrate species (Psetta maxima, Teleostei) obtained from histological section series reconstruction processed with the software package Amira. These surface rendering models are particularly suitable for a PDF file because they can easily be transformed to a file format required and components may be conveniently combined and hierarchically arranged. All methodological steps starting from specimen preparation until embedding of resulting models in PDF files with emphasis on conversion of Amira data to the appropriate 3D file format are explained. Usability of 3D models in PDF documents is exemplified and advantages over 2D illustrations are discussed, including better explanation capabilities for spatial arrangements, higher information contents, and limiting options for disguising results by authors. Possibilities for additional applications reaching far beyond the examples presented are suggested. Problems such as long-term compatibility of file format and hardware plus software, editing and embedding of files, file size and differences in information contents between printed and electronic version will likely be overcome by technical development and increasing tendency toward electronic at the cost of printed publications. Since 3D visualization plays an increasing role in manifold disciplines of science and appropriate tools for the popular PDF format are readily available, we propose routine application of this way of illustration in electronic life science papers.

  4. DESIGN OF 3D MODEL OF CUSTOMIZED ANATOMICALLY ADJUSTED IMPLANTS

    Directory of Open Access Journals (Sweden)

    Miodrag Manić

    2015-12-01

    Full Text Available Design and manufacturing of customized implants is a field that has been rapidly developing in recent years. This paper presents an originally developed method for designing a 3D model of customized anatomically adjusted implants. The method is based upon a CT scan of a bone fracture. A CT scan is used to generate a 3D bone model and a fracture model. Using these scans, an indicated location for placing the implant is recognized and the design of a 3D model of customized implants is made. With this method it is possible to design volumetric implants used for replacing a part of the bone or a plate type for fixation of a bone part. The sides of the implants, this one lying on the bone, are fully aligned with the anatomical shape of the bone surface which neighbors the fracture. The given model is designed for implants production utilizing any method, and it is ideal for 3D printing of implants.

  5. Improving 3D spatial queries search: newfangled technique of space filling curves in 3D city modeling

    DEFF Research Database (Denmark)

    Uznir, U.; Anton, François; Suhaibah, A.

    2013-01-01

    web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method......, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects...... modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert’s curve, preserves the Lebesgue measure and is Lipschitz...

  6. Enhanced LOD Concepts for Virtual 3d City Models

    Science.gov (United States)

    Benner, J.; Geiger, A.; Gröger, G.; Häfele, K.-H.; Löwner, M.-O.

    2013-09-01

    Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short overview on various LoD concepts, this paper discusses the existing LoD concept of the CityGML standard for 3D city models and identifies a number of deficits. Based on this analysis, an alternative concept is developed and illustrated with several examples. It differentiates between first, a Geometric Level of Detail (GLoD) and a Semantic Level of Detail (SLoD), and second between the interior building and its exterior shell. Finally, a possible implementation of the new concept is demonstrated by means of an UML model.

  7. Teaching the geological subsurface with 3D models

    Science.gov (United States)

    Thorpe, Steve; Ward, Emma

    2014-05-01

    3D geological models have great potential as a resource when teaching geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for many students. Today's earth science students use a variety of skills and processes during their learning experience including spatial thinking, image construction, detecting patterns, making predictions and deducing the orientation of themselves. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. The British Geological Survey (BGS) has been producing digital 3D geological models for over 10 years. The models produced are revolutionising the working practices, data standards and products of the BGS. Sharing our geoscience information with academia is highlighted throughout the BGS strategy as is instilling practical skills in future geoscience professionals, such as model building and interpretation. In 2009 a project was launched to investigate the potential of the models as a teaching resource. The study included justifying if and how the models help students to learn, how models have been used historically, and how other forms of modelling are being used today. BGS now produce 3D geological models for use by anyone teaching or learning geoscience. They incorporate educational strategies that will develop geospatial skills and alleviate potential problems that some students experience. They are contained within contemporary case studies and show standard geological concepts, structures, sedimentary rocks, cross sections and field techniques. 3D geological models of the Isle of Wight and Ingleborough

  8. Induction Heating Process: 3D Modeling and Optimisation

    Science.gov (United States)

    Naar, R.; Bay, F.

    2011-05-01

    An increasing number of problems in mechanics and physics involves multiphysics coupled problems. Among these problems, we can often find electromagnetic coupled problems. Electromagnetic couplings may be involved through the use of direct or induced currents for thermal purposes—in order to generate heat inside a work piece in order to get either a prescribed temperature field or some given mechanical or metallurgical properties through an accurate control of temperature evolution with respect to time-, or for solid or fluid mechanics purposes—in order to create magnetic forces such as in fluid mechanics (electromagnetic stirring,…) or solid mechanics (magnetoforming,…). Induction heat treatment processes is therefore quite difficult to control; trying for instance to minimize distortions generated by such a process is not easy. In order to achieve these objectives, we have developed a computational tool which includes an optimsation stage. A 3D finite element modeling tool for local quenching after induction heating processes has already been developed in our laboratory. The modeling of such a multiphysics coupled process needs taking into account electromagnetic, thermal, mechanical and metallurgical phenomenon—as well as their mutual interactions during the whole process: heating and quenching. The model developed is based on Maxwell equations, heat transfer equation, mechanical equilibrium computations, Johnson-Mehl-Avrami and Koistinen-Marburger laws. All these equations and laws may be coupled but some coupling may be neglected. In our study, we will also focus on induction heating process aiming at optimising the Heat Affected Zone (HAZ). Thus problem is formalized as an optimization problem—minimizing a cost function which measures the difference between computed and optimal temperatures—along with some constraints on process parameters. The optimization algorithms may be of two kinds—either zero-order or first-order algorithms. First

  9. Improving 1D Stellar Models with 3D Atmospheres

    CERN Document Server

    Mosumgaard, Jakob Rørsted; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner

    2016-01-01

    Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature -- also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.

  10. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models.

    Directory of Open Access Journals (Sweden)

    Cemal Cagatay Bilgin

    Full Text Available BioSig3D is a computational platform for high-content screening of three-dimensional (3D cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i morphogenesis of a panel of human mammary epithelial cell lines (HMEC, and (ii heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation.

  11. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models.

    Science.gov (United States)

    Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram

    2016-01-01

    BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation.

  12. 3D Property Modeling of Void Ratio by Cokriging

    Institute of Scientific and Technical Information of China (English)

    Yao Lingqing; Pan Mao; Cheng Qiuming

    2008-01-01

    Void ratio measures compactness of ground soil in geotechnical engineering. When samples are collected in certain area for mapping void ratios, other relevant types of properties such as water content may be also analyzed. To map the spatial distribution of void ratio in the area based on these types of point, observation data interpolation is often needed. Owing to the variance of sampling density along the horizontal and vertical directions, special consideration is required to handle anisotropy of estimator. 3D property modeling aims at predicting the overall distribution of property values from limited samples, and geostatistical method can he employed naturally here because they help to minimize the mean square error of estimation. To construct 3D property model of void ratio, cokriging was used considering its mutual correlation with water content, which is another important soil parameter. Moreover, K-D tree was adopted to organize the samples to accelerate neighbor query in 3D space during the above modeling process. At last, spatial configuration of void ratio distribution in an engineering body was modeled through 3D visualization, which provides important information for civil engineering purpose.

  13. On Angular Sampling Methods for 3-D Spatial Channel Models

    DEFF Research Database (Denmark)

    Fan, Wei; Jämsä, Tommi; Nielsen, Jesper Ødum

    2015-01-01

    This paper discusses generating three dimensional (3D) spatial channel models with emphasis on the angular sampling methods. Three angular sampling methods, i.e. modified uniform power sampling, modified uniform angular sampling, and random pairing methods are proposed and investigated in detail....

  14. Automatic 3D modeling of the urban landscape

    NARCIS (Netherlands)

    I. Esteban; J. Dijk; F. Groen

    2010-01-01

    In this paper we present a fully automatic system for building 3D models of urban areas at the street level. We propose a novel approach for the accurate estimation of the scale consistent camera pose given two previous images. We employ a new method for global optimization and use a novel sampling

  15. Large scale semantic 3D modeling of the urban landscape

    NARCIS (Netherlands)

    I. Esteban Lopez

    2012-01-01

    Modeling and understanding large urban areas is becoming an important topic in a world were everything is being digitized. A semantic and accurate 3D representation of a city can be used in many applications such as event and security planning and management, assisted navigation, autonomous operatio

  16. Automatic 3D Modeling of the Urban Landscape

    NARCIS (Netherlands)

    Esteban, I.; Dijk, J.; Groen, F.A.

    2010-01-01

    In this paper we present a fully automatic system for building 3D models of urban areas at the street level. We propose a novel approach for the accurate estimation of the scale consistent camera pose given two previous images. We employ a new method for global optimization and use a novel sampling

  17. Particle based 3D modeling of positive streamer inception

    NARCIS (Netherlands)

    Teunissen, H.J.

    2012-01-01

    In this report we present a particle based 3D model for the study of streamer inception near positive electrodes in air. The particle code is of the PIC-MCC type and an electrode is included using the charge simulation method. An algorithm for the adaptive creation of super-particles is introduced,

  18. 3D animation of facial plastic surgery based on computer graphics

    Science.gov (United States)

    Zhang, Zonghua; Zhao, Yan

    2013-12-01

    More and more people, especial women, are getting desired to be more beautiful than ever. To some extent, it becomes true because the plastic surgery of face was capable in the early 20th and even earlier as doctors just dealing with war injures of face. However, the effect of post-operation is not always satisfying since no animation could be seen by the patients beforehand. In this paper, by combining plastic surgery of face and computer graphics, a novel method of simulated appearance of post-operation will be given to demonstrate the modified face from different viewpoints. The 3D human face data are obtained by using 3D fringe pattern imaging systems and CT imaging systems and then converted into STL (STereo Lithography) file format. STL file is made up of small 3D triangular primitives. The triangular mesh can be reconstructed by using hash function. Top triangular meshes in depth out of numbers of triangles must be picked up by ray-casting technique. Mesh deformation is based on the front triangular mesh in the process of simulation, which deforms interest area instead of control points. Experiments on face model show that the proposed 3D animation facial plastic surgery can effectively demonstrate the simulated appearance of post-operation.

  19. Computer-aided planning and reconstruction of cranial 3D implants.

    Science.gov (United States)

    Gall, Markus; Xing Li; Xiaojun Chen; Schmalstieg, Dieter; Egger, Jan

    2016-08-01

    In this contribution, a prototype for semiautomatic computer-aided planning and reconstruction of cranial 3D Implants is presented. The software prototype guides the user through the workflow, beginning with loading and mirroring the patient's head to obtain an initial curvature of the cranial implant. However, naïve mirroring is not sufficient for an implant, because human heads are in general too asymmetric. Thus, the user can perform Laplacian smoothing, followed by Delaunay triangulation, for generating an aesthetic looking and well-fitting implant. Finally, our software prototype allows to save the designed 3D model of the implant as a STL-file for 3D printing. The 3D printed implant can be used for further pre-interventional planning or even as the final implant for the patient. In summary, our findings show that a customized MeVisLab prototype can be an alternative to complex commercial planning software, which may not be available in a clinic.

  20. Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging

    DEFF Research Database (Denmark)

    Markl, Daniel; Zeitler, J Axel; Rasch, Cecilie

    2016-01-01

    PURPOSE: A 3D printer was used to realise compartmental dosage forms containing multiple active pharmaceutical ingredient (API) formulations. This work demonstrates the microstructural characterisation of 3D printed solid dosage forms using X-ray computed microtomography (XμCT) and terahertz pulsed...... imaging (TPI). METHODS: Printing was performed with either polyvinyl alcohol (PVA) or polylactic acid (PLA). The structures were examined by XμCT and TPI. Liquid self-nanoemulsifying drug delivery system (SNEDDS) formulations containing saquinavir and halofantrine were incorporated into the 3D printed...... was characterised by XμCT and TPI on the basis of the computer-aided design (CAD) models of the dosage form (compartmentalised PVA structures were 7.5 ± 0.75% larger than designed; n = 3). CONCLUSIONS: The 3D printer can reproduce specific structures very accurately, whereas the 3D prints can deviate from...

  1. Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging

    DEFF Research Database (Denmark)

    Markl, Daniel; Zeitler, J Axel; Rasch, Cecilie

    2017-01-01

    PURPOSE: A 3D printer was used to realise compartmental dosage forms containing multiple active pharmaceutical ingredient (API) formulations. This work demonstrates the microstructural characterisation of 3D printed solid dosage forms using X-ray computed microtomography (XμCT) and terahertz pulsed...... imaging (TPI). METHODS: Printing was performed with either polyvinyl alcohol (PVA) or polylactic acid (PLA). The structures were examined by XμCT and TPI. Liquid self-nanoemulsifying drug delivery system (SNEDDS) formulations containing saquinavir and halofantrine were incorporated into the 3D printed...... was characterised by XμCT and TPI on the basis of the computer-aided design (CAD) models of the dosage form (compartmentalised PVA structures were 7.5 ± 0.75% larger than designed; n = 3). CONCLUSIONS: The 3D printer can reproduce specific structures very accurately, whereas the 3D prints can deviate from...

  2. Table of 3D organ model IDs and organ names (IS-A Tree) - BodyParts3D | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us BodyParts3D Table of 3D organ model IDs and organ names (IS-A Tree) Data detail Data name Table of 3D organ model...ontents List of downloadable 3D organ models in a tab-delimited text file format, describing the correspondence between 3D organ mode...| Contact Us Table of 3D organ model IDs and organ names (IS-A Tree) - BodyParts3D | LSDB Archive ...

  3. 3D for Geosciences: Interactive Tangibles and Virtual Models

    Science.gov (United States)

    Pippin, J. E.; Matheney, M.; Kitsch, N.; Rosado, G.; Thompson, Z.; Pierce, S. A.

