WorldWideScience

Sample records for 3d bipedal robot

  1. Planning and Control of Stable Walking for a 3D Bipedal Robot

    Directory of Open Access Journals (Sweden)

    Ching-Long Shih

    2012-08-01

    Full Text Available This paper presents a time‐invariant feedback controller that simultaneously regulates the ZMP (zero‐moment point position and the joint configuration of a 3D biped in order to achieve an asymptotically, periodic walking gait for a 3D bipedal robot with feet. The cyclic walking gait is composed of a successive single‐support phase and an impulsive impact with full plane‐contact between the feet and the ground. The biped robot has 10 DOFs (degrees of freedom in the single‐support phase and 10 actuators. In order to avoid the unexpected rotation of the supporting foot, the position of the ZMP in the horizontal plane has to be controlled. It is also desired that the feedback controller tracks a parameterized reference trajectory to achieve walking stability. We use the method of virtual constraints previously implemented for controlling point‐feet bipedal robots to create a set of parameterized reference walking trajectories. By creating the hybrid zero dynamics, an orbital stability study with Poincaré map is evaluated in a reduced space. We then design a supplemental event‐based feedback controller to enhance walking stability. The walking gait has an average walking speed of 0.76m/sec (or 0.72 body lengths per second in the simulation study.

  2. Asymptotically Stable Walking of a Five-Link Underactuated 3D Bipedal Robot

    CERN Document Server

    Chevallereau, Christine; Shih, Ching-Long; 10.1109/TRO.2008.2010366

    2010-01-01

    This paper presents three feedback controllers that achieve an asymptotically stable, periodic, and fast walking gait for a 3D (spatial) bipedal robot consisting of a torso, two legs, and passive (unactuated) point feet. The contact between the robot and the walking surface is assumed to inhibit yaw rotation. The studied robot has 8 DOF in the single support phase and 6 actuators. The interest of studying robots with point feet is that the robot's natural dynamics must be explicitly taken into account to achieve balance while walking. We use an extension of the method of virtual constraints and hybrid zero dynamics, in order to simultaneously compute a periodic orbit and an autonomous feedback controller that realizes the orbit. This method allows the computations to be carried out on a 2-DOF subsystem of the 8-DOF robot model. The stability of the walking gait under closed-loop control is evaluated with the linearization of the restricted Poincar\\'e map of the hybrid zero dynamics. Three strategies are explo...

  3. Turning in a Bipedal Robot

    Institute of Scientific and Technical Information of China (English)

    Jau-Ching Lu; Jing-Yi Chen; Pei-Chun Lin

    2013-01-01

    We report the development of turning behavior on a child-size bipedal robot that addresses two common scenarios:turning in place and simultaneous walking and turning.About turning in place,three strategies are investigated and compared,including body-first,leg-first,and body/leg-simultaneous.These three strategies are used for three actions,respectively:when walking follows turning immediately,when space behind the robot is very tight,and when a large turning angle is desired.Concerning simultaneous walking and turning,the linear inverted pendulum is used as the motion model in the single-leg support phase,and the polynomial-based trajectory is used as the motion model in the double-leg support phase and for smooth motion connectivity to motions in a priori and a posteriori single-leg support phases.Compared to the trajectory generation of ordinary walking,that of simultaneous walking and turning introduces only two extra parameters:one for determining new heading direction and the other for smoothing the Center of Mass (COM) trajectory.The trajectory design methodology is validated in both simulation and experimental environments,and successful robot behavior confirms the effectiveness of the strategy.

  4. Foot placement in robotic bipedal locomotion

    NARCIS (Netherlands)

    De Boer, T.

    2012-01-01

    Human walking is remarkably robust, versatile and energy-efficient: humans have the ability to handle large unexpected disturbances, perform a wide variety of gaits and consume little energy. A bipedal walking robot that performs well on all of these aspects has not yet been developed. Some robots a

  5. Authropomorphic robots and bipedal walking; Ningengata robot to nisoku hoko

    Energy Technology Data Exchange (ETDEWEB)

    Takanishi, A. [Waseda University, Tokyo (Japan). School of Science and Engineering

    1998-03-05

    This paper takes a general view on studies that have been done to date on mechanism and control of bipedal walking of anthromorphic robots. The paper describes the following matters: a group in Waseda University had a success in making smooth walking automatically with a bipedal robot of air pressure driven type with nine degrees of freedom (1971); a group in Nagoya University has succeeded in controlling dynamic bipedal walking (1981); a group in Waseda University has realized to have a bipedal robot make three-dimensional dynamic walking (1984); a bipedal walking control system was proposed, which is of an upper body compensation type that can assure safety in walking by motions of the upper body even if motions are given to the lower limbs randomly (1986); a success was attained in dynamic walking on a road surface with small irregularities that are unknown to a robot (1994); and development was made on a bipedal Humanoid having 35 degrees of freedom in driving (a robot which can walk holding a cage without dropping things in it, and can dance moving its arms wildly) (1997). 20 refs., 3 figs.

  6. Design and Experimental Implementation of Bipedal robot

    Directory of Open Access Journals (Sweden)

    Sreejith C

    2012-09-01

    Full Text Available Biped robots have better mobility than conventional wheeled robots, but they tend to tip over easily. To be able to walk stably in various environments, such as on rough terrain, up and down slopes, or in regions containing obstacles, it is necessary for the robot to adapt to the ground conditions with a foot motion, and maintain its stability with a torso motion. In this paper, we first formulate the design and walking pattern for a bipedal robot and then a kicking robot has been developed for experimental verification. Finally, the correlation between the design and the walking patterns is described through simulation studies, and the effectiveness of the proposed methods is confirmed by simulation examples and experimental results.

  7. 3D light robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Villangca, Mark Jayson;

    2016-01-01

    As celebrated by the Nobel Prize 2014 in Chemistry light-based technologies can now overcome the diffraction barrier for imaging with nanoscopic resolution by so-called super-resolution microscopy1. However, interactive investigations coupled with advanced imaging modalities at these small scale ...... research discipline that could potentially be able to offer the full packet needed for true "active nanoscopy" by use of so-called light-driven micro-robotics or Light Robotics in short....

  8. 3D light robotics

    Science.gov (United States)

    Glückstad, Jesper; Palima, Darwin; Villangca, Mark; Banas, Andrew

    2016-04-01

    As celebrated by the Nobel Prize 2014 in Chemistry light-based technologies can now overcome the diffraction barrier for imaging with nanoscopic resolution by so-called super-resolution microscopy1. However, interactive investigations coupled with advanced imaging modalities at these small scale domains gradually demand the development of a new generation of disruptive tools, not only for passively observing at nanoscopic scales, but also for actively reaching into and effectively handling constituents in this size domain. This intriguing mindset has recently led to the emergence of a novel research discipline that could potentially be able to offer the full packet needed for true "active nanoscopy" by use of so-called light-driven micro-robotics or Light Robotics in short.

  9. Analysis and simulation of fully ankle actuated planar bipedal robots

    NARCIS (Netherlands)

    Franken, Michel; Oort, van Gijs; Stramigioli, Stefano

    2008-01-01

    This paper deals with the analysis of planar bipedal robots, based on passive dynamic walkers, which are actuated only by actuation of the ankle joints. An overview of the major design characteristics of such robots and their influence on the feasibility of a stable limit cycle is presented. It is s

  10. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  11. Bipedal Robot Locomotion on a Terrain with Pitfalls

    Directory of Open Access Journals (Sweden)

    Alireza Tabrizizadeh

    2014-12-01

    Full Text Available In this paper a locomotion control system for bipedal robot is proposed to provide desirable walking on a terrain and skipping over a pitfall preventing the robot from falling in it. The proposed strategy is a combination of motion optimization based on particle swarm optimization algorithm and utilization of mode switching at the higher level controller. The model for bipedal robot is a compass gait model but the presented method is general and could be appropriately extended and generalized for other complicated models. Principles of minimalistic designs are also respected and simple central pattern generator and simple mechanical feedback control are used to produce and maintain desirable motion patterns of the robot.

  12. Design and Experimental Implementation of Bipedal robot

    Directory of Open Access Journals (Sweden)

    Sreejith C

    2012-09-01

    Full Text Available Biped robots have better mobility thanconventional wheeled robots, but they tend to tipover easily. To be able to walk stably in variousenvironments, such as on rough terrain, up anddown slopes, or in regions containing obstacles, itis necessary for the robot to adapt to the groundconditions with a foot motion, and maintain itsstability with a torso motion. In this paper, we firstformulate the design and walking pattern for abipedal robot and then a kicking robot has beendeveloped for experimental verification. Finally,the correlation between the design and the walkingpatterns is described through simulation studies,and the effectiveness of the proposed methods isconfirmed by simulation examples andexperimental results.

  13. Analysis and Development of Walking Algorithm Kinematic Model for 5-Degree of Freedom Bipedal Robot

    Directory of Open Access Journals (Sweden)

    Gerald Wahyudi Setiono

    2012-12-01

    Full Text Available A design of walking diagram and the calculation of a bipedal robot have been developed. The bipedal robot was designed and constructed with several kinds of servo bracket for the legs, two feet and a hip. Each of the bipedal robot leg was 5-degrees of freedom, three pitches (hip joint, knee joint and ankle joint and two rolls (hip joint and ankle joint. The walking algorithm of this bipedal robot was based on the triangle formulation of cosine law to get the angle value at each joint. The hip height, height of the swinging leg and the step distance are derived based on linear equation. This paper discussed the kinematic model analysis and the development of the walking diagram of the bipedal robot. Kinematics equations were derived, the joint angles were simulated and coded into Arduino board to be executed to the robot.

  14. An advantage of bipedal humanoid robot on the empathy generation: A neuroimaging study

    OpenAIRE

    MIURA, NAOKI; Sugiura, Motoaki; Takahashi, Makoto; Moridaira, Tomohisa; Miyamoto, Atsushi; Kuroki, Yoshihiro; Kawashima, Ryuta

    2008-01-01

    To determine the effect of robotic embodiment on human-robot interaction, we used functional magnetic resonance imaging (fMRI) to measure brain activity during the observation of emotionally positive or neutral actions performed by bipedal or wheel-drive humanoid robots. fMRI data from 30 participants were analyzed in the study. The results revealed that bipedal humanoid robot performing emotionally positive actions induced the activation of the left orbitofrontal cortex, which is associated ...

  15. Two walking gaits for a planar bipedal robot equipped with a four-bar mechanism for the knee joint

    OpenAIRE

    Hamon, Arnaud; Aoustin, Yannick; Caro, Stéphane

    2013-01-01

    International audience The design of a knee joint is a key issue in robotics and biomechanics to improve the compatibility between prosthesis and human movements, and to improve the bipedal robot performances. We propose a novel design for the knee joint of a planar bipedal robot, based on a four-bar linkage. The dynamic model of the planar bipedal robot is calculated. Two kinds of cyclic walking gaits are considered. The first gait is composed of successive single support phases with stan...

  16. Optimal walking gait with double support, simple support and impact for a bipedal robot equipped of four-bar knees

    OpenAIRE

    Hamon, Arnaud; Aoustin, Yannick

    2012-01-01

    International audience The design of a knee joint is a key issue in robotics and biomechanics to improve the compatibility between prosthesis and human movements and to improve the bipedal robot performances. We propose a novel design for the knee joint of a planar bipedal robot, based on a four-bar linkage. n previous a work, we have proved a bipedal robot with four-bar knees has a less energy consumption than a bipedal robot equipped of revolute knee joints for walking gates composed of ...

  17. Study of Bipedal Robot Walking Motion in Low Gravity: Investigation and Analysis

    Directory of Open Access Journals (Sweden)

    Aiman Omer

    2014-09-01

    Full Text Available Humanoid robots are expected to play a major role in the future of space and planetary exploration. Humanoid robot features could have many advantages, such as interacting with astronauts and the ability to perform human tasks. However, the challenge of developing such a robot is quite high due to many difficulties. One of the main difficulties is the difference in gravity. Most researchers in the field of bipedal locomotion have not paid much attention to the effect of gravity. Gravity is an important parameter in generating a bipedal locomotion trajectory. This research investigates the effect of gravity on bipedal walking motion. It focuses on low gravity, since most of the known planets and moons have lower gravity than earth. Further study is conducted on a full humanoid robot model walking subject to the moon’s gravity, and an approach for dealing with moon gravity is proposed in this paper.

  18. Walking trajectory optimization with rotation of the feet for a planar bipedal robot with four-bar knees

    OpenAIRE

    Hamon, Arnaud; Aoustin, Yannick

    2012-01-01

    International audience The design of a knee joint is a key issue in robotics and biomechanics to improve the compatibility between prosthesis and human movements and to improve the bipedal robot perfor- mances. We propose a novel design for the knee joint of a planar bipedal robot, based on a four-bar linkage. The dynamic model of the planar bipedal robot is calculated. We design walking ref- erence trajectories with double support phases, single support s with a flat contact of the foot i...

  19. 3D Vision in a Virtual Reality Robotics Environment

    OpenAIRE

    Schütz, Christian L.; Natonek, Emerico; Baur, Charles; Hügli, Heinz

    2009-01-01

    Virtual reality robotics (VRR) needs sensing feedback from the real environment. To show how advanced 3D vision provides new perspectives to fulfill these needs, this paper presents an architecture and system that integrates hybrid 3D vision and VRR and reports about experiments and results. The first section discusses the advantages of virtual reality in robotics, the potential of a 3D vision system in VRR and the contribution of a knowledge database, robust control and the combination of in...

  20. Functional Asymmetry in a Five-Link 3D Bipedal Walker

    OpenAIRE

    Gregg, Robert D.; Dhaher, Yasin; Lynch, Kevin M.

    2011-01-01

    This paper uses a symmetrical five-link 3D biped model to computationally investigate the cause, function, and benefit of gait asymmetry. We show that for a range of mass distributions, this model has asymmetric walking patterns between the left and right legs, which is due to a phenomenon known as period-doubling bifurcation. The ground reaction forces of each leg reflect different roles, roughly corresponding to support, propulsion, and motion control as proposed by the hypothesis of functi...

  1. Synthesis of adaptive impedance control for bipedal robot mechanisms

    Directory of Open Access Journals (Sweden)

    Petrović Milena

    2008-01-01

    Full Text Available The paper describes the impedance algorithm in locomotion of humanoid robot with proposed parameter modulation depending on the gate phase. The analysis shows influence of walking speed and foot elevation on regulator's parameters. Chosen criterion cares for footpath tracking and needed energy for that way of walking. The experiments give recommendation for impedance regulator tuning.

  2. 3-D Locomotion control for a biomimetic robot fish

    Institute of Scientific and Technical Information of China (English)

    Zhigang ZHANG; Shuo WANG; Min TAN

    2004-01-01

    This paper concerns with 3-D locomotion control methods for a biomimetic robot fish. The system architecture of the fish is firstly presented based on a physical model of carangiform fish. The robot fish has a flexible body, a rigid caudal fin and a pair of pectoral fins, driven by several servomotors. The motion control of the robot fish are then divided into speed control, orientation control, submerge control and transient motion control, corresponding algorithms are detailed respectively.Finally, experiments and analyses on a 4-1ink, radio-controlled robot fish prototype with 3-D locomotion show its good performance.

  3. Semantic 3D object maps for everyday robot manipulation

    CERN Document Server

    Rusu, Radu Bogdan

    2013-01-01

    The book written by Dr. Radu B. Rusu presents a detailed description of 3D Semantic Mapping in the context of mobile robot manipulation. As autonomous robotic platforms get more sophisticated manipulation capabilities, they also need more expressive and comprehensive environment models that include the objects present in the world, together with their position, form, and other semantic aspects, as well as interpretations of these objects with respect to the robot tasks.   The book proposes novel 3D feature representations called Point Feature Histograms (PFH), as well as frameworks for the acquisition and processing of Semantic 3D Object Maps with contributions to robust registration, fast segmentation into regions, and reliable object detection, categorization, and reconstruction. These contributions have been fully implemented and empirically evaluated on different robotic systems, and have been the original kernel to the widely successful open-source project the Point Cloud Library (PCL) -- see http://poi...

  4. Push recovery for the standing under-actuated bipedal robot using the hip strategy

    Institute of Scientific and Technical Information of China (English)

    Chao LI; Rong XIONG‡; Qiu-guo ZHU; Jun WU; Ya-liang WANG; Yi-ming HUANG

    2015-01-01

    This paper presents a control algorithm for push recovery, which particularly focuses on the hip strategy when an external disturbance is applied on the body of a standing under-actuated biped. By analyzing a simplified dynamic model of a bipedal robot in the stance phase, it is found that horizontal stability can be maintained with a suitably controlled torque applied at the hip. However, errors in the angle or angular velocity of body posture may appear, due to the dynamic coupling of the transla-tional and rotational motions. To solve this problem, different hip strategies are discussed for two cases when (1) external dis-turbance is applied on the center of mass (CoM) and (2) external torque is acting around the CoM, and a universal hip strategy is derived for most disturbances. Moreover, three torque primitives for the hip, depending on the type of disturbance, are designed to achieve translational and rotational balance recovery simultaneously. Compared with closed-loop control, the advantage of the open-loop methods of torque primitives lies in rapid response and reasonable performance. Finally, simulation studies of the push recovery of a bipedal robot are presented to demonstrate the effectiveness of the proposed methods.

  5. Light driven micro-robotics with holographic 3D tracking

    Science.gov (United States)

    Glückstad, Jesper

    2016-04-01

    We recently pioneered the concept of light-driven micro-robotics including the new and disruptive 3D-printed micro-tools coined Wave-guided Optical Waveguides that can be real-time optically trapped and "remote-controlled" in a volume with six-degrees-of-freedom. To be exploring the full potential of this new drone-like 3D light robotics approach in challenging microscopic geometries requires a versatile and real-time reconfigurable light coupling that can dynamically track a plurality of "light robots" in 3D to ensure continuous optimal light coupling on the fly. Our latest developments in this new and exciting area will be reviewed in this invited paper.

  6. 3D vision system for intelligent milking robot automation

    Science.gov (United States)

    Akhloufi, M. A.

    2013-12-01

    In a milking robot, the correct localization and positioning of milking teat cups is of very high importance. The milking robots technology has not changed since a decade and is based primarily on laser profiles for teats approximate positions estimation. This technology has reached its limit and does not allow optimal positioning of the milking cups. Also, in the presence of occlusions, the milking robot fails to milk the cow. These problems, have economic consequences for producers and animal health (e.g. development of mastitis). To overcome the limitations of current robots, we have developed a new system based on 3D vision, capable of efficiently positioning the milking cups. A prototype of an intelligent robot system based on 3D vision for real-time positioning of a milking robot has been built and tested under various conditions on a synthetic udder model (in static and moving scenarios). Experimental tests, were performed using 3D Time-Of-Flight (TOF) and RGBD cameras. The proposed algorithms permit the online segmentation of teats by combing 2D and 3D visual information. The obtained results permit the teat 3D position computation. This information is then sent to the milking robot for teat cups positioning. The vision system has a real-time performance and monitors the optimal positioning of the cups even in the presence of motion. The obtained results, with both TOF and RGBD cameras, show the good performance of the proposed system. The best performance was obtained with RGBD cameras. This latter technology will be used in future real life experimental tests.

  7. 3D Mesh Compression and Transmission for Mobile Robotic Applications

    Directory of Open Access Journals (Sweden)

    Bailin Yang

    2016-01-01

    Full Text Available Mobile robots are useful for environment exploration and rescue operations. In such applications, it is crucial to accurately analyse and represent an environment, providing appropriate inputs for motion planning in order to support robot navigation and operations. 2D mapping methods are simple but cannot handle multilevel or multistory environments. To address this problem, 3D mapping methods generate structural 3D representations of the robot operating environment and its objects by 3D mesh reconstruction. However, they face the challenge of efficiently transmitting those 3D representations to system modules for 3D mapping, motion planning, and robot operation visualization. This paper proposes a quality-driven mesh compression and transmission method to address this. Our method is efficient, as it compresses a mesh by quantizing its transformed vertices without the need to spend time constructing an a-priori structure over the mesh. A visual distortion function is developed to govern the level of quantization, allowing mesh transmission to be controlled under different network conditions or time constraints. Our experiments demonstrate how the visual quality of a mesh can be manipulated by the visual distortion function.

  8. Parallel and Cached Scan Matching for Robotic 3D Mapping

    OpenAIRE

    Nuechter, Andreas

    2009-01-01

    Intelligent autonomous acting of mobile robots in unstructured environments requires 3D maps. Since manual mapping is a tedious job, automatization of this job is necessary. Automatic, consistent volumetric modeling of environments requires a solution to the simultaneous localization and map building problem (SLAM problem). In 3D task is computationally expensive, since the environments are sampled with many data points with state of the art sensing technology. In ...

  9. Sensor Data Fusion for Body State Estimation in a Bipedal Robot and Its Feedback Control Application for Stable Walking

    Directory of Open Access Journals (Sweden)

    Ching-Pei Chen

    2015-02-01

    Full Text Available We report on a sensor data fusion algorithm via an extended Kalman filter for estimating the spatial motion of a bipedal robot. Through fusing the sensory information from joint encoders, a 6-axis inertial measurement unit and a 2-axis inclinometer, the robot’s body state at a specific fixed position can be yielded. This position is also equal to the CoM when the robot is in the standing posture suggested by the detailed CAD model of the robot. In addition, this body state is further utilized to provide sensory information for feedback control on a bipedal robot with walking gait. The overall control strategy includes the proposed body state estimator as well as the damping controller, which regulates the body position state of the robot in real-time based on instant and historical position tracking errors. Moreover, a posture corrector for reducing unwanted torque during motion is addressed. The body state estimator and the feedback control structure are implemented in a child-size bipedal robot and the performance is experimentally evaluated.

  10. Survey of Robot 3D Path Planning Algorithms

    Directory of Open Access Journals (Sweden)

    Liang Yang

    2016-01-01

    Full Text Available Robot 3D (three-dimension path planning targets for finding an optimal and collision-free path in a 3D workspace while taking into account kinematic constraints (including geometric, physical, and temporal constraints. The purpose of path planning, unlike motion planning which must be taken into consideration of dynamics, is to find a kinematically optimal path with the least time as well as model the environment completely. We discuss the fundamentals of these most successful robot 3D path planning algorithms which have been developed in recent years and concentrate on universally applicable algorithms which can be implemented in aerial robots, ground robots, and underwater robots. This paper classifies all the methods into five categories based on their exploring mechanisms and proposes a category, called multifusion based algorithms. For all these algorithms, they are analyzed from a time efficiency and implementable area perspective. Furthermore a comprehensive applicable analysis for each kind of method is presented after considering their merits and weaknesses.

  11. On extracting design principles from biology: II. Case study—the effect of knee direction on bipedal robot running efficiency

    International Nuclear Information System (INIS)

    Comparing the leg of an ostrich to that of a human suggests an important question to legged robot designers: should a robot's leg joint bend in the direction of running (‘forwards’) or opposite (‘backwards’)? Biological studies cannot answer this question for engineers due to significant differences between the biological and engineering domains. Instead, we investigated the inherent effect of joint bending direction on bipedal robot running efficiency by comparing energetically optimal gaits of a wide variety of robot designs sampled at random from a design space. We found that the great majority of robot designs have several locally optimal gaits with the knee bending backwards that are more efficient than the most efficient gait with the knee bending forwards. The most efficient backwards gaits do not exhibit lower touchdown losses than the most efficient forward gaits; rather, the improved efficiency of backwards gaits stems from lower torque and reduced motion at the hip. The reduced hip use of backwards gaits is enabled by the ability of the backwards knee, acting alone, to (1) propel the robot upwards and forwards simultaneously and (2) lift and protract the foot simultaneously. In the absence of other information, designers interested in building efficient bipedal robots with two-segment legs driven by electric motors should design the knee to bend backwards rather than forwards. Compared to common practices for choosing robot knee direction, application of this principle would have a strong tendency to improve robot efficiency and save design resources. (paper)

  12. Virtual Reality, 3D Stereo Visualization, and Applications in Robotics

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2006-01-01

    , while little can be found about the advantages of stereoscopic visualization in mobile robot tele-guide applications. This work investigates stereoscopic robot tele-guide under different conditions, including typical navigation scenarios and the use of synthetic and real images. This work also......The use of 3D stereoscopic visualization may provide a user with higher comprehension of remote environments in tele-operation when compared to 2D viewing. Works in the literature have demonstrated how stereo vision contributes to improve perception of some depth cues often for abstract tasks...

  13. 3D vision assisted flexible robotic assembly of machine components

    Science.gov (United States)

    Ogun, Philips S.; Usman, Zahid; Dharmaraj, Karthick; Jackson, Michael R.

    2015-12-01

    Robotic assembly systems either make use of expensive fixtures to hold components in predefined locations, or the poses of the components are determined using various machine vision techniques. Vision-guided assembly robots can handle subtle variations in geometries and poses of parts. Therefore, they provide greater flexibility than the use of fixtures. However, the currently established vision-guided assembly systems use 2D vision, which is limited to three degrees of freedom. The work reported in this paper is focused on flexible automated assembly of clearance fit machine components using 3D vision. The recognition and the estimation of the poses of the components are achieved by matching their CAD models with the acquired point cloud data of the scene. Experimental results obtained from a robot demonstrating the assembly of a set of rings on a shaft show that the developed system is not only reliable and accurate, but also fast enough for industrial deployment.

  14. High-Performance 3D Articulated Robot Display

    Science.gov (United States)

    Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Kurien, James A.; Abramyan, Lucy

    2011-01-01

    In the domain of telerobotic operations, the primary challenge facing the operator is to understand the state of the robotic platform. One key aspect of understanding the state is to visualize the physical location and configuration of the platform. As there is a wide variety of mobile robots, the requirements for visualizing their configurations vary diversely across different platforms. There can also be diversity in the mechanical mobility, such as wheeled, tracked, or legged mobility over surfaces. Adaptable 3D articulated robot visualization software can accommodate a wide variety of robotic platforms and environments. The visualization has been used for surface, aerial, space, and water robotic vehicle visualization during field testing. It has been used to enable operations of wheeled and legged surface vehicles, and can be readily adapted to facilitate other mechanical mobility solutions. The 3D visualization can render an articulated 3D model of a robotic platform for any environment. Given the model, the software receives real-time telemetry from the avionics system onboard the vehicle and animates the robot visualization to reflect the telemetered physical state. This is used to track the position and attitude in real time to monitor the progress of the vehicle as it traverses its environment. It is also used to monitor the state of any or all articulated elements of the vehicle, such as arms, legs, or control surfaces. The visualization can also render other sorts of telemetered states visually, such as stress or strains that are measured by the avionics. Such data can be used to color or annotate the virtual vehicle to indicate nominal or off-nominal states during operation. The visualization is also able to render the simulated environment where the vehicle is operating. For surface and aerial vehicles, it can render the terrain under the vehicle as the avionics sends it location information (GPS, odometry, or star tracking), and locate the vehicle

  15. Detection of Curved Robots using 3D Ultrasound.

    Science.gov (United States)

    Ren, Hongliang; Vasilyev, Nikolay V; Dupont, Pierre E

    2011-09-25

    Three-dimensional ultrasound can be an effective imaging modality for image-guided interventions since it enables visualization of both the instruments and the tissue. For robotic applications, its realtime frame rates create the potential for image-based instrument tracking and servoing. These capabilities can enable improved instrument visualization, compensation for tissue motion as well as surgical task automation. Continuum robots, whose shape comprises a smooth curve along their length, are well suited for minimally invasive procedures. Existing techniques for ultrasound tracking, however, are limited to straight, laparoscopic-type instruments and thus are not applicable to continuum robot tracking. Toward the goal of developing tracking algorithms for continuum robots, this paper presents a method for detecting a robot comprised of a single constant curvature in a 3D ultrasound volume. Computational efficiency is achieved by decomposing the six-dimensional circle estimation problem into two sequential three-dimensional estimation problems. Simulation and experiment are used to evaluate the proposed method. PMID:22229110

  16. Discrete-State-Based Vision Navigation Control Algorithm for One Bipedal Robot

    Directory of Open Access Journals (Sweden)

    Dunwen Wei

    2015-01-01

    Full Text Available Navigation with the specific objective can be defined by specifying desired timed trajectory. The concept of desired direction field is proposed to deal with such navigation problem. To lay down a principled discussion of the accuracy and efficiency of navigation algorithms, strictly quantitative definitions of tracking error, actuator effect, and time efficiency are established. In this paper, one vision navigation control method based on desired direction field is proposed. This proposed method uses discrete image sequences to form discrete state space, which is especially suitable for bipedal walking robots with single camera walking on a free-barrier plane surface to track the specific objective without overshoot. The shortest path method (SPM is proposed to design such direction field with the highest time efficiency. However, one improved control method called canonical piecewise-linear function (PLF is proposed. In order to restrain the noise disturbance from the camera sensor, the band width control method is presented to significantly decrease the error influence. The robustness and efficiency of the proposed algorithm are illustrated through a number of computer simulations considering the error from camera sensor. Simulation results show that the robustness and efficiency can be balanced by choosing the proper controlling value of band width.

  17. 3D Stereo Visualization for Mobile Robot Tele-Guide

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2006-01-01

    learning and decision performance. Works in the literature have demonstrated how stereo vision contributes to improve perception of some depth cues often for abstract tasks, while little can be found about the advantages of stereoscopic visualization in mobile robot tele-guide applications. This work...... intends to contribute to this aspect by investigating stereoscopic robot tele-guide under different conditions, including typical navigation scenarios and the use of synthetic and real images. The purpose of this work is also to investigate how user performance may vary when employing different display......The use of 3D stereoscopic visualization may provide a user with higher comprehension of remote environments in tele-operation when compared to 2D viewing. In particular, a higher perception of environment depth characteristics, spatial localization, remote ambient layout, as well as faster system...

  18. A Novel Design for Adjustable Stiffness Artificial Tendon for the Ankle Joint of a Bipedal Robot: Modeling & Simulation

    Directory of Open Access Journals (Sweden)

    Aiman Omer

    2015-12-01

    Full Text Available Bipedal humanoid robots are expected to play a major role in the future. Performing bipedal locomotion requires high energy due to the high torque that needs to be provided by its legs’ joints. Taking the WABIAN-2R as an example, it uses harmonic gears in its joint to increase the torque. However, using such a mechanism increases the weight of the legs and therefore increases energy consumption. Therefore, the idea of developing a mechanism with adjustable stiffness to be connected to the leg joint is introduced here. The proposed mechanism would have the ability to provide passive and active motion. The mechanism would be attached to the ankle pitch joint as an artificial tendon. Using computer simulations, the dynamical performance of the mechanism is analytically evaluated.

  19. A 3D world model builder with a mobile robot

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Faugeras, O. (INRIA, Valbonne (France))

    1992-08-01

    This article describes a system to incrementally build a world model with a mobile robot in an unknown environment. The model is, for the moment, segment based. A trinocular stereo system is used to build a local map about the environment. A global map is obtained by integrating a sequence of stereo frames taken when the robot navigates in the environment. The emphasis of this article is on the representation of the uncertainty of 3D segments from stereo and on the integration of segments from multiple views. The proposed representation is simple and very convenient to characterize the uncertainty of segment. A Kalman filter is used to merge matched line segments. An important characteristic of this integration strategy is that a segment observed by the stereo system corresponds only to one part of the segment in space, so the union of the different observations gives a better estimate on the segment in space. The authors have succeeded in integrating 35 stereo frames taken in their robot room.

  20. Integration of 3D vision based structure estimation and visual robot control

    OpenAIRE

    Prljaca, Naser

    1995-01-01

    Enabling robot manipulators to manipulate and/or recognise arbitrarily placed 3D objects under sensory control is one of the key issues in robotics. Such robot sensors should be capable of providing 3D information about objects in order to accomplish the above mentioned tasks. Such robot sensors should also provide the means for multisensor or multimeasurement integration. Finally, such 3D information should be efficiently used for performing desired tasks. This work develops a novel comp...

  1. SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion.

    Science.gov (United States)

    Bartlett, Nicholas W; Tolley, Michael T; Overvelde, Johannes T B; Weaver, James C; Mosadegh, Bobak; Bertoldi, Katia; Whitesides, George M; Wood, Robert J

    2015-07-10

    Roboticists have begun to design biologically inspired robots with soft or partially soft bodies, which have the potential to be more robust and adaptable, and safer for human interaction, than traditional rigid robots. However, key challenges in the design and manufacture of soft robots include the complex fabrication processes and the interfacing of soft and rigid components. We used multimaterial three-dimensional (3D) printing to manufacture a combustion-powered robot whose body transitions from a rigid core to a soft exterior. This stiffness gradient, spanning three orders of magnitude in modulus, enables reliable interfacing between rigid driving components (controller, battery, etc.) and the primarily soft body, and also enhances performance. Powered by the combustion of butane and oxygen, this robot is able to perform untethered jumping. PMID:26160940

  2. SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion.

    Science.gov (United States)

    Bartlett, Nicholas W; Tolley, Michael T; Overvelde, Johannes T B; Weaver, James C; Mosadegh, Bobak; Bertoldi, Katia; Whitesides, George M; Wood, Robert J

    2015-07-10

    Roboticists have begun to design biologically inspired robots with soft or partially soft bodies, which have the potential to be more robust and adaptable, and safer for human interaction, than traditional rigid robots. However, key challenges in the design and manufacture of soft robots include the complex fabrication processes and the interfacing of soft and rigid components. We used multimaterial three-dimensional (3D) printing to manufacture a combustion-powered robot whose body transitions from a rigid core to a soft exterior. This stiffness gradient, spanning three orders of magnitude in modulus, enables reliable interfacing between rigid driving components (controller, battery, etc.) and the primarily soft body, and also enhances performance. Powered by the combustion of butane and oxygen, this robot is able to perform untethered jumping.

  3. Inferring 3D Articulated Models for Box Packaging Robot

    CERN Document Server

    Yang, Heran; Cong, Matthew; Saxena, Ashutosh

    2011-01-01

    Given a point cloud, we consider inferring kinematic models of 3D articulated objects such as boxes for the purpose of manipulating them. While previous work has shown how to extract a planar kinematic model (often represented as a linear chain), such planar models do not apply to 3D objects that are composed of segments often linked to the other segments in cyclic configurations. We present an approach for building a model that captures the relation between the input point cloud features and the object segment as well as the relation between the neighboring object segments. We use a conditional random field that allows us to model the dependencies between different segments of the object. We test our approach on inferring the kinematic structure from partial and noisy point cloud data for a wide variety of boxes including cake boxes, pizza boxes, and cardboard cartons of several sizes. The inferred structure enables our robot to successfully close these boxes by manipulating the flaps.

  4. 3D position tracking for all-terrain robots

    OpenAIRE

    Lamon, Pierre; Siegwart, Roland

    2007-01-01

    Rough terrain robotics is a fast evolving field of research and a lot of effort is deployed towards enabling a greater level of autonomy for outdoor vehicles. Such robots find their application in scientific exploration of hostile environments like deserts, volcanoes, in the Antarctic or on other planets. They are also of high interest for search and rescue operations after natural or artificial disasters. The challenges to bring autonomy to all terrain rovers are wide. In particular, it requ...

  5. 3D position tracking for all-terrain robots

    OpenAIRE

    Lamon, Pierre

    2005-01-01

    Rough terrain robotics is a fast evolving field of research and a lot of effort is deployed towards enabling a greater level of autonomy for outdoor vehicles. Such robots find their application in scientific exploration of hostile environments like deserts, volcanoes, in the Antarctic or on other planets. They are also of high interest for search and rescue operations after natural or artificial disasters. The challenges to bring autonomy to all terrain rovers are wide. In particular, it requ...

  6. Real-time Stereoscopic 3D for E-Robotics Learning

    Directory of Open Access Journals (Sweden)

    Richard Y. Chiou

    2011-02-01

    Full Text Available Following the design and testing of a successful 3-Dimensional surveillance system, this 3D scheme has been implemented into online robotics learning at Drexel University. A real-time application, utilizing robot controllers, programmable logic controllers and sensors, has been developed in the “MET 205 Robotics and Mechatronics” class to provide the students with a better robotic education. The integration of the 3D system allows the students to precisely program the robot and execute functions remotely. Upon the students’ recommendation, polarization has been chosen to be the main platform behind the 3D robotic system. Stereoscopic calculations are carried out for calibration purposes to display the images with the highest possible comfort-level and 3D effect. The calculations are further validated by comparing the results with students’ evaluations. Due to the Internet-based feature, multiple clients have the opportunity to perform the online automation development. In the future, students, in different universities, will be able to cross-control robotic components of different types around the world. With the development of this 3D ERobotics interface, automation resources and robotic learning can be shared and enriched regardless of location.

  7. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics.