    2016-12-01

    Point cloud processing provides a method of studying and modelling geologic features relevant to geoscience systems and processes. Here, software including Skanect, MeshLab, Blender, PDAL, and PCL are used in conjunction with 3D scanning hardware, including a Structure scanner and a Kinect camera, to create and analyze point cloud images of small scale topography, karst features, tunnels, and structures at high resolution. This project successfully scanned internal karst features ranging from small stalactites to large rooms, as well as an external waterfall feature. For comparison purposes, multiple scans of the same object were merged into single object files both automatically, using commercial software, and manually using open source libraries and code. Files with format .ply were manually converted into numeric data sets to be analyzed for similar regions between files in order to match them together. We can assume a numeric process would be more powerful and efficient than the manual method, however it could lack other useful features that GUI's may have. The digital models have applications in mining as efficient means of replacing topography functions such as measuring distances and areas. Additionally, it is possible to make simulation models such as drilling templates and calculations related to 3D spaces. Advantages of using methods described here for these procedures include the relatively quick time to obtain data and the easy transport of the equipment. With regard to openpit mining, obtaining 3D images of large surfaces and with precision would be a high value tool by georeferencing scan data to interactive maps. The digital 3D images obtained from scans may be saved as printable files to create physical 3D-printable models to create tangible objects based on scientific information, as well as digital "worlds" able to be navigated virtually. The data, models, and algorithms explored here can be used to convey complex scientific ideas to a range of

  4. A biochemical/biophysical 3D FE intervertebral disc model.

    Science.gov (United States)

    Schroeder, Y; Huyghe, J M; van Donkelaar, C C; Ito, K

    2010-10-01

    Present research focuses on different strategies to preserve the degenerated disc. To assure long-term success of novel approaches, favorable mechanical conditions in the disc tissue are essential. To evaluate these, a model is required that can determine internal mechanical conditions which cannot be directly measured as a function of assessable biophysical characteristics. Therefore, the objective is to evaluate if constitutive and material laws acquired on isolated samples of nucleus and annulus tissue can be used directly in a whole-organ 3D FE model to describe intervertebral disc behavior. The 3D osmo-poro-visco-hyper-elastic disc (OVED) model describes disc behavior as a function of annulus and nucleus tissue biochemical composition, organization and specific constituent properties. The description of the 3D collagen network was enhanced to account for smaller fibril structures. Tissue mechanical behavior tests on isolated nucleus and annulus samples were simulated with models incorporating tissue composition to calculate the constituent parameter values. The obtained constitutive laws were incorporated into the whole-organ model. The overall behavior and disc properties of the model were corroborated against in vitro creep experiments of human L4/L5 discs. The OVED model simulated isolated tissue experiments on confined compression and uniaxial tensile test and whole-organ disc behavior. This was possible, provided that secondary fiber structures were accounted for. The fair agreement (radial bulge, axial creep deformation and intradiscal pressure) between model and experiment was obtained using constitutive properties that are the same for annulus and nucleus. Both tissue models differed in the 3D OVED model only by composition. The composition-based modeling presents the advantage of reducing the numbers of material parameters to a minimum and to use tissue composition directly as input. Hence, this approach provides the possibility to describe internal

  5. Statistical skull models from 3D X-ray images

    CERN Document Server

    Berar, M; Bailly, G; Payan, Y; Berar, Maxime; Desvignes, Michel; Payan, Yohan

    2006-01-01

    We present 2 statistical models of the skull and mandible built upon an elastic registration method of 3D meshes. The aim of this work is to relate degrees of freedom of skull anatomy, as static relations are of main interest for anthropology and legal medicine. Statistical models can effectively provide reconstructions together with statistical precision. In our applications, patient-specific meshes of the skull and the mandible are high-density meshes, extracted from 3D CT scans. All our patient-specific meshes are registrated in a subject-shared reference system using our 3D-to-3D elastic matching algorithm. Registration is based upon the minimization of a distance between the high density mesh and a shared low density mesh, defined on the vertexes, in a multi resolution approach. A Principal Component analysis is performed on the normalised registrated data to build a statistical linear model of the skull and mandible shape variation. The accuracy of the reconstruction is under the millimetre in the shape...

  6. Efficient Measurement of Shape Dissimilarity between 3D Models Using Z-Buffer and Surface Roving Method

    Directory of Open Access Journals (Sweden)

    In Kyu Park

    2002-10-01

    Full Text Available Estimation of the shape dissimilarity between 3D models is a very important problem in both computer vision and graphics for 3D surface reconstruction, modeling, matching, and compression. In this paper, we propose a novel method called surface roving technique to estimate the shape dissimilarity between 3D models. Unlike conventional methods, our surface roving approach exploits a virtual camera and Z-buffer, which is commonly used in 3D graphics. The corresponding points on different 3D models can be easily identified, and also the distance between them is determined efficiently, regardless of the representation types of the 3D models. Moreover, by employing the viewpoint sampling technique, the overall computation can be greatly reduced so that the dissimilarity is obtained rapidly without loss of accuracy. Experimental results show that the proposed algorithm achieves fast and accurate measurement of shape dissimilarity for different types of 3D object models.

  7. Computation of Edge-Edge-Edge Events Based on Conicoid Theory for 3-D Object Recognition

    Institute of Scientific and Technical Information of China (English)

    WU Chenye; MA Huimin

    2009-01-01

    The availability of a good viewpoint space partition is crucial in three dimensional (3-D) object rec-ognition on the approach of aspect graph. There are two important events depicted by the aspect graph ap-proach, edge-edge-edge (EEE) events and edge-vertex (EV) events. This paper presents an algorithm to compute EEE events by characteristic analysis based on conicoid theory, in contrast to current algorithms that focus too much on EV events and often overlook the importance of EEE events. Also, the paper provides a standard flowchart for the viewpoint space partitioning based on aspect graph theory that makes it suitable for perspective models. The partitioning result best demonstrates the algorithm's efficiency with more valu-able viewpoints found with the help of EEE events, which can definitely help to achieve high recognition rate for 3-D object recognition.

  8. The Finite Element Numerical Modelling of 3D Magnetotelluric

    Directory of Open Access Journals (Sweden)

    Ligang Cao

    2014-01-01

    Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.

  9. Modeling Perception of 3D Forms Using Fuzzy Knowledge Bases

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Ahmed, Saeema

    2009-01-01

    the aesthetics of their products are likely to be perceived are of value. In this paper the authors propose an approach to formalize the relationship between geometric information of a 3D object and the intended perception using fuzzy logic. 3D objects (shapes) created by design engineering students to evoke...... a certain perception were analysed. Three different fuzzy logic models, with different input variables, for evaluating massiveness and lightness in a form are proposed. The uthors identified geometric information as inputs of the fuzzy model and developed a set of fuzzy if/then rules to map...... the relationships between the fuzzy sets on each input premise and the output premise. In our case the output premise of the fuzzy logic model is the level of belonging to the design context (perception). An evaluation of how users perceived the shapes was conducted to validate the fuzzy logic models and showed...

  10. A 3D Babcock-Leighton Solar Dynamo Model

    CERN Document Server

    Miesch, Mark S

    2014-01-01

    We present a 3D kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally Bipolar Magnetic Regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2D Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2D in radius/latitude) and surface flux transport models (2D in latitude/longitude) into a more self-consistent framework that captures the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11-yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-p...

  11. Integrated modeling and 3D visualization for mine complex fields

    Institute of Scientific and Technical Information of China (English)

    LI Zhong-xue; SUN En-ji; LI Cui-ping; MA Bin

    2007-01-01

    Proposed a novel approach to the problem of mine complex fields in a perspective of digital modeling and visual representation, and it aimed at developing a theoretical framework for mine complex fields with the factors and their relationships delineated in a unified manner and at building a prototype for an integrated system of methods, models,and techniques with mine complex fields modeled digitally and represented visually. Specifically, the paper addressed the issues of data mining and knowledge discovery techniques as used in the processing of geological and ore deposit samples, digital modeling techniques as used in the description of mine complex fields, 3D visual simulation techniques as used in the representation of ore bodies and underground excavations, seamless interfacing techniques with other systems such as CAD and web GIS as used in the restructuring of 2D data into 3D models and mapping of 3D models onto 2D graphics, and implementation techniques as used in the case of building a web based prototype system for the integrated modeling and visualization of underground mines.

  12. 3D fast adaptive correlation imaging for large-scale gravity data based on GPU computation

    Science.gov (United States)

    Chen, Z.; Meng, X.; Guo, L.; Liu, G.

    2011-12-01

    In recent years, large scale gravity data sets have been collected and employed to enhance gravity problem-solving abilities of tectonics studies in China. Aiming at the large scale data and the requirement of rapid interpretation, previous authors have carried out a lot of work, including the fast gradient module inversion and Euler deconvolution depth inversion ,3-D physical property inversion using stochastic subspaces and equivalent storage, fast inversion using wavelet transforms and a logarithmic barrier method. So it can be say that 3-D gravity inversion has been greatly improved in the last decade. Many authors added many different kinds of priori information and constraints to deal with nonuniqueness using models composed of a large number of contiguous cells of unknown property and obtained good results. However, due to long computation time, instability and other shortcomings, 3-D physical property inversion has not been widely applied to large-scale data yet. In order to achieve 3-D interpretation with high efficiency and precision for geological and ore bodies and obtain their subsurface distribution, there is an urgent need to find a fast and efficient inversion method for large scale gravity data. As an entirely new geophysical inversion method, 3D correlation has a rapid development thanks to the advantage of requiring no a priori information and demanding small amount of computer memory. This method was proposed to image the distribution of equivalent excess masses of anomalous geological bodies with high resolution both longitudinally and transversely. In order to tranform the equivalence excess masses into real density contrasts, we adopt the adaptive correlation imaging for gravity data. After each 3D correlation imaging, we change the equivalence into density contrasts according to the linear relationship, and then carry out forward gravity calculation for each rectangle cells. Next, we compare the forward gravity data with real data, and

  13. Transcolonic retrograde ureteric catheterization assisted by 3-d computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Snow, T.M.; Olivier, J.; Vigar, M. [Gold Coast Hospital, Southport, QLD (Australia). Department of Radiology; Parnham, A.P. [Gold Coast Hospital, Southport, QLD (Australia). Department of Radiology

    1999-08-01

    A 42-year-old woman had bladder extrophy at birth, treated by ureterocolic anastomosis of her single kidney. She suffered recurrent hyperammonaemia, leading to comas, but refused an ileal conduit. During her most recent coma, it was decided to divert her urine to test whether this would reduce hyperammonaemia: this was accomplished by transcolonic retrograde catheterization of the ureter. This was only possible after computed tomography ureterography to show the ureterocolic anastomosis. Ureterocolic anastomosis is associated with several complications, the best known being hyperchloraemic acidosis and potassium deficiency. There is also a very high incidence of stricture at the anastomosis, both benign and malignant. Hyperammonaemia is less common. It can lead to disturbance of consciousness and seizures. It is caused by reabsorption of ammonia from the colon, exacerbated by the presence of urea-splitting organisms. Copyright (1999) Blackwell Science Pty Ltd 8 refs., 4 figs.

  14. Building a 3D Computed Tomography Scanner From Surplus Parts.

    Science.gov (United States)

    Haidekker, Mark A

    2014-01-01

    Computed tomography (CT) scanners are expensive imaging devices, often out of reach for small research groups. Designing and building a CT scanner from modular components is possible, and this article demonstrates that realization of a CT scanner from components is surprisingly easy. However, the high costs of a modular X-ray source and detector limit the overall cost savings. In this article, the possibility of building a CT scanner with available surplus X-ray parts is discussed, and a practical device is described that incurred costs of less than $16,000. The image quality of this device is comparable with commercial devices. The disadvantage is that design constraints imposed by the available components lead to slow scan speeds and a resolution of 0.5 mm. Despite these limitations, a device such as this is attractive for imaging studies in the biological and biomedical sciences, as well as for advancing CT technology itself.

  15. Fast, Automated, 3D Modeling of Building Interiors

    Science.gov (United States)

    2012-10-30

    Cheng, M. Anderson, S. He, A. Zakhor, "Texture Mapping 3D Planar Models of Indoor Environments with Noisy Camera Poses," SPIE electronic imaging...successfully process noisy scans with non-zero registration error. Most of the processing is performed after a dramatic dimensionality reduction, yielding a...lobby and hallways of a hotel .  Applying textures to these models is an important step in generating photorealistic visualizations of data

  16. Kallen Lehman approach to 3D Ising model

    Science.gov (United States)

    Canfora, F.

    2007-03-01

    A “Kallen-Lehman” approach to Ising model, inspired by quantum field theory à la Regge, is proposed. The analogy with the Kallen-Lehman representation leads to a formula for the free-energy of the 3D model with few free parameters which could be matched with the numerical data. The possible application of this scheme to the spin glass case is shortly discussed.

  17. Modeling of 3D Woven Composites Containing Multiple Delaminations

    Science.gov (United States)

    2012-08-20

    researchers 3D woven composites shows better damage tolerance than laminated textile composites without z-yarns such as plain woven composites even...modeling of quasi-static short beam shear test of plain woven laminated composites. Cohesive elements were used in regions where transverse cracks and...Title ABSTRACT In this paper we present FE modeling of quasi-static short beam shear test of plain woven laminated composites. Cohesive elements were

  18. 3D model of the Bernese Part of the Swiss Molasse Basin: visualization of uncertainties in a 3D model

    Science.gov (United States)

    Mock, Samuel; Allenbach, Robin; Reynolds, Lance; Wehrens, Philip; Kurmann-Matzenauer, Eva; Kuhn, Pascal; Michael, Salomè; Di Tommaso, Gennaro; Herwegh, Marco

    2016-04-01

    The Swiss Molasse Basin comprises the western and central part of the North Alpine Foreland Basin. In recent years it has come under closer scrutiny due to its promising geopotentials such as geothermal energy and CO2 sequestration. In order to adress these topics good knowledge of the subsurface is a key prerequisite. For that matter, geological 3D models serve as valuable tools. In collaboration with the Swiss Geological Survey (swisstopo) and as part of the project GeoMol CH, a geological 3D model of the Swiss Molasse Basin in the Canton of Bern has been built. The model covers an area of 1810 km2and reaches depth of up to 6.7 km. It comprises 10 major Cenozoic and Mesozoic units and numerous faults. The 3D model is mainly based on 2D seismic data complemented by information from few deep wells. Additionally, data from geological maps and profiles were used for refinement at shallow depths. In total, 1163 km of reflection seismic data, along 77 seismic lines, have been interpreted by different authors with respect to stratigraphy and structures. Both, horizons and faults, have been interpreted in 2D and modelled in 3D using IHS's Kingdom Suite and Midland Valley's MOVE software packages, respectively. Given the variable degree of subsurface information available, each 3D model is subject of uncertainty. With the primary input data coming from interpretation of reflection seismic data, a variety of uncertainties comes into play. Some of them are difficult to address (e.g. author's style of interpretation) while others can be quantified (e.g. mis-tie correction, well-tie). An important source of uncertainties is the quality of seismic data; this affects the traceability and lateral continuation of seismic reflectors. By defining quality classes we can semi-quantify this source of uncertainty. In order to visualize the quality and density of the input data in a meaningful way, we introduce quality-weighted data density maps. In combination with the geological 3D

  19. Geometric and colour data fusion for outdoor 3D models.

    Science.gov (United States)

    Merchán, Pilar; Adán, Antonio; Salamanca, Santiago; Domínguez, Vicente; Chacón, Ricardo

    2012-01-01

    This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera) and environmental (rain, dampness, changing illumination) conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture), we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields.

  20. Geometric and Colour Data Fusion for Outdoor 3D Models

    Directory of Open Access Journals (Sweden)

    Ricardo Chacón

    2012-05-01

    Full Text Available This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera and environmental (rain, dampness, changing illumination conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture, we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields.

  1. Early experiences of planning stereotactic radiosurgery using 3D printed models of eyes with uveal melanomas.

    Science.gov (United States)

    Furdová, Alena; Sramka, Miron; Thurzo, Andrej; Furdová, Adriana

    2017-01-01

    The objective of this study was to determine the use of 3D printed model of an eye with intraocular tumor for linear accelerator-based stereotactic radiosurgery. The software for segmentation (3D Slicer) created virtual 3D model of eye globe with tumorous mass based on tissue density from computed tomography and magnetic resonance imaging data. A virtual model was then processed in the slicing software (Simplify3D(®)) and printed on 3D printer using fused deposition modeling technology. The material that was used for printing was polylactic acid. In 2015, stereotactic planning scheme was optimized with the help of 3D printed model of the patient's eye with intraocular tumor. In the period 2001-2015, a group of 150 patients with uveal melanoma (139 choroidal melanoma and 11 ciliary body melanoma) were treated. The median tumor volume was 0.5 cm(3) (0.2-1.6 cm(3)). The radiation dose was 35.0 Gy by 99% of dose volume histogram. The 3D printed model of eye with tumor was helpful in planning the process to achieve the optimal scheme for irradiation which requires high accuracy of defining the targeted tumor mass and critical structures.

  2. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation.

    Science.gov (United States)

    Wang, Junchen; Suenaga, Hideyuki; Liao, Hongen; Hoshi, Kazuto; Yang, Liangjing; Kobayashi, Etsuko; Sakuma, Ichiro

    2015-03-01

    Autostereoscopic 3D image overlay for augmented reality (AR) based surgical navigation has been studied and reported many times. For the purpose of surgical overlay, the 3D image is expected to have the same geometric shape as the original organ, and can be transformed to a specified location for image overlay. However, how to generate a 3D image with high geometric fidelity and quantitative evaluation of 3D image's geometric accuracy have not been addressed. This paper proposes a graphics processing unit (GPU) based computer-generated integral imaging pipeline for real-time autostereoscopic 3D display, and an automatic closed-loop 3D image calibration paradigm for displaying undistorted 3D images. Based on the proposed methods, a novel AR device for 3D image surgical overlay is presented, which mainly consists of a 3D display, an AR window, a stereo camera for 3D measurement, and a workstation for information processing. The evaluation on the 3D image rendering performance with 2560×1600 elemental image resolution shows the rendering speeds of 50-60 frames per second (fps) for surface models, and 5-8 fps for large medical volumes. The evaluation of the undistorted 3D image after the calibration yields sub-millimeter geometric accuracy. A phantom experiment simulating oral and maxillofacial surgery was also performed to evaluate the proposed AR overlay device in terms of the image registration accuracy, 3D image overlay accuracy, and the visual effects of the overlay. The experimental results show satisfactory image registration and image overlay accuracy, and confirm the system usability.

  3. Parallel tempering and 3D spin glass models

    Science.gov (United States)

    Papakonstantinou, T.; Malakis, A.

    2014-03-01

    We review parallel tempering schemes and examine their main ingredients for accuracy and efficiency. We discuss two selection methods of temperatures and some alternatives for the exchange of replicas, including all-pair exchange methods. We measure specific heat errors and round-trip efficiency using the two-dimensional (2D) Ising model, and also test the efficiency for the ground state production in 3D spin glass models. We find that the optimization of the GS problem is highly influenced by the choice of the temperature range of the PT process. Finally, we present numerical evidence concerning the universality aspects of an anisotropic case of the 3D spin-glass model.

  4. 3D contaminant migration model with consolidation dependent transport coefficients

    Institute of Scientific and Technical Information of China (English)

    Lu Huang; Cheng-Gang Zhao; Yan Liu; Guo-Qing Cai

    2012-01-01

    Soil consolidation would induce variations of its transport coefficients such as hydraulic conductivity and diffusion coefficient. This paper presents a study of the influence of barrier consolidation on transport coefficients,and a 3D transport model based on mixture theory is proposed for describing the liners that involve circular defects in the geomembrane.The elastoplastic ALPHA model is revised by using the spatially mobilized plane (SMP) criterion for simulating the deformation of the soils.Then,the 3D model coupling the nonlinear consolidation and contaminant advection-diffusion is solved using the finite element software ABAQUS.The results show that the importance of reducing the defect size in the geomembrane and the liner porosity to control the contaminant concentration increase.

  5. Technical illustration based on 3D CSG models

    Institute of Scientific and Technical Information of China (English)

    GENG Wei-dong; DING Lei; YU Hong-feng; PAN Yun-he

    2005-01-01

    This paper presents an automatic non-photorealistic rendering approach to generating technical illustration from 3D models. It first decomposes the 3D object into a set of CSG primitives, and then performs the hidden surface removal based on the prioritized list, in which the rendition order of CSG primitives is sorted out by depth. Then, each primitive is illustrated by the pre-defined empirical lighting model, and the system mimics the stroke-drawing by user-specified style. In order to artistically and flexibly modulate the illumination, the empirical lighting model is defined by three major components: parameters of multi-level lighting intensities, parametric spatial occupations for each lighting level, and an interpolation method to calculate the lighting units into the spatial occupation of CSG primitives, instead of"pixel-by-pixel" painting. This region-by-region shading facilitates the simulation of illustration styles.

  6. 3-D model-based tracking for UAV indoor localization.

    Science.gov (United States)

    Teulière, Céline; Marchand, Eric; Eck, Laurent

    2015-05-01

    This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights.

  7. Two-equation turbulence modeling for 3-D hypersonic flows

    Science.gov (United States)

    Bardina, J. E.; Coakley, T. J.; Marvin, J. G.

    1992-01-01

    An investigation to verify, incorporate and develop two-equation turbulence models for three-dimensional high speed flows is presented. The current design effort of hypersonic vehicles has led to an intensive study of turbulence models for compressible hypersonic flows. This research complements an extensive review of experimental data and the current development of 2D turbulence models. The review of experimental data on 2D and 3D flows includes complex hypersonic flows with pressure profiles, skin friction, wall heat transfer, and turbulence statistics data. In a parallel effort, turbulence models for high speed flows have been tested against flat plate boundary layers, and are being tested against the 2D database. In the present paper, we present the results of 3D Navier-Stokes numerical simulations with an improved k-omega two-equation turbulence model against experimental data and empirical correlations of an adiabatic flat plate boundary layer, a cold wall flat plate boundary layer, and a 3D database flow, the interaction of an oblique shock wave and a thick turbulent boundary layer with a free stream Mach number = 8.18 and Reynolds number = 5 x 10 to the 6th.

  8. 3-D Rat Brain Phantom for High-Resolution Molecular Imaging: Experimental studies aimed at advancing understanding of human brain disease and malfunction, and of behavior problems, may be aided by computer models of small laboratory animals

    NARCIS (Netherlands)

    Beekman, F.J.; Vastenhouw, B.; Van der Wilt, G.; Vervloet, M.; Visscher, R.; Booij, J.; Gerrits, M.; Ji, C.; Ramakers, R.; Van der Have, F.

    2009-01-01

    With the steadily improving resolution of novel small-animal single photon emission computed tomography (SPECT) and positron emission tomography devices, highly detailed phantoms are required for testing and optimizing these systems. We present a three-dimensional (3-D) digital and physical phantom

  9. 3D cartographic modeling of the Alpine arc

    Science.gov (United States)

    Vouillamoz, Naomi; Sue, Christian; Champagnac, Jean-Daniel; Calcagno, Philippe

    2012-12-01

    We built a 3D cartography of the Alpine arc, a highly non-cylindrical mountain belt, using the 3D GeoModeller of the BRGM (French geological survey). The model allows to handle the large-scale 3D structure of seventeen major crustal units of the belt (from the lower crust to the sedimentary cover nappes), and two main discontinuities (the Insubric Line and the Crustal Penninic Front). It provides a unique document to better understand their structural relationships and to produce new sections. The study area comprises the western Alpine arc, from the Jura to the Northwest, up to the Bergell granite intrusion and the Lepontine Dome to the East, and is limited to the South by the Ligurian basin. The model is limited vertically 10 km above sea level at the top, and the moho interface at the bottom. We discarded the structural relationships between the Alps sensus stricto and the surrounding geodynamic systems such as the Rhine graben or the connection with the Apennines. The 3D-model is based on the global integration of various data such as the DEM of the Alps, the moho isobaths, the simplified geological and tectonic maps of the belt, the crustal cross-sections ECORS-CROP and NFP-20, and complementary cross-sections specifically built to precise local complexities. The database has first been integrated in a GIS-project to prepare their implementation in the GeoModeller, by homogenizing the different spatial referencing systems. The global model is finally interpolated from all these data, using the potential field method. The final document is a new tri-dimensional cartography that would be used as input for further alpine studies.

  10. 3D Gravity Modeling of Complex Salt Features in the Southern Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Mauricio Nava-Flores

    2016-01-01

    Full Text Available We present a three-dimensional (3D gravity modeling and inversion approach and its application to complex geological settings characterized by several allochthonous salt bodies embedded in terrigenous sediments. Synthetic gravity data were computed for 3D forward modeling of salt bodies interpreted from Prestack Depth Migration (PSDM seismic images. Density contrasts for the salt bodies surrounded by sedimentary units are derived from density-compaction curves for the northern Gulf of Mexico’s oil exploration surveys. By integrating results from different shape- and depth-source estimation algorithms, we built an initial model for the gravity anomaly inversion. We then applied a numerically optimized 3D simulated annealing gravity inversion method. The inverted 3D density model successfully retrieves the synthetic salt body ensemble. Results highlight the significance of integrating high-resolution potential field data for salt and subsalt imaging in oil exploration.

  11. Geometric and Textural Blending for 3D Model Stylization.

    Science.gov (United States)

    Huang, YiJheng; Lin, Wen-Chieh; Yeh, I-Cheng; Lee, Tong-Yee

    2017-01-25

    Stylizing a 3D model with characteristic shapes or appearances is common in product design, particularly in the design of 3D model merchandise, such as souvenirs, toys, furniture, and stylized items. A model stylization approach is proposed in this study. The approach combines base and style models while preserving user-specified shape features of the base model and the attractive features of the style model with limited assistance from a user. The two models are first combined at the topological level. A tree-growing technique is utilized to search for all possible combinations of the two models. Second, the models are combined at textural and geometric levels by employing a morphing technique. Results show that the proposed approach generates various appealing models and allows users to control the diversity of the output models and adjust the blending degree between the base and style models. The results of this work are also experimentally compared with those of a recent work through a user study. The comparison indicates that our results are more appealing, feature-preserving, and reasonable than those of the compared previous study. The proposed system allows product designers to easily explore design possibilities and assists novice users in creating their own stylized models.

  12. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation.

    Science.gov (United States)

    Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui

    2011-10-01

    Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi

  13. Development of a High Resolution 3D Infant Stomach Model for Surgical Planning

    Science.gov (United States)

    Chaudry, Qaiser; Raza, S. Hussain; Lee, Jeonggyu; Xu, Yan; Wulkan, Mark; Wang, May D.

    Medical surgical procedures have not changed much during the past century due to the lack of accurate low-cost workbench for testing any new improvement. The increasingly cheaper and powerful computer technologies have made computer-based surgery planning and training feasible. In our work, we have developed an accurate 3D stomach model, which aims to improve the surgical procedure that treats the infant pediatric and neonatal gastro-esophageal reflux disease (GERD). We generate the 3-D infant stomach model based on in vivo computer tomography (CT) scans of an infant. CT is a widely used clinical imaging modality that is cheap, but with low spatial resolution. To improve the model accuracy, we use the high resolution Visible Human Project (VHP) in model building. Next, we add soft muscle material properties to make the 3D model deformable. Then we use virtual reality techniques such as haptic devices to make the 3D stomach model deform upon touching force. This accurate 3D stomach model provides a workbench for testing new GERD treatment surgical procedures. It has the potential to reduce or eliminate the extensive cost associated with animal testing when improving any surgical procedure, and ultimately, to reduce the risk associated with infant GERD surgery.

  14. 3D Computational Simulation of Calcium Leaching in Cement Matrices

    Directory of Open Access Journals (Sweden)

    Gaitero, J. J.

    2014-12-01

    Full Text Available Calcium leaching is a degradation process consisting in progressive dissolution of the cement paste by migration of calcium atoms to the aggressive solution. It is therefore, a complex phenomenon involving several phases and dissolution and diffusion processes simultaneously. Along this work, a new computational scheme for the simulation of the degradation process in three dimensions was developed and tested. The toolkit was used to simulate accelerated calcium leaching by a 6M ammonium nitrate solution in cement matrices. The obtained outputs were the three dimensional representation of the matrix and the physicochemical properties of individual phases as a consequence of the degradation process. This not only makes it possible to study the evolution of such properties as a function of time but also as a function of the position within the matrix. The obtained results are in good agreement with experimental values of the elastic modulus in degraded and undegraded samples.El lixiviado de calcio es un proceso de degradación consistente en la disolución progresiva de la pasta de cemento por la migración de los átomos de calcio a la disolución agresiva. Se trata por tanto de un fenómeno complejo que involucra simultáneamente diferentes fases y procesos de disolución y difusión. En este trabajo se desarrolló y probó una nueva herramienta computacional para la simulación del proceso de degradación en tres dimensiones. Para ello se simuló el lixiviado de calcio acelerado provocado por una disolución de nitrato amónico 6M en matrices de cemento. Como resultado se obtuvieron la representación tridimensional de la matriz y las propiedades físico-químicas sus fases a lo largo del tiempo. Esto permitió estudiar la evolución de dichas propiedades a lo largo del proceso de degradación así como en función de su posición dentro de la matriz. Los resultados obtenidos coinciden con los valores experimentales del módulo elástico tanto

  15. CudaPre3D: An Alternative Preprocessing Algorithm for Accelerating 3D Convex Hull Computation on the GPU

    Directory of Open Access Journals (Sweden)

    MEI, G.

    2015-05-01

    Full Text Available In the calculating of convex hulls for point sets, a preprocessing procedure that is to filter the input points by discarding non-extreme points is commonly used to improve the computational efficiency. We previously proposed a quite straightforward preprocessing approach for accelerating 2D convex hull computation on the GPU. In this paper, we extend that algorithm to being used in 3D cases. The basic ideas behind these two preprocessing algorithms are similar: first, several groups of extreme points are found according to the original set of input points and several rotated versions of the input set; then, a convex polyhedron is created using the found extreme points; and finally those interior points locating inside the formed convex polyhedron are discarded. Experimental results show that: when employing the proposed preprocessing algorithm, it achieves the speedups of about 4x on average and 5x to 6x in the best cases over the cases where the proposed approach is not used. In addition, more than 95 percent of the input points can be discarded in most experimental tests.

  16. Lattice percolation approach to 3D modeling of tissue aging

    Science.gov (United States)

    Gorshkov, Vyacheslav; Privman, Vladimir; Libert, Sergiy

    2016-11-01

    We describe a 3D percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Lattice sites are designated as regular (healthy) cells, senescent cells, or vacancies left by dead (apoptotic) cells. The system is then studied dynamically with the ongoing processes including regular cell dividing to fill vacant sites, healthy cells becoming senescent or dying, and senescent cells dying. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. The developed theoretical modeling approach is found not only to corroborate recent experimental findings that inhibition of senescence can lead to extended lifespan, but also to confirm that, unlike 2D, in 3D senescent cells can contribute to tissue's connectivity/mechanical stability. The latter effect occurs by senescent cells forming the second infinite cluster in the regime when the regular (healthy) cell's infinite cluster still exists.

  17. Efficacy of 3-D computed tomographic reconstruction in evaluating anatomical relationships of colovesical fistula.

    Science.gov (United States)

    Shinojima, Toshiaki; Nakajima, Fumio; Koizumi, Jun

    2002-04-01

    A case of colovesical fistula is reported. The anatomy of the pelvis was determined preoperatively with 3-D computed tomography (CT), and the fistula, including adjacent structures, could clearly be seen. Compared with conventional axial CT imaging, 3-D CT provided better and more complete visualization of the anatomical relationships, which facilitated the surgical procedure and provided a good outcome.

  18. Probabilistic View-based 3D Curve Skeleton Computation on the GPU

    NARCIS (Netherlands)

    Kustra, Jacek; Jalba, Andrei; Telea, Alexandru

    2013-01-01

    Computing curve skeletons of 3D shapes is a challenging task. Recently, a high-potential technique for this task was proposed, based on integrating medial information obtained from several 2D projections of a 3D shape. However effective, this technique is strongly influenced in terms of complexity b

  19. Full-Waveform Validation of a 3D Seismic Model for Western US

    Science.gov (United States)

    Maceira, M.; Larmat, C. S.; Ammon, C. J.; Chai, C.; Herrmann, R. B.

    2014-12-01

    Since the initiation of tomographic studies in the 1970s, geoscientists have advanced the art of inferring 3D variations in the subsurface using collections of geophysical (primarily seismic) observables recorded at or near Earth's surface. Advances have come from improvement and enhancement of the available data and from research on theoretical and computational improvements to tomographic and generalized inverse methods. In the last decade, utilizing dense array datasets, these efforts have led to unprecedented 3D images of the subsurface. Understandably, less effort has been expended on model validation to provide an absolute assessment of model uncertainty. Generally models constructed with different data sets and independent computational codes are assessed with geological reasonability and compared other models to gain confidence. The question of "How good is a particular 3D geophysical model at representing the Earth's true nature?" remains largely unaddressed at a time when 3D Earth models are used for both societal and energy security. In the last few years, opportunities have arisen in earth-structure imaging, including the advent of new methods in computational seismology and statistical sciences. We use the unique and extensive High Performance Computing resources available at Los Alamos National Laboratory to explore approaches to realistic model validation. We present results from a study focused on validating a 3D model for the western United States generated using a joint inversion simultaneously fitting interpolated teleseismic P-wave receiver functions, Rayleigh-wave group-velocity estimates between 7 and 250 s period, and high-wavenumber filtered Bouguer gravity observations. Validation of the obtained model is performed through systematic comparison of observed and predicted seismograms generated using the Spectral Element Method, which is a direct numerical solution for full waveform modeling in 3D models, with accuracy of spectral methods.