    Science.gov (United States)

    Stanton, M M; Trichet-Paredes, C; Sánchez, S

    2015-04-01

    This article will focus on recent reports that have applied three-dimensional (3D) printing for designing millimeter to micrometer architecture for robotic motility. The utilization of 3D printing has rapidly grown in applications for medical prosthetics and scaffolds for organs and tissue, but more recently has been implemented for designing mobile robotics. With an increase in the demand for devices to perform in fragile and confined biological environments, it is crucial to develop new miniaturized, biocompatible 3D systems. Fabrication of materials at different scales with different properties makes 3D printing an ideal system for creating frameworks for small-scale robotics. 3D printing has been applied for the design of externally powered, artificial microswimmers and studying their locomotive capabilities in different fluids. Printed materials have also been incorporated with motile cells for bio-hybrid robots capable of functioning by cell contraction and swimming. These 3D devices offer new methods of robotic motility for biomedical applications requiring miniature structures. Traditional 3D printing methods, where a structure is fabricated in an additive process from a digital design, and non-traditional 3D printing methods, such as lithography and molding, will be discussed.

  8. A new neural net approach to robot 3D perception and visuo-motor coordination

    Science.gov (United States)

    Lee, Sukhan

    1992-01-01

    A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.

  9. Using a robot head with a 3D face mask as a communication medium for telepresence

    OpenAIRE

    Gudmandsen, Magnus

    2015-01-01

    This thesis investigates the viability of a new communication medium for telepresence, namely a robotic head with a 3D face mask. In order to investigate this, a program was developed for an existing social robot, enabling the robot to be used as a device reflecting the facial movements of the operator. A study is performed with the operator located in front of a computer with a web camera, connected to speak through the robot to two interlocutors located in a room with the robot. This setup ...

  10. Humanoid Robot 3 -D Motion Simulation for Hardware Realization

    Institute of Scientific and Technical Information of China (English)

    CAO Xi; ZHAO Qun-fei; MA Pei-sun

    2007-01-01

    In this paper, three dimensions kinematics andkinetics simulation arc discussed for hardware realization ofa physical biped walking-chair robot. The direct and inverseclose-form kinematics solution of the biped walking-chairis deduced. Several gaits are realized with thekinematics solution, including walking straight on levelfloor, going up stair, squatting down and standing up. ZeroMoment Point(ZMP) equation is analyzed considering themovement of the crew. The simulated biped walking-chairrobot is used for mechanical design, gaits development andvalidation before they are tested on real robot.

  11. Enhancement of Online Robotics Learning Using Real-Time 3D Visualization Technology

    Directory of Open Access Journals (Sweden)

    Richard Chiou

    2010-06-01

    Full Text Available This paper discusses a real-time e-Lab Learning system based on the integration of 3D visualization technology with a remote robotic laboratory. With the emergence and development of the Internet field, online learning is proving to play a significant role in the upcoming era. In an effort to enhance Internet-based learning of robotics and keep up with the rapid progression of technology, a 3- Dimensional scheme of viewing the robotic laboratory has been introduced in addition to the remote controlling of the robots. The uniqueness of the project lies in making this process Internet-based, and remote robot operated and visualized in 3D. This 3D system approach provides the students with a more realistic feel of the 3D robotic laboratory even though they are working remotely. As a result, the 3D visualization technology has been tested as part of a laboratory in the MET 205 Robotics and Mechatronics class and has received positive feedback by most of the students. This type of research has introduced a new level of realism and visual communications to online laboratory learning in a remote classroom.

  12. Vision-Guided Robot Control for 3D Object Recognition and Manipulation

    OpenAIRE

    S. Q. Xie; Haemmerle, E.; Cheng, Y; Gamage, P

    2008-01-01

    Research into a fully automated vision-guided robot for identifying, visualising and manipulating 3D objects with complicated shapes is still undergoing major development world wide. The current trend is toward the development of more robust, intelligent and flexible vision-guided robot systems to operate in highly dynamic environments. The theoretical basis of image plane dynamics and robust image-based robot systems capable of manipulating moving objects still need further research. Researc...

  13. Labeling 3D scenes for Personal Assistant Robots

    OpenAIRE

    Koppula, Hema Swetha; Anand, Abhishek; Joachims, Thorsten; Saxena, Ashutosh

    2011-01-01

    Inexpensive RGB-D cameras that give an RGB image together with depth data have become widely available. We use this data to build 3D point clouds of a full scene. In this paper, we address the task of labeling objects in this 3D point cloud of a complete indoor scene such as an office. We propose a graphical model that captures various features and contextual relations, including the local visual appearance and shape cues, object co-occurrence relationships and geometric relationships. With a...

  14. Light-driven micro-robotics with holographic 3D tracking

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2016-01-01

    of this new drone-like 3D light robotics approach in challenging microscopic geometries requires a versatile and real-time reconfigurable light coupling that can dynamically track a plurality of “light robots” in 3D to ensure continuous optimal light coupling on the fly. Our latest developments in this new...

  15. 3D Mapping of indoor environments using RGB-D Kinect camera for robotic mobile application

    OpenAIRE

    Perez Bonnal, Emmanuel

    2010-01-01

    RGB-D cameras are new, low cost, sensors that provide depth information for every RGB pixel acquired. Combining this information, it is possible to develop 3D perception in an indoor environment. In this paper we investigate how this technology can be used for building 3D maps. Such maps can gain more importance in the context of mobile robotics, as it can be used for many applications such as robot navigation. We present how, knowing the robot's pose, it is possible to build such maps and ex...

  16. Using the Functional Reach Test for Probing the Static Stability of Bipedal Standing in Humanoid Robots Based on the Passive Motion Paradigm

    Directory of Open Access Journals (Sweden)

    Jacopo Zenzeri

    2013-01-01

    Full Text Available The goal of this paper is to analyze the static stability of a computational architecture, based on the Passive Motion Paradigm, for coordinating the redundant degrees of freedom of a humanoid robot during whole-body reaching movements in bipedal standing. The analysis is based on a simulation study that implements the Functional Reach Test, originally developed for assessing the danger of falling in elderly people. The study is carried out in the YARP environment that allows realistic simulations with the iCub humanoid robot.

  17. STATICS ANALYSIS AND OPENGL BASED 3D SIMULATION OF COLLABORATIVE RECONFIGURABLE PLANETARY ROBOTS

    Institute of Scientific and Technical Information of China (English)

    Zhang Zheng; Ma Shugen; Li Bin; Zhang Liping; Cao Binggang

    2006-01-01

    Objective To study mechanics characteristics of two cooperative reconfigurable planetary robots when they get across an obstacle, and to find out the relationship between the maximum height of a stair with the configuration of the two-robot, and to find some restrictions of kinematics for the cooperation. Methods Multirobot cooperation theory is used in the whole study process. Inverse kinematics of the robot is used to form a desired configuration in the cooperation process. Static equations are established to analyze the relations between the friction factor, the configuration of robots and the maximum height of a stair. Kinematics analysis is used to find the restrictions of the two collaborative robots in position, velocity and acceleration. Results 3D simulation shows that the two cooperative robots can climb up a stair under the condition of a certain height and a certain friction factor between robot wheel and the surface of the stair. Following the restrictions of kinematics, the climbing mission is fulfilled successfully and smoothly. Conclusion The maximum height of a stair, which the two cooperative robots can climb up, is involved in the configuration of robots, friction factor between the stair and the robots. The most strict restriction of the friction factor does not appear in the horizontal position. In any case, the maximum height is smaller than half of the distance between the centroid of robot1 with the centroid of robot2. However, the height can be higher than the radius of one robot wheel, which profit from the collaboration.

  18. Using Multi-Modal 3D Contours and Their Relations for Vision and Robotics

    DEFF Research Database (Denmark)

    Baseski, Emre; Pugeault, Nicolas; Kalkan, Sinan;

    2010-01-01

    In this work, we make use of 3D contours and relations between them (namely, coplanarity, cocolority, distance and angle) for four different applications in the area of computer vision and vision-based robotics. Our multi-modal contour representation covers both geometric and appearance information....... We show the potential of reasoning with global entities in the context of visual scene analysis for driver assistance, depth prediction, robotic grasping and grasp learning. We argue that, such 3D global reasoning processes complement widely-used 2D local approaches such as bag-of-features since 3D...

  19. Labeling 3D scenes for Personal Assistant Robots

    CERN Document Server

    Koppula, Hema Swetha; Joachims, Thorsten; Saxena, Ashutosh

    2011-01-01

    Inexpensive RGB-D cameras that give an RGB image together with depth data have become widely available. We use this data to build 3D point clouds of a full scene. In this paper, we address the task of labeling objects in this 3D point cloud of a complete indoor scene such as an office. We propose a graphical model that captures various features and contextual relations, including the local visual appearance and shape cues, object co-occurrence relationships and geometric relationships. With a large number of object classes and relations, the model's parsimony becomes important and we address that by using multiple types of edge potentials. The model admits efficient approximate inference, and we train it using a maximum-margin learning approach. In our experiments over a total of 52 3D scenes of homes and offices (composed from about 550 views, having 2495 segments labeled with 27 object classes), we get a performance of 84.06% in labeling 17 object classes for offices, and 73.38% in labeling 17 object classe...

  20. 3D reconstruction of worn parts for flexible remanufacture based on robotic arc welding

    Institute of Scientific and Technical Information of China (English)

    Yin Ziqiang; Zhang Guangjun; Gao Hongming; Wu Lin

    2010-01-01

    3D reconstruction of worn parts is the foundation for remanufacturing system based on robotic arc welding,because it can provide 3D geometric information for robot task plan.In this investigation,a nocwl 3D reconstruction system based on linear structured light vision sensing is developed,This system hardware consists of a MTC368-CB CCD camera,a MLH-645laser projector and a DH-CG300 image grabbing card.This system software is developed to control the image data capture.In order to reconstruct the 3D geometric information from the captured image,a two steps rapid calibration algorithm is proposed.The 3D reconstruction experiment shows a satisfactory result.

  1. Real time virtual reality 3D animation and control system for nuclear service robotics

    International Nuclear Information System (INIS)

    The ROSACAD robotic control system developed by Westinghouse Electric Corporation provides a robot operator with real time 3D virtual reality animation of the robot in its environment and provides on-line look ahead collision avoidance. The operator interface is ideal for systems that use teleoperation, or those in which the robot's work envelope is congested with many obstacles. The operations software uses object-oriented coding, which allows easy extension to new applications and is specifically design to integrate teleoperation interpersed with autonomous sequences. Any robot and environment can he modeled through the use of the ROBCAD solid modeling software, including the presence of moving obstacles. ROSACAD is a generic interface and control system that has beer applied in many diverse robotic systems ranging from nuclear steam generator service arms to pipe crawlers. (authors)

  2. Performance Comparison of a Planar Bipedal Robot with Rigid and Compliant Legs

    NARCIS (Netherlands)

    Jafarian, Matin; Oort, van Gijs; Carloni, Raffaella; Stramigioli, Stefano

    2011-01-01

    The purpose of this work is to study the effect of placing passive storage elements (springs) along the robot legs on its performance. We first present the model of a planar passive dynamic walker with compliant ground contact model, then replace its rigid legs with compliant legs. Simulation result

  3. Robot-assisted 3D-TRUS guided prostate brachytherapy: System integration and validation

    International Nuclear Information System (INIS)

    Current transperineal prostate brachytherapy uses transrectal ultrasound (TRUS) guidance and a template at a fixed position to guide needles along parallel trajectories. However, pubic arch interference (PAI) with the implant path obstructs part of the prostate from being targeted by the brachytherapy needles along parallel trajectories. To solve the PAI problem, some investigators have explored other insertion trajectories than parallel, i.e., oblique. However, parallel trajectory constraints in current brachytherapy procedure do not allow oblique insertion. In this paper, we describe a robot-assisted, three-dimensional (3D) TRUS guided approach to solve this problem. Our prototype consists of a commercial robot, and a 3D TRUS imaging system including an ultrasound machine, image acquisition apparatus and 3D TRUS image reconstruction, and display software. In our approach, we use the robot as a movable needle guide, i.e., the robot positions the needle before insertion, but the physician inserts the needle into the patient's prostate. In a later phase of our work, we will include robot insertion. By unifying the robot, ultrasound transducer, and the 3D TRUS image coordinate systems, the position of the template hole can be accurately related to 3D TRUS image coordinate system, allowing accurate and consistent insertion of the needle via the template hole into the targeted position in the prostate. The unification of the various coordinate systems includes two steps, i.e., 3D image calibration and robot calibration. Our testing of the system showed that the needle placement accuracy of the robot system at the 'patient's' skin position was 0.15 mm±0.06 mm, and the mean needle angulation error was 0.07 deg. . The fiducial localization error (FLE) in localizing the intersections of the nylon strings for image calibration was 0.13 mm, and the FLE in localizing the divots for robot calibration was 0.37 mm. The fiducial registration error for image calibration was 0

  4. Teleoperation of a robot manipulator from 3D human hand-arm motion

    Science.gov (United States)

    Kofman, Jonathan; Verma, Siddharth; Wu, Xianghai; Luu, Timothy

    2003-10-01

    The control of a robot manipulator by a human operator is often necessary in unstructured dynamic environments with unfamiliar objects. Remote teleoperation is required when human presence at the robot site is undesirable or difficult, such as in handling hazardous materials and operating in dangerous or inaccessible environments. Previous approaches have employed mechanical or other contacting interfaces which require unnatural motions for object manipulation tasks or hinder dexterous human motion. This paper presents a non-contacting method of teleoperating a robot manipulator by having the human operator perform the 3D human hand-arm motion that would naturally be used to compete an object manipulation task and tracking the motion with a stereo-camera system at a local site. The 3D human hand-arm motion is reconstructed at the remote robot site and is used to control the position and orientation of the robot manipulator end-effector in real-time. Images captured of the robot interacting with objects at the remote site provide visual feedback to the human operator. Tests in teleoperation of the robot manipulator have demonstrated the ability of the human to carry out object manipulator tasks remotely and the teleoperated robot manipulator system to copy human-arm motions in real-time.

  5. Compensation of errors in robot machining with a parallel 3D-piezo compensation mechanism

    OpenAIRE

    Schneider, Ulrich; Drust, Manuel; Puzik, Arnold; Verl, Alexander

    2013-01-01

    This paper proposes an approach for a 3D-Piezo Compensation Mechanism unit that is capable of fast and accurate adaption of the spindle position to enhance machining by robots. The mechanical design is explained which focuses on low mass, good stiffness and high bandwidth in order to allow compensating for errors beyond the bandwidth of the robot. In addition to previous works [7] and [9], an advanced actuation design is presented enabling movements in three translational axes allowing a work...

  6. Robot navigation in cluttered 3-D environments using preference-based fuzzy behaviors.

    Science.gov (United States)

    Shi, Dongqing; Collins, Emmanuel G; Dunlap, Damion

    2007-12-01

    Autonomous navigation systems for mobile robots have been successfully deployed for a wide range of planar ground-based tasks. However, very few counterparts of previous planar navigation systems were developed for 3-D motion, which is needed for both unmanned aerial and underwater vehicles. A novel fuzzy behavioral scheme for navigating an unmanned helicopter in cluttered 3-D spaces is developed. The 3-D navigation problem is decomposed into several identical 2-D navigation subproblems, each of which is solved by using preference-based fuzzy behaviors. Due to the shortcomings of vector summation during the fusion of the 2-D subproblems, instead of directly outputting steering subdirections by their own defuzzification processes, the intermediate preferences of the subproblems are fused to create a 3-D solution region, representing degrees of preference for the robot movement. A new defuzzification algorithm that steers the robot by finding the centroid of a 3-D convex region of maximum volume in the 3-D solution region is developed. A fuzzy speed-control system is also developed to ensure efficient and safe navigation. Substantial simulations have been carried out to demonstrate that the proposed algorithm can smoothly and effectively guide an unmanned helicopter through unknown and cluttered urban and forest environments.

  7. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera.

    Science.gov (United States)

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-01-01

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots.

  8. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera

    Directory of Open Access Journals (Sweden)

    Chun-Tang Chao

    2016-03-01

    Full Text Available In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots.

  9. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera.

    Science.gov (United States)

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-03-25

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots.

  10. A volumetric sensor for real-time 3D mapping and robot navigation

    Science.gov (United States)

    Fournier, Jonathan; Ricard, Benoit; Laurendeau, Denis

    2006-05-01

    The use of robots for (semi-) autonomous operations in complex terrains such as urban environments poses difficult mobility, mapping, and perception challenges. To be able to work efficiently, a robot should be provided with sensors and software such that it can perceive and analyze the world in 3D. Real-time 3D sensing and perception in this operational context are paramount. To address these challenges, DRDC Valcartier has developed over the past years a compact sensor that combines a wide baseline stereo camera and a laser scanner with a full 360 degree azimuth and 55 degree elevation field of view allowing the robot to view and manage overhang obstacles as well as obstacles at ground level. Sensing in 3D is common but to efficiently navigate and work in complex terrain, the robot should also perceive, decide and act in three dimensions. Therefore, 3D information should be preserved and exploited in all steps of the process. To achieve this, we use a multiresolution octree to store the acquired data, allowing mapping of large environments while keeping the representation compact and memory efficient. Ray tracing is used to build and update the 3D occupancy model. This model is used, via a temporary 2.5D map, for navigation, obstacle avoidance and efficient frontier-based exploration. This paper describes the volumetric sensor concept, describes its design features and presents an overview of the 3D software framework that allows 3D information persistency through all computation steps. Simulation and real-world experiments are presented at the end of the paper to demonstrate the key elements of our approach.

  11. Rotation symmetry axes and the quality index in a 3D octahedral parallel robot manipulator system

    OpenAIRE

    Tanev, T. K.; Rooney, J.

    2002-01-01

    The geometry of a 3D octahedral parallel robot manipulator system is specified in terms of two rigid octahedral structures (the fixed and moving platforms) and six actuation legs. The symmetry of the system is exploited to determine the behaviour of (a new version of) the quality index for various motions. The main results are presented graphically.

  12. Towards a Stable Robotic Object Manipulation Through 2D-3D Features Tracking

    Directory of Open Access Journals (Sweden)

    Sorin M. Grigorescu

    2013-04-01

    Full Text Available In this paper, a new object tracking system is proposed to improve the object manipulation capabilities of service robots. The goal is to continuously track the state of the visualized environment in order to send visual information in real time to the path planning and decision modules of the robot; that is, to adapt the movement of the robotic system according to the state variations appearing in the imaged scene. The tracking approach is based on a probabilistic collaborative tracking framework developed around a 2D patch‐based tracking system and a 2D‐3D point features tracker. The real‐time visual information is composed of RGB‐D data streams acquired from state‐of‐the‐art structured light sensors. For performance evaluation, the accuracy of the developed tracker is compared to a traditional marker‐based tracking system which delivers 3D information with respect to the position of the marker.

  13. 3-D world modeling based on combinatorial geometry for autonomous robot navigation

    International Nuclear Information System (INIS)

    In applications of robotics to surveillance and mapping at nuclear facilities the scene to be described is three-dimensional. Using range data a 3-D model of the environment can be built. First, each measured point on the object surface is surrounded by a solid sphere with a radius determined by the range to that point. Then the 3-D shapes of the visible surfaces are obtained by taking the (Boolean) union of the spheres. Using this representation distances to boundary surfaces can be efficiently calculated. This feature is particularly useful for navigation purposes. The efficiency of the proposed approach is illustrated by a simulation of a spherical robot navigating in a 3-D room with static obstacles

  14. Modification and Actuator Minimization of the Hip Leg Joint in a Bipedal Robot: A Proposed Design

    Directory of Open Access Journals (Sweden)

    Nirmalya Tripathi

    2014-12-01

    Full Text Available In recent times, there have been numeric applications of Biped Robots. In this paper, a proposed upper leg hip design of a biped was developed taking cost reduction and optimization as factors for consideration. The proposed system introduces a novel method which consists of a vibration reduction (VR DC stepper motor, microcontroller, microprocessor and gearing arrangement. The program in the microprocessor is so designed that it gives a fixed number of cycles/steps to the VR DC stepper motor in clockwise and thereafter in anti-clockwise direction. This turning movement can then be transmitted to the gearing system which precisely moves one upper leg when the VR DC stepper motor moves in clockwise direction, while the other upper leg remains static, and vice-versa. It has been observed that this new proposed system may reduce the cost overhead, weight and the energy consumption incurred by working on a single VR DC stepper motor while conventionally two stepper motors are used to give the motion of the two upper legs in a biped.

  15. Stability and Control of Constrained Three-Dimensional Robotic Systems with Application to Bipedal Postural Movements

    Science.gov (United States)

    Kallel, Hichem

    Three classes of postural adjustments are investigated with the view of a better understanding of the control mechanisms involved in human movement. The control mechanisms and responses of human or computer models to deliberately induced disturbances in postural adjustments are the focus of this dissertation. The classes of postural adjustments are automatic adjustments, (i.e. adjustments not involving voluntary deliberate movement), adjustments involving imposition of constraints for the purpose of maintaining support forces, and adjustments involving violation and imposition of constraints for the purpose of maintaining balance, (i.e. taking one or more steps). For each class, based on the physiological attributes of the control mechanisms in human movements, control strategies are developed to synthesize the desired postural response. The control strategies involve position and velocity feedback control, on line relegation control, and pre-stored trajectory control. Stability analysis for constrained and unconstrained maneuvers is carried out based on Lyapunov stability theorems. The analysis is based on multi-segment biped robots. Depending on the class of postural adjustments, different biped models are developed. An eight-segment three dimensional biped model is formulated for the study of automatic adjustments and adjustments for balance. For the study of adjustments for support, a four segment lateral biped model is considered. Muscle synergies in automatic adjustments are analyzed based on a three link six muscle system. The muscle synergies considered involve minimal muscle number and muscle co-activation. The role of active and passive feedback in these automatic adjustments is investigated based on the specified stiffness and damping of the segments. The effectiveness of the control strategies and the role of muscle synergies in automatic adjustments are demonstrated by a number of digital computer simulations.

  16. An FPGA Implementation of a Robot Control System with an Integrated 3D Vision System

    Directory of Open Access Journals (Sweden)

    Yi-Ting Chen

    2015-05-01

    Full Text Available Robot decision making and motion control are commonly based on visual information in various applications. Position-based visual servo is a technique for vision-based robot control, which operates in the 3D workspace, uses real-time image processing to perform tasks of feature extraction, and returns the pose of the object for positioning control. In order to handle the computational burden at the vision sensor feedback, we design a FPGA-based motion-vision integrated system that employs dedicated hardware circuits for processing vision processing and motion control functions. This research conducts a preliminary study to explore the integration of 3D vision and robot motion control system design based on a single field programmable gate array (FPGA chip. The implemented motion-vision embedded system performs the following functions: filtering, image statistics, binary morphology, binary object analysis, object 3D position calculation, robot inverse kinematics, velocity profile generation, feedback counting, and multiple-axes position feedback control.

  17. Efficient Reactive Navigation with Exact Collision Determination for 3D Robot Shapes

    Directory of Open Access Journals (Sweden)

    Mariano Jaimez

    2015-05-01

    Full Text Available This paper presents a reactive navigator for wheeled mobile robots moving on a flat surface which takes into account both the actual 3D shape of the robot and the 3D surrounding obstacles. The robot volume is modelled by a number of prisms consecutive in height, and the detected obstacles, which can be provided by different kinds of range sensor, are segmented into these heights. Then, the reactive navigation problem is tackled by a number of concurrent 2D navigators, one for each prism, which are consistently and efficiently combined to yield an overall solution. Our proposal for each 2D navigator is based on the concept of the “Parameterized Trajectory Generator” which models the robot shape as a polygon and embeds its kinematic constraints into different motion models. Extensive testing has been conducted in office-like and real house environments, covering a total distance of 18.5 km, to demonstrate the reliability and effectiveness of the proposed method. Moreover, additional experiments are performed to highlight the advantages of a 3D-aware reactive navigator. The implemented code is available under an open-source licence.

  18. Planning and Control for Passive Dynamics Based Walking of 3D Biped Robots

    Institute of Scientific and Technical Information of China (English)

    Xiang Luo; Wenlong Xu

    2012-01-01

    Efficient walking is one of the main goals of research on biped robots.Passive Dynamics Based Walking (PDBW) has been proven to be an efficient pattern in numerous previous approaches to 2D biped walking.The goal of this study is to develop a feasible method for the application of PDBW to 3D robots.First a hybrid control method is presented,where a previously proposed two-point-foot walking pattern is employed to generate a PDBW gait in the sagittal plane and,in the frontal plane,a systematic balance control algorithm is applied including online planning of the landing point of the swing leg and feedback control of the stance foot.Then a multi-space planning structure is proposed to implement the proposed method on a 13-link 3D robot.Related kinematics and planning details of the robot are presented.Furthermore,a simulation of the 13-link biped robot verifies that stable and highly efficient walking can be achieved by the proposed control method.In addition,a number of features of the biped walking,including the transient powers and torques of the joints are explored.

  19. An FPGA Implementation of a Robot Control System with an Integrated 3D Vision System

    OpenAIRE

    Yi-Ting Chen; Ching-Long Shih; Guan-Ting Chen

    2015-01-01

    Robot decision making and motion control are commonly based on visual information in various applications. Position-based visual servo is a technique for vision-based robot control, which operates in the 3D workspace, uses real-time image processing to perform tasks of feature extraction, and returns the pose of the object for positioning control. In order to handle the computational burden at the vision sensor feedback, we design a FPGA-based motion-vision integrated system that employs dedi...

  20. Informed Design to Robotic Production Systems; Developing Robotic 3D Printing System for Informed Material Deposition

    NARCIS (Netherlands)

    Mostafavi, S.; Bier, H.; Bodea, S.; Anton, A.M.

    2015-01-01

    This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out resul

  1. Fault-tolerant 3D Mapping with Application to an Orchard Robot

    DEFF Research Database (Denmark)

    Blas, Morten Rufus; Blanke, Mogens; Rusu, Radu Bogan;

    2009-01-01

    In this paper we present a geometric reasoning method for dealing with noise as well as faults present in 3D depth maps. These maps are acquired using stereo-vision sensors, but our framework makes no assumption about the origin of the underlying data. The method is based on observations made...... of comprehensive 3D maps for an agricultural robot operating in an orchard....... on the environment from dierent camera poses (viewpoints), where the occupied space as well as uncertainties in the range measurement are modelled using dynamic octree structures. This scheme allows us to detect and diagnose faulty range measurements in an ecient manner. We present results on the acquisition...

  2. Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots.

    Science.gov (United States)

    Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta

    2010-01-01

    This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.

  3. Multi-Camera Sensor System for 3D Segmentation and Localization of Multiple Mobile Robots

    Directory of Open Access Journals (Sweden)

    Cristina Losada

    2010-04-01

    Full Text Available This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space. The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.

  4. 3D vision based on PMD-technology for mobile robots

    Science.gov (United States)

    Roth, Hubert J.; Schwarte, Rudolf; Ruangpayoongsak, Niramon; Kuhle, Joerg; Albrecht, Martin; Grothof, Markus; Hess, Holger

    2003-09-01

    A series of micro-robots (MERLIN: Mobile Experimental Robots for Locomotion and Intelligent Navigation) has been designed and implemented for a broad spectrum of indoor and outdoor tasks on basis of standardized functional modules like sensors, actuators, communication by radio link. The sensors onboard on the MERLIN robot can be divided into two categories: internal sensors for low-level control and for measuring the state of the robot and external sensors for obstacle detection, modeling of the environment and position estimation and navigation of the robot in a global co-ordinate system. The special emphasis of this paper is to describe the capabilities of MERLIN for obstacle detection, targets detection and for distance measurement. Besides ultrasonic sensors a new camera based on PMD-technology is used. This Photonic Mixer Device (PMD) represents a new electro-optic device that provides a smart interface between the world of incoherent optical signals and the world of their electronic signal processing. This PMD-technology directly enables 3D-imaging by means of the time-of-flight (TOF) principle. It offers an extremely high potential for new solutions in the robotics application field. The PMD-Technology opens up amazing new perspectives for obstacle detection systems, target acquisition as well as mapping of unknown environments.

  5. 3D modelling of leaves from color and ToF data for robotized plant measuring

    OpenAIRE

    Alenya G.; Dellen B.; Torras C.

    2011-01-01

    Supervision of long-lasting extensive botanic experiments is a promising robotic application that some recent technological advances have made feasible. Plant modelling for this application has strong demands, particularly in what concerns 3D information gathering and speed. This paper shows that Time-of-Flight (ToF) cameras achieve a good compromise between both demands, providing a suitable complement to color vision. A new method is proposed to segment plant images into their composite sur...

  6. 3-D ultrasound-guided robotic needle steering in biological tissue.

    Science.gov (United States)

    Adebar, Troy K; Fletcher, Ashley E; Okamura, Allison M

    2014-12-01

    Robotic needle steering systems have the potential to greatly improve medical interventions, but they require new methods for medical image guidance. Three-dimensional (3-D) ultrasound is a widely available, low-cost imaging modality that may be used to provide real-time feedback to needle steering robots. Unfortunately, the poor visibility of steerable needles in standard grayscale ultrasound makes automatic segmentation of the needles impractical. A new imaging approach is proposed, in which high-frequency vibration of a steerable needle makes it visible in ultrasound Doppler images. Experiments demonstrate that segmentation from this Doppler data is accurate to within 1-2 mm. An image-guided control algorithm that incorporates the segmentation data as feedback is also described. In experimental tests in ex vivo bovine liver tissue, a robotic needle steering system implementing this control scheme was able to consistently steer a needle tip to a simulated target with an average error of 1.57 mm. Implementation of 3-D ultrasound-guided needle steering in biological tissue represents a significant step toward the clinical application of robotic needle steering.

  7. Automatic 3-D Optical Detection on Orientation of Randomly Oriented Industrial Parts for Rapid Robotic Manipulation

    Directory of Open Access Journals (Sweden)

    Liang-Chia Chen

    2012-12-01

    Full Text Available This paper proposes a novel method employing a developed 3-D optical imaging and processing algorithm for accurate classification of an object’s surface characteristics in robot pick and place manipulation. In the method, 3-D geometry of industrial parts can be rapidly acquired by the developed one-shot imaging optical probe based on Fourier Transform Profilometry (FTP by using digital-fringe projection at a camera’s maximum sensing speed. Following this, the acquired range image can be effectively segmented into three surface types by classifying point clouds based on the statistical distribution of the normal surface vector of each detected 3-D point, and then the scene ground is reconstructed by applying least squares fitting and classification algorithms. Also, a recursive search process incorporating the region-growing algorithm for registering homogeneous surface regions has been developed. When the detected parts are randomly overlapped on a workbench, a group of defined 3-D surface features, such as surface areas, statistical values of the surface normal distribution and geometric distances of defined features, can be uniquely recognized for detection of the part’s orientation. Experimental testing was performed to validate the feasibility of the developed method for real robotic manipulation.

  8. 3D Virtual Glove for Data Logging and Pick and Place Robot

    Directory of Open Access Journals (Sweden)

    Prasanna Muley

    2014-03-01

    Full Text Available Traditional interaction devices such as mouse and keyboard do not adapt very well to 3D environments, since they were not ergonomically designed for it [1]. The user may be standing or in movement and these devices were projected to work on desks. To solve such problems it has been designed a Accelerometer based 3D virtual glove which can be used in various robotic applications [1]. In this project it can be designed a Pick and Place robot which will follow the 3D glove worn by the user. User can design UP, DOWN, LEFT, RIGHT, PICK and PLACE actions via wireless glove. Moreover, in the current interaction model for immersive environments, which is based on wands and 3D mice, a change of context is necessary every time to execute a non-immersive task. These constant context changes from immersive to 2D desktops introduce a rupture in the user interaction with the application [3]. The objective of this work is to develop a device that maps a touch interface in a virtual reality immersive environment. In order to interact in3D virtual reality immersive environments a wireless glove (v-Glove was created, which has two main functionalities: tracking the position of the user’s index finger and vibrate the fingertip when it reaches an area mapped in the interaction space to simulate a touch feeling. Quantitative and qualitative analysis were performed with users to evaluate the v-Glove, comparing it with a gyroscopic 3D mouse [2]. This project is ideally suited for critical applications such as Gas plants, Chemical Plants, Nuclear reactors and for hazardous applications such as Coal mines, Sulphur mines, under sea tunnels Oil mints etc

  9. Development of a Stereo Vision Measurement System for a 3D Three-Axial Pneumatic Parallel Mechanism Robot Arm

    OpenAIRE

    Chien-Lun Hou; Hao-Ting Lin; Mao-Hsiung Chiang

    2011-01-01

    In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epip...

  10. Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots.

    Science.gov (United States)

    Umedachi, T; Vikas, V; Trimmer, B A

    2016-03-10

    Robots that can easily interact with humans and move through natural environments are becoming increasingly essential as assistive devices in the home, office and hospital. These machines need to be safe, effective, and easy to control. One strategy towards accomplishing these goals is to build the robots using soft and flexible materials to make them much more approachable and less likely to damage their environment. A major challenge is that comparatively little is known about how best to design, fabricate and control deformable machines. Here we describe the design, fabrication and control of a novel soft robotic platform (Softworms) as a modular device for research, education and public outreach. These robots are inspired by recent neuromechanical studies of crawling and climbing by larval moths and butterflies (Lepidoptera, caterpillars). Unlike most soft robots currently under development, the Softworms do not rely on pneumatic or fluidic actuators but are electrically powered and actuated using either shape-memory alloy microcoils or motor tendons, and they can be modified to accept other muscle-like actuators such as electroactive polymers. The technology is extremely versatile, and different designs can be quickly and cheaply fabricated by casting elastomeric polymers or by direct 3D printing. Softworms can crawl, inch or roll, and they are steerable and even climb steep inclines. Softworms can be made in any shape but here we describe modular and monolithic designs requiring little assembly. These modules can be combined to make multi-limbed devices. We also describe two approaches for controlling such highly deformable structures using either model-free state transition-reward matrices or distributed, mechanically coupled oscillators. In addition to their value as a research platform, these robots can be developed for use in environmental, medical and space applications where cheap, lightweight and shape-changing deformable robots will provide new

  11. Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots.

    Science.gov (United States)

    Umedachi, T; Vikas, V; Trimmer, B A

    2016-04-01

    Robots that can easily interact with humans and move through natural environments are becoming increasingly essential as assistive devices in the home, office and hospital. These machines need to be safe, effective, and easy to control. One strategy towards accomplishing these goals is to build the robots using soft and flexible materials to make them much more approachable and less likely to damage their environment. A major challenge is that comparatively little is known about how best to design, fabricate and control deformable machines. Here we describe the design, fabrication and control of a novel soft robotic platform (Softworms) as a modular device for research, education and public outreach. These robots are inspired by recent neuromechanical studies of crawling and climbing by larval moths and butterflies (Lepidoptera, caterpillars). Unlike most soft robots currently under development, the Softworms do not rely on pneumatic or fluidic actuators but are electrically powered and actuated using either shape-memory alloy microcoils or motor tendons, and they can be modified to accept other muscle-like actuators such as electroactive polymers. The technology is extremely versatile, and different designs can be quickly and cheaply fabricated by casting elastomeric polymers or by direct 3D printing. Softworms can crawl, inch or roll, and they are steerable and even climb steep inclines. Softworms can be made in any shape but here we describe modular and monolithic designs requiring little assembly. These modules can be combined to make multi-limbed devices. We also describe two approaches for controlling such highly deformable structures using either model-free state transition-reward matrices or distributed, mechanically coupled oscillators. In addition to their value as a research platform, these robots can be developed for use in environmental, medical and space applications where cheap, lightweight and shape-changing deformable robots will provide new

  12. Automated rose cutting in greenhouses with 3D vision and robotics : analysis of 3D vision techniques for stem detection

    NARCIS (Netherlands)

    Noordam, J.C.; Hemming, J.; Heerde, van C.J.E.; Golbach, F.B.T.F.; Soest, van R.; Wekking, E.