  20. Multi-scale representations of virtual 3D city models

    OpenAIRE

    Glander, Tassilo

    2013-01-01

    Virtual 3D city and landscape models are the main subject investigated in this thesis. They digitally represent urban space and have many applications in different domains, e.g., simulation, cadastral management, and city planning. Visualization is an elementary component of these applications. Photo-realistic visualization with an increasingly high degree of detail leads to fundamental problems for comprehensible visualization. A large number of highly detailed and textured objects within a ...

  1. Evaluation of the 3d Urban Modelling Capabilities in Geographical Information Systems

    Science.gov (United States)

    Dogru, A. O.; Seker, D. Z.

    2010-12-01

    Geographical Information System (GIS) Technology, which provides successful solutions to basic spatial problems, is currently widely used in 3 dimensional (3D) modeling of physical reality with its developing visualization tools. The modeling of large and complicated phenomenon is a challenging problem in terms of computer graphics currently in use. However, it is possible to visualize that phenomenon in 3D by using computer systems. 3D models are used in developing computer games, military training, urban planning, tourism and etc. The use of 3D models for planning and management of urban areas is very popular issue of city administrations. In this context, 3D City models are produced and used for various purposes. However the requirements of the models vary depending on the type and scope of the application. While a high level visualization, where photorealistic visualization techniques are widely used, is required for touristy and recreational purposes, an abstract visualization of the physical reality is generally sufficient for the communication of the thematic information. The visual variables, which are the principle components of cartographic visualization, such as: color, shape, pattern, orientation, size, position, and saturation are used for communicating the thematic information. These kinds of 3D city models are called as abstract models. Standardization of technologies used for 3D modeling is now available by the use of CityGML. CityGML implements several novel concepts to support interoperability, consistency and functionality. For example it supports different Levels-of-Detail (LoD), which may arise from independent data collection processes and are used for efficient visualization and efficient data analysis. In one CityGML data set, the same object may be represented in different LoD simultaneously, enabling the analysis and visualization of the same object with regard to different degrees of resolution. Furthermore, two CityGML data sets

  2. Modeling 3D faces from samplings via compressive sensing

    Science.gov (United States)

    Sun, Qi; Tang, Yanlong; Hu, Ping

    2013-07-01

    3D data is easier to acquire for family entertainment purpose today because of the mass-production, cheapness and portability of domestic RGBD sensors, e.g., Microsoft Kinect. However, the accuracy of facial modeling is affected by the roughness and instability of the raw input data from such sensors. To overcome this problem, we introduce compressive sensing (CS) method to build a novel 3D super-resolution scheme to reconstruct high-resolution facial models from rough samples captured by Kinect. Unlike the simple frame fusion super-resolution method, this approach aims to acquire compressed samples for storage before a high-resolution image is produced. In this scheme, depth frames are firstly captured and then each of them is measured into compressed samples using sparse coding. Next, the samples are fused to produce an optimal one and finally a high-resolution image is recovered from the fused sample. This framework is able to recover 3D facial model of a given user from compressed simples and this can reducing storage space as well as measurement cost in future devices e.g., single-pixel depth cameras. Hence, this work can potentially be applied into future applications, such as access control system using face recognition, and smart phones with depth cameras, which need high resolution and little measure time.

  3. Modelling of aortic aneurysm and aortic dissection through 3D printing.

    Science.gov (United States)

    Ho, Daniel; Squelch, Andrew; Sun, Zhonghua

    2017-03-01

    The aim of this study was to assess if the complex anatomy of aortic aneurysm and aortic dissection can be accurately reproduced from a contrast-enhanced computed tomography (CT) scan into a three-dimensional (3D) printed model. Contrast-enhanced cardiac CT scans from two patients were post-processed and produced as 3D printed thoracic aorta models of aortic aneurysm and aortic dissection. The transverse diameter was measured at five anatomical landmarks for both models, compared across three stages: the original contrast-enhanced CT images, the stereolithography (STL) format computerised model prepared for 3D printing and the contrast-enhanced CT of the 3D printed model. For the model with aortic dissection, measurements of the true and false lumen were taken and compared at two points on the descending aorta. Three-dimensional printed models were generated with strong and flexible plastic material with successful replication of anatomical details of aortic structures and pathologies. The mean difference in transverse vessel diameter between the contrast-enhanced CT images before and after 3D printing was 1.0 and 1.2 mm, for the first and second models respectively (standard deviation: 1.0 mm and 0.9 mm). Additionally, for the second model, the mean luminal diameter difference between the 3D printed model and CT images was 0.5 mm. Encouraging results were achieved with regards to reproducing 3D models depicting aortic aneurysm and aortic dissection. Variances in vessel diameter measurement outside a standard deviation of 1 mm tolerance indicate further work is required into the assessment and accuracy of 3D model reproduction. © 2017 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  4. Practical limitations of cone-beam computed tomography in 3D cephalometry%Practical limitations of cone-beam computed tomography in3D cephalometry

    Institute of Scientific and Technical Information of China (English)

    Janalt Damstra; Zacharias Fourie; Yijin Ren

    2011-01-01

    3D cone beam computed tomography (CBCT) images offer a unique and new appreciation of the anatomical structures and underlying anomalies not possible with conventional radiographs.However,in almost all aspects of CBCT imaging,from utilization to application,inherent limitations and pitfalls exist.Importantly,these inherent limitations and pitfalls have practical implications which need to be addressed before the potential of this technology can be fully realized.The purpose of this review was to explore the current limitations and pitfalls associated with CBCT imaging to allow for better and more accurate understanding of the possibilities this imaging modality could offer,particularly pertaining to 3D cephalometry.

  5. 3D Shape Modeling Using High Level Descriptors

    DEFF Research Database (Denmark)

    Andersen, Vedrana

    The goal of this Ph.D. project is to investigate and improve the methods for describing the surface of 3D objects, with focus on modeling geometric texture on surfaces. Surface modeling being a large field of research, the work done during this project concentrated around a few smaller areas corr...... of my work involved developing feature-aware resizing of models with complex surfaces consisting of underlying shape and a distinctive texture detail. The aim was to deform an object while preserving the shape and size of the features....

  6. A 3D multilevel model of damage and strength of wood: Analysis of microstructural effects

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2011-01-01

    A 3D hierarchical computational model of damage and strength of wood is developed. The model takes into account the four scale microstructures of wood, including the microfibril reinforced structure at nanoscale, multilayered cell walls at microscale, hexagon-shape-tube cellular structure at meso...

  7. Right approach to 3D modeling using CAD tools

    Science.gov (United States)

    Baddam, Mounica Reddy

    The thesis provides a step-by-step methodology to enable an instructor dealing with CAD tools to optimally guide his/her students through an understandable 3D modeling approach which will not only enhance their knowledge about the tool's usage but also enable them to achieve their desired result in comparatively lesser time. In the known practical field, there is particularly very little information available to apply CAD skills to formal beginners' training sessions. Additionally, advent of new software in 3D domain cumulates updating into a more difficult task. Keeping up to the industry's advanced requirements emphasizes the importance of more skilled hands in the field of CAD development, rather than just prioritizing manufacturing in terms of complex software features. The thesis analyses different 3D modeling approaches specified to the varieties of CAD tools currently available in the market. Utilizing performance-time databases, learning curves have been generated to measure their performance time, feature count etc. Based on the results, improvement parameters have also been provided for (Asperl, 2005).

  8. Effective 3-D surface modeling for geographic information systems

    Directory of Open Access Journals (Sweden)

    K. Yüksek

    2013-11-01

    Full Text Available In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP with spatial data and query processing capabilities of Geographic Information Systems (GIS, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  9. Effective 3-D surface modeling for geographic information systems

    Science.gov (United States)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  10. Computer Simulation of Robotic Device Components in 3D Printer Manufacturing

    Directory of Open Access Journals (Sweden)

    M. A. Kiselev

    2016-01-01

    Full Text Available The paper considers a relevant problem "Computer simulation of robotic device components in manufacturing on a 3D printer" and highlights the problem of computer simulation based on the cognitive programming technology of robotic device components. The paper subject is urgent because computer simulation of force-torque and accuracy characteristics of robot components in terms of their manufacturing properties and conditions from polymeric and metallic materials is of paramount importance for programming and manufacturing on the 3D printers. Two types of additive manufacturing technologies were used:1. FDM (Fused deposition modeling - layered growth of products from molten plastic strands;2. SLM (Selective laser melting - selective laser sintering of metal powders, which, in turn, create:• conditions for reducing the use of expensive equipment;• reducing weight and increasing strength through optimization of  the lattice structures when using a bionic design;• a capability to implement mathematical modeling of individual components of robotic and other devices in terms of appropriate characteristics;• a 3D printing capability to create unique items, which cannot be made by other known methods.The paper aim was to confirm the possibility of ensuring the strength and accuracy characteristics of cases when printing from polymeric and metallic materials on a 3D printer. The investigation emphasis is on mathematical modeling based on the cognitive programming technology using the additive technologies in their studies since it is, generally, impossible to make the obtained optimized structures on the modern CNC machines.The latter allows us to create a program code to be clear to other developers without cost, additional time for development, adaptation and implementation.Year by year Russian companies increasingly use a 3D-print system in mechanical engineering, aerospace industry, and for scientific purposes. Machines for the additive

  11. Surface Simplification of 3D Animation Models Using Robust Homogeneous Coordinate Transformation

    Directory of Open Access Journals (Sweden)

    Juin-Ling Tseng

    2014-01-01

    Full Text Available The goal of 3D surface simplification is to reduce the storage cost of 3D models. A 3D animation model typically consists of several 3D models. Therefore, to ensure that animation models are realistic, numerous triangles are often required. However, animation models that have a high storage cost have a substantial computational cost. Hence, surface simplification methods are adopted to reduce the number of triangles and computational cost of 3D models. Quadric error metrics (QEM has recently been identified as one of the most effective methods for simplifying static models. To simplify animation models by using QEM, Mohr and Gleicher summed the QEM of all frames. However, homogeneous coordinate problems cannot be considered completely by using QEM. To resolve this problem, this paper proposes a robust homogeneous coordinate transformation that improves the animation simplification method proposed by Mohr and Gleicher. In this study, the root mean square errors of the proposed method were compared with those of the method proposed by Mohr and Gleicher, and the experimental results indicated that the proposed approach can preserve more contour features than Mohr’s method can at the same simplification ratio.

  12. CT-guided Irreversible Electroporation in an Acute Porcine Liver Model: Effect of Previous Transarterial Iodized Oil Tissue Marking on Technical Parameters, 3D Computed Tomographic Rendering of the Electroporation Zone, and Histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Fritz, S., E-mail: stefan.fritz@med.uni-heidelberg.de [University Hospital Heidelberg, Department of General Visceral and Transplantation Surgery (Germany); Vollherbst, D., E-mail: dominikvollherbst@web.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Zelzer, S., E-mail: s.zelzer@dkfz-heidelberg.de [German Cancer Research Center (dkfz), Medical and Biological Informatics (Germany); Wachter, M. F., E-mail: fredericwachter@googlemail.com; Bellemann, N., E-mail: nadine.bellemann@med.uni-heidelberg.de; Gockner, T., E-mail: theresa.gockner@med.uni-heidelberg.de; Mokry, T., E-mail: theresa.mokry@med.uni-heidelberg.de; Schmitz, A., E-mail: anne.schmitz@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Aulmann, S., E-mail: sebastian.aulmann@mail.com [University Hospital Heidelberg, Department of General Pathology (Germany); Stampfl, U., E-mail: ulrike.stampfl@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Pereira, P., E-mail: philippe.pereira@slk-kliniken.de [SLK Kliniken Heilbronn GmbH, Clinic for Radiology, Minimally-invasive Therapies and Nuclear Medicine (Germany); Kauczor, H. U., E-mail: hu.kauczor@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Werner, J., E-mail: jens.werner@med.uni-heidelberg.de [University Hospital Heidelberg, Department of General Visceral and Transplantation Surgery (Germany); Radeleff, B. A., E-mail: boris.radeleff@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany)

    2015-02-15

    PurposeTo evaluate the effect of previous transarterial iodized oil tissue marking (ITM) on technical parameters, three-dimensional (3D) computed tomographic (CT) rendering of the electroporation zone, and histopathology after CT-guided irreversible electroporation (IRE) in an acute porcine liver model as a potential strategy to improve IRE performance.MethodsAfter Ethics Committee approval was obtained, in five landrace pigs, two IREs of the right and left liver (RL and LL) were performed under CT guidance with identical electroporation parameters. Before IRE, transarterial marking of the LL was performed with iodized oil. Nonenhanced and contrast-enhanced CT examinations followed. One hour after IRE, animals were killed and livers collected. Mean resulting voltage and amperage during IRE were assessed. For 3D CT rendering of the electroporation zone, parameters for size and shape were analyzed. Quantitative data were compared by the Mann–Whitney test. Histopathological differences were assessed.ResultsMean resulting voltage and amperage were 2,545.3 ± 66.0 V and 26.1 ± 1.8 A for RL, and 2,537.3 ± 69.0 V and 27.7 ± 1.8 A for LL without significant differences. Short axis, volume, and sphericity index were 16.5 ± 4.4 mm, 8.6 ± 3.2 cm{sup 3}, and 1.7 ± 0.3 for RL, and 18.2 ± 3.4 mm, 9.8 ± 3.8 cm{sup 3}, and 1.7 ± 0.3 for LL without significant differences. For RL and LL, the electroporation zone consisted of severely widened hepatic sinusoids containing erythrocytes and showed homogeneous apoptosis. For LL, iodized oil could be detected in the center and at the rim of the electroporation zone.ConclusionThere is no adverse effect of previous ITM on technical parameters, 3D CT rendering of the electroporation zone, and histopathology after CT-guided IRE of the liver.

  13. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    Science.gov (United States)

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  14. UNDERWATER 3D MODELING: IMAGE ENHANCEMENT AND POINT CLOUD FILTERING

    Directory of Open Access Journals (Sweden)

    I. Sarakinou

    2016-06-01

    Full Text Available This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images’ radiometry (captured at shallow depths and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software. Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck captured at three different depths (3.5m, 10m and 14m respectively. Four models have been created from the first dataset (seafloor in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a the definition of parameters for the point cloud filtering and the creation of a reference model, b the radiometric editing of images, followed by the creation of three improved models and c the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m and different objects (part of a wreck and a small boat's wreck in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  15. 3D Massive MIMO Systems: Channel Modeling and Performance Analysis

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-03-01

    Multiple-input-multiple-output (MIMO) systems of current LTE releases are capable of adaptation in the azimuth only. More recently, the trend is to enhance the system performance by exploiting the channel\\'s degrees of freedom in the elevation through the dynamic adaptation of the vertical antenna beam pattern. This necessitates the derivation and characterization of three-dimensional (3D) channels. Over the years, channel models have evolved to address the challenges of wireless communication technologies. In parallel to theoretical studies on channel modeling, many standardized channel models like COST-based models, 3GPP SCM, WINNER, ITU have emerged that act as references for industries and telecommunication companies to assess system-level and link-level performances of advanced signal processing techniques over real-like channels. Given the existing channels are only two dimensional (2D) in nature; a large effort in channel modeling is needed to study the impact of the channel component in the elevation direction. The first part of this work sheds light on the current 3GPP activity around 3D channel modeling and beamforming, an aspect that to our knowledge has not been extensively covered by a research publication. The standardized MIMO channel model is presented, that incorporates both the propagation effects of the environment and the radio effects of the antennas. In order to facilitate future studies on the use of 3D beamforming, the main features of the proposed 3D channel model are discussed. A brief overview of the future 3GPP 3D channel model being outlined for the next generation of wireless networks is also provided. In the subsequent part of this work, we present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution of the channel matrix consistent with the prior information on the angles of departure and

  16. 3D flare particle model for ShipIR/NTCS

    Science.gov (United States)

    Ramaswamy, Srinivasan; Vaitekunas, David A.

    2016-05-01

    A key component in any soft-kill response to an incoming guided missile is the flare /chaff decoy used to distract or seduce the seeker homing system away from the naval platform. This paper describes a new 3D flare particle model in the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR), which provides independent control over the size and radial distribution of its signature. The 3D particles of each flare sub-munition are modelled stochastically and rendered using OpenGL z-buffering, 2D projection, and alpha-blending to produce a unique and time varying signature. A sensitivity analysis on each input parameter provides the data and methods needed to synthesize a model from an IR measurement of a decoy. The new model also eliminated artifacts and deficiencies in our previous model which prevented reliable tracks from the adaptive track gate algorithm already presented by Ramaswamy and Vaitekunas (2015). A sequence of scenarios are used to test and demonstrate the new flare model during a missile engagement.

  17. Electromagnetic Mathematical Modeling of 3D Supershaped Dielectric Lens Antennas

    Directory of Open Access Journals (Sweden)

    L. Mescia

    2016-01-01

    Full Text Available The electromagnetic analysis of a special class of 3D dielectric lens antennas is described in detail. This new class of lens antennas has a geometrical shape defined by the three-dimensional extension of Gielis’ formula. The analytical description of the lens shape allows the development of a dedicated semianalytical hybrid modeling approach based on geometrical tube tracing and physical optic. In order to increase the accuracy of the model, the multiple reflections occurring within the lens are also taken into account.

  18. Automated 3D model generation for urban environments [online

    OpenAIRE

    Frueh, Christian

    2007-01-01

    Abstract In this thesis, we present a fast approach to automated generation of textured 3D city models with both high details at ground level and complete coverage for bird’s-eye view. A ground-based facade model is acquired by driving a vehicle equipped with two 2D laser scanners and a digital camera under normal traffic conditions on public roads. One scanner is mounted horizontally and is used to determine the approximate component of relative motion along the move...

  19. Software for browsing sectioned images of a dog body and generating a 3D model.

    Science.gov (United States)

    Park, Jin Seo; Jung, Yong Wook

    2016-01-01

    The goals of this study were (1) to provide accessible and instructive browsing software for sectioned images and a portable document format (PDF) file that includes three-dimensional (3D) models of an entire dog body and (2) to develop techniques for segmentation and 3D modeling that would enable an investigator to perform these tasks without the aid of a computer engineer. To achieve these goals, relatively important or large structures in the sectioned images were outlined to generate segmented images. The sectioned and segmented images were then packaged into browsing software. In this software, structures in the sectioned images are shown in detail and in real color. After 3D models were made from the segmented images, the 3D models were exported into a PDF file. In this format, the 3D models could be manipulated freely. The browsing software and PDF file are available for study by students, for lecture for teachers, and for training for clinicians. These files will be helpful for anatomical study by and clinical training of veterinary students and clinicians. Furthermore, these techniques will be useful for researchers who study two-dimensional images and 3D models.

  20. Early experiences of planning stereotactic radiosurgery using 3D printed models of eyes with uveal melanomas

    Science.gov (United States)

    Furdová, Alena; Sramka, Miron; Thurzo, Andrej; Furdová, Adriana

    2017-01-01

    Objective The objective of this study was to determine the use of 3D printed model of an eye with intraocular tumor for linear accelerator-based stereotactic radiosurgery. Methods The software for segmentation (3D Slicer) created virtual 3D model of eye globe with tumorous mass based on tissue density from computed tomography and magnetic resonance imaging data. A virtual model was then processed in the slicing software (Simplify3D®) and printed on 3D printer using fused deposition modeling technology. The material that was used for printing was polylactic acid. Results In 2015, stereotactic planning scheme was optimized with the help of 3D printed model of the patient’s eye with intraocular tumor. In the period 2001–2015, a group of 150 patients with uveal melanoma (139 choroidal melanoma and 11 ciliary body melanoma) were treated. The median tumor volume was 0.5 cm3 (0.2–1.6 cm3). The radiation dose was 35.0 Gy by 99% of dose volume histogram. Conclusion The 3D printed model of eye with tumor was helpful in planning the process to achieve the optimal scheme for irradiation which requires high accuracy of defining the targeted tumor mass and critical structures. PMID:28203052

  1. The Modelling of Stereoscopic 3D Scene Acquisition

    Directory of Open Access Journals (Sweden)

    M. Hasmanda

    2012-04-01

    Full Text Available The main goal of this work is to find a suitable method for calculating the best setting of a stereo pair of cameras that are viewing the scene to enable spatial imaging. The method is based on a geometric model of a stereo pair cameras currently used for the acquisition of 3D scenes. Based on selectable camera parameters and object positions in the scene, the resultant model allows calculating the parameters of the stereo pair of images that influence the quality of spatial imaging. For the purpose of presenting the properties of the model of a simple 3D scene, an interactive application was created that allows, in addition to setting the cameras and scene parameters and displaying the calculated parameters, also displaying the modelled scene using perspective views and the stereo pair modelled with the aid of anaglyphic images. The resulting modelling method can be used in practice to determine appropriate parameters of the camera configuration based on the known arrangement of the objects in the scene. Analogously, it can, for a given camera configuration, determine appropriate geometrical limits of arranging the objects in the scene being displayed. This method ensures that the resulting stereoscopic recording will be of good quality and observer-friendly.

  2. Inferring 3D Articulated Models for Box Packaging Robot

    CERN Document Server

    Yang, Heran; Cong, Matthew; Saxena, Ashutosh

    2011-01-01

    Given a point cloud, we consider inferring kinematic models of 3D articulated objects such as boxes for the purpose of manipulating them. While previous work has shown how to extract a planar kinematic model (often represented as a linear chain), such planar models do not apply to 3D objects that are composed of segments often linked to the other segments in cyclic configurations. We present an approach for building a model that captures the relation between the input point cloud features and the object segment as well as the relation between the neighboring object segments. We use a conditional random field that allows us to model the dependencies between different segments of the object. We test our approach on inferring the kinematic structure from partial and noisy point cloud data for a wide variety of boxes including cake boxes, pizza boxes, and cardboard cartons of several sizes. The inferred structure enables our robot to successfully close these boxes by manipulating the flaps.

  3. 3D model tools for architecture and archaeology reconstruction

    Science.gov (United States)

    Vlad, Ioan; Herban, Ioan Sorin; Stoian, Mircea; Vilceanu, Clara-Beatrice

    2016-06-01

    The main objective of architectural and patrimonial survey is to provide a precise documentation of the status quo of the surveyed objects (monuments, buildings, archaeological object and sites) for preservation and protection, for scientific studies and restoration purposes, for the presentation to the general public. Cultural heritage documentation includes an interdisciplinary approach having as purpose an overall understanding of the object itself and an integration of the information which characterize it. The accuracy and the precision of the model are directly influenced by the quality of the measurements realized on field and by the quality of the software. The software is in the process of continuous development, which brings many improvements. On the other side, compared to aerial photogrammetry, close range photogrammetry and particularly architectural photogrammetry is not limited to vertical photographs with special cameras. The methodology of terrestrial photogrammetry has changed significantly and various photographic acquisitions are widely in use. In this context, the present paper brings forward a comparative study of TLS (Terrestrial Laser Scanner) and digital photogrammetry for 3D modeling. The authors take into account the accuracy of the 3D models obtained, the overall costs involved for each technology and method and the 4th dimension - time. The paper proves its applicability as photogrammetric technologies are nowadays used at a large scale for obtaining the 3D model of cultural heritage objects, efficacious in their assessment and monitoring, thus contributing to historic conservation. Its importance also lies in highlighting the advantages and disadvantages of each method used - very important issue for both the industrial and scientific segment when facing decisions such as in which technology to invest more research and funds.

  4. Towards real-time change detection in videos based on existing 3D models

    Science.gov (United States)

    Ruf, Boitumelo; Schuchert, Tobias

    2016-10-01

    Image based change detection is of great importance for security applications, such as surveillance and reconnaissance, in order to find new, modified or removed objects. Such change detection can generally be performed by co-registration and comparison of two or more images. However, existing 3d objects, such as buildings, may lead to parallax artifacts in case of inaccurate or missing 3d information, which may distort the results in the image comparison process, especially when the images are acquired from aerial platforms like small unmanned aerial vehicles (UAVs). Furthermore, considering only intensity information may lead to failures in detection of changes in the 3d structure of objects. To overcome this problem, we present an approach that uses Structure-from-Motion (SfM) to compute depth information, with which a 3d change detection can be performed against an existing 3d model. Our approach is capable of the change detection in real-time. We use the input frames with the corresponding camera poses to compute dense depth maps by an image-based depth estimation algorithm. Additionally we synthesize a second set of depth maps, by rendering the existing 3d model from the same camera poses as those of the image-based depth map. The actual change detection is performed by comparing the two sets of depth maps with each other. Our method is evaluated on synthetic test data with corresponding ground truth as well as on real image test data.

  5. Effect of coordinate rotation on 3D molecular descriptors computed by DragonX

    CERN Document Server

    Hechinger, Manuel

    2012-01-01

    Quantitative structure-property relations (QSPR) employing descriptors derived from the 3D molecular structure are frequently applied for property prediction in various fields of research. In particular, DragonX is one of the most widely used software packages for descriptor calculation. The reliability of 3D molecular descriptors computed by DragonX has lately been investigated, thereby focusing on the effect of computational methods used for molecular structure optimization on the accuracy of the resulting molecular descriptors. The present contribution extends the analysis to a more intrinsic problem of DragonX descriptor evaluation resulting from the sensitivity of the computed 3D descriptors on the coordinate system used for molecule description. Evaluating several 3D descriptors for converged molecular structures rotated around all 3 spatial axes (affine coordinate transformations) yields systematically varying descriptor values. Since this unphysical behavior severely affects the descriptor reliability...

  6. Semi-automatic registration of 3D orthodontics models from photographs

    Science.gov (United States)

    Destrez, Raphaël.; Treuillet, Sylvie; Lucas, Yves; Albouy-Kissi, Benjamin

    2013-03-01

    In orthodontics, a common practice used to diagnose and plan the treatment is the dental cast. After digitization by a CT-scan or a laser scanner, the obtained 3D surface models can feed orthodontics numerical tools for computer-aided diagnosis and treatment planning. One of the pre-processing critical steps is the 3D registration of dental arches to obtain the occlusion of these numerical models. For this task, we propose a vision based method to automatically compute the registration based on photos of patient mouth. From a set of matched singular points between two photos and the dental 3D models, the rigid transformation to apply to the mandible to be in contact with the maxillary may be computed by minimizing the reprojection errors. During a precedent study, we established the feasibility of this visual registration approach with a manual selection of singular points. This paper addresses the issue of automatic point detection. Based on a priori knowledge, histogram thresholding and edge detection are used to extract specific points in 2D images. Concurrently, curvatures information detects 3D corresponding points. To improve the quality of the final registration, we also introduce a combined optimization of the projection matrix with the 2D/3D point positions. These new developments are evaluated on real data by considering the reprojection errors and the deviation angles after registration in respect to the manual reference occlusion realized by a specialist.

  7. An Interactive 3D Graphics Modeler Based on Simulated Human Immune System

    Directory of Open Access Journals (Sweden)

    Hiroaki Nishino

    2008-07-01

    Full Text Available We propose an intuitive computer graphics authoring method based on interactive evolutionary computation (IEC. Our previous systems employed genetic algorithm (GA and mainly focused on rapid exploration of a single optimum 3D graphics model. The proposed method adopts a different computation strategy called immune algorithm (IA to ease the creation of varied 3D models even if a user doesn’t have any specific idea of final 3D products. Because artistic work like graphics design needs a process to diversify the user’s imagery, a tool that allows the user to select his/her preferred ones from a broad range of possible design solutions is particularly desired. IA enables the user to effectively explore a wealth of solutions in a huge 3D parametric space by using its essential mechanisms such as antibody formation and self-regulating function. We conducted an experiment to verify the effectiveness of the proposed method. The results show that the proposed method helps the user to easily generating wide variety of 3D graphics models.

  8. The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models

    Science.gov (United States)

    Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain

    2014-05-01

    The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail

  9. Insights on the Subduction Process from High-Resolution 3D Models

    Science.gov (United States)

    Jadamec, Margarete

    2015-04-01

    This is an exciting time in geodynamics as the use of unprecedented high-resolution 3D modeling allows us to ask new questions that were previously unattainable. It is now relatively straightforward to run 3D numerical simulations, with local mesh refinement to ~1 km, input data mapped onto over 100 million finite element nodes, and using tens of thousands of compute hours per model, e.g. Jadamec et al. [2012]. With the additional computational resources, comes a new approach to modeling the tectonic problem. For example, mapping tectonic plates onto a high-resolution 3D geodynamic model grid forces the modeler to ask questions much as a field geologist would ask when constructing a geologic map. In this process of moving from textbook models of subduction to using models based on observation, the modeler is forced to explain the more complicated geometries and features in the Earth, allowing for the new computational approaches to be powerful tools for scientific discovery. Subduction modeling of this kind has expanded the classical view of two-dimensional corner flow, e.g. McKenzie [1969], to a slab driven flow that can be quite complex with predictions for upper mantle flow rates that can be over ten times surface plate motions, e.g. Jadamec et al. [2010] and others. In this talk, I will investigate the role of the third-dimension and non-linearity in plate boundary deformation. I will present high-resolution 3D numerical models that examine the effect of observationally based slab geometry, multiple subducting plates, non-linear rheology, and variations in overriding plate thickness on the subduction related deformation of plate margins. Specific examples include the Alaska and Central America subduction systems. In addition, I will highlight future directions in subduction modeling, and how these can be advanced by the increased incorporation of observational data, high-performance computing, focused numerical algorithms, and 3D interactive data visualization.

  10. 3D multispecies collisional model of Ganymede's atmosphere

    Science.gov (United States)

    Leblanc, Francois; Leclercq, Ludivine; Oza, Apurva; Schmidt, Carl; Modolo, Ronan; Chaufray, Jean-Yves; Johnson, Robert E.

    2016-10-01

    Ganymede's atmosphere is produced by the interaction of the Sun and of the Jovian magnetosphere with its surface. It is a reflection of Ganymede's surface properties, but also of the complex interaction between the Ganymede and Jupiter magnetospheres. The Exospheric Global Model (EGM) has been developed in order to be able to integrate surface and magnetosphere processes with those in Ganymede's atmosphere. It is a 3D parallelized multi-species collisional model, coupled with LatHys, a hybrid multi-grid 3D multi-species model of Ganymede's magnetosphere (Leclercq et al., Geophys. Res. Let., Submitted, 2016). EGM's description of the species-dependent spatial distribution of Ganymede's atmosphere, its temporal variability during rotation around Jupiter, its connection to the surface, the role of collisions, and respective roles of sublimation and sputtering in producing Ganymede's exosphere, illustrates how modeling combined with in situ and remote sensing of Ganymede's atmosphere can contribute to our understanding of this unique surface-atmosphere-magnetosphere integrated system.