    2005-01-01

    The reduction of labour cost is the major motivation to develop a system for robot harvesting of roses in greenhouses that at least can compete with manual harvesting. Due to overlapping leaves, one of the most complicated tasks in robotic rose cutting is to locate the stem and trace the stem down t

  13. Stereo-vision and 3D reconstruction for nuclear mobile robots

    International Nuclear Information System (INIS)

    In order to perceive the geometric structure of the surrounding environment of a mobile robot, a 3D reconstruction system has been developed. Its main purpose is to provide geometric information to an operator who has to telepilot the vehicle in a nuclear power plant. The perception system is split into two parts: the vision part and the map building part. Vision is enhanced with a fusion process that rejects bas samples over space and time. The vision is based on trinocular stereo-vision which provides a range image of the image contours. It performs line contour correlation on horizontal image pairs and vertical image pairs. The results are then spatially fused in order to have one distance image, with a quality independent of the orientation of the contour. The 3D reconstruction is based on grid-based sensor fusion. As the robot moves and perceives its environment, distance data is accumulated onto a regular square grid, taking into account the uncertainty of the sensor through a sensor measurement statistical model. This approach allows both spatial and temporal fusion. Uncertainty due to sensor position and robot position is also integrated into the absolute local map. This system is modular and generic and can integrate 2D laser range finder and active vision. (author)

  14. Optical 3D laser measurement system for navigation of autonomous mobile robot

    Science.gov (United States)

    Básaca-Preciado, Luis C.; Sergiyenko, Oleg Yu.; Rodríguez-Quinonez, Julio C.; García, Xochitl; Tyrsa, Vera V.; Rivas-Lopez, Moises; Hernandez-Balbuena, Daniel; Mercorelli, Paolo; Podrygalo, Mikhail; Gurko, Alexander; Tabakova, Irina; Starostenko, Oleg

    2014-03-01

    In our current research, we are developing a practical autonomous mobile robot navigation system which is capable of performing obstacle avoiding task on an unknown environment. Therefore, in this paper, we propose a robot navigation system which works using a high accuracy localization scheme by dynamic triangulation. Our two main ideas are (1) integration of two principal systems, 3D laser scanning technical vision system (TVS) and mobile robot (MR) navigation system. (2) Novel MR navigation scheme, which allows benefiting from all advantages of precise triangulation localization of the obstacles, mostly over known camera oriented vision systems. For practical use, mobile robots are required to continue their tasks with safety and high accuracy on temporary occlusion condition. Presented in this work, prototype II of TVS is significantly improved over prototype I of our previous publications in the aspects of laser rays alignment, parasitic torque decrease and friction reduction of moving parts. The kinematic model of the MR used in this work is designed considering the optimal data acquisition from the TVS with the main goal of obtaining in real time, the necessary values for the kinematic model of the MR immediately during the calculation of obstacles based on the TVS data.

  15. Automated rose cutting in greenhouses with 3D vision and robotics : analysis of 3D vision techniques for stem detection

    OpenAIRE

    Noordam, J.C.; Hemming, J.; Heerde, van, P.; Golbach, F.B.T.F.; Soest, van, R.W.M.; Wekking, E.

    2005-01-01

    The reduction of labour cost is the major motivation to develop a system for robot harvesting of roses in greenhouses that at least can compete with manual harvesting. Due to overlapping leaves, one of the most complicated tasks in robotic rose cutting is to locate the stem and trace the stem down to locate the cutting position. Computer vision techniques like stereo imaging, laser triangulation, röntgen imaging and a new technique, called reverse volumetric intersection, are evaluated in thi...

  16. A ToF-camera as a 3D Vision Sensor for Autonomous Mobile Robotics

    OpenAIRE

    Sobers Lourdu Xavier Francis; Sreenatha G. Anavatti; Matthew Garratt; Hyunbgo Shim

    2015-01-01

    The aim of this paper is to deploy a time-of-flight (ToF) based photonic mixer device (PMD) camera on an Autonomous Ground Vehicle (AGV) whose overall target is to traverse from one point to another in hazardous and hostile environments employing obstacle avoidance without human intervention. The hypothesized approach of applying a ToF Camera for an AGV is a suitable approach to autonomous robotics because, as the ToF camera can provide three-dimensional (3D) information at a low computationa...

  17. Robotic extrusion processes for direct ink writing of 3D conductive polyaniline structures

    Science.gov (United States)

    Holness, F. Benjamin; Price, Aaron D.

    2016-04-01

    The intractable nature of intrinsically conductive polymers (ICP) leads to practical limitations in the fabrication of ICP-based transducers having complex three-dimensional geometries. Conventional ICP device fabrication processes have focused primarily on thin-film deposition techniques; therefore this study explores novel additive manufacturing processes specifically developed for ICP with the ultimate goal of increasing the functionality of ICP sensors and actuators. Herein we employ automated polymer paste extrusion processes for the direct ink writing of 3D conductive polyaniline (PANI) structures. Realization of these structures is enabled through a modified fused filament fabrication delta robot equipped with an integrated polymer paste extruder. This unique robot-controlled additive manufacturing platform is capable of fabricating high-resolution 3D conductive PANI and has been utilized to produce structures with a minimum feature size of 1.5 mm. The required processability of PANI is achieved by means of a counter-ion induced thermal doping method. Using this method, a viscous paste is formulated as the extrudate and a thermo-chemical treatment is applied post extrusion to finalize the complexation.

  18. Obstacles Regions 3D-Perception Method for Mobile Robots Based on Visual Saliency

    Directory of Open Access Journals (Sweden)

    Tao Xu

    2015-01-01

    Full Text Available A novel mobile robots 3D-perception obstacle regions method in indoor environment based on Improved Salient Region Extraction (ISRE is proposed. This model acquires the original image by the Kinect sensor and then gains Original Salience Map (OSM and Intensity Feature Map (IFM from the original image by the salience filtering algorithm. The IFM was used as the input neutron of PCNN. In order to make the ignition range more exact, PCNN ignition pulse input was further improved as follows: point multiplication algorithm was taken between PCNN internal neuron and binarization salience image of OSM; then we determined the final ignition pulse input. The salience binarization region abstraction was fulfilled by improved PCNN multiple iterations finally. Finally, the binarization area was mapped to the depth map obtained by Kinect sensor, and mobile robot can achieve the obstacle localization function. The method was conducted on a mobile robot (Pioneer3-DX. The experimental results demonstrated the feasibility and effectiveness of the proposed algorithm.

  19. Theories of bipedal walking: an odyssey.

    Science.gov (United States)

    Vaughan, Christopher L

    2003-04-01

    In this paper six theories of bipedal walking, and the evidence in support of the theories, are reviewed. They include: evolution, minimising energy consumption, maturation in children, central pattern generators, linking control and effect, and robots on two legs. Specifically, the six theories posit that: (1) bipedalism is the fundamental evolutionary adaptation that sets hominids--and therefore humans--apart from other primates; (2) locomotion is the translation of the centre of gravity along a pathway requiring the least expenditure of energy; (3) when a young child takes its first few halting steps, his or her biomechanical strategy is to minimise the risk of falling; (4) a dedicated network of interneurons in the spinal cord generates the rhythm and cyclic pattern of electromyographic signals that give rise to bipedal gait; (5) bipedal locomotion is generated through global entrainment of the neural system on the one hand, and the musculoskeletal system plus environment on the other; and (6) powered dynamic gait in a bipedal robot can be realised only through a strategy which is based on stability and real-time feedback control. The published record suggests that each of the theories has some measure of support. However, it is important to note that there are other important theories of locomotion which have not been covered in this review. Despite such omissions, this odyssey has explored the wide spectrum of bipedal walking, from its origins through to the integration of the nervous, muscular and skeletal systems.

  20. 3D change detection in staggered voxels model for robotic sensing and navigation

    Science.gov (United States)

    Liu, Ruixu; Hampshire, Brandon; Asari, Vijayan K.

    2016-05-01

    3D scene change detection is a challenging problem in robotic sensing and navigation. There are several unpredictable aspects in performing scene change detection. A change detection method which can support various applications in varying environmental conditions is proposed. Point cloud models are acquired from a RGB-D sensor, which provides the required color and depth information. Change detection is performed on robot view point cloud model. A bilateral filter smooths the surface and fills the holes as well as keeps the edge details on depth image. Registration of the point cloud model is implemented by using Random Sample Consensus (RANSAC) algorithm. It uses surface normal as the previous stage for the ground and wall estimate. After preprocessing the data, we create a point voxel model which defines voxel as surface or free space. Then we create a color model which defines each voxel that has a color by the mean of all points' color value in this voxel. The preliminary change detection is detected by XOR subtract on the point voxel model. Next, the eight neighbors for this center voxel are defined. If they are neither all `changed' voxels nor all `no changed' voxels, a histogram of location and hue channel color is estimated. The experimental evaluations performed to evaluate the capability of our algorithm show promising results for novel change detection that indicate all the changing objects with very limited false alarm rate.

  1. Development of Registration methodology to 3-D Point Clouds in Robot Scanning

    Directory of Open Access Journals (Sweden)

    Chen Liang-Chia

    2016-01-01

    Full Text Available The problem of multi-view 3-D point clouds registration is investigated and effectively resolved by the developed methodology. A registration method is proposed to register two series of scans into an object model by using the proposed oriented-bounding-box (OBB regional area-based descriptor. Robot 3-D scanning is often employed to generate set of point clouds of physical objects. The automated operation has to successively digitize view-dependent area-scanned point clouds from complex shaped objects by multi-view point clouds registration. To achieve this, the OBB regional area-based descriptor is employed to determine an initial transformation matrix and is then refined employing iterative closest point (ICP algorithm. The developed method can be used to resolve the commonly encountered difficulty in accurately merging two neighbouring area-scanned images when no coordinate reference exists. The developed method has been verified through some experimental tests for its registration accuracy. Experimental results have preliminarily demonstrated the feasibility of the developed method.

  2. Development of a Stereo Vision Measurement System for a 3D Three-Axial Pneumatic Parallel Mechanism Robot Arm

    Directory of Open Access Journals (Sweden)

    Chien-Lun Hou

    2011-02-01

    Full Text Available In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm.

  3. Development of a stereo vision measurement system for a 3D three-axial pneumatic parallel mechanism robot arm.

    Science.gov (United States)

    Chiang, Mao-Hsiung; Lin, Hao-Ting; Hou, Chien-Lun

    2011-01-01

    In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm.

  4. Development of a 3D Parallel Mechanism Robot Arm with Three Vertical-Axial Pneumatic Actuators Combined with a Stereo Vision System

    OpenAIRE

    Hao-Ting Lin; Mao-Hsiung Chiang

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for ...

  5. A Human-Assisted Approach for a Mobile Robot to Learn 3D Object Models using Active Vision

    OpenAIRE

    Zwinderman, Matthijs; Rybski, Paul E.; Kootstra, Gert

    2010-01-01

    In this paper we present an algorithm that allows a human to naturally and easily teach a mobile robot how to recognize objects in its environment. The human selects the object by pointing at it using a laser pointer. The robot recognizes the laser reflections with its cameras and uses this data to generate an initial 2D segmentation of the object. The 3D position of SURF feature points are extracted from the designated area using stereo vision. As the robot moves around the object, new views...

  6. A 3-D Miniature LIDAR System for Mobile Robot Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future lunar initiatives will demand sophisticated operation of mobile robotics platforms. In particular, lunar site operations will benefit from robots, both...

  7. Bipedal locomotion in granular media

    Science.gov (United States)

    Kingsbury, Mark; Zhang, Tingnan; Goldman, Daniel

    Bipedal walking, locomotion characterized by alternating swing and double support phase, is well studied on ground where feet do not penetrate the substrate. On granular media like sand however, intrusion and extrusion phases also occur. In these phases, relative motion of the two feet requires that one or both feet slip through the material, degrading performance. To study walking in these phases, we designed and studied a planarized bipedal robot (1.6 kg, 42 cm) that walked in a fluidized bed of poppy seeds. We also simulated the robot in a multibody software environment (Chrono) using granular resistive force theory (RFT) to calculate foot forces. In experiment and simulation, the robot experienced slip during the intrusion phase, with the experiment presenting additional slip due to motor control error during the double support phase. This exaggerated slip gave insight (through analysis of ground reaction forces in simulation) into how slip occurs when relative motion exists between the two feet in the granular media, where the foot with higher relative drag forces (from its instantaneous orientation, rotation, relative direction of motion, and depth) remains stationary. With this relationship, we generated walking gaits for the robot to walk with minimal slip.

  8. A ToF-camera as a 3D Vision Sensor for Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Sobers Lourdu Xavier Francis

    2015-11-01

    Full Text Available The aim of this paper is to deploy a time-of-flight (ToF based photonic mixer device (PMD camera on an Autonomous Ground Vehicle (AGV whose overall target is to traverse from one point to another in hazardous and hostile environments employing obstacle avoidance without human intervention. The hypothesized approach of applying a ToF Camera for an AGV is a suitable approach to autonomous robotics because, as the ToF camera can provide three-dimensional (3D information at a low computational cost, it is utilized to extract information about obstacles after their calibration and ground testing, and is mounted and integrated with the Pioneer mobile robot. The workspace is a two-dimensional (2D world map which has been divided into a grid/cells, where the collision-free path defined by the graph search algorithm is a sequence of cells the AGV can traverse to reach the target. PMD depth data is used to populate traversable areas and obstacles by representing a grid/cells of suitable size. These camera data are converted into Cartesian coordinates for entry into a workspace grid map. A more optimal camera mounting angle is needed and adopted by analysing the camera’s performance discrepancy, such as pixel detection, the detection rate and the maximum perceived distances, and infrared (IR scattering with respect to the ground surface. This mounting angle is recommended to be half the vertical field-of-view (FoV of the PMD camera. A series of still and moving tests are conducted on the AGV to verify correct sensor operations, which show that the postulated application of the ToF camera in the AGV is not straightforward. Later, to stabilize the moving PMD camera and to detect obstacles, a tracking feature detection algorithm and the scene flow technique are implemented to perform a real-time experiment.

  9. Human guidance of mobile robots in complex 3D environments using smart glasses

    Science.gov (United States)

    Kopinsky, Ryan; Sharma, Aneesh; Gupta, Nikhil; Ordonez, Camilo; Collins, Emmanuel; Barber, Daniel

    2016-05-01

    In order for humans to safely work alongside robots in the field, the human-robot (HR) interface, which enables bi-directional communication between human and robot, should be able to quickly and concisely express the robot's intentions and needs. While the robot operates mostly in autonomous mode, the human should be able to intervene to effectively guide the robot in complex, risky and/or highly uncertain scenarios. Using smart glasses such as Google Glass∗, we seek to develop an HR interface that aids in reducing interaction time and distractions during interaction with the robot.

  10. Human guidance of mobile robots in complex 3D environments using smart glasses

    Science.gov (United States)

    Kopinsky, Ryan; Sharma, Aneesh; Gupta, Nikhil; Ordonez, Camilo; Collins, Emmanuel; Barber, Daniel

    2016-05-01

    In order for humans to safely work alongside robots in the field, the human-robot (HR) interface, which enables bi-directional communication between human and robot, should be able to quickly and concisely express the robot's intentions and needs. While the robot operates mostly in autonomous mode, the human should be able to intervene to effectively guide the robot in complex, risky and/or highly uncertain scenarios. Using smart glasses such as Google Glass∗, we seek to develop an HR interface that aids in reducing interaction time and distractions during interaction with the robot.

  11. 3D Modelling of a Vectored Water Jet-Based Multi-Propeller Propulsion System for a Spherical Underwater Robot

    Directory of Open Access Journals (Sweden)

    Xichuan Lin

    2013-01-01

    Full Text Available This paper presents an improved modelling method for a water jet‐based multi‐propeller propulsion system. In our previous work, the modelling experiments were only carried out in 2D planes, whose experimental results had poor agreement when we wanted to control the propulsive forces in 3D space directly. This research extends the 2D modelling described in the authors’ previous work into 3D space. By doing this, the model could include 3D space information, which is more useful than that of 2D space. The effective propulsive forces and moments in 3D space can be obtained directly by synthesizing the propulsive vectors of propellers. For this purpose, a novel experimental mechanism was developed to achieve the proposed 3D modelling. This mechanism was designed with the mass distribution centred for the robot. By installing a six‐axis load‐cell sensor at the equivalent mass centre, we obtained the direct propulsive effect of the system for the robot. Also, in this paper, the orientation surface and propulsive surfaces are developed to provide the 3D information of the propulsive system. Experiments for each propeller were first carried out to establish the models. Then, further experiments were carried out with all of the propellers working together to validate the models. Finally, we compared the various experimental results with the simulation data. The utility of this modelling method is discussed at length.

  12. A Novel Identification Methodology for the Coordinate Relationship between a 3D Vision System and a Legged Robot.

    Science.gov (United States)

    Chai, Xun; Gao, Feng; Pan, Yang; Qi, Chenkun; Xu, Yilin

    2015-04-22

    Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called "Octopus", which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust.

  13. Enhanced Geometric Map:a 2D & 3D Hybrid City Model of Large Scale Urban Environment for Robot Navigation

    Institute of Scientific and Technical Information of China (English)

    LI Haifeng; HU Zunhe; LIU Jingtai

    2016-01-01

    To facilitate scene understanding and robot navigation in large scale urban environment, a two-layer enhanced geometric map (EGMap) is designed using videos from a monocular onboard camera. The 2D layer of EGMap consists of a 2D building boundary map from top-down view and a 2D road map, which can support localization and advanced map-matching when compared with standard polyline-based maps. The 3D layer includes features such as 3D road model, and building facades with coplanar 3D vertical and horizontal line segments, which can provide the 3D metric features to localize the vehicles and flying-robots in 3D space. Starting from the 2D building boundary and road map, EGMap is initially constructed using feature fusion with geometric constraints under a line feature-based simultaneous localization and mapping (SLAM) framework iteratively and progressively. Then, a local bundle adjustment algorithm is proposed to jointly refine the camera localizations and EGMap features. Furthermore, the issues of uncertainty, memory use, time efficiency and obstacle effect in EGMap construction are discussed and analyzed. Physical experiments show that EGMap can be successfully constructed in large scale urban environment and the construction method is demonstrated to be very accurate and robust.

  14. Cy-mag3D: a simple and miniature climbing robot with advance mobility in ferromagnetic environment

    OpenAIRE

    Fujimoto, Hideo; Tokhi, Mohammad O.; Mochiyama, Hiromi; Virk, Gurvinder S.; Rochat, Frédéric; Schoeneich, Patrick; Lüthi, Barthélémy; Mondada, Francesco; Bleuler, Hannes

    2010-01-01

    Cy-mag3D is a miniature climbing robot with advanced mobility and magnetic adhesion. It is very compact: a cylindrical shape with 28 mm of diameter and 62 mm of width. Its design is very simple: two wheels, hence two degrees of freedom, and an advanced magnetic circuit. Despite its simplicity, Cy-mag3D has an amazing mobility on ferromagnetic sheets. From an horizontal sheet, it can make transition to almost any intersecting sheet from 10° to 360° - we baptise the last one surface ip. It pas...

  15. Adaptive Gait Control for a Quadruped Robot on 3D Path Planning

    Science.gov (United States)

    Igarashi, Hiroshi; Kakikura, Masayoshi

    A legged walking robot is able to not only move on irregular terrain but also change its posture. For example, the robot can pass under overhead obstacles by crouching. The purpose of our research is to realize efficient path planning with a quadruped robot. Therefore, the path planning is expected to extended in three dimensions because of the mobility. However, some issues of the quadruped robot, which are instability, workspace limitation, deadlock and slippage, complicate realizing such application. In order to improve these issues and reinforce the mobility, a new static gait pattern for a quadruped robot, called TFG: Trajectory Following Gait, is proposed. The TFG intends to obtain high controllability like a wheel robot. Additionally, the TFG allows to change it posture during the walk. In this paper, some experimental results show that the TFG improves the issues and it is available for efficient locomotion in three dimensional environment.

  16. A 3-D Miniature LIDAR System for Mobile Robot Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future lunar site operations will benefit from mobile robots, both autonomous and tele-operated, that complement or replace human extravehicular activity....

  17. 3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands.

    Science.gov (United States)

    Mateo, Carlos M; Gil, Pablo; Torres, Fernando

    2016-05-05

    Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object's surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand's fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments.

  18. 3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands

    Science.gov (United States)

    Mateo, Carlos M.; Gil, Pablo; Torres, Fernando

    2016-01-01

    Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object’s surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand’s fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments. PMID

  19. Toward real-time endoscopically-guided robotic navigation based on a 3D virtual surgical field model

    Science.gov (United States)

    Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J.

    2015-03-01

    The challenge is to accurately guide the surgical tool within the three-dimensional (3D) surgical field for roboticallyassisted operations such as tumor margin removal from a debulked brain tumor cavity. The proposed technique is 3D image-guided surgical navigation based on matching intraoperative video frames to a 3D virtual model of the surgical field. A small laser-scanning endoscopic camera was attached to a mock minimally-invasive surgical tool that was manipulated toward a region of interest (residual tumor) within a phantom of a debulked brain tumor. Video frames from the endoscope provided features that were matched to the 3D virtual model, which were reconstructed earlier by raster scanning over the surgical field. Camera pose (position and orientation) is recovered by implementing a constrained bundle adjustment algorithm. Navigational error during the approach to fluorescence target (residual tumor) is determined by comparing the calculated camera pose to the measured camera pose using a micro-positioning stage. From these preliminary results, computation efficiency of the algorithm in MATLAB code is near real-time (2.5 sec for each estimation of pose), which can be improved by implementation in C++. Error analysis produced 3-mm distance error and 2.5 degree of orientation error on average. The sources of these errors come from 1) inaccuracy of the 3D virtual model, generated on a calibrated RAVEN robotic platform with stereo tracking; 2) inaccuracy of endoscope intrinsic parameters, such as focal length; and 3) any endoscopic image distortion from scanning irregularities. This work demonstrates feasibility of micro-camera 3D guidance of a robotic surgical tool.

  20. COST-EFFECTIVE STEREO VISION SYSTEM FOR MOBILE ROBOT NAVIGATION AND 3D MAP RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Arjun B Krishnan

    2014-07-01

    Full Text Available The key component of a mobile robot system is the ability to localize itself accurately in an unknown environment and simultaneously build the map of the environment. Majority of the existing navigation systems are based on laser range finders, sonar sensors or artificial landmarks. Navigation systems using stereo vision are rapidly developing technique in the field of autonomous mobile robots. But they are less advisable in replacing the conventional approaches to build small scale autonomous robot because of their high implementation cost. This paper describes an experimental approach to build a cost- effective stereo vision system for autonomous mobile robots that avoid obstacles and navigate through indoor environments. The mechanical as well as the programming aspects of stereo vision system are documented in this paper. Stereo vision system adjunctively with ultrasound sensors was implemented on the mobile robot, which successfully navigated through different types of cluttered environments with static and dynamic obstacles. The robot was able to create two dimensional topological maps of unknown environments using the sensor data and three dimensional model of the same using stereo vision system.

  1. i-BRUSH: a gaze-contingent virtual paintbrush for dense 3D reconstruction in robotic assisted surgery.

    Science.gov (United States)

    Visentini-Scarzanella, Marco; Mylonas, George P; Stoyanov, Danail; Yang, Guang-Zhong

    2009-01-01

    With increasing demand on intra-operative navigation and motion compensation during robotic assisted minimally invasive surgery, real-time 3D deformation recovery remains a central problem. Currently the majority of existing methods rely on salient features, where the inherent paucity of distinctive landmarks implies either a semi-dense reconstruction or the use of strong geometrical constraints. In this study, we propose a gaze-contingent depth reconstruction scheme by integrating human perception with semi-dense stereo and p-q based shading information. Depth inference is carried out in real-time through a novel application of Bayesian chains without smoothness priors. The practical value of the scheme is highlighted by detailed validation using a beating heart phantom model with known geometry to verify the performance of gaze-contingent 3D surface reconstruction and deformation recovery. PMID:20426007

  2. i-BRUSH: a gaze-contingent virtual paintbrush for dense 3D reconstruction in robotic assisted surgery.

    Science.gov (United States)

    Visentini-Scarzanella, Marco; Mylonas, George P; Stoyanov, Danail; Yang, Guang-Zhong

    2009-01-01

    With increasing demand on intra-operative navigation and motion compensation during robotic assisted minimally invasive surgery, real-time 3D deformation recovery remains a central problem. Currently the majority of existing methods rely on salient features, where the inherent paucity of distinctive landmarks implies either a semi-dense reconstruction or the use of strong geometrical constraints. In this study, we propose a gaze-contingent depth reconstruction scheme by integrating human perception with semi-dense stereo and p-q based shading information. Depth inference is carried out in real-time through a novel application of Bayesian chains without smoothness priors. The practical value of the scheme is highlighted by detailed validation using a beating heart phantom model with known geometry to verify the performance of gaze-contingent 3D surface reconstruction and deformation recovery.

  3. Recursive 3D-reconstruction of structured scenes using a moving camera - application to robotics

    International Nuclear Information System (INIS)

    This thesis is devoted to the perception of a structured environment, and proposes a new method which allows a 3D-reconstruction of an interesting part of the world using a mobile camera. Our work is divided into three essential parts dedicated to 2D-information aspect, 3D-information aspect, and a validation of the method. In the first part, we present a method which produces a topologic and geometric image representation based on 'segment' and 'junction' features. Then, a 2D-matching method based on a hypothesis prediction and verification algorithm is proposed to match features issued from two successive images. The second part deals with 3D-reconstruction using a triangulation technique, and discuses our new method introducing an 'Estimation-Construction-Fusion' process. This ensures a complete and accurate 3D-representation, and a permanent position estimation of the camera with respect to the model. The merging process allows refinement of the 3D-representation using a powerful tool: a Kalman Filter. In the last part, experimental results issued from simulated and real data images are reported to show the efficiency of the method. (author)

  4. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    Science.gov (United States)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  5. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.

    Science.gov (United States)

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to

  6. Precise 3D Lug Pose Detection Sensor for Automatic Robot Welding Using a Structured-Light Vision System

    Directory of Open Access Journals (Sweden)

    Il Jae Lee

    2009-09-01

    Full Text Available In this study, we propose a precise 3D lug pose detection sensor for automatic robot welding of a lug to a huge steel plate used in shipbuilding, where the lug is a handle to carry the huge steel plate. The proposed sensor consists of a camera and four laser line diodes, and its design parameters are determined by analyzing its detectable range and resolution. For the lug pose acquisition, four laser lines are projected on both lug and plate, and the projected lines are detected by the camera. For robust detection of the projected lines against the illumination change, the vertical threshold, thinning, Hough transform and separated Hough transform algorithms are successively applied to the camera image. The lug pose acquisition is carried out by two stages: the top view alignment and the side view alignment. The top view alignment is to detect the coarse lug pose relatively far from the lug, and the side view alignment is to detect the fine lug pose close to the lug. After the top view alignment, the robot is controlled to move close to the side of the lug for the side view alignment. By this way, the precise 3D lug pose can be obtained. Finally, experiments with the sensor prototype are carried out to verify the feasibility and effectiveness of the proposed sensor.

  7. Design and modeling of an autonomous multi-link snake robot, capable of 3D-motion

    Directory of Open Access Journals (Sweden)

    Rizkallah Rabel

    2016-01-01

    Full Text Available The paper presents the design of an autonomous, wheeless, mechanical snake robot that was modeled and built at Notre Dame University – Louaize. The robot is also capable of 3D motion with an ability to climb in the z-direction. The snake is made of a series links, each containing one to three high torque DC motors and a gearing system. They are connected to each other through Aluminum hollow rods that can be rotated through a 180° span. This allows the snake to move in various environments including unfriendly and cluttered ones. The front link has a proximity sensor used to map the environment. This mapping is sent to a microcontroller which controls and adapts the motion pattern of the snake. The snake can therefore choose to avoid obstacles, or climb over them if their height is within its range. The presented model is made of five links, but this number can be increased as their role is repetitive. The novel design is meant to overcome previous limitations by allowing 3D motion through electric actuators and low energy consumption.

  8. Comparative analysis of 3-D robot teleoperation interfaces with novice users.

    Science.gov (United States)

    Labonte, Daniel; Boissy, Patrick; Michaud, François

    2010-10-01

    Being able to act remotely in our homes could be very useful in providing various services such as surveillance and remote interventions, which are key features for telehomecare applications. In addition to navigation and environmental challenges that a telepresence robot would face in home settings, the system requires an appropriate teleoperation interface for safe and efficient usage by novice users. This paper describes the design criteria and characterizes visualization and control modalities of user interfaces with a real robot. By considering the user's needs along with the current state of the art in teleoperation interfaces, two novel mixed-reality visualization modalities are compared with standard video-centric and map-centric perspectives. We report teleoperation trials under six different task scenarios with a sample of 37 novice operators in homelike conditions. The results based on three quantitative metrics and one qualitative metric outline under which conditions the novel mixed-reality visualization modalities significantly improve the performance of novice users.

  9. Development of a 3D Parallel Mechanism Robot Arm with Three Vertical-Axial Pneumatic Actuators Combined with a Stereo Vision System

    Directory of Open Access Journals (Sweden)

    Hao-Ting Lin

    2011-12-01

    Full Text Available This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot’s end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H∞ tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end

  10. An active robot vision system for real-time 3-D structure recovery

    International Nuclear Information System (INIS)

    This paper presents an active approach for the task of computing the 3-D structure of a nuclear plant environment from an image sequence, more precisely the recovery of the 3-D structure of cylindrical objects. Active vision is considered by computing adequate camera motions using image-based control laws. This approach requires a real-time tracking of the limbs of the cylinders. Therefore, an original matching approach, which relies on an algorithm for determining moving edges, is proposed. This method is distinguished by its robustness and its easiness to implement. This method has been implemented on a parallel image processing board and real-time performance has been achieved. The whole scheme has been successfully validated in an experimental set-up

  11. 3-D-Umgebungserfassung für teil-autonome mobile Roboter

    OpenAIRE

    Arbeiter, Georg

    2014-01-01

    Die Servicerobotik hat in den letzten Jahren sowohl durch kostengünstige Sensorik und Aktorik als auch durch verbesserte Algorithmen einen großen Schritt nach vorne gemacht. Dabei hat sich gerade die Wahrnehmung als eine Schlüsseltechnologie für eine erfolgreiche Weiterentwicklung herauskristallisiert. Leistungsfähige 3-D-Kameras und effiziente Verfahren zur Sensordatenverarbeitung ermöglichen es Robotern, ihre Umwelt wahrzunehmen, zu interpretieren und darauf basierend Handlungen abzuleiten....

  12. Robot-Aided Mapping of Wrist Proprioceptive Acuity across a 3D Workspace.

    Science.gov (United States)

    Marini, Francesca; Squeri, Valentina; Morasso, Pietro; Konczak, Jürgen; Masia, Lorenzo

    2016-01-01

    Proprioceptive signals from peripheral mechanoreceptors form the basis for bodily perception and are known to be essential for motor control. However we still have an incomplete understanding of how proprioception differs between joints, whether it differs among the various degrees-of-freedom (DoFs) within a particular joint, and how such differences affect motor control and learning. We here introduce a robot-aided method to objectively measure proprioceptive function: specifically, we systematically mapped wrist proprioceptive acuity across the three DoFs of the wrist/hand complex with the aim to characterize the wrist position sense. Thirty healthy young adults performed an ipsilateral active joint position matching task with their dominant wrist using a haptic robotic exoskeleton. Our results indicate that the active wrist position sense acuity is anisotropic across the joint, with the abduction/adduction DoF having the highest acuity (the error of acuity for flexion/extension is 4.64 ± 0.24°; abduction/adduction: 3.68 ± 0.32°; supination/pronation: 5.15 ± 0.37°) and they also revealed that proprioceptive acuity decreases for smaller joint displacements. We believe this knowledge is imperative in a clinical scenario when assessing proprioceptive deficits and for understanding how such sensory deficits relate to observable motor impairments.

  13. Robot-Aided Mapping of Wrist Proprioceptive Acuity across a 3D Workspace.

    Science.gov (United States)

    Marini, Francesca; Squeri, Valentina; Morasso, Pietro; Konczak, Jürgen; Masia, Lorenzo

    2016-01-01

    Proprioceptive signals from peripheral mechanoreceptors form the basis for bodily perception and are known to be essential for motor control. However we still have an incomplete understanding of how proprioception differs between joints, whether it differs among the various degrees-of-freedom (DoFs) within a particular joint, and how such differences affect motor control and learning. We here introduce a robot-aided method to objectively measure proprioceptive function: specifically, we systematically mapped wrist proprioceptive acuity across the three DoFs of the wrist/hand complex with the aim to characterize the wrist position sense. Thirty healthy young adults performed an ipsilateral active joint position matching task with their dominant wrist using a haptic robotic exoskeleton. Our results indicate that the active wrist position sense acuity is anisotropic across the joint, with the abduction/adduction DoF having the highest acuity (the error of acuity for flexion/extension is 4.64 ± 0.24°; abduction/adduction: 3.68 ± 0.32°; supination/pronation: 5.15 ± 0.37°) and they also revealed that proprioceptive acuity decreases for smaller joint displacements. We believe this knowledge is imperative in a clinical scenario when assessing proprioceptive deficits and for understanding how such sensory deficits relate to observable motor impairments. PMID:27536882

  14. Robot-Aided Mapping of Wrist Proprioceptive Acuity across a 3D Workspace

    Science.gov (United States)

    Marini, Francesca; Squeri, Valentina; Morasso, Pietro; Konczak, Jürgen; Masia, Lorenzo

    2016-01-01

    Proprioceptive signals from peripheral mechanoreceptors form the basis for bodily perception and are known to be essential for motor control. However we still have an incomplete understanding of how proprioception differs between joints, whether it differs among the various degrees-of-freedom (DoFs) within a particular joint, and how such differences affect motor control and learning. We here introduce a robot-aided method to objectively measure proprioceptive function: specifically, we systematically mapped wrist proprioceptive acuity across the three DoFs of the wrist/hand complex with the aim to characterize the wrist position sense. Thirty healthy young adults performed an ipsilateral active joint position matching task with their dominant wrist using a haptic robotic exoskeleton. Our results indicate that the active wrist position sense acuity is anisotropic across the joint, with the abduction/adduction DoF having the highest acuity (the error of acuity for flexion/extension is 4.64 ± 0.24°; abduction/adduction: 3.68 ± 0.32°; supination/pronation: 5.15 ± 0.37°) and they also revealed that proprioceptive acuity decreases for smaller joint displacements. We believe this knowledge is imperative in a clinical scenario when assessing proprioceptive deficits and for understanding how such sensory deficits relate to observable motor impairments. PMID:27536882

  15. Auto-converging stereo cameras for 3D robotic tele-operation

    Science.gov (United States)

    Edmondson, Richard; Aycock, Todd; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed a Stereovision Upgrade Kit for TALON robot to provide enhanced depth perception to the operator. This kit previously required the TALON Operator Control Unit to be equipped with the optional touchscreen interface to allow for operator control of the camera convergence angle adjustment. This adjustment allowed for optimal camera convergence independent of the distance from the camera to the object being viewed. Polaris has recently improved the performance of the stereo camera by implementing an Automatic Convergence algorithm in a field programmable gate array in the camera assembly. This algorithm uses scene content to automatically adjust the camera convergence angle, freeing the operator to focus on the task rather than adjustment of the vision system. The autoconvergence capability has been demonstrated on both visible zoom cameras and longwave infrared microbolometer stereo pairs.

  16. Autonomous Robot Navigation in Human-Centered Environments Based on 3D Data Fusion

    Directory of Open Access Journals (Sweden)

    Rüdiger Dillmann

    2007-01-01

    Full Text Available Efficient navigation of mobile platforms in dynamic human-centered environments is still an open research topic. We have already proposed an architecture (MEPHISTO for a navigation system that is able to fulfill the main requirements of efficient navigation: fast and reliable sensor processing, extensive global world modeling, and distributed path planning. Our architecture uses a distributed system of sensor processing, world modeling, and path planning units. In this arcticle, we present implemented methods in the context of data fusion algorithms for 3D world modeling and real-time path planning. We also show results of the prototypic application of the system at the museum ZKM (center for art and media in Karlsruhe.

  17. Rail-guided Multi-robot System for 3D Cellular Hydrogel Assembly with Coordinated Nanomanipulation

    Directory of Open Access Journals (Sweden)

    Huaping Wang

    2014-08-01

    Full Text Available The 3D assembly of micro-/nano-building blocks with multi-nanomanipulator coordinated manipulation is one of the central elements of nanomanipulation. A novel rail-guided nanomanipulation system was proposed for the assembly of a cellular vascular-like hydrogel microchannel. The system was equipped with three nanomanipulators and was restricted on the rail in order to realize the arbitrary change of the end-effectors during the assembly. It was set up with hybrid motors to achieve both a large operating space and a 30 nm positional resolution. The 2D components such as the assembly units were fabricated through the encapsulation of cells in the hydrogel. The coordinated manipulation strategies among the multi-nanomanipulators were designed with vision feedback and were demonstrated through the bottom-up assembly of the vascular-like microtube. As a result, the multi-layered microchannel was assembled through the cooperation of the nanomanipulation system.

  18. Autonomous Robot Navigation in Human-Centered Environments Based on 3D Data Fusion

    Science.gov (United States)

    Steinhaus, Peter; Strand, Marcus; Dillmann, Rüdiger

    2007-12-01

    Efficient navigation of mobile platforms in dynamic human-centered environments is still an open research topic. We have already proposed an architecture (MEPHISTO) for a navigation system that is able to fulfill the main requirements of efficient navigation: fast and reliable sensor processing, extensive global world modeling, and distributed path planning. Our architecture uses a distributed system of sensor processing, world modeling, and path planning units. In this arcticle, we present implemented methods in the context of data fusion algorithms for 3D world modeling and real-time path planning. We also show results of the prototypic application of the system at the museum ZKM (center for art and media) in Karlsruhe.