  11. FISHEYE LENSES FOR 3D MODELING: EVALUATIONS AND CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2017-02-01

    Full Text Available Fisheye lenses are becoming more popular in complete image-based modelling projects of small and narrow spaces. The growing interest in fisheye lenses is confirmed by the availability of different commercial software incorporating a fisheye camera model. Such software are now able to carry out the steps of the image processing pipeline in a fully automated way, from camera calibration and orientation to dense matching, surface generation, and orthophoto production. This paper highlights the advantages (and disadvantages of fisheye lenses when used for 3D modelling projects through different commercial software. The goal is not only a comparison of commercial software, but also an analysis of the additional issues that arise when a fisheye lens is used for 3D modelling. Results confirm that a fisheye lens is suitable for accurate metric documentation, especially when limited space is available. On the other hand, additional issues where found during the camera calibration/image orientation step as well as the texture generation and orthophoto production phases, for which particular attention is required.

  12. Fisheye Lenses for 3d Modeling: Evaluations and Considerations

    Science.gov (United States)

    Barazzetti, L.; Previtali, M.; Roncoroni, F.

    2017-02-01

    Fisheye lenses are becoming more popular in complete image-based modelling projects of small and narrow spaces. The growing interest in fisheye lenses is confirmed by the availability of different commercial software incorporating a fisheye camera model. Such software are now able to carry out the steps of the image processing pipeline in a fully automated way, from camera calibration and orientation to dense matching, surface generation, and orthophoto production. This paper highlights the advantages (and disadvantages) of fisheye lenses when used for 3D modelling projects through different commercial software. The goal is not only a comparison of commercial software, but also an analysis of the additional issues that arise when a fisheye lens is used for 3D modelling. Results confirm that a fisheye lens is suitable for accurate metric documentation, especially when limited space is available. On the other hand, additional issues where found during the camera calibration/image orientation step as well as the texture generation and orthophoto production phases, for which particular attention is required.

  13. Electro-holography display using computer generated hologram of 3D objects based on projection spectra

    Science.gov (United States)

    Huang, Sujuan; Wang, Duocheng; He, Chao

    2012-11-01

    A new method of synthesizing computer-generated hologram of three-dimensional (3D) objects is proposed from their projection images. A series of projection images of 3D objects are recorded with one-dimensional azimuth scanning. According to the principles of paraboloid of revolution in 3D Fourier space and 3D central slice theorem, spectra information of 3D objects can be gathered from their projection images. Considering quantization error of horizontal and vertical directions, the spectrum information from each projection image is efficiently extracted in double circle and four circles shape, to enhance the utilization of projection spectra. Then spectra information of 3D objects from all projection images is encoded into computer-generated hologram based on Fourier transform using conjugate-symmetric extension. The hologram includes 3D information of objects. Experimental results for numerical reconstruction of the CGH at different distance validate the proposed methods and show its good performance. Electro-holographic reconstruction can be realized by using an electronic addressing reflective liquid-crystal display (LCD) spatial light modulator. The CGH from the computer is loaded onto the LCD. By illuminating a reference light from a laser source to the LCD, the amplitude and phase information included in the CGH will be reconstructed due to the diffraction of the light modulated by the LCD.

  14. 3D simulation of the Cluster-Cluster Aggregation model

    Science.gov (United States)

    Li, Chao; Xiong, Hailing

    2014-12-01

    We write a program to implement the Cluster-Cluster Aggregation (CCA) model with java programming language. By using the simulation program, the fractal aggregation growth process can be displayed dynamically in the form of a three-dimensional (3D) figure. Meanwhile, the related kinetics data of aggregation simulation can be also recorded dynamically. Compared to the traditional programs, the program has better real-time performance and is more helpful to observe the fractal growth process, which contributes to the scientific study in fractal aggregation. Besides, because of adopting java programming language, the program has very good cross-platform performance.

  15. A generic 3D kinetic model of gene expression

    Science.gov (United States)

    Zhdanov, Vladimir

    2012-04-01

    Recent experiments show that mRNAs and proteins can be localized both in prokaryotic and eukaryotic cells. To describe such situations, I present a 3D mean-field kinetic model aimed primarily at gene expression in prokaryotic cells, including the formation of mRNA, its translation into protein, and slow diffusion of these species. Under steady-state conditions, the mRNA and protein spatial distribution is described by simple exponential functions. The protein concentration near the gene transcribed into mRNA is shown to depend on the protein and mRNA diffusion coefficients and degradation rate constants.

  16. QCD thermodynamics from 3d adjoint Higgs model

    CERN Document Server

    Karsch, Frithjof; Patkós, András; Petreczky, P; Szép, Z; Szep, Zs.

    1998-01-01

    The screening masses of hot SU(N) gauge theory, defined as poles of the corresponding propagators are studied in 3d adjoint Higgs model, considered as an effective theory of QCD, using coupled gap equations and lattice Monte-Carlo simulations (for N=2). Using so-called lambda gauges non-perturbative evidence for gauge independence of the pole masses within this class of gauges is given. A possible application of the screening masses for the resummation of the free energy is discussed.

  17. Compute extremely low-frequency electromagnetic field exposure by 3-D impendance method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A 3-D impedance method has been introduced to compute the electric currents induced in a human body exposed to extremely low-frequency electromagnetic field.The 3-D impedance method has been deduced from Maxwell equations and is put into the computation and simulation effectively to the visible human body model, which has 196×114×626 cells and more than 40 types of tissues.As the result, two representative cases are investigated.One is exposure of the human body to 100 μT (1 000 mG), the limit recommended by the International Commission on Non-Ionizing Radiation Protection for the public and the other one is the exposure of human body to 0.4 μT (4 mG), the level at which a statistical link appears with a doubled risk of development of childhood leukaemia.The distribution of induced current density can be obtained and the maximum of induced current are found to be 16 mA/m2 and 0.07 mA/m2.

  18. FaceWarehouse: a 3D facial expression database for visual computing.

    Science.gov (United States)

    Cao, Chen; Weng, Yanlin; Zhou, Shun; Tong, Yiying; Zhou, Kun

    2014-03-01

    We present FaceWarehouse, a database of 3D facial expressions for visual computing applications. We use Kinect, an off-the-shelf RGBD camera, to capture 150 individuals aged 7-80 from various ethnic backgrounds. For each person, we captured the RGBD data of her different expressions, including the neutral expression and 19 other expressions such as mouth-opening, smile, kiss, etc. For every RGBD raw data record, a set of facial feature points on the color image such as eye corners, mouth contour, and the nose tip are automatically localized, and manually adjusted if better accuracy is required. We then deform a template facial mesh to fit the depth data as closely as possible while matching the feature points on the color image to their corresponding points on the mesh. Starting from these fitted face meshes, we construct a set of individual-specific expression blendshapes for each person. These meshes with consistent topology are assembled as a rank-3 tensor to build a bilinear face model with two attributes: identity and expression. Compared with previous 3D facial databases, for every person in our database, there is a much richer matching collection of expressions, enabling depiction of most human facial actions. We demonstrate the potential of FaceWarehouse for visual computing with four applications: facial image manipulation, face component transfer, real-time performance-based facial image animation, and facial animation retargeting from video to image.

  19. 3D multiscale micromechanical model of wood: From annual rings to microfibrils

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2010-01-01

    A 3D micromechanical analytical-computational model of softwood, which takes into account the wood microstructures at four scale levels, from microfibrils to annual rings, is developed. For the analysis of the effect of the annual rings structure on the properties of softwood, an improved rule......-of-mixture model, based on 3D orthotropic stress–strain relations and taking into account the compatibility of deformations at the interface of two phases and equilibrium of tractions at phase boundaries, is proposed. The improved rule of mixture model (IRoM) was compared with the classical rule-of-mixture (Ro......M) and finite element method (FEM) simulations. It was shown that IRoM gives almost as good results as FEM. The analytical model of annual rings is combined with the 3D finite element model of softwood as cellular material with multilayered, microfibril reinforced cell walls, developed by (Qing and Mishnaevsky...

  20. Simulation of engine cooling with coupled 1D and 3D flow computation; Simulation der Motorkuehlung mit Hilfe gekoppelter 1D- und 3D-Stroemungsberechnung

    Energy Technology Data Exchange (ETDEWEB)

    Grafenberger, P.; Klinner, P.; Nefischer, P. [BMW Motoren GmbH, Steyr (Austria); Klingebiel, F. [AMSTRAL Engineering fuer Stroemungsmechanik GmbH, Idstein (Germany)

    2000-04-01

    Shorting the development time for new engines and vehicles is leading to the increasing use of computational design and simulation methods in the automotive industry. For several years now, both one-dimensional and three-dimensional flow computation have been used successfully in the development of cooling systems. However, the fact that less hardware is used in the early development stages makes new demands on the quality and quantity of these simulation results. BMW's diesel development division has been able to improve the quality of the results and to reduce the processing time by improving the model quality and by coupling existing 1D and 3D computational fluid dynamic programmes. (orig.) [German] Die Verkuerzung der Entwicklungszeit neuer Motoren und Automobile fuehrt zu einem verstaerkten Einsatz von rechnergestuetzten Konstruktions- und Simulationsmethoden in der Fahrzeugindustrie. Sowohl eindimensionale als auch dreidimensionale Stroemungsberechnungen werden seit Jahren erfolgreich bei der Entwicklung von Kuehlsystemen eingesetzt. Der Entfall von Hardware-Baugruppen in der fruehen Entwicklungsphase stellt jedoch neue Anforderungen an die Qualitaet und Quantitaet dieser Simulationsergebnisse. Durch Verbesserung der Modellqualitaet und durch Kopplung vorhandener 1D- und 3D-Stroemungsberechnungsprogramme konnten in der Dieselmotorenentwicklung von BMW die Qualitaet der Ergebnisse und die Bearbeitungsgeschwindigkeit deutlich gesteigert werden. (orig.)

  1. Tracking topological entity changes in 3D collaborative modeling systems

    Institute of Scientific and Technical Information of China (English)

    ChengYuan; He Fazhi; HuangZhiyong; Cai Xiantao; and Zhang Dejun

    2012-01-01

    One of the key problems in collaborative geometric modeling systems is topological entity correspondence when topolog- ical structure of geometry models on collaborative sites changes, ha this article, we propose a solution for tracking topological entity alterations in 3D collaborative modeling environment. We firstly make a thorough analysis and detailed categorization on the altera- tion properties and causations for each type of topological entity, namely topological face and topological edge. Based on collabora- tive topological entity naming mechanism, a data structure called TEST (Topological Entity Structure Tree) is introduced to track the changing history and current state of each topological entity, to embody the relationship among topological entities. Rules and algo- rithms are presented for identification of topological entities referenced by operations for correct execution and model consistency. The algorithm has been verified within the prototype we have implemented with ACIS.

  2. 3D Printing of Protein Models in an Undergraduate Laboratory: Leucine Zippers

    Science.gov (United States)

    Meyer, Scott C.

    2015-01-01

    An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…

  3. The concept of level detail in 3D city models: PhD Research Proposal

    NARCIS (Netherlands)

    Biljecki, F.

    2013-01-01

    Level of detail (LoD) is a concept available in various disciplines from computer graphics and cartography to electrical circuit design. For GIS practitioners, the discipline where level of detail is most relevant and well known is 3D city modelling. While present LoD paradigms, such as the one foun

  4. 3D Printing of Protein Models in an Undergraduate Laboratory: Leucine Zippers

    Science.gov (United States)

    Meyer, Scott C.

    2015-01-01

    An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…

  5. 3D MODELING OF THE ARCHAIC AMPHORAS OF IONIA

    Directory of Open Access Journals (Sweden)

    A. Denker

    2015-04-01

    Full Text Available Few other regions offer such a rich collection of amphoras than the cities of Ionia. Throughout history amphoras of these cities had been spread all over the Mediterranean. Despite their common characteristics, amphora manufacturing cities of Ionia had their own distinctive styles that can be identified. They differed in details of shape and decoration. Each city produced an authentic type of amphora which served as a trademark of itself and enabled its attribution to where it originated from. That’s why, amphoras provide important insight into commerce of old ages and yield evidence into ancient sailing routes. Owing to this our knowledge of the ancient trade is profoundly enriched. The following is based on the finds of amphoras which originated from the Ionian cities of Chios, Clazomenai, Lesbos, Miletus, and Samos. Starting from city-specific forms which offer interpretative advantages in provenancing, this article surveys the salient features of the regional forms and styles of the those Ionian cities. 3D modeling is utilized with the aim of bringing fresh glimpses of the investigated amphoras by showing how they originally looked. Due to their virtual indestructibility these models offer interpretative advantages by enabling experimental testing of hypotheses upon the finds without risking them. The 3D models in the following sections were reconstructed from numerous fragments of necks, handles, body sherds and bases. They convey in color- unlike the monochrome drawings which we were accustomed to-the texture, decoration, tint and the vitality of the amphoras of Ionia.

  6. 3D Massive MIMO Systems: Modeling and Performance Analysis

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-07-30

    Multiple-input-multiple-output (MIMO) systems of current LTE releases are capable of adaptation in the azimuth only. Recently, the trend is to enhance system performance by exploiting the channel’s degrees of freedom in the elevation, which necessitates the characterization of 3D channels. We present an information-theoretic channel model for MIMO systems that supports the elevation dimension. The model is based on the principle of maximum entropy, which enables us to determine the distribution of the channel matrix consistent with the prior information on the angles. Based on this model, we provide analytical expression for the cumulative density function (CDF) of the mutual information (MI) for systems with a single receive and finite number of transmit antennas in the general signalto- interference-plus-noise-ratio (SINR) regime. The result is extended to systems with finite receive antennas in the low SINR regime. A Gaussian approximation to the asymptotic behavior of MI distribution is derived for the large number of transmit antennas and paths regime. We corroborate our analysis with simulations that study the performance gains realizable through meticulous selection of the transmit antenna downtilt angles, confirming the potential of elevation beamforming to enhance system performance. The results are directly applicable to the analysis of 5G 3D-Massive MIMO-systems.

  7. Dualities in 3D large N vector models

    Science.gov (United States)

    Muteeb, Nouman; Zayas, Leopoldo A. Pando; Quevedo, Fernando

    2016-05-01

    Using an explicit path integral approach we derive non-abelian bosonization and duality of 3D systems in the large N limit. We first consider a fermionic U( N) vector model coupled to level k Chern-Simons theory, following standard techniques we gauge the original global symmetry and impose the corresponding field strength F μν to vanish introducing a Lagrange multiplier Λ. Exchanging the order of integrations we obtain the bosonized theory with Λ as the propagating field using the large N rather than the previously used large mass limit. Next we follow the same procedure to dualize the scalar U ( N) vector model coupled to Chern-Simons and find its corresponding dual theory. Finally, we compare the partition functions of the two resulting theories and find that they agree in the large N limit including a level/rank duality. This provides a constructive evidence for previous proposals on level/rank duality of 3D vector models in the large N limit. We also present a partial analysis at subleading order in large N and find that the duality does not generically hold at this level.

  8. Dualities in 3D large N vector models

    Energy Technology Data Exchange (ETDEWEB)

    Muteeb, Nouman [The Abdus Salam International Centre for Theoretical Physics, ICTP,Strada Costiera 11, 34014 Trieste (Italy); SISSA,Via Bonomea 265, 34136 Trieste (Italy); Zayas, Leopoldo A. Pando [The Abdus Salam International Centre for Theoretical Physics, ICTP,Strada Costiera 11, 34014 Trieste (Italy); Michigan Center for Theoretical Physics, Department of Physics,University of Michigan, Ann Arbor, MI 48109 (United States); Quevedo, Fernando [The Abdus Salam International Centre for Theoretical Physics, ICTP,Strada Costiera 11, 34014 Trieste (Italy); DAMTP, CMS, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2016-05-09

    Using an explicit path integral approach we derive non-abelian bosonization and duality of 3D systems in the large N limit. We first consider a fermionic U(N) vector model coupled to level k Chern-Simons theory, following standard techniques we gauge the original global symmetry and impose the corresponding field strength F{sub μν} to vanish introducing a Lagrange multiplier Λ. Exchanging the order of integrations we obtain the bosonized theory with Λ as the propagating field using the large N rather than the previously used large mass limit. Next we follow the same procedure to dualize the scalar U(N) vector model coupled to Chern-Simons and find its corresponding dual theory. Finally, we compare the partition functions of the two resulting theories and find that they agree in the large N limit including a level/rank duality. This provides a constructive evidence for previous proposals on level/rank duality of 3D vector models in the large N limit. We also present a partial analysis at subleading order in large N and find that the duality does not generically hold at this level.