  19. 3D Object Visual Tracking for the 220 kV/330 kV High-Voltage Live-Line Insulator Cleaning Robot

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian; YANG Ru-qing

    2009-01-01

    The 3D object visual tracking problem is studied for the robot vision system of the 220 kV/330 kV high-voltage live-line insulator cleaning robot. The SUSAN Edge based Scale Invariant Feature (SESIF) algorithm based 3D objects visual tracking is achieved in three stages: the first frame stage, tracking stage, and recovering stage. An SESIF based objects recognition algorithm is proposed to fred initial location at both the first frame stage and recovering stage. An SESIF and Lie group based visual tracking algorithm is used to track 3D object. Experiments verify the algorithm's robustness. This algorithm will be used in the second generation of the 220 kV/330 kV high-voltage five-line insulator cleaning robot.

  20. Robust Control of Welding Robot for Tracking a Curved and Straight Welding Line combined 3D

    Directory of Open Access Journals (Sweden)

    Tran Duy Cuong

    2016-08-01

    Full Text Available This paper highlights a welding robot (WR for its end effector to track a curved and straight welding line combined (CSWLC. The WR includes five actuators which use a DC motor as a power source. Two controllers are proposed to control the WR’s end effector: a main controller and a servo controller. Firstly, based on WR’s kinematic equations and its feedback errors using backstepping method the main controller is proposed to design the reference-inputs for the WR’s actuators in order that the WR’s end effector tracks the CSWLC. Secondly, based on the dynamic equation of WR’s actuator, the servo controller is designed using an active disturbance rejection control method. Finally, a control system incorporated with the main controller and the servo controllers make the WR’s end effector robustly track a CSWLC in the presence of the modeling uncertainty and disturbances during the welding process. The effectiveness of the proposed control system is proven through the simulation results.

  1. 3-D Biped Robot Walking along Slope with Dual Length Linear Inverted Pendulum Method (DLLIPM

    Directory of Open Access Journals (Sweden)

    Fariz Ali

    2013-11-01

    Full Text Available A new design method to obtain walking parameters for a three-dimensional (3D biped walking along a slope is proposed in this paper. Most research is focused on the walking directions when climbing up or down a slope only. This paper investigates a strategy to realize biped walking along a slope. In conventional methods, the centre of mass (CoM is moved up or down during walking in this situation. This is because the height of the pendulum is kept at the same length on the left and right legs. Thus, extra effort is required in order to bring the CoM up to higher ground. In the proposed method, a different height of pendulum is applied on the left and right legs, which is called a dual length linear inverted pendulum method (DLLIPM. When a different height of pendulum is applied, it is quite difficult to obtain symmetrical and smooth pendulum motions. Furthermore, synchronization between sagittal and lateral planes is not confirmed. Therefore, DLLIPM with a Newton Raphson algorithm is proposed to solve these problems. The walking pattern for both planes is designed systematically and synchronization between them is ensured. As a result, the maximum force fluctuation is reduced with the proposed method.

  2. Highest performance in 3D metal cutting at smallest footprint: benchmark of a robot based system vs. parameters of gantry systems

    Science.gov (United States)

    Scheller, Torsten; Bastick, André; Michel-Triller, Robert; Manzella, Christon

    2014-02-01

    In the automotive industry as well as in other industries ecological aspects regarding energy savings are driving new technologies and materials, e.g. lightweight materials as aluminium or press hardened steels. Processing such parts especially complex 3D shaped parts laser manufacturing has become the key process offering highest efficiency. The most established systems for 3D cutting applications are based on gantry systems. The disadvantage of those systems is their huge footprint to realize the required stability and work envelope. Alternatively a robot based system might be of advantage if accuracy, speed and overall performance would be capable processing automotive parts. With the BIM "beam in motion" system, JENOPTIK Automatisierungstechnik GmbH has developed a modular robot based laser processing machine, which meets all OEM specs processing press hardened steel parts. A benchmark of the BIM versus a gantry system was done regarding all required parameters to fulfil OEM specifications for press hardened steel parts. As a result a highly productive, accurate and efficient system can be described based on one or multiple robot modules working simultaneously together. The paper presents the improvements on the robot machine concept BIM addressed in 2012 [1] leading to an industrial proven system approach for the automotive industry. It further compares the performance and the parameters for 3D cutting applications of the BIM system versus a gantry system by samples of applied parts. Finally an overview of suitable applications for processing complex 3D parts with high productivity at small footprint is given.

  3. Use of 3-D HD auxiliary monitor by bedside assistant results in shorter console-time and ischemia-time in robot assisted laparoscopic partial tumor-nephrectomy

    NARCIS (Netherlands)

    Alamyar, M.; Bouma, H; ; Goossens, W.J.H.; Wieringa, F.P.; Kroon, B.K.; Eendebak, P.T.; Wijburg, C.J.; Smits, G.A.H.J.

    2014-01-01

    Recently, we have shown that connecting live three-dimensional (3D) monitors to all three available Da Vinci® robot (Intuitive) generations improved the impression of shared perception for the whole surgical team. Standardized dry lab experiments revealed that delicate teamwork was faster (up to 40%

  4. Planning energy-efficient bipedal locomotion on patterned terrain

    Science.gov (United States)

    Zamani, Ali; Bhounsule, Pranav A.; Taha, Ahmad

    2016-05-01

    Energy-efficient bipedal walking is essential in realizing practical bipedal systems. However, current energy-efficient bipedal robots (e.g., passive-dynamics-inspired robots) are limited to walking at a single speed and step length. The objective of this work is to address this gap by developing a method of synthesizing energy-efficient bipedal locomotion on patterned terrain consisting of stepping stones using energy-efficient primitives. A model of Cornell Ranger (a passive-dynamics inspired robot) is utilized to illustrate our technique. First, an energy-optimal trajectory control problem for a single step is formulated and solved. The solution minimizes the Total Cost Of Transport (TCOT is defined as the energy used per unit weight per unit distance travelled) subject to various constraints such as actuator limits, foot scuffing, joint kinematic limits, ground reaction forces. The outcome of the optimization scheme is a table of TCOT values as a function of step length and step velocity. Next, we parameterize the terrain to identify the location of the stepping stones. Finally, the TCOT table is used in conjunction with the parameterized terrain to plan an energy-efficient stepping strategy.

  5. A Robotic Indoor 3D Mapping System Using a 2D Laser Range Finder Mounted on a Rotating Four-Bar Linkage of a Mobile Platform

    Directory of Open Access Journals (Sweden)

    Yu-Shin Chou

    2013-01-01

    Full Text Available This paper describes our work in developing a 3D robotic mapping system composed by an experimental mobile platform equipped with a rotating laser range finder (LRF. For the purpose of obtaining more complete 3D scans of the environment, we design, construct and calibrate a crank‐rocker four‐bar linkage so that a LRF mounted on it could undergo repetitive rotational motion between two extreme positions, allowing both horizontal and vertical scans. To reduce the complexity of map representation suitable for optimization later, the local map from the LRF is a grid map represented by a distance‐transformed (DT matrix. We compare the DT‐transformed maps and find the transformation matrix of a robot pose by a linear simplex‐based map optimization method restricted to a local region allows efficient alignment of maps in scan matching. Several indoor 2D and 3D mapping experiments are presented to demonstrate the consistency, efficiency and accuracy of the 3D mapping system for a mobile robot that is stationary or in motion.

  6. Locomotor training through a 3D cable-driven robotic system for walking function in children with cerebral palsy: a pilot study.

    Science.gov (United States)

    Wu, Ming; Kim, Janis; Arora, Pooja; Gaebler-Spira, Deborah J; Zhang, Yunhui

    2014-01-01

    Locomotor training using treadmill has been shown to elicit significant improvements in locomotor ability for some children with cerebral palsy (CP), the functional gains are relatively small and it requires greater involvement from a physical therapist. Current robotic gait training systems are effective in reducing the strenuous work of a physical therapist during locomotor training, but are less effective in improving locomotor function in some children with CP due to the limitations of the systems. Thus, a 3D cable-driven robotic gait training system was developed and tested in five children with CP through a 6 week of long-term gait training. Results indicated that both overground walking speed and 6 minute walking distance improved after robot assisted treadmill training through the cable-driven robotic system, and partially retained at 8 weeks after the end of training. Results from this pilot study indicated that it seems feasible to conduct locomotor training in children with CP through the 3D cable-driven robotic system. PMID:25570752

  7. Modeling, simulation and optimization of bipedal walking

    CERN Document Server

    Berns, Karsten

    2013-01-01

    The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired con...

  8. The use of a 3D sensor (Kinect) for robot motion compensation : The applicability in relation to medical applications

    OpenAIRE

    2012-01-01

    The use of robotic systems for remote ultrasound diagnostics has emerged over the last years. This thesis looks into the possibility of integrating the Kinect sensor from Microsoft into a semi-autonomous robotic system for ultrasound diagnostics, with the intention to give the robotic system visual feedback to compensate for patient motion. In the first part of this thesis, a series of tests have been performed to explore the Kinect's sensor capabilities, with focus on accuracy, precis...

  9. Cartographie 3D et localisation par vision monoculaire pour la navignation autonome d'un robot mobile

    OpenAIRE

    Royer, Eric

    2006-01-01

    This thesis presents the realization of a localization system for a mobile robot relying on monocular vision. The aim of this project is to be able to make a robot follow a path in autonomous navigation in an urban environment. First, the robot is driven manually. During this learning step, the on board camera records a video sequence. After an off-line processing step, an image taken with the same hardware allows to compute the pose of the robot in real-time. This localization can be used to...

  10. Bipedal tool use strengthens chimpanzee hand preferences

    OpenAIRE

    Braccini, Stephanie; Lambeth, Susan; Schapiro, Steve; Fitch, W. Tecumseh

    2010-01-01

    The degree to which non-human primate behavior is lateralized, at either individual or population levels, remains controversial. We investigated the relationship between hand preference and posture during tool use in chimpanzees (Pan troglodytes) during bipedal tool use. We experimentally induced tool use in a supported bipedal posture, an unsupported bipedal posture, and a seated posture. Neither bipedal tool use nor these supported conditions have been previously evaluated in apes. The hypo...

  11. Level-Ground Walking for 3D Quasi-Passive Walker with Flat Feet - Lateral-plane Input using McKibben-Type Artificial Muscle -

    Directory of Open Access Journals (Sweden)

    Yamamoto Akihiro

    2016-01-01

    Full Text Available Currently, many bipedal robots have been proposed to realize the high energy efficiency walking. The passive dynamic walking does not require control input. Generally, a foot of passive dynamic walking robot is an arc foot. In this paper, it is intended to establish a control method and control mechanism to achieve energy efficient and stable gate. Therefore, we developed 3D quasi-passive walker with flat feet driven by an antagonistic pneumatic artificial muscle. An antagonistic mechanism is constituted by a pair of McKibben muscle. And an antagonistic pneumatic system is used as joint actuators of linkage mechanisms which control the torque, joint stiffness and position simultaneously. Finally, this report shows that the 3D quasi-passive walking in the level ground can realize by the swinging (simple input of the frontal direction, and the stride of the robot is proportional to lateral-plane input.

  12. Console-integrated stereoscopic OsiriX 3D volume-rendered images for da Vinci colorectal robotic surgery.

    Science.gov (United States)

    Volonté, Francesco; Pugin, Francois; Buchs, Nicolas Christian; Spaltenstein, Joël; Hagen, Monika; Ratib, Osman; Morel, Philippe

    2013-04-01

    The increased distance between surgeon and surgical field is a significant problem in laparoscopic surgery. Robotic surgery, although providing advantages for the operator, increases this gap by completely removing force feedback. Enhancement with visual tools can therefore be beneficial. The goal of this preliminary work was to create a custom plugin for OsiriX to display volume-rendered images in the da Vinci surgeon's console. The TilePro multi-input display made the generated stereoscopic pairs appear to have depth. Tumor position, vascular supply, spatial location, and relationship between organs appear directly within the surgeon's field of view. This study presents a case of totally robotic right colectomy for cancer using this new technology. Sight diversion was no longer necessary. Depth perception was subjectively perceived as profitable. Total immersion in the operative field helped compensate for the lack of tactile feedback specific to robotic intervention. This innovative tool is a step forward toward augmented-reality robot-assisted surgery. PMID:22549904

  13. Generic Techniques for the Calibration of Robots with Application of the 3-D Fixtures and Statistical Technique on the PUMA 500 and ARID Robots

    Science.gov (United States)

    Tawfik, Hazem

    1991-01-01

    A relatively simple, inexpensive, and generic technique that could be used in both laboratories and some operation site environments is introduced at the Robotics Applications and Development Laboratory (RADL) at Kennedy Space Center (KSC). In addition, this report gives a detailed explanation of the set up procedure, data collection, and analysis using this new technique that was developed at the State University of New York at Farmingdale. The technique was used to evaluate the repeatability, accuracy, and overshoot of the Unimate Industrial Robot, PUMA 500. The data were statistically analyzed to provide an insight into the performance of the systems and components of the robot. Also, the same technique was used to check the forward kinematics against the inverse kinematics of RADL's PUMA robot. Recommendations were made for RADL to use this technique for laboratory calibration of the currently existing robots such as the ASEA, high speed controller, Automated Radiator Inspection Device (ARID) etc. Also, recommendations were made to develop and establish other calibration techniques that will be more suitable for site calibration environment and robot certification.

  14. Bipedal tool use strengthens chimpanzee hand preferences

    DEFF Research Database (Denmark)

    Braccini, Stephanie; Lambeth, Susan; Schapiro, Steve;

    2010-01-01

    The degree to which non-human primate behavior is lateralized, at either individual or population levels, remains controversial. We investigated the relationship between hand preference and posture during tool use in chimpanzees (Pan troglodytes) during bipedal tool use. We experimentally induced...... tool use in a supported bipedal posture, an unsupported bipedal posture, and a seated posture. Neither bipedal tool use nor these supported conditions have been previously evaluated in apes. The hypotheses tested were 1) bipedal posture will increase the strength of hand preference, and 2) a bipedal...... stance, without the use of one hand for support, will elicit a right hand preference. Results supported the first, but not the second hypothesis: bipedalism induced the subjects to become more lateralized, but not in any particular direction. Instead, it appears that subtle pre-existing lateral biases...

  15. Robotics and virtual reality: the development of a life-sized 3-D system for the rehabilitation of motor function.

    Science.gov (United States)

    Patton, J L; Dawe, G; Scharver, C; Mussa-Ivaldi, F A; Kenyon, R

    2004-01-01

    We have been developing and combining state-of-art devices that allow humans to visualize and feel synthetic objects superimposed on the real world. This effort stems from the need of platform for extending experiments on motor control and learning to realistic human motor tasks and environments, not currently represented in the practice of research. This paper's goal is to outline our motivations, progress, and objectives. Because the system is a general tool, we also hope to motivate researchers in related fields to join in. The platform under development, an augmented reality system combined with a haptic-interface robot, will be a new tool for contributing to the scientific knowledge base in the area of human movement control and rehabilitation robotics. Because this is a prototype, the system will also guide new methods by probing the levels of quality necessary for future design cycles and related technology. Inevitably, it should also lead the way to commercialization of such systems. PMID:17271395

  16. Research of Humanoid Robot Voluntary Movement in 3D Computer Animation%电脑动画中3D虚拟人自主运动的研究

    Institute of Scientific and Technical Information of China (English)

    钱驰波; 薛晓明

    2011-01-01

    电脑动画中复杂环境下3D虚拟人自主运动的研究,是计算机图像处理技术发展过程中急待突破的一个环节.主要原因是传统处理的方式过于复杂耗时.针对上述问题,应用计划分离器建立虚拟人的运动模型,使虚拟人在高低不平的环境中实现正步走、侧走、跑步及跳跃等程序性动画.实验结果表明:提出的方法简单、快捷.%It is urgent breakthrough technology for the development of computer image processing to research 3D humanoid robot voluntary movement in the complex environment due to the traditional way of dealing with timeconsuming and too complex. In response to these problems, a motion planning system capable of generating both global and local motions for a humanoid robot in a layered or two and half dimensional environment are proposed, so that the humanoid robot in the rugged environment to achieve frontal and side walking, jogging and jumping procedural animation. The results show that the proposed method is simple and fast.

  17. From bone to plausible bipedal locomotion. Part II: Complete motion synthesis for bipedal primates.

    Science.gov (United States)

    Nicolas, Guillaume; Multon, Franck; Berillon, Gilles

    2009-05-29

    This paper addresses the problem of synthesizing plausible bipedal locomotion according to 3D anatomical reconstruction and general hypotheses on human motion control strategies. In a previous paper [Nicolas, G., Multon, F., Berillon, G., Marchal, F., 2007. From bone to plausible bipedal locomotion using inverse kinematics. Journal of Biomechanics 40 (5) 1048-1057], we have validated a method based on using inverse kinematics to obtain plausible lower-limb motions knowing the trajectory of the ankle. In this paper, we propose a more general approach that also involves computing a plausible trajectory of the ankles for a given skeleton. The inputs are the anatomical descriptions of the bipedal species, imposed footprints and a rest posture. This process is based on optimizing a reference ankle trajectory until a set of criteria is minimized. This optimization loop is based on the assumption that a plausible motion is supposed to have little internal mechanical work and should be as less jerky as possible. For each tested ankle trajectory, inverse kinematics is used to compute a lower-body motion that enables us to compute the resulting mechanical work and jerk. This method was tested on a set of modern humans (male and female, with various anthropometric properties). We show that the results obtained with this method are close to experimental data for most of the subjects. We also demonstrate that the method is not sensitive to the choice of the reference ankle trajectory; any ankle trajectory leads to very similar result. We finally apply the method to a skeleton of Pan paniscus (Bonobo), and compare the resulting motion to those described by zoologists.

  18. Rapid 3D Modeling and Parts Recognition on Automotive Vehicles Using a Network of RGB-D Sensors for Robot Guidance

    Directory of Open Access Journals (Sweden)

    Alberto Chávez-Aragón

    2013-01-01

    Full Text Available This paper presents an approach for the automatic detection and fast 3D profiling of lateral body panels of vehicles. The work introduces a method to integrate raw streams from depth sensors in the task of 3D profiling and reconstruction and a methodology for the extrinsic calibration of a network of Kinect sensors. This sensing framework is intended for rapidly providing a robot with enough spatial information to interact with automobile panels using various tools. When a vehicle is positioned inside the defined scanning area, a collection of reference parts on the bodywork are automatically recognized from a mosaic of color images collected by a network of Kinect sensors distributed around the vehicle and a global frame of reference is set up. Sections of the depth information on one side of the vehicle are then collected, aligned, and merged into a global RGB-D model. Finally, a 3D triangular mesh modelling the body panels of the vehicle is automatically built. The approach has applications in the intelligent transportation industry, automated vehicle inspection, quality control, automatic car wash systems, automotive production lines, and scan alignment and interpretation.

  19. Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke

    Directory of Open Access Journals (Sweden)

    Meadmore Katie L

    2012-06-01

    Full Text Available Abstract Background Novel stroke rehabilitation techniques that employ electrical stimulation (ES and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL, a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this.

  20. Calibration Error of Robotic Vision System of 3D Laser Scanner%机器人三维激光扫描视觉系统标定误差

    Institute of Scientific and Technical Information of China (English)

    齐立哲; 汤青; 贠超; 王京; 甘中学

    2011-01-01

    The 3D laser scanner is widely applied in industry robot vision system, but the calibration error of positional relationship between the scanner and the robot has important influence on the application of robot vision system. It is presented systematically how the scanning results are influenced by the robotic vision calibration position and orientation errors and how the workpiece positioning process is affected by the scanning result and then it is concluded that the position calibration of vision system is not necessary in the robot workpiece positioning system when there is no variation of robot scanning posture no matter whether the workpiece has posture variation or not. The validity of the theoretical analysis conclusion is verified by tests, thus providing the theoretical basis for explaining the influence of calibration error of vision system on the scanning result and for simplifying the calibration process of the vision system.%基于三维激光扫描仪的工业机器人视觉系统应用越来越广泛,而扫描仪与机器人之间位姿关系标定精度对于机器人视觉系统的应用有重要的影响.介绍基于三维激光扫描仪的机器人视觉系统的相关原理,然后在此基础上系统分析机器人视觉系统位置和姿态标定误差对工件扫描结果和根据扫描结果对工件进行定位过程的影响,得出在工件无姿态变化或有姿态变化但机器人扫描姿态不变情况下的机器人工件定位系统中无须进行视觉系统位置标定的结论,并试验验证了理论分析结论的有效性,为解释视觉系统标定误差对扫描结果的影响情况及简化视觉系统标定过程提供了理论依据.

  1. Experimental evaluations of the accuracy of 3D and 4D planning in robotic tracking stereotactic body radiotherapy for lung cancers

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Mark K. H. [Department of Clinical Oncology, The University of Hong Kong and Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong Special Administrative Region, 999077 (Hong Kong); Kwong, Dora L. W.; Ng, Sherry C. Y. [Department of Clinical Oncology, Queen Mary Hospital, Hong Kong Special Administrative Region, 999077 (Hong Kong); Tong, Anthony S. M.; Tam, Eric K. W. [Theresa Po CyberKnife Center, Hong Kong Special Administrative Region, 999077 (Hong Kong)

    2013-04-15

    acceptable if the percentage of pixels passing {gamma}{sub 5%/3mm} (P{sub {gamma}<1}) {>=} 90%. Results: The averaged P{sub {gamma}<1} values of the 3D{sub EPL}, 3D{sub MC}, 4D{sub EPL}, and 4D{sub MC} dose calculation methods for the moving target plans are 95%, 95%, 94%, and 95% for reproducible motion, and 95%, 96%, 94%, and 93% for nonreproducible motion during actual treatment delivery. The overall measured target dose distributions are in better agreement with the 3D{sub MC} dose distributions than the 4D{sub MC} dose distributions. Conversely, measured dose distributions agree much better with the 4D{sub EPL/MC} than the 3D{sub EPL/MC} dose distributions in the static off-target structure, resulting in higher P{sub {gamma}<1} values with 4D{sub EPL/MC} (91%) vs 3D{sub EPL} (24%) and 3D{sub MC} (25%). Systematic changes of target motion reduced the averaged P{sub {gamma}<1} to 47% and 53% for 4D{sub EPL} and 4D{sub MC} dose calculations, and 22% for 3D{sub EPL/MC} dose calculations in the off-target films. Conclusions: In robotic tracking SBRT, 4D treatment planning was found to yield better prediction of the dose distributions in the off-target structure, but not necessarily in the moving target, compared to standard 3D treatment planning, for reproducible and nonreproducible target motion. It is important to ensure on a patient-by-patient basis that the cumulative uncertainty associated with the 4D-CT artifacts, deformable image registration, and motion variability is significantly smaller than the cumulative uncertainty occurred in standard 3D planning in order to make 4D planning a justified option.

  2. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    Science.gov (United States)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-07-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  3. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    Science.gov (United States)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-05-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  4. Using Single-Camera 3-D Imaging to Guide Material Handling Robots in a Nuclear Waste Package Closure System

    International Nuclear Information System (INIS)

    Nuclear reactors for generating energy and conducting research have been in operation for more than 50 years, and spent nuclear fuel and associated high-level waste have accumulated in temporary storage. Preparing this spent fuel and nuclear waste for safe and permanent storage in a geological repository involves developing a robotic packaging system--a system that can accommodate waste packages of various sizes and high levels of nuclear radiation. During repository operation, commercial and government-owned spent nuclear fuel and high-level waste will be loaded into casks and shipped to the repository, where these materials will be transferred from the casks into a waste package, sealed, and placed into an underground facility. The waste packages range from 12 to 20 feet in height and four and a half to seven feet in diameter. Closure operations include sealing the waste package and all its associated functions, such as welding lids onto the container, filling the inner container with an inert gas, performing nondestructive examinations on welds, and conducting stress mitigation. The Idaho National Laboratory is designing and constructing a prototype Waste Package Closure System (WPCS). Control of the automated material handling is an important part of the overall design. Waste package lids, welding equipment, and other tools must be moved in and around the closure cell during the closure process. These objects are typically moved from tool racks to a specific position on the waste package to perform a specific function. Periodically, these objects are moved from a tool rack or the waste package to the adjacent glovebox for repair or maintenance. Locating and attaching to these objects with the remote handling system, a gantry robot, in a loosely fixtured environment is necessary for the operation of the closure cell. Reliably directing the remote handling system to pick and place the closure cell equipment within the cell is the major challenge

  5. Robotic Bipedal Running: Increasing disturbance rejection

    NARCIS (Netherlands)

    Karssen, J.G.D.

    2013-01-01

    The goal of the research presented in this thesis is to increase the understanding of the human running gait. The understanding of the human running gait is essential for the development of devices, such as prostheses and orthoses, that enable disabled people to run or that enable able people to inc

  6. Robocup3D仿真机器人球队决策系统模型研究%Research on decision system model of Robocup3D robotics team

    Institute of Scientific and Technical Information of China (English)

    李龙澍; 方园

    2015-01-01

    In order to reduce the decision time of robots, speed up the formation convergence as well as unify the individual decision and the team decision, a hierarchical model of team decision system is built based on the latest RoboCup3D simu-lation platform. It supports a specific framework to realize the lineup control, role assignment and cooperation. Based on the method of adjusting matrix minimally each time, a global optimal role assignment algorithm, which is provided for robot individual decision and costlier than previous algorithms, is implemented. By comparative experiments, the final results show that the decision time of robots is much reduced, the unification of team decision and the convergence speed of for-mation are all improved, the collisions between the robots are also reduced, finally the combat capability of robot team is significantly improved.%基于RoboCup3D仿真机器人足球最新平台,以缩短机器人的个体决策时间、快速收敛球队队形并统一个体决策与全队决策为目的,构建了球队层次化的决策系统模型。在此模型下具体实现了全队的阵形控制、角色位置分配和协作配合。基于矩阵最小调整的思想,实现了一个全局最优且比当前现有算法耗时更少的角色分配算法,为球队的阵形控制提供了最优分配方案。结合对比实验,最终结果显示该模型和算法大幅度减少了机器人的决策时间,球队整体同步性、队形收敛速度提高,机器人之间碰撞次数减少,球队整体作战能力提升。

  7. Combined robotic-aided gait training and 3D gait analysis provide objective treatment and assessment of gait in children and adolescents with Acquired Hemiplegia.

    Science.gov (United States)

    Molteni, Erika; Beretta, Elena; Altomonte, Daniele; Formica, Francesca; Strazzer, Sandra

    2015-08-01

    To evaluate the feasibility of a fully objective rehabilitative and assessment process of the gait abilities in children suffering from Acquired Hemiplegia (AH), we studied the combined employment of robotic-aided gait training (RAGT) and 3D-Gait Analysis (GA). A group of 12 patients with AH underwent 20 sessions of RAGT in addition to traditional manual physical therapy (PT). All the patients were evaluated before and after the training by using the Gross Motor Function Measures (GMFM), the Functional Assessment Questionnaire (FAQ), and the 6 Minutes Walk Test. They also received GA before and after RAGT+PT. Finally, results were compared with those obtained from a control group of 3 AH children who underwent PT only. After the training, the GMFM and FAQ showed significant improvement in patients receiving RAGT+PT. GA highlighted significant improvement in stance symmetry and step length of the affected limb. Moreover, pelvic tilt increased, and hip kinematics on the sagittal plane revealed statistically significant increase in the range of motion during the hip flex-extension. Our data suggest that the combined program RAGT+PT induces improvements in functional activities and gait pattern in children with AH, and it demonstrates that the combined employment of RAGT and 3D-GA ensures a fully objective rehabilitative program. PMID:26737310

  8. Modeling of 3-D Object Manipulation by Multi-Joint Robot Fingers under Non-Holonomic Constraints and Stable Blind Grasping

    Science.gov (United States)

    Arimoto, Suguru; Yoshida, Morio; Bae, Ji-Hun

    This paper derives a mathematical model that expresses motion of a pair of multi-joint robot fingers with hemi-spherical rigid ends grasping and manipulating a 3-D rigid object with parallel flat surfaces. Rolling contacts arising between finger-ends and object surfaces are taken into consideration and modeled as Pfaffian constraints from which constraint forces emerge tangentially to the object surfaces. Another noteworthy difference of modeling of motion of a 3-D object from that of a 2-D object is that the instantaneous axis of rotation of the object is fixed in the 2-D case but that is time-varying in the 3-D case. A further difficulty that has prevented us to model 3-D physical interactions between a pair of fingers and a rigid object lies in the problem of treating spinning motion that may arise around the opposing axis from a contact point between one finger-end with one side of the object to another contact point. This paper shows that, once such spinning motion stops as the object mass center approaches just beneath the opposition axis, then this cease of spinning evokes a further nonholonomic constraint. Hence, the multi-body dynamics of the overall fingers-object system is subject to non-holonomic constraints concerning a 3-D orthogonal matrix expressing three mutually orthogonal unit vectors fixed at the object together with an extra non-holonomic constraint that the instantaneous axis of rotation of the object is always orthogonal to the opposing axis. It is shown that Lagrange's equation of motion of the overall system can be derived without violating the causality that governs the non-holonomic constraints. This immediately suggests possible construction of a numerical simulator of multi-body dynamics that can express motion of the fingers and object physically interactive to each other. By referring to the fact that human grasp an object in the form of precision prehension dynamically and stably by using opposable force between the thumb and another

  9. A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients.

    Science.gov (United States)

    Lledó, Luis D; Díez, Jorge A; Bertomeu-Motos, Arturo; Ezquerro, Santiago; Badesa, Francisco J; Sabater-Navarro, José M; García-Aracil, Nicolás

    2016-01-01

    Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates

  10. A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients.

    Science.gov (United States)

    Lledó, Luis D; Díez, Jorge A; Bertomeu-Motos, Arturo; Ezquerro, Santiago; Badesa, Francisco J; Sabater-Navarro, José M; García-Aracil, Nicolás

    2016-01-01

    Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates

  11. A comparative analysis of 2D and 3D tasks for virtual reality therapies based on robotic-assisted neurorehabilitation for post-stroke patients

    Directory of Open Access Journals (Sweden)

    Luis Daniel Lledó

    2016-08-01

    Full Text Available Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding

  12. Comparison of 3D and 4D Monte Carlo optimization in robotic tracking stereotactic body radiotherapy of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Mark K.H. [Tuen Mun Hospital, Department of Clinical Oncology, Hong Kong (S.A.R) (China); Werner, Rene [The University Medical Center Hamburg-Eppendorf, Department of Computational Neuroscience, Hamburg (Germany); Ayadi, Miriam [Leon Berard Cancer Center, Department of Radiation Oncology, Lyon (France); Blanck, Oliver [University Clinic of Schleswig-Holstein, Department of Radiation Oncology, Luebeck (Germany); CyberKnife Center Northern Germany, Guestrow (Germany)

    2014-09-20

    To investigate the adequacy of three-dimensional (3D) Monte Carlo (MC) optimization (3DMCO) and the potential of four-dimensional (4D) dose renormalization (4DMC{sub renorm}) and optimization (4DMCO) for CyberKnife (Accuray Inc., Sunnyvale, CA) radiotherapy planning in lung cancer. For 20 lung tumors, 3DMCO and 4DMCO plans were generated with planning target volume (PTV{sub 5} {sub mm}) = gross tumor volume (GTV) plus 5 mm, assuming 3 mm for tracking errors (PTV{sub 3} {sub mm}) and 2 mm for residual organ deformations. Three fractions of 60 Gy were prescribed to ≥ 95 % of the PTV{sub 5} {sub mm}. Each 3DMCO plan was recalculated by 4D MC dose calculation (4DMC{sub recal}) to assess the dosimetric impact of organ deformations. The 4DMC{sub recal} plans were renormalized (4DMC{sub renorm}) to 95 % dose coverage of the PTV{sub 5} {sub mm} for comparisons with the 4DMCO plans. A 3DMCO plan was considered adequate if the 4DMC{sub recal} plan showed ≥ 95 % of the PTV{sub 3} {sub mm} receiving 60 Gy and doses to other organs at risk (OARs) were below the limits. In seven lesions, 3DMCO was inadequate, providing < 95 % dose coverage to the PTV{sub 3} {sub mm}. Comparison of 4DMC{sub recal} and 3DMCO plans showed that organ deformations resulted in lower OAR doses. Renormalizing the 4DMC{sub recal} plans could produce OAR doses higher than the tolerances in some 4DMC{sub renorm} plans. Dose conformity of the 4DMC{sub renorm} plans was inferior to that of the 3DMCO and 4DMCO plans. The 4DMCO plans did not always achieve OAR dose reductions compared to 3DMCO and 4DMC{sub renorm} plans. This study indicates that 3DMCO with 2 mm margins for organ deformations may be inadequate for Cyberknife-based lung stereotactic body radiotherapy (SBRT). Renormalizing the 4DMC{sub recal} plans could produce degraded dose conformity and increased OAR doses; 4DMCO can resolve this problem. (orig.) [German] Untersucht wurde die Angemessenheit einer dreidimensionalen (3-D) Monte

  13. The software of the 3D simulation system of a robot based on the virtual reality modeling language%基于虚拟现实语言的机器人三维仿真系统软件

    Institute of Scientific and Technical Information of China (English)

    孙怀安; 杨广平

    2001-01-01

    The application of virtual reality technology (VR) in robotics is in its infant period. Adapted to the characteristics of the virtual reality modeling language (VRML), a 3D simulation model of a robot is analyzed and modeled. Based on the virtual reality modeling language and Java language a 3D robot simulation system is realized which is focused on the simulation of robot kinematics and the continuous track of robot move. Finally, the system is tested to accept data from other terminals on the Internet. A reasonable result of remote control robot simulation is achieved.%结合虚拟现实技术的软件平台VRML语言,对机器人三维仿真模型进行了分析和建模;用VRML语言和JAVA语言编写了一个三维机器人仿真系统,对机器人运动学正问题、运动学逆问题、轨迹规划以及环境状况进行了三维仿真;对遥操作机器人的仿真进行了网络传输模拟,并对遥操作机器人与虚拟现实技术结合的前景进行了展望.

  14. 3D Cameras: 3D Computer Vision of Wide Scope

    OpenAIRE

    May, Stefan; Pervoelz, Kai; Surmann, Hartmut

    2007-01-01

    First of all, a short comparison of range sensors and their underlying principles was given. The chapter further focused on 3D cameras. The latest innovations have given a significant improvement for the measurement accuracy, wherefore this technology has attracted attention in the robotics community. This was also the motivation for the examination in this chapter. On this account, several applications were presented, which represents common problems in the domain of autonomous robotics. For...

  15. Self-calibration of cone-beam CT geometry using 3D-2D image registration: development and application to tasked-based imaging with a robotic C-arm

    Science.gov (United States)

    Ouadah, S.; Stayman, J. W.; Gang, G.; Uneri, A.; Ehtiati, T.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Robotic C-arm systems are capable of general noncircular orbits whose trajectories can be driven by the particular imaging task. However obtaining accurate calibrations for reconstruction in such geometries can be a challenging problem. This work proposes a method to perform a unique geometric calibration of an arbitrary C-arm orbit by registering 2D projections to a previously acquired 3D image to determine the transformation parameters representing the system geometry. Methods: Experiments involved a cone-beam CT (CBCT) bench system, a robotic C-arm, and three phantoms. A robust 3D-2D registration process was used to compute the 9 degree of freedom (DOF) transformation between each projection and an existing 3D image by maximizing normalized gradient information with a digitally reconstructed radiograph (DRR) of the 3D volume. The quality of the resulting "self-calibration" was evaluated in terms of the agreement with an established calibration method using a BB phantom as well as image quality in the resulting CBCT reconstruction. Results: The self-calibration yielded CBCT images without significant difference in spatial resolution from the standard ("true") calibration methods (p-value >0.05 for all three phantoms), and the differences between CBCT images reconstructed using the "self" and "true" calibration methods were on the order of 10-3 mm-1. Maximum error in magnification was 3.2%, and back-projection ray placement was within 0.5 mm. Conclusion: The proposed geometric "self" calibration provides a means for 3D imaging on general noncircular orbits in CBCT systems for which a geometric calibration is either not available or not reproducible. The method forms the basis of advanced "task-based" 3D imaging methods now in development for robotic C-arms.

  16. 21世纪外科从2D到3D-从腹腔镜到机器人%Surgery in the 21st century, from 2D to 3D and from laparoscopy to the robotic surgery system

    Institute of Scientific and Technical Information of China (English)

    黄志强

    2010-01-01

    @@ 机器人 (Robot) 一词,最早出现在1921 年捷克斯洛伐克的剧本R.U.R (Rossum's Universal Robots) 中,是捷克语的Robota (劳动者) 去掉词尾"a"的造语.在人们意识中"机器人"定位为"为人类服务的人形机器",在现代科技的推动下,各种类型的机器人已能代替人类完成各种危险、精密、程序化的工作,在医学领域,机器人的应用是现代外科发展的热点之一.

  17. 3D laptop for defense applications

    Science.gov (United States)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  18. Pseudo-3D Drawing of Robotic Fishes on 2D Simulation System for Underwater Bionic Robots%水中机器鱼仿真系统中的伪3D绘制

    Institute of Scientific and Technical Information of China (English)

    陈晓; 李淑琴; 谢广明

    2013-01-01

    关于水中机器鱼仿真系统设计问题,在二维仿真平台上,绘制具有碰撞特性和三维动态视觉效果的物体的技术实现比较难.因此,可结合仿真机器鱼比赛采用的2D仿真平台,提出鱼体关节的柔性体线建模和尾鳍相位变换等设计思想,采用GDI+技术,修复了平台原有的刚体建模导致的碰撞处理漏洞,为机器鱼仿真搭设了物理层映射到界面层的桥梁,有效减少了鱼体碰撞的穿越现象.实验证明,改进方法在实现三维效果方面可为水中机器鱼仿真系统优化提供支持.%To designing the simulation system of robotic fish under water, it is difficult to draw object with collision characteristics and 3D dynamic visual effect on the 2D simulation platform. Therefore, combined with the 2D simulation platform adopted by robofish competitions, this paper put forward the ideas of drawing flexible model of the fish's joint and caudal phase shift. Then by applying GDI + technology, the problem of collision caused by the Rigid Model of the platform before was resolved, which bridges physical layer and the interface layer for the robofish simulation and reduces the phenomenon of " crossing" in fish collision effectively. Experimental results prove that the improved method in realizing 3D effect can provide support for optimizing water machine fish simulation system.

  19. Decoding bipedal locomotion from the rat sensorimotor cortex

    Science.gov (United States)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds

  20. Method of Robot Self-localization in RoboCup3D Simulation System%RoboCup3D仿真系统中的机器人自定位方法

    Institute of Scientific and Technical Information of China (English)

    姚千燕; 杨宜民

    2011-01-01

    在RoboCup3D仿真比赛中,机器人自定位非常重要,定位不准确会对仿真比赛产生严重的影响.为了模拟真实环境,比赛中加入了视觉噪声,这使机器人定位变得更加困难.本文针对RoboCup3D仿真中的机器人视觉特征,提出一种观测值加权融合的卡尔曼滤波方法来实现机器人自定位,采用此方法能得到更精确的观测值.仿真实验结果表明,此定位方法大大提高了机器人自定位的精度.%In RoboCup3D simulation game, the robot self-location is very important, inaccurate location will have serious affect on simulation game. In order to simulate the real environment, it adds visual noise in the game, which makes it more difficult to lo-cate the robot. In this paper, considering the robot visual features of RoboCup3D simulation, it proposes an observations weighted fusion Kalman filter approach to realize robot self-location, using this method to get more accurate observations. The simulation ex-perience result shows that the method greatly improves the accuracy of robot self-location.

  1. Advanced robot locomotion.

    Energy Technology Data Exchange (ETDEWEB)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  2. A Combination of Central Pattern Generator-based and Reflex-based Neural Networks for Dynamic, Adaptive, Robust Bipedal Locomotion

    DEFF Research Database (Denmark)

    Di Canio, Giuliano; Larsen, Jørgen Christian; Wörgötter, Florentin;

    2016-01-01

    the interaction of these systems, implementations with reflexbased or central pattern generator (CPG)-based controllers have been tested on bipedal robot systems. In this paper we will combine the two controller types, into a controller that works with both reflex and CPG signals. We use a reflex-based neural......Robotic systems inspired from humans have always been lightening up the curiosity of engineers and scientists. Of many challenges, human locomotion is a very difficult one where a number of different systems needs to interact in order to generate a correct and balanced pattern. To simulate...... network to generate basic walking patterns of a dynamic bipedal walking robot (DACBOT) and then a CPG-based neural network to ensure robust walking behavior...

  3. Optimal bipedal interactions with dynamic terrain: synthesis and analysis via nonlinear programming

    Science.gov (United States)

    Hubicki, Christian; Goldman, Daniel; Ames, Aaron

    In terrestrial locomotion, gait dynamics and motor control behaviors are tuned to interact efficiently and stably with the dynamics of the terrain (i.e. terradynamics). This controlled interaction must be particularly thoughtful in bipeds, as their reduced contact points render them highly susceptible to falls. While bipedalism under rigid terrain assumptions is well-studied, insights for two-legged locomotion on soft terrain, such as sand and dirt, are comparatively sparse. We seek an understanding of how biological bipeds stably and economically negotiate granular media, with an eye toward imbuing those abilities in bipedal robots. We present a trajectory optimization method for controlled systems subject to granular intrusion. By formulating a large-scale nonlinear program (NLP) with reduced-order resistive force theory (RFT) models and jamming cone dynamics, the optimized motions are informed and shaped by the dynamics of the terrain. Using a variant of direct collocation methods, we can express all optimization objectives and constraints in closed-form, resulting in rapid solving by standard NLP solvers, such as IPOPT. We employ this tool to analyze emergent features of bipedal locomotion in granular media, with an eye toward robotic implementation.

  4. Robotics.

    Science.gov (United States)

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  5. Research and Implementation of 3D Virtual Reality for Underwater Robotic Fish%水下机器鱼三维虚拟现实研究与实现

    Institute of Scientific and Technical Information of China (English)

    施怡文; 徐立鸿; 胡海根

    2011-01-01

    A remote monitoring method of robotic fish was developed to create a virtual reality with nice sensibility. On the basis of VC + +,3D static simulation circumstance was achieved by OpenGL library with 3D modeling software. Interacted with Access, the system could display a real-time view of robotic fish and assemble the water parameter with location on each sampling point. Through the 3D real-time system,users were able to observe the robotic fish swimming path, current location and water parameters in any view angle or distance. The system has a clear structure, and eventually provides a foundation for the realization of intelligent aquaculture.%为创建具有真实感的虚拟现实环境,使用户能够直观感知机器鱼的实时运动状态,实现了一种基于虚拟现实技术的监测方法.在VC++的基础上利用OpenGL图形库与3D建模软件联合创建仿生机器鱼静态三维虚拟现实环境,并集合Access数据库与VC++的交互,实现机器鱼的实时运动显示,并使采样参数与采样位置有机结合显示.该系统可以实现用户从任意角度和距离监测机器鱼巡游路径、当前位置及所在区域的水质参数.系统结构清晰,旨在为实现智能化水产养殖提供参考依据.

  6. Modelling, stability and biomechanical implications of three DOF passive bipedal gait

    Directory of Open Access Journals (Sweden)

    Máximo Alejandro Roa Garzón

    2010-04-01

    Full Text Available Passive dynamic walkers can achieve a steady gait down an inclined plane simply by the influence of gravity. This article presents the modelling of a 3 DOF passive bipedal walker, searching for a relationship between gait characteristics, the robot’s physical properties and the slope of the plane. The proposed adimensional dynamical model’s equations are also given, implementing and modelling the dynamics is described and the main results are presented. Limits on robotic parameters leading to establishing stable limit cycles are also analysed as perio-dic doubling bifurcations appear to be natural in passive gait. Interesting results arose when comparing natural passive walking with human bipedal locomotion.

  7. 基于Simulink/SimMechanics的三自由度并联机器人控制系统仿真%Simulation of Control System for 3D of Parallel Robot based on Simulink/SimMechanics

    Institute of Scientific and Technical Information of China (English)

    胡峰; 骆德渊; 雷霆; 柯辉

    2012-01-01

    Aiming at the problem that the control system of parallel robot is more complicated, compared to the traditional series robot, the technology of virtual simulation was investigated on the control strategy of parallel robot Taking 3D0F Delta Parallel Robot for example, in order to conveniently and rapidly achieve the control system simulation , using Simulink for simulation platform and combining with SimMechanics link, the method of modeling which translates CAD assemblies of Pro/E into SimMechanics model was presented, after that the PID controller model was designed. The experimental results show that it can provide the efficient and significant simulation platform to research the control strategy of parallel robot.%针对并联机器人控制系统比传统串联机器人更加复杂的问题,将虚拟仿真技术应用到并联机器人控制策略的研究上.以三自由度Delta并联机器人为例,为便捷高效实现其控制系统仿真,利用Simulink为仿真平台,结合SimMechanics Link接口软件,提出了三维Pro/E模型转换成SimMechanics模型的建模方法建立机械系统模型,并设计PID控制器模型进行仿真分析.结果表明,该方法为并联机器人控制策略的研究提供了高效的仿真平台,便于展开针对并联机器人特点的各种控制策略的研究.

  8. Project Design and 3D Modeling of Robot Automatic Spray System%机器人自动喷涂系统的方案设计与三维建模

    Institute of Scientific and Technical Information of China (English)

    赵俊英; 戈美净; 王青云; 温国强

    2015-01-01

    工业机器人作为现代制造技术发展的重要标志之一和新兴技术产业,已为世人所认同,并正对现代高技术产业各领域以至人们的生活产生了重要影响。文中基于三菱RV2SQ机械手,综合机器人技术、气动技术、传感器技术、电机传动技术、制造技术、可编程控制技术进行了系统集成,搭建了适用于小型零部件喷漆的机器人自动喷涂系统。并运用Pro/E软件对其主要零件进行了三维建模。%Industrial robot is one of the important signs of the development of modern manufacturing technology and new technology industry. It has been recognized by common people, and has an important impact on high technology industry and people's life. The paper is based on the MITSUBISHI RV2SQ robot. Integrating robotics, pneumatic technology, sensor technology, motor drive technology, manufacturing technology, programmable control technology, the Robot automatic spraying system suitable for small parts spray paint is built up. And 3D modeling of the main parts of by Pro/E software is conducted.

  9. Project Design and 3D Modeling of Robot Automatic Spray System%机器人自动喷涂系统的方案设计与三维建模

    Institute of Scientific and Technical Information of China (English)

    赵俊英; 戈美净; 王青云; 温国强

    2015-01-01

    Industrial robot is one of the important signs of the development of modern manufacturing technology and new technology industry. It has been recognized by common people, and has an important impact on high technology industry and people's life. The paper is based on the MITSUBISHI RV2SQ robot. Integrating robotics, pneumatic technology, sensor technology, motor drive technology, manufacturing technology, programmable control technology, the Robot automatic spraying system suitable for small parts spray paint is built up. And 3D modeling of the main parts of by Pro/E software is conducted.%工业机器人作为现代制造技术发展的重要标志之一和新兴技术产业,已为世人所认同,并正对现代高技术产业各领域以至人们的生活产生了重要影响。文中基于三菱RV2SQ机械手,综合机器人技术、气动技术、传感器技术、电机传动技术、制造技术、可编程控制技术进行了系统集成,搭建了适用于小型零部件喷漆的机器人自动喷涂系统。并运用Pro/E软件对其主要零件进行了三维建模。

  10. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  11. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  12. Auto-adaptative Robot-aided Therapy based in 3D Virtual Tasks controlled by a Supervised and Dynamic Neuro-Fuzzy System

    Directory of Open Access Journals (Sweden)

    Luis Daniel Lledó

    2015-03-01

    Full Text Available This paper presents an application formed by a classification method based on the architecture of ART neural network (Adaptive Resonance Theory and the Fuzzy Set Theory to classify physiological reactions in order to automatically and dynamically adapt a robot-assisted rehabilitation therapy to the patient needs, using a three-dimensional task in a virtual reality system. Firstly, the mathematical and structural model of the neuro-fuzzy classification method is described together with the signal and training data acquisition. Then, the virtual designed task with physics behavior and its development procedure are explained. Finally, the general architecture of the experimentation for the auto-adaptive therapy is presented using the classification method with the virtual reality exercise.

  13. Characteristics of an HTS-SQUID gradiometer with ramp-edge Josephson junctions and its application on robot-based 3D-mobile compact SQUID NDE system

    International Nuclear Information System (INIS)

    We investigated behavior of HTS-dc-SQUID gradiometers with ramp-edge Josephson junctions (JJs) in ac and dc magnetic fields. In the both fields, the gradiometers show higher durability against entry of flux vortices than SQUIDs with bicrystal JJs. A robot-based SQUID NDE system utilizing the gradiometer was developed in an unshielded environment. Detectability of the system to detect non-through cracks in double-layer structures was demonstrated. A new excitation coil was applied to detect cracks that oriented vertical and parallel to the baseline of the gradiometer. In this paper, we investigated detailed behavior of novel HTS-dc-SQUID gradiometers with ramp-edge Josephson junctions (JJs) in both an ac magnetic field and a dc magnetic field. In the both fields, the novel gradiometers shows the superior performance to the conventional YBa2Cu3O7-x (YBCO) HTS-dc-SQUID gradiometer and a bare HTS-dc-SQUID ring with bicrystal JJs concerning durability against entry and hopping of flux vortices, probably due to their differential pickup coils without a grain boundary and multilayer structure of the ramp-edge JJs. A robot-based compact HTS-SQUID NDE system utilizing the novel gradiometer was reviewed, and detectability of the system to detect non-through cracks in a carbon fiber reinforced plastic (CFRP)/Al double-layer structure was demonstrated. A new excitation coil in which the supplied currents flowed in the orthogonal directions was applied to detect cracks that oriented vertical and parallel to the baseline of the gradiometer.

  14. Mobile robot 3D map building based on hybrid pose estimation model%基于混合位姿估计模型的移动机器人三维地图创建方法

    Institute of Scientific and Technical Information of China (English)

    王可; 贾松敏; 徐涛; 李秀智

    2015-01-01

    A real-time dense method to address the problem of mobile robot simultaneous localization and 3D mapping(3D SLAM) in complex indoor environment is proposed. In this approach, the environmental data is captured by using a RGB-D camera which is fixed on the robot. Combining with the local texture association, a hybrid algorithm model is established to ensure the pose estimation accuracy and concurrently decrease the failure rate during mapping by using the point cloud and image texture. By taking advantage of the keyframe selection mechanism, a visual-based loop detection algorithm and tree-based network optimizer(TORO) are used to achieve a global consistency map. Experimental results show the feasibility and effectiveness of the proposed algorithm in the indoor environment.%针对室内复杂环境下的稠密三维建模问题,提出一种基于RGB-D相机的移动机器人同时定位与三维地图创建方法.该方法利用架设在移动机器人上的RGB-D相机获取环境信息,根据点云和纹理加权模型建立结合局部纹理约束的混合位姿估计方法,确保定位精度的同时减小失败率.在关键帧选取机制下,结合视觉闭环检测方法,运用树结构网络优化(TORO)算法最小化闭环误差,实现三维地图的全局一致性优化.在室内环境下的实验结果验证了所提出算法的有效性和可行性.

  15. A CORBA-Based Control Architecture for Real-Time Teleoperation Tasks in a Developmental Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Hanafiah Yussof

    2011-06-01

    Full Text Available This paper presents the development of new Humanoid Robot Control Architecture (HRCA platform based on Common Object Request Broker Architecture (CORBA in a developmental biped humanoid robot for real‐time teleoperation tasks. The objective is to make the control platform open for collaborative teleoperation research in humanoid robotics via the internet. Meanwhile, to generate optimal trajectory generation in bipedal walk, we proposed a real time generation of optimal gait by using Genetic Algorithms (GA to minimize the energy for humanoid robot gait. In addition, we proposed simplification of kinematical solutions to generate controlled trajectories of humanoid robot legs in teleoperation tasks. The proposed control systems and strategies was evaluated in teleoperation experiments between Australia and Japan using humanoid robot Bonten‐Maru. Additionally, we have developed a user‐ friendly Virtual Reality (VR user interface that is composed of ultrasonic 3D mouse system and a Head Mounted Display (HMD for working coexistence of human and humanoid robot in teleoperation tasks. The teleoperation experiments show good performance of the proposed system and control, and also verified the good performance for working coexistence of human and humanoid robot.

  16. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  17. 用于避障研究的微型仿生机器鱼3维仿真系统%3D simulation system of micro robotic fish for obstacle avoidance research

    Institute of Scientific and Technical Information of China (English)

    叶秀芬; 关红玲; 张哲会; 杨博文

    2011-01-01

    基于VC++6.0开发环境和OpenGL(open graphics library)国际图形标准,在Windows系统下开发了微型仿生机器鱼3维仿真系统.该系统可以降低用实体机器鱼进行机器鱼避障能力研究的成本和减少在研究过程中对实体机器鱼造成的损害.采用多边形建模的方法构建了虚拟微型仿生机器鱼模型,模拟了鱼类尾鳍的摆动.提出了一种模拟红外传感器探测障碍物的虚拟射线方法.并采用实时模糊决策算法设计了基于多传感器信息的复合模糊控制器,决策微型仿生机器鱼的避障行为.仿真实验表明,复合模糊控制器实时性好、效率高;无论是单个任意形状的障碍物还是多个连续障碍物,复合模糊控制器都能有效地引导仿生机器鱼避开障碍物,到达目标点.微型仿生机器鱼3维仿真系统为研究仿生机器鱼的自主避障能力提供了可靠、逼真、便利的平台.%A 3D simulation system of micro robotic fish was developed in windows operation system with VC++ 6.0developing environment and OpenGL international graphic standard, in order to reduce the cost of obstacle avoidance research using real robotic fish and reduce the damage to the real robotic fish. A virtual robotic fish was built using polygon modeling method and the swing of fish tail was simulated. A virtual ray method which simulated infrared sensor detecting obstacles was proposed. Based on the information of multiple sensors, a composite fuzzy controller using real time fuzzy control algorithm was designed to decide the avoidance behavior of micro robotic fish. The simulation results demonstrate the composite fuzzy controller is of real-time and has high efficienly. Micro robotic fish was efficiently conducted by the composite fuzzy controller to avoid both single arbitrary shape obstacle and multiple continuous obstacles and achieved the targeting result. A reliable, realistic and convenient platform was provided for researching the

  18. Solid works 3D

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol Yeong

    2004-02-15

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  19. Solid works 3D

    International Nuclear Information System (INIS)

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  20. Locomotor energetics and leg length in hominid bipedality.

    Science.gov (United States)

    Kramer, P A; Eck, G G

    2000-05-01

    Because bipedality is the quintessential characteristic of Hominidae, researchers have compared ancient forms of bipedality with modern human gait since the first clear evidence of bipedal australopithecines was unearthed over 70 years ago. Several researchers have suggested that the australopithecine form of bipedality was transitional between the quadrupedality of the African apes and modern human bipedality and, consequently, inefficient. Other researchers have maintained that australopithecine bipedality was identical to that of Homo. But is it reasonable to require that all forms of hominid bipedality must be the same in order to be optimized? Most attempts to evaluate the locomotor effectiveness of the australopithecines have, unfortunately, assumed that the locomotor anatomy of modern humans is the exemplar of consummate bipedality. Modern human anatomy is, however, the product of selective pressures present in the particular milieu in which Homo arose and it is not necessarily the only, or even the most efficient, bipedal solution possible. In this report, we investigate the locomotion of Australopithecus afarensis, as represented by AL 288-1, using standard mechanical analyses. The osteological anatomy of AL 288-1 and movement profiles derived from modern humans are applied to a dynamic model of a biped, which predicts the mechanical power required by AL 288-1 to walk at various velocities. This same procedure is used with the anatomy of a composite modern woman and a comparison made. We find that AL 288-1 expends less energy than the composite woman when locomoting at walking speeds. This energetic advantage comes, however, at a price: the preferred transition speed (from a walk to a run) of AL 288-1 was lower than that of the composite woman. Consequently, the maximum daily range of AL 288-1 may well have been substantially smaller than that of modern people. The locomotor anatomy of A. afarensis may have been optimized for a particular ecological niche

  1. 3d-3d correspondence revisited

    Science.gov (United States)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  2. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  3. Bipedal nanowalker by pure physical mechanisms

    CERN Document Server

    Cheng, Juan; Hou, Ruizheng; Efremov, Artem; Liu, Ruchuan; van der Maarel, Johan RC; Wang, Zhisong

    2013-01-01

    Artificial nanowalkers are inspired by biomolecular counterparts from living cells, but remain far from comparable to the latter in design principles. The walkers reported to date mostly rely on chemical mechanisms to gain a direction; they all produce chemical wastes. Here we report a light-powered DNA bipedal walker based on a design principle derived from cellular walkers. The walker has two identical feet and the track has equal binding sites; yet the walker gains a direction by pure physical mechanisms that autonomously amplify an intra-site asymmetry into a ratchet effect. The nanowalker is free of any chemical waste. It has a distinct thermodynamic feature that it possesses the same equilibrium before and after operation, but generates a truly non-equilibrium distribution during operation. The demonstrated design principle exploits mechanical effects and is adaptable for use in other nanomachines.

  4. Real-time 3D Outdoor Environment Modeling for Mobile Robot with a Laser Scanner%基于激光扫描的移动机器人3D室外环境实时建模

    Institute of Scientific and Technical Information of China (English)

    周波; 戴先中; 韩建达

    2012-01-01

    针对室外非结构化3D环境,研究了基于激光扫描的移动机器人实时地形建模问题.考虑了建模过程中可能存在的多源不确定性误差,将其建模为零均值高斯噪声,由此建立多级坐标变换矩阵将激光扫描数据转化为全局坐标系中的概率化高程估计,并根据置信区间将得到的高程估计关联至多个地形网格,在此基础上对关联网格内分配的高程估计进行概率融合,实现了局部高程地图的更新.此外,采用局部窗口检测方法对地形遮挡问题进行了处理,并同时解决了室外环境下移动机器人的3D定位问题.实验结果表明了该算法的实时性和有效性.%The real-time terrain modeling problem of mobile robot with a laser scanner in outdoor unstructured 3D environments is studied. The underlying uncertainties from multiple sources during modeling are taken into account and modeled as zero-mean Gaussian noises, and subsequently the multi-level coordinate transformation matrixes are created to convert the measurements from laser scanner into probabilistic elevation estimations in the global coordinate systems, which will be associated with several terrain cells according to the confidence interval of the estimation. The elevation estimations assigned to each cell can be fused through a probabilistic approach to update the map locally. In addition, a local measurement window is denned to detect the occlusions, and the 3D localization of the mobile robot in outdoor environment is solved simultaneously. Experimental results demonstrate the real-time performance and effectiveness of the proposed method.

  5. General Concept of 3D SLAM

    OpenAIRE

    Zhang, Peter; Millos, Evangelous; Gu, Jason

    2009-01-01

    This chapter established an approach to solve the full 3D SLAM problem, applied to an underwater environment. First, a general approach to the 3D SLAM problem was presented, which included the models in 3D case, data association and estimation algorithm. For an underwater mobile robot, a new measurement system was designed for large area's globally-consistent SLAM: buoys for long-range estimation, and camera for short-range estimation and map building. Globally-consistent results could be obt...

  6. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  7. Neural Computation Scheme of Compound Control: Tacit Learning for Bipedal Locomotion

    Science.gov (United States)

    Shimoda, Shingo; Kimura, Hidenori

    The growing need for controlling complex behaviors of versatile robots working in unpredictable environment has revealed the fundamental limitation of model-based control strategy that requires precise models of robots and environments before their operations. This difficulty is fundamental and has the same root with the well-known frame problem in artificial intelligence. It has been a central long standing issue in advanced robotics, as well as machine intelligence, to find a prospective clue to attack this fundamental difficulty. The general consensus shared by many leading researchers in the related field is that the body plays an important role in acquiring intelligence that can conquer unknowns. In particular, purposeful behaviors emerge during body-environment interactions with the help of an appropriately organized neural computational scheme that can exploit what the environment can afford. Along this line, we propose a new scheme of neural computation based on compound control which represents a typical feature of biological controls. This scheme is based on classical neuron models with local rules that can create macroscopic purposeful behaviors. This scheme is applied to a bipedal robot and generates the rhythm of walking without any model of robot dynamics and environments.

  8. 3D printed rapid disaster response

    Science.gov (United States)

    Lacaze, Alberto; Murphy, Karl; Mottern, Edward; Corley, Katrina; Chu, Kai-Dee

    2014-05-01

    Under the Department of Homeland Security-sponsored Sensor-smart Affordable Autonomous Robotic Platforms (SAARP) project, Robotic Research, LLC is developing an affordable and adaptable method to provide disaster response robots developed with 3D printer technology. The SAARP Store contains a library of robots, a developer storefront, and a user storefront. The SAARP Store allows the user to select, print, assemble, and operate the robot. In addition to the SAARP Store, two platforms are currently being developed. They use a set of common non-printed components that will allow the later design of other platforms that share non-printed components. During disasters, new challenges are faced that require customized tools or platforms. Instead of prebuilt and prepositioned supplies, a library of validated robots will be catalogued to satisfy various challenges at the scene. 3D printing components will allow these customized tools to be deployed in a fraction of the time that would normally be required. While the current system is focused on supporting disaster response personnel, this system will be expandable to a range of customers, including domestic law enforcement, the armed services, universities, and research facilities.

  9. Robots

    Institute of Scientific and Technical Information of China (English)

    驷萍

    1997-01-01

    一篇介绍机器人的文章写得如此耐读,如此清新! 首先.我们弄清了robot一词的来历: It was used first in 1920 in a play by Czcchoslovak writer Karel Capek.The wordrobot comes from the Czech word for slave. 上句提供了一个时间:1920。文章接着便抓住这个时间做文章: 且The word robot.and robots themselves are less than 100 years old.But humanshave been dreaming of real and imaginary copies of themselves for thousands of years. 文章就这样写出了波澜,1920年和 thousands of years自然而然构成了强烈对比。1954年和1960s是两个谈及机器人时不得不一提的时间: In 1954,the world’s first robot was produced in the United States. During the 1960s,the first industrial robots appeared beside human workers infactories.下面这句让我们体味到 the Czech word for slave中的 slave不仅言之有理,而且影视和小说里的机器人“造反”,进而 killed the humans who made them的情节也“事出有因”: What do today’s robots do?Robots do work.Work that human consideruninteresting or dangerous.…do many jobs that people consider tiring. 本文将机器人的“功过”放在一起写,笔

  10. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  11. 3D Parametric Gait Planning of Humanoid Robot with Consideration of Comprehensive Biped Walking Constraints%考虑综合步行约束的仿人机器人参数化3D步态规划方法

    Institute of Scientific and Technical Information of China (English)

    伊强; 陈恳; 刘莉; 付成龙

    2009-01-01

    给出了一种三维环境下双足行走的参数化步态规划方法,建立了仿人机器人13质量块约束动力学模型.考虑单腿支撑和双腿支撑无冲击连续切换的六点边界约束条件、可行步态物理约束条件以及ZMP稳定性约束条件,以关节输出力矩函数的二次型积分值最小作为优化指标,采用参数化步态优化方法,将复杂关节轨迹的规划问题转化为分段多项式系数组成的有限参数向量的优化问题,得到厂快速和慢速两组光滑无振动的优化步态.仿真和样机实验验证了该方法的有效性.%A parametric gait planning of 3D biped walking is proposed and a 13-rigid-body constrained dynamic model of humanoid robot is also established. With the considerations of six-point boundary constraints of successive and impact-less steps including SSP (single-support-phase) and DSP (double-support-phase), physical constraints of feasible gait and ZMP (zero moment point) stability constraints of locomotion, tow groups of slow and fast walking speed with smooth and non-jerky optimal joint trajectory curves to minimize integral quadratic amount of joint driving torques are obtained by adopting the parametric gait optimization approach, which makes the complicated joint trajectory planning problem transform into the optimization problem of limited parametric vectors composed of piecewisepolynomial coefficients. The effectiveness of this method is confirmed by dynamic simulations and walking experiments on an actual humanoid robot.

  12. Instability-induced hierarchy in bipedal locomotion

    Science.gov (United States)

    Ohgane, Kunishige; Ueda, Kei-Ichi

    2008-05-01

    One of the important features of human locomotion is its instant adaptability to various unpredictable changes of physical and environmental conditions. This property is known as flexibility. Modeling the bipedal locomotion system, we show that initial-state coordination by a global variable which encodes the attractor basins of the system can yield flexibility. This model is based on the following hypotheses: (i) the walking velocity is a global variable, and (ii) the leg posture at the beginning of the stance phase is the initial state of the gait. Moreover, we confirm these hypotheses. We investigate the regions near the neutral states between walking and falling phases using numerical experiments and demonstrate that global variables can be defined as the dominant unstable directions of the system dynamics near the neutral states. We propose the concept of an “instability-induced hierarchy.” In this hierarchy, global variables govern other variables near neutral states; i.e., they become elements of a higher level.

  13. An HCCPG Model-based 3D Gait Control of a Snake-like Robot%基于层次化联结CPG模型的蛇形机器人3维步态控制

    Institute of Scientific and Technical Information of China (English)

    杨贵志; 马书根; 李斌; 王明辉

    2014-01-01

    联结CPG(connectionist central pattern generator,CCPG)模型适于控制机器人生成步态,但是传统的CCPG模型无法很好地生成3维步态.为此,本文根据生物学原理,提出了一个改进的神经元模型和一个改进的层次化CCPG(hierarchical CCPG,HCCPG)模型.HCCPG模型能够生成相位协调的多自由度运动控制信号,从而解决了传统CCPG模型的步态生成问题.基于该模型,提出了一个统一方法来生成机器人的2维、3维步态.对转弯步态的特性进行了系统化深入分析,以便更好地利用该步态来适应狭窄的弯道环境.本文提出的HCCPG模型以及得到的步态特性,有助于提高机器人的环境适应能力.%The connectionist central pattern generator (CCPG) model is suitable for controlling robots and generating gaits, however, the traditional CCPGs can’t generate the 3D gaits well. To solve this problem, an improved neuron model and an improved hierarchical CCPG (HCCPG) model are proposed according to biology principles. HCCPG can generate the phase-coordinated multi-degrees-of-freedom motion control signals well, so it solves the gait generation problem in traditional CCPGs. Based on the HCCPG, a unified generation method is proposed for 2D gaits and 3D gaits. The properties of turning gait are investigated systematically and thoroughly to make better use of it to adapt to narrow curved passages. The proposed HCCPG model and the derived gait properties are useful for improving the robot’s adaptability.

  14. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  15. Humanoid Walking Robot: Modeling, Inverse Dynamics, and Gain Scheduling Control

    Directory of Open Access Journals (Sweden)

    Elvedin Kljuno

    2010-01-01

    Full Text Available This article presents reference-model-based control design for a 10 degree-of-freedom bipedal walking robot, using nonlinear gain scheduling. The main goal is to show concentrated mass models can be used for prediction of the required joint torques for a bipedal walking robot. Relatively complicated architecture, high DOF, and balancing requirements make the control task of these robots difficult. Although linear control techniques can be used to control bipedal robots, nonlinear control is necessary for better performance. The emphasis of this work is to show that the reference model can be a bipedal walking model with concentrated mass at the center of gravity, which removes the problems related to design of a pseudo-inverse system. Another significance of this approach is the reduced calculation requirements due to the simplified procedure of nominal joint torques calculation. Kinematic and dynamic analysis is discussed including results for joint torques and ground force necessary to implement a prescribed walking motion. This analysis is accompanied by a comparison with experimental data. An inverse plant and a tracking error linearization-based controller design approach is described. We propose a novel combination of a nonlinear gain scheduling with a concentrated mass model for the MIMO bipedal robot system.

  16. Honda humanoid robots development.

    Science.gov (United States)

    Hirose, Masato; Ogawa, Kenichi

    2007-01-15

    Honda has been doing research on robotics since 1986 with a focus upon bipedal walking technology. The research started with straight and static walking of the first prototype two-legged robot. Now, the continuous transition from walking in a straight line to making a turn has been achieved with the latest humanoid robot ASIMO. ASIMO is the most advanced robot of Honda so far in the mechanism and the control system. ASIMO's configuration allows it to operate freely in the human living space. It could be of practical help to humans with its ability of five-finger arms as well as its walking function. The target of further development of ASIMO is to develop a robot to improve life in human society. Much development work will be continued both mechanically and electronically, staying true to Honda's 'challenging spirit'.

  17. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  18. 3D Maps Representation Using GNG

    Directory of Open Access Journals (Sweden)

    Vicente Morell

    2014-01-01

    Full Text Available Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.

  19. 3D Visual SLAM Based on Multiple Iterative Closest Point

    OpenAIRE

    Chunguang Li; Chongben Tao; Guodong Liu

    2015-01-01

    With the development of novel RGB-D visual sensors, data association has been a basic problem in 3D Visual Simultaneous Localization and Mapping (VSLAM). To solve the problem, a VSLAM algorithm based on Multiple Iterative Closest Point (MICP) is presented. By using both RGB and depth information obtained from RGB-D camera, 3D models of indoor environment can be reconstructed, which provide extensive knowledge for mobile robots to accomplish tasks such as VSLAM and Human-Robot Interaction. Due...

  20. Inverse Kinematic Analysis of a Redundant Hybrid Climbing Robot

    Directory of Open Access Journals (Sweden)

    Adrian Peidro

    2015-11-01

    Full Text Available This paper presents the complete inverse kinematic analysis of a novel redundant truss climbing robot with 10 degrees of freedom. The robot is bipedal and has a hybrid serial-parallel architecture, where each leg consists of two parallel mechanisms connected in series. By separating the equation for inverse kinematics into two parts - with each part associated with a different leg - an analytic solution to the inverse kinematics is derived. In the obtained solution, all the joint coordinates are calculated in terms of four or five decision variables (depending on the desired orientation whose values can be freely decided due to the redundancy of the robot. Next, the constrained inverse kinematic problem is also solved, which consists of finding the values of the decision variables that yield a desired position and orientation satisfying the joint limits. Taking the joint limits into consideration, it is shown that all the feasible solutions that yield a given desired position and orientation can be represented as 2D and 3D sets in the space of the decision variables. These sets provide a compact and complete solution to the inverse kinematics, with applications for motion planning.

  1. Applications of Chaotic Dynamics in Robotics

    Directory of Open Access Journals (Sweden)

    Xizhe Zang

    2016-03-01

    Full Text Available This article presents a summary of applications of chaos and fractals in robotics. Firstly, basic concepts of deterministic chaos and fractals are discussed. Then, fundamental tools of chaos theory used for identifying and quantifying chaotic dynamics will be shared. Principal applications of chaos and fractal structures in robotics research, such as chaotic mobile robots, chaotic behaviour exhibited by mobile robots interacting with the environment, chaotic optimization algorithms, chaotic dynamics in bipedal locomotion and fractal mechanisms in modular robots will be presented. A brief survey is reported and an analysis of the reviewed publications is also presented.

  2. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  3. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  4. Extracting kinematic parameters for monkey bipedal walking from cortical neuronal ensemble activity

    Directory of Open Access Journals (Sweden)

    Nathan Fitzsimmons

    2009-03-01

    Full Text Available The ability to walk may be critically impacted as the result of neurological injury or disease. While recent advances in brain-machine interfaces (BMIs have demonstrated the feasibility of upper-limb neuroprostheses, BMIs have not been evaluated as a means to restore walking. Here, we demonstrate that chronic recordings from ensembles of cortical neurons can be used to predict the kinematics of bipedal walking in rhesus macaques – both offline and in real-time. Linear decoders extracted 3D coordinates of leg joints and leg muscle EMGs from the activity of hundreds of cortical neurons. As more complex patterns of walking were produced by varying the gait speed and direction, larger neuronal populations were needed to accurately extract walking patterns. Extraction was further improved using a switching decoder which designated a submodel for each walking paradigm. We propose that BMIs may one day allow severely paralyzed patients to walk again.

  5. Herramientas SIG 3D

    Directory of Open Access Journals (Sweden)

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  6. TOWARDS: 3D INTERNET

    OpenAIRE

    Ms. Swapnali R. Ghadge

    2013-01-01

    In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot o...

  7. Bootstrapping 3D fermions

    Science.gov (United States)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  8. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  9. 3D scene modeling from multiple range views

    Science.gov (United States)

    Sequeira, Vitor; Goncalves, Joao G. M.; Ribeiro, M. Isabel

    1995-09-01

    This paper presents a new 3D scene analysis system that automatically reconstructs the 3D geometric model of real-world scenes from multiple range images acquired by a laser range finder on board of a mobile robot. The reconstruction is achieved through an integrated procedure including range data acquisition, geometrical feature extraction, registration, and integration of multiple views. Different descriptions of the final 3D scene model are obtained: a polygonal triangular mesh, a surface description in terms of planar and biquadratics surfaces, and a 3D boundary representation. Relevant experimental results from the complete 3D scene modeling are presented. Direct applications of this technique include 3D reconstruction and/or update of architectual or industrial plans into a CAD model, design verification of buildings, navigation of autonomous robots, and input to virtual reality systems.

  10. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  11. 3D Harmonic Echocardiography:

    NARCIS (Netherlands)

    M.M. Voormolen

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  12. Mechanisms for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture?

    Science.gov (United States)

    Preuschoft, Holger

    2004-05-01

    Morphology and biomechanics are linked by causal morphogenesis ('Wolff's law') and the interplay of mutations and selection (Darwin's 'survival of the fittest'). Thus shape-based selective pressures can be determined. In both cases we need to know which biomechanical factors lead to skeletal adaptation, and which ones exert selective pressures on body shape. Each bone must be able to sustain the greatest regularly occurring loads. Smaller loads are unlikely to lead to adaptation of morphology. The highest loads occur primarily in posture and locomotion, simply because of the effect of body weight (or its multiple). In the skull, however, it is biting and chewing that result in the greatest loads. Body shape adapted for an arboreal lifestyle also smooths the way towards bipedality. Hindlimb dominance, length of the limbs in relation to the axial skeleton, grasping hands and feet, mass distribution (especially of the limb segments), thoracic shape, rib curvatures, and the position of the centre of gravity are the adaptations to arboreality that also pre-adapt for bipedality. Five divergent locomotor/morphological types have evolved from this base: arm-swinging in gibbons, forelimb-dominated slow climbing in orangutans, quadrupedalism/climbing in the African apes, an unknown mix of climbing and bipedal walking in australopithecines, and the remarkably endurant bipedal walking of humans. All other apes are also facultative bipeds, but it is the biomechanical characteristics of bipedalism in orangutans, the most arboreal great ape, which is closest to that in humans. If not evolutionary accident, what selective factor can explain why two forms adopted bipedality? Most authors tend to connect bipedal locomotion with some aspect of progressively increasing distance between trees because of climatic changes. More precise factors, in accordance with biomechanical requirements, include stone-throwing, thermoregulation or wading in shallow water. Once bipedality has been

  13. Mechanisms for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture?

    Science.gov (United States)

    Preuschoft, Holger

    2004-05-01

    Morphology and biomechanics are linked by causal morphogenesis ('Wolff's law') and the interplay of mutations and selection (Darwin's 'survival of the fittest'). Thus shape-based selective pressures can be determined. In both cases we need to know which biomechanical factors lead to skeletal adaptation, and which ones exert selective pressures on body shape. Each bone must be able to sustain the greatest regularly occurring loads. Smaller loads are unlikely to lead to adaptation of morphology. The highest loads occur primarily in posture and locomotion, simply because of the effect of body weight (or its multiple). In the skull, however, it is biting and chewing that result in the greatest loads. Body shape adapted for an arboreal lifestyle also smooths the way towards bipedality. Hindlimb dominance, length of the limbs in relation to the axial skeleton, grasping hands and feet, mass distribution (especially of the limb segments), thoracic shape, rib curvatures, and the position of the centre of gravity are the adaptations to arboreality that also pre-adapt for bipedality. Five divergent locomotor/morphological types have evolved from this base: arm-swinging in gibbons, forelimb-dominated slow climbing in orangutans, quadrupedalism/climbing in the African apes, an unknown mix of climbing and bipedal walking in australopithecines, and the remarkably endurant bipedal walking of humans. All other apes are also facultative bipeds, but it is the biomechanical characteristics of bipedalism in orangutans, the most arboreal great ape, which is closest to that in humans. If not evolutionary accident, what selective factor can explain why two forms adopted bipedality? Most authors tend to connect bipedal locomotion with some aspect of progressively increasing distance between trees because of climatic changes. More precise factors, in accordance with biomechanical requirements, include stone-throwing, thermoregulation or wading in shallow water. Once bipedality has been

  14. 3D Printed Multimaterial Microfluidic Valve

    Science.gov (United States)

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  15. 3D Printed Multimaterial Microfluidic Valve.

    Science.gov (United States)

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  16. Enhanced operator perception through 3D vision and haptic feedback

    Science.gov (United States)

    Edmondson, Richard; Light, Kenneth; Bodenhamer, Andrew; Bosscher, Paul; Wilkinson, Loren

    2012-06-01

    Polaris Sensor Technologies (PST) has developed a stereo vision upgrade kit for TALON® robot systems comprised of a replacement gripper camera and a replacement mast zoom camera on the robot, and a replacement display in the Operator Control Unit (OCU). Harris Corporation has developed a haptic manipulation upgrade for TALON® robot systems comprised of a replacement arm and gripper and an OCU that provides haptic (force) feedback. PST and Harris have recently collaborated to integrate the 3D vision system with the haptic manipulation system. In multiple studies done at Fort Leonard Wood, Missouri it has been shown that 3D vision and haptics provide more intuitive perception of complicated scenery and improved robot arm control, allowing for improved mission performance and the potential for reduced time on target. This paper discusses the potential benefits of these enhancements to robotic systems used for the domestic homeland security mission.

  17. Massive 3D Supergravity

    CERN Document Server

    Andringa, Roel; de Roo, Mees; Hohm, Olaf; Sezgin, Ergin; Townsend, Paul K

    2009-01-01

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered `massive 3D gravity'. Another is a `new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  18. Massive 3D supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Andringa, Roel; Bergshoeff, Eric A; De Roo, Mees; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: O.Hohm@rug.n, E-mail: sezgin@tamu.ed, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-01-21

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered 'massive 3D gravity'. Another is a 'new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  19. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    ABSTRACT: Lack of productivity in construction is a well known issue. Despite the fact that causes hereof are multiple, the introduction of information technology is a frequently observed response to almost any challenge. ICT in construction is a thoroughly researched matter, however, the current...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  20. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  1. Kinematically stable bipedal locomotion using ionic polymer–metal composite actuators

    International Nuclear Information System (INIS)

    Ionic conducting polymer–metal composites (abbreviated as IPMCs) are interesting actuators that can act as artificial muscles in robotic and microelectromechanical systems. Various black or gray box models have modeled the electrochemical–mechanical behavior of these materials. In this study, the governing partial differential equation of the behavior of IPMCs is solved using finite element methods to find the critical actuation parameters, such as strain distribution, maximum strain, and response time. One-dimensional results of the FEM solution are then extended to 2D to find the tip displacement of a flap actuator and experimentally verified. A model of a seven-degree-of-freedom biped robot, actuated by IPMC flaps, is then introduced. The possibility of fast and stable bipedal locomotion using IPMC artificial muscles is the main motivation of this study. Considering the actuator limits, joint path trajectories are generated to achieve a fast and smooth motion. The stability of the proposed gait is then evaluated using the ZMP criterion and motion simulation. The fabrication parameters of each actuator, such as length, platinum plating thickness and installation angle, are then determined using the generated trajectories. A discussion on future studies on force–torque generation of IPMCs for biped locomotion concludes this paper. (paper)

  2. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  3. Fossils, feet and the evolution of human bipedal locomotion

    Science.gov (United States)

    Harcourt-Smith, W E H; Aiello, L C

    2004-01-01

    We review the evolution of human bipedal locomotion with a particular emphasis on the evolution of the foot. We begin in the early twentieth century and focus particularly on hypotheses of an ape-like ancestor for humans and human bipedal locomotion put forward by a succession of Gregory, Keith, Morton and Schultz. We give consideration to Morton's (1935) synthesis of foot evolution, in which he argues that the foot of the common ancestor of modern humans and the African apes would be intermediate between the foot of Pan and Hylobates whereas the foot of a hypothetical early hominin would be intermediate between that of a gorilla and a modern human. From this base rooted in comparative anatomy of living primates we trace changing ideas about the evolution of human bipedalism as increasing amounts of postcranial fossil material were discovered. Attention is given to the work of John Napier and John Robinson who were pioneers in the interpretation of Plio-Pleistocene hominin skeletons in the 1960s. This is the period when the wealth of evidence from the southern African australopithecine sites was beginning to be appreciated and Olduvai Gorge was revealing its first evidence for Homo habilis. In more recent years, the discovery of the Laetoli footprint trail, the AL 288-1 (A. afarensis) skeleton, the wealth of postcranial material from Koobi Fora, the Nariokotome Homo ergaster skeleton, Little Foot (Stw 573) from Sterkfontein in South Africa, and more recently tantalizing material assigned to the new and very early taxa Orrorin tugenensis, Ardipithecus ramidus and Sahelanthropus tchadensis has fuelled debate and speculation. The varying interpretations based on this material, together with changing theoretical insights and analytical approaches, is discussed and assessed in the context of new three-dimensional morphometric analyses of australopithecine and Homo foot bones, suggesting that there may have been greater diversity in human bipedalism in the earlier phases

  4. Fossils, feet and the evolution of human bipedal locomotion.

    Science.gov (United States)

    Harcourt-Smith, W E H; Aiello, L C

    2004-05-01

    We review the evolution of human bipedal locomotion with a particular emphasis on the evolution of the foot. We begin in the early twentieth century and focus particularly on hypotheses of an ape-like ancestor for humans and human bipedal locomotion put forward by a succession of Gregory, Keith, Morton and Schultz. We give consideration to Morton's (1935) synthesis of foot evolution, in which he argues that the foot of the common ancestor of modern humans and the African apes would be intermediate between the foot of Pan and Hylobates whereas the foot of a hypothetical early hominin would be intermediate between that of a gorilla and a modern human. From this base rooted in comparative anatomy of living primates we trace changing ideas about the evolution of human bipedalism as increasing amounts of postcranial fossil material were discovered. Attention is given to the work of John Napier and John Robinson who were pioneers in the interpretation of Plio-Pleistocene hominin skeletons in the 1960s. This is the period when the wealth of evidence from the southern African australopithecine sites was beginning to be appreciated and Olduvai Gorge was revealing its first evidence for Homo habilis. In more recent years, the discovery of the Laetoli footprint trail, the AL 288-1 (A. afarensis) skeleton, the wealth of postcranial material from Koobi Fora, the Nariokotome Homo ergaster skeleton, Little Foot (Stw 573) from Sterkfontein in South Africa, and more recently tantalizing material assigned to the new and very early taxa Orrorin tugenensis, Ardipithecus ramidus and Sahelanthropus tchadensis has fuelled debate and speculation. The varying interpretations based on this material, together with changing theoretical insights and analytical approaches, is discussed and assessed in the context of new three-dimensional morphometric analyses of australopithecine and Homo foot bones, suggesting that there may have been greater diversity in human bipedalism in the earlier phases

  5. 3D microfabrication technology

    Science.gov (United States)

    Tang, Esheng; FuTing, Yi; Tian, Yangchao; Liang, Jingqiu; Xian, Dingchang

    1998-08-01

    In the late of this century the great success of VSIC impacts into almost every fields of our social. Following this idea people starts to integrate microsensor microprocessor and microactuators into a small space to forming a Micro Electro and Mechanical System. Such small robot parts are applied to including satellites, computer communication, medical, chemical, biological and environment and so on research fields. The development of MEMS would strongly influence industrial revolution in the next century. LIGA technology including X-ray deep etching lithography; electroplating and plastic molding developed by Karlsruhe Nuclear Research Center, Germany since the beginning of 1980. Its advantages are: it could make three-dimensional microstructures with lateral dimension in several micron range and thickness of several hundred microns with sub-micron precision. In principle all kinds of materials such as polymer, metal and ceramic could be used as microcomponents and could be mass- produced by plastic molding to a commercially available fabrication. LIGA process has become one of the most promising Microfabrication technologies for producing micromechanical, microfluid and micro-optical elements. It opens an additional field in the microstructure market.

  6. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  7. Martian terrain - 3D

    Science.gov (United States)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  8. 3D monitor

    OpenAIRE

    Szkandera, Jan

    2009-01-01

    Tato bakalářská práce se zabývá návrhem a realizací systému, který umožní obraz scény zobrazovaný na ploše vnímat prostorově. Prostorové vnímání 2D obrazové informace je umožněno jednak stereopromítáním a jednak tím, že se obraz mění v závislosti na poloze pozorovatele. Tato práce se zabývá hlavně druhým z těchto problémů. This Bachelor's thesis goal is to design and realize system, which allows user to perceive 2D visual information as three-dimensional. 3D visual preception of 2D image i...

  9. Object Recognition Using a 3D RFID System

    OpenAIRE

    Roh, Se-gon; Choi, Hyouk Ryeol

    2009-01-01

    Up to now, object recognition in robotics has been typically done by vision, ultrasonic sensors, laser ranger finders etc. Recently, RFID has emerged as a promising technology that can strengthen object recognition. In this chapter, the 3D RFID system and the 3D tag were presented. The proposed RFID system can determine if an object as well as other tags exists, and also can estimate the orientation and position of the object. This feature considerably reduces the dependence of the robot on o...

  10. Human balance, the evolution of bipedalism and dysequilibrium syndrome.

    Science.gov (United States)

    Skoyles, John R

    2006-01-01

    A new model of the uniqueness, nature and evolution of human bipedality is presented in the context of the etiology of the balance disorder of dysequilibrium syndrome. Human bipedality is biologically novel in several remarkable respects. Humans are (a) obligate, habitual and diverse in their bipedalism, (b) hold their body carriage spinally erect in a multisegmental "antigravity pole", (c) use their forelimbs exclusively for nonlocomotion, (d) support their body weight exclusively by vertical balance and normally never use prehensile holds. Further, human bipedalism is combined with (e) upper body actions that quickly shift the body's center of mass (e.g. tennis serves, piggy-back carrying of children), (f) use transient unstable erect positions (dance, kicking and fighting), (g) body height that makes falls injurious, (h) stiff gait walking, and (i) endurance running. Underlying these novelties, I conjecture, is a species specific human vertical balance faculty. This faculty synchronizes any action with a skeletomuscular adjustment that corrects its potential destabilizing impact upon the projection of the body's center of mass over its foot support. The balance faculty depends upon internal models of the erect vertical body's geometrical relationship (and its deviations) to its support base. Due to the situation that humans are obligate erect terrestrial animals, two frameworks - the body- and gravity-defined frameworks - are in constant alignment in the vertical z-axis. This alignment allows human balance to adapt egocentric body cognitions to detect body deviations from the gravitational vertical. This link between human balance and the processing of geometrical orientation, I propose, accounts for the close link between balance and spatial cognition found in the cerebral cortex. I argue that cortical areas processing the spatial and other cognitions needed to enable vertical balance was an important reason for brain size expansion of Homo erectus. A novel

  11. [The anatomical and functional origin of the first bipedalism].

    Science.gov (United States)

    Coppens, Y

    1991-10-01

    This communication is the synthesis of ten years of researchers of comparative anatomy done by the author or under his control on fossil Hominids, three million years old, found by his expeditions in Eastern Ethiopia. It brings, for the first time, the odd picture of a skeleton adapted to arboricolism and bipedalism together. The rachis has already the curves of an erect being but with at least a thoraco-lumbar cyphosis a bit more elongated than in our own rachis; the pelvis is wide and shallow like the pelvis of a biped but with many particular features like the width of the iliac wings, a great biacetabular diameter, the small size of the coxo-femoral joints; the femur is short with a special long neck, a very oblique diaphysis like in Man and an intercondylar fossa, deep and wide like in chimp; the tibia is also short, its spines very tight in such a way that the knee shows a great laxity. The foot is short and flat, with an abducted hallux and long curved toes; the scapular, elbow and wrist joints show, at the opposite of the knee joint, a great solidity, but both characteristics of the hind and fore-limb joints are not in contradiction: they are, as in chimpanzees again, functionally adapted to climbing and moving in the trees where are needed firm grip of the hands as well as mobility of the knee and of the foot. It seems that the early Australopithecine' bipedalism was original, different from ours and quite instable: short steps were necessary to maintain equilibrium as well as a strong rotation of the pelvis around the vertebral axis (50 to 60 degrees on each side). This analysis is then demonstrating a real evolution of bipedalism which was not at all, at once, the bipedalism of Homo sapiens, as it has been claimed. This paper is also showing that bipedalism anatomic organization is taking place from the pelvis to the foot and not the other way round. At last, as we have found, also in Ethiopia, stone-tools more than three million years old in association

  12. Spacecraft 3D Augmented Reality Mobile App

    Science.gov (United States)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  13. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  14. X3D: Extensible 3D Graphics Standard

    OpenAIRE

    Daly, Leonard; Brutzman, Don

    2007-01-01

    The article of record as published may be located at http://dx.doi.org/10.1109/MSP.2007.905889 Extensible 3D (X3D) is the open standard for Web-delivered three-dimensional (3D) graphics. It specifies a declarative geometry definition language, a run-time engine, and an application program interface (API) that provide an interactive, animated, real-time environment for 3D graphics. The X3D specification documents are freely available, the standard can be used without paying any royalties,...

  15. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  16. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  17. 3D modelling and recognition

    OpenAIRE

    Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie

    2006-01-01

    3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.

  18. Mechanical design and optimal control of humanoid robot (TPinokio

    Directory of Open Access Journals (Sweden)

    Teck Chew Wee

    2014-04-01

    Full Text Available The mechanical structure and the control of the locomotion of bipedal humanoid is an important and challenging domain of research in bipedal robots. Accurate models of the kinematics and dynamics of the robot are essential to achieve bipedal locomotion. Toe-foot walking produces a more natural and faster walking speed and it is even possible to perform stretch knee walking. This study presents the mechanical design of a toe-feet bipedal, TPinokio and the implementation of some optimal walking gait generation methods. The optimality in the gait trajectory is achieved by applying augmented model predictive control method and the pole-zero cancellation method, taken into consideration of a trade-off between walking speed and stability. The mechanism of the TPinokio robot is designed in modular form, so that its kinematics can be modelled accurately into a multiple point-mass system, its dynamics is modelled using the single and double mass inverted pendulum model and zero-moment-point concept. The effectiveness of the design and control technique is validated by simulation testing with the robot walking on flat surface and climbing stairs.

  19. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    Science.gov (United States)

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    Documentation of archaeological excavation sites with conventional methods and tools such as hand drawings, measuring tape and archaeological notes is time consuming. This process is prone to human errors and the quality of the documentation depends on the qualification of the archaeologist on site. Use of modern technology and methods in 3D surveying and 3D robotics facilitate and improve this process. Computer-aided systems and databases improve the documentation quality and increase the speed of data acquisition. 3D laser scanning is the state of the art in modelling archaeological excavation sites, historical sites and even entire cities or landscapes. Modern laser scanners are capable of data acquisition of up to 1 million points per second. This provides a very detailed 3D point cloud of the environment. 3D point clouds and 3D models of an excavation site provide a better representation of the environment for the archaeologist and for documentation. The point cloud can be used both for further studies on the excavation and for the presentation of results. This paper introduces a Computer aided system for labelling archaeological excavations in 3D (CASTLE3D). Consisting of a set of tools for recording and georeferencing the 3D data from an excavation site, CASTLE3D is a novel documentation approach in industrial archaeology. It provides a 2D and 3D visualisation of the data and an easy-to-use interface that enables the archaeologist to select regions of interest and to interact with the data in both representations. The 2D visualisation and a 3D orthogonal view of the data provide cuts of the environment that resemble the traditional hand drawings. The 3D perspective view gives a realistic view of the environment. CASTLE3D is designed as an easy-to-use on-site semantic mapping tool for archaeologists. Each project contains a predefined set of semantic information that can be used to label findings in the data. Multiple regions of interest can be joined under

  20. Steroid-associated hip joint collapse in bipedal emus.

    Directory of Open Access Journals (Sweden)

    Li-Zhen Zheng

    Full Text Available In this study we established a bipedal animal model of steroid-associated hip joint collapse in emus for testing potential treatment protocols to be developed for prevention of steroid-associated joint collapse in preclinical settings. Five adult male emus were treated with a steroid-associated osteonecrosis (SAON induction protocol using combination of pulsed lipopolysaccharide (LPS and methylprednisolone (MPS. Additional three emus were used as normal control. Post-induction, emu gait was observed, magnetic resonance imaging (MRI was performed, and blood was collected for routine examination, including testing blood coagulation and lipid metabolism. Emus were sacrificed at week 24 post-induction, bilateral femora were collected for micro-computed tomography (micro-CT and histological analysis. Asymmetric limping gait and abnormal MRI signals were found in steroid-treated emus. SAON was found in all emus with a joint collapse incidence of 70%. The percentage of neutrophils (Neut % and parameters on lipid metabolism significantly increased after induction. Micro-CT revealed structure deterioration of subchondral trabecular bone. Histomorphometry showed larger fat cell fraction and size, thinning of subchondral plate and cartilage layer, smaller osteoblast perimeter percentage and less blood vessels distributed at collapsed region in SAON group as compared with the normal controls. Scanning electron microscope (SEM showed poor mineral matrix and more osteo-lacunae outline in the collapsed region in SAON group. The combination of pulsed LPS and MPS developed in the current study was safe and effective to induce SAON and deterioration of subchondral bone in bipedal emus with subsequent femoral head collapse, a typical clinical feature observed in patients under pulsed steroid treatment. In conclusion, bipedal emus could be used as an effective preclinical experimental model to evaluate potential treatment protocols to be developed for prevention of

  1. 3D float tracking: in situ floodplain roughness estimation

    NARCIS (Netherlands)

    Straatsma, M.W.

    2009-01-01

    This paper presents a novel technique to quantify in situ hydrodynamic roughness of submerged floodplain vegetation: 3D float tracking. This method uses a custom-built floating tripod that is released on the inundated floodplain and tracked from shore by a robotic total station. Simultaneously, an a

  2. 3D-skannaukseen perehtyminen

    OpenAIRE

    Santaluoto, Olli

    2012-01-01

    Tässä insinöörityössä tarkastellaan erilaisia 3D-skannaustekniikoita ja menetelmiä. Työssä myös kerrotaan esimerkkien avulla eri 3D-skannaustekniikoiden käyttökohteista. 3D-skannaus on Suomessa vielä melko harvinaista, siksi eri tekniikat ja käyttömahdollisuudet ovat monille tuntemattomia. 3D-skanneri on laite, jolla tutkitaan reaalimaailman esineitä tai ympäristöä keräämällä dataa kohteen muodoista. 3D-skannerit ovat hyvin paljon vastaavia tavallisen kameran kanssa. Kuten kameroilla, 3D...

  3. 3D Printing Functional Nanocomposites

    OpenAIRE

    Leong, Yew Juan

    2016-01-01

    3D printing presents the ability of rapid prototyping and rapid manufacturing. Techniques such as stereolithography (SLA) and fused deposition molding (FDM) have been developed and utilized since the inception of 3D printing. In such techniques, polymers represent the most commonly used material for 3D printing due to material properties such as thermo plasticity as well as its ability to be polymerized from monomers. Polymer nanocomposites are polymers with nanomaterials composited into the ...

  4. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  5. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  6. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  7. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  8. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  9. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  10. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen;

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  11. Quantitative 3-D imaging topogrammetry for telemedicine applications

    Science.gov (United States)

    Altschuler, Bruce R.

    1994-01-01

    The technology to reliably transmit high-resolution visual imagery over short to medium distances in real time has led to the serious considerations of the use of telemedicine, telepresence, and telerobotics in the delivery of health care. These concepts may involve, and evolve toward: consultation from remote expert teaching centers; diagnosis; triage; real-time remote advice to the surgeon; and real-time remote surgical instrument manipulation (telerobotics with virtual reality). Further extrapolation leads to teledesign and telereplication of spare surgical parts through quantitative teleimaging of 3-D surfaces tied to CAD/CAM devices and an artificially intelligent archival data base of 'normal' shapes. The ability to generate 'topogrames' or 3-D surface numerical tables of coordinate values capable of creating computer-generated virtual holographic-like displays, machine part replication, and statistical diagnostic shape assessment is critical to the progression of telemedicine. Any virtual reality simulation will remain in 'video-game' realm until realistic dimensional and spatial relational inputs from real measurements in vivo during surgeries are added to an ever-growing statistical data archive. The challenges of managing and interpreting this 3-D data base, which would include radiographic and surface quantitative data, are considerable. As technology drives toward dynamic and continuous 3-D surface measurements, presenting millions of X, Y, Z data points per second of flexing, stretching, moving human organs, the knowledge base and interpretive capabilities of 'brilliant robots' to work as a surgeon's tireless assistants becomes imaginable. The brilliant robot would 'see' what the surgeon sees--and more, for the robot could quantify its 3-D sensing and would 'see' in a wider spectral range than humans, and could zoom its 'eyes' from the macro world to long-distance microscopy. Unerring robot hands could rapidly perform machine-aided suturing with

  12. Facial Expression Recognition Using 3D Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Young-Hyen Byeon

    2014-12-01

    Full Text Available This paper is concerned with video-based facial expression recognition frequently used in conjunction with HRI (Human-Robot Interaction that can naturally interact between human and robot. For this purpose, we design a 3D-CNN(3D Convolutional Neural Networks by augmenting dimensionality reduction methods such as PCA(Principal Component Analysis and TMPCA(Tensor-based Multilinear Principal Component Analysis to recognize simultaneously the successive frames with facial expression images obtained through video camera. The 3D-CNN can achieve some degree of shift and deformation invariance using local receptive fields and spatial subsampling through dimensionality reduction of redundant CNN’s output. The experimental results on video-based facial expression database reveal that the presented method shows a good performance in comparison to the conventional methods such as PCA and TMPCA.

  13. Fiber optic coherent laser radar 3D vision system

    International Nuclear Information System (INIS)

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution

  14. How Fast Can a Human Run? - Bipedal vs. Quadrupedal Running.

    Science.gov (United States)

    Kinugasa, Ryuta; Usami, Yoshiyuki

    2016-01-01

    Usain Bolt holds the current world record in the 100-m run, with a running time of 9.58 s, and has been described as the best human sprinter in history. However, this raises questions concerning the maximum human running speed, such as "Can the world's fastest men become faster still?" The correct answer is likely "Yes." We plotted the historical world records for bipedal and quadrupedal 100-m sprint times according to competition year. These historical records were plotted using several curve-fitting procedures. We found that the projected speeds intersected in 2048, when for the first time, the winning quadrupedal 100-m sprint time could be lower, at 9.276 s, than the winning bipedal time of 9.383 s. Video analysis revealed that in quadrupedal running, humans employed a transverse gallop with a small angular excursion. These results suggest that in the future, the fastest human on the planet might be a quadrupedal runner at the 2048 Olympics. This may be achieved by shifting up to the rotary gallop and taking longer strides with wide sagittal trunk motion. PMID:27446911

  15. Energetics of bipedal running. II. Limb design and running mechanics.

    Science.gov (United States)

    Roberts, T J; Chen, M S; Taylor, C R

    1998-10-01

    Compared with quadrupeds, bipedal runners of the same weight have longer legs, take longer steps and can presumably use slower, more economical muscle fibers. One might predict that bipedal running is less expensive, but it is not. We hypothesized that bipeds recruit a larger volume of muscle to support their weight, eliminating the potential economy of longer legs and slower steps. To test our hypothesis, we calculated the relative volume of muscle needed to support body weight over a stride in small dogs (Canis familiaris) and wild turkeys (Meleagris gallopavo) of the same weight. First, we confirmed that turkeys and dogs use approximately the same amount of energy to run at the same speed, and found that turkeys take 1. 8-fold longer steps. Higher muscle forces and/or longer muscle fibers would require a greater volume of active muscle, since muscle volume is proportional to the product of force and fascicle length. We measured both mean fascicle length and mean mechanical advantage for limb extensor muscles. Turkeys generated approximately the same total muscle force to support their weight during running and used muscle fascicles that are on average 2.1 times as long as in dogs, thus requiring a 2.5-fold greater active muscle volume. The greater volume appears to offset the economy of slower rates of force generation, supporting our hypothesis and providing a simple explanation for why it costs the same to run on two and four legs.

  16. How Fast Can a Human Run? - Bipedal vs. Quadrupedal Running.

    Science.gov (United States)

    Kinugasa, Ryuta; Usami, Yoshiyuki

    2016-01-01

    Usain Bolt holds the current world record in the 100-m run, with a running time of 9.58 s, and has been described as the best human sprinter in history. However, this raises questions concerning the maximum human running speed, such as "Can the world's fastest men become faster still?" The correct answer is likely "Yes." We plotted the historical world records for bipedal and quadrupedal 100-m sprint times according to competition year. These historical records were plotted using several curve-fitting procedures. We found that the projected speeds intersected in 2048, when for the first time, the winning quadrupedal 100-m sprint time could be lower, at 9.276 s, than the winning bipedal time of 9.383 s. Video analysis revealed that in quadrupedal running, humans employed a transverse gallop with a small angular excursion. These results suggest that in the future, the fastest human on the planet might be a quadrupedal runner at the 2048 Olympics. This may be achieved by shifting up to the rotary gallop and taking longer strides with wide sagittal trunk motion.

  17. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  18. 3D Printing for Bricks

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  19. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  20. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  1. PLOT3D user's manual

    Science.gov (United States)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  2. 3-D Video Processing for 3-D TV

    Science.gov (United States)

    Sohn, Kwanghoon; Kim, Hansung; Kim, Yongtae

    One of the most desirable ways of realizing high quality information and telecommunication services has been called "The Sensation of Reality," which can be achieved by visual communication based on 3-D (Three-dimensional) images. These kinds of 3-D imaging systems have revealed potential applications in the fields of education, entertainment, medical surgery, video conferencing, etc. Especially, three-dimensional television (3-D TV) is believed to be the next generation of TV technology. Figure 13.1 shows how TV's display technologies have evolved , and Fig. 13.2 details the evolution of TV broadcasting as forecasted by the ETRI (Electronics and Telecommunications Research Institute). It is clear that 3-D TV broadcasting will be the next development in this field, and realistic broadcasting will soon follow.

  3. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  4. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  5. Sensor-Based Programming of Central Pattern Generators in Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Hamed Shahbazi

    2013-04-01

    Full Text Available In the present article, a method for generating curvilinear bipedal walking patterns is proposed which is able to generate rhythmic and periodic trajectories for a Nao soccer player robot. To do so, a programmable central pattern generator was used which was inspired from locomotion structures in vertebrate animals. In this paper, the programmable central pattern generators were extended and new Equations were added to make a curvilinear pattern for walking Nao robots on a specified circular curve. In addition, some specific Equations were added to the model to control the arms and synchronize them with the movement of the feet. The model uses some sensory inputs to obtain some feedback from the movement and adjust it conforming to the potential perturbations. Input sensory values consist of accelerator values and foot pressure sensor values located on the bottom of each foot. Feedback values can adopt walking to some desired specifications and compensate the effects of some types of perturbations. The proposed model has many benefits including smooth walking patterns and modulation during walking. This model can be extended and used in the Nao soccer player both for the standard platform and the 3D soccer simulation leagues of Robocup SPL competitions to train different types of motions.

  6. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  7. Tuotekehitysprojekti: 3D-tulostin

    OpenAIRE

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  8. 3D on the internet

    OpenAIRE

    Puntar, Matej

    2012-01-01

    The purpose of this thesis is the presentation of already established and new technologies of displaying 3D content in a web browser. The thesis begins with a short presentation of the history of 3D content available on the internet and its development together with advantages and disadvantages of individual technologies. The latter two are described in detail as well is their use and the differences among them. Special emphasis has been given to WebGL, the newest technology of 3D conte...

  9. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  10. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  11. 3D Visual SLAM Based on Multiple Iterative Closest Point

    Directory of Open Access Journals (Sweden)

    Chunguang Li

    2015-01-01

    Full Text Available With the development of novel RGB-D visual sensors, data association has been a basic problem in 3D Visual Simultaneous Localization and Mapping (VSLAM. To solve the problem, a VSLAM algorithm based on Multiple Iterative Closest Point (MICP is presented. By using both RGB and depth information obtained from RGB-D camera, 3D models of indoor environment can be reconstructed, which provide extensive knowledge for mobile robots to accomplish tasks such as VSLAM and Human-Robot Interaction. Due to the limited views of RGB-D camera, additional information about the camera pose is needed. In this paper, the motion of the RGB-D camera is estimated by a motion capture system after a calibration process. Based on the estimated pose, the MICP algorithm is used to improve the alignment. A Kinect mobile robot which is running Robot Operating System and the motion capture system has been used for experiments. Experiment results show that not only the proposed VSLAM algorithm achieved good accuracy and reliability, but also the 3D map can be generated in real time.

  12. Integration of Notification with 3D Visualization of Rover Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — 3D visualization has proven effective at orienting remote ground controllers about robots operating on a planetary surface. Using such displays, controllers can...

  13. Robotics technology discipline

    Science.gov (United States)

    Montemerlo, Melvin D.

    1990-01-01

    Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.

  14. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    traditionel keramisk produktionssammenhæng. Problemstillingen opmuntrede endvidere til i et samarbejde med en programmør at udvikle et 3d digitalt redskab, der er blevet kaldt et digitalt interaktivt formgivningsredskab (DIF). Eksperimentet undersøger interaktive 3d digitale dynamiske systemer, der...... samarbejder med designere fra fagområder som interaktionsdesign og programmering. Afhandlingen peger på et fremtidigt forskningsfelt indenfor generative og responderende digitale systemer til 3d formgivning, der ligeledes inkluderer følesansen. Endvidere er det relevant at forske i, hvordan de RP teknikker...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...

  15. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  16. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  17. Combinatorial 3D Mechanical Metamaterials

    Science.gov (United States)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  18. AI 3D Cybug Gaming

    CERN Document Server

    Ahmed, Zeeshan

    2010-01-01

    In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.

  19. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  20. Electrical noise to a knee joint stabilizes quiet bipedal stance.

    Science.gov (United States)

    Kimura, Tetsuya; Kouzaki, Motoki

    2013-04-01

    Studies have shown that a minute, noise-like electrical stimulation (ES) of a lower limb joint stabilizes one-legged standing (OS), possibly due to the noise-enhanced joint proprioception. To demonstrate the practical utility of this finding, we assessed whether the bipedal stance (BS), relatively stable and generally employed in daily activities, is also stabilized by the same ES method. Twelve volunteers maintained quiet BS with or without an unperceivable, noise-like ES of a knee joint. The results showed that the average amplitude, peak-to-peak amplitude, and standard deviation of the foot center of pressure in the anteroposterior direction were significantly attenuated by the ES (Pnoise-like ES of a knee joint. PMID:23044409

  1. [Robotic surgery].

    Science.gov (United States)

    Moreno-Portillo, Mucio; Valenzuela-Salazar, Carlos; Quiroz-Guadarrama, César David; Pachecho-Gahbler, Carlos; Rojano-Rodríguez, Martín

    2014-12-01

    Medicine has experienced greater scientific and technological advances in the last 50 years than in the rest of human history. The article describes relevant events, revises concepts and advantages and clinical applications, summarizes published clinical results, and presents some personal reflections without giving dogmatic conclusions about robotic surgery. The Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) defines robotic surgery as a surgical procedure using technology to aid the interaction between surgeon and patient. The objective of the surgical robot is to correct human deficiencies and improve surgical skills. The capacity of repeating tasks with precision and reproducibility has been the base of the robot´s success. Robotic technology offers objective and measurable advantages: - Improving maneuverability and physical capacity during surgery. - Correcting bad postural habits and tremor. - Allowing depth perception (3D images). - Magnifying strength and movement limits. - Offering a platform for sensors, cameras, and instruments. Endoscopic surgery transformed conceptually the way of practicing surgery. Nevertheless in the last decade, robotic assisted surgery has become the next paradigm of our era. PMID:25643879

  2. MPML3D: Scripting Agents for the 3D Internet.

    Science.gov (United States)

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru

    2011-05-01

    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  3. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  4. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  5. Monocular model-based 3D tracking of rigid objects

    CERN Document Server

    Lepetit, Vincent

    2014-01-01

    Many applications require tracking complex 3D objects. These include visual serving of robotic arms on specific target objects, Augmented Reality systems that require real time registration of the object to be augmented, and head tracking systems that sophisticated interfaces can use. Computer vision offers solutions that are cheap, practical and non-invasive. ""Monocular Model-Based 3D Tracking of Rigid Objects"" reviews the different techniques and approaches that have been developed by industry and research. First, important mathematical tools are introduced: camera representation, robust e

  6. A CORBA-Based Control Architecture for Real-Time Teleoperation Tasks in a Developmental Humanoid Robot

    OpenAIRE

    Hanafiah Yussof; Genci Capi; Yasuo Nasu; Mitsuhiro Yamano; Masahiro Ohka

    2011-01-01

    This paper presents the development of new Humanoid Robot Control Architecture (HRCA) platform based on Common Object Request Broker Architecture (CORBA) in a developmental biped humanoid robot for real‐time teleoperation tasks. The objective is to make the control platform open for collaborative teleoperation research in humanoid robotics via the internet. Meanwhile, to generate optimal trajectory generation in bipedal walk, we proposed a real time generation of optimal gait by using G...

  7. Remote 3D Medical Consultation

    Science.gov (United States)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  8. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  9. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  10. Photochemical Copper Coating on 3D Printed Thermoplastics

    Science.gov (United States)

    Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-01-01

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy. PMID:27501761

  11. Photochemical Copper Coating on 3D Printed Thermoplastics.

    Science.gov (United States)

    Yung, Winco K C; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-01-01

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy. PMID:27501761

  12. Photochemical Copper Coating on 3D Printed Thermoplastics.

    Science.gov (United States)

    Yung, Winco K C; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-08-09

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.

  13. Photochemical Copper Coating on 3D Printed Thermoplastics

    Science.gov (United States)

    Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-08-01

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.

  14. 3D Imager and Method for 3D imaging

    NARCIS (Netherlands)

    Kumar, P.; Staszewski, R.; Charbon, E.

    2013-01-01

    3D imager comprising at least one pixel, each pixel comprising a photodetectorfor detecting photon incidence and a time-to-digital converter system configured for referencing said photon incidence to a reference clock, and further comprising a reference clock generator provided for generating the re

  15. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  16. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich;

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  17. Crowded Field 3D Spectroscopy

    CERN Document Server

    Becker, T; Roth, M M; Becker, Thomas; Fabrika, Sergei; Roth, Martin M.

    2003-01-01

    The quantitative spectroscopy of stellar objects in complex environments is mainly limited by the ability of separating the object from the background. Standard slit spectroscopy, restricting the field of view to one dimension, is obviously not the proper technique in general. The emerging Integral Field (3D) technique with spatially resolved spectra of a two-dimensional field of view provides a great potential for applying advanced subtraction methods. In this paper an image reconstruction algorithm to separate point sources and a smooth background is applied to 3D data. Several performance tests demonstrate the photometric quality of the method. The algorithm is applied to real 3D observations of a sample Planetary Nebula in M31, whose spectrum is contaminated by the bright and complex galaxy background. The ability of separating sources is also studied in a crowded stellar field in M33.

  18. 3D-grafiikkamoottori mobiililaitteille

    OpenAIRE

    Vahlman, Lauri

    2014-01-01

    Tässä insinöörityössä käydään läpi mobiililaitteille suunnatun yksinkertaisen 3D-grafiikkamoottorin suunnittelu ja toteutus käyttäen OpenGL ES -rajapintaa. Työssä esitellään grafiikkamoottorin toteutuksessa käytettyjä tekniikoita sekä tutustutaan moottorin rakenteeseen ja toteutuksellisiin yksityiskohtiin. Työn alkupuolella tutustutaan myös modernin 3D-grafiikan yleisiin periaatteisiin ja toimintaan sekä käydään läpi 3D-grafiikkaan liittyviä suorituskykyongelmia. Työn loppupuolella esitel...

  19. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  20. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  1. Dense 3D Map Construction for Indoor Search and Rescue

    DEFF Research Database (Denmark)

    Ellekilde, Lars-Peter; Huang, Shoudong; Miró, Jaime Valls;

    2007-01-01

    in this scenario is that the robot moves in 6D and no odometry information is available. An extended information ?lter  EIF is used to estimate the state vector containing the sequence of camera poses and some selected 3D point features in the environment. Data association is performed using a combination of scale...... invariant feature transformation SIFT feature detection and matching, random sampling consensus RANSAC , and least square 3D point sets ?tting. Experimental results are provided to demonstrate the effectiveness of the techniques developed.......The main contribution of this paper is a new simultaneous localization and mapping  SLAM algorithm for building dense three-dimensional maps using information ac- quired from a range imager and a conventional camera, for robotic search and rescue in unstructured indoor environments. A key challenge...

  2. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  3. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... beamforming. This is achieved partly because synthetic aperture imaging removes the limitation of a fixed transmit focal depth and instead enables dynamic transmit focusing. Lately, the major ultrasound companies have produced ultrasound scanners using 2-D transducer arrays with enough transducer elements...

  4. 3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater. 22/2016).

    Science.gov (United States)

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques. PMID:27273436

  5. 3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater. 22/2016).

    Science.gov (United States)

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques.

  6. Trend Analysis for the Market and Application Development of 3D Printing

    OpenAIRE

    Chin-Ching Yeh

    2014-01-01

    In 2011, the Economist newspaper declared the advent of 3D printing, also known as Additive Manufacturing (AM), to herald the start of the Third Industrial Revolution. Chris Anderson, originator of the “long-tail theory”, not only authored Makers, a book on3D printing, but also co-founded 3D Robotics to realize his vision for the potential of 3D printing by applying his perspectives embedded in his book. Nevertheless, opposing viewpoints suggest that 3D printing may not be the game changer it...

  7. PubChem3D: Biologically relevant 3-D similarity

    Directory of Open Access Journals (Sweden)

    Kim Sunghwan

    2011-07-01

    Full Text Available Abstract Background The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive, but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between "active/active" and "active/inactive" spaces? These questions are explored using 734,486 biologically tested chemical structures, 1,389 biological assay data sets, and six different 3-D similarity types utilized by PubChem analysis tools. Results The similarity value distributions of 269.7 billion unique conformer pairs from 734,486 biologically tested compounds (all-against-all from PubChem were utilized to help work towards an answer to the question: what is a biologically meaningful 3-D similarity score? The average and standard deviation for the six similarity measures STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were 0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ± 0.06, and 0.59 ± 0.14, respectively. Considering that this random distribution of biologically tested compounds was constructed using a single theoretical conformer per compound (the "default" conformer provided by PubChem, further study may be necessary using multiple diverse conformers per compound; however, given the breadth of the compound set, the single conformer per compound results may still apply to the case of multi-conformer per compound 3-D similarity value distributions. As such, this work is a critical step, covering a very wide corpus of chemical structures and biological assays, creating a statistical framework to build upon. The second part of this study explored the question of whether it was possible to realize a statistically meaningful 3-D similarity value separation between reputed biological assay "inactives" and "actives". Using the terminology of noninactive-noninactive (NN pairs and the noninactive-inactive (NI pairs to represent comparison of the "active/active" and

  8. LASER CUTTING MACHINES FOR 3-D THIN SHEET PARTS

    Directory of Open Access Journals (Sweden)

    Miroslav RADOVANOVIC

    2012-11-01

    Full Text Available Laser cutting machines are used for precise contour cutting thin sheet. In industrial application nowadays various types and construction of laser cutting machines can be met. For contour cutting 3-D thin sheet parts laser cutting machines with rotation movements and laser robots are used. Laser generates the light beam, that presents a tool in working process. Application of laser cutting machines made possible good quality of products, flexibility of production and enlargement of economy

  9. PARAMETRIC DESIGN OF DELTA ROBOT

    Directory of Open Access Journals (Sweden)

    Mert Gürgen

    2016-09-01

    Full Text Available This article describes a sophisticated determination and presentation of a workspace volume for a delta robot, with consideration of its kinematic behavior. With the help of theoretical equations, optimization is performed with the aid of the stiffness and dexterity analysis. Theoretical substructure is coded in Matlab and three-dimensional (3D data for delta robot are developed in computer-aided design (CAD environment. In later stages of the project, both 3D and theoretical data are linked together and thus, with the changing design parameter of the robot itself, the Solidworks CAD output adapts and regenerates output with a new set of parameters. To achieve an optimum workspace volume with predefined parameters, a different set of robot parameters are iterated through design optimization in Matlab, and the delta robot design is finalized and illustrated in the 3D CAD environment, Solidworks. This study provides a technical solution to accomplish a generic delta robot with optimized workspace volume.

  10. Experimental verification of a computational technique for determining ground reactions in human bipedal stance.

    Science.gov (United States)

    Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J

    2007-01-01

    We have developed a three-dimensional (3D) biomechanical model of human standing that enables us to study the mechanisms of posture and balance simultaneously in various directions in space. Since the two feet are on the ground, the system defines a kinematically closed-chain which has redundancy problems that cannot be resolved using the laws of mechanics alone. We have developed a computational (optimization) technique that avoids the problems with the closed-chain formulation thus giving users of such models the ability to make predictions of joint moments, and potentially, muscle activations using more sophisticated musculoskeletal models. This paper describes the experimental verification of the computational technique that is used to estimate the ground reaction vector acting on an unconstrained foot while the other foot is attached to the ground, thus allowing human bipedal standing to be analyzed as an open-chain system. The computational approach was verified in terms of its ability to predict lower extremity joint moments derived from inverse dynamic simulations performed on data acquired from four able-bodied volunteers standing in various postures on force platforms. Sensitivity analyses performed with model simulations indicated which ground reaction force (GRF) and center of pressure (COP) components were most critical for providing better estimates of the joint moments. Overall, the joint moments predicted by the optimization approach are strongly correlated with the joint moments computed using the experimentally measured GRF and COP (0.78 unity slope (experimental=computational results) for postures of the four subjects examined. These results indicate that this model-based technique can be relied upon to predict reasonable and consistent estimates of the joint moments using the predicted GRF and COP for most standing postures.

  11. 3D Face Apperance Model

    OpenAIRE

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations

  12. 3D Face Appearance Model

    OpenAIRE

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}

  13. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  14. When Art Meets 3D

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  15. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu;

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  16. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  17. Viewing galaxies in 3D

    CERN Document Server

    Krajnović, Davor

    2016-01-01

    Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.

  18. Priprava 3D modelov za 3D tisk

    OpenAIRE

    Pikovnik, Tomaž

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  19. Post processing of 3D models for 3D printing

    OpenAIRE

    Pikovnik, Tomaž

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  20. Portable 3D laser-camera calibration system with color fusion for SLAM

    OpenAIRE

    Javier Navarrete; Diego Viejo; Miguel Cazorla

    2013-01-01

    Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used...

  1. DYNA3D2000*, Explicit 3-D Hydrodynamic FEM Program

    International Nuclear Information System (INIS)

    1 - Description of program or function: DYNA3D2000 is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation. 2 - Method of solution: Discretization of a continuous model transforms partial differential equations into algebraic equations. A numerical solution is then obtained by solving these algebraic equations through a direct time marching scheme. 3 - Restrictions on the complexity of the problem: Recent software improvements have eliminated most of the user identified limitations with dynamic memory allocation and a very large format description that has pushed potential problem sizes beyond the reach of most users. The dominant restrictions remain in code execution speed and robustness, which the developers constantly strive to improve

  2. Using GNG to improve 3D feature extraction--application to 6DoF egomotion.

    Science.gov (United States)

    Viejo, Diego; Garcia, Jose; Cazorla, Miguel; Gil, David; Johnsson, Magnus

    2012-08-01

    Several recent works deal with 3D data in mobile robotic problems, e.g. mapping or egomotion. Data comes from any kind of sensor such as stereo vision systems, time of flight cameras or 3D lasers, providing a huge amount of unorganized 3D data. In this paper, we describe an efficient method to build complete 3D models from a Growing Neural Gas (GNG). The GNG is applied to the 3D raw data and it reduces both the subjacent error and the number of points, keeping the topology of the 3D data. The GNG output is then used in a 3D feature extraction method. We have performed a deep study in which we quantitatively show that the use of GNG improves the 3D feature extraction method. We also show that our method can be applied to any kind of 3D data. The 3D features obtained are used as input in an Iterative Closest Point (ICP)-like method to compute the 6DoF movement performed by a mobile robot. A comparison with standard ICP is performed, showing that the use of GNG improves the results. Final results of 3D mapping from the egomotion calculated are also shown. PMID:22386789

  3. 3D printing facilitated scaffold-free tissue unit fabrication

    International Nuclear Information System (INIS)

    Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing microdroplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit microdroplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell–cell adhesion, tissue formation and maturation. (paper)

  4. 3-D Imaging Systems for Agricultural Applications-A Review.

    Science.gov (United States)

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  5. 3-D Imaging Systems for Agricultural Applications—A Review

    Directory of Open Access Journals (Sweden)

    Manuel Vázquez-Arellano

    2016-04-01

    Full Text Available Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture.

  6. Automated 3D reconstruction of interiors with multiple scan views

    Science.gov (United States)

    Sequeira, Vitor; Ng, Kia C.; Wolfart, Erik; Goncalves, Joao G. M.; Hogg, David C.

    1998-12-01

    This paper presents two integrated solutions for realistic 3D model acquisition and reconstruction; an early prototype, in the form of a push trolley, and a later prototype in the form of an autonomous robot. The systems encompass all hardware and software required, from laser and video data acquisition, processing and output of texture-mapped 3D models in VRML format, to batteries for power supply and wireless network communications. The autonomous version is also equipped with a mobile platform and other sensors for the purpose of automatic navigation. The applications for such a system range from real estate and tourism (e.g., showing a 3D computer model of a property to a potential buyer or tenant) or as tool for content creation (e.g., creating 3D models of heritage buildings or producing broadcast quality virtual studios). The system can also be used in industrial environments as a reverse engineering tool to update the design of a plant, or as a 3D photo-archive for insurance purposes. The system is Internet compatible: the photo-realistic models can be accessed via the Internet and manipulated interactively in 3D using a common Web browser with a VRML plug-in. Further information and example reconstructed models are available on- line via the RESOLV web-page at http://www.scs.leeds.ac.uk/resolv/.

  7. 3D printing facilitated scaffold-free tissue unit fabrication.

    Science.gov (United States)

    Tan, Yu; Richards, Dylan J; Trusk, Thomas C; Visconti, Richard P; Yost, Michael J; Kindy, Mark S; Drake, Christopher J; Argraves, William Scott; Markwald, Roger R; Mei, Ying

    2014-06-01

    Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing microdroplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit microdroplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell-cell adhesion, tissue formation and maturation. PMID:24717646

  8. 3-D Imaging Systems for Agricultural Applications—A Review

    Science.gov (United States)

    Vázquez-Arellano, Manuel; Griepentrog, Hans W.; Reiser, David; Paraforos, Dimitris S.

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  9. 3-D Imaging Systems for Agricultural Applications-A Review.

    Science.gov (United States)

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture.

  10. Intelligent robotics research at Waterloo

    Science.gov (United States)

    Wong, Andrew K. C.

    1993-01-01

    The paper presents the recent intelligent robotics research being carried out at the PAMI Lab of the University of Waterloo, Waterloo, Ontario. The intelligence control of manipulators is directed and guided by 3-D vision. It is implemented for a mobile robot and robot manipulators in a workcell. The intelligent robotic system is capable of: (1) real-time recognition and location of 3-D objects and obstacles with a single camera system mounted on the robot arm; (2) optimal trajectory planning for a robotic manipulator with obstacle and singularity avoidance capability; and (3) vision directed navigation of a mobile robot. Application of this technology to industrial and space station projects is included in the discussion.

  11. 3D Printable Graphene Composite.

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  12. 3-D Relativistic MHD Simulations

    Science.gov (United States)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  13. Forensic 3D Scene Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  14. Biased motion and molecular motor properties of bipedal spiders

    Science.gov (United States)

    Samii, Laleh; Linke, Heiner; Zuckermann, Martin J.; Forde, Nancy R.

    2010-02-01

    Molecular spiders are synthetic molecular motors featuring multiple legs that each can interact with a substrate through binding and cleavage. Experimental studies suggest the motion of the spider in a matrix is biased toward uncleaved substrates and that spider properties such as processivity can be altered by changing the binding strength of the legs to substrate [R. Pei, S. K. Taylor, D. Stefanovic, S. Rudchenko, T. E. Mitchell, and M. N. Stojanovic, J. Am. Chem. Soc. 128, 12693 (2006)]. We investigate the origin of biased motion and molecular motor properties of bipedal spiders using Monte Carlo simulations. Our simulations combine a realistic chemical kinetic model, hand-over-hand or inchworm modes of stepping, and the use of a one-dimensional track. We find that stronger binding to substrate, cleavage and spider detachment from the track are contributing mechanisms to population bias. We investigate the contributions of stepping mechanism to speed, randomness parameter, processivity, coupling, and efficiency, and comment on how these molecular motor properties can be altered by changing experimentally tunable kinetic parameters.

  15. Numerical bifurcation analysis of the bipedal spring-mass model

    Science.gov (United States)

    Merker, Andreas; Kaiser, Dieter; Hermann, Martin

    2015-01-01

    The spring-mass model and its numerous extensions are currently one of the best candidates for templates of human and animal locomotion. However, with increasing complexity, their applications can become very time-consuming. In this paper, we present an approach that is based on the calculation of bifurcations in the bipedal spring-mass model for walking. Since the bifurcations limit the region of stable walking, locomotion can be studied by computing the corresponding boundaries. Originally, the model was implemented as a hybrid dynamical system. Our new approach consists of the transformation of the series of initial value problems on different intervals into a single boundary value problem. Using this technique, discontinuities can be avoided and sophisticated numerical methods for studying parametrized nonlinear boundary value problems can be applied. Thus, appropriate extended systems are used to compute transcritical and period-doubling bifurcation points as well as turning points. We show that the resulting boundary value problems can be solved by the simple shooting method with sufficient accuracy, making the application of the more extensive multiple shooting superfluous. The proposed approach is fast, robust to numerical perturbations and allows determining complete manifolds of periodic solutions of the original problem.

  16. Gluteus maximus muscle function and the origin of hominid bipedality.

    Science.gov (United States)

    Marzke, M W; Longhill, J M; Rasmussen, S A

    1988-12-01

    Bipedality not only frees the hands for tool use but also enhances tool use by allowing use of the trunk for leverage in applying force and thus imparting greater final velocity to tools. Since the weight and acceleration of the trunk and forelimbs on the hindlimbs must be counteracted by muscles such as m. gluteus maximus that control pelvic and trunk movements, it is suggested that the large size of the cranial portion of the human gluteus maximus muscle and its unique attachment to the dorsal ilium (which is apparent in the Makapan australopithecine ilium) may have contributed to the effectiveness with which trunk movement was exploited in early hominid foraging activities. To test this hypothesis, the cranial portions of both right and left muscles were investigated in six human subjects with electromyography during throwing, clubbing, digging, and lifting. The muscles were found to be significantly recruited when the trunk is used in throwing and clubbing, initiating rotation of the pelvis and braking it as trunk rotation ceases and the forelimb accelerates. They stabilize the pelvis during digging and exhibit marked and prolonged activity when the trunk is maintained in partial flexion during lifting of heavy objects. PMID:3223519

  17. [Real time 3D echocardiography

    Science.gov (United States)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  18. Omnidirectional Perception for Lightweight Uavs Using a Continuously Rotating 3d Laser Scanner

    Science.gov (United States)

    Droeschel, D.; Schreiber, M.; Behnke, S.

    2013-08-01

    Many popular unmanned aerial vehicles (UAV) are restricted in their size and weight, making the design of sensory systems for these robots challenging. We designed a small and lightweight continuously rotating 3D laser scanner - allowing for environment perception in a range of 30 m in almost all directions. This sensor it well suited for applications such as 3D obstacle detection, 6D motion estimation, localization, and mapping. We aggregate the distance measurements in a robot-centric grid-based map. To estimate the motion of our multicopter, we register 3D laser scans towards this local map. In experiments, we compare the laser-based ego-motion estimate with ground-truth from a motion capture system. Overall, we can build an accurate 3D obstacle map and can estimate the vehicle's trajectory by 3D scan registration.

  19. Real-Time 3D Visualization

    Science.gov (United States)

    1997-01-01

    Butler Hine, former director of the Intelligent Mechanism Group (IMG) at Ames Research Center, and five others partnered to start Fourth Planet, Inc., a visualization company that specializes in the intuitive visual representation of dynamic, real-time data over the Internet and Intranet. Over a five-year period, the then NASA researchers performed ten robotic field missions in harsh climes to mimic the end- to-end operations of automated vehicles trekking across another world under control from Earth. The core software technology for these missions was the Virtual Environment Vehicle Interface (VEVI). Fourth Planet has released VEVI4, the fourth generation of the VEVI software, and NetVision. VEVI4 is a cutting-edge computer graphics simulation and remote control applications tool. The NetVision package allows large companies to view and analyze in virtual 3D space such things as the health or performance of their computer network or locate a trouble spot on an electric power grid. Other products are forthcoming. Fourth Planet is currently part of the NASA/Ames Technology Commercialization Center, a business incubator for start-up companies.

  20. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  1. INGRID, 3-D Mesh Generator for Program DYNA3D and NIKE3D and FACET and TOPAZ3D

    International Nuclear Information System (INIS)

    1 - Description of program or function: INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D (NESC 9909), NIKE3D (NESC 9725), FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The most important new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition. 2 - Method of solution: Geometries are described primarily using the index space notation of the INGEN program (NESC 975) with an additional type of notation, index progression. Index progressions provide a concise and simple method for describing complex structures; the concept was developed to facilitate defining multiple regions in index space. Rather than specifying the minimum and maximum indices for a region, one specifies the progression of indices along the I, J and K directions, respectively. The index progression method allows the analyst to describe most geometries including nodes and elements with roughly the same amount of input as a solids modeler

  2. Tehokas 3D-animaatiotuotanto

    OpenAIRE

    Järvinen, Manu

    2009-01-01

    Opinnäytetyössä tutkittiin tehokasta tapaa toteuttaa minuutin mittainen animaatio Scene.org Awards -tapahtuman avajaisseremoniaan. Kyseinen video toteutettiin osana opinnäytetyötä. Työhön osallistui tekijän lisäksi 3D-mallintaja sekä muusikko. Työkaluina käytettiin pääasiassa Autodesk 3ds Max-, sekä Adobe After Effects- ja Adobe Photoshop -ohjelmia. Opinnäytetyö koostuu animaatioprojektin tuotantoputken ja tiedostonhallintamallin perinpohjaisesta läpikäymisestä sekä sen asian tutkimisesta...

  3. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  4. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  5. How 3-D Movies Work

    Institute of Scientific and Technical Information of China (English)

    吕铁雄

    2011-01-01

    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  6. The robot's vista space : a computational 3D scene analysis

    OpenAIRE

    Swadzba, Agnes

    2011-01-01

    The space that can be explored quickly from a fixed view point without locomotion is known as the vista space. In indoor environments single rooms and room parts follow this definition. The vista space plays an important role in situations with agent-agent interaction as it is the directly surrounding environment in which the interaction takes place. A collaborative interaction of the partners in and with the environment requires that both partners know where they are, what spatial structures...

  7. A robotic assembly procedure using 3D object reconstruction

    DEFF Research Database (Denmark)

    Chrysostomou, Dimitrios; Bitzidou, Malamati; Gasteratos, Antonios

    -scale product delivery. This work lies within the category of intelligent assembly path planning methods and an object assembly sequence is planned to incorporate the production of an object’s volumetric model by a multi-camera system, its three-dimensional representation with octrees and its construction...

  8. Trend Analysis for the Market and Application Development of 3D Printing

    Directory of Open Access Journals (Sweden)

    Chin-Ching Yeh

    2014-02-01

    Full Text Available In 2011, the Economist newspaper declared the advent of 3D printing, also known as Additive Manufacturing (AM, to herald the start of the Third Industrial Revolution. Chris Anderson, originator of the “long-tail theory”, not only authored Makers, a book on3D printing, but also co-founded 3D Robotics to realize his vision for the potential of 3D printing by applying his perspectives embedded in his book. Nevertheless, opposing viewpoints suggest that 3D printing may not be the game changer its proponents claim. The article explores the technical classification and market growth potential of 3D printing, and analyzes the main markets and countries as well as the application scope of 3D printing.

  9. Positional Awareness Map 3D (PAM3D)

    Science.gov (United States)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  10. 3D Printable Graphene Composite

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  11. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  12. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  13. LOTT RANCH 3D PROJECT

    International Nuclear Information System (INIS)

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  14. Highly-stretchable 3D-architected Mechanical Metamaterials

    Science.gov (United States)

    Jiang, Yanhui; Wang, Qiming

    2016-09-01

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.

  15. 3D Printing of Graphene Aerogels.

    Science.gov (United States)

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (aerogel presents superelastic and high electrical conduction. PMID:26861680

  16. 3D biometrics systems and applications

    CERN Document Server

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  17. Effects of electrical noise to a knee joint on quiet bipedal stance and treadmill walking.

    Science.gov (United States)

    Kimura, T; Taki, C; Shiozawa, N; Kouzaki, M

    2013-01-01

    The present study assessed whether an unperceivable, noise-like electrical stimulation of a knee joint enhances the stability of quiet bipedal stance and treadmill walking in young subjects. The results showed that the slow postural sway measures in quiet bipedal stance were significantly reduced by the electrical noise (P<0.05). In the treadmill walking, low frequency component (below 1 Hz) of mediolateral acceleration, measured at the third lumbar vertebra, significantly decreased with the electrical noise (P<0.05), while there were no changes in the anteroposterior and vertical directions. These results indicate that the electrical noise to a knee joint can be applied to enhance postural control in quiet bipedal stance and treadmill walking. PMID:24110917

  18. Fast vision-based catheter 3D reconstruction

    Science.gov (United States)

    Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D.

    2016-07-01

    Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of  ±0.6 mm and  ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.

  19. 3D Printing of Graphene Aerogels.

    Science.gov (United States)

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  20. Photopolymers in 3D printing applications

    OpenAIRE

    Pandey, Ramji

    2014-01-01

    3D printing is an emerging technology with applications in several areas. The flexibility of the 3D printing system to use variety of materials and create any object makes it an attractive technology. Photopolymers are one of the materials used in 3D printing with potential to make products with better properties. Due to numerous applications of photopolymers and 3D printing technologies, this thesis is written to provide information about the various 3D printing technologies with particul...

  1. Natural fibre composites for 3D Printing

    OpenAIRE

    Pandey, Kapil

    2015-01-01

    3D printing has been common option for prototyping. Not all the materials are suitable for 3D printing. Various studies have been done and still many are ongoing regarding the suitability of the materials for 3D printing. This thesis work discloses the possibility of 3D printing of certain polymer composite materials. The main objective of this thesis work was to study the possibility for 3D printing the polymer composite material composed of natural fibre composite and various different ...

  2. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi;

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...... with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described...

  3. 3D Energy Harvester Evaluation

    Directory of Open Access Journals (Sweden)

    V. Janicek

    2013-04-01

    Full Text Available This paper discusses the characterization and evaluation of an MEMS based electrostatic generator, a part of the power supply unit of the self-powered microsystem[1,2,3]. The designed generator is based on electrostatic converter and uses the principle of conversion of non-electric energy into electrical energy by periodical modification of gap between electrodes of a capacitor [4]. The structure is designed and modeled as three-dimensional silicon based MEMS. Innovative approach involving the achievement of very low resonant frequency of the structure (about 100Hz by usage of modified long cantilever spring design, minimum area of the chip, 3D work mode, the ability to be tuned to reach desired parameters, proves promising directions of possible further development.

  4. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  5. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  6. Fable: Socially Interactive Modular Robot

    OpenAIRE

    Magnússon, Arnþór; Pacheco, Moises; Moghadam, Mikael; Lund, Henrik Hautop; Christensen, David Johan

    2013-01-01

    Modular robots have a significant potential as user-reconfigurable robotic playware, but often lack sufficient sensing for social interaction. We address this issue with the Fable modular robotic system by exploring the use of smart sensor modules that has a better ability to sense the behavior of the user. In this paper we describe the development of a smart sensor module which includes a 3D depth camera, and a server-side software architecture featuring user tracking, posture detection and ...

  7. 3D multiplexed immunoplasmonics microscopy

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  8. ORMGEN3D, 3-D Crack Geometry FEM Mesh Generator

    International Nuclear Information System (INIS)

    1 - Description of program or function: ORMGEN3D is a finite element mesh generator for computational fracture mechanics analysis. The program automatically generates a three-dimensional finite element model for six different crack geometries. These geometries include flat plates with straight or curved surface cracks and cylinders with part-through cracks on the outer or inner surface. Mathematical or user-defined crack shapes may be considered. The curved cracks may be semicircular, semi-elliptical, or user-defined. A cladding option is available that allows for either an embedded or penetrating crack in the clad material. 2 - Method of solution: In general, one eighth or one-quarter of the structure is modelled depending on the configuration or option selected. The program generates a core of special wedge or collapsed prism elements at the crack front to introduce the appropriate stress singularity at the crack tip. The remainder of the structure is modelled with conventional 20-node iso-parametric brick elements. Element group I of the finite element model consists of an inner core of special crack tip elements surrounding the crack front enclosed by a single layer of conventional brick elements. Eight element divisions are used in a plane orthogonal to the crack front, while the number of element divisions along the arc length of the crack front is user-specified. The remaining conventional brick elements of the model constitute element group II. 3 - Restrictions on the complexity of the problem: Maxima of 5,500 nodes, 4 layers of clad elements

  9. 3D multiplexed immunoplasmonics microscopy.

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  10. Kuvaus 3D-tulostamisesta hammastekniikassa

    OpenAIRE

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko

    2013-01-01

    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  11. NIF Ignition Target 3D Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  12. Neuromechanical Control for Dynamic Bipedal Walking with Reduced Impact Forces

    DEFF Research Database (Denmark)

    Widenka, Johannes; Xiong, Xiaofeng; Matthias Braun, Jan;

    2016-01-01

    Human walking emerges from an intricate interaction of nervous and musculoskeletal systems. Inspired by this principle, we integrate neural control and muscle-like mechanisms to achieve neuromechanical control of the biped robot RunBot. As a result, the neuromechanical controller enables RunBot t......Bot to perform more human-like walking and reduce impact force during walking, compared to original neural control. Moreover, it also generates adaptive joint motions of RunBot; thereby allowing it to deal with different terrains......Human walking emerges from an intricate interaction of nervous and musculoskeletal systems. Inspired by this principle, we integrate neural control and muscle-like mechanisms to achieve neuromechanical control of the biped robot RunBot. As a result, the neuromechanical controller enables Run...

  13. Hyper bio assembler for 3D cellular systems

    CERN Document Server

    Arai, Fumihito; Yamato, Masayuki

    2015-01-01

    Hyper Bio Assembler for Cellular Systems is the first book to present a new methodology for measuring and separating target cells at high speed and constructing 3D cellular systems in vitro. This book represents a valuable resource for biologists, biophysicists and robotic engineers, as well as researchers interested in this new frontier area, offering a better understanding of the measurement, separation, assembly, analysis and synthesis of complex biological tissue, and of the medical applications of these technologies. This book is the outcome of the new academic fields of the Ministry of Education, Culture, Sports, Science and Technology’s Grant-in-Aid for Scientific Research in Japan.

  14. Autonome 3D-Modellierung von unbekannten Objekten zur Aktiven Szenenexploration

    OpenAIRE

    Kriegel, Simon

    2015-01-01

    This thesis presents an approach for efficient model generation of unknown objects which is evaluated in simulation and on different robot-sensor systems. The method iteratively merges 3D measurements in a triangle mesh and a probabilistic voxel space, determines sensor paths denoted as Next-Best-Scan, and plans collision-free robot motions. Furthermore, object recognition and modeling are combined for active scene exploration, enabling multi-view recognition from planned view positions and i...

  15. Recognition of 3-D Scene with Partially Occluded Objects

    Science.gov (United States)

    Lu, Siwei; Wong, Andrew K. C...

    1987-03-01

    This paper presents a robot vision system which is capable of recognizing objects in a 3-D scene and interpreting their spatial relation even though some objects in the scene may be partially occluded by other objects. An algorithm is developed to transform the geometric information from the range data into an attributed hypergraph representation (AHR). A hypergraph monomorphism algorithm is then used to compare the AHR of objects in the scene with a set of complete AHR's of prototypes. The capability of identifying connected components and interpreting various types of edges in the 3-D scene enables us to distinguish objects which are partially blocking each other in the scene. Using structural information stored in the primitive area graph, a heuristic hypergraph monomorphism algorithm provides an effective way for recognizing, locating, and interpreting partially occluded objects in the range image.

  16. 3D multiplexed immunoplasmonics microscopy

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  17. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  18. Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism.

    Science.gov (United States)

    Fernández, Peter J; Holowka, Nicholas B; Demes, Brigitte; Jungers, William L

    2016-01-01

    During bipedal walking, modern humans dorsiflex their forefoot at the metatarsophalangeal joints (MTPJs) prior to push off, which tightens the plantar soft tissues to convert the foot into a stiff propulsive lever. Particular features of metatarsal head morphology such as "dorsal doming" are thought to facilitate this stiffening mechanism. In contrast, chimpanzees are believed to possess MTPJ morphology that precludes high dorsiflexion excursions during terrestrial locomotion. The morphological affinity of the metatarsal heads has been used to reconstruct locomotor behavior in fossil hominins, but few studies have provided detailed empirical data to validate the assumed link between morphology and function at the MTPJs. Using three-dimensional kinematic and morphometric analyses, we show that humans push off with greater peak dorsiflexion angles at all MTPJs than do chimpanzees during bipedal and quadrupedal walking, with the greatest disparity occurring at MTPJ 1. Among MTPJs 2-5, both species exhibit decreasing peak angles from medial to lateral. This kinematic pattern is mirrored in the morphometric analyses of metatarsal head shape. Analyses of Australopithecus afarensis metatarsals reveal morphology intermediate between humans and chimpanzees, suggesting that this species used different bipedal push-off kinematics than modern humans, perhaps resulting in a less efficient form of bipedalism. PMID:27464580

  19. Laetoli footprints reveal bipedal gait biomechanics different from those of modern humans and chimpanzees.

    Science.gov (United States)

    Hatala, Kevin G; Demes, Brigitte; Richmond, Brian G

    2016-08-17

    Bipedalism is a key adaptation that shaped human evolution, yet the timing and nature of its evolution remain unclear. Here we use new experimentally based approaches to investigate the locomotor mechanics preserved by the famous Pliocene hominin footprints from Laetoli, Tanzania. We conducted footprint formation experiments with habitually barefoot humans and with chimpanzees to quantitatively compare their footprints to those preserved at Laetoli. Our results show that the Laetoli footprints are morphologically distinct from those of both chimpanzees and habitually barefoot modern humans. By analysing biomechanical data that were collected during the human experiments we, for the first time, directly link differences between the Laetoli and modern human footprints to specific biomechanical variables. We find that the Laetoli hominin probably used a more flexed limb posture at foot strike than modern humans when walking bipedally. The Laetoli footprints provide a clear snapshot of an early hominin bipedal gait that probably involved a limb posture that was slightly but significantly different from our own, and these data support the hypothesis that important evolutionary changes to hominin bipedalism occurred within the past 3.66 Myr. PMID:27488647

  20. Environment Mapping with a Kinect Sensor using Industrial Robots

    OpenAIRE

    Meer, Naweed

    2016-01-01

    When integrating an industrial robot to its working cell, an integrator often builds up the scene including the machines surrounding the robot in a virtual environment and performs the programming online. By introducing a precise and correct 3D model of the surroundings of the robot, the integrator must no longer go through the process of building up the environment. Using a low cost Kinect sensor mounted on an industrial robot, a series of 3D scans of the working environmentcan be acquired. ...

  1. Eesti 3D jaoks kitsas / Virge Haavasalu

    Index Scriptorium Estoniae

    Haavasalu, Virge

    2009-01-01

    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  2. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  3. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  4. Hierarchical Motion Control for a Team of Humanoid Soccer Robots

    Directory of Open Access Journals (Sweden)

    Seung-Joon Yi

    2016-02-01

    Full Text Available Robot soccer has become an effective benchmarking problem for robotics research as it requires many aspects of robotics including perception, self localization, motion planning and distributed coordination to work in uncertain and adversarial environments. Especially with humanoid robots that lack inherent stability, a capable and robust motion controller is crucial for generating walking and kicking motions without losing balance. In this paper, we describe the details of a motion controller to control a team of humanoid soccer robots, which consists of a hierarchy of controllers with different time frames and abstraction levels. A low level controller governs the real time control of each joint angle, either using target joint angles or target endpoint transforms. A mid-level controller handles bipedal locomotion and balancing of the robot. A high level controller decides the long term behavior of the robot, and finally the team level controller coordinates the behavior of a group of robots by means of asynchronous communication between the robots. The suggested motion system has been successfully used by many humanoid robot teams at the RoboCup international robot soccer competitions, which has awarded us five successful championships in a row.

  5. Visual SLAM for 3D large-scale seabed acquisition employing underwater vehicles

    OpenAIRE

    Salvi, Joaquim; Petillot, Yvan R.; Batlle, Elisabet

    2008-01-01

    This paper presents a novel technique to align partial 3D reconstructions of the seabed acquired by a stereo camera mounted on an autonomous underwater vehicle. Vehicle localization and seabed mapping is performed simultaneously by means of an Extended Kalman Filter. Passive landmarks are detected on the images and characterized considering 2D and 3D features. Landmarks are re-observed while the robot is navigating and data association becomes easier but robust. Once the survey is completed, ...

  6. 3D MODELLING AND INTERACTIVE WEB-BASED VISUALIZATION OF CULTURAL HERITAGE OBJECTS

    OpenAIRE

    Koeva, M. N.

    2016-01-01

    Nowadays, there are rapid developments in the fields of photogrammetry, laser scanning, computer vision and robotics, together aiming to provide highly accurate 3D data that is useful for various applications. In recent years, various LiDAR and image-based techniques have been investigated for 3D modelling because of their opportunities for fast and accurate model generation. For cultural heritage preservation and the representation of objects that are important for tourism and their interact...

  7. Visual Object Recognition with 3D-Aware Features in KITTI Urban Scenes

    OpenAIRE

    J. Javier Yebes; Bergasa, Luis M.; Miguel García-Garrido

    2015-01-01

    Driver assistance systems and autonomous robotics rely on the deployment of several sensors for environment perception. Compared to LiDAR systems, the inexpensive vision sensors can capture the 3D scene as perceived by a driver in terms of appearance and depth cues. Indeed, providing 3D image understanding capabilities to vehicles is an essential target in order to infer scene semantics in urban environments. One of the challenges that arises from the navigation task in naturalistic urban sce...

  8. Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions

    OpenAIRE

    Bylow, Erik; Sturm, Jürgen; Kerl, Christian; Kahl, Fredrik; Cremers, Daniel

    2013-01-01

    The ability to quickly acquire 3D models is an essential capability needed in many disciplines including robotics, computer vision, geodesy, and architecture. In this paper we present a novel method for real-time camera tracking and 3D reconstruction of static indoor environments using an RGB-D sensor. We show that by representing the geometry with a signed distance function (SDF), the camera pose can be efficiently estimated by directly minimizing the error of the depth images on the SDF....

  9. Face Detection with a 3D Model

    OpenAIRE

    Barbu, Adrian; Lay, Nathan; Gramajo, Gary

    2014-01-01

    This paper presents a part-based face detection approach where the spatial relationship between the face parts is represented by a hidden 3D model with six parameters. The computational complexity of the search in the six dimensional pose space is addressed by proposing meaningful 3D pose candidates by image-based regression from detected face keypoint locations. The 3D pose candidates are evaluated using a parameter sensitive classifier based on difference features relative to the 3D pose. A...

  10. 3D Additive Manufacturing Symposium & Workshop

    OpenAIRE

    Unver, Ertu; Taylor, Andrew

    2015-01-01

    The IMI /3M BIC 3D Additive Manufacturing Symposium and Workshop was hosted by 3M Buckley Innovation Centre on March 17th 2015. The event was attended by the major players in precision engineering, 3D additive design and manufacturing: Representatives from EOS, Renishaw, HK 3D Printing IMI Plc Senior Management team, design engineers, programmers and academics from the University of Huddersfield School of Art Design & Architecture, 3M Buckley centre 3D printing management and designers shared...

  11. Forward ramp in 3D

    Science.gov (United States)

    1997-01-01

    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  12. 3D modelling for multipurpose cadastre

    NARCIS (Netherlands)

    Abduhl Rahman, A.; Van Oosterom, P.J.M.; Hua, T.C.; Sharkawi, K.H.; Duncan, E.E.; Azri, N.; Hassan, M.I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D

  13. Beowulf 3D: a case study

    Science.gov (United States)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  14. 3D Printing and Its Urologic Applications.

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  15. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  16. Robotic assisted minimally invasive surgery

    Directory of Open Access Journals (Sweden)

    Palep Jaydeep

    2009-01-01

    Full Text Available The term "robot" was coined by the Czech playright Karel Capek in 1921 in his play Rossom′s Universal Robots. The word "robot" is from the check word robota which means forced labor.The era of robots in surgery commenced in 1994 when the first AESOP (voice controlled camera holder prototype robot was used clinically in 1993 and then marketed as the first surgical robot ever in 1994 by the US FDA. Since then many robot prototypes like the Endoassist (Armstrong Healthcare Ltd., High Wycombe, Buck, UK, FIPS endoarm (Karlsruhe Research Center, Karlsruhe, Germany have been developed to add to the functions of the robot and try and increase its utility. Integrated Surgical Systems (now Intuitive Surgery, Inc. redesigned the SRI Green Telepresence Surgery system and created the daVinci Surgical System ® classified as a master-slave surgical system. It uses true 3-D visualization and EndoWrist ® . It was approved by FDA in July 2000 for general laparoscopic surgery, in November 2002 for mitral valve repair surgery. The da Vinci robot is currently being used in various fields such as urology, general surgery, gynecology, cardio-thoracic, pediatric and ENT surgery. It provides several advantages to conventional laparoscopy such as 3D vision, motion scaling, intuitive movements, visual immersion and tremor filtration. The advent of robotics has increased the use of minimally invasive surgery among laparoscopically naοve surgeons and expanded the repertoire of experienced surgeons to include more advanced and complex reconstructions.

  17. Investigating Mobile Stereoscopic 3D Touchscreen Interaction

    OpenAIRE

    Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret

    2013-01-01

    3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...

  18. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard

    2004-01-01

    . In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality......3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest...

  19. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  20. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  1. Esiselvitys elintarvikkeiden 3D-tulostamisesta

    OpenAIRE

    Teva, Arno

    2015-01-01

    Opinnäytetyön tavoitteena oli laatia esiselvitys 3D-tulostamisesta elintarvikealalla. 3D-tulostaminen on uusi ja jatkuvasti kehittyvä ala, joka tulee vaikuttamaan myös elintarvikealan kehittymiseen. Työn tarkoituksena oli selvittää elintarvikenäkökulmasta 3D-tulostamiseen liittyviä tekijöitä. Aiheen toimeksiantajana oli Hämeen ammattikorkeakoulu ja kohderyhmänä elintarvikealan Pk-yritykset. Opinnäytetyössä esitellään yleisimpiä 3D-tulostusmenetelmiä ja selvitetään 3D-tulostamista tietokone...

  2. PRIPRAVA MODELOV ZA 3D - TISK

    OpenAIRE

    Črešnik, Igor

    2015-01-01

    V diplomskem delu predstavljamo pripravo modela na 3D-tisk. V prvem delu smo preleteli zgodovino tiska. Predstavili smo tehnologijo 3D-tiska ter različne tehnike tiskanja, ki jih uporabljajo določeni tiskalniki. V nadaljevanju smo pregledali različne tipe 3D-tiskalnikov, ki se uporabljajo za domačo ali komercialno uporabo ter izpostavili njihove prednosti in slabosti. V zadnjem delu diplomskega dela smo na praktičnem primeru 3D-modela hiše prikazali proces priprave modela za 3D-tisk. Pri delu...

  3. 3D-tulostimien tutkiminen painotalolle

    OpenAIRE

    Toivonen, Aleksi

    2014-01-01

    Opinnäytetyön tavoitteena oli perehtyä 3D-tulostamiseen ja tutkia painotaloon sopivia 3D-tulostimia ja 3D-tulostamiseen liittyviä tekniikoita. Opinnäytetyön tavoitteena oli myös pohtia painotalolle mahdollisia 3D-tulostamiseen liittyviä tuotekonsepteja yrityksille ja yksityisille kuluttajille. Painoalan yrityksen tarkoituksena on sijoittaa lähitulevaisuudessa 3D-tulostimeen, joten opinnäytetyö oli ajankohtainen tutkimustyö yritykselle. Opinnäytetyön toimeksiantajana toimi painoalan yritys. ...

  4. BUILDING A HOMEMADE 3D PRINTER

    OpenAIRE

    Tunc, Baran

    2015-01-01

    3D printing has been attracted much attention around the world due to its high potential of new application fields. In this respect, developing and inventing new filament materials for 3D printers or new techniques of 3D printing are the main interest of the many materials scientists. This paper reports a comprehensive overview of 3D printing followed by a summary of my ongoing study of building a composite homemade 3D printer. At this stage of this study, a CNC router was successfully conver...

  5. 3D Printing our future: Now

    OpenAIRE

    Taylor, Andrew; Unver, Ertu

    2015-01-01

    This 3D Printing our Future:Now talk and visual presentation was given to delegates at the IMI 3D Workshop held at 3M Buckley Innovation Centre on 17th March 2015. The event was hosted by 3Mbuckley Innovation Centre for IMI plc a global engineering company, 3M, and leading 3D additive manufacturing technology providers: EOS, Renishaw and HK 3D printing to disseminate and share their experience on the latest 3D additive design and manufacturing technologies available to the engineering an...

  6. Web-based interactive visualization of 3D video mosaics using X3D standard

    Institute of Scientific and Technical Information of China (English)

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke

    2006-01-01

    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  7. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  8. RELAP5-3D User Problems

    Energy Technology Data Exchange (ETDEWEB)

    Riemke, Richard Allan

    2002-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  9. 3D Chaotic Functions for Image Encryption

    Directory of Open Access Journals (Sweden)

    Pawan N. Khade

    2012-05-01

    Full Text Available This paper proposes the chaotic encryption algorithm based on 3D logistic map, 3D Chebyshev map, and 3D, 2D Arnolds cat map for color image encryption. Here the 2D Arnolds cat map is used for image pixel scrambling and 3D Arnolds cat map is used for R, G, and B component substitution. 3D Chebyshev map is used for key generation and 3D logistic map is used for image scrambling. The use of 3D chaotic functions in the encryption algorithm provide more security by using the, shuffling and substitution to the encrypted image. The Chebyshev map is used for public key encryption and distribution of generated private keys.

  10. Robot maps, robot moves, robot avoids

    OpenAIRE

    Farrugia, Claire; Duca, Edward

    2014-01-01

    Robotics is a cornerstone for this century’s innovations. From robot nurses to your own personal assistant, most robots need to know: ‘where is it?’ ‘Where should it go?’ And ‘how to get there?’ Without answers to these questions a robot cannot do much. http://www.um.edu.mt/think/robot-maps-robot-moves-robot-avoids/

  11. Wide area 2D/3D imaging development, analysis and applications

    CERN Document Server

    Langmann, Benjamin

    2014-01-01

    Imaging technology is an important research area and it is widely utilized in a growing number of disciplines ranging from gaming, robotics and automation to medicine. In the last decade 3D imaging became popular mainly driven by the introduction of novel 3D cameras and measuring devices. These cameras are usually limited to indoor scenes with relatively low distances. Benjamin Langmann introduces medium and long-range 2D/3D cameras to overcome these limitations. He reports measurement results for these devices and studies their characteristic behavior. In order to facilitate the application o

  12. Autonomous robotics and deep learning

    CERN Document Server

    Nath, Vishnu

    2014-01-01

    This Springer Brief examines the combination of computer vision techniques and machine learning algorithms necessary for humanoid robots to develop "true consciousness." It illustrates the critical first step towards reaching "deep learning," long considered the holy grail for machine learning scientists worldwide. Using the example of the iCub, a humanoid robot which learns to solve 3D mazes, the book explores the challenges to create a robot that can perceive its own surroundings. Rather than relying solely on human programming, the robot uses physical touch to develop a neural map of its en

  13. 3-D Technology Approaches for Biological Ecologies

    Science.gov (United States)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  14. FROM 3D MODEL DATA TO SEMANTICS

    Directory of Open Access Journals (Sweden)

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  15. Automatic 3D video format detection

    Science.gov (United States)

    Zhang, Tao; Wang, Zhe; Zhai, Jiefu; Doyen, Didier

    2011-03-01

    Many 3D formats exist and will probably co-exist for a long time even if 3D standards are today under definition. The support for multiple 3D formats will be important for bringing 3D into home. In this paper, we propose a novel and effective method to detect whether a video is a 3D video or not, and to further identify the exact 3D format. First, we present how to detect those 3D formats that encode a pair of stereo images into a single image. The proposed method detects features and establishes correspondences between features in the left and right view images, and applies the statistics from the distribution of the positional differences between corresponding features to detect the existence of a 3D format and to identify the format. Second, we present how to detect the frame sequential 3D format. In the frame sequential 3D format, the feature points are oscillating from frame to frame. Similarly, the proposed method tracks feature points over consecutive frames, computes the positional differences between features, and makes a detection decision based on whether the features are oscillating. Experiments show the effectiveness of our method.

  16. Robotic surgery

    Science.gov (United States)

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... Robotic surgery is similar to laparoscopic surgery. It can be performed through smaller cuts than open surgery. ...

  17. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it

  18. 3D flexible needle steering in soft-tissue phantoms using fiber bragg grating sensors

    NARCIS (Netherlands)

    Abayazid, Momen; Kemp, Marco; Misra, Sarthak

    2013-01-01

    Needle insertion procedures are commonly used for surgical interventions. In this paper, we develop a three-dimensional (3D) closed-loop control algorithm to robotically steer flexible needles with an asymmetric tip towards a target in a soft-tissue phantom. Twelve Fiber Bragg Grating (FBG) sensors

  19. 3D-tulostus : case Printrbot

    OpenAIRE

    Arvekari, Lassi

    2013-01-01

    Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...

  20. A Spatial Reference Grid for Real-Time Autonomous Underwater Modeling using 3-D Sonar

    Energy Technology Data Exchange (ETDEWEB)

    Auran, P.G.

    1996-12-31

    The offshore industry has recognized the need for intelligent underwater robotic vehicles. This doctoral thesis deals with autonomous underwater vehicles (AUVs) and concentrates on a data representation for real-time image formation and analysis. Its main objective is to develop a 3-D image representation suitable for autonomous perception objectives underwater, assuming active sonar as the main sensor for perception. The main contributions are: (1) A dynamical image representation for 3-D range data, (2) A basic electronic circuit and software system for 3-D sonar sampling and amplitude thresholding, (3) A model for target reliability, (4) An efficient connected components algorithm for 3-D segmentation, (5) A method for extracting general 3-D geometrical representations from segmented echo clusters, (6) Experimental results of planar and curved target modeling. 142 refs., 120 figs., 10 tabs.

  1. Spatial data modelling for 3D GIS

    CERN Document Server

    Abdul-Rahman, Alias

    2007-01-01

    This book covers fundamental aspects of spatial data modelling specifically on the aspect of three-dimensional (3D) modelling and structuring. Realisation of ""true"" 3D GIS spatial system needs a lot of effort, and the process is taking place in various research centres and universities in some countries. The development of spatial data modelling for 3D objects is the focus of this book.

  2. Compression of 3D models with NURBS

    OpenAIRE

    Santa Cruz Ducci, Diego; Ebrahimi, Touradj

    2005-01-01

    With recent progress in computing, algorithmics and telecommunications, 3D models are increasingly used in various multimedia applications. Examples include visualization, gaming, entertainment and virtual reality. In the multimedia domain 3D models have been traditionally represented as polygonal meshes. This piecewise planar representation can be thought of as the analogy of bitmap images for 3D surfaces. As bitmap images, they enjoy great flexibility and are particularly well suited to des...

  3. Extraordinary 3D Surface Materials: A practice based exhibition of 3D learning artefacts and prototypes.

    OpenAIRE

    Taylor, Andrew; Harris, Joanne; Unver, Ertu; Lewis, Linda

    2011-01-01

    A collection of 3D prototyped research learning artefacts were exhibited at Surface Design Show 2011. The artefacts on display provided tacit evidence of the 3D concept modelling and reflective learning experiences of a final year BA (Hons) Surface Design for Fashion & Interiors student group using 3D polygon modelling software and additive prototyping technologies (3D Printing) for the first time. The student authored project blog http://extraordinary-3d-materials.blogspot.co.uk/ documen...

  4. 3D modelling for multipurpose cadastre

    OpenAIRE

    Abduhl Rahman, A.; P. J. M. Van Oosterom; T. C. Hua; Sharkawi, K.H.; E. E. Duncan; Azri, N.; Hassan, M. I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D cadastre since more and more related agencies attempt to develop or embed 3D components into the MPC. We also intend to describe the initiative by Malaysian national mapping and cadastral agency (...

  5. Getting started in 3D with Maya

    CERN Document Server

    Watkins, Adam

    2012-01-01

    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  6. Can 3D Printing change your business?

    OpenAIRE

    Unver, Ertu

    2013-01-01

    This presentation is given to businesses / companies with an interest in 3D Printing and Additive Manufacturing in West Yorkshire, UK Organised by the Calderdale and Kirklees Manufacturing Alliance. http://www.ckma.co.uk/ by Dr Ertu Unver Senior Lecturer / Product Design / MA 3D Digital Design / University of Huddersfield Location : 3M BIC, Date : 11th April, Time : 5.30 – 8pm Additive manufacturing or 3D printing is a process of making a three-dimensional (3D) objects from...

  7. A 3d game in python

    OpenAIRE

    Xu, Minghui

    2014-01-01

    3D game has widely been accepted and loved by many game players. More and more different kinds of 3D games were developed to feed people’s needs. The most common programming language for development of 3D game is C++ nowadays. Python is a high-level scripting language. It is simple and clear. The concise syntax could speed up the development cycle. This project was to develop a 3D game using only Python. The game is about how a cat lives in the street. In order to live, the player need...

  8. Virtual Realization using 3D Password

    Directory of Open Access Journals (Sweden)

    A.B.Gadicha

    2012-03-01

    Full Text Available Current authentication systems suffer from many weaknesses. Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed; however, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. In this paper, we present and evaluate our contribution, i.e., the 3D password. The 3D password is a multifactor authentication scheme. To be authenticated, we present a 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space.

  9. Calibration for 3D Structured Light Measurement

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.

  10. Dimensional accuracy of 3D printed vertebra

    Science.gov (United States)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  11. 3D Printing Making the Digital Real .

    OpenAIRE

    Miss Prachi More

    2013-01-01

    3D printing is quickly expanding field, with the popularity and uses for 3D printers growing every day. 3D printing can be used to prototype, create replacement parts, and is even versatile enough to print prostheses and medical implants. It will have a growing impact on our world, as more and more people gain access to these amazing machines.[1] In this article, we would like to attempt to give an introduction of the technology. 3Dimensions printing is a method of converting a virtual 3D mod...

  12. 3D-tulostuksen viipalointiohjelmien vertailu

    OpenAIRE

    Virolainen, Ville

    2015-01-01

    Opinnäytetyön tavoitteena on selventää 3D-tulostamisen prosessia yksityisen käyttäjän näkökulmasta sekä luoda testitulostuksia, joiden perusteella pystytään vertailemaan prosessissa käytettävien viipalointiohjelmien toimintaa keskenään. Työssä perehdytään aluksi 3D-tulostuksen teoriataustaan, jonka jälkeen suoritetaan 3D-tulostimella testitulostukset käyttäen kolmea eri viipalointiohjelmaa. 3D-tulostamisella tarkoitetaan prosessia, jonka tarkoituksena on luoda kolmiulotteinen objekti käyt...

  13. Illustrating Mathematics using 3D Printers

    OpenAIRE

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  14. BIM tietomalli ja 3D-tulostus

    OpenAIRE

    Myllykoski, Joonas; Palonen, Teemu

    2015-01-01

    Tämän opinnäytetyön tavoitteena oli selvittää miten Tekla Structures ohjelmalla luotu 3D-malli saadaan tulostettua koulun 3D-tulostimella sekä tutkittiin voidaanko Tekla Structuresin ominaisuuksia hyödyntää 3D-tulostamisessa ja miten tulostus onnistuu autocadilla. Selvitimme myös mahdollisia 3D-tulostusteknologian sovelluksia tulevaisuuden rakennustuotannossa ja sen näkymiä rakennusteollisuudessa sekä erilaisia tulostus menetelmiä joita voitaisiin mahdollisesti hyödyntää rakennusteollisuudess...

  15. FastScript3D - A Companion to Java 3D

    Science.gov (United States)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  16. Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints

    Institute of Scientific and Technical Information of China (English)

    Yan Huang; Qi-Ning Wang; Yue Gao; Guang-Ming Xie

    2012-01-01

    Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait.This paper presents a passive dynamic walking model with segmented feet,which makes the bipedal walking gait more close to natural human-like gait.The proposed model extends the simplest walking model with the addition of flat feet and torsional spring based compliance on ankle joints and toe joints,to achieve stable walking on a slope driven by gravity.The push-off phase includes foot rotations around the toe joint and around the toe tip,which shows a great resemblance to human normal walking.This paper investigates the effects of the segmented foot structure on bipedal walking in simulations. The model achieves satisfactory walking results on even or uneven slopes.

  17. Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints

    Science.gov (United States)

    Huang, Yan; Wang, Qi-Ning; Gao, Yue; Xie, Guang-Ming

    2012-10-01

    Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait. This paper presents a passive dynamic walking model with segmented feet, which makes the bipedal walking gait more close to natural human-like gait. The proposed model extends the simplest walking model with the addition of flat feet and torsional spring based compliance on ankle joints and toe joints, to achieve stable walking on a slope driven by gravity. The push-off phase includes foot rotations around the toe joint and around the toe tip, which shows a great resemblance to human normal walking. This paper investigates the effects of the segmented foot structure on bipedal walking in simulations. The model achieves satisfactory walking results on even or uneven slopes.

  18. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    Science.gov (United States)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  19. Fused filament 3D printing of ionic polymer-metal composites (IPMCs)

    Science.gov (United States)

    Carrico, James D.; Traeden, Nicklaus W.; Aureli, Matteo; Leang, Kam K.

    2015-12-01

    This paper describes a new three-dimensional (3D) fused filament additive manufacturing (AM) technique in which electroactive polymer filament material is used to build soft active 3D structures, layer by layer. Specifically, the unique actuation and sensing properties of ionic polymer-metal composites (IPMCs) are exploited in 3D printing to create electroactive polymer structures for application in soft robotics and bio-inspired systems. The process begins with extruding a precursor material (non-acid Nafion precursor resin) into a thermoplastic filament for 3D printing. The filament is then used by a custom-designed 3D printer to manufacture the desired soft polymer structures, layer by layer. Since at this stage the 3D-printed samples are not yet electroactive, a chemical functionalization process follows, consisting in hydrolyzing the precursor samples in an aqueous solution of potassium hydroxide and dimethyl sulfoxide. Upon functionalization, metal electrodes are applied on the samples through an electroless plating process, which enables the 3D-printed IPMC structures to be controlled by voltage signals for actuation (or to act as sensors). This innovative AM process is described in detail and the performance of 3D printed IPMC actuators is compared to an IPMC actuator fabricated from commercially available Nafion sheet material. The experimental results show comparable performance between the two types of actuators, demonstrating the potential and feasibility of creating functional 3D-printed IPMCs.

  20. An aerial 3D printing test mission

    Science.gov (United States)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  1. 3D ultrafast ultrasound imaging in vivo

    International Nuclear Information System (INIS)

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability. (fast track communication)

  2. Comparative analysis between radiographic views for knee osteoarthrosis (bipedal AP versus monopedal AP

    Directory of Open Access Journals (Sweden)

    Rodrigo Pires e Albuquerque

    2013-08-01

    Full Text Available OBJECTIVE: A comparative analysis by applying the criteria of the original classification Ahlbäck in the anteroposterior (AP bipedal knee in extension and anteroposterior (AP monopodal knee in symptomatic knee arthrosis. With this analysis we intend to observe the agreement, any advantage or difference between the incidence and degree of joint involvement between the orthopedic surgeons and radiologists with the referring physician. METHODS: From January 2012 to March 2012, was a prospective study of 60 symptomatic arthrosis knees (60 patients, clinically selected group of outpatient knee and radiographic proposals submitted to the search. Of the 60 patients, 39 were female and 21 male, mean age 64 years (ranging from 50 to 84 years. Of the 60 knees studied, 37 corresponded to the right side and 23 on the left side. Statistical analysis was performed by Kappa statistics, which evaluates the interobserver agreement for qualitative data. RESULTS: According to the scale of Ahlbäck, there was a significant agreement (p < 0.0001 intra-observer in the classification of knee osteoarthritis among the five evaluators. There was a significant agreement (p < 0.0001 with inter-observer referring physician in the incidence of AP monopodal and AP bipedal for the four raters. CONCLUSION: The study found no difference between the incidence in the AP monopodal versus AP bipedal in osteoarthritis of the knee.

  3. Immersive 3D Geovisualization in Higher Education

    Science.gov (United States)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  4. Perception of detail in 3D images

    NARCIS (Netherlands)

    Heyndrickx, I.; Kaptein, R.

    2009-01-01

    A lot of current 3D displays suffer from the fact that their spatial resolution is lower compared to their 2D counterparts. One reason for this is that the multiple views needed to generate 3D are often spatially multiplexed. Besides this, imperfect separation of the left- and right-eye view leads t

  5. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, G.J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  6. Parametrizable cameras for 3D computational steering

    NARCIS (Netherlands)

    Mulder, J.D.; Wijk, J.J. van

    1997-01-01

    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  7. 3D Cadastre modelling in Russia

    NARCIS (Netherlands)

    Vandysheva, N.; Tikhonov, V.; Van Oosterom, P.J.M.; Stoter, J.E.; Ploeger, H.D.; Wouters, R.; Penkov, V.

    2011-01-01

    The paper presents the on-going project on 3D cadastre modelling in Russia. The aim of this project is to provide guidance in the development of a prototype and to create favourable legal and institutional conditions for the introduction of 3D cadastre modelling in Russia based on experience of the

  8. Recognition of 3D facial expression dynamics

    NARCIS (Netherlands)

    Sandbach, G.; Zafeiriou, S.; Pantic, Maja; Rueckert, D.

    2012-01-01

    In this paper we propose a method that exploits 3D motion-based features between frames of 3D facial geometry sequences for dynamic facial expression recognition. An expressive sequence is modelled to contain an onset followed by an apex and an offset. Feature selection methods are applied in order

  9. 3-D structures of planetary nebulae

    CERN Document Server

    Steffen, Wolfgang

    2016-01-01

    Recent advances in the 3-D reconstruction of planetary nebulae are reviewed. We include not only results for 3-D reconstructions, but also the current techniques in terms of general methods and software. In order to obtain more accurate reconstructions, we suggest to extend the widely used assumption of homologous nebula expansion to map spectroscopically measured velocity to position along the line of sight.

  10. 3D, or Not to Be?

    Science.gov (United States)

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  11. 3D Printed Block Copolymer Nanostructures

    Science.gov (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  12. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  13. 3D Printing. What's the Harm?

    Science.gov (United States)

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  14. Multiway calibration in 3D QSAR

    NARCIS (Netherlands)

    Nilsson, J; de Jong, Sietse; Smilde, A

    1997-01-01

    We have introduced multilinear PLS in 3D QSAR and applied it to GRID descriptors from a set of benzamides with affinity to the dopamine D-3 receptor subtype, synthesized as potential drugs against schizophrenia. The key issue in 3D QSAR modelling is to obtain a predictive model that is easy to inter

  15. Limited Feedback for 3D Massive MIMO under 3D-UMa and 3D-UMi Scenarios

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available For three-dimensional (3D massive MIMO utilizing the uniform rectangular array (URA in the base station (BS, we propose a limited feedback transmission scheme in which the channel state information (CSI feedback operations for horizontal domain and vertical domain are separate. Compared to the traditional feedback scheme, the scheme can reduce the feedback overhead, code word index search complexity, and storage requirement. Also, based on the zenith of departure angle (ZoD distribution in 3D-Urban Macro Cell (3D-UMa and 3D-Urban Micro Cell (3D-UMi scenarios, we propose the angle quantization codebook for vertical domain, while the codebook of long term evolution-advanced (LTE-Advanced is still adopted in horizontal domain to preserve compatibility with the LTE-Advanced. Based on the angle quantization codebook, the subsampled 3-bit DFT codebook is designed for vertical domain. The system-level simulation results reveal that, to compromise the feedback overhead and system performance, 2-bit codebook for 3D-UMa scenario and 3-bit codebook for 3D-UMi scenario can meet requirements in vertical domain. The feedback period for vertical domain can also be extended appropriately to reduce the feedback overhead.

  16. Density-Based 3D Shape Descriptors

    Directory of Open Access Journals (Sweden)

    Schmitt Francis

    2007-01-01

    Full Text Available We propose a novel probabilistic framework for the extraction of density-based 3D shape descriptors using kernel density estimation. Our descriptors are derived from the probability density functions (pdf of local surface features characterizing the 3D object geometry. Assuming that the shape of the 3D object is represented as a mesh consisting of triangles with arbitrary size and shape, we provide efficient means to approximate the moments of geometric features on a triangle basis. Our framework produces a number of 3D shape descriptors that prove to be quite discriminative in retrieval applications. We test our descriptors and compare them with several other histogram-based methods on two 3D model databases, Princeton Shape Benchmark and Sculpteur, which are fundamentally different in semantic content and mesh quality. Experimental results show that our methodology not only improves the performance of existing descriptors, but also provides a rigorous framework to advance and to test new ones.

  17. Fabrication of 3D Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  18. Maintaining and troubleshooting your 3D printer

    CERN Document Server

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  19. 3D-grafiikka ja pelimoottorit

    OpenAIRE

    Sillanpää, Otto

    2014-01-01

    Tässä opinnäytetyössä tutkitaan miten 3D-mallit saadaan sellaiseen muotoon, että ne olisivat käytettävissä eri pelimoottoreissa. Tutkimuksen tarkoituksena on selvittää, miten luodaan 3D-malleja pelimoottoreihin, sekä miten 3D-mallinnusohjelmat ja pelimoottorit eroavat toisistaan, kun käsitellään 3D-malleja. Tässä työssä pelimoottoreina toimivat Valven Source sekä Epic Gamesin Unreal Engine 3. 3D-mallinnusohjelmista käytössä olivat Autodeskin 3ds Max 2014 ja Blender Foundationin Blender 2.7...

  20. 6D Interpretation of 3D Gravity

    CERN Document Server

    Herfray, Yannick; Scarinci, Carlos

    2016-01-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern-Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any SU(2) invariant closed 3-form in the total space of the principal SU(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  1. The psychology of the 3D experience

    Science.gov (United States)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  2. 3D Visualization Development of SIUE Campus

    Science.gov (United States)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  3. Robot and robot system

    Science.gov (United States)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  4. New development in robot vision

    CERN Document Server

    Behal, Aman; Chung, Chi-Kit

    2015-01-01

    The field of robotic vision has advanced dramatically recently with the development of new range sensors.  Tremendous progress has been made resulting in significant impact on areas such as robotic navigation, scene/environment understanding, and visual learning. This edited book provides a solid and diversified reference source for some of the most recent important advancements in the field of robotic vision. The book starts with articles that describe new techniques to understand scenes from 2D/3D data such as estimation of planar structures, recognition of multiple objects in the scene using different kinds of features as well as their spatial and semantic relationships, generation of 3D object models, approach to recognize partially occluded objects, etc. Novel techniques are introduced to improve 3D perception accuracy with other sensors such as a gyroscope, positioning accuracy with a visual servoing based alignment strategy for microassembly, and increasing object recognition reliability using related...

  5. Portable 3D laser-camera calibration system with color fusion for SLAM

    Directory of Open Access Journals (Sweden)

    Javier Navarrete

    2013-03-01

    Full Text Available Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used to provide color information to the point cloud, but a calibration process between camera and laser must be done. In this paper we present a portable calibration system to calibrate any traditional camera with a 3D laser in order to assign color information to the 3D points obtained. Thus, we can use laser precision and simultaneously make use of color information. Unlike other techniques that make use of a three-dimensional body of known dimensions in the calibration process, this system is highly portable because it makes use of small catadioptrics that can be placed in a simple manner in the environment. We use our calibration system in a 3D mapping system, including Simultaneous Location and Mapping (SLAM, in order to get a 3D colored map which can be used in different tasks. We show that an additional problem arises: 2D cameras information is different when lighting conditions change. So when we merge 3D point clouds from two different views, several points in a given neighborhood could have different color information. A new method for color fusion is presented, obtaining correct colored maps. The system will be tested by applying it to 3D reconstruction.

  6. 3-D Object Recognition from Point Cloud Data

    Science.gov (United States)

    Smith, W.; Walker, A. S.; Zhang, B.

    2011-09-01

    The market for real-time 3-D mapping includes not only traditional geospatial applications but also navigation of unmanned autonomous vehicles (UAVs). Massively parallel processes such as graphics processing unit (GPU) computing make real-time 3-D object recognition and mapping achievable. Geospatial technologies such as digital photogrammetry and GIS offer advanced capabilities to produce 2-D and 3-D static maps using UAV data. The goal is to develop real-time UAV navigation through increased automation. It is challenging for a computer to identify a 3-D object such as a car, a tree or a house, yet automatic 3-D object recognition is essential to increasing the productivity of geospatial data such as 3-D city site models. In the past three decades, researchers have used radiometric properties to identify objects in digital imagery with limited success, because these properties vary considerably from image to image. Consequently, our team has developed software that recognizes certain types of 3-D objects within 3-D point clouds. Although our software is developed for modeling, simulation and visualization, it has the potential to be valuable in robotics and UAV applications. The locations and shapes of 3-D objects such as buildings and trees are easily recognizable by a human from a brief glance at a representation of a point cloud such as terrain-shaded relief. The algorithms to extract these objects have been developed and require only the point cloud and minimal human inputs such as a set of limits on building size and a request to turn on a squaring option. The algorithms use both digital surface model (DSM) and digital elevation model (DEM), so software has also been developed to derive the latter from the former. The process continues through the following steps: identify and group 3-D object points into regions; separate buildings and houses from trees; trace region boundaries; regularize and simplify boundary polygons; construct complex roofs. Several case

  7. Semi- and virtual 3D dosimetry in clinical practice

    DEFF Research Database (Denmark)

    Korreman, S. S.

    2013-01-01

    In this review, 3D dosimetry is divided in three categories; "true" 3D, semi-3D and virtual 3D. Virtual 3D involves the use of measurement arrays either before or after beam entry in the patient/phantom, whereas semi-3D involves use of measurement arrays in phantoms mimicking the patient. True 3D...

  8. 3D facial expression modeling for recognition

    Science.gov (United States)

    Lu, Xiaoguang; Jain, Anil K.; Dass, Sarat C.

    2005-03-01

    Current two-dimensional image based face recognition systems encounter difficulties with large variations in facial appearance due to the pose, illumination and expression changes. Utilizing 3D information of human faces is promising for handling the pose and lighting variations. While the 3D shape of a face does not change due to head pose (rigid) and lighting changes, it is not invariant to the non-rigid facial movement and evolution, such as expressions and aging effect. We propose a facial surface matching framework to match multiview facial scans to a 3D face model, where the (non-rigid) expression deformation is explicitly modeled for each subject, resulting in a person-specific deformation model. The thin plate spline (TPS) is applied to model the deformation based on the facial landmarks. The deformation is applied to the 3D neutral expression face model to synthesize the corresponding expression. Both the neutral and the synthesized 3D surface models are used to match a test scan. The surface registration and matching between a test scan and a 3D model are achieved by a modified Iterative Closest Point (ICP) algorithm. Preliminary experimental results demonstrate that the proposed expression modeling and recognition-by-synthesis schemes improve the 3D matching accuracy.

  9. Medical 3D Printing for the Radiologist.

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.

  10. Digital relief generation from 3D models

    Science.gov (United States)

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian

    2016-09-01

    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  11. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    DEFF Research Database (Denmark)

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah;

    2014-01-01

    objects. In this research, the authors propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA......) or Hilbert mappings, in this research, they extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested for single object, nearest neighbor and range search queries using a CityGML dataset of 1,000 building blocks and the results...... are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a sub-interval of the ([0,1]) interval to the corresponding...

  12. 3D Reconstruction Technique for Tomographic PIV

    Institute of Scientific and Technical Information of China (English)

    姜楠; 包全; 杨绍琼

    2015-01-01

    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  13. Extra Dimensions: 3D in PDF Documentation

    International Nuclear Information System (INIS)

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.

  14. An Improved Version of TOPAZ 3D

    CERN Document Server

    Krasnykh, Anatoly K

    2003-01-01

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results.

  15. A high capacity 3D steganography algorithm.

    Science.gov (United States)

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  16. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  17. Matching Feature Points in 3D World

    OpenAIRE

    Avdiu, Blerta

    2012-01-01

    This thesis work deals with the most actual topic in Computer Vision field which is scene understanding and this using matching of 3D feature point images. The objective is to make use of Saab’s latest breakthrough in extraction of 3D feature points, to identify the best alignment of at least two 3D feature point images. The thesis gives a theoretical overview of the latest algorithms used for feature detection, description and matching. The work continues with a brief description of the simu...

  18. Computer Modelling of 3D Geological Surface

    CERN Document Server

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  19. The reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Bilodid, Yuri; Fridman, Emil; Baier, Silvio; Grahn, Alexander; Gommlich, Andre; Nikitin, Evgeny; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2016-05-15

    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  20. 3D background aerodynamics using CFD

    DEFF Research Database (Denmark)

    Sørensen, Niels N.

    2002-01-01

    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...... most sections shows clear evidence of 3D radial pumping, with increased lift compared to 2D values. In contrast to earlier investigated airfoils a very limited impact on the drag values are observed....