  9. Pose invariant face recognition: 3D model from single photo

    Science.gov (United States)

    Napoléon, Thibault; Alfalou, Ayman

    2017-02-01

    Face recognition is widely studied in the literature for its possibilities in surveillance and security. In this paper, we report a novel algorithm for the identification task. This technique is based on an optimized 3D modeling allowing to reconstruct faces in different poses from a limited number of references (i.e. one image by class/person). Particularly, we propose to use an active shape model to detect a set of keypoints on the face necessary to deform our synthetic model with our optimized finite element method. Indeed, in order to improve our deformation, we propose a regularization by distances on graph. To perform the identification we use the VanderLugt correlator well know to effectively address this task. On the other hand we add a difference of Gaussian filtering step to highlight the edges and a description step based on the local binary patterns. The experiments are performed on the PHPID database enhanced with our 3D reconstructed faces of each person with an azimuth and an elevation ranging from -30° to +30°. The obtained results prove the robustness of our new method with 88.76% of good identification when the classic 2D approach (based on the VLC) obtains just 44.97%.

  10. Assembly of a 3D Cellular Computer Using Folded E-Blocks

    Directory of Open Access Journals (Sweden)

    Shivendra Pandey

    2016-04-01

    Full Text Available The assembly of integrated circuits in three dimensions (3D provides a possible solution to address the ever-increasing demands of modern day electronic devices. It has been suggested that by using the third dimension, devices with high density, defect tolerance, short interconnects and small overall form factors could be created. However, apart from pseudo 3D architecture, such as monolithic integration, die, or wafer stacking, the creation of paradigms to integrate electronic low-complexity cellular building blocks in architecture that has tile space in all three dimensions has remained elusive. Here, we present software and hardware foundations for a truly 3D cellular computational devices that could be realized in practice. The computing architecture relies on the scalable, self-configurable and defect-tolerant cell matrix. The hardware is based on a scalable and manufacturable approach for 3D assembly using folded polyhedral electronic blocks (E-blocks. We created monomers, dimers and 2 × 2 × 2 assemblies of polyhedral E-blocks and verified the computational capabilities by implementing simple logic functions. We further show that 63.2% more compact 3D circuits can be obtained with our design automation tools compared to a 2D architecture. Our results provide a proof-of-concept for a scalable and manufacture-ready process for constructing massive-scale 3D computational devices.

  11. A Prototype Digital Library for 3D Collections: Tools To Capture, Model, Analyze, and Query Complex 3D Data.

    Science.gov (United States)

    Rowe, Jeremy; Razdan, Anshuman

    The Partnership for Research in Spatial Modeling (PRISM) project at Arizona State University (ASU) developed modeling and analytic tools to respond to the limitations of two-dimensional (2D) data representations perceived by affiliated discipline scientists, and to take advantage of the enhanced capabilities of three-dimensional (3D) data that…

  12. Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources

    Science.gov (United States)

    Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.

    2015-12-01

    Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.

  13. Seismic source inversion using Green's reciprocity and a 3-D structural model for the Japanese Islands

    Science.gov (United States)

    Simutė, S.; Fichtner, A.

    2015-12-01

    We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.

  14. Computer-Designed Splints for Surgical Transfer of 3D Orthognathic Planning.

    Science.gov (United States)

    Zinser, Max; Zoeller, Joachim

    2015-10-01

    Advances in computers and imaging have permitted the adoption of three-dimensional (3D) planning protocols in orthognathic surgery, which may allow a paradigm shift when the computer-assisted planning can be transferred properly. The purpose of this investigation was to introduce an innovative clinical protocol using computer-aided designed and computer-aided manufactured (CAD/CAM) surgical splints for surgical transfer of 3D orthognathic planning compared with the classic technique using arbitrary occlusal splints. The clinical protocols consisted of computed tomography (CT) or cone-beam CT (CBCT) maxillofacial imaging, bone segmentation, 3D diagnosis, computer-assisted surgical treatment planning, and CAD/CAM surgical splints (group A) and manufacture of arbitrary occlusal splints (group B) for intraoperative surgical planning transfer. The observed patients underwent bimaxillary osteotomies and, if necessary, an additional genioplasty. Both techniques were evaluated by applying 13 hard tissue parameters to compare the 3D orthognathic planning (T0) with the postoperative result (T1) using 3D cephalometry. The CAD/CAM splints showed significant better precision for the maxilla (ΔT orthognathic planning, which is more precise compared with the conventional arbitrary occlusal splints.

  15. Development of a computational system for radiotherapic planning with the IMRT technique applied to the MCNP computer code with 3D graphic interface for voxel models; Desenvolvimento de um sistema computacional para o planejamento radioterapico com a tecnica IMRT aplicado ao codigo MCNP com interface grafica 3D para modelos de voxel

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Telma Cristina Ferreira

    2009-07-01

    The Intensity Modulated Radiation Therapy - IMRT is an advanced treatment technique used worldwide in oncology medicine branch. On this master proposal was developed a software package for simulating the IMRT protocol, namely SOFT-RT which attachment the research group 'Nucleo de Radiacoes Ionizantes' - NRI at UFMG. The computational system SOFT-RT allows producing the absorbed dose simulation of the radiotherapic treatment through a three-dimensional voxel model of the patient. The SISCODES code, from NRI, research group, helps in producing the voxel model of the interest region from a set of CT or MRI digitalized images. The SOFT-RT allows also the rotation and translation of the model about the coordinate system axis for better visualization of the model and the beam. The SOFT-RT collects and exports the necessary parameters to MCNP code which will carry out the nuclear radiation transport towards the tumor and adjacent healthy tissues for each orientation and position of the beam planning. Through three-dimensional visualization of voxel model of a patient, it is possible to focus on a tumoral region preserving the whole tissues around them. It takes in account where exactly the radiation beam passes through, which tissues are affected and how much dose is applied in both tissues. The Out-module from SOFT-RT imports the results and express the dose response superimposing dose and voxel model in gray scale in a three-dimensional graphic representation. The present master thesis presents the new computational system of radiotherapic treatment - SOFT-RT code which has been developed using the robust and multi-platform C{sup ++} programming language with the OpenGL graphics packages. The Linux operational system was adopted with the goal of running it in an open source platform and free access. Preliminary simulation results for a cerebral tumor case will be reported as well as some dosimetric evaluations. (author)

  16. Comparative 3-D Modeling of tmRNA

    Directory of Open Access Journals (Sweden)

    Wower Iwona

    2005-06-01

    Full Text Available Abstract Background Trans-translation releases stalled ribosomes from truncated mRNAs and tags defective proteins for proteolytic degradation using transfer-messenger RNA (tmRNA. This small stable RNA represents a hybrid of tRNA- and mRNA-like domains connected by a variable number of pseudoknots. Comparative sequence analysis of tmRNAs found in bacteria, plastids, and mitochondria provides considerable insights into their secondary structures. Progress toward understanding the molecular mechanism of template switching, which constitutes an essential step in trans-translation, is hampered by our limited knowledge about the three-dimensional folding of tmRNA. Results To facilitate experimental testing of the molecular intricacies of trans-translation, which often require appropriately modified tmRNA derivatives, we developed a procedure for building three-dimensional models of tmRNA. Using comparative sequence analysis, phylogenetically-supported 2-D structures were obtained to serve as input for the program ERNA-3D. Motifs containing loops and turns were extracted from the known structures of other RNAs and used to improve the tmRNA models. Biologically feasible 3-D models for the entire tmRNA molecule could be obtained. The models were characterized by a functionally significant close proximity between the tRNA-like domain and the resume codon. Potential conformational changes which might lead to a more open structure of tmRNA upon binding to the ribosome are discussed. The method, described in detail for the tmRNAs of Escherichia coli, Bacillus anthracis, and Caulobacter crescentus, is applicable to every tmRNA. Conclusion Improved molecular models of biological significance were obtained. These models will guide in the design of experiments and provide a better understanding of trans-translation. The comparative procedure described here for tmRNA is easily adopted for the modeling the members of other RNA families.

  17. Optimisation of Ionic Models to Fit Tissue Action Potentials: Application to 3D Atrial Modelling

    Directory of Open Access Journals (Sweden)

    Amr Al Abed

    2013-01-01

    Full Text Available A 3D model of atrial electrical activity has been developed with spatially heterogeneous electrophysiological properties. The atrial geometry, reconstructed from the male Visible Human dataset, included gross anatomical features such as the central and peripheral sinoatrial node (SAN, intra-atrial connections, pulmonary veins, inferior and superior vena cava, and the coronary sinus. Membrane potentials of myocytes from spontaneously active or electrically paced in vitro rabbit cardiac tissue preparations were recorded using intracellular glass microelectrodes. Action potentials of central and peripheral SAN, right and left atrial, and pulmonary vein myocytes were each fitted using a generic ionic model having three phenomenological ionic current components: one time-dependent inward, one time-dependent outward, and one leakage current. To bridge the gap between the single-cell ionic models and the gross electrical behaviour of the 3D whole-atrial model, a simplified 2D tissue disc with heterogeneous regions was optimised to arrive at parameters for each cell type under electrotonic load. Parameters were then incorporated into the 3D atrial model, which as a result exhibited a spontaneously active SAN able to rhythmically excite the atria. The tissue-based optimisation of ionic models and the modelling process outlined are generic and applicable to image-based computer reconstruction and simulation of excitable tissue.

  18. A Service-oriented FPGA-based 3D Model Acquisition System

    Directory of Open Access Journals (Sweden)

    MACHIDON, O. M.

    2015-11-01

    Full Text Available This paper proposes a non-contact, low cost 3D scanning solution using laser striping. The solution is composed of two main parts: the hardware setup - used for acquiring the object's 3D surface information, and the software part - that processes the information and obtains the 3D model representation of the object. We propose two major improvements over the traditional scanning solutions: the 3D information acquisition is based on a reconfigurable hardware platform - a Xilinx Spartan 6 FPGA - which adds flexibility and scalability to the scanning process, while the 3D model reconstruction is remotely available "as a Service", by the means of a web interface that abstracts away the complexity of the underlying processes and improves the performance, while granting easy sharing between users. By separating data capture process from the 3D model reconstruction tasks the system gains in portability - a feature that is absent for most existing solutions. The service-oriented approach brings on a performance gain, since the computational intensive tasks are handled by dedicated servers and ease of use of the system, because the user does not have to bother managing and using the software tools locally.

  19. Development of Advanced Models for 3D Photocathode PIC Simulations

    CERN Document Server

    Dimitrov, Dimitre; Cary, John R; Feldman, Donald; Jensen, Kevin; Messmer, Peter; Stoltz, Peter

    2005-01-01

    Codes for simulating photocathode electron guns invariably assume the emission of an idealized electron distribution from the cathode, regardless of the particular particle emission model that is implemented. The output of such simulations, a relatively clean and smooth distribution with very little variation as a function of the azimuthal angle, is inconsistent with the highly irregular and asymmetric electron bunches seen in experimental diagnostics. To address this problem, we have implemented a recently proposed theoretical model* that takes into account detailed solid-state physics of photocathode materials in the VORPAL particle-in-cell code.** Initial results from 3D simulations with this model and future research directions will be presented and discussed.

  20. Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging.

    Science.gov (United States)

    Markl, Daniel; Zeitler, J Axel; Rasch, Cecilie; Michaelsen, Maria Høtoft; Müllertz, Anette; Rantanen, Jukka; Rades, Thomas; Bøtker, Johan

    2017-05-01

    A 3D printer was used to realise compartmental dosage forms containing multiple active pharmaceutical ingredient (API) formulations. This work demonstrates the microstructural characterisation of 3D printed solid dosage forms using X-ray computed microtomography (XμCT) and terahertz pulsed imaging (TPI). Printing was performed with either polyvinyl alcohol (PVA) or polylactic acid (PLA). The structures were examined by XμCT and TPI. Liquid self-nanoemulsifying drug delivery system (SNEDDS) formulations containing saquinavir and halofantrine were incorporated into the 3D printed compartmentalised structures and in vitro drug release determined. A clear difference in terms of pore structure between PVA and PLA prints was observed by extracting the porosity (5.5% for PVA and 0.2% for PLA prints), pore length and pore volume from the XμCT data. The print resolution and accuracy was characterised by XμCT and TPI on the basis of the computer-aided design (CAD) models of the dosage form (compartmentalised PVA structures were 7.5 ± 0.75% larger than designed; n = 3). The 3D printer can reproduce specific structures very accurately, whereas the 3D prints can deviate from the designed model. The microstructural information extracted by XμCT and TPI will assist to gain a better understanding about the performance of 3D printed dosage forms.

  1. 3D Printing of Preoperative Simulation Models of a Splenic Artery Aneurysm: Precision and Accuracy.

    Science.gov (United States)

    Takao, Hidemasa; Amemiya, Shiori; Shibata, Eisuke; Ohtomo, Kuni

    2017-05-01

    Three-dimensional (3D) printing is attracting increasing attention in the medical field. This study aimed to apply 3D printing to the production of hollow splenic artery aneurysm models for use in the simulation of endovascular treatment, and to evaluate the precision and accuracy of the simulation model. From 3D computed tomography (CT) angiography data of a splenic artery aneurysm, 10 hollow models reproducing the vascular lumen were created using a fused deposition modeling-type desktop 3D printer. After filling with water, each model was scanned using T2-weighted magnetic resonance imaging for the evaluation of the lumen. All images were coregistered, binarized, and then combined to create an overlap map. The cross-sectional area of the splenic artery aneurysm and its standard deviation (SD) were calculated perpendicular to the x- and y-axes. Most voxels overlapped among the models. The cross-sectional areas were similar among the models, with SDs <0.05 cm(2). The mean cross-sectional areas of the splenic artery aneurysm were slightly smaller than those calculated from the original mask images. The maximum mean cross-sectional areas calculated perpendicular to the x- and y-axes were 3.90 cm(2) (SD, 0.02) and 4.33 cm(2) (SD, 0.02), whereas those calculated from the original mask images were 4.14 cm(2) and 4.66 cm(2), respectively. The mean cross-sectional areas of the afferent artery were, however, almost the same as those calculated from the original mask images. The results suggest that 3D simulation modeling of a visceral artery aneurysm using a fused deposition modeling-type desktop 3D printer and computed tomography angiography data is highly precise and accurate. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  2. Roughness receptivity studies in a 3-D boundary layer - Flight tests and computations

    Science.gov (United States)

    Carpenter, Andrew L.; Saric, William S.; Reed, Helen L.

    The receptivity of 3-D boundary layers to micron-sized, spanwise-periodic Discrete Roughness Elements (DREs) was studied. The DREs were applied to the leading edge of a 30-degree swept-wing at the wavelength of the most unstable disturbance. In this case, calibrated, multi-element hotfilm sensors were used to measure disturbance wall shear stress. The roughness height was varied from 0 to 50 microns. Thus, the disturbance-shear-stress amplitude variations were determined as a function of modulated DRE heights. The computational work was conducted parallel to the flight experiments. The complete viscous flowfield over the O-2 aircraft with the SWIFT model mounted on the port wing store pylon was successfully modeled and validated with the flight data. This highly accurate basic-state solution was incorporated into linear stability calculations and the wave growth associated with the crossflow instability was calculated.

  3. Fatigue of hybrid glass/carbon composites: 3D computational studies

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon

    2014-01-01

    3D computational simulations of fatigue of hybrid carbon/glass fiber reinforced composites is carried out using X-FEM and multifiber unit cell models. A new software code for the automatic generation of unit cell multifiber models of composites with randomly misaligned fibers of various properties...... and geometrical parameters is developed. With the use of this program code and the X-FEM method, systematic investigations of the effect of microstructure of hybrid composites (fraction of carbon versus glass fibers, misalignment, and interface strength) and the loading conditions (tensile versus compression...... cyclic loading effects) on fatigue behavior of the materials are carried out. It was demonstrated that the higher fraction of carbon fibers in hybrid composites is beneficial for the fatigue lifetime of the composites under tension-tension cyclic loading, but might have negative effect on the lifetime...

  4. Extended gray level co-occurrence matrix computation for 3D image volume

    Science.gov (United States)

    Salih, Nurulazirah M.; Dewi, Dyah Ekashanti Octorina

    2017-02-01

    Gray Level Co-occurrence Matrix (GLCM) is one of the main techniques for texture analysis that has been widely used in many applications. Conventional GLCMs usually focus on two-dimensional (2D) image texture analysis only. However, a three-dimensional (3D) image volume requires specific texture analysis computation. In this paper, an extended 2D to 3D GLCM approach based on the concept of multiple 2D plane positions and pixel orientation directions in the 3D environment is proposed. The algorithm was implemented by breaking down the 3D image volume into 2D slices based on five different plane positions (coordinate axes and oblique axes) resulting in 13 independent directions, then calculating the GLCMs. The resulted GLCMs were averaged to obtain normalized values, then the 3D texture features were calculated. A preliminary examination was performed on a 3D image volume (64 x 64 x 64 voxels). Our analysis confirmed that the proposed technique is capable of extracting the 3D texture features from the extended GLCMs approach. It is a simple and comprehensive technique that can contribute to the 3D image analysis.

  5. 3D computer-assisted assessment of complicated penetrating foreign bodies cases in ENT practice.

    Science.gov (United States)

    Vaiman, Michael; Bekerman, Inessa; Puterman, Max

    2009-10-01

    A retrospective research was performed in order to evaluate three-dimensional (3D) computer-assisted detection of penetrating foreign bodies (FB) in the ENT practice in order to assess its usefulness and to specify its application. FBs in the head and neck were detected using 3D CT imaging in order to assess the usefulness of 3D images in the ENT operative practice. Three blinded surgeons were involved in comparison between plain and 3D CT images in order to assess 3D usefulness for precise formulation of a surgical plan. The observed relationship of the FBs to anatomical structures of the ethmoidal sinuses, eye orbit, and neck tissues was found instrumental for surgeon's decision making in planning the approach to operative removal of the FB. It helps to understand the relationships between a FB and surrounding anatomical structures better then the plain X-rays or CT-scan. There was no significant difference in cost between plain CT and 3D images. 3D computer-assisted detection of FBs increase our diagnostic abilities and appears to be a valuable addition to our diagnostic technique. Its main importance, however, lies in its capacity to help a surgeon plan an operation much more carefully avoiding improvisation during the operation itself.

  6. An Efficient 3D Stochastic Model for Predicting the Columnar-to-Equiaxed Transition in Alloy 718

    Science.gov (United States)

    Nastac, L.

    2015-06-01

    A three-dimensional (3D) stochastic model for simulating the evolution of dendritic crystals during the solidification of alloys was developed. The model includes time-dependent computations for temperature distribution, solute redistribution in the liquid and solid phases, curvature, and growth anisotropy. The 3D model can run on PCs with reasonable amount of RAM and CPU time. 3D stochastic mesoscopic simulations at the dendrite tip length scale were performed to simulate the evolution of the columnar-to-equiaxed transition in alloy 718. Comparisons between simulated microstructures and segregation patterns obtained with 2D and 3D stochastic models are also presented.

  7. Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery

    Directory of Open Access Journals (Sweden)

    Paoli Alessandro

    2011-02-01

    Full Text Available Abstract Background A precise placement of dental implants is a crucial step to optimize both prosthetic aspects and functional constraints. In this context, the use of virtual guiding systems has been recognized as a fundamental tool to control the ideal implant position. In particular, complex periodontal surgeries can be performed using preoperative planning based on CT data. The critical point of the procedure relies on the lack of accuracy in transferring CT planning information to surgical field through custom-made stereo-lithographic surgical guides. Methods In this work, a novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field. The methodology is based on integrating 3D data of anatomical (impression and cast and preoperative (radiographic template models, obtained by both CT and optical scanning processes. Results A clinical case, relative to a fully edentulous jaw patient, has been used as test case to assess the accuracy of the various steps concurring in manufacturing surgical guides. In particular, a surgical guide has been designed to place implants in the bone structure of the patient. The analysis of the results has allowed the clinician to monitor all the errors, which have been occurring step by step manufacturing the physical templates. Conclusions The use of an optical scanner, which has a higher resolution and accuracy than CT scanning, has demonstrated to be a valid support to control the precision of the various physical models adopted and to point out possible error sources. A case study regarding a fully edentulous patient has confirmed the feasibility of the proposed methodology.

  8. A new 3-D modelling method to extract subtransect dimensions from underwater videos

    Directory of Open Access Journals (Sweden)

    L. Fillinger

    2013-04-01

    Full Text Available Underwater video transects have become a common tool for quantitative analysis of the seafloor. However a major difficulty remains in the accurate determination of the area surveyed as underwater navigation can be unreliable and image scaling does not always compensate for distortions due to perspective and topography. Depending on the camera set-up and available instruments, different methods of surface measurement are applied, which make it difficult to compare data obtained by different vehicles. 3-D modelling of the seafloor based on 2-D video data and a reference scale can be used to compute subtransect dimensions. Focussing on the length of the subtransect, the data obtained from 3-D models created with the software PhotoModeler Scanner are compared with those determined from underwater acoustic positioning (ultra short baseline, USBL and bottom tracking (Doppler velocity log, DVL. 3-D model building and scaling was successfully conducted on all three tested set-ups and the distortion of the reference scales due to substrate roughness was identified as the main source of imprecision. Acoustic positioning was generally inaccurate and bottom tracking unreliable on rough terrain. Subtransect lengths assessed with PhotoModeler were on average 20% longer than those derived from acoustic positioning due to the higher spatial resolution and the inclusion of slope. On a high relief wall bottom tracking and 3-D modelling yielded similar results. At present, 3-D modelling is the most powerful, albeit the most time-consuming, method for accurate determination of video subtransect dimensions.

  9. A new 3-D-modelling method to extract subtransect dimensions from underwater videos

    Directory of Open Access Journals (Sweden)

    L. Fillinger

    2012-12-01

    Full Text Available Underwater video transects have become a common tool for quantitative analysis of the seafloor. However a major difficulty remains in the accurate determination of the area surveyed as underwater navigation can be unreliable and image scaling does not always compensate for distortions due to perspective and topography. Depending on the camera setup and available instruments, different methods of surface measurement are applied which make it difficult to compare data obtained by different vehicles. 3-D modelling of the seafloor based on 2-D video data and a reference scale can be used to compute subtransects dimensions. Focussing on the length of the subtransect, the data obtained from 3-D models created with the software PhotoModeler Scanner are compared with those determined from underwater acoustic positioning (Ultra-Short BaseLine – USBL and bottom tracking (Doppler Velocity Log – DVL. 3-D models building and scaling was successfully conducted on all three tested setups while the distortion of the reference scales due to substrate roughness was identified as the main source of imprecision. Acoustic positioning was generally inaccurate and DVL unreliable on rough terrain. Subtransect lengths assessed with PhotoModeler were on average 20% longer than those derived from the USBL due to the higher spatial resolution and the inclusion of slope. On a high relief wall, DVL and 3-D modelling yielded similar results. At present, 3-D modelling is the most powerful, albeit the most time-consuming, method for the accurate determination of video subtransect dimensions.

  10. A new 3-D-modelling method to extract subtransect dimensions from underwater videos

    Science.gov (United States)

    Fillinger, L.; Funke, T.

    2012-12-01

    Underwater video transects have become a common tool for quantitative analysis of the seafloor. However a major difficulty remains in the accurate determination of the area surveyed as underwater navigation can be unreliable and image scaling does not always compensate for distortions due to perspective and topography. Depending on the camera setup and available instruments, different methods of surface measurement are applied which make it difficult to compare data obtained by different vehicles. 3-D modelling of the seafloor based on 2-D video data and a reference scale can be used to compute subtransects dimensions. Focussing on the length of the subtransect, the data obtained from 3-D models created with the software PhotoModeler Scanner are compared with those determined from underwater acoustic positioning (Ultra-Short BaseLine - USBL) and bottom tracking (Doppler Velocity Log - DVL). 3-D models building and scaling was successfully conducted on all three tested setups while the distortion of the reference scales due to substrate roughness was identified as the main source of imprecision. Acoustic positioning was generally inaccurate and DVL unreliable on rough terrain. Subtransect lengths assessed with PhotoModeler were on average 20% longer than those derived from the USBL due to the higher spatial resolution and the inclusion of slope. On a high relief wall, DVL and 3-D modelling yielded similar results. At present, 3-D modelling is the most powerful, albeit the most time-consuming, method for the accurate determination of video subtransect dimensions.

  11. A new 3-D modelling method to extract subtransect dimensions from underwater videos

    Science.gov (United States)

    Fillinger, L.; Funke, T.

    2013-04-01

    Underwater video transects have become a common tool for quantitative analysis of the seafloor. However a major difficulty remains in the accurate determination of the area surveyed as underwater navigation can be unreliable and image scaling does not always compensate for distortions due to perspective and topography. Depending on the camera set-up and available instruments, different methods of surface measurement are applied, which make it difficult to compare data obtained by different vehicles. 3-D modelling of the seafloor based on 2-D video data and a reference scale can be used to compute subtransect dimensions. Focussing on the length of the subtransect, the data obtained from 3-D models created with the software PhotoModeler Scanner are compared with those determined from underwater acoustic positioning (ultra short baseline, USBL) and bottom tracking (Doppler velocity log, DVL). 3-D model building and scaling was successfully conducted on all three tested set-ups and the distortion of the reference scales due to substrate roughness was identified as the main source of imprecision. Acoustic positioning was generally inaccurate and bottom tracking unreliable on rough terrain. Subtransect lengths assessed with PhotoModeler were on average 20% longer than those derived from acoustic positioning due to the higher spatial resolution and the inclusion of slope. On a high relief wall bottom tracking and 3-D modelling yielded similar results. At present, 3-D modelling is the most powerful, albeit the most time-consuming, method for accurate determination of video subtransect dimensions.

  12. Convex relaxation for a 3D spatiotemporal segmentation model using the primal-dual method

    Institute of Scientific and Technical Information of China (English)

    Shi-yan WANG; Hui-min YU

    2012-01-01

    A method based on 3D videos is proposed for multi-target segmentation and tracking with a moving viewing system.A spatiotemporal energy functional is built up to perform motion segmentation and estimation simultaneously.To overcome the limitation of the local minimum problem with the level set method,a convex relaxation method is applied to the 3D spatiotemporal segmentation model.The relaxed convex model is independent of the initial condition.A primal-dual algorithm is used to improve computational efficiency.Several indoor experiments show the validity of the proposed method.

  13. Ground truth evaluation of computer vision based 3D reconstruction of synthesized and real plant images

    DEFF Research Database (Denmark)

    Nielsen, Michael; Andersen, Hans Jørgen; Slaughter, David

    2007-01-01

    There is an increasing interest in using 3D computer vision in precision agriculture. This calls for better quantitative evaluation and understanding of computer vision methods. This paper proposes a test framework using ray traced crop scenes that allows in-depth analysis of algorithm performance...

  14. 3-D field computation: The near-triumph of commerical codes

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L.R.

    1995-07-01

    In recent years, more and more of those who design and analyze magnets and other devices are using commercial codes rather than developing their own. This paper considers the commercial codes and the features available with them. Other recent trends with 3-D field computation include parallel computation and visualization methods such as virtual reality systems.

  15. Enabling 3D-Liver Perfusion Mapping from MR-DCE Imaging Using Distributed Computing.

    Science.gov (United States)

    Leporq, Benjamin; Camarasu-Pop, Sorina; Davila-Serrano, Eduardo E; Pilleul, Frank; Beuf, Olivier

    2013-01-01

    An MR acquisition protocol and a processing method using distributed computing on the European Grid Infrastructure (EGI) to allow 3D liver perfusion parametric mapping after Magnetic Resonance Dynamic Contrast Enhanced (MR-DCE) imaging are presented. Seven patients (one healthy control and six with chronic liver diseases) were prospectively enrolled after liver biopsy. MR-dynamic acquisition was continuously performed in free-breathing during two minutes after simultaneous intravascular contrast agent (MS-325 blood pool agent) injection. Hepatic capillary system was modeled by a 3-parameters one-compartment pharmacokinetic model. The processing step was parallelized and executed on the EGI. It was modeled and implemented as a grid workflow using the Gwendia language and the MOTEUR workflow engine. Results showed good reproducibility in repeated processing on the grid. The results obtained from the grid were well correlated with ROI-based reference method ran locally on a personal computer. The speed-up range was 71 to 242 with an average value of 126. In conclusion, distributed computing applied to perfusion mapping brings significant speed-up to quantification step to be used for further clinical studies in a research context. Accuracy would be improved with higher image SNR accessible on the latest 3T MR systems available today.

  16. Enabling 3D-Liver Perfusion Mapping from MR-DCE Imaging Using Distributed Computing

    Directory of Open Access Journals (Sweden)

    Benjamin Leporq

    2013-01-01

    Full Text Available An MR acquisition protocol and a processing method using distributed computing on the European Grid Infrastructure (EGI to allow 3D liver perfusion parametric mapping after Magnetic Resonance Dynamic Contrast Enhanced (MR-DCE imaging are presented. Seven patients (one healthy control and six with chronic liver diseases were prospectively enrolled after liver biopsy. MR-dynamic acquisition was continuously performed in free-breathing during two minutes after simultaneous intravascular contrast agent (MS-325 blood pool agent injection. Hepatic capillary system was modeled by a 3-parameters one-compartment pharmacokinetic model. The processing step was parallelized and executed on the EGI. It was modeled and implemented as a grid workflow using the Gwendia language and the MOTEUR workflow engine. Results showed good reproducibility in repeated processing on the grid. The results obtained from the grid were well correlated with ROI-based reference method ran locally on a personal computer. The speed-up range was 71 to 242 with an average value of 126. In conclusion, distributed computing applied to perfusion mapping brings significant speed-up to quantification step to be used for further clinical studies in a research context. Accuracy would be improved with higher image SNR accessible on the latest 3T MR systems available today.

  17. Technical report on implementation of reactor internal 3D modeling and visual database system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeun Seung; Eom, Young Sam; Lee, Suk Hee; Ryu, Seung Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    In this report was described a prototype of reactor internal 3D modeling and VDB system for NSSS design quality improvement. For improving NSSS design quality several cases of the nuclear developed nation`s integrated computer aided engineering system, such as Mitsubishi`s NUWINGS (Japan), AECL`s CANDID (Canada) and Duke Power`s PASCE (USA) were studied. On the basis of these studies the strategy for NSSS design improvement system was extracted and detail work scope was implemented as follows : 3D modelling of the reactor internals were implemented by using the parametric solid modeler, a prototype system of design document computerization and database was suggested, and walk-through simulation integrated with 3D modeling and VDB was accomplished. Major effects of NSSS design quality improvement system by using 3D modeling and VDB are the plant design optimization by simulation, improving the reliability through the single design database system and engineering cost reduction by improving productivity and efficiency. For applying the VDB to full scope of NSSS system design, 3D modelings of reactor coolant system and nuclear fuel assembly and fuel rod were attached as appendix. 2 tabs., 31 figs., 7 refs. (Author) .new.

  18. Modeling tree crown dynamics with 3D partial differential equations.

    Science.gov (United States)

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily