WorldWideScience

Sample records for 3d analytic cone-beam

  1. Development of an advanced 3D cone beam tomographic system

    Science.gov (United States)

    Sire, Pascal; Rizo, Philippe; Martin, M.; Grangeat, Pierre; Morisseau, P.

    Due to its high spatial resolution, the 3D X-ray cone-beam tomograph (CT) maximizes understanding of test object microstructure. In order for the present X-ray CT NDT system to control ceramics and ceramic-matrix composites, its spatial resolution must exceed 50 microns. Attention is given to two experimental data reconstructions that have been conducted to illustrate system capabilities.

  2. 3D Cone Beam Volumetric Tomography Dedicated to Maxillofacial Radiology

    OpenAIRE

    Masoud Varshosaz

    2009-01-01

      "nThe 3D cone beam volume/computed tomography (CBVT/CBCT) has been designed for imaging the hard tissues of the maxillofacial region, although it has been used in some era of medical imaging for many years. CBVT is capable of providing a sub-millimeter resolution with the short scanning time of mostly less than 20 seconds and radiation dosages reportedly up to 15 times lower than those of spiral CT scans. In less than a decade, CBVT has revolutionized oral and maxillofacial ra...

  3. 3D Cone Beam Volumetric Tomography Dedicated to Maxillofacial Radiology

    Directory of Open Access Journals (Sweden)

    Masoud Varshosaz

    2009-01-01

    Full Text Available   "nThe 3D cone beam volume/computed tomography (CBVT/CBCT has been designed for imaging the hard tissues of the maxillofacial region, although it has been used in some era of medical imaging for many years. CBVT is capable of providing a sub-millimeter resolution with the short scanning time of mostly less than 20 seconds and radiation dosages reportedly up to 15 times lower than those of spiral CT scans. In less than a decade, CBVT has revolutionized oral and maxillofacial radiology and is known as the “Standard of Care”. Although development was initially directed towards multiplanar viewing for dental implant and orthodontic treatment planning, secondary applications in other areas continue to expand such as maxillo-facial trauma, temporomandibular joint disorders, sinuse pathosis and upper airway evaluation. The intent of this presentation is to provide an overview of CBVT technology, advantages and disadvantages compared to the other modalities such as 2D images and medical CT and examples of justified cases in the oral & maxillofacial region.   

  4. Practical limitations of cone-beam computed tomography in 3D cephalometry%Practical limitations of cone-beam computed tomography in3D cephalometry

    Institute of Scientific and Technical Information of China (English)

    Janalt Damstra; Zacharias Fourie; Yijin Ren

    2011-01-01

    3D cone beam computed tomography (CBCT) images offer a unique and new appreciation of the anatomical structures and underlying anomalies not possible with conventional radiographs.However,in almost all aspects of CBCT imaging,from utilization to application,inherent limitations and pitfalls exist.Importantly,these inherent limitations and pitfalls have practical implications which need to be addressed before the potential of this technology can be fully realized.The purpose of this review was to explore the current limitations and pitfalls associated with CBCT imaging to allow for better and more accurate understanding of the possibilities this imaging modality could offer,particularly pertaining to 3D cephalometry.

  5. Practical limitations of cone-beam computed tomography in 3D cephalometry

    NARCIS (Netherlands)

    Damstra, Janalt; Fourie, Zacharias; Ren, Yijin

    2011-01-01

    3D cone beam computed tomography (CBCT) images offer a unique and new appreciation of the anatomical structures and underlying anomalies not possible with conventional radiographs. However, in almost all aspects of CBCT imaging, from utilization to application, inherent limitations and pitfalls exis

  6. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    OpenAIRE

    Xing Zhao; Jing-jing Hu; Peng Zhang

    2009-01-01

    Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs) has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed...

  7. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2009-01-01

    Full Text Available Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides both projection data and reconstructed image volume into subsets according to geometric symmetries in circular cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared to traditional CPU implementation.

  8. How accurate are the fusion of cone-beam CT and 3-D stereophotographic images?

    Directory of Open Access Journals (Sweden)

    Yasas S N Jayaratne

    Full Text Available BACKGROUND: Cone-beam Computed Tomography (CBCT and stereophotography are two of the latest imaging modalities available for three-dimensional (3-D visualization of craniofacial structures. However, CBCT provides only limited information on surface texture. This can be overcome by combining the bone images derived from CBCT with 3-D photographs. The objectives of this study were 1 to evaluate the feasibility of integrating 3-D Photos and CBCT images 2 to assess degree of error that may occur during the above processes and 3 to identify facial regions that would be most appropriate for 3-D image registration. METHODOLOGY: CBCT scans and stereophotographic images from 29 patients were used for this study. Two 3-D images corresponding to the skin and bone were extracted from the CBCT data. The 3-D photo was superimposed on the CBCT skin image using relatively immobile areas of the face as a reference. 3-D colour maps were used to assess the accuracy of superimposition were distance differences between the CBCT and 3-D photo were recorded as the signed average and the Root Mean Square (RMS error. PRINCIPAL FINDINGS: The signed average and RMS of the distance differences between the registered surfaces were -0.018 (±0.129 mm and 0.739 (±0.239 mm respectively. The most errors were found in areas surrounding the lips and the eyes, while minimal errors were noted in the forehead, root of the nose and zygoma. CONCLUSIONS: CBCT and 3-D photographic data can be successfully fused with minimal errors. When compared to RMS, the signed average was found to under-represent the registration error. The virtual 3-D composite craniofacial models permit concurrent assessment of bone and soft tissues during diagnosis and treatment planning.

  9. Automatic Calibration Method of Voxel Size for Cone-beam 3D-CT Scanning System

    CERN Document Server

    Yang, Min; Liu, Yipeng; Men, Fanyong; Li, Xingdong; Liu, Wenli; Wei, Dongbo

    2013-01-01

    For cone-beam three-dimensional computed tomography (3D-CT) scanning system, voxel size is an important indicator to guarantee the accuracy of data analysis and feature measurement based on 3D-CT images. Meanwhile, the voxel size changes with the movement of the rotary table along X-ray direction. In order to realize the automatic calibration of the voxel size, a new easily-implemented method is proposed. According to this method, several projections of a spherical phantom are captured at different imaging positions and the corresponding voxel size values are calculated by non-linear least square fitting. Through these interpolation values, a linear equation is obtained, which reflects the relationship between the rotary table displacement distance from its nominal zero position and the voxel size. Finally, the linear equation is imported into the calibration module of the 3D-CT scanning system, and when the rotary table is moving along X-ray direction, the accurate value of the voxel size is dynamically expo...

  10. Prediction of position estimation errors for 3D target trajetories estimated from cone-beam CT projections

    DEFF Research Database (Denmark)

    Poulsen, Per Rugaard; Cho, Byungchul; Keall, Paul

    2010-01-01

    The three-dimensional (3D) trajectory of an implanted tumor marker can be estimated from its projected 2D trajectory in a set of cone-beam CT (CBCT) projections by a probability-based method[1]. The uncertainty in the position estimation depends on the trajectory and varies along a given trajectory...

  11. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.

    NARCIS (Netherlands)

    Swennen, G.R.; Mommaerts, M.Y.; Abeloos, J.V.S.; Clercq, C. De; Lamoral, P.; Neyt, N.; Casselman, J.W.; Schutyser, F.A.C.

    2009-01-01

    Cone-beam computed tomography (CBCT) is used for maxillofacial imaging. 3D virtual planning of orthognathic and facial orthomorphic surgery requires detailed visualisation of the interocclusal relationship. This study aimed to introduce and evaluate the use of a double CBCT scan procedure with a mod

  12. Gambaran densitas kamar pulpa gigi sulung menggunakan cone beam CT-3D (Description of pulp chamber density in deciduous teeth using cone beam CT-3D)

    OpenAIRE

    Herdiyati Y; Epsilawati L; Oscandar F; Nurianingsih R

    2013-01-01

    Background: Dental caries is the most common chronic diseases. Detection of caries is needed, especially on the deciduous teeth. An examination such as radiological examination is essential. The radiographic figures distinguish radiolucent of the crown. Digital radiography cone beam computed tomography (CBCT) is able to show a more detailed picture. Purpose: This study was aimed to get value of the density of pulp chamber of caries and non caries deciduous teeth using CBCT radiographs. Method...

  13. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    Science.gov (United States)

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  14. 3D Quantification of Mandibular Asymmetry through Cone Beam Computed Tomography

    Science.gov (United States)

    Cevidanes, Lucia H.S.; Alhadidi, Abeer; Paniagua, Beatriz; Styner, Martin; Ludlow, John; Mol, Andre; Turvey, Timothy; Proffit, William R.; Rossouw, Paul Emile

    2011-01-01

    Objective To determine if 3D shape analysis precisely diagnoses right and left differences in asymmetry patients Study Design Cone-beam CT data was acquired pretreatment from 20 patients with mandibular asymmetry. 3D shape analysis was used to localize and quantify the extent of virtually simulated asymmetry. Two approaches were used: (1) mirroring on the midsagittal plane determined from landmarks and (2) mirroring on an arbitrary plane, then registering on the cranial base of the original image. The validation presented in this study used simulated data and has been applied to three clinical cases. Results For mirroring on the midsagittal plane there was a >99% probability that the difference between measured and simulated asymmetry was less than 0.5 mm. For mirroring with cranial base registration, there was a >84% probability of differences less than 0.5 mm. Conclusions Mandibular asymmetry can be precisely quantified with both mirroring methods. Cranial base registration has the potential to be used for patients with trauma situations or when key landmarks are unreliable or absent. PMID:21497527

  15. Image quality of a cone beam O-arm 3D imaging system

    Science.gov (United States)

    Zhang, Jie; Weir, Victor; Lin, Jingying; Hsiung, Hsiang; Ritenour, E. Russell

    2009-02-01

    The O-arm is a cone beam imaging system designed primarily to support orthopedic surgery and is also used for image-guided and vascular surgery. Using a gantry that can be opened or closed, the O-arm can function as a 2-dimensional (2D) fluoroscopy device or collect 3-dimensional (3D) volumetric imaging data like a CT system. Clinical applications of the O-arm in spine surgical procedures, assessment of pedicle screw position, and kyphoplasty procedures show that the O-arm 3D mode provides enhanced imaging information compared to radiographs or fluoroscopy alone. In this study, the image quality of an O-arm system was quantitatively evaluated. A 20 cm diameter CATPHAN 424 phantom was scanned using the pre-programmed head protocols: small/medium (120 kVp, 100 mAs), large (120 kVp, 128 mAs), and extra-large (120 kVp, 160 mAs) in 3D mode. High resolution reconstruction mode (512×512×0.83 mm) was used to reconstruct images for the analysis of low and high contrast resolution, and noise power spectrum. MTF was measured using the point spread function. The results show that the O-arm image is uniform but with a noise pattern which cannot be removed by simply increasing the mAs. The high contrast resolution of the O-arm system was approximately 9 lp/cm. The system has a 10% MTF at 0.45 mm. The low-contrast resolution cannot be decided due to the noise pattern. For surgery where locations of a structure are emphasized over a survey of all image details, the image quality of the O-arm is well accepted clinically.

  16. Detectability of hepatic tumors during 3D post-processed ultrafast cone-beam computed tomography

    Science.gov (United States)

    Paul, Jijo; Vogl, Thomas J.; Chacko, Annamma

    2015-10-01

    To evaluate hepatic tumor detection using ultrafast cone-beam computed tomography (UCBCT) cross-sectional and 3D post-processed image datasets. 657 patients were examined using UCBCT during hepatic transarterial chemoembolization (TACE), and data were collected retrospectively from January 2012 to September 2014. Tumor detectability, diagnostic ability, detection accuracy and sensitivity were examined for different hepatic tumors using UCBCT cross-sectional, perfusion blood volume (PBV) and UCBCT-MRI (magnetic resonance imaging) fused image datasets. Appropriate statistical tests were used to compare collected sample data. Fused image data showed the significantly higher (all P  color display. Fused image data produced 100% tumor sensitivity due to the simultaneous availability of MRI and UCBCT information during tumor diagnosis. Fused image data produced excellent hepatic tumor sensitivity, detectability and diagnostic ability compared to other datasets assessed. Fused image data is extremely reliable and useful compared to UCBCT cross-sectional or PBV image datasets to depict hepatic tumors during TACE. Partial anatomical visualization on cross-sectional images was compensated by fused image data during tumor diagnosis.

  17. Detectability of hepatic tumors during 3D post-processed ultrafast cone-beam computed tomography

    International Nuclear Information System (INIS)

    To evaluate hepatic tumor detection using ultrafast cone-beam computed tomography (UCBCT) cross-sectional and 3D post-processed image datasets.657 patients were examined using UCBCT during hepatic transarterial chemoembolization (TACE), and data were collected retrospectively from January 2012 to September 2014. Tumor detectability, diagnostic ability, detection accuracy and sensitivity were examined for different hepatic tumors using UCBCT cross-sectional, perfusion blood volume (PBV) and UCBCT–MRI (magnetic resonance imaging) fused image datasets. Appropriate statistical tests were used to compare collected sample data.Fused image data showed the significantly higher (all P  <  0.05) diagnostic ability for hepatic tumors compared to UCBCT or PBV image data. The detectability of small hepatic tumors (<5 mm) was significantly reduced (all P  <  0.05) using UCBCT cross-sectional images compared to MRI or fused image data; however, PBV improved tumor detectability using a color display. Fused image data produced 100% tumor sensitivity due to the simultaneous availability of MRI and UCBCT information during tumor diagnosis.Fused image data produced excellent hepatic tumor sensitivity, detectability and diagnostic ability compared to other datasets assessed. Fused image data is extremely reliable and useful compared to UCBCT cross-sectional or PBV image datasets to depict hepatic tumors during TACE. Partial anatomical visualization on cross-sectional images was compensated by fused image data during tumor diagnosis. (paper)

  18. Gambaran densitas kamar pulpa gigi sulung menggunakan cone beam CT-3D (Description of pulp chamber density in deciduous teeth using cone beam CT-3D

    Directory of Open Access Journals (Sweden)

    Herdiyati Y

    2013-06-01

    Full Text Available Background: Dental caries is the most common chronic diseases. Detection of caries is needed, especially on the deciduous teeth. An examination such as radiological examination is essential. The radiographic figures distinguish radiolucent of the crown. Digital radiography cone beam computed tomography (CBCT is able to show a more detailed picture. Purpose: This study was aimed to get value of the density of pulp chamber of caries and non caries deciduous teeth using CBCT radiographs. Methods: The study was conducted by using simple descriptive. The samples were all the data CBCT of pediatric patients aged 7-10 years who visited the Dental Hospital of the Faculty of Dentistry, University of Padjadjaran. The samples were teeth with single and double root. Results: The results showed that the value of the normal pulp density is 422.56 Hu, while the condition of caries decreased becomes -77.89 Hu. Conclusion: The tooth with caries showed a lower density than the non caries/tooth.Latar belakang: Karies gigi merupakan penyakit kronis yang sering terjadi. Deteksi terhadap karies sangat diperlukan terutama pada gigi decidius. Pemeriksaan penunjang berupa pemeriksaan radiologis sangat diperlukan. Secara umum gambaran radiografi dapat membedakan karies berupa gambaran radiolusent pada mahkota. Radiografi digital cone beam computed tomografi (CBCT, merupakan jenis radiografi yang mampu memperlihatkan gambaran yang lebih detail. Tujuan: Penelitian ini bertujuan mendapatkan nilai densitas kamar pulpa gigi sulung yang karies dan non karies menggunakan radiografi CBCT. Metode: Penelitian dilakukan dengan metode simple deskriptif. Sampel penelitian adalah semua data CBCT dari pasien anak berusia 7 - 10 tahun yang berkunjung ke RSGM Fakultas Kedokteran Gigi Universitas Padjadjaran. Gigi yang dianalisa meliputi gigi berakar tunggal dan berakar ganda. Hasil: Hasil penelitian menunjukkan bahwa nilai densitas pulpa normal adalah 422,56 Hu, sedangkan pada kondisi

  19. Analysis of a 3D imaging device by reconstruction from cone beam X ray radiographs

    International Nuclear Information System (INIS)

    The aim of our study is to analyse the principle of a 3D imaging device which attempts to restore the local density on a cuberill from a set of digital radiographs taken around the object. We have to use a ponctual radiation source to localize the acquisition lines. Therefore the attenuation measurements are modelled by the cone beam X ray transform. In the analysis of the inverse problem, we work out two inversion diagrams which compute the original function, the image of the object, by a sequence of transforms. The theoretical and algorithmical difficulty comes from the fact that, even in the simple case of a circular acquisition trajectory, the cone-shaped geometry prohibits splitting the problem into a superposition of reconstructions in two dimensions. We describe a novel theoretical framework based on the Radon transform. In this new representation space, it becomes possible by a rebinning operation to redistribute the integral values associated to planes from the coordinates system linked to source positions to the spherical coordinates system of the domain. To ensure this shift of space, we have established two formulas, the first approximate but leading to faster processing, related to the Radon transform, the second exact, related to the first derivative of the Radon transform. The inversion of these transforms completes the reconstruction. We state a theorem where we present the hypothesis under which the exact diagram does restore the original function. These are not verified for a circular trajectory, owing to a shadow zone in the Radon domain associated to the planes which intersect the object but not the trajectory. We propose either to restore the missing information or to use an oscillating trajectory

  20. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    Science.gov (United States)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory.

  1. A new cone-beam computed tomography system for dental applications with innovative 3D software

    Energy Technology Data Exchange (ETDEWEB)

    Pasini, Alessandro; Bianconi, D.; Rossi, A. [University of Bologna, Department of Physics, Bologna (Italy); NECTAR Imaging srl Imola (Italy); Casali, F. [University of Bologna, Department of Physics, Bologna (Italy); Bontempi, M. [CEFLA Dental Group Imola (Italy)

    2007-02-15

    Objective Cone beam computed tomography (CBCT) is an important image technique for oral surgery (dentoalveolar surgery and dental implantology) and maxillofacial applications. This technique requires compact sized scanners with a relatively low radiation dosage, which makes them suitable for imaging of the craniofacial region. This article aims to present the concept and the preliminary findings obtained with the prototype of a new CBCT scanner with dedicated 3D software, specifically designed for dental imaging. Methods The prototype implements an X-ray tube with a nominal focal spot of 0.5 mm operating at 70-100 kVp and 1-4 mA. The detector is a 6 in. image intensifier coupled with a digital CCD camera. Dosimetry was performed on a RANDO anthropomorphic phantom using Beryllium Oxide thermo-luminescent dosimeters positioned in the phantom in the following site: eyes, thyroid, skin (lips, cheeks, back of the neck), brain, mandible, maxilla and parotid glands. Doses were measured using four configurations, changing the field-of-view (4'' and 6'') and acquisition time (10 and 20 s) of the CBCT. Acquisitions were performed with different parameters regarding the x-ray tube, pixel size and acquisition geometries to evaluate image quality in relation to modulation transfer function (MTF), noise and geometric accuracy. Results The prototype was able to acquire a complete maxillofacial scan in 10-15 s. The CT reconstruction algorithm delivered images that were judged to have high quality, allowing for precise volume rendering. The radiation dose was determined to be 1-1.5 times that of the dose applied during conventional dental panoramic studies. Conclusion Preliminary studies using the CBCT prototype indicate that this device provides images with acceptable diagnostic content at a relatively low radiation dosage, if compared to systems currently available on the market. (orig.)

  2. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Normand, E-mail: normand.robert@sri.utoronto.ca; Polack, George G.; Sethi, Benu; Rowlands, John A. [Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Crystal, Eugene [Division of Cardiology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize

  3. Use of cone-beam CT and live 3-D needle guidance to facilitate percutaneous nephrostomy and nephrolithotripsy access in children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, C.M. [Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA (United States); Kukreja, Kamlesh [Texas Children' s Hospital, Department of Radiology, Houston, TX (United States); Singewald, Timothy; Johnson, Neil D.; Racadio, John M. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Minevich, Eugene; Reddy, Pramod [Cincinnati Children' s Hospital Medical Center, Department of Urology, Cincinnati, OH (United States)

    2016-04-15

    Gaining access into non-dilated renal collecting systems for percutaneous nephrolithotripsy, particularly in patients with prohibitive body habitus and/or scoliosis, is often challenging using conventional techniques. To evaluate the feasibility of cone-beam CT for percutaneous nephrostomy placement for subsequent percutaneous nephrolithotripsy in children and adolescents. A retrospective review of percutaneous nephrostomy revealed use of cone-beam CT and 3-D guidance in 12 percutaneous nephrostomy procedures for 9 patients between 2006 and 2015. All cone-beam CT-guided percutaneous nephrostomies were for pre-lithotripsy access and all 12 were placed in non-dilated collecting systems. Technical success was 100%. There were no complications. Cone-beam CT with 3-D guidance is a technically feasible technique for percutaneous nephrostomy in children and adolescents, specifically for nephrolithotripsy access in non-dilated collecting systems. (orig.)

  4. Use of cone-beam CT and live 3-D needle guidance to facilitate percutaneous nephrostomy and nephrolithotripsy access in children and adolescents

    International Nuclear Information System (INIS)

    Gaining access into non-dilated renal collecting systems for percutaneous nephrolithotripsy, particularly in patients with prohibitive body habitus and/or scoliosis, is often challenging using conventional techniques. To evaluate the feasibility of cone-beam CT for percutaneous nephrostomy placement for subsequent percutaneous nephrolithotripsy in children and adolescents. A retrospective review of percutaneous nephrostomy revealed use of cone-beam CT and 3-D guidance in 12 percutaneous nephrostomy procedures for 9 patients between 2006 and 2015. All cone-beam CT-guided percutaneous nephrostomies were for pre-lithotripsy access and all 12 were placed in non-dilated collecting systems. Technical success was 100%. There were no complications. Cone-beam CT with 3-D guidance is a technically feasible technique for percutaneous nephrostomy in children and adolescents, specifically for nephrolithotripsy access in non-dilated collecting systems. (orig.)

  5. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.

    Science.gov (United States)

    Swennen, G R J; Mommaerts, M Y; Abeloos, J; De Clercq, C; Lamoral, P; Neyt, N; Casselman, J; Schutyser, F

    2009-01-01

    Cone-beam computed tomography (CBCT) is used for maxillofacial imaging. 3D virtual planning of orthognathic and facial orthomorphic surgery requires detailed visualisation of the interocclusal relationship. This study aimed to introduce and evaluate the use of a double CBCT scan procedure with a modified wax bite wafer to augment the 3D virtual skull model with a detailed dental surface. The impressions of the dental arches and the wax bite wafer were scanned for ten patient separately using a high resolution standardized CBCT scanning protocol. Surface-based rigid registration using ICP (iterative closest points) was used to fit the virtual models on the wax bite wafer. Automatic rigid point-based registration of the wax bite wafer on the patient scan was performed to implement the digital virtual dental arches into the patient's skull model. Probability error histograms showed errors of 3D virtual augmented model of the skull with detailed dental surface.

  6. Imagens em 2D e 3D geradas pela TC Cone-Beam e radiografias convencionais: qual a mais confiável? 2D / 3D Cone-Beam CT images or conventional radiography: which is more reliable?

    Directory of Open Access Journals (Sweden)

    Carolina Perez Couceiro

    2010-10-01

    Full Text Available OBJETIVO: comparar a confiabilidade de identificação dos pontos visualizados sobre radiografias cefalométricas convencionais e sobre imagens geradas pela Tomografia Computadorizada Cone-Beam em 2D e 3D. MÉTODOS: o material constou de imagens obtidas através do tomógrafo computadorizado Cone-Beam, em norma lateral, em 2D e 3D, impressas em papel fotográfico; e radiografias cefalométricas laterais, realizadas na mesma clínica radiológica e no mesmo dia, de dois pacientes pertencentes aos arquivos do Curso de Especialização em Ortodontia da Faculdade de Odontologia da Universidade Federal Fluminense (UFF. Dez alunos do Curso de Especialização em Ortodontia da UFF identificaram pontos de referência sobre papel de acetato transparente e foram feitas medições das seguintes variáveis cefalométricas: ANB, FMIA, IMPA, FMA, ângulo interincisal, 1-NA (mm e ¯1-NB (mm. Em seguida, foram calculadas médias aritméticas, desvios-padrão e coeficientes de variância de cada variável para os dois pacientes. RESULTADOS E CONCLUSÃO: os valores das medições realizadas a partir de imagens em 3D apresentaram menor dispersão, sugerindo que essas imagens são mais confiáveis quanto à identificação de alguns pontos cefalométricos. Entretanto, como as imagens em 3D impressas utilizadas no presente estudo não permitiram a visualização de pontos intracranianos, torna-se necessário que softwares específicos sejam elaborados para que esse tipo de exame possa se tornar rotineiro na clínica ortodôntica.OBJECTIVE: To compare the reliability of two different methods used for viewing and identifying cephalometric landmarks, i.e., (a using conventional cephalometric radiographs, and (b using 2D and 3D images generated by Cone-Beam Computed Tomography. METHODS: The material consisted of lateral view 2D and 3D images obtained by Cone-Beam Computed Tomography printed on photo paper, and lateral cephalometric radiographs, taken in the same

  7. A proposed method for accurate 3D analysis of cochlear implant migration using fusion of cone beam CT

    Directory of Open Access Journals (Sweden)

    Guido eDees

    2016-01-01

    Full Text Available IntroductionThe goal of this investigation was to compare fusion of sequential cone beam CT volumes to the gold standard (fiducial registration in order to be able to analyze clinical CI migration with high accuracy in three dimensions. Materials and MethodsPaired time-lapsed cone beam CT volumes were performed on five human cadaver temporal bones and one human subject. These volumes were fused using 3D Slicer 4 and BRAINSFit software. Using a gold standard fiducial technique, the accuracy, robustness and performance time of the fusion process were assessed.Results This proposed fusion protocol achieves a sub voxel mean Euclidean distance of 0.05 millimeter in human cadaver temporal bones and 0.16 millimeter when applied to the described in vivo human synthetic data set in over 95% of all fusions. Performance times are less than two minutes.ConclusionHere a new and validated method based on existing techniques is described which could be used to accurately quantify migration of cochlear implant electrodes.

  8. Evaluation of accuracy of 3D reconstruction images using multi-detector CT and cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Ja [Graduate School of Clinical Dentistry, Hallym University, Seoul (Korea, Republic of); Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2012-03-15

    This study was performed to determine the accuracy of linear measurements on three-dimensional (3D) images using multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). MDCT and CBCT were performed using 24 dry skulls. Twenty-one measurements were taken on the dry skulls using digital caliper. Both types of CT data were imported into OnDemand software and identification of landmarks on the 3D surface rendering images and calculation of linear measurements were performed. Reproducibility of the measurements was assessed using repeated measures ANOVA and ICC, and the measurements were statistically compared using a Student t-test. All assessments under the direct measurement and image-based measurements on the 3D CT surface rendering images using MDCT and CBCT showed no statistically difference under the ICC examination. The measurements showed no differences between the direct measurements of dry skull and the image-based measurements on the 3D CT surface rendering images (P>.05). Three-dimensional reconstructed surface rendering images using MDCT and CBCT would be appropriate for 3D measurements.

  9. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    Science.gov (United States)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  10. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy

    NARCIS (Netherlands)

    X. Liang; I. Lambrichts; Y. Sun; K. Denis; B. Hassan; L. Li; R. Pauwels; R. Jacobs

    2010-01-01

    Aim: The study aim was to compare the geometric accuracy of three-dimensional (3D) surface model reconstructions between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: A dry human mandible was scanned with five CBCT systems (NewTom 3G,

  11. Frequency of infraossal aproximal bone defects in maxilla and mandibulla, found with 3D cone beam volumetric tomography

    International Nuclear Information System (INIS)

    Periodontal disease is characterized with two types of bone resorption: horizontal and vertical. The latter is responsible for formation of intraossal bone defects (ID). These defects are treated by regenerative periodontal therapy. The 'golden standard' for their diagnosis is a full set of intraoral radiographs, followed by ortopantomographic (OPG) images. With the introduction of 3D cone beam volumetric tomography (CVT) method, which is highly sensitive, many limitations of 2D images are overwhelmed. The aim of the study was to the ability of 3D VCT to discover ID in comparison with 2D OPG; 2) To describe the ID by: sex, age. number of teeth, tooth number, degree of alveolar bone resorption, depth of ID, width of ID, angle of ID, Tooth condition with ID The study used 121 patients who had visited FDM - Plovdiv. 47,1% were man and 52,9% women. Their age was form 11 to 99 years. 2698 were evaluated. We accepted ID with depth (INFRA) >3mm. Images were acquired with Galileos (Sirona). First were studied the 2D images for ID and then again with the help of 3D CVT after which the parameters of the ID were recorded. With 2D and 3D were found correspondingly: ID in 20 (16,5%) and 49 (40.5%) patients; 45 (1.66%) and 113 (4.18%) in teeth, with statistical significance (p<0.0001). ID were mainly prevalent in lower jaw (62.8%), and in molars 47,37,36 (26.5%). We found statistically significant more ID with the increase of age and degree of alveolar bone resorption. 3D CVT is significantly more sensitive than 2D OPG. It is advisable that this method is used more frequently in periodontology for diagnosis and evaluation of treatment effect

  12. Axial 3D region of interest reconstruction using weighted cone beam BPF/DBPF algorithm cascaded with adequately oriented orthogonal butterfly filtering

    Science.gov (United States)

    Tang, Shaojie; Tang, Xiangyang

    2016-03-01

    Axial cone beam (CB) computed tomography (CT) reconstruction is still the most desirable in clinical applications. As the potential candidates with analytic form for the task, the back projection-filtration (BPF) and the derivative backprojection filtered (DBPF) algorithms, in which Hilbert filtering is the common algorithmic feature, are originally derived for exact helical and axial reconstruction from CB and fan beam projection data, respectively. These two algorithms have been heuristically extended for axial CB reconstruction via adoption of virtual PI-line segments. Unfortunately, however, streak artifacts are induced along the Hilbert filtering direction, since these algorithms are no longer accurate on the virtual PI-line segments. We have proposed to cascade the extended BPF/DBPF algorithm with orthogonal butterfly filtering for image reconstruction (namely axial CB-BPP/DBPF cascaded with orthogonal butterfly filtering), in which the orientation-specific artifacts caused by post-BP Hilbert transform can be eliminated, at a possible expense of losing the BPF/DBPF's capability of dealing with projection data truncation. Our preliminary results have shown that this is not the case in practice. Hence, in this work, we carry out an algorithmic analysis and experimental study to investigate the performance of the axial CB-BPP/DBPF cascaded with adequately oriented orthogonal butterfly filtering for three-dimensional (3D) reconstruction in region of interest (ROI).

  13. Linearity of patient positioning detection. A phantom study of skin markers, cone beam computed tomography, and 3D ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Ballhausen, Hendrik; Hieber, Sheila; Li, Minglun; Belka, Claus; Reiner, Michael [University Hospital of LMU, Department of Radiation Oncology, Munich (Germany); Parodi, Katia [Ludwig-Maximilian-University, Department of Experimental Physics - Medical Physics, Munich (Germany)

    2015-05-01

    Three-dimensional ultrasound (3D-US) is a modality complementary to kilovoltage cone beam computed tomography (kV-CBCT) and skin markers for patient positioning detection. This study compares the linearity of evaluations based on measurements using a modern 3D-US system (Elekta Clarity {sup registered}; Elekta, Stockholm, Sweden), a kV-CBCT system (Elekta iView {sup registered}), and skin markers. An investigator deliberately displaced a multimodal phantom by up to ± 30 mm along different axes. The following data points were acquired: 27 along the lateral axis, 29 along the longitudinal axis, 27 along the vertical axis, and 27 along the space diagonal. At each of these 110 positions, the displacements according to skin' markers were recorded and scans were performed using both 3D-US and kV-CBCT. Shifts were detected by matching bony anatomy or soft tissue density to a reference planning CT in the case of kV-CBCT and for 3D-US, by matching ultrasound volume data to a reference planning volume. A consensus value was calculated from the average of the four modalities. With respect to this consensus value, the linearity (offset and regression coefficient, i.e., slope), average offset, systematic error, and random error of all four modalities were calculated for each axis. Linearity was similar for all four modalities, with regression coefficients between 0.994 and 1.012, and all offsets below 1 mm. The systematic errors of skin markers and 3D-US were higher than for kV-CBCT, but random errors were similar. In particular, 3D-US demonstrated an average offset of 0.36 mm to the right, 0.08 mm inferiorly, and 0.15 mm anteriorly; the systematic error was 0.36 mm laterally, 0.35 mm longitudinally, and 0.22 mm vertically; the random error was 0.15 mm laterally, 0.30 mm longitudinally, and 0.12 mm vertically. A total of 109 out of 110 (99 %) 3D-US measurements were within 1 mm of the consensus value on either axis. The linearity of 3D-US was no worse than that of skin

  14. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  15. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    International Nuclear Information System (INIS)

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm3 volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water

  16. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Insoo; Han, Bumsoo [EB Tech, Co., Ltd., 550 Yongsan-dong, Yuseong-gu, Daejeon 305-500 (Korea, Republic of)

    2015-11-15

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  17. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    International Nuclear Information System (INIS)

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  18. Comparative evaluation of the accuracy of linear measurements between cone beam computed tomography and 3D microtomography

    OpenAIRE

    Francesca Mangione; Deborah Meleo; Marco Talocco; Raffaella Pecci; Luciano Pacifici; Rossella Bedini

    2013-01-01

    OBJECTIVE: The aim of this study was to evaluate the influence of artifacts on the accuracy of linear measurements estimated with a common cone beam computed tomography (CBCT) system used in dental clinical practice, by comparing it with microCT system as standard reference. MATERIALS AND METHODS: Ten bovine bone cylindrical samples containing one implant each, able to provide both points of reference and image quality degradation, have been scanned by CBCT and microCT systems. Thanks to the ...

  19. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xin, E-mail: Xin.Liang@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); College of Stomatology, Dalian Medical University (China); Lambrichts, Ivo, E-mail: Ivo.Lambrichts@uhasselt.b [Department of Basic Medical Sciences, Histology and Electron Microscopy, Faculty of Medicine, University of Hasselt, Diepenbeek (Belgium); Sun Yi, E-mail: Sunyihello@hotmail.co [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Denis, Kathleen, E-mail: kathleen.denis@groept.b [Department of Industrial Sciences and Techology-Engineering (IWT), XIOS Hogeschool Limburg, Hasselt (Belgium); Hassan, Bassam, E-mail: b.hassan@acta.n [Department of Oral Radiology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam (Netherlands); Li Limin, E-mail: Limin.Li@uz.kuleuven.b [Department of Paediatric Dentistry and Special Dental Care, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Pauwels, Ruben, E-mail: Ruben.Pauwels@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Jacobs, Reinhilde, E-mail: Reinhilde.Jacobs@uz.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium)

    2010-08-15

    Aim: The study aim was to compare the geometric accuracy of three-dimensional (3D) surface model reconstructions between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: A dry human mandible was scanned with five CBCT systems (NewTom 3G, Accuitomo 3D, i-CAT, Galileos, Scanora 3D) and one MSCT scanner (Somatom Sensation 16). A 3D surface bone model was created from the six systems. The reference (gold standard) 3D model was obtained with a high resolution laser surface scanner. The 3D models from the five systems were compared with the gold standard using a point-based rigid registration algorithm. Results: The mean deviation from the gold standard for MSCT was 0.137 mm and for CBCT were 0.282, 0.225, 0.165, 0.386 and 0.206 mm for the i-CAT, Accuitomo, NewTom, Scanora and Galileos, respectively. Conclusion: The results show that the accuracy of CBCT 3D surface model reconstructions is somewhat lower but acceptable comparing to MSCT from the gold standard.

  20. Comparative evaluation of the accuracy of linear measurements between cone beam computed tomography and 3D microtomography

    Directory of Open Access Journals (Sweden)

    Francesca Mangione

    2013-09-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the influence of artifacts on the accuracy of linear measurements estimated with a common cone beam computed tomography (CBCT system used in dental clinical practice, by comparing it with microCT system as standard reference. MATERIALS AND METHODS: Ten bovine bone cylindrical samples containing one implant each, able to provide both points of reference and image quality degradation, have been scanned by CBCT and microCT systems. Thanks to the software of the two systems, for each cylindrical sample, two diameters taken at different levels, by using implants different points as references, have been measured. Results have been analyzed by ANOVA and a significant statistically difference has been found. RESULTS AND DISCUSSION: Due to the obtained results, in this work it is possible to say that the measurements made with the two different instruments are still not statistically comparable, although in some samples were obtained similar performances and therefore not statistically significant. CONCLUSION: With the improvement of the hardware and software of CBCT systems, in the near future the two instruments will be able to provide similar performances.

  1. Comparative evaluation of a novel 3D segmentation algorithm on in-treatment radiotherapy cone beam CT images

    Science.gov (United States)

    Price, Gareth; Moore, Chris

    2007-03-01

    Image segmentation and delineation is at the heart of modern radiotherapy, where the aim is to deliver as high a radiation dose as possible to a cancerous target whilst sparing the surrounding healthy tissues. This, of course, requires that a radiation oncologist dictates both where the tumour and any nearby critical organs are located. As well as in treatment planning, delineation is of vital importance in image guided radiotherapy (IGRT): organ motion studies demand that features across image databases are accurately segmented, whilst if on-line adaptive IGRT is to become a reality, speedy and correct target identification is a necessity. Recently, much work has been put into the development of automatic and semi-automatic segmentation tools, often using prior knowledge to constrain some grey level, or derivative thereof, interrogation algorithm. It is hoped that such techniques can be applied to organ at risk and tumour segmentation in radiotherapy. In this work, however, we make the assumption that grey levels do not necessarily determine a tumour's extent, especially in CT where the attenuation coefficient can often vary little between cancerous and normal tissue. In this context we present an algorithm that generates a discontinuity free delineation surface driven by user placed, evidence based support points. In regions of sparse user supplied information, prior knowledge, in the form of a statistical shape model, provides guidance. A small case study is used to illustrate the method. Multiple observers (between 3 and 7) used both the presented tool and a commercial manual contouring package to delineate the bladder on a serially imaged (10 cone beam CT volumes ) prostate patient. A previously presented shape analysis technique is used to quantitatively compare the observer variability.

  2. Fusion of cone-beam CT and 3D photographic images for soft tissue simulation in maxillofacial surgery

    Science.gov (United States)

    Chung, Soyoung; Kim, Joojin; Hong, Helen

    2016-03-01

    During maxillofacial surgery, prediction of the facial outcome after surgery is main concern for both surgeons and patients. However, registration of the facial CBCT images and 3D photographic images has some difficulties that regions around the eyes and mouth are affected by facial expressions or the registration speed is low due to their dense clouds of points on surfaces. Therefore, we propose a framework for the fusion of facial CBCT images and 3D photos with skin segmentation and two-stage surface registration. Our method is composed of three major steps. First, to obtain a CBCT skin surface for the registration with 3D photographic surface, skin is automatically segmented from CBCT images and the skin surface is generated by surface modeling. Second, to roughly align the scale and the orientation of the CBCT skin surface and 3D photographic surface, point-based registration with four corresponding landmarks which are located around the mouth is performed. Finally, to merge the CBCT skin surface and 3D photographic surface, Gaussian-weight-based surface registration is performed within narrow-band of 3D photographic surface.

  3. 3D cone-beam CT guidance, a novel technique in renal biopsy - results in 41 patients with suspected renal masses

    Energy Technology Data Exchange (ETDEWEB)

    Braak, Sicco J.; Heesewijk, Johannes P.M. van; Strijen, Marco J.L. van [St Antonius Hospital, Department of Radiology, PO Box 2500, Nieuwegein (Netherlands); Melick, Harm H.E. van; Onaca, Mircea G. [St Antonius Hospital, Department of Urology, Nieuwegein (Netherlands)

    2012-11-15

    To determine whether 3D cone-beam computed tomography (CBCT) guidance allows safe and accurate biopsy of suspected small renal masses (SRM), especially in hard-to-reach anatomical locations. CBCT guidance was used to perform 41 stereotactic biopsy procedures of lesions that were inaccessible for ultrasound guidance or CT guidance. In CBCT guidance, a 3D-volume data set is acquired by rotating a C-arm flat-panel detector angiosystem around the patient. In the data set, a needle trajectory is determined and, after co-registration, a fusion image is created from fluoroscopy and a slice from the data set, enabling the needle to be positioned in real time. Of the 41 lesions, 22 were malignant, 17 were benign, and 2 were nondiagnostic. The two nondiagnostic lesions proved to be renal cell carcinoma. There was no growth during follow-up imaging of the benign lesions (mean 29 months). This resulted in a sensitivity, specificity, PPV, NPV, and accuracy of 91.7, 100, 100, 89.5, and 95.1%, respectively. Mean dose-area product value was 44.0 Gy.cm{sup 2} (range 16.5-126.5). There was one minor bleeding complication. With CBCT guidance, safe and accurate biopsy of a suspected SRM is feasible, especially in hard-to-reach locations of the kidney. (orig.)

  4. Diagnosis and Endodontic Management of Fused Mandibular Second Molar and Paramolar with Concrescent Supernumerary Tooth Using Cone-beam CT and 3-D Printing Technology: A Case Report.

    Science.gov (United States)

    Kato, Hiroshi; Kamio, Takashi

    2015-01-01

    Supernumerary teeth in the molar area are classified as paramolars or distomolars based on location. They occur frequently in the maxilla, but only rarely in the mandible. These teeth are frequently fused with adjacent teeth. When this occurs, the pulp cavities may also be connected. This makes diagnosis and planning of endodontic treatment extremely difficult. Here we report a case of a mandibular second molar fused with a paramolar, necessitating dental pulp treatment. Intraoral and panoramic radiographs were obtained for an evaluation and diagnosis. Although the images revealed a supernumerary tooth-like structure between the posterior area of the mandibular second molar and mandibular third molar, it was difficult to confirm the morphology of the tooth root apical area. Subsequent cone-beam computed tomography (CBCT) revealed that the supernumerary tooth-like structure was concrescent with the root apical area of the mandibular second molar. Based on these findings, the diagnosis was a fused mandibular second molar and paramolar with a concrescent supernumerary tooth. A 3-dimensional (3-D) printer was used to produce models based on the CBCT data to aid in treatment planning and explanation of the proposed procedures to the patient. These models allowed the complicated morphology involved to be clearly viewed, which facilitated a more precise diagnosis and better treatment planning than would otherwise have been possible. These technologies were useful in obtaining informed consent from the patient, promoting 3-D morphological understanding, and facilitating simulation of endodontic treatment. PMID:26370578

  5. Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors

    Directory of Open Access Journals (Sweden)

    Sweeney Reinhart A

    2012-06-01

    Full Text Available Abstract Background To analyze the accuracy and inter-observer variability of image-guidance (IG using 3D or 4D cone-beam CT (CBCT technology in stereotactic body radiotherapy (SBRT for lung tumors. Materials and methods Twenty-one consecutive patients treated with image-guided SBRT for primary and secondary lung tumors were basis for this study. A respiration correlated 4D-CT and planning contours served as reference for all IG techniques. Three IG techniques were performed independently by three radiation oncologists (ROs and three radiotherapy technicians (RTTs. Image-guidance using respiration correlated 4D-CBCT (IG-4D with automatic registration of the planning 4D-CT and the verification 4D-CBCT was considered gold-standard. Results were compared with two IG techniques using 3D-CBCT: 1 manual registration of the planning internal target volume (ITV contour and the motion blurred tumor in the 3D-CBCT (IG-ITV; 2 automatic registration of the planning reference CT image and the verification 3D-CBCT (IG-3D. Image quality of 3D-CBCT and 4D-CBCT images was scored on a scale of 1–3, with 1 being best and 3 being worst quality for visual verification of the IGRT results. Results Image quality was scored significantly worse for 3D-CBCT compared to 4D-CBCT: the worst score of 3 was given in 19 % and 7.1 % observations, respectively. Significant differences in target localization were observed between 4D-CBCT and 3D-CBCT based IG: compared to the reference of IG-4D, tumor positions differed by 1.9 mm ± 0.9 mm (3D vector on average using IG-ITV and by 3.6 mm ± 3.2 mm using IG-3D; results of IG-ITV were significantly closer to the reference IG-4D compared to IG-3D. Differences between the 4D-CBCT and 3D-CBCT techniques increased significantly with larger motion amplitude of the tumor; analogously, differences increased with worse 3D-CBCT image quality scores. Inter-observer variability was largest in SI direction and was

  6. WE-G-18A-04: 3D Dictionary Learning Based Statistical Iterative Reconstruction for Low-Dose Cone Beam CT Imaging

    International Nuclear Information System (INIS)

    Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm in a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential

  7. Influence of Head Motion on the Accuracy of 3D Reconstruction with Cone-Beam CT: Landmark Identification Errors in Maxillofacial Surface Model.

    Directory of Open Access Journals (Sweden)

    Kyung-Min Lee

    Full Text Available The purpose of this study was to investigate the influence of head motion on the accuracy of three-dimensional (3D reconstruction with cone-beam computed tomography (CBCT scan.Fifteen dry skulls were incorporated into a motion controller which simulated four types of head motion during CBCT scan: 2 horizontal rotations (to the right/to the left and 2 vertical rotations (upward/downward. Each movement was triggered to occur at the start of the scan for 1 second by remote control. Four maxillofacial surface models with head motion and one control surface model without motion were obtained for each skull. Nine landmarks were identified on the five maxillofacial surface models for each skull, and landmark identification errors were compared between the control model and each of the models with head motion.Rendered surface models with head motion were similar to the control model in appearance; however, the landmark identification errors showed larger values in models with head motion than in the control. In particular, the Porion in the horizontal rotation models presented statistically significant differences (P < .05. Statistically significant difference in the errors between the right and left side landmark was present in the left side rotation which was opposite direction to the scanner rotation (P < .05.Patient movement during CBCT scan might cause landmark identification errors on the 3D surface model in relation to the direction of the scanner rotation. Clinicians should take this into consideration to prevent patient movement during CBCT scan, particularly horizontal movement.

  8. Influence of object location in cone beam computed tomography (NewTom 5G and 3D Accuitomo 170) on gray value measurements at an implant site

    NARCIS (Netherlands)

    A. Parsa; N. Ibrahim; B. Hassan; P. van der Stelt; D. Wismeijer

    2014-01-01

    Objectives The aim of this study was to determine the gray value variation at an implant site with different object location within the selected field of view (FOV) in two cone beam computed tomography (CBCT) scanners. Methods A 1-cm-thick section from the edentulous region of a dry human mandible w

  9. Compressed-sensing (CS)-based 3D image reconstruction in cone-beam CT (CBCT) for low-dose, high-quality dental X-ray imaging

    Science.gov (United States)

    Lee, M. S.; Kim, H. J.; Cho, H. S.; Hong, D. K.; Je, U. K.; Oh, J. E.; Park, Y. O.; Lee, S. H.; Cho, H. M.; Choi, S. I.; Koo, Y. S.

    2013-09-01

    The most popular reconstruction algorithm for cone-beam computed tomography (CBCT) is based on the computationally-inexpensive filtered-backprojection (FBP) method. However, that method usually requires dense projections over the Nyquist samplings, which imposes severe restrictions on the imaging doses. Moreover, the algorithm tends to produce cone-beam artifacts as the cone angle is increased. Several variants of the FBP-based algorithm have been developed to overcome these difficulties, but problems with the cone-beam reconstruction still remain. In this study, we considered a compressed-sensing (CS)-based reconstruction algorithm for low-dose, high-quality dental CBCT images that exploited the sparsity of images with substantially high accuracy. We implemented the algorithm and performed systematic simulation works to investigate the imaging characteristics. CBCT images of high quality were successfully reconstructed by using the built-in CS-based algorithm, and the image qualities were evaluated quantitatively in terms of the universal-quality index (UQI) and the slice-profile quality index (SPQI).We expect the reconstruction algorithm developed in the work to be applicable to current dental CBCT systems, to reduce imaging doses, and to improve the image quality further.

  10. Novel utilization of 3D technology and the hybrid operating theatre: Peri-operative assessment of posterior sterno-clavicular dislocation using cone beam CT

    International Nuclear Information System (INIS)

    A patient with a medial and posterior dislocation of the right sterno-clavicular (SC) joint and displacement of the trachea and brachiocephalic artery by the medial head of the clavicle underwent general anaesthetic in the operating theatre for an open reduction procedure. The surgeon initially attempted a closed reduction, but this required imaging to check SC alignment. The patient was transferred to an adjacent hybrid operating theatre for imaging. Cone beam computed tomography (CBCT) was performed, which successfully demonstrated a significant reduction in the dislocation of the SC joint. The trachea and brachiocephalic artery were no longer compressed or displaced. This case study demonstrates an alternative to the patient being transferred to the medical imaging department for multi-slice CT. It also describes a novel use of the hybrid operating theatre and its CBCT capabilities

  11. Using cone-beam CT as a low-dose 3D imaging technique for the extremities: initial experience in 50 subjects

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ambrose J.; Chang, Connie Y.; Palmer, William E. [Massachusetts General Hospital, Department of Radiology, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Thomas, Bijoy J. [Universal College of Medical Sciences, Department of Radiology, Bhairahawa (Nepal); MacMahon, Peter J. [Mater Misericordiae University Hospital, Department of Radiology, Dublin 7 (Ireland)

    2015-06-01

    To prospectively evaluate a dedicated extremity cone-beam CT (CBCT) scanner in cases with and without orthopedic hardware by (1) comparing its imaging duration and image quality to those of radiography and multidetector CT (MDCT) and (2) comparing its radiation dose to that of MDCT. Written informed consent was obtained for all subjects for this IRB-approved, HIPAA-compliant study. Fifty subjects with (1) fracture of small bones, (2) suspected intraarticular fracture, (3) fracture at the site of complex anatomy, or (4) a surgical site difficult to assess with radiography alone were recruited and scanned on an extremity CBCT scanner prior to FDA approval. Same-day radiographs were performed in all subjects. Some subjects also underwent MDCT within 1 month of CBCT. Imaging duration and image quality were compared between CBCT and radiographs. Imaging duration, effective radiation dose, and image quality were compared between CBCT and MDCT. Fifty-one CBCT scans were performed in 50 subjects. Average imaging duration was shorter for CBCT than radiographs (4.5 min vs. 6.6 min, P = 0.001, n = 51) and MDCT (7.6 min vs. 10.9 min, P = 0.01, n = 7). Average estimated effective radiation dose was less for CBCT than MDCT (0.04 mSv vs. 0.13 mSv, P = 0.02, n = 7). CBCT images yielded more diagnostic information than radiographs in 23/51 cases and more diagnostic information than MDCT in 1/7 cases, although radiographs were superior for detecting hardware complications. CBCT performs high-resolution imaging of the extremities using less imaging time than radiographs and MDCT and lower radiation dose than MDCT. (orig.)

  12. Self-calibration of cone-beam CT geometry using 3D-2D image registration: development and application to tasked-based imaging with a robotic C-arm

    Science.gov (United States)

    Ouadah, S.; Stayman, J. W.; Gang, G.; Uneri, A.; Ehtiati, T.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Robotic C-arm systems are capable of general noncircular orbits whose trajectories can be driven by the particular imaging task. However obtaining accurate calibrations for reconstruction in such geometries can be a challenging problem. This work proposes a method to perform a unique geometric calibration of an arbitrary C-arm orbit by registering 2D projections to a previously acquired 3D image to determine the transformation parameters representing the system geometry. Methods: Experiments involved a cone-beam CT (CBCT) bench system, a robotic C-arm, and three phantoms. A robust 3D-2D registration process was used to compute the 9 degree of freedom (DOF) transformation between each projection and an existing 3D image by maximizing normalized gradient information with a digitally reconstructed radiograph (DRR) of the 3D volume. The quality of the resulting "self-calibration" was evaluated in terms of the agreement with an established calibration method using a BB phantom as well as image quality in the resulting CBCT reconstruction. Results: The self-calibration yielded CBCT images without significant difference in spatial resolution from the standard ("true") calibration methods (p-value >0.05 for all three phantoms), and the differences between CBCT images reconstructed using the "self" and "true" calibration methods were on the order of 10-3 mm-1. Maximum error in magnification was 3.2%, and back-projection ray placement was within 0.5 mm. Conclusion: The proposed geometric "self" calibration provides a means for 3D imaging on general noncircular orbits in CBCT systems for which a geometric calibration is either not available or not reproducible. The method forms the basis of advanced "task-based" 3D imaging methods now in development for robotic C-arms.

  13. Simulation and experimental studies of three-dimensional (3D) image reconstruction from insufficient sampling data based on compressed-sensing theory for potential applications to dental cone-beam CT

    Science.gov (United States)

    Je, U. K.; Lee, M. S.; Cho, H. S.; Hong, D. K.; Park, Y. O.; Park, C. K.; Cho, H. M.; Choi, S. I.; Woo, T. H.

    2015-06-01

    In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient sampling data. In computed tomography (CT), for example, image reconstruction from sparse views and/or limited-angle (imaging doses to the patient. In this study, we investigated and implemented a reconstruction algorithm based on the compressed-sensing (CS) theory, which exploits the sparseness of the gradient image with substantially high accuracy, for potential applications to low-dose, high-accurate dental cone-beam CT (CBCT). We performed systematic simulation works to investigate the image characteristics and also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images of superior accuracy from insufficient sampling data and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from insufficient data indicate that the CS-based algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.

  14. 3D-Printing for Analytical Ultracentrifugation

    Science.gov (United States)

    Desai, Abhiksha; Krynitsky, Jonathan; Pohida, Thomas J.; Zhao, Huaying

    2016-01-01

    Analytical ultracentrifugation (AUC) is a classical technique of physical biochemistry providing information on size, shape, and interactions of macromolecules from the analysis of their migration in centrifugal fields while free in solution. A key mechanical element in AUC is the centerpiece, a component of the sample cell assembly that is mounted between the optical windows to allow imaging and to seal the sample solution column against high vacuum while exposed to gravitational forces in excess of 300,000 g. For sedimentation velocity it needs to be precisely sector-shaped to allow unimpeded radial macromolecular migration. During the history of AUC a great variety of centerpiece designs have been developed for different types of experiments. Here, we report that centerpieces can now be readily fabricated by 3D printing at low cost, from a variety of materials, and with customized designs. The new centerpieces can exhibit sufficient mechanical stability to withstand the gravitational forces at the highest rotor speeds and be sufficiently precise for sedimentation equilibrium and sedimentation velocity experiments. Sedimentation velocity experiments with bovine serum albumin as a reference molecule in 3D printed centerpieces with standard double-sector design result in sedimentation boundaries virtually indistinguishable from those in commercial double-sector epoxy centerpieces, with sedimentation coefficients well within the range of published values. The statistical error of the measurement is slightly above that obtained with commercial epoxy, but still below 1%. Facilitated by modern open-source design and fabrication paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a variety of improvements in AUC experimental design, efficiency and resource allocation. PMID:27525659

  15. 3D-Printing for Analytical Ultracentrifugation.

    Science.gov (United States)

    Desai, Abhiksha; Krynitsky, Jonathan; Pohida, Thomas J; Zhao, Huaying; Schuck, Peter

    2016-01-01

    Analytical ultracentrifugation (AUC) is a classical technique of physical biochemistry providing information on size, shape, and interactions of macromolecules from the analysis of their migration in centrifugal fields while free in solution. A key mechanical element in AUC is the centerpiece, a component of the sample cell assembly that is mounted between the optical windows to allow imaging and to seal the sample solution column against high vacuum while exposed to gravitational forces in excess of 300,000 g. For sedimentation velocity it needs to be precisely sector-shaped to allow unimpeded radial macromolecular migration. During the history of AUC a great variety of centerpiece designs have been developed for different types of experiments. Here, we report that centerpieces can now be readily fabricated by 3D printing at low cost, from a variety of materials, and with customized designs. The new centerpieces can exhibit sufficient mechanical stability to withstand the gravitational forces at the highest rotor speeds and be sufficiently precise for sedimentation equilibrium and sedimentation velocity experiments. Sedimentation velocity experiments with bovine serum albumin as a reference molecule in 3D printed centerpieces with standard double-sector design result in sedimentation boundaries virtually indistinguishable from those in commercial double-sector epoxy centerpieces, with sedimentation coefficients well within the range of published values. The statistical error of the measurement is slightly above that obtained with commercial epoxy, but still below 1%. Facilitated by modern open-source design and fabrication paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a variety of improvements in AUC experimental design, efficiency and resource allocation.

  16. 3D-Printing for Analytical Ultracentrifugation.

    Science.gov (United States)

    Desai, Abhiksha; Krynitsky, Jonathan; Pohida, Thomas J; Zhao, Huaying; Schuck, Peter

    2016-01-01

    Analytical ultracentrifugation (AUC) is a classical technique of physical biochemistry providing information on size, shape, and interactions of macromolecules from the analysis of their migration in centrifugal fields while free in solution. A key mechanical element in AUC is the centerpiece, a component of the sample cell assembly that is mounted between the optical windows to allow imaging and to seal the sample solution column against high vacuum while exposed to gravitational forces in excess of 300,000 g. For sedimentation velocity it needs to be precisely sector-shaped to allow unimpeded radial macromolecular migration. During the history of AUC a great variety of centerpiece designs have been developed for different types of experiments. Here, we report that centerpieces can now be readily fabricated by 3D printing at low cost, from a variety of materials, and with customized designs. The new centerpieces can exhibit sufficient mechanical stability to withstand the gravitational forces at the highest rotor speeds and be sufficiently precise for sedimentation equilibrium and sedimentation velocity experiments. Sedimentation velocity experiments with bovine serum albumin as a reference molecule in 3D printed centerpieces with standard double-sector design result in sedimentation boundaries virtually indistinguishable from those in commercial double-sector epoxy centerpieces, with sedimentation coefficients well within the range of published values. The statistical error of the measurement is slightly above that obtained with commercial epoxy, but still below 1%. Facilitated by modern open-source design and fabrication paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a variety of improvements in AUC experimental design, efficiency and resource allocation. PMID:27525659

  17. Superposição automatizada de modelos tomográficos tridimensionais em cirurgia ortognática Superimposition of 3D cone-beam CT models in orthognathic surgery

    Directory of Open Access Journals (Sweden)

    Alexandre Trindade Simões da Motta

    2010-04-01

    Full Text Available INTRODUÇÃO: as limitações na avaliação quantitativa e qualitativa de deslocamentos cirúrgicos pelos métodos bidimensionais podem ser superadas através de tomografias volumétricas e ferramentas de imagens tridimensionais. OBJETIVOS: a metodologia descrita neste trabalho permite avaliar as mudanças nas posições de côndilos, ramos, mento, maxila e da dentição após a cirurgia ortognática através de tomografias computadorizadas de feixe cônico (Cone Beam Computed Tomography, CBCT antes e após o procedimento cirúrgico. MÉTODOS: são construídos modelos 3D que possibilitam superposições tendo a base do crânio pré-cirúrgica como referência, utilizando-se um método automático que identifica e compara a escala de cinza dos voxels de duas estruturas tridimensionais, eliminando a necessidade do operador marcar os pontos anatômicos. Então, as distâncias entre as superfícies anatômicas são computadas, no mesmo indivíduo, entre as duas fases. A avaliação das direções de deslocamento das estruturas é determinada visualmente pelos métodos de mapas coloridos e de semitransparências. CONCLUSÕES: conclui-se que a metodologia apresentada, que utiliza softwares de domínio público, mostra vantagens na avaliação longitudinal de pacientes ortocirúrgicos, quando comparada aos métodos radiográficos convencionais, uma vez que as imagens geradas não apresentam magnificações ou sobreposições de estruturas e a maioria dos passos são automatizados, o que torna os procedimentos de mensuração mais precisos, além de disponibilizar uma maior quantidade de informações ao clínico ou pesquisador.INTRODUCTION: Limitations of 2D quantitative and qualitative evaluation of surgical displacements can be overcome by CBCT and three-dimensional imaging tools. OBJECTIVES: The method described in this study allows the assessment of changes in the condyles, rami, chin, maxilla and dentition by the comparison of CBCT scans before

  18. Increasing Cone-beam projection usage by temporal fitting

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Hansen, Mads Fogtmann; Larsen, Rasmus

    2010-01-01

    A Cone-beam CT system can be used to image the lung region. The system records 2D projections which will allow 3D reconstruction however a reconstruction based on all projections will lead to a blurred reconstruction in regions were respiratory motion occur. To avoid this the projections are typi......A Cone-beam CT system can be used to image the lung region. The system records 2D projections which will allow 3D reconstruction however a reconstruction based on all projections will lead to a blurred reconstruction in regions were respiratory motion occur. To avoid this the projections...... measurements. It has been suggested in [8] to circumvent the Cone beam CT(CBCT) reconstruction by utilizing an ordinary planning CT instead and learning its deformation from the CBCT projection data. The main problem with this approach is that pathological changes can cause problems. Alternatively as suggested...

  19. Evaluation of a System for High-Accuracy 3D Image-Based Registration of Endoscopic Video to C-Arm Cone-Beam CT for Image-Guided Skull Base Surgery

    OpenAIRE

    Mirota, Daniel J.; Uneri, Ali; Schafer, Sebastian; Nithiananthan, Sajendra; Reh, Douglas D.; Ishii, Masaru; Gallia, Gary L.; TAYLOR, RUSSELL H.; Hager, Gregory D.; Siewerdsen, Jeffrey H.

    2013-01-01

    The safety of endoscopic skull base surgery can be enhanced by accurate navigation in preoperative computed tomography (CT) or, more recently, intraoperative cone-beam CT (CBCT). The ability to register real-time endoscopic video with CBCT offers an additional advantage by rendering information directly within the visual scene to account for intraoperative anatomical change. However, tracker localization error (~ 1–2 mm) limits the accuracy with which video and tomographic images can be regis...

  20. A Statistical Approach to Motion Compensated Cone Beam Reconstruction

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Hansen, Mads Fogtmann; Larsen, Rasmus

    2010-01-01

    One of the problems arising in radiotherapy planning is the quality of CT planning data. In the following attention is giving to the cone-beam scanning geometry where reconstruction of a 3D volume based on 2D projections, using the classic Feldkamp-Davis-Kress (FDK) algorithm requires a large...

  1. A statistical approach to motion compensated cone-beam

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Hansen, Mads Fogtmann; Larsen, Rasmus

    One of the problems arising in radiotherapy planning is the quality of CT planning data. In the following attention is giving to the cone-beam scanning geometry where reconstruction of a 3D volume based on 2D projections, using the classic Feldkamp-Davis-Kress (FDK) algorithm requires a large...

  2. 三维锥形束CT用于人牙咬痕认定的有效性比较研究%Effectiveness Assessment of 3-D Cone Beam CT Used in Human Bite Marks Identification

    Institute of Scientific and Technical Information of China (English)

    吴砚; 陈新民; 沈韵; 余锦豪; 唐莹; 张以鸣; 朱磊; 徐远志

    2013-01-01

    The present study was aimed to use the 3-D cone beam CT (CBCT) as a new method in human bite marks identification which was carried out in experimental pigskin to assess its effectiveness in our laboratory. Bite marks were digital photographed according to American Board of Forensic Odontology (ABFO) guidelines. In this study, the data of the suspect's dental casts were collected by scanning in two ways: one was after plate scanning, in which the comparison overlays were generated by Adobe Photoshop8. 0 softwares the other was by CBCT, which generated comparison overlays automatically. The bite marks were blind identified with the two kinds of data of the suspect's dental casts respectively. ROC curve was used to analyze the sensitivity, specificity, and 95% confidence interval. The results showed that CBCT method got a larger area under the ROC curve: 0. 784 (SE=0. 074, 95% CI=0. 639-0. 929), and got a very high specificity (specificity 98. 7%, 95% CI=94. 5%-99. 8%). Thus, this study illustrates that the CBCT used in bite mark identification is an effective and accurate tool and has stronger ability to exclude suspects compared with the conventional method, but the comparison process needs further study to enhance its effectiveness in bite mark identification.%将三维锥形束CT(CBCT)用于人牙咬痕的认定,并通过猪皮载体上的实验咬痕开展其有效性分析.咬痕按照美国法医牙科协会(ABFO)指导原则进行数码拍照.嫌疑人牙模采用两种方法扫描采集数据:第一种是扫描仪扫描,再由常规方法Adobe Photoshop8.0软件生成比较overlay;第二种是使用CBCT三维扫描自动生成比较o-verlay.本研究将咬痕的数码相片分别与两种方法采集的牙模数据进行盲法比较认定,评定使用ROC曲线来分析灵敏度、特异度,并计算95%可信区间.结果显示CBCT法获得较大的ROC曲线下面积:0.784(SE=0.074,95%CI=0.639伍0.929);获得相当高的特异度(特异度98.7%,95

  3. Radiation Exposure of Patients by Cone Beam CT during Endobronchial Navigation - A Phantom Study

    OpenAIRE

    Hohenforst-Schmidt, Wolfgang; Banckwitz, Rosemarie; Zarogoulidis, Paul; Vogl, Thomas; Darwiche, Kaid; Goldberg, Eugene; Huang, Haidong; Simoff, Michael; Li, Qiang; Browning, Robert; Freitag, Lutz; Turner, J. Francis; Pivert, Patrick Le; Yarmus, Lonny; Zarogoulidis, Konstantinos

    2014-01-01

    Rationale: Cone Beam Computed Tomography imaging has become increasingly important in many fields of interventional therapies. Objective: Lung navigation study which is an uncommon soft tissue approach. Methods: As no effective organ radiation dose levels were available for this kind of Cone Beam Computed Tomography application we simulated in our DynaCT (Siemens AG, Forchheim, Germany) suite 2 measurements including 3D acquisition and again for 3D acquisition and 4 endobronchial navigation m...

  4. Region-of-interest reconstruction for a cone-beam dental CT with a circular trajectory

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhanli, E-mail: huzhanli1983@gmail.com [Paul C. Lauterbur Research Center For Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Zou, Jing; Gui, Jianbao; Zheng, Hairong [Paul C. Lauterbur Research Center For Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Xia, Dan, E-mail: dan.xia@siat.ac.cn [Paul C. Lauterbur Research Center For Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China)

    2013-04-21

    Dental CT is the most appropriate and accurate device for preoperative evaluation of dental implantation. It can demonstrate the quantity of bone in three dimensions (3D), the location of important adjacent anatomic structures and the quality of available bone with minimal geometric distortion. Nevertheless, with the rapid increase of dental CT examinations, we are facing the problem of dose reduction without loss of image quality. In this work, backprojection-filtration (BPF) and Feldkamp–Davis–Kress (FDK) algorithm was applied to reconstruct the 3D full image and region-of-interest (ROI) image from complete and truncated circular cone-beam data respectively by computer-simulation. In addition, the BPF algorithm was evaluated based on the 3D ROI-image reconstruction from real data, which was acquired from our developed circular cone-beam prototype dental CT system. The results demonstrated that the ROI-image quality reconstructed from truncated data using the BPF algorithm was comparable to that reconstructed from complete data. The FDK algorithm, however, created artifacts while reconstructing ROI-image. Thus it can be seen, for circular cone-beam dental CT, reducing scanning angular range of the BPF algorithm used for ROI-image reconstruction are helpful for reducing the radiation dose and scanning time. Finally, an analytical method was developed for estimation of the ROI projection area on the detector before CT scanning, which would help doctors to roughly estimate the total radiation dose before the CT examination. -- Highlights: ► BPF algorithm was applied by using dental CT for the first time. ► A method was developed for estimation of projection region before CT scanning. ► Roughly predict the total radiation dose before CT scans. ► Potential reduce imaging radiation dose, scatter, and scanning time.

  5. Reliability and the smallest detectable difference of measurements on 3-dimensional cone-beam computed tomography images

    NARCIS (Netherlands)

    Damstra, Janalt; Fourie, Zacharias; Huddleston Slater, James J R; Ren, Yijin

    2011-01-01

    INTRODUCTION: The aim of this study was to determine the reliability and the measurement error (by means of the smallest detectable error) of 17 commonly used cephalometric measurements made on 3-dimensional (3D) cone-beam computed tomography images. METHODS: Twenty-five cone-beam computed tomograph

  6. Use of Cone Beam Computed Tomography in Endodontics

    Directory of Open Access Journals (Sweden)

    William C. Scarfe

    2009-01-01

    Full Text Available Cone Beam Computed Tomography (CBCT is a diagnostic imaging modality that provides high-quality, accurate three-dimensional (3D representations of the osseous elements of the maxillofacial skeleton. CBCT systems are available that provide small field of view images at low dose with sufficient spatial resolution for applications in endodontic diagnosis, treatment guidance, and posttreatment evaluation. This article provides a literature review and pictorial demonstration of CBCT as an imaging adjunct for endodontics.

  7. Use of Cone Beam Computed Tomography in Endodontics

    OpenAIRE

    Scarfe, William C.; Levin, Martin D.; David Gane; Allan G. Farman

    2009-01-01

    Cone Beam Computed Tomography (CBCT) is a diagnostic imaging modality that provides high-quality, accurate three-dimensional (3D) representations of the osseous elements of the maxillofacial skeleton. CBCT systems are available that provide small field of view images at low dose with sufficient spatial resolution for applications in endodontic diagnosis, treatment guidance, and posttreatment evaluation. This article provides a literature review and pictorial demonstration of CBCT as an imagin...

  8. 3D Printed Paper-Based Microfluidic Analytical Devices

    Directory of Open Access Journals (Sweden)

    Yong He

    2016-06-01

    Full Text Available As a pump-free and lightweight analytical tool, paper-based microfluidic analytical devices (μPADs attract more and more interest. If the flow speed of μPAD can be programmed, the analytical sequences could be designed and they will be more popular. This reports presents a novel μPAD, driven by the capillary force of cellulose powder, printed by a desktop three-dimensional (3D printer, which has some promising features, such as easy fabrication and programmable flow speed. First, a suitable size-scale substrate with open microchannels on its surface is printed. Next, the surface of the substrate is covered with a thin layer of polydimethylsiloxane (PDMS to seal the micro gap caused by 3D printing. Then, the microchannels are filled with a mixture of cellulose powder and deionized water in an appropriate proportion. After drying in an oven at 60 °C for 30 min, it is ready for use. As the different channel depths can be easily printed, which can be used to achieve the programmable capillary flow speed of cellulose powder in the microchannels. A series of microfluidic analytical experiments, including quantitative analysis of nitrite ion and fabrication of T-sensor were used to demonstrate its capability. As the desktop 3D printer (D3DP is very cheap and accessible, this device can be rapidly printed at the test field with a low cost and has a promising potential in the point-of-care (POC system or as a lightweight platform for analytical chemistry.

  9. Accuracy of implant placement based on pre-surgical planning of three-dimensional cone-beam images: a pilot study.

    NARCIS (Netherlands)

    Assche, N. Van; Steenberghe, D van; Guerrero, M.E.; Hirsch, E.; Schutyser, F.A.C.; Quirynen, M.; Jacobs, R.

    2007-01-01

    AIM: To evaluate the precision of transfer of a computer-based three-dimensional (3D) planning, using re-formatted cone-beam images, for oral implant placement in partially edentulous jaws. MATERIAL AND METHODS: Four formalin-fixed cadaver jaws were imaged in a 3D Accuitomo FPD cone-beam computed to

  10. Redundant data and exact helical cone-beam reconstruction

    International Nuclear Information System (INIS)

    This paper is about helical cone-beam reconstruction and the use of redundant data in the framework of two reconstruction methods. The first method is the approximate wedge reconstruction formula introduced by Tuy at the 3D meeting in 1999. The second method is a (exact) hybrid implementation of the exact filtered backprojection formula of Katsevich (2004 Adv. Appl. Math. at press) that combines filtering in the native cone-beam geometry with backprojection in the wedge geometry. The similarity of the two methods is explored and their image quality performance is compared for geometries with up to 112 detector rows. Furthermore, the concept of aperture weighting is introduced to allow the handling of variable amounts of redundant data. A reduction of motion artefacts using redundant data is demonstrated for geometries with 16, 32 and 112 detector rows using a pitch factor of 1.25. For scans with up to 100 rows, utilizing 50% of the redundant data provided excellent results without any introduction of cone-beam artefacts. For larger cone angles, an alternative approach that utilizes all available redundant data, even at reduced pitch factors, is suggested

  11. Application of cone beam computed tomography in facial imaging science

    Institute of Scientific and Technical Information of China (English)

    Zacharias Fourie; Janalt Damstra; Yijin Ren

    2012-01-01

    The use of three-dimensional (3D) methods for facial imaging has increased significantly over the past years.Traditional 2D imaging has gradually being replaced by 3D images in different disciplines,particularly in the fields of orthodontics,maxillofacial surgery,plastic and reconstructive surgery,neurosurgery and forensic sciences.In most cases,3D facial imaging overcomes the limitations of traditional 2D methods and provides the clinician with more accurate information regarding the soft-tissues and the underlying skeleton.The aim of this study was to review the types of imaging methods used for facial imaging.It is important to realize the difference between the types of 3D imaging methods as application and indications thereof may differ.Since 3D cone beam computed tomography (CBCT) imaging will play an increasingly importanl role in orthodontics and orthognathic surgery,special emphasis should be placed on discussing CBCT applications in facial evaluations.

  12. Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph

    Energy Technology Data Exchange (ETDEWEB)

    Madhav, P; Crotty, D J; Tornai, M P [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); McKinley, R L [Zumatek Incorporated, Chapel Hill, NC 27519 (United States)], E-mail: priti.madhav@duke.edu

    2009-06-21

    A compact dedicated 3D breast SPECT-CT (mammotomography) system is currently under development. In its initial prototype, the cone-beam CT sub-system is restricted to a fixed-tilt circular rotation around the patient's pendant breast. This study evaluated stationary-tilt angles for the CT sub-system that will enable maximal volumetric sampling and viewing of the breast and chest wall. Images of geometric/anthropomorphic phantoms were acquired using various fixed-tilt circular and 3D sinusoidal trajectories. The iteratively reconstructed images showed more distortion and attenuation coefficient inaccuracy from tilted cone-beam orbits than from the complex trajectory. Additionally, line profiles illustrated cupping artifacts in planes distal to the central plane of the tilted cone-beam, otherwise not apparent for images acquired with complex trajectories. This indicates that undersampled cone-beam data may be an additional cause of cupping artifacts. High-frequency objects could be distinguished for all trajectories, but their shapes and locations were corrupted by out-of-plane frequency information. Although more acrylic balls were visualized with a fixed-tilt and nearly flat cone-beam at the posterior of the breast, 3D complex trajectories have less distortion and more complete sampling throughout the reconstruction volume. While complex trajectories would ideally be preferred, negatively fixed-tilt source-detector configuration demonstrates minimally distorted patient images.

  13. The effect of scan parameters on cone beam CT trabecular bone microstructural measurements of the human mandible

    OpenAIRE

    Ibrahim, N; Parsa, A.; Hassan, B.; van der Stelt, P; Aartman, I.H.A.; Wismeijer, D.

    2014-01-01

    The objective of this study was to investigate the effect of different cone beam CT scan parameters on trabecular bone microstructure measurements. A human mandibular cadaver was scanned using a cone beam CT (3D Accuitomo 170; J.Morita, Kyota, Japan). 20 cone beam CT images were obtained using 5 different fields of view (4X4 cm, 6x6 cm, 8X8 cm, 10x10 cm and 10X5 cm), 2 types of rotation steps (180 degrees and 360 degrees) and 2 scanning resolutions (standard and high). Image analysis software...

  14. Accuracy of bone surface size and cortical layer thickness measurements using cone beam computerized tomography

    NARCIS (Netherlands)

    Gerlach, N.L.; Meijer, G.J.; Borstlap, W.A.; Bronkhorst, E.M.; Berge, S.J.; Maal, T.J.J.

    2013-01-01

    OBJECTIVES: The purpose of this study was to determine the accuracy of Cone Beam Computerized Tomography (CBCT) reconstructions in displaying bone surface size and cortical layer thickness. MATERIALS AND METHODS: Two fresh frozen cadaver heads were scanned using a CBCT (i-CAT() 3D Imaging System; Im

  15. Cone beam CT, wat moet ik ermee?

    NARCIS (Netherlands)

    R. Hoogeveen

    2013-01-01

    De cone beam-ct-scan (cbct-scan) maakt een opmars in de tandheelkunde vanwege de toegevoegde waarde van de derde dimensie in de diagnostiek. Deze extra informatie wordt verkregen ten koste van een hogere stralenbelasting en een daarmee gepaard gaand hoger risico voor de patiënt. Om de clinicus te he

  16. Cone beam computed tomography in veterinary dentistry

    NARCIS (Netherlands)

    B. van Thielen; F. Siguenza; B. Hassan

    2012-01-01

    The purpose of this study was to assess the feasibility of cone beam computed tomography (CBCT) in imaging dogs and cats for diagnostic dental veterinary applications. CBCT scans of heads of six dogs and two cats were made. Dental panoramic and multi-planar reformatted (MPR) para-sagittal reconstruc

  17. 锥形束 CT 融合三维面像评估正颌术后软硬组织的变化%Feasibility of integrating 3D photos and cone-beam computed tomography images used to evaluate changes of soft and hard tissue after orthognathic surgery

    Institute of Scientific and Technical Information of China (English)

    王哲; 朱榴宁; 周琳; 伊彪

    2016-01-01

    目的:探讨锥形束 CT(cone-beam computed tomography,CBCT)融合三维面像用于研究牙颌面畸形患者正颌术后软硬组织变化的可行性,并应用此方法初步测量各软硬组织标志点手术前后的位置变化。方法:选取10例牙颌面畸形患者,分别于术前(T0)和术后3个月(T1)拍摄大视野 CBCT 和三维面像。利用 MIMICS 和 Geomagic Studio 软件对图像进行处理分析,将 CBCT 进行阈值分割并与三维面像融合,生成新的三维立体模型,探讨该方法可行性。使用3D 色谱分析(3D color map)和测量平均距离对 CBCT 与三维面像配准过程的误差进行定性和定量分析。通过 CBCT 骨组织配准,将新生成的手术前后三维模型置于同一空间坐标系,测量各标志点[鼻尖点(prona-sale,Prn )、鼻下点(subnasale,Sn)、上唇突点(labrale superior,Ls)、前鼻棘点(anterior nasal spine,ANS)、上齿槽座点(subspinale,A)、上中切牙点(upper incisor edge,UIE)]手术前后位置变化。结果:CBCT 融合三维面像用于研究正颌术后软硬组织变化具有可行性,配准误差在0.3 mm 以内,通过3D 色谱分析直观看到,面部区域配准良好。正颌术后唇部各标志点(Ls、ANS、A、UIE)位置差异有统计学意义(P <0.05),而鼻部标志点(Prn、Sn)位置差异无统计学意义(P >0.1)。结论:CBCT 融合三维面像作为一种新方法可以用于临床研究正颌术后软硬组织变化,具有较高的精确度和可重复性。正颌术后唇部软硬组织标志点位置明显变化,而鼻部标志点位置受正颌手术影响较小。%Objective:To evaluate the feasibility of integrating 3D photos and cone-beam computed tomography (CBCT)images and to assess the degree of error that may occur during the above process,and to analyze soft and hard tissue changes after orthognathic surgery using this new method

  18. Cone Beam Computed Tomography Evaluation of Inverted Mesiodentes.

    Science.gov (United States)

    Al-Sehaibany, Fares S; Marzouk, Hazem M; Salama, Fouad S

    2016-01-01

    A mesiodens is the most common type of supernumerary teeth. The purpose of this report is to present a rare occurrence of non-syndromic impacted inverted mesiodentes in an 8.5-year-old boy who presented with a chief complaint of delayed eruption of his permanent maxillary left central incisor. Occlusal and panoramic radiographs, as well as cone beam computed tomography (CBCT) with a three-dimensional (3-D) reconstruction image, confirmed that one supernumerary tooth had perforated the nasal fossa floor and the other was in close approximation to the to the same site. Surgical removal of both mesiodentes was indicated. Radiographic evidence of complete healing was observed 12 months following surgical removal. The use of CBCT with a 3-D reconstruction image as a tool in diagnosis and evaluation of healing after surgical removal is recommended.

  19. Cone Beam Computed Tomography Evaluation of Inverted Mesiodentes.

    Science.gov (United States)

    Al-Sehaibany, Fares S; Marzouk, Hazem M; Salama, Fouad S

    2016-01-01

    A mesiodens is the most common type of supernumerary teeth. The purpose of this report is to present a rare occurrence of non-syndromic impacted inverted mesiodentes in an 8.5-year-old boy who presented with a chief complaint of delayed eruption of his permanent maxillary left central incisor. Occlusal and panoramic radiographs, as well as cone beam computed tomography (CBCT) with a three-dimensional (3-D) reconstruction image, confirmed that one supernumerary tooth had perforated the nasal fossa floor and the other was in close approximation to the to the same site. Surgical removal of both mesiodentes was indicated. Radiographic evidence of complete healing was observed 12 months following surgical removal. The use of CBCT with a 3-D reconstruction image as a tool in diagnosis and evaluation of healing after surgical removal is recommended. PMID:27620520

  20. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    International Nuclear Information System (INIS)

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow. From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.

  1. Calibration of Cone Beam Rotational X-Ray Image Sequence

    Institute of Scientific and Technical Information of China (English)

    YUHengyong; MOUXuanqin; CAIYuanlong

    2004-01-01

    The real X-ray projection does not abide by Lambert-Beer Law, since the X-ray is polychromatic and the imaging chains are nonlinear. Based on the generating process of X-ray images, an equivalent nonlinear transform model is firstly proposed which considers all the nonlinear factors as one nonlinear transform. Then the 3D (three-dimensional) X-ray projection of cone beam is defined. The constraints of Radon transform, named H-L (Helgasson-ludwig) consistency conditions, are expanded to fan-beam. After that an algorithm is developed to calibrate Rotational X-ray image sequence (RXIS). The algorithm uses a set of exponential functions to approximate the nonlinear inverse transform. According to expanded H-L consistency conditions, finally a kind of nonlinear measure for RXIS is defined. Experimental results show that the proposed algorithm can decrease the nonlinear measure to below 0.01.

  2. Dual resolution cone beam breast CT: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Chen Lingyun; Shen Youtao; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Ge Shuaiping; Liu Xinming; Wang Tianpeng; Yang, Wei T.; Whitman, Gary J.; Shaw, Chris C. [Department of Imaging Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Department of Diagnostic Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Department of Imaging Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2009-09-15

    Purpose: In this study, the authors investigated the feasibility of a dual resolution volume-of-interest (VOI) cone beam breast CT technique and compared two implementation approaches in terms of dose saving and scatter reduction. Methods: With this technique, a lead VOI mask with an opening is inserted between the x-ray source and the breast to deliver x-ray exposure to the VOI while blocking x rays outside the VOI. A CCD detector is used to collect the high resolution projection data of the VOI. Low resolution cone beam CT (CBCT) images of the entire breast, acquired with a flat panel (FP) detector, were used to calculate the projection data outside the VOI with the ray-tracing reprojection method. The Feldkamp-Davis-Kress filtered backprojection algorithm was used to reconstruct the dual resolution 3D images. Breast phantoms with 180 {mu}m and smaller microcalcifications (MCs) were imaged with both FP and FP-CCD dual resolution CBCT systems, respectively. Two approaches of implementing the dual resolution technique, breast-centered approach and VOI-centered approach, were investigated and evaluated for dose saving and scatter reduction with Monte Carlo simulation using a GEANT4 package. Results: The results showed that the breast-centered approach saved more breast absorbed dose than did VOI-centered approach with similar scatter reduction. The MCs in fatty breast phantom, which were invisible with FP CBCT scan, became visible with the FP-CCD dual resolution CBCT scan. Conclusions: These results indicate potential improvement of the image quality inside the VOI with reduced breast dose both inside and outside the VOI.

  3. Scatter corrections for cone beam optical CT

    Energy Technology Data Exchange (ETDEWEB)

    Olding, Tim; Holmes, Oliver [Department of Physics, Queen' s University (United Kingdom); Schreiner, L John [Medical Physics Department, Cancer Centre of Southeastern Ontario (Canada)], E-mail: Tim.Olding@krcc.on.ca

    2009-05-01

    Cone beam optical computed tomography (OptCT) employing the VISTA scanner (Modus Medical, London, ON) has been shown to have significant promise for fast, three dimensional imaging of polymer gel dosimeters. One distinct challenge with this approach arises from the combination of the cone beam geometry, a diffuse light source, and the scattering polymer gel media, which all contribute scatter signal that perturbs the accuracy of the scanner. Beam stop array (BSA), beam pass array (BPA) and anti-scatter polarizer correction methodologies have been employed to remove scatter signal from OptCT data. These approaches are investigated through the use of well-characterized phantom scattering solutions and irradiated polymer gel dosimeters. BSA corrected scatter solutions show good agreement in attenuation coefficient with the optically absorbing dye solutions, with considerable reduction of scatter-induced cupping artifact at high scattering concentrations. The application of BSA scatter corrections to a polymer gel dosimeter lead to an overall improvement in the number of pixel satisfying the (3%, 3mm) gamma value criteria from 7.8% to 0.15%.

  4. Dental cone beam ct and its justified use in oral health care

    OpenAIRE

    Jacobs, R.

    2011-01-01

    While dental 2D radiology is still the most frequent diagnostic tool, the inherent nature of jaws and teeth might surely benefit from 3D diagnosis. Nowadays, dental cone beam computed tomography may offer high quality images at low radiation doses and costs. Yet, effective dose ranges of CBCT machines may easily vary from 10-1200 micro - sievert, being an equivalent of 2 to 240 dental panoramic radiographs. The same holds true for diagnostic image quality, which exhibits a huge variation amon...

  5. Effective dose range for dental cone beam computed tomography scanners

    International Nuclear Information System (INIS)

    Objective: To estimate the absorbed organ dose and effective dose for a wide range of cone beam computed tomography scanners, using different exposure protocols and geometries. Materials and methods: Two Alderson Radiation Therapy anthropomorphic phantoms were loaded with LiF detectors (TLD-100 and TLD-100H) which were evenly distributed throughout the head and neck, covering all radiosensitive organs. Measurements were performed on 14 CBCT devices: 3D Accuitomo 170, Galileos Comfort, i-CAT Next Generation, Iluma Elite, Kodak 9000 3D, Kodak 9500, NewTom VG, NewTom VGi, Pax-Uni3D, Picasso Trio, ProMax 3D, Scanora 3D, SkyView, Veraviewepocs 3D. Effective dose was calculated using the ICRP 103 (2007) tissue weighting factors. Results: Effective dose ranged between 19 and 368 μSv. The largest contributions to the effective dose were from the remainder tissues (37%), salivary glands (24%), and thyroid gland (21%). For all organs, there was a wide range of measured values apparent, due to differences in exposure factors, diameter and height of the primary beam, and positioning of the beam relative to the radiosensitive organs. Conclusions: The effective dose for different CBCT devices showed a 20-fold range. The results show that a distinction is needed between small-, medium-, and large-field CBCT scanners and protocols, as they are applied to different indication groups, the dose received being strongly related to field size. Furthermore, the dose should always be considered relative to technical and diagnostic image quality, seeing that image quality requirements also differ for patient groups. The results from the current study indicate that the optimisation of dose should be performed by an appropriate selection of exposure parameters and field size, depending on the diagnostic requirements.

  6. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    Energy Technology Data Exchange (ETDEWEB)

    Matenine, Dmitri, E-mail: dmitri.matenine.1@ulaval.ca; Mascolo-Fortin, Julia, E-mail: julia.mascolo-fortin.1@ulaval.ca [Département de physique, de génie physique et d’optique, Université Laval, Québec, Québec G1V 0A6 (Canada); Goussard, Yves, E-mail: yves.goussard@polymtl.ca [Département de génie électrique/Institut de génie biomédical, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, Québec H3C 3A7 (Canada); Després, Philippe, E-mail: philippe.despres@phy.ulaval.ca [Département de physique, de génie physique et d’optique and Centre de recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie and Centre de recherche du CHU de Québec, Québec, Québec G1R 2J6 (Canada)

    2015-11-15

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can

  7. 胸段椎体转移癌放射治疗二维和三维位置验证的比较分析%Comparison of 2D kilovoltage-kilovoltage radiographs and 3D cone-beam computed tomography in position verification during thoracic spinal metastases cancer radiotherapy

    Institute of Scientific and Technical Information of China (English)

    张爱华; 徐细明; 胡健; 戈伟; 徐利明; 邓君健

    2013-01-01

    目的 通过VARIAN-OBI系统提供二维KV-KV和三维锥形束CT(CBCT)位置验证模式,对比分析其在胸段椎体骨转移癌的应用,找寻其最佳图像引导放射治疗(IGRT)方式.方法 选择50例胸段椎体骨转移癌患者,其中男性33例,女性17例,中位年龄为57岁.随机分为A、B组,每次治疗前位置验证,A组行二维KV-KV位置验证,图像配准后记录位移偏差值,移动治疗床治疗,治疗结束后评估患者疼痛症状,按照世界卫生组织的疼痛评分标准评分;B组行三维CBCT位置验证,图像配准后,记录位移偏移值(包括旋转偏差),移动治疗床执行治疗,并记录患者疼痛指数.统计并计算均值和标准差,对比分析两种验证方式的差异.结果 A组和B组各获取125组图像,位移偏差:A组在Vertical(Vrt)、Longitudinal (Lng)、Lateral (Lat)的位移偏差分别为(0.02±0.14) cm、(0.02±0.13) cm、(-0.01±0.17)cm;B组为(0.04±0.15) cm、(0.01±0.14) cm、(-0.03±0.16)cm,两组数据比较,差异无统计学意义(P=0.642、0.549、0.996> 0.05);疼痛指数:A组患者为2.21±0.77,B组患者为3.03±0.80(P=0<0.05);验证用时:二维KV-KV配准时间为(3.97±0.63) min,三维CBCT配准时间为(8.13±0.98) min(P=0<0.05).结论 二维KV-KV与三维CBCT位置验证在位置移动偏差值的比较无统计学意义,均能满足临床应用需求.二维KV-KV位置验证相对三维CBCT位置验证,整个验证需要时间是后者的1/2~ 1/3,二维KV-KV位置验证是疼痛症状明显的椎体骨转移患者的首选方式.%Objective To analyze the difference between two-dimension(2D) kilovoltage-kilovoltage(KV-KV) and three-dimension (3D) cone -beam computed tomography (CBCT) verification in thoracic spinal metastases cancer radiotherapy, and find the best application of IGRT for thoracic metastases cancer patients by two radiotherapy position verification 2D KV-KV and 3D CBCT from Varian-OBI system. Methods A total of 50 thoracic metastases cancer

  8. The accuracy of the imaging reformation of cone beam computed tomography for the assessment of bone defect healing

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ho Duk; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan [Kyung Hee Univ., Seoul (Korea, Republic of)

    2007-06-15

    To evaluate the accuracy of the imaging reformation of cone beam computed tomography for the assessment of bone defect healing in rat model. Sprague-Dawely strain rats weighing about 350 gms were selected. Then critical size bone defects were done at parietal bone with implantation of collagen sponge. The rats were divided into seven groups of 3 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, and 8 weeks. The healing of surgical defect was assessed by multiplanar reconstruction (MPR) images and three-dimensional (3-D) images of cone beam computed tomography, compared with soft X-ray radiograph and histopathologic examination. MPR images and 3-D images showed similar reformation of the healing amount at 3 days, 1 week, 2 weeks, and 8 weeks, however, lower reformation at 3 weeks, 4 weeks, and 6 weeks. According to imaging-based methodologies, MPR images revealed similar reformation of the healing mount than 3-D images compare with soft X-ray image. Among the four threshold values for 3-D images, 400-500 HU revealed similar reformation of the healing amount. Histopathologic examination confirmed the newly formed trabeculation correspond with imaging-based mythologies. MPR images revealed higher accuracy of the imaging reformation of cone beam computed tomography and cone beam computed tomography is a clinically useful diagnostic tool for the assessment of bone defect healing.

  9. Reduction of Cone-Beam CT scan time without compromising the accuracy of the image registration in IGRT

    DEFF Research Database (Denmark)

    Westberg, Jonas; Jensen, Henrik R; Bertelsen, Anders;

    2010-01-01

    In modern radiotherapy accelerators are equipped with 3D cone-beam CT (CBCT) which is used to verify patient position before treatment. The verification is based on an image registration between the CBCT acquired just before treatment and the CT scan made for the treatment planning. The purpose...

  10. Cone beam computed tomography in endodontic

    Energy Technology Data Exchange (ETDEWEB)

    Durack, Conor; Patel, Shanon, E-mail: conordurack1@hotmail.com [Unit of Endodontology, Department of Conservative Dentistry, King' s College London, London (United Kingdom)

    2012-07-01

    Cone beam computed tomography (CBCT) is a contemporary, radiological imaging system designed specifically for use on the maxillofacial skeleton. The system overcomes many of the limitations of conventional radiography by producing undistorted, three-dimensional images of the area under examination. These properties make this form of imaging particularly suitable for use in endodontic. The clinician can obtain an enhanced appreciation of the anatomy being assessed, leading to an improvement in the detection of endodontic disease and resulting in more effective treatment planning. In addition, CBCT operates with a significantly lower effective radiation dose when compared with conventional computed tomography (CT). The purpose of this paper is to review the current literature relating to the limitations and potential applications of CBCT in endodontic practice. (author)

  11. Cone beam computed tomography in endodontic

    International Nuclear Information System (INIS)

    Cone beam computed tomography (CBCT) is a contemporary, radiological imaging system designed specifically for use on the maxillofacial skeleton. The system overcomes many of the limitations of conventional radiography by producing undistorted, three-dimensional images of the area under examination. These properties make this form of imaging particularly suitable for use in endodontic. The clinician can obtain an enhanced appreciation of the anatomy being assessed, leading to an improvement in the detection of endodontic disease and resulting in more effective treatment planning. In addition, CBCT operates with a significantly lower effective radiation dose when compared with conventional computed tomography (CT). The purpose of this paper is to review the current literature relating to the limitations and potential applications of CBCT in endodontic practice. (author)

  12. Use of cone beam computed tomography in periodontology.

    Science.gov (United States)

    Acar, Buket; Kamburoğlu, Kıvanç

    2014-05-28

    Diagnosis of periodontal disease mainly depends on clinical signs and symptoms. However, in the case of bone destruction, radiographs are valuable diagnostic tools as an adjunct to the clinical examination. Two dimensional periapical and panoramic radiographs are routinely used for diagnosing periodontal bone levels. In two dimensional imaging, evaluation of bone craters, lamina dura and periodontal bone level is limited by projection geometry and superpositions of adjacent anatomical structures. Those limitations of 2D radiographs can be eliminated by three-dimensional imaging techniques such as computed tomography. Cone beam computed tomography (CBCT) generates 3D volumetric images and is also commonly used in dentistry. All CBCT units provide axial, coronal and sagittal multi-planar reconstructed images without magnification. Also, panoramic images without distortion and magnification can be generated with curved planar reformation. CBCT displays 3D images that are necessary for the diagnosis of intra bony defects, furcation involvements and buccal/lingual bone destructions. CBCT applications provide obvious benefits in periodontics, however; it should be used only in correct indications considering the necessity and the potential hazards of the examination.

  13. Endodontic applications of cone beam computed tomography: case series and literature review

    Directory of Open Access Journals (Sweden)

    Francesc Abella

    2015-11-01

    Full Text Available Cone beam computed tomography (CBCT is a relatively new method that produces three-dimensional (3D information of the maxillofacial skeleton, including the teeth and their surrounding tissue, with a lower effective radiation dose than traditional CT scans. Specific endodontic applications for CBCT are being identified as the use of this technology becomes more common. CBCT has great potential to become a valuable tool for diagnosing and managing endodontic problems, as well as for assessing root fractures, apical periodontitis, resorptions, perforations, root canal anatomy and the nature of the alveolar bone topography around teeth. This article aims to review cone beam technology and its advantages over CT scans and conventional radiography, to illustrate current and future clinical applications in endodontic practice, and to highlight areas of further research of CBCT in endodontics. Specific case examples illustrate how treatment planning has changed with the images obtained with CBCT technology compared with only periapical radiography.

  14. Job profiles and responsibilities of cone-beam CT in dentistry

    International Nuclear Information System (INIS)

    The first applications of Cone Beam CT (CBTC) were within the angiographic and radiotherapy. In recent years the CBTC has found its greatest field of application in the dental and maxillofacial surgery and is expected to be used more and more frequently in clinical practice. Wider use of CBTC and reducing costs of equipment purchase was made possible by the development of specific software for 3D reconstruction and hardware that can handle the amount of data to be processed. The technique TC volumetric 'Cone Beam', thanks to the higher resolution capability of the detectors used and the high intrinsic contrast of the bony structures, you can get good quality images with patient doses lower than those usually administered with conventional parameters, from equipment TC traditional (at equal volume irradiated from 5 to 20 times lower).

  15. Respiratory correlated cone-beam computed tomography on an isocentric C-arm

    Energy Technology Data Exchange (ETDEWEB)

    Kriminski, Sergey [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Mitschke, Matthias [Siemens Medical Solutions USA, Inc. Oncology Care Systems, Concord, CA 94520 (United States); Sorensen, Stephen [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Wink, Nicole M [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Chow, Phillip E [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Tenn, Steven [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Solberg, Timothy D [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095 (United States); University of Nebraska Medical Center, Omaha, NE 68102 (United States)

    2005-11-21

    A methodology for 3D image reconstruction from retrospectively gated cone-beam CT projection data has been developed. A mobile x-ray cone-beam device consisting of an isocentric C-arm equipped with a flat panel detector was used to image a moving phantom. Frames for reconstruction were retrospectively selected from complete datasets based on the known rotation of the C-arm and a signal from a respiratory monitor. Different sizes of gating windows were tested. A numerical criterion for blur on the reconstructed image was suggested. The criterion is based on minimization of an Ising energy function, similar to approaches used in image segmentation or restoration. It is shown that this criterion can be used for the determination of the optimal gating window size. Images reconstructed from the retrospectively gated projection sequences using the optimal gating window data showed a significant improvement compared to images reconstructed from the complete projection datasets.

  16. Respiratory correlated cone-beam computed tomography on an isocentric C-arm

    Science.gov (United States)

    Kriminski, Sergey; Mitschke, Matthias; Sorensen, Stephen; Wink, Nicole M.; Chow, Phillip E.; Tenn, Steven; Solberg, Timothy D.

    2005-11-01

    A methodology for 3D image reconstruction from retrospectively gated cone-beam CT projection data has been developed. A mobile x-ray cone-beam device consisting of an isocentric C-arm equipped with a flat panel detector was used to image a moving phantom. Frames for reconstruction were retrospectively selected from complete datasets based on the known rotation of the C-arm and a signal from a respiratory monitor. Different sizes of gating windows were tested. A numerical criterion for blur on the reconstructed image was suggested. The criterion is based on minimization of an Ising energy function, similar to approaches used in image segmentation or restoration. It is shown that this criterion can be used for the determination of the optimal gating window size. Images reconstructed from the retrospectively gated projection sequences using the optimal gating window data showed a significant improvement compared to images reconstructed from the complete projection datasets.

  17. Dentomaxillofacial imaging with panoramic views and cone beam CT.

    Science.gov (United States)

    Suomalainen, Anni; Pakbaznejad Esmaeili, Elmira; Robinson, Soraya

    2015-02-01

    Panoramic and intraoral radiographs are the basic imaging modalities used in dentistry. Often they are the only imaging techniques required for delineation of dental anatomy or pathology. Panoramic radiography produces a single image of the maxilla, mandible, teeth, temporomandibular joints and maxillary sinuses. During the exposure the x-ray source and detector rotate synchronously around the patient producing a curved surface tomography. It can be supplemented with intraoral radiographs. However, these techniques give only a two-dimensional view of complicated three-dimensional (3D) structures. As in the other fields of imaging also dentomaxillofacial imaging has moved towards 3D imaging. Since the late 1990s cone beam computed tomography (CBCT) devices have been designed specifically for dentomaxillofacial imaging, allowing accurate 3D imaging of hard tissues with a lower radiation dose, lower cost and easier availability for dentists when compared with multislice CT. Panoramic and intraoral radiographies are still the basic imaging methods in dentistry. CBCT should be used in more demanding cases. In this review the anatomy with the panoramic view will be presented as well as the benefits of the CBCT technique in comparison to the panoramic technique with some examples. Also the basics as well as common errors and pitfalls of these techniques will be discussed. Teaching Points • Panoramic and intraoral radiographs are the basic imaging methods in dentomaxillofacial radiology.• CBCT imaging allows accurate 3D imaging of hard tissues.• CBCT offers lower costs and a smaller size and radiation dose compared with MSCT.• The disadvantages of CBCT imaging are poor soft tissue contrast and artefacts.• The Sedentexct project has developed evidence-based guidelines on the use of CBCT in dentistry. PMID:25575868

  18. Cone beam CT for dental and maxillofacial imaging: dose matters.

    Science.gov (United States)

    Pauwels, Ruben

    2015-07-01

    The widespread use of cone-beam CT (CBCT) in dentistry has led to increasing concern regarding justification and optimisation of CBCT exposures. When used as a substitute to multidetector CT (MDCT), CBCT can lead to significant dose reduction; however, low-dose protocols of current-generation MDCTs show that there is an overlap between CBCT and MDCT doses. More importantly, although the 3D information provided by CBCT can often lead to improved diagnosis and treatment compared with 2D radiographs, a routine or excessive use of CBCT would lead to a substantial increase of the collective patient dose. The potential use of CBCT for paediatric patients (e.g. developmental disorders, trauma and orthodontic treatment planning) further increases concern regarding its proper application. This paper provides an overview of justification and optimisation issues in dental and maxillofacial CBCT. The radiation dose in CBCT will be briefly reviewed. The European Commission's Evidence Based Guidelines prepared by the SEDENTEXCT Project Consortium will be summarised, and (in)appropriate use of CBCT will be illustrated for various dental applications. PMID:25805884

  19. Surgical stent for dental implant using cone beam CT images

    International Nuclear Information System (INIS)

    The purpose of this study is to develop a surgical stent for dental implant procedure that can be easily applied and affordable by using cone beam computerized tomography (CBCT). Aluminum, Teflon-PFA (perfluoroalkoxy), and acetal (polyoxymethylene plastic) were selected as materials for the surgical stent. Among these three materials, the appropriate material was chosen using the CBCT images. The surgical stent, which could be easily placed into an oral cavity, was designed with chosen material. CBCT images of the new surgical stent on mandible were obtained using Alphard-3030 dental CT system (Asahi Roentgen Co., Ltd., Kyoto, Japan). The point of insertion was prescribed on the surgical stent with the multiplanar reconstruction software of OnDemand3D (CyberMed Inc., Seoul, Korea). Guide holes were made at the point of insertion on the surgical stent using newly designed guide jig. CBCT scans was taken for the second time to verify the accuracy of the newly designed surgical stent. Teflon-PFA showed radiologically excellent image characteristics for the surgical stent. High accuracy and reproducibility of implantation were confirmed with the surgical stent. The newly designed surgical stent can lead to the accurate implantation and achieve the clinically predictable result.

  20. Marker-free lung tumor trajectory estimation from a cone beam CT sinogram

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Geoffrey D [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA (United States); Liang Jian; Yan Di, E-mail: gdhugo@vcu.ed [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States)

    2010-05-07

    An algorithm was developed to estimate the 3D lung tumor position using the projection data forming a cone beam CT sinogram and a template registration method. A pre-existing respiration-correlated CT image was used to generate templates of the target, which were then registered to the individual cone beam CT projections, and estimates of the target position were made for each projection. The registration search region was constrained based on knowledge of the mean tumor position during the cone beam CT scan acquisition. Several template registration algorithms were compared, including correlation coefficient and robust methods such as block correlation, robust correlation coefficient and robust gradient correlation. Robust registration metrics were found to be less sensitive to occlusions such as overlying tissue and the treatment couch. The mean accuracy of the position estimation was 1.4 mm in phantom with a robust registration algorithm. In two research subjects with peripheral tumors, the mean position and mean target excursion were estimated to within 2.0 mm compared to the results obtained with a '4D' registration of 4D image volumes.

  1. Marker-free lung tumor trajectory estimation from a cone beam CT sinogram

    Science.gov (United States)

    Hugo, Geoffrey D.; Liang, Jian; Yan, Di

    2010-05-01

    An algorithm was developed to estimate the 3D lung tumor position using the projection data forming a cone beam CT sinogram and a template registration method. A pre-existing respiration-correlated CT image was used to generate templates of the target, which were then registered to the individual cone beam CT projections, and estimates of the target position were made for each projection. The registration search region was constrained based on knowledge of the mean tumor position during the cone beam CT scan acquisition. Several template registration algorithms were compared, including correlation coefficient and robust methods such as block correlation, robust correlation coefficient and robust gradient correlation. Robust registration metrics were found to be less sensitive to occlusions such as overlying tissue and the treatment couch. The mean accuracy of the position estimation was 1.4 mm in phantom with a robust registration algorithm. In two research subjects with peripheral tumors, the mean position and mean target excursion were estimated to within 2.0 mm compared to the results obtained with a '4D' registration of 4D image volumes.

  2. Towards cone-beam CT thermometry

    Science.gov (United States)

    Li, Ming; Abi-Jaoudeh, Nadine; Kapoor, Ankur; Kadoury, Samuel; Xu, Sheng; Noordhoek, Niels; Radaelli, Alessandro; Carelsen, Bart; Wood, Bradford J.

    2013-03-01

    Temperature monitoring and therefore the final treatment zone achieved during a cone-beam CT (CBCT) guided ablation can prevent overtreatment and undertreatment. A novel method is proposed to detect changes in consecutive CBCT images obtained from projection reconstructions during an ablation procedure. The possibility is explored of using this method to generate thermometry maps from CBCT images, which can be used as an input function for ablation treatment planning. This novel method uses a baseline and an intermittent CBCT scan, which are routinely acquired to confirm the needle position and monitor progress of the ablation. Accurate registration is required and assumed in vitro and ex vivo. A Wronskian change detector algorithm is applied on the compensated images to obtain a difference image between the intermittent and baseline scans. Finally, a thermal map created by applying a calibration determined experimentally is used to obtain the corresponding temperature at each pixel or voxel. We applied Wronskian change detector to detect the difference of two CBCT images, which have low signal to noise ratio, and calibrate Wronskian change model to temperature data using a gel phantom. We tested the temperature mapping with water and gel phantoms as well as pig shoulder. The experimental results show this method can detect temperature change within 5°C for a voxel size of 1mm3 (within clinical relevancy), and by consequence delineate the ablation zone. The preliminary experimental results show that CBCT thermometry is possible and promising, but may require pre-processing, such as registration for motion compensation between the baseline and intermittent scans. Further, quantitative evaluations have to be conducted for validation prior to clinical assessment and translation. CBCT is a widely available technology that could make thermometry clinically practical as an enabling component of iterative ablation treatment planning.

  3. Stray light in cone beam optical computed tomography: II. Reduction using a convergent light source

    Science.gov (United States)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone beam computed tomography (CBCT) using a broad beam and CCD camera is a fast method for densitometry of 3D optical gel dosimeters. However, diffuse light sources introduce considerable stray light into the imaging system, leading to underestimation of attenuation coefficients and non-uniformities in CT images unless corrections are applied to each projection image. In this study, the light source of a commercial optical CT scanner is replaced with a convergent cone beam source consisting of almost exclusively image forming primary rays. The convergent source is achieved using a small isotropic source and a Fresnel lens. To characterize stray light effects, full-field cone beam CT imaging is compared to fan beam CT (FBCT) using a 1 cm high fan beam aperture centered on the optic axis of the system. Attenuating liquids are scanned within a large 96 mm diameter uniform phantom and in a small 13.5 mm diameter finger phantom. For the uniform phantom, cone and fan beam CT attenuation coefficients agree within a maximum deviation of (1  ±  2)% between mean values over a wide range from 0.036 to 0.43 cm-1. For the finger phantom, agreement is found with a maximum deviation of (4  ±  2)% between mean values over a range of 0.1-0.47 cm-1. With the convergent source, artifacts associated with refractive index mismatch and vessel optical features are more pronounced. Further optimization of the source size to achieve a balance between quantitative accuracy and artifact reduction should enable practical, accurate 3D dosimetry, avoiding time consuming 3D scatter measurements.

  4. Study of effective dose of various protocols in equipment cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Soares, M. R.; Maia, A. F. [Universidade Federale de Sergipe, Departamento de Fisica, Cidade Universitaria Prof. Jose Aloisio de Campos, Marechal Rondon s/n, Jardim Rosa Elze, 49-100000 Sao Cristovao, Sergipe (Brazil); Batista, W. O. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho, Salvador, 40301015 Bahia (Brazil); Caldas, L. V. E.; Lara, P. A., E-mail: mrs2206@gmail.com [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    Currently the cone beam computed tomography is widely used in various procedures of dental radiology. Although the doses values associated with the procedures of cone beam CT are low compared to typical values associated with dental radiology procedure in multi slices CT. However can be high compared to typical values of other techniques commonly used in dental radiology. The present scenario is a very wide range of designs of equipment and, consequently, lack of uniformity in all parameters associated with x-ray generation and geometry. In this context, this study aimed to evaluate and calculate the absorbed dose in organs and tissues relevant and estimate effective dose for different protocols with different geometries of exposure in five cone beam CT equipment. For this, a female Alderson anthropomorphic phantom, manufactured by Radiology Support Devices was used. The phantom was irradiated with 26 dosimeters LiF: Mg, Ti (TLD-100), inserted in organs and tissues along the layers forming the head and neck of the phantom. The equipment used, in this present assessment, was: i-CAT Classical, Kodak 9000 3D, Gendex GXCB 500, Sirona Orthophos X G 3D and Planmeca Pro Max 3D. The effective doses were be determined by the ICRP 103 weighting factors. The values were between 7.0 and 111.5 micro Sv, confirming the broad dose range expected due to the diversity of equipment and protocols used in each equipment. The values of effective dose per Fov size were: between 7 and 51.2 micro Sv for located Fov; between 17.6 and 52.0 micro Sv for medium Fov; and between 11.5 and 43.1 micro Sv to large Fov (maxillofacial). In obtaining the effective dose the measurements highlighted a relevance contribution of dose absorbed by the remaining organs (36%), Salivary glands (30%), thyroid (12%) and bone marrow (12%). (Author)

  5. Dynamic bowtie filter for cone-beam/multi-slice CT.

    Directory of Open Access Journals (Sweden)

    Fenglin Liu

    Full Text Available A pre-patient attenuator ("bowtie filter" or "bowtie" is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB filled in with heavy liquid and a weakly attenuating bowtie (WB immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV. The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection.

  6. Dynamic bowtie filter for cone-beam/multi-slice CT.

    Science.gov (United States)

    Liu, Fenglin; Yang, Qingsong; Cong, Wenxiang; Wang, Ge

    2014-01-01

    A pre-patient attenuator ("bowtie filter" or "bowtie") is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB) filled in with heavy liquid and a weakly attenuating bowtie (WB) immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV). The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection. PMID:25051067

  7. Automated volume of interest delineation and rendering of cone beam CT images in interventional cardiology

    Science.gov (United States)

    Lorenz, Cristian; Schäfer, Dirk; Eshuis, Peter; Carroll, John; Grass, Michael

    2012-02-01

    Interventional C-arm systems allow the efficient acquisition of 3D cone beam CT images. They can be used for intervention planning, navigation, and outcome assessment. We present a fast and completely automated volume of interest (VOI) delineation for cardiac interventions, covering the whole visceral cavity including mediastinum and lungs but leaving out rib-cage and spine. The problem is addressed in a model based approach. The procedure has been evaluated on 22 patient cases and achieves an average surface error below 2mm. The method is able to cope with varying image intensities, varying truncations due to the limited reconstruction volume, and partially with heavy metal and motion artifacts.

  8. Skeletal dosimetry in cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Walters, B. R. B.; Ding, G. X.; Kramer, R.; Kawrakow, I. [Ionizing Radiation Standards, National Research Council of Canada, Ottawa K1A OR6 (Canada); Department of Radiation Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-5671 (United States); Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Avenida Professor Luiz Freire 1000, Cidade Universitaria, CEP 50740-540, Recife, Pernambuco (Brazil); Ionizing Radiation Standards, National Research Council of Canada, Ottawa K1A OR6 (Canada)

    2009-07-15

    Cone beam computed tomography (CBCT) is a relatively new patient imaging technique that has proved invaluable for treatment target verification and patient positioning during image-guided radiotherapy (IGRT). It has been shown that CBCT results in additional dose to bone that may amount to 10% of the prescribed dose. In this study, voxelized human phantoms, FAX06 (adult female) and MAX06 (adult male), are used together with phase-space data collected from a realistic model of a CBCT imager to calculate dose in the red bone marrow (RBM) and bone surface cells (BSCs), the two organs at risk within the bone spongiosa, during simulated head and neck, chest and pelvis CBCT scans. The FAX06/MAX06 phantoms model spongiosa based on micro-CT images, filling the relevant phantom voxels, which are 0.12x0.12x0.12 cm{sup 3}, with 17x17x17 {mu}m{sup 3} microvoxels to form a micromatrix of trabecular bone and bone marrow. FAX06/MAX06 have already been implemented in an EGSnrc-based Monte Carlo code to simulate radiation transport in the phantoms; however, this study required significant modifications of the code to allow use of phase-space data from a simulated CBCT imager as a source and to allow scoring of total dose, RBM dose and BSC dose on a voxel-by-voxel basis. In simulated CBCT scans, the BSC dose is significantly greater than the dose to other organs at risk. For example, in a simulated head and neck scan, the average BSC dose is 25% higher than the average dose to eye lens ({approx}8.3 cGy), and 80% greater than the average dose to brain (5.7 cGy). Average dose to RBM, on the other hand, is typically only {approx}50% of the average BSC dose and less than the dose to other organs at risk (54% of the dose to eye lens and 76% of dose to brain in a head and neck scan). Thus, elevated dose in bone due to CBCT results in elevated BSC dose. This is potentially of concern when using CBCT in conjunction with radiotherapy treatment.

  9. Skeletal dosimetry in cone beam computed tomography.

    Science.gov (United States)

    Walters, B R B; Ding, G X; Kramer, R; Kawrakow, I

    2009-07-01

    Cone beam computed tomography (CBCT) is a relatively new patient imaging technique that has proved invaluable for treatment target verification and patient positioning during image-guided radiotherapy (IGRT). It has been shown that CBCT results in additional dose to bone that may amount to 10% of the prescribed dose. In this study, voxelized human phantoms, FAX06 (adult female) and MAX06 (adult male), are used together with phase-space data collected from a realistic model of a CBCT imager to calculate dose in the red bone marrow (RBM) and bone surface cells (BSCs), the two organs at risk within the bone spongiosa, during simulated head and neck, chest and pelvis CBCT scans. The FAX06/MAX06 phantoms model spongiosa based on micro-CT images, filling the relevant phantom voxels, which are 0.12 x 0.12 x 0.12 cm3, with 17 x 17 x 17 microm3 microvoxels to form a micromatrix of trabecular bone and bone marrow. FAX06/ MAX06 have already been implemented in an EGSnrc-based Monte Carlo code to simulate radiation transport in the phantoms; however, this study required significant modifications of the code to allow use of phase-space data from a simulated CBCT imager as a source and to allow scoring of total dose, RBM dose and BSC dose on a voxel-by-voxel basis. In simulated CBCT scans, the BSC dose is significantly greater than the dose to other organs at risk. For example, in a simulated head and neck scan, the average BSC dose is 25% higher than the average dose to eye lens (approximately 8.3 cGy), and 80% greater than the average dose to brain (5.7 cGy). Average dose to RBM, on the other hand, is typically only approximately 50% of the average BSC dose and less than the dose to other organs at risk (54% of the dose to eye lens and 76% of dose to brain in a head and neck scan). Thus, elevated dose in bone due to CBCT results in elevated BSC dose. This is potentially of concern when using CBCT in conjunction with radiotherapy treatment. PMID:19673190

  10. Skeletal dosimetry in cone beam computed tomography

    International Nuclear Information System (INIS)

    Cone beam computed tomography (CBCT) is a relatively new patient imaging technique that has proved invaluable for treatment target verification and patient positioning during image-guided radiotherapy (IGRT). It has been shown that CBCT results in additional dose to bone that may amount to 10% of the prescribed dose. In this study, voxelized human phantoms, FAX06 (adult female) and MAX06 (adult male), are used together with phase-space data collected from a realistic model of a CBCT imager to calculate dose in the red bone marrow (RBM) and bone surface cells (BSCs), the two organs at risk within the bone spongiosa, during simulated head and neck, chest and pelvis CBCT scans. The FAX06/MAX06 phantoms model spongiosa based on micro-CT images, filling the relevant phantom voxels, which are 0.12x0.12x0.12 cm3, with 17x17x17 μm3 microvoxels to form a micromatrix of trabecular bone and bone marrow. FAX06/MAX06 have already been implemented in an EGSnrc-based Monte Carlo code to simulate radiation transport in the phantoms; however, this study required significant modifications of the code to allow use of phase-space data from a simulated CBCT imager as a source and to allow scoring of total dose, RBM dose and BSC dose on a voxel-by-voxel basis. In simulated CBCT scans, the BSC dose is significantly greater than the dose to other organs at risk. For example, in a simulated head and neck scan, the average BSC dose is 25% higher than the average dose to eye lens (∼8.3 cGy), and 80% greater than the average dose to brain (5.7 cGy). Average dose to RBM, on the other hand, is typically only ∼50% of the average BSC dose and less than the dose to other organs at risk (54% of the dose to eye lens and 76% of dose to brain in a head and neck scan). Thus, elevated dose in bone due to CBCT results in elevated BSC dose. This is potentially of concern when using CBCT in conjunction with radiotherapy treatment.

  11. Cone Beam Breast CT with a Flat Panel Detector- Simulation, Implementation and Demonstration.

    Science.gov (United States)

    Shaw, Chris; Chen, Lingyun; Altunbas, Mastafa; Tu, Shuju; Wang, Tian-Peng; Lai, Chao-Jen; Cheenu Kappadath, S; Meng, Yang; Liu, Xinming

    2005-01-01

    This paper describes our experiences in the simulation, implementation and application of a flat panel detector based cone beam computed tomography (CT) imaging system for dedicated 3-D breast imaging. In our simulation study, the breast was analytically modeled as a cylinder of breast tissue loosely molded into cylindrical shape with embedded soft tissue masses and calcifications. Attenuation coefficients for various types of breast tissue, soft tissue masses and calcifications were estimated for various kVp's to generate simulated image signals. Projection images were computed to incorporate x-ray attenuation, geometric magnification, x-ray detection, detector blurring, image pixelization and digitization. Based on the x-ray kVp/filtration used, transmittance through the phantom, detective quantum efficiency (DQE), exposure level, and imaging geometry, the photon fluence was estimated and used to compute the quantum noise level on a pixel-by-pixel basis for various dose levels at the isocenter. This estimated noise level was then used with a random number generator to generate and add a fluctuation component to the noiseless transmitted image signal. The noise carrying projection images were then convolved with a Gaussian-like kernel, computed from measured 1-D line spread function (LSF) to simulate detector blurring. Additional 2-D Gaussian filtering was applied to the projection images and tested for improving the detection of soft tissue masses and calcifications in the reconstructed images. Reconstruction was performed using the Feldkamp filtered backprojection algorithm. All simulations were performed on a 24 PC (2.4 GHz Dual-Xeon CPU) cluster with MPI parallel programming. PMID:17281227

  12. Filtered region of interest cone-beam rotational angiography

    International Nuclear Information System (INIS)

    Purpose: Cone-beam rotational angiography (CBRA) is widely used in the modern clinical settings. In a number of procedures, the area of interest is often considerably smaller than the field of view (FOV) of the detector, subjecting the patient to potentially unnecessary x-ray dose. The authors therefore propose a filter-based method to reduce the dose in the regions of low interest, while supplying high image quality in the region of interest (ROI). Methods: For such procedures, the authors propose a method of filtered region of interest (FROI)-CBRA. In the authors' approach, a gadolinium filter with a circular central opening is placed into the x-ray beam during image acquisition. The central region is imaged with high contrast, while peripheral regions are subjected to a substantial lower intensity and dose through beam filtering. The resulting images contain a high contrast/intensity ROI, as well as a low contrast/intensity peripheral region, and a transition region in between. To equalize the two regions' intensities, the first projection of the acquisition is performed with and without the filter in place. The equalization relationship, based on Beer's law, is established through linear regression using corresponding filtered and nonfiltered data. The transition region is equalized based on radial profiles. Results: Evaluations in 2D and 3D show no visible difference between conventional FROI-CBRA projection images and reconstructions in the ROI. CNR evaluations show similar image quality in the ROI, with a reduced CNR in the reconstructed peripheral region. In all filtered projection images, the scatter fraction inside the ROI was reduced. Theoretical and experimental dose evaluations show a considerable dose reduction; using a ROI half the original FOV reduces the dose by 60% for the filter thickness of 1.29 mm. Conclusions: These results indicate the potential of FROI-CBRA to reduce the dose to the patient while supplying the physician with the desired

  13. CT thermometry for cone-beam CT guided ablation

    Science.gov (United States)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  14. Analytical modeling and 3D finite element simulation of line edge roughness in scatterometry

    OpenAIRE

    Kato, A; Burger, S.; Scholze, F.

    2012-01-01

    The influence of edge roughness in angle resolved scatterometry at periodically structured surfaces is investigated. A good description of the radiation interaction with structured surfaces is crucial for the understanding of optical imaging processes like, e.g. in photolithography. We compared an analytical 2D model and a numerical 3D simulation with respect to the characterization of 2D diffraction of a line grating involving structure roughness. The results show a remarkably high agreement...

  15. Semi-analytical and 3D CFD DPAL modeling: feasibility of supersonic operation

    Science.gov (United States)

    Rosenwaks, Salman; Barmashenko, Boris D.; Waichman, Karol

    2014-02-01

    The feasibility of operating diode pumped alkali lasers (DPALs) with supersonic expansion of the gaseous laser mixture, consisting of alkali atoms, He atoms and (frequently) hydrocarbon molecules, is explored. Taking into account fluid dynamics and kinetic processes, both semi-analytical and three-dimensional (3D) computational fluid dynamics (CFD) modeling of supersonic DPALs is reported. Using the semi-analytical model, the operation of supersonic DPALs is compared with that measured and modeled in subsonic lasers for both Cs and K. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. Using the 3D CFD model, the flow pattern and spatial distributions of the pump and laser intensities in the resonator are calculated for Cs DPALs. Comparison between the semi-analytical and 3D CFD models for Cs shows that the latter predicts much larger maximum achievable laser power than the former. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.

  16. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning

    Science.gov (United States)

    Thomas, T. Hannah Mary; Devakumar, D.; Purnima, S.; Ravindran, B. Paul

    2009-04-01

    Potential areas where megavoltage computed tomography (MVCT) could be used are second- and third-phase treatment planning in 3D conformal radiotherapy and IMRT, adaptive radiation therapy, single fraction palliative treatment and for the treatment of patients with metal prostheses. A feasibility study was done on using MV cone beam CT (CBCT) images generated by proprietary 3D reconstruction software based on the FDK algorithm for megavoltage treatment planning. The reconstructed images were converted to a DICOM file set. The pixel values of megavoltage cone beam computed tomography (MV CBCT) were rescaled to those of kV CT for use with a treatment planning system. A calibration phantom was designed and developed for verification of geometric accuracy and CT number calibration. The distance measured between two marker points on the CBCT image and the physical dimension on the phantom were in good agreement. Point dose verification for a 10 cm × 10 cm beam at a gantry angle of 0° and SAD of 100 cm were performed for a 6 MV beam for both kV and MV CBCT images. The point doses were found to vary between ±6.1% of the dose calculated from the kV CT image. The isodose curves for 6 MV for both kV CT and MV CBCT images were within 2% and 3 mm distance-to-agreement. A plan with three beams was performed on MV CBCT, simulating a treatment plan for cancer of the pituitary. The distribution obtained was compared with those corresponding to that obtained using the kV CT. This study has shown that treatment planning with MV cone beam CT images is feasible.

  17. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, T Hannah Mary; Purnima, S; Ravindran, B Paul [Department of Radiotherapy, Christian Medical College, Vellore (India); Devakumar, D [Department of Nuclear Medicine, Christian Medical College, Vellore (India)], E-mail: paul@cmcvellore.ac.in

    2009-04-07

    Potential areas where megavoltage computed tomography (MVCT) could be used are second- and third-phase treatment planning in 3D conformal radiotherapy and IMRT, adaptive radiation therapy, single fraction palliative treatment and for the treatment of patients with metal prostheses. A feasibility study was done on using MV cone beam CT (CBCT) images generated by proprietary 3D reconstruction software based on the FDK algorithm for megavoltage treatment planning. The reconstructed images were converted to a DICOM file set. The pixel values of megavoltage cone beam computed tomography (MV CBCT) were rescaled to those of kV CT for use with a treatment planning system. A calibration phantom was designed and developed for verification of geometric accuracy and CT number calibration. The distance measured between two marker points on the CBCT image and the physical dimension on the phantom were in good agreement. Point dose verification for a 10 cm x 10 cm beam at a gantry angle of 0{sup 0} and SAD of 100 cm were performed for a 6 MV beam for both kV and MV CBCT images. The point doses were found to vary between {+-}6.1% of the dose calculated from the kV CT image. The isodose curves for 6 MV for both kV CT and MV CBCT images were within 2% and 3 mm distance-to-agreement. A plan with three beams was performed on MV CBCT, simulating a treatment plan for cancer of the pituitary. The distribution obtained was compared with those corresponding to that obtained using the kV CT. This study has shown that treatment planning with MV cone beam CT images is feasible.

  18. X-ray cone beam CT system calibration

    Science.gov (United States)

    Sire, Pascal; Rizo, Philippe; Martin, M.

    1993-12-01

    Recently x-ray cone beam computed tomography (CT) has become of interest for nondestructive testing (NDT) of advanced materials. Such a technique takes advantage of the cone beam geometry, to reduce the acquisition time and increase the resolution. Performances of CT systems rely mainly on geometric precision and measurement quality. Inaccurate geometry or incorrect data produce artifacts and blurring which limit the spatial resolution. A precise geometric calibration procedure is required and some corrections must be applied to the raw attenuation data in order to obtain accurate measurements. An x-ray cone beam CT system has been developed at the LETI. This machine was designed to control small parts limited to a few centimeters, with a high spatial resolution close to 30 microns. This paper introduces the machine setup and describes the calibration computing resources involved in the system. Then, we discuss the performances on experimental data.

  19. Upper airway alterations/abnormalities in a case series of obstructive sleep apnea patients identified with cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, Y.; Shintaku, W.H.; Clark, G.T. [Orofacial Pain/Oral Medicine Center, Div. of Diagnostic Sciences, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Enciso, R. [Div. of Craniofacial Sciences and Therapeutics, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Ogawa, T. [Dept. of Fixed Prosthodontic Dentistry, Tsurumi Univ., School of Dental Medicine, Tsurumi (Japan)

    2007-06-15

    There are many factors that influence the configuration of the upper airway and may contribute to the development of obstructive sleep apnea (OSA). This paper presents a series of 12 consecutive OSA cases where various upper airway alteration/abnormalities were identified using 3D anatomic reconstructions generated from cone-beam CT (CBCT) images. Some cases exhibited more than one type of abnormality and below we describe each of the six types identified with CBCT in this case series. (orig.)

  20. The Maintenance Of 3-D Scene Databases Using The Analytical Imagery Matching System (Aims)

    Science.gov (United States)

    Hovey, Stanford T.

    1987-06-01

    The increased demand for multi-resolution displays of simulated scene data for aircraft training or mission planning has led to a need for digital databases of 3-dimensional topography and geographically positioned objects. This data needs to be at varying resolutions or levels of detail as well as be positionally accurate to satisfy close-up and long distance scene views. The generation and maintenance processes for this type of digital database requires that relative and absolute spatial positions of geographic and cultural features be carefully controlled in order for the scenes to be representative and useful for simulation applications. Autometric, Incorporated has designed a modular Analytical Image Matching System (AIMS) which allows digital 3-D terrain feature data to be derived from cartographic and imagery sources by a combination of automatic and man-machine techniques. This system provides a means for superimposing the scenes of feature information in 3-D over imagery for updating. It also allows for real-time operator interaction between a monoscopic digital imagery display, a digital map display, a stereoscopic digital imagery display and automatically detected feature changes for transferring 3-D data from one coordinate system's frame of reference to another for updating the scene simulation database. It is an advanced, state-of-the-art means for implementing a modular, 3-D scene database maintenance capability, where original digital or converted-to-digital analog source imagery is used as a basic input to perform accurate updating.

  1. Fast myocardial strain estimation from 3D ultrasound through elastic image registration with analytic regularization

    Science.gov (United States)

    Chakraborty, Bidisha; Heyde, Brecht; Alessandrini, Martino; D'hooge, Jan

    2016-04-01

    Image registration techniques using free-form deformation models have shown promising results for 3D myocardial strain estimation from ultrasound. However, the use of this technique has mostly been limited to research institutes due to the high computational demand, which is primarily due to the computational load of the regularization term ensuring spatially smooth cardiac strain estimates. Indeed, this term typically requires evaluating derivatives of the transformation field numerically in each voxel of the image during every iteration of the optimization process. In this paper, we replace this time-consuming step with a closed-form solution directly associated with the transformation field resulting in a speed up factor of ~10-60,000, for a typical 3D B-mode image of 2503 and 5003 voxels, depending upon the size and the parametrization of the transformation field. The performance of the numeric and the analytic solutions was contrasted by computing tracking and strain accuracy on two realistic synthetic 3D cardiac ultrasound sequences, mimicking two ischemic motion patterns. Mean and standard deviation of the displacement errors over the cardiac cycle for the numeric and analytic solutions were 0.68+/-0.40 mm and 0.75+/-0.43 mm respectively. Correlations for the radial, longitudinal and circumferential strain components at end-systole were 0.89, 0.83 and 0.95 versus 0.90, 0.88 and 0.92 for the numeric and analytic regularization respectively. The analytic solution matched the performance of the numeric solution as no statistically significant differences (p>0.05) were found when expressed in terms of bias or limits-of-agreement.

  2. Dose optimisation for intraoperative cone-beam flat-detector CT in paediatric spinal surgery

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Asger Greval [Region of Northern Jutland, Department of X-ray Physics, Broenderslev (Denmark); Eiskjaer, Soeren; Kaspersen, Jon [Aalborg University Hospital, The Spinal Unit, Department of Orthopaedic Surgery, Aalborg (Denmark)

    2012-08-15

    During surgery for spinal deformities, accurate placement of pedicle screws may be guided by intraoperative cone-beam flat-detector CT. The purpose of this study was to identify appropriate paediatric imaging protocols aiming to reduce the radiation dose in line with the ALARA principle. Using O-arm registered (Medtronic, Inc.), three paediatric phantoms were employed to measure CTDI{sub w} doses with default and lowered exposure settings. Images from 126 scans were evaluated by two spinal surgeons and scores were compared (Kappa statistics). Effective doses were calculated. The recommended new low-dose 3-D spine protocols were then used in 15 children. The lowest acceptable exposure as judged by image quality for intraoperative use was 70 kVp/40 mAs, 70 kVp/80 mAs and 80 kVp/40 mAs for the 1-, 5- and 12-year-old-equivalent phantoms respectively (kappa = 0,70). Optimised dose settings reduced CTDI{sub w} doses 89-93%. The effective dose was 0.5 mSv (91-94,5% reduction). The optimised protocols were used clinically without problems. Radiation doses for intraoperative 3-D CT using a cone-beam flat-detector scanner could be reduced at least 89% compared to manufacturer settings and still be used to safely navigate pedicle screws. (orig.)

  3. Accuracy and repeatability of cone-beam computed tomography (CBCT) measurements used in the determination of facial indices in the laboratory setup.

    NARCIS (Netherlands)

    Moerenhout, B.A.; Gelaude, F.; Swennen, G.R.; Casselman, J.W.; Sloten, J. van der; Mommaerts, M.Y.

    2009-01-01

    AIM: To assess the three dimensional (3D) surface accuracy of a phantom's face acquired from a cone-beam computed tomography (CBCT) scan and to determine the reliability of selected cephalometric measurements performed with Maxilim software (Medicim N.V., Mechelen, Belgium). MATERIAL AND METHODS: A

  4. A Novel Region-Growing Based Semi-Automatic Segmentation Protocol for Three-Dimensional Condylar Reconstruction Using Cone Beam Computed Tomography (CBCT)

    NARCIS (Netherlands)

    Xi, Tong; Schreurs, Ruud; Heerink, Wout J.; Berge, Stefaan J.; Maal, Thomas J. J.

    2014-01-01

    Objective: To present and validate a semi-automatic segmentation protocol to enable an accurate 3D reconstruction of the mandibular condyles using cone beam computed tomography (CBCT). Materials and Methods: Approval from the regional medical ethics review board was obtained for this study. Bilatera

  5. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT) Part I. On subjective image quality

    NARCIS (Netherlands)

    X. Liang; R. Jacobs; B. Hassan; L.M. Li; R. Pauwels; L. Corpas; P.C. Souza; W. Martens; A. Alonso; I. Lambrichts

    2010-01-01

    Aims: To compare image quality and visibility of anatomical structures in the mandible between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: One dry mandible was scanned with five CBCT scanners (Accuitomo 3D, i-CAT, NewTom 3G, Galileo

  6. A comparative study of high resolution cone beam X-ray tomography and synchrotron tomography applied to Fe- and Al-alloys

    OpenAIRE

    Kastner, Johann; Harrer, Bernhard; Requena, Guillermo; Brunke, Oliver

    2010-01-01

    X-ray computed tomography (XCT) has become a very important method for non-destructive 3D-characterization and evaluation of materials. Due to measurement speed and quality, XCT systems with cone beam geometry and matrix detectors have gained general acceptance. Continuous improvements in the quality and performance of X-ray tubes and XCT devices have led to cone beam CT systems that can now achieve spatial resolutions down to 1 μm and even below. However, the polychromatic nature of the sour...

  7. Analytical modeling and 3D finite element simulation of line edge roughness in scatterometry

    CERN Document Server

    Kato, A; Scholze, F

    2012-01-01

    The influence of edge roughness in angle resolved scatterometry at periodically structured surfaces is investigated. A good description of the radiation interaction with structured surfaces is crucial for the understanding of optical imaging processes like, e.g. in photolithography. We compared an analytical 2D model and a numerical 3D simulation with respect to the characterization of 2D diffraction of a line grating involving structure roughness. The results show a remarkably high agreement. The diffraction intensities of a rough structure can therefore be estimated using the numerical simulation result of an undisturbed structure and an analytically derived correction function. This work allows to improve scatterometric results for the case of practically relevant 2D structures.

  8. A multiscale filter for noise reduction of low-dose cone beam projections

    Science.gov (United States)

    Yao, Weiguang; Farr, Jonathan B.

    2015-08-01

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, \\text{exp}≤ft(-{{x}2}/2σ f2\\right) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of {σf} , which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ f2 is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels.

  9. A multiscale filter for noise reduction of low-dose cone beam projections.

    Science.gov (United States)

    Yao, Weiguang; Farr, Jonathan B

    2015-08-21

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, exp(-x2/2σ(2)(f)) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of σ(f), which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ(2)(f)) is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels. PMID:26247344

  10. Cone beam computed tomography radiation dose and image quality assessments.

    Science.gov (United States)

    Lofthag-Hansen, Sara

    2010-01-01

    Diagnostic radiology has undergone profound changes in the last 30 years. New technologies are available to the dental field, cone beam computed tomography (CBCT) as one of the most important. CBCT is a catch-all term for a technology comprising a variety of machines differing in many respects: patient positioning, volume size (FOV), radiation quality, image capturing and reconstruction, image resolution and radiation dose. When new technology is introduced one must make sure that diagnostic accuracy is better or at least as good as the one it can be expected to replace. The CBCT brand tested was two versions of Accuitomo (Morita, Japan): 3D Accuitomo with an image intensifier as detector, FOV 3 cm x 4 cm and 3D Accuitomo FPD with a flat panel detector, FOVs 4 cm x 4 cm and 6 cm x 6 cm. The 3D Accuitomo was compared with intra-oral radiography for endodontic diagnosis in 35 patients with 46 teeth analyzed, of which 41 were endodontically treated. Three observers assessed the images by consensus. The result showed that CBCT imaging was superior with a higher number of teeth diagnosed with periapical lesions (42 vs 32 teeth). When evaluating 3D Accuitomo examinations in the posterior mandible in 30 patients, visibility of marginal bone crest and mandibular canal, important anatomic structures for implant planning, was high with good observer agreement among seven observers. Radiographic techniques have to be evaluated concerning radiation dose, which requires well-defined and easy-to-use methods. Two methods: CT dose index (CTDI), prevailing method for CT units, and dose-area product (DAP) were evaluated for calculating effective dose (E) for both units. An asymmetric dose distribution was revealed when a clinical situation was simulated. Hence, the CTDI method was not applicable for these units with small FOVs. Based on DAP values from 90 patient examinations effective dose was estimated for three diagnostic tasks: implant planning in posterior mandible and

  11. Filtered region of interest cone-beam rotational angiography

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, Sebastian; Noeel, Peter B.; Walczak, Alan M.; Hoffmann, Kenneth R. [Department of Mechanical Engineering, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States); Department of Neurosurgery, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States) and Toshiba Stroke Research Center, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States); Department of Neurosurgery, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States); Department of Computer Science, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States) and Toshiba Stroke Research Center, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States); Department of Neurosurgery, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 and Toshiba Stroke Research Center, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States); Department of Mechanical Engineering, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States); Department of Neurosurgery, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States); Department of Computer Science, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States) and Toshiba Stroke Research Center, SUNY at Buffalo, 3435 Main Street, Buffalo, New York 14214 (United States)

    2010-02-15

    Purpose: Cone-beam rotational angiography (CBRA) is widely used in the modern clinical settings. In a number of procedures, the area of interest is often considerably smaller than the field of view (FOV) of the detector, subjecting the patient to potentially unnecessary x-ray dose. The authors therefore propose a filter-based method to reduce the dose in the regions of low interest, while supplying high image quality in the region of interest (ROI). Methods: For such procedures, the authors propose a method of filtered region of interest (FROI)-CBRA. In the authors' approach, a gadolinium filter with a circular central opening is placed into the x-ray beam during image acquisition. The central region is imaged with high contrast, while peripheral regions are subjected to a substantial lower intensity and dose through beam filtering. The resulting images contain a high contrast/intensity ROI, as well as a low contrast/intensity peripheral region, and a transition region in between. To equalize the two regions' intensities, the first projection of the acquisition is performed with and without the filter in place. The equalization relationship, based on Beer's law, is established through linear regression using corresponding filtered and nonfiltered data. The transition region is equalized based on radial profiles. Results: Evaluations in 2D and 3D show no visible difference between conventional FROI-CBRA projection images and reconstructions in the ROI. CNR evaluations show similar image quality in the ROI, with a reduced CNR in the reconstructed peripheral region. In all filtered projection images, the scatter fraction inside the ROI was reduced. Theoretical and experimental dose evaluations show a considerable dose reduction; using a ROI half the original FOV reduces the dose by 60% for the filter thickness of 1.29 mm. Conclusions: These results indicate the potential of FROI-CBRA to reduce the dose to the patient while supplying the physician with

  12. Laser processes and analytics for high power 3D battery materials

    Science.gov (United States)

    Pfleging, W.; Zheng, Y.; Mangang, M.; Bruns, M.; Smyrek, P.

    2016-03-01

    Laser processes for cutting, modification and structuring of energy storage materials such as electrodes, separator materials and current collectors have a great potential in order to minimize the fabrication costs and to increase the performance and operational lifetime of high power lithium-ion-batteries applicable for stand-alone electric energy storage devices and electric vehicles. Laser direct patterning of battery materials enable a rather new technical approach in order to adjust 3D surface architectures and porosity of composite electrode materials such as LiCoO2, LiMn2O4, LiFePO4, Li(NiMnCo)O2, and Silicon. The architecture design, the increase of active surface area, and the porosity of electrodes or separator layers can be controlled by laser processes and it was shown that a huge impact on electrolyte wetting, lithium-ion diffusion kinetics, cell life-time and cycling stability can be achieved. In general, the ultrafast laser processing can be used for precise surface texturing of battery materials. Nevertheless, regarding cost-efficient production also nanosecond laser material processing can be successfully applied for selected types of energy storage materials. A new concept for an advanced battery manufacturing including laser materials processing is presented. For developing an optimized 3D architecture for high power composite thick film electrodes electrochemical analytics and post mortem analytics using laser-induced breakdown spectroscopy were performed. Based on mapping of lithium in composite electrodes, an analytical approach for studying chemical degradation in structured and unstructured lithium-ion batteries will be presented.

  13. Circle plus Partial Helical Scan Scheme for a Flat Panel Detector-Based Cone Beam Breast X-Ray CT

    OpenAIRE

    Dong Yang; Ruola Ning; Weixing Cai

    2009-01-01

    Flat panel detector-based cone beam breast CT (CBBCT) can provide 3D image of the scanned breast with 3D isotropic spatial resolution, overcoming the disadvantage of the structure superimposition associated with X-ray projection mammography. It is very difficult for Mammography to detect a small carcinoma (a few millimeters in size) when the tumor is occult or in dense breast. CBBCT featured with circular scan might be the most desirable mode in breast imaging due to its simple geometrical co...

  14. The use of cone-beam computed tomography in an orthodontic department in between research and daily clinic.

    Science.gov (United States)

    Cattaneo, Paolo M; Melsen, Birte

    2008-01-01

    A correct orthodontic diagnosis needs to be based on accurate images of the craniofacial region and is crucial for the development of a valid treatment plan. A cone-beam computed tomography (CBCT) scanner allows 3D imaging of the craniofacial complex. CBCT scanners represent a significant advantage in imaging capabilities for dentistry and orthodontics, replacing conventional 2D radiographic images with 3D data sets and only a small increase in radiation. The present study surveys the rationale, advantages, and disadvantages of the available CBCT appliances and presents answers to questions often asked in relation to this technology.

  15. Composite cone-beam filtered backprojection algorithm based on nutating line

    Institute of Scientific and Technical Information of China (English)

    WANG Yu; OU Zong-ying; SU Tie-ming; WANG Feng

    2006-01-01

    The FDK algorithm is the most popular cone beam algorithm in the medical and industrial imaging field.Due to data insufficiency acquired from a circular trajectory,the images reconstructed by the FDK algorithm suffer from the intensity droping with increasing cone angle.To overcome the drawback,a modified FDK algorithm is presented by convert the 1D ramp filtering direction from along the horizontal lines to along the nutating lines based on the result of Turbell.Unlike Turbell's method,there is no need for our algorithm to rebin the cone-beam data into 3D parallel-beam data before reconstructing.Moreover pre-weighting of the projection data is corrected by compensating for the cone angle effect.In addition,another correction term derived from the result of Hu is also induced into our algorithm.The simulation experiments demonstrate that the final algorithm can suppress the intensity drop associated with the FDK algorithm.

  16. Ring artifacts removal via spatial sparse representation in cone beam CT

    Science.gov (United States)

    Li, Zhongyuan; Li, Guang; Sun, Yi; Luo, Shouhua

    2016-03-01

    This paper is about the ring artifacts removal method in cone beam CT. Cone beam CT images often suffer from disturbance of ring artifacts which caused by the non-uniform responses of the elements in detectors. Conventional ring artifacts removal methods focus on the correlation of the elements and the ring artifacts' structural characteristics in either sinogram domain or cross-section image. The challenge in the conventional methods is how to distinguish the artifacts from the intrinsic structures; hence they often give rise to the blurred image results due to over processing. In this paper, we investigate the characteristics of the ring artifacts in spatial space, different from the continuous essence of 3D texture feature of the scanned objects, the ring artifacts are displayed discontinuously in spatial space, specifically along z-axis. Thus we can easily recognize the ring artifacts in spatial space than in cross-section. As a result, we choose dictionary representation for ring artifacts removal due to its high sensitivity to structural information. We verified our theory both in spatial space and coronal-section, the experimental results demonstrate that our methods can remove the artifacts efficiently while maintaining image details.

  17. Comparison of cone beam artifacts reduction: two pass algorithm vs TV-based CS algorithm

    Science.gov (United States)

    Choi, Shinkook; Baek, Jongduk

    2015-03-01

    In a cone beam computed tomography (CBCT), the severity of the cone beam artifacts is increased as the cone angle increases. To reduce the cone beam artifacts, several modified FDK algorithms and compressed sensing based iterative algorithms have been proposed. In this paper, we used two pass algorithm and Gradient-Projection-Barzilai-Borwein (GPBB) algorithm to reduce the cone beam artifacts, and compared their performance using structural similarity (SSIM) index. In two pass algorithm, it is assumed that the cone beam artifacts are mainly caused by extreme-density(ED) objects, and therefore the algorithm reproduces the cone beam artifacts(i.e., error image) produced by ED objects, and then subtract it from the original image. GPBB algorithm is a compressed sensing based iterative algorithm which minimizes an energy function for calculating the gradient projection with the step size determined by the Barzilai- Borwein formulation, therefore it can estimate missing data caused by the cone beam artifacts. To evaluate the performance of two algorithms, we used testing objects consisting of 7 ellipsoids separated along the z direction and cone beam artifacts were generated using 30 degree cone angle. Even though the FDK algorithm produced severe cone beam artifacts with a large cone angle, two pass algorithm reduced the cone beam artifacts with small residual errors caused by inaccuracy of ED objects. In contrast, GPBB algorithm completely removed the cone beam artifacts and restored the original shape of the objects.

  18. Practical analytical solutions for benchmarking of 2-D and 3-D geodynamic Stokes problems with variable viscosity

    OpenAIRE

    Popov, I. Yu.; Lobanov, I. S.; POPOV S.I.; Popov, A. I.; Gerya, T. V.

    2014-01-01

    Geodynamic modeling is often related with challenging computations involving solution of the Stokes and continuity equations under the condition of highly variable viscosity. Based on a new analytical approach we have developed particular analytical solutions for 2-D and 3-D incompressible Stokes flows with both linearly and exponentially variable viscosity. We demonstrate how these particular solutions can be converted into 2-D and 3-D test problems suitable for...

  19. Analytical models of icosahedral shells for 3D optical imaging of viruses

    CERN Document Server

    Jafarpour, Aliakbar

    2014-01-01

    A modulated icosahedral shell with an inclusion is a concise description of many viruses, including recently-discovered large double-stranded DNA ones. Many X-ray scattering patterns of such viruses show major polygonal fringes, which can be reproduced in image reconstruction with a homogeneous icosahedral shell. A key question regarding a low-resolution reconstruction is how to introduce further changes to the 3D profile in an efficient way with only a few parameters. Here, we derive and compile different analytical models of such an object with consideration of practical optical setups and typical structures of such viruses. The benefits of such models include 1) inherent filtering and suppressing different numerical errors of a discrete grid, 2) providing a concise and meaningful set of descriptors for feature extraction in high-throughput classification/sorting and higher-resolution cumulative reconstructions, 3) disentangling (physical) resolution from (numerical) discretization step and having a vector ...

  20. Pulsar average waveforms and hollow cone beam models

    Science.gov (United States)

    Backer, D. C.

    1975-01-01

    An analysis of pulsar average waveforms at radio frequencies from 40 MHz to 15 GHz is presented. The analysis is based on the hypothesis that the observer sees one cut of a hollow-cone beam pattern and that stationary properties of the emission vary over the cone. The distributions of apparent cone widths for different observed forms of the average pulse profiles (single, double/unresolved, double/resolved, triple and multiple) are in modest agreement with a model of a circular hollow-cone beam with random observer-spin axis orientation, a random cone axis-spin axis alignment, and a small range of physical hollow-cone parameters for all objects.

  1. Cone beam CT in radiology; DVT in der Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, Florian [ALB FILS KLINIKEN GmbH, Klinik am Eichert, Goeppingen (Germany). Inst. fuer Radiologie

    2013-06-15

    Cone beam computed tomography (CBCT) is a cross-sectional X-ray modality using an imaging system with cone-beam geometry. Unlike CT, the data set is acquired in a single circulation of a C-arm shaped tube-detector unit. Image characteristics vs. exposure dose ratio is similar to conventional CT, but varies widely depending on the CBVT device and the selected settings, and is limited to low dose/high noise applications. Up to now, only few data is available to estimate the clinical value of CBCT. Nevertheless, the use of CBCT is increasing drastically in the recent years, especially in the dental and ENT diagnostic field. For this reason the European Commission recently published guidelines concerning the clinical application of CBCT. These guidelines, as well as clinically relevant technical features of CBCT and examples of the most frequent dental applications are presented in the following article. (orig.)

  2. Reduced Circular Sinusoidal Cone-beam CT for Industrial Applications

    OpenAIRE

    XIA, DAN; Cho, Seungryong; Pan, Xiaochuan

    2009-01-01

    Cone-beam computed tomography (CBCT) plays an important role in industrial, nondestructive testing applications not to mention in medical applications. Circular scanning configuration is widely used for its mechanical simplicity and for readily available and efficient reconstruction algorithms based on the Feldkamp algorithm. However, due to the lack of data sufficiency, circular CBCT does not guarantee image accuracy, and is not free from image artifacts related to the cone-angle and axial v...

  3. Use of dentomaxillofacial cone beam computed tomography in dentistry

    OpenAIRE

    KAMBUROĞLU, Kıvanç

    2015-01-01

    Cone-beam computed tomography (CBCT) was developed and introduced specifically for dento-maxillofacial imaging. CBCT possesses a number of advantages over medical CT in clinical practice, such as lower effective radiation doses, lower costs, fewer space requirements, easier image acquisition, and interactive display modes such as mutiplanar reconstruction that are applicable to maxillofacial imaging. However, the disadvantages of CBCT include higher doses than two-dimensional imaging; the ina...

  4. Anatomical structure of lingual foramen in cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ki, Min Woo; Hwang, Eui Hwan; Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2004-07-15

    To evaluate whether cone beam computed tomography can depict the distribution, position, frequency, relative vertical dimension, and the diameter of the lingual foramen and direction of lingual bone canal. Cone beam computed tomography of mandible was performed on 25 males and 25 females with no history of any orthodontic treatments or any other dental surgeries. A statistical comparison was done on the mean values of males and females. In the location and distribution of lingual foramina, median lingual foramen was found in all subjects and lateral lingual foramen in 58%. In the lateral lingual foramen, bilateral type was found in 28% and unilateral type in 30%. In the number of lingual foramina, median lingual foramen had two foramina and lateral lingual foramen had one foramen, mostly. In the relative mean vertical dimension of lingual foramina, median lingual foramen was 0.03 {+-} 0.08, and both lateral lingual foramina was 0.20 {+-} 0.04. The mean diameter of lingual foramina, median lingual foramen was 0.9 mm {+-} 0.28, right lateral lingual foramen was 0.92 mm {+-} 0.23, and left lateral lingual foramen was 0.88 mm {+-} 0.27. The most frequent direction of the lingual bone canals, median lingual bone canal proceeded in anteroinferior direction and lateral lingual bone canal in anterosuperolateral direction. Cone beam computed tomography can be helpful for surgery and implantation on the mandibular area. Radiologist should be aware of this anatomical feature and its possible implications.

  5. Current status of dental caries diagnosis using cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Seok; Ahn, Jin Soo; Kwon, Ho Beom; Lee, Seung Pyo [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2011-06-15

    The purpose of this article is to review the current status of dental caries diagnosis using cone beam computed tomography (CBCT). An online PubMed search was performed to identify studies on caries research using CBCT. Despite its usefulness, there were inherent limitations in the detection of caries lesions through conventional radiograph mainly due to the two-dimensional (2D) representation of caries lesions. Several efforts were made to investigate the three-dimensional (3D) image of lesion, only to gain little popularity. Recently, CBCT was introduced and has been used for diagnosis of caries in several reports. Some of them maintained the superiority of CBCT systems, however it is still under controversies. The CBCT systems are promising, however they should not be considered as a primary choice of caries diagnosis in everyday practice yet. Further studies under more standardized condition should be performed in the near future.

  6. Role of C-arm cone-beam CT in chemoembolization for hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Cheol [Dept. of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul (Korea, Republic of)

    2015-02-15

    With the advent of C-arm cone-beam computed tomography (CBCT), minimally-invasive procedures in the angiography suite made a new leap beyond the limitations of 2-dimensional (D) angiography alone. C-arm CBCT can help interventional radiologists in several ways with the treatment of hepatocellular carcinoma (HCC); visualization of small tumors and tumor-feeding arteries, identification of occult lesion and 3D configuration of tortuous hepatic arteries, assurance of completeness of chemoembolization, suggestion of presence of extrahepatic collateral arteries supplying HCCs, and prevention of nontarget embolization. With more improvements in the technology, C-arm CBCT may be essential in all kinds of interventional procedures in the near future.

  7. Dose indices in dental cone beam CT and correlation with dose–area product

    Science.gov (United States)

    Araki, K; Patil, S; Endo, A; Okano, T

    2013-01-01

    Objectives: In the 2011 project “Safety and efficacy of a new and emerging dental X-ray modality (SEDENTEXCT)”, it was suggested that dose index (DI) and dose–area product (DAP) could be easily measured and used as diagnostic reference levels (DRLs), which would help in the management of radiation doses to patients in optimum exposure settings. Such indices could be directly related to effective dose. The purposes of this study, therefore, were to measure and calculate the DI and DAP in cone beam CT (CBCT) machines and to evaluate the correlation between the two. Methods: Dose measurements were performed on three-dimensional cone beam CT (3D-CBCT) machines [3D Accuitomo (J. Morita Mfg. Corp., Kyoto, Japan), Veraviewepocs (J. Morita Mfg. Corp.) and CS9300 (Carestream, New York, NY)] by exposing a cylindrical poly-methyl methacrylate (PMMA) phantom using a CT ionization chamber. These dose measurements were used for the calculation of Dose Indices 1 and 2, according to the methodology suggested by SEDENTEXCT. The DAP was measured using a DAP meter that was attached to the detector to cover the entire irradiated area. Results: The DI1 ranged from 53.6 mR to 216.6 mR, the DI2 ranged from 77.1 mR to 325.0 mR and the DAP ranged from 101.1 mGy cm2 to 457.9 mGy cm2, depending on the machines and exposure settings. Index 2 had a better correlation with the DAP than Index 1. Conclusions: The DIs and DAP proposed by SEDENTEXCT may be useful for establishing DRLs for dental CBCT machines; however, further studies are necessary to determine which of these indices provide accurate dose estimates proportionally relating to the effective dose. PMID:23520392

  8. An analytical algorithm for 3D magnetic field mapping of a watt balance magnet

    CERN Document Server

    Fu, Zhuang; Li, Zhengkun; Zhao, Wei; Han, Bing; Lu, Yunfeng; Li, Shisong

    2015-01-01

    A yoke-based permanent magnet, which has been employed in many watt balances at national metrology institutes, is supposed to generate strong and uniform magnetic field in an air gap in the radial direction. However, in reality the fringe effect due to the finite height of the air gap will introduce an undesired vertical magnetic component to the air gap, which should either be measured or modeled towards some optimizations of the watt balance. A recent publication, i.e., {\\it Metrologia} 52(4) 445 [1], presented a full field mapping method, which in theory will supply useful information for profile characterization and misalignment analysis. This article is an additional material of [1], which develops a different analytical algorithm to represent the 3D magnetic field of a watt balance magnet based on only one measurement for the radial magnetic flux density along the vertical direction, $B_r(z)$. The new algorithm is based on the electromagnetic nature of the magnet, which has a much better accuracy.

  9. An analytical algorithm for 3D magnetic field mapping of a watt balance magnet

    Science.gov (United States)

    Fu, Zhuang; Zhang, Zhonghua; Li, Zhengkun; Zhao, Wei; Han, Bing; Lu, Yunfeng; Li, Shisong

    2016-04-01

    A yoke-based permanent magnet, which has been employed in many watt balances at national metrology institutes, is supposed to generate strong and uniform magnetic field in an air gap in the radial direction. However, in reality the fringe effect due to the finite height of the air gap will introduce an undesired vertical magnetic component to the air gap, which should either be measured or modeled towards some optimizations of the watt balance. A recent publication, i.e. Li et al (2015 Metrologia 52 445), presented a full field mapping method, which in theory will supply useful information for profile characterization and misalignment analysis. This article is an additional material of Li et al (2015 Metrologia 52 445), which develops a different analytical algorithm to represent the 3D magnetic field of a watt balance magnet based on only one measurement for the radial magnetic flux density along the vertical direction, B r (z). The new algorithm is based on the electromagnetic nature of the magnet, which has a much better accuracy.

  10. Metal artifact reduction in cone beam computed tomography using forward projected reconstruction information

    International Nuclear Information System (INIS)

    In this work we present a new method to reduce artifacts, produced by high-density objects, especially metal implants, in X-ray cone beam computed tomography (CBCT). These artifacts influence clinical diagnostics and treatments using CT data, if metal objects are located in the field of view (FOV). Our novel method reduces metal artifacts by virtually replacing the metal objects with tissue objects of the same shape. First, the considered objects must be segmented in the original 2D projection data as well as in a reconstructed 3D volume. The attenuation coefficients of the segmented voxels are replaced with adequate attenuation coefficients of tissue (or water), then the required parts of the volume are projected onto the segmented 2D pixels, to replace the original information. This corrected 2D data can then be reconstructed with reduced artifacts, i.e. all metal objects virtually vanished. After the reconstruction, the segmented 3D metal objects were re-inserted into the corrected 3D volume. Our method was developed for mobile C-arm CBCTs; as it is necessary that they are of low weight, the C-arm results in unpredictable distortion. This misalignment between the original 2D data and the forward projection of the reconstructed 3D volume must be adjusted before the correction of the segmented 2D pixels. We applied this technique to clinical data and will now present the results. (orig.)

  11. Metal artifact reduction in cone beam computed tomography using forward projected reconstruction information

    Energy Technology Data Exchange (ETDEWEB)

    Meilinger, Manuel [Regensburg Univ. (Germany). CIML Group; Siemens Healthcare, Erlangen (Germany); Schmidgunst, Christian; Schuetz, Oliver [Siemens Healthcare, Erlangen (Germany); Lang, Elmar W. [Regensburg Univ. (Germany). CIML Group

    2011-07-01

    In this work we present a new method to reduce artifacts, produced by high-density objects, especially metal implants, in X-ray cone beam computed tomography (CBCT). These artifacts influence clinical diagnostics and treatments using CT data, if metal objects are located in the field of view (FOV). Our novel method reduces metal artifacts by virtually replacing the metal objects with tissue objects of the same shape. First, the considered objects must be segmented in the original 2D projection data as well as in a reconstructed 3D volume. The attenuation coefficients of the segmented voxels are replaced with adequate attenuation coefficients of tissue (or water), then the required parts of the volume are projected onto the segmented 2D pixels, to replace the original information. This corrected 2D data can then be reconstructed with reduced artifacts, i.e. all metal objects virtually vanished. After the reconstruction, the segmented 3D metal objects were re-inserted into the corrected 3D volume. Our method was developed for mobile C-arm CBCTs; as it is necessary that they are of low weight, the C-arm results in unpredictable distortion. This misalignment between the original 2D data and the forward projection of the reconstructed 3D volume must be adjusted before the correction of the segmented 2D pixels. We applied this technique to clinical data and will now present the results. (orig.)

  12. Pulsar average wave forms and hollow-cone beam models

    Science.gov (United States)

    Backer, D. C.

    1976-01-01

    Pulsar wave forms have been analyzed from observations conducted over a wide radio-frequency range to assess the wave-form morphologies and to measure wave-form widths. The results of the analysis compare favorably with the predictions of a model with a hollow-cone beam of fixed dimensions and with random orientation of both the observer and the cone axis with respect to the pulsar spin axis. A class of three-component wave forms is included in the model by adding a central pencil beam to the hollow-cone hypothesis. The consequences of a number of discrepancies between observations and quantitative predictions of the model are discussed.

  13. Clinical analysis of molar fissures by Cone-beam tomography.

    Science.gov (United States)

    Cruvinel, V R N; Azevedo, B C; Gravina, D B L; Toledo, O A; Bezerra, A C B

    2007-01-01

    This study aimed to validate clinical analysis of 20 pediatric dentists on occlusal groove-fossa-system of molar depth comparing to Cone-beam tomography. The 48 sound third molars were visually classified from the shallowest to the deepest. Images were taken from the Accuitomo 3DX. There was a fair correlation between clinical analysis and the tomographic scorings (rs = 0.238; P = 0.103). It was concluded that pediatric dentists were not able to classify the fissures depth by visual analysis correctly. PMID:19161057

  14. 3D analytical model for the SOI LDMOS with alternating silicon and high-k dielectric pillars

    Science.gov (United States)

    Yao, Jia-fei; Guo, Yu-feng; Xia, Tian; Zhang, Jun; Lin, Hong

    2016-08-01

    In this paper, a 3D analytical model for the SOI LDMOS with alternating silicon and high-k dielectric pillars (HK LDMOS) is presented. By solving the 3D Poisson's equation, the surface potential and electric field distribution are derived. A criterion for obtaining the optimal breakdown voltage and drift region doping concentration is obtained. The analytical results are well matched with the numerical results, which confirms the model validity. Based on these models and the numerical simulation, the electric field modulation mechanism and the breakdown characteristics of HK LDMOS are investigated.

  15. An optimization-based method for geometrical calibration in cone-beam CT without dedicated phantoms

    Science.gov (United States)

    Panetta, D.; Belcari, N.; DelGuerra, A.; Moehrs, S.

    2008-07-01

    In this paper we present a new method for the determination of geometrical misalignments in cone-beam CT scanners, from the analysis of the projection data of a generic object. No a priori knowledge of the object shape and positioning is required. We show that a cost function, which depends on the misalignment parameters, can be defined using the projection data and that such a cost function has a local minimum in correspondence to the actual parameters of the system. Hence, the calibration of the scanner can be carried out by minimizing the cost function using standard optimization techniques. The method is developed for a particular class of 3D object functions, for which the redundancy of the fan beam sinogram in the transaxial midplane can be extended to cone-beam projection data, even at wide cone angles. The method has an approximated validity for objects which do not belong to that class; in that case, a suitable subset of the projection data can be selected in order to compute the cost function. We show by numerical simulations that our method is capable to determine with high accuracy the most critical misalignment parameters of the scanner, i.e., the transversal shift and the skew of the detector. Additionally, the detector slant can be determined. Other parameters such as the detector tilt, the longitudinal shift and the error in the source-detector distance cannot be determined with our method, as the proposed cost function has a very weak dependence on them. However, due to the negligible influence of these latter parameters in the reconstructed image quality, they can be kept fixed at estimated values in both calibration and reconstruction processes without compromising the final result. A trade-off between computational cost and calibration accuracy must be considered when choosing the data subset used for the computation of the cost function. Results on real data of a mouse femur as obtained with a small animal micro-CT are shown as well, proving

  16. Modulation transfer function determination using the edge technique for cone-beam micro-CT

    Science.gov (United States)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Lu, Hongbing

    2016-03-01

    Evaluating spatial resolution is an essential work for cone-beam computed tomography (CBCT) manufacturers, prototype designers or equipment users. To investigate the cross-sectional spatial resolution for different transaxial slices with CBCT, the slanted edge technique with a 3D slanted edge phantom are proposed and implemented on a prototype cone-beam micro-CT. Three transaxial slices with different cone angles are under investigation. An over-sampled edge response function (ERF) is firstly generated from the intensity of the slightly tiled air to plastic edge in each row of the transaxial reconstruction image. Then the oversampled ESF is binned and smoothed. The derivative of the binned and smoothed ERF gives the line spread function (LSF). At last the presampled modulation transfer function (MTF) is calculated by taking the modulus of the Fourier transform of the LSF. The spatial resolution is quantified with the spatial frequencies at 10% MTF level and full-width-half-maximum (FWHM) value. The spatial frequencies at 10% of MTFs are 3.1+/-0.08mm-1, 3.0+/-0.05mm-1, and 3.2+/-0.04mm-1 for the three transaxial slices at cone angles of 3.8°, 0°, and -3.8° respectively. The corresponding FWHMs are 252.8μm, 261.7μm and 253.6μm. Results indicate that cross-sectional spatial resolution has no much differences when transaxial slices being 3.8° away from z=0 plane for the prototype conebeam micro-CT.

  17. Effect of anatomical backgrounds on detectability in volumetric cone beam CT images

    Science.gov (United States)

    Han, Minah; Park, Subok; Baek, Jongduk

    2016-03-01

    As anatomical noise is often a dominating factor affecting signal detection in medical imaging, we investigate the effects of anatomical backgrounds on signal detection in volumetric cone beam CT images. Signal detection performances are compared between transverse and longitudinal planes with either uniform or anatomical backgrounds. Sphere objects with diameters of 1mm, 5mm, 8mm, and 11mm are used as the signals. Three-dimensional (3D) anatomical backgrounds are generated using an anatomical noise power spectrum, 1/fβ, with β=3, equivalent to mammographic background [1]. The mean voxel value of the 3D anatomical backgrounds is used as an attenuation coefficient of the uniform background. Noisy projection data are acquired by the forward projection of the uniform and anatomical 3D backgrounds with/without sphere lesions and by the addition of quantum noise. Then, images are reconstructed by an FDK algorithm [2]. For each signal size, signal detection performances in transverse and longitudinal planes are measured by calculating the task SNR of a channelized Hotelling observer with Laguerre-Gauss channels. In the uniform background case, transverse planes yield higher task SNR values for all sphere diameters but 1mm. In the anatomical background case, longitudinal planes yield higher task SNR values for all signal diameters. The results indicate that it is beneficial to use longitudinal planes to detect spherical signals in anatomical backgrounds.

  18. Tomographic mammography using a limited number of low-dose cone-beam projection images

    International Nuclear Information System (INIS)

    A method is described for using a limited number (typically 10-50) of low-dose radiographs to reconstruct the three-dimensional (3D) distribution of x-ray attenuation in the breast. The method uses x-ray cone-beam imaging, an electronic digital detector, and constrained nonlinear iterative computational techniques. Images are reconstructed with high resolution in two dimensions and lower resolution in the third dimension. The 3D distribution of attenuation that is projected into one image in conventional mammography can be separated into many layers (typically 30-80 1-mm-thick layers, depending on breast thickness), increasing the conspicuity of features that are often obscured by overlapping structure in a single-projection view. Schemes that record breast images at nonuniform angular increments, nonuniform image exposure, and nonuniform detector resolution are investigated in order to reduce the total x-ray exposure necessary to obtain diagnostically useful 3D reconstructions, and to improve the quality of the reconstructed images for a given exposure. The total patient radiation dose can be comparable to that used for a standard two-view mammogram. The method is illustrated with images from mastectomy specimens, a phantom, and human volunteers. The results show how image quality is affected by various data-collection protocols

  19. Dose cone-beam CT alter treatment plans? Comparison of preoperative implant planning using panoramic versus cone-beam CT images

    International Nuclear Information System (INIS)

    The present study was performed to compare the planning of implant placement based on panoramic radiography (PAN) and cone-beam computed tomography (CBCT) images, and to study the impact of the image dataset on the treatment planning. One hundred five partially edentulous patients (77 males, 28 females, mean age: 46 years, range: 26-67 years) seeking oral implant rehabilitation were referred for presurgical imaging. Imaging consisted of PAN and CBCT imaging. Four observers planned implant treatment based on the two-dimensional (2D) image datasets and at least one month later on the three-dimensional (3D) image dataset. Apart from presurgical diagnostic and dimensional measurement tasks, the observers needed to indicate the surgical confidence levels and assess the image quality in relation to the presurgical needs. All observers confirmed that both imaging modalities (PAN and CBCT) gave similar values when planning implant diameter. Also, the results showed no differences between both imaging modalities for the length of implants with an anterior location. However, significant differences were found in the length of implants with a posterior location. For implant dimensions, longer lengths of the implants were planned with PAN, as confirmed by two observers. CBCT provided images with improved scores for subjective image quality and surgical confidence levels. Within the limitations of this study, there was a trend toward PAN-based preoperative planning of implant placement leading towards the use of longer implants within the posterior jaw bone.

  20. Dose cone-beam CT alter treatment plans? Comparison of preoperative implant planning using panoramic versus cone-beam CT images

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Maria Eugenia; Jacobs, Reinhilde [Dept. of Oral and Maxillofacial Surgery, University Hospitals, Leuven (Belgium); Norge, Jorge; Castro, Carmen [Master of Periodontology, Universidad San Martin de Porres, Lima (Peru)

    2014-06-15

    The present study was performed to compare the planning of implant placement based on panoramic radiography (PAN) and cone-beam computed tomography (CBCT) images, and to study the impact of the image dataset on the treatment planning. One hundred five partially edentulous patients (77 males, 28 females, mean age: 46 years, range: 26-67 years) seeking oral implant rehabilitation were referred for presurgical imaging. Imaging consisted of PAN and CBCT imaging. Four observers planned implant treatment based on the two-dimensional (2D) image datasets and at least one month later on the three-dimensional (3D) image dataset. Apart from presurgical diagnostic and dimensional measurement tasks, the observers needed to indicate the surgical confidence levels and assess the image quality in relation to the presurgical needs. All observers confirmed that both imaging modalities (PAN and CBCT) gave similar values when planning implant diameter. Also, the results showed no differences between both imaging modalities for the length of implants with an anterior location. However, significant differences were found in the length of implants with a posterior location. For implant dimensions, longer lengths of the implants were planned with PAN, as confirmed by two observers. CBCT provided images with improved scores for subjective image quality and surgical confidence levels. Within the limitations of this study, there was a trend toward PAN-based preoperative planning of implant placement leading towards the use of longer implants within the posterior jaw bone.

  1. Performance evaluation and optimization of BM4D-AV denoising algorithm for cone-beam CT images

    Science.gov (United States)

    Huang, Kuidong; Tian, Xiaofei; Zhang, Dinghua; Zhang, Hua

    2015-12-01

    The broadening application of cone-beam Computed Tomography (CBCT) in medical diagnostics and nondestructive testing, necessitates advanced denoising algorithms for its 3D images. The block-matching and four dimensional filtering algorithm with adaptive variance (BM4D-AV) is applied to the 3D image denoising in this research. To optimize it, the key filtering parameters of the BM4D-AV algorithm are assessed firstly based on the simulated CBCT images and a table of optimized filtering parameters is obtained. Then, considering the complexity of the noise in realistic CBCT images, possible noise standard deviations in BM4D-AV are evaluated to attain the chosen principle for the realistic denoising. The results of corresponding experiments demonstrate that the BM4D-AV algorithm with optimized parameters presents excellent denosing effect on the realistic 3D CBCT images.

  2. Enhancement of mobile C-arm cone-beam reconstruction using prior anatomical models

    Science.gov (United States)

    Sadowsky, Ofri; Lee, Junghoon; Sutter, Edward G.; Wall, Simon J.; Prince, Jerry L.; Taylor, Russell H.

    2009-02-01

    We demonstrate an improvement to cone-beam tomographic imaging by using a prior anatomical model. A protocol for scanning and reconstruction has been designed and implemented for a conventional mobile C-arm: a 9 inch image-intensifier OEC-9600. Due to the narrow field of view (FOV), the reconstructed image contains strong truncation artifacts. We propose to improve the reconstructed images by fusing the observed x-ray data with computed projections of a prior 3D anatomical model, derived from a subject-specific CT or from a statistical database (atlas), and co-registered (3D/2D) to the x-rays. The prior model contains a description of geometry and radiodensity as a tetrahedral mesh shape and density polynomials, respectively. A CT-based model can be created by segmentation, meshing and polynomial fitting of the object's CT study. The statistical atlas is created through principal component analysis (PCA) of a collection of mesh instances deformably-registered (3D/3D) to patient datasets. The 3D/2D registration method optimizes a pixel-based similarity score (mutual information) between the observed x-rays and the prior. The transformation involves translation, rotation and shape deformation based on the atlas. After registration, the image intensities of observed and prior projections are matched and adjusted, and the two information sources are blended as inputs to a reconstruction algorithm. We demonstrate recostruction results of three cadaveric specimens, and the effect of fusing prior data to compensate for truncation. Further uses of hybrid reconstruction, such as compensation for the scan's limited arc length, are suggested for future research.

  3. Extracting respiratory signals from thoracic cone beam CT projections

    CERN Document Server

    Yan, Hao; Yin, Wotao; Pan, Tinsu; Ahmad, Moiz; Mou, Xuanqin; Cervino, Laura; Jia, Xun; Jiang, Steve B

    2012-01-01

    Patient respiratory signal associated with the cone beam CT (CBCT) projections is important for lung cancer radiotherapy. In contrast to monitoring an external surrogate of respiration, such signal can be extracted directly from the CBCT projections. In this paper, we propose a novel local principle component analysis (LPCA) method to extract the respiratory signal by distinguishing the respiration motion-induced content change from the gantry rotation-induced content change in the CBCT projections. The LPCA method is evaluated by comparing with three state-of-the-art projection-based methods, namely, the Amsterdam Shroud (AS) method, the intensity analysis (IA) method, and the Fourier-transform based phase analysis (FT-p) method. The clinical CBCT projection data of eight patients, acquired under various clinical scenarios, were used to investigate the performance of each method. We found that the proposed LPCA method has demonstrated the best overall performance for cases tested and thus is a promising tech...

  4. Fossa navicularis magna detection on cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Ali Z. [Dept. of Oral and Maxillofacial Medicine and Diagnostic Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland(United States); Mupparapu, Mel [Div. of Radiology, University of Pennsylvania School of Dental Medicine, Philadelphia (United States)

    2016-03-15

    Herein, we report and discuss the detection of fossa navicularis magna, a close radiographic anatomic variant of canalis basilaris medianus of the basiocciput, as an incidental finding in cone-beam computed tomography (CBCT) imaging. The CBCT data of the patients in question were referred for the evaluation of implant sites and to rule out pathology in the maxilla and mandible. CBCT analysis showed osseous, notch-like defects on the inferior aspect of the clivus in all four cases. The appearance of fossa navicularis magna varied among the cases. In some, it was completely within the basiocciput and mimicked a small rounded, corticated, lytic defect, whereas it appeared as a notch in others. Fossa navicularis magna is an anatomical variant that occurs on the inferior aspect of the clivus. The pertinent literature on the anatomical variations occurring in this region was reviewed.

  5. Correction of scatter in megavoltage cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Spies, L. [Deutsches Krebsforschungszentrum, 69120 Heidelberg (Germany). E-mail: lothar.spies at philips.com; Ebert, M.; Groh, B.A.; Hesse, B.M.; Bortfeld, T. [Deutsches Krebsforschungszentrum, 69120 Heidelberg (Germany)

    2001-03-01

    The role of scatter in a cone-beam computed tomography system using the therapeutic beam of a medical linear accelerator and a commercial electronic portal imaging device (EPID) is investigated. A scatter correction method is presented which is based on a superposition of Monte Carlo generated scatter kernels. The kernels are adapted to both the spectral response of the EPID and the dimensions of the phantom being scanned. The method is part of a calibration procedure which converts the measured transmission data acquired for each projection angle into water-equivalent thicknesses. Tomographic reconstruction of the projections then yields an estimate of the electron density distribution of the phantom. It is found that scatter produces cupping artefacts in the reconstructed tomograms. Furthermore, reconstructed electron densities deviate greatly (by about 30%) from their expected values. The scatter correction method removes the cupping artefacts and decreases the deviations from 30% down to about 8%. (author)

  6. Fossa navicularis magna detection on cone-beam computed tomography

    Science.gov (United States)

    Mupparapu, Mel

    2016-01-01

    Herein, we report and discuss the detection of fossa navicularis magna, a close radiographic anatomic variant of canalis basilaris medianus of the basiocciput, as an incidental finding in cone-beam computed tomography (CBCT) imaging. The CBCT data of the patients in question were referred for the evaluation of implant sites and to rule out pathology in the maxilla and mandible. CBCT analysis showed osseous, notch-like defects on the inferior aspect of the clivus in all four cases. The appearance of fossa navicularis magna varied among the cases. In some, it was completely within the basiocciput and mimicked a small rounded, corticated, lytic defect, whereas it appeared as a notch in others. Fossa navicularis magna is an anatomical variant that occurs on the inferior aspect of the clivus. The pertinent literature on the anatomical variations occurring in this region was reviewed. PMID:27051639

  7. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  8. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  9. Observer Reliability of Three-Dimensional Cephalometric Landmark Identification on Cone-Beam CT

    Science.gov (United States)

    de Oliveira, Ana Emilia F.; Cevidanes, Lucia Helena S.; Phillips, Ceib; Motta, Alexandre; Burke, Brandon; Tyndall, Donald

    2009-01-01

    Objective To evaluate reliability in 3D landmark identification using Cone-Beam CT. Study Design Twelve pre-surgery CBCTs were randomly selected from 159 orthognathic surgery patients. Three observers independently repeated three times the identification of 30 landmarks in the sagittal, coronal, and axial slices. A mixed effects ANOVA model estimated the Intraclass Correlations (ICC) and assessed systematic bias. Results The ICC was >0.9 for 86% of intra-observer assessments and 66% of inter-observer assessments. Only 1% of intra-observer and 3% of inter-observer coefficients were <0.45. The systematic difference among observers was greater in X and Z than in Y dimensions, but the maximum mean difference was quite small. Conclusion Overall, the intra- and inter-observer reliability was excellent. 3D landmark identification using CBCT can offer consistent and reproducible data, if a protocol for operator training and calibration is followed. This is particularly important for landmarks not easily specified in all three planes of space. PMID:18718796

  10. Clinical utility of dental cone-beam computed tomography: current perspectives

    Directory of Open Access Journals (Sweden)

    Jaju PP

    2014-04-01

    Full Text Available Prashant P Jaju,1 Sushma P Jaju21Oral Medicine and Radiology, 2Conservative Dentistry and Endodontics, Rishiraj College of Dental Sciences and Research Center, Bhopal, IndiaAbstract: Panoramic radiography and computed tomography were the pillars of maxillofacial diagnosis. With the advent of cone-beam computed tomography, dental practice has seen a paradigm shift. This review article highlights the potential applications of cone-beam computed tomography in the fields of dental implantology and forensic dentistry, and its limitations in maxillofacial diagnosis.Keywords: dental implants, cone-beam computed tomography, panoramic radiography, computed tomography

  11. A simple optical cone beam CT set-up for gel 'readout'

    Energy Technology Data Exchange (ETDEWEB)

    Ravindran, B P; Visalatchi, S; Brindha, S [Department of Radiation Oncology, Christian Medical College, Vellore India 632 004 (India)

    2004-01-01

    In this study we have attempted to setup a simple optical cone beam CT using the geometry used by Wolodzko et al and Jordan et al using an Intel webcam. This approach of recording transmission images of the gel is the inverse of x-ray cone beam CT if you consider only the rays, which contribute to image formation. This simple optical cone beam CT could be setup with minimum cost and could be used to demonstrate the principle of optical CT for teaching and if further investigated could be a potential optical readout device for gel dosimetry.

  12. Point spread function modeling and images restoration for cone-beam CT

    OpenAIRE

    Zhang, Hua; Huang, Kuidong; Shi, Yikai; Xu, Zhe

    2014-01-01

    X-ray cone-beam computed tomography (CT) has the notable features such as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection images degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed firstly. The general PSF model of cone-beam CT is established, and based on it, the...

  13. A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Per Rugaard; Fledelius, Walther; Keall, Paul J.; Weiss, Elisabeth; Lu Jun; Brackbill, Emily; Hugo, Geoffrey D. [Department of Oncology, Aarhus University Hospital, Nr Brogade 44, 8000 Aarhus C (Denmark); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Sydney Medical School-Central, University of Sydney, NSW 2006 (Australia); Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2011-04-15

    Purpose: Implanted markers are commonly used in radiotherapy for x-ray based target localization. The projected marker position in a series of cone-beam CT (CBCT) projections can be used to estimate the three dimensional (3D) target trajectory during the CBCT acquisition. This has important applications in tumor motion management such as motion inclusive, gating, and tumor tracking strategies. However, for irregularly shaped markers, reliable segmentation is challenged by large variations in the marker shape with projection angle. The purpose of this study was to develop a semiautomated method for robust and reliable segmentation of arbitrarily shaped radiopaque markers in CBCT projections. Methods: The segmentation method involved the following three steps: (1) Threshold based segmentation of the marker in three to six selected projections with large angular separation, good marker contrast, and uniform background; (2) construction of a 3D marker model by coalignment and backprojection of the threshold-based segmentations; and (3) construction of marker templates at all imaging angles by projection of the 3D model and use of these templates for template-based segmentation. The versatility of the segmentation method was demonstrated by segmentation of the following structures in the projections from two clinical CBCT scans: (1) Three linear fiducial markers (Visicoil) implanted in or near a lung tumor and (2) an artificial cardiac valve in a lung cancer patient. Results: Automatic marker segmentation was obtained in more than 99.9% of the cases. The segmentation failed in a few cases where the marker was either close to a structure of similar appearance or hidden behind a dense structure (data cable). Conclusions: A robust template-based method for segmentation of arbitrarily shaped radiopaque markers in CBCT projections was developed.

  14. Dose calculation accuracy using cone-beam CT (CBCT) for pelvic adaptive radiotherapy

    Science.gov (United States)

    Guan, Huaiqun; Dong, Hang

    2009-10-01

    This study is to evaluate the dose calculation accuracy using Varian's cone-beam CT (CBCT) for pelvic adaptive radiotherapy. We first calibrated the Hounsfield Unit (HU) to electron density (ED) for CBCT using a mini CT QC phantom embedded into an IMRT QA phantom. We then used a Catphan 500 with an annulus around it to check the calibration. The combined CT QC and IMRT phantom provided correct HU calibration, but not Catphan with an annulus. For the latter, not only was the Teflon an incorrect substitute for bone, but the inserts were also too small to provide correct HUs for air and bone. For the former, three different scan ranges (6 cm, 12 cm and 20.8 cm) were used to investigate the HU dependence on the amount of scatter. To evaluate the dose calculation accuracy, CBCT and plan-CT for a pelvic phantom were acquired and registered. The single field plan, 3D conformal and IMRT plans were created on both CT sets. Without inhomogeneity correction, the two CT generated nearly the same plan. With inhomogeneity correction, the dosimetric difference between the two CT was mainly from the HU calibration difference. The dosimetric difference for 6 MV was found to be the largest for the single lateral field plan (maximum 6.7%), less for the 3D conformal plan (maximum 3.3%) and the least for the IMRT plan (maximum 2.5%). Differences for 18 MV were generally 1-2% less. For a single lateral field, calibration with 20.8 cm achieved the minimum dosimetric difference. For 3D and IMRT plans, calibration with a 12 cm range resulted in better accuracy. Because Catphan is the standard QA phantom for the on-board imager (OBI) device, we specifically recommend not using it for the HU calibration of CBCT.

  15. Automatic Synthesis of Panoramic Radiographs from Dental Cone Beam Computed Tomography Data

    Science.gov (United States)

    Luo, Ting; Shi, Changrong; Zhao, Xing; Zhao, Yunsong; Xu, Jinqiu

    2016-01-01

    In this paper, we propose an automatic method of synthesizing panoramic radiographs from dental cone beam computed tomography (CBCT) data for directly observing the whole dentition without the superimposition of other structures. This method consists of three major steps. First, the dental arch curve is generated from the maximum intensity projection (MIP) of 3D CBCT data. Then, based on this curve, the long axial curves of the upper and lower teeth are extracted to create a 3D panoramic curved surface describing the whole dentition. Finally, the panoramic radiograph is synthesized by developing this 3D surface. Both open-bite shaped and closed-bite shaped dental CBCT datasets were applied in this study, and the resulting images were analyzed to evaluate the effectiveness of this method. With the proposed method, a single-slice panoramic radiograph can clearly and completely show the whole dentition without the blur and superimposition of other dental structures. Moreover, thickened panoramic radiographs can also be synthesized with increased slice thickness to show more features, such as the mandibular nerve canal. One feature of the proposed method is that it is automatically performed without human intervention. Another feature of the proposed method is that it requires thinner panoramic radiographs to show the whole dentition than those produced by other existing methods, which contributes to the clarity of the anatomical structures, including the enamel, dentine and pulp. In addition, this method can rapidly process common dental CBCT data. The speed and image quality of this method make it an attractive option for observing the whole dentition in a clinical setting. PMID:27300554

  16. Experimental and analytical characterization of the 3D motion of particles in acoustofluidic devices

    DEFF Research Database (Denmark)

    Rossi, M.; Barnkob, Rune; Augustsson, P.;

    2012-01-01

    and to examine the accuracy of analytical force predictions. Polystyrene spheres with diameter of 0.5µm and 5µm were displaced under controlled conditions in a long straight rectangular acoustofluidic microchannel, actuated in its 2-MHz resonance mode, a transverse half-wavelength standing acoustic wave...

  17. Analytic Torsion, 3d Mirror Symmetry And Supergroup Chern-Simons Theories

    CERN Document Server

    Mikhaylov, Victor

    2015-01-01

    We consider topological field theories that compute the Reidemeister-Milnor-Turaev torsion in three dimensions. These are the psl(1|1) and the U(1|1) Chern-Simons theories, coupled to a background complex flat gauge field. We use the 3d mirror symmetry to derive the Meng-Taubes theorem, which relates the torsion and the Seiberg-Witten invariants, for a three-manifold with arbitrary first Betti number. We also present the Hamiltonian quantization of our theories, find the modular transformations of states, and various properties of loop operators. Our results for the U(1|1) theory are in general consistent with the results, found for the GL(1|1) WZW model. We also make some comments on more general supergroup Chern-Simons theories.

  18. Bilateral and pseudobilateral tonsilloliths: Three dimensional imaging with cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Misirlioglu, Melda; Adisen, Mehmet Zahit; Yardimci, Selmi [Dept. of Oral and Maxillofacial Radiology, Faculty of Dentistry, Kirikkale University, Kirikkale (Turkmenistan); Nalcaci, Rana [Dept. of Oral and Maxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara (Turkmenistan)

    2013-09-15

    Tonsilloliths are calcifications found in the crypts of the palatal tonsils and can be detected on routine panoramic examinations. This study was performed to highlight the benefits of cone-beam computed tomography (CBCT) in the diagnosis of tonsilloliths appearing bilaterally on panoramic radiographs. The sample group consisted of 7 patients who had bilateral radiopaque lesions at the area of the ascending ramus on panoramic radiographs. CBCT images for every patient were obtained from both sides of the jaw to determine the exact locations of the lesions and to rule out other calcifications. The calcifications were evaluated on the CBCT images using Ez3D2009 software. Additionally, the obtained images in DICOM format were transferred to ITK SNAP 2.4.0 pc software for semiautomatic segmentation. Segmentation was performed using contrast differences between the soft tissues and calcifications on grayscale images, and the volume in mm{sup 3} of the segmented three dimensional models were obtained. CBCT scans revealed that what appeared on panoramic radiographs as bilateral images were in fact unilateral lesions in 2 cases. The total volume of the calcifications ranged from 7.92 to 302.5mm{sup 3}. The patients with bilaterally multiple and large calcifications were found to be symptomatic. The cases provided the evidence that tonsilloliths should be considered in the differential diagnosis of radiopaque masses involving the mandibular ramus, and they highlight the need for a CBCT scan to differentiate pseudo- or ghost images from true bilateral pathologies.

  19. Dosimetry of cone beam computed tomography scanning for diagnosis and planning in implant dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Santos Pinto de A, E. L.; Manzi, F. R.; Goncalves Z, E. [Pontifical Catholic University of Minas Gerais, Av. Jose Gaspar 500, 30535-901 Belo Horizonte, Minas Gerais (Brazil); Nogueira, M. S.; Fernandes Z, M. A., E-mail: madelon@cdtn.br [Development Center of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Full text: The radiation dose and estimate the radiation induced risk of cancer and morpho functional alterations according to BEIR VII (2006) and recommendations of the ICRP 103 (2007) were measured in cone beam computed tomography (CBCT) scanning (Tc Kodak 9000C 3D) in different oral and maxillofacial regions for diagnosis and planning in implant dentistry for each examination protocol: jaw full, maxilla full and jaw and maxilla full associated. Thermoluminescent dosimeters (TLD- 100 H) were placed in an Alderson-Rando in regions corresponding to the crystalline, parotid, submandibular and thyroid glands and ovaries. The highest values for entrance skin dose were observed in the region of the parotid and submandibular glands, 9.612 mGy to 7.912 mGy and 8.818 mGy to 0.483 mGy, respectively. All examination protocols presented on the right and left sides in the region of the submandibular gland the highest values for absorbed dose (D). In the jaw full exam the thyroid glands on both sides presented highest dose values than maxilla full exam. This study allowed measuring the entrance skin dose and the absorbed dose (D) highlighting a dosimetric preponderance to the salivary glands. With danger of to radiation that induces cancer risk was observed that the age group most likely to have to risk of cancer was 20 years, compared to 30, 40, 50, 60,70 and 80 years. (Author)

  20. Cone-beam local reconstruction based on a Radon inversion transformation

    Institute of Scientific and Technical Information of China (English)

    Wang Xian-Chao; Yan Bin; Li Lei; Hu Guo-En

    2012-01-01

    The local reconstruction from truncated projection data is one area of interest in image reconstruction for computed tomography (CT),which creates the possibility for dose reduction.In this paper,a filtered-backprojection (FBP)algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local reconstruction in the circular geometry.The algorithm achieves the data filtering in two steps.The first step is the derivative of projections,which acts locally on the data and can thus be carried out accurately even in the presence of data truncation.The second step is the nonlocal Hilbert filtering.The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm.Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT),not only it has a comparable ability to restrain truncation artifacts,but also its reconstruction efficiency is improved.It is about twice as fast as that of the ATRACT.Therefore,this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.

  1. CUSTOMISATION OF A MONTE CARLO DOSIMETRY TOOL FOR DENTAL CONE-BEAM CT SYSTEMS.

    Science.gov (United States)

    Stratis, A; Zhang, G; Lopez-Rendon, X; Jacobs, R; Bogaerts, R; Bosmans, H

    2016-06-01

    A versatile EGSnrc Monte Carlo (MC) framework, initially designed to explicitly simulate X-ray tubes and record the output data into phase space data files, was modified towards dental cone-beam computed tomography (CBCT) dosimetric applications by introducing equivalent sources. Half value layer (HVL) measurements were conducted to specify protocol-specific energy spectra. Air kerma measurements were carried out with an ionisation chamber positioned against the X-ray tube to obtain the total filtration attenuation characteristics. The framework is applicable to bowtie and non-bowtie inherent filtrations, and it accounts for the anode heel effect and the total filtration of the tube housing. The code was adjusted to the Promax 3D Max (Planmeca, Helsinki, Finland) dental CBCT scanner. For each clinical protocol, calibration factors were produced to allow absolute MC dose calculations. The framework was validated by comparing MC calculated doses and measured doses in a cylindrical water phantom. Validation results demonstrate the reliability of the framework for dental CBCT dosimetry purposes. PMID:26922781

  2. Dosimetric evaluation of dental implant planning examinations with cone-beam computed tomography

    International Nuclear Information System (INIS)

    The aim of this work was to perform a dosimetric evaluation of two cone-beam computed tomography scanners. The study was performed with two scanners: i-CAT classic and PreXion 3D. Air kerma-area product (PKA) was measured for all full-arch dental implant planning protocols. Surface air kerma was also estimated at the region of the eyes, salivary glands and thyroid using thermoluminescence dosemeters positioned on an anthropomorphic phantom. The PKA values for the i-CAT classic ranged from 24 to 180 μGym2 and, for the PreXion, from 70 to 138 μGym2. The large variation of these values was mainly caused by acquisition time and field of views. The surface air kerma values were from 0.08 to 3.39 mGy at the eyes, 0.50 to 3.96 mGy at the parotids, 0.11 to 2.95 mGy at the submandibular glands and 0.05 to 1.32 mGy at the thyroid. These values are comparable with those found in the literature. (authors)

  3. Segmentation of cone-beam CT using a hidden Markov random field with informative priors

    Science.gov (United States)

    Moores, M.; Hargrave, C.; Harden, F.; Mengersen, K.

    2014-03-01

    Cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. The rich sources of prior information in IGRT are incorporated into a hidden Markov random field model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk. The voxel labels are estimated using iterated conditional modes. The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom. The mean voxel-wise misclassification rate was 6.2%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.

  4. Quantitative Assessment of Cervical Vertebral Maturation Using Cone Beam Computed Tomography in Korean Girls

    Directory of Open Access Journals (Sweden)

    Bo-Ram Byun

    2015-01-01

    Full Text Available This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT images were obtained from 74 Korean girls (6–18 years of age. CBCT-generated cervical vertebral maturation (CVM was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P<0.05. Forty-seven of 64 parameters from CBCT-generated CVM (independent variables exhibited statistically significant correlations (P<0.05. The multiple regression model with the greatest R2 had six parameters (PH2/W2, UW2/W2, (OH+AH2/LW2, UW3/LW3, D3, and H4/W4 as independent variables with a variance inflation factor (VIF of <2. CBCT-generated CVM was able to include parameters from the second cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status.

  5. Configuration of the inferior alveolar canal as detected by cone beam computed tomography

    Directory of Open Access Journals (Sweden)

    Umadevi P Nair

    2013-01-01

    Full Text Available Aims: The aim of this study is to evaluate the course of the inferior alveolar canal (IAC including its frequently seen variations in relation to root apices and the cortices of the mandible at fixed pre-determined anatomic reference points using cone beam volumetric computed tomography (CBVCT. Material and Methods: This retrospective study utilized CBVCT images from 44 patients to obtain quantifiable data to localize the IAC. Measurements to the IAC were made from the buccal and lingual cortical plates (BCP/LCP, inferior border of the mandible and the root apices of the mandibular posterior teeth and canine. Descriptive analysis was used to map out the course of the IAC. Results: IACs were noted to course superiorly toward the root apices from the second molar to the first premolar and closer to the buccal cortical plate anteriorly. The canal was closest to the LCP at the level of the second molar. In 32.95% of the cases, the canal was seen at the level of the canine. Conclusions: This study indicates that caution needs to be exercised during endodontic surgical procedures in the mandible even at the level of the canine. CBVCT seems to provide an optimal, low-dose, 3D imaging modality to help address the complexities in canal configuration.

  6. Hardware-accelerated cone-beam reconstruction on a mobile C-arm

    Science.gov (United States)

    Churchill, Michael; Pope, Gordon; Penman, Jeffrey; Riabkov, Dmitry; Xue, Xinwei; Cheryauka, Arvi

    2007-03-01

    The three-dimensional image reconstruction process used in interventional CT imaging is computationally demanding. Implementation on general-purpose computational platforms requires a substantial time, which is undesirable during time-critical surgical and minimally invasive procedures. Field Programmable Gate Arrays (FPGA)s and Graphics Processing Units (GPU)s have been studied as a platform to accelerate 3-D imaging. FPGA and GPU devices offer a reprogrammable hardware architecture, configurable for pipelining and high levels of parallel processing to increase computational throughput, as well as the benefits of being off-the-shelf and effective 'performance-to-watt' solutions. The main focus of this paper is on the backprojection step of the image reconstruction process, since it is the most computationally intensive part. Using the popular Feldkamp-Davis-Kress (FDK) cone-beam algorithm, our studies indicate the entire 256 3 image reconstruction process can be accelerated to real or near real-time (i.e. immediately after a finished scan of 15-30 seconds duration) on a mobile X-ray C-arm system using available resources on built-in FPGA board. High resolution 512 3 image backprojection can be also accomplished within the same scanning time on a high-end GPU board comprising up to 128 streaming processors.

  7. Implementation of the FDK algorithm for cone-beam CT on the cell broadband engine architecture

    Science.gov (United States)

    Scherl, Holger; Koerner, Mario; Hofmann, Hannes; Eckert, Wieland; Kowarschik, Markus; Hornegger, Joachim

    2007-03-01

    In most of today's commercially available cone-beam CT scanners, the well known FDK method is used for solving the 3D reconstruction task. The computational complexity of this algorithm prohibits its use for many medical applications without hardware acceleration. The brand-new Cell Broadband Engine Architecture (CBEA) with its high level of parallelism is a cost-efficient processor for performing the FDK reconstruction according to the medical requirements. The programming scheme, however, is quite different to any standard personal computer hardware. In this paper, we present an innovative implementation of the most time-consuming parts of the FDK algorithm: filtering and back-projection. We also explain the required transformations to parallelize the algorithm for the CBEA. Our software framework allows to compute the filtering and back-projection in parallel, making it possible to do an on-the-fly-reconstruction. The achieved results demonstrate that a complete FDK reconstruction is computed with the CBEA in less than seven seconds for a standard clinical scenario. Given the fact that scan times are usually much higher, we conclude that reconstruction is finished right after the end of data acquisition. This enables us to present the reconstructed volume to the physician in real-time, immediately after the last projection image has been acquired by the scanning device.

  8. The current status of cone beam computed tomography imaging in orthodontics.

    Science.gov (United States)

    Kapila, S; Conley, R S; Harrell, W E

    2011-01-01

    Cone beam CT (CBCT) has become an increasingly important source of three dimensional (3D) volumetric data in clinical orthodontics since its introduction into dentistry in 1998. The purpose of this manuscript is to highlight the current understanding of, and evidence for, the clinical use of CBCT in orthodontics, and to review the findings to answer clinically relevant questions. Currently available information from studies using CBCT can be organized into five broad categories: 1, the assessment of CBCT technology; 2, its use in craniofacial morphometric analyses; 3, incidental and missed findings; 4, analysis of treatment outcomes; and 5, efficacy of CBCT in diagnosis and treatment planning. The findings in these topical areas are summarized, followed by current indications and protocols for the use of CBCT in specific cases. Despite the increasing popularity of CBCT in orthodontics, and its advantages over routine radiography in specific cases, the effects of information derived from these images in altering diagnosis and treatment decisions has not been demonstrated in several types of cases. It has therefore been recommended that CBCT be used in select cases in which conventional radiography cannot supply satisfactory diagnostic information; these include cleft palate patients, assessment of unerupted tooth position, supernumerary teeth, identification of root resorption and for planning orthognathic surgery. The need to image other types of cases should be made on a case-by-case basis following an assessment of benefits vs risks of scanning in these situations.

  9. Volumetric analysis of the mandibular condyle using cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bayram, Mehmet, E-mail: dtmehmetbayram@yahoo.com [Karadeniz Technical University, Faculty of Dentistry, Department of Orthodontics, 61080 Trabzon (Turkey); Kayipmaz, Saadettin; Sezgin, Oemer Said [Karadeniz Technical University, Faculty of Dentistry, Department of Oral Radiology, Trabzon (Turkey); Kuecuek, Murat [Karadeniz Technical University, Faculty of Arts and Sciences, Department of Chemistry, Trabzon (Turkey)

    2012-08-15

    Objective: The aim was to determine the accuracy of volumetric analysis of the mandibular condyle using cone-beam computed tomography (CBCT). Materials and methods: Five dry mandibles containing 9 condyles were used. CBCT scans of the mandibles and an impression of each condylar area were taken. The physical volumes of the condyles were calculated as the gold standard using the water displacement technique. After isolating, the condylar volume was sectioned in the sagittal plane, and 0.3 mm thick sections with 0.9 mm intervals were obtained from 3D reconstructions. Using the Cavalieri principle, the volume of each condyle was estimated from the CBCT images by three observers. The accuracy of the CBCT volume measurements and the relation agreements between the results of the three observers were assessed using the Wilcoxon Signed Rank test and Pearson correlation test. The level of statistical significance was set at 0.05. Results: The results of the Pearson correlation showed that there were highly significant positive correlations between the observers' measurements. According to the results of the Wilcoxon Signed Rank test comparing the physical and observers' measurements, there were no statistically significant differences (p > 0.05). Conclusion: The Cavalieri principle, used in conjunction with a planimetry method, is a valid and effective method for volume estimation of the mandibular condyle on CBCT images.

  10. Validating cone-beam computed tomography for peri-implant bone morphometric analysis

    Institute of Scientific and Technical Information of China (English)

    Yan Huang; Jeroen Van Dessel; Maarten Depypere; Mostafa EzEldeen; Alexandru Andrei Iliescu; Emanuela Dos Santos; Ivo Lambrichts; Xin Liang; Reinhilde Jacobs

    2014-01-01

    Cone-beam computed tomography (CBCT) has been recently used to analyse trabecular bone structure around dental implants. To validate the use of CBCT for three-dimensional (3D) peri-implant trabecular bone morphometry by comparing it to two-dimensional (2D) histology, 36 alveolar bone samples (with implants n527 vs. without implants n59) from six mongrel dogs, were scanned ex vivo using a high-resolution (80 mm) CBCT. After scanning, all samples were decalcified and then sectioned into thin histological sections (,6 mm) to obtain high contrast 2D images. By using CTAn imaging software, bone morphometric parameters including trabecular number (Tb.N), thickness (Tb.Th), separation (Tb.Sp) and bone volume fraction (BV/TV) were examined on both CBCT and corresponding histological images. Higher Tb.Th and Tb.Sp, lower BV/TV and Tb.N were found on CBCT images (P,0.001). Both measurements on the peri-implant trabecular bone structure showed moderate to high correlation (r50.65-0.85). The Bland-Altman plots showed strongest agreement for Tb.Th followed by Tb.Sp, Tb.N and BV/TV, regardless of the presence of implants. The current findings support the assumption that peri-implant trabecular bone structures based on high-resolution CBCT measurements are representative for the underlying histological bone characteristics, indicating a potential clinical diagnostic use of CBCT-based peri-implant bone morphometric characterisation.

  11. Dosimetry of cone beam computed tomography scanning for diagnosis and planning in implant dentistry

    International Nuclear Information System (INIS)

    Full text: The radiation dose and estimate the radiation induced risk of cancer and morpho functional alterations according to BEIR VII (2006) and recommendations of the ICRP 103 (2007) were measured in cone beam computed tomography (CBCT) scanning (Tc Kodak 9000C 3D) in different oral and maxillofacial regions for diagnosis and planning in implant dentistry for each examination protocol: jaw full, maxilla full and jaw and maxilla full associated. Thermoluminescent dosimeters (TLD- 100 H) were placed in an Alderson-Rando in regions corresponding to the crystalline, parotid, submandibular and thyroid glands and ovaries. The highest values for entrance skin dose were observed in the region of the parotid and submandibular glands, 9.612 mGy to 7.912 mGy and 8.818 mGy to 0.483 mGy, respectively. All examination protocols presented on the right and left sides in the region of the submandibular gland the highest values for absorbed dose (D). In the jaw full exam the thyroid glands on both sides presented highest dose values than maxilla full exam. This study allowed measuring the entrance skin dose and the absorbed dose (D) highlighting a dosimetric preponderance to the salivary glands. With danger of to radiation that induces cancer risk was observed that the age group most likely to have to risk of cancer was 20 years, compared to 30, 40, 50, 60,70 and 80 years. (Author)

  12. Task-driven image acquisition and reconstruction in cone-beam CT.

    Science.gov (United States)

    Gang, Grace J; Stayman, J Webster; Ehtiati, Tina; Siewerdsen, Jeffrey H

    2015-04-21

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d') is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ± 30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d' for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d' by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the tilt

  13. Radiographic evaluation of dentigerous cyst with cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Chan; Lee, Wan; Lee, Byung Do [School of Dentisity, Wonkwang University, Iksan (Korea, Republic of)

    2010-09-15

    The purpose of this study was to accurately analyze the radiographic characteristics of dentigerous cyst (DC) with multiplanar images of cone beam computed tomography (CBCT). Thirty eight radiographically and histopathologically proven cases of DCs were analyzed with panoramic radiograph and CBCT, retrospectively. The radiographic CT pattern, symmetry of radiolucency around the unerupted tooth crown, ratio of long length to short length, degree of cortical bone alternation, effects on adjacent tooth, and cyst size were analyzed. Relative frequencies of these radiographic features were evaluated. In order to compare the CBCT features of DC with those of odontogenic keratocyst (OKC), 9 cases of OKCs were analyzed with the same method radiographically. DCs consisted of thirty unilocular cases (79.0%), seven lobulated cases (18.4%) and one multilocular case (2.6%). Eight were asymmetric (21.0%) and thirty were symmetric (79.0%). Maxillary DC showed rounder shape than mandibular DC (L/S ratio; maxilla 1.32, mandible 1.67). Alternations of lingual cortical bone (14 cases, 48.2%) were more frequent than those of buccal side (7 cases, 24.1%). CBCT images of DC showed definite root resorption and bucco-lingual tooth displacement. These findings were hardly observed on panoramic radiographs of DCs. Comparison of CBCT features of DC with those of OKC showed several different features. CBCT images of DC showed various characteristic radiographic features. Therefore, CBCT can be helpful for the diagnosis of DC radiographically.

  14. Cone beam computed tomography findings of impacted upper canines

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva Santos, Ludmilla Mota [Dept. of Endodontics, Aracatuba Dental School, Paulista State University, Aracatuba(Brazil); Bastos, Luana Costa; Da Silva, Silvio Jose Albergaria; Campos, Paulo Sergio Flores [School of Dentistry, Federal University of Bahia, Salvador (Brazil); Oliveira Santos, Christiano [Dept. of Stomatology, Oral Public Health, and Forensic Dentistry, School of Dentistry, University of Sao Paulo, Ribeirao Preto (Brazil); Neves, Frederico Sampaio [Dept. of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba (Brazil)

    2014-12-15

    To describe the features of impacted upper canines and their relationship with adjacent structures through three-dimensional cone-beam computed tomography (CBCT) images. Using the CBCT scans of 79 upper impacted canines, we evaluated the following parameters: gender, unilateral/bilateral occurrence, location, presence and degree of root resorption of adjacent teeth (mild, moderate, or severe), root dilaceration, dental follicle width, and presence of other associated local conditions. Most of the impacted canines were observed in females (56 cases), unilaterally (51 cases), and at a palatine location (53 cases). Root resorption in adjacent teeth and root dilaceration were observed in 55 and 47 impacted canines, respectively. In most of the cases, the width of the dental follicle of the canine was normal; it was abnormally wide in 20 cases. A statistically significant association was observed for all variables, except for root dilaceration (p=0.115) and the side of impaction (p=0.260). Root resorption of adjacent teeth was present in most cases of canine impaction, mostly affecting adjacent lateral incisors to a mild degree. A wide dental follicle of impacted canines was not associated with a higher incidence of external root resorption of adjacent teeth.

  15. Quality control and patient dosimetry in dental cone beam CT

    International Nuclear Information System (INIS)

    This paper presents the initial experience in performing quality control and patient dose measurements in a cone beam computed tomography (CT) scanner (ILUMATM Ultra, IMTEC Imaging, USA) for oral and maxillofacial radiology. The X-ray tube and the generator were tested first, including the kVp accuracy and precision, and the half-value layer (HVL). The following tests specific for panoramic dental systems were also performed: tube output, beam size and beam alignment to the detector. The tests specific for CT included measurements of noise and CT numbers in water and in air, as well as the homogeneity of CT numbers. The most appropriate dose quantity was found to be the air kerma-area product (KAP) measured with a KAP-metre installed at the tube exit. KAP values were found to vary from 110 to 185 μGy m2 for available adult protocols and to be 54 μGy m2 for the paediatric protocol. The effective dose calculated with the software PCXMC (STUK (Finland)) was 0.05 mSv for children and 0.09-0.16 mSv for adults. (authors)

  16. Use of dentomaxillofacial cone beam computed tomography in dentistry

    Institute of Scientific and Technical Information of China (English)

    K?van?; Kamburo?lu

    2015-01-01

    Cone-beam computed tomography(CBCT) was developed and introduced specifically for dento-maxillofacial imaging. CBCT possesses a number of advantages over medical CT in clinical practice, such as lower effective radiation doses, lower costs, fewer space requirements,easier image acquisition, and interactive display modes such as mutiplanar reconstruction that are applicable to maxillofacial imaging. However, the disadvantages of CBCT include higher doses than two-dimensional imaging; the inability to accurately represent the internal structure of soft tissues and soft-tissue lesions; a limited correlation with Hounsfield Units for standardized quantification of bone density; and the presence of various types of image artifacts, mainly those produced by metal restorations. CBCT is now commonly used for a variety of purposes in oral implantology, dentomaxillofacial surgery, image-guided surgical procedures, endodontics, periodontics and orthodontics. CBCT applications provide obvious benefits in the assessment of dentomaxillofacial region, however; it should be used only in correct indications considering the necessity and the potential hazards of the examination.

  17. Cone-beam CT in diagnosis of scaphoid fractures

    International Nuclear Information System (INIS)

    This prospective study investigated the sensitivity of cone beam computed tomography (CBCT), a low dose technique recently made available for extremity examinations, in detecting scaphoid fractures. Magnetic resonance imaging (MRI) was used as gold standard for scaphoid fractures. A total of 95 patients with a clinically suspected scaphoid fracture were examined with radiography and CBCT in the acute setting. A negative CBCT exam was followed by an MRI within 2 weeks. When a scaphoid fracture was detected on MRI a new CBCT was performed. Radiography depicted seven scaphoid fractures, all of which were also seen with CBCT. CBCT detected another four scaphoid fractures. With MRI another five scaphoid fractures were identified that were not seen with radiography or with CBCT. These were also not visible on the reexamination CBCT. Sensitivity for radiography was 44, 95 % confidence interval 21-69 %, and for CBCT 69 %, 95 % confidence interval 41-88 % (p = 0.12). Several non-scaphoid fractures in the carpal region were identified, radiography and CBCT depicted 7 and 34, respectively (p < 0.0001). CBCT is a superior alternative to radiography, entailing more accurate diagnoses of carpal region fractures, and thereby requiring fewer follow-up MRI examinations. However, CBCT cannot be used to exclude scaphoid fractures, since MRI identified additional occult scaphoid fractures. (orig.)

  18. Cone-beam CT in diagnosis of scaphoid fractures

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, Rolf; Lapidus, Gunilla; Baecklund, Jenny [Capio St Goeran' s Hospital, Department of Radiology, Stockholm (Sweden); Skorpil, Mikael [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm (Sweden)

    2016-02-15

    This prospective study investigated the sensitivity of cone beam computed tomography (CBCT), a low dose technique recently made available for extremity examinations, in detecting scaphoid fractures. Magnetic resonance imaging (MRI) was used as gold standard for scaphoid fractures. A total of 95 patients with a clinically suspected scaphoid fracture were examined with radiography and CBCT in the acute setting. A negative CBCT exam was followed by an MRI within 2 weeks. When a scaphoid fracture was detected on MRI a new CBCT was performed. Radiography depicted seven scaphoid fractures, all of which were also seen with CBCT. CBCT detected another four scaphoid fractures. With MRI another five scaphoid fractures were identified that were not seen with radiography or with CBCT. These were also not visible on the reexamination CBCT. Sensitivity for radiography was 44, 95 % confidence interval 21-69 %, and for CBCT 69 %, 95 % confidence interval 41-88 % (p = 0.12). Several non-scaphoid fractures in the carpal region were identified, radiography and CBCT depicted 7 and 34, respectively (p < 0.0001). CBCT is a superior alternative to radiography, entailing more accurate diagnoses of carpal region fractures, and thereby requiring fewer follow-up MRI examinations. However, CBCT cannot be used to exclude scaphoid fractures, since MRI identified additional occult scaphoid fractures. (orig.)

  19. Bone changes of mandibular condyle using cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Un; Kim, Hyung Seop; Song, Ju Seop; Kim, Kyoung A; Koh, Kwang Joon [Chonbuk National Univ., Chonju (Korea, Republic of)

    2007-09-15

    To assess bone changes of mandibular condyle using cone beam computed tomography (CBCT) in temporomandibualr disorder (TMD) patients. 314 temporomandibular joints (TMJs) images of 163 TMD patients were examined at the Department of Oral and Maxillofacial Radiology, Chonbuk National University. The images were obtained by PSR9000N (Asahi Roentgen Co., Japan) and reconstructed by using Asahivision software (Asahi Roentgen Co., Japan). The CBCT images were examined three times with four weeks interval by three radiologists. Bone changes of mandibular condyle such as flattening, sclerosis, erosion and osteophyte formation were observed in sagittal, axial, coronal and 3 dimensional images of the mandibular condyle. The statistical analysis was performed using SPSS 12.0. Intra-and interobserver agreement were performed by 3 radiologists without the knowledge of clinical information. Osteopathy (2.9%) was found more frequently on anterior surface of the mandibular condyle. Erosion (31.8%) was found more frequently on anterior surface of the mandibular condyle. The intraobserver agreement was good to excellent (k=0.78{sub 0}.84), but interobserver agreement was fair (k=0.45). CBCT can provide high qualified images of bone changes of the TMJ with axial, coronal and 3 dimensional images.

  20. Cone beam computed tomography findings of impacted upper canines

    International Nuclear Information System (INIS)

    To describe the features of impacted upper canines and their relationship with adjacent structures through three-dimensional cone-beam computed tomography (CBCT) images. Using the CBCT scans of 79 upper impacted canines, we evaluated the following parameters: gender, unilateral/bilateral occurrence, location, presence and degree of root resorption of adjacent teeth (mild, moderate, or severe), root dilaceration, dental follicle width, and presence of other associated local conditions. Most of the impacted canines were observed in females (56 cases), unilaterally (51 cases), and at a palatine location (53 cases). Root resorption in adjacent teeth and root dilaceration were observed in 55 and 47 impacted canines, respectively. In most of the cases, the width of the dental follicle of the canine was normal; it was abnormally wide in 20 cases. A statistically significant association was observed for all variables, except for root dilaceration (p=0.115) and the side of impaction (p=0.260). Root resorption of adjacent teeth was present in most cases of canine impaction, mostly affecting adjacent lateral incisors to a mild degree. A wide dental follicle of impacted canines was not associated with a higher incidence of external root resorption of adjacent teeth.

  1. Evaluation of lens absorbed dose with Cone Beam IGRT procedures.

    Science.gov (United States)

    Palomo, R; Pujades, M C; Gimeno-Olmos, J; Carmona, V; Lliso, F; Candela-Juan, C; Vijande, J; Ballester, F; Perez-Calatayud, J

    2015-12-01

    The purpose of this work is to evaluate the absorbed dose to the eye lenses due to the cone beam computed tomography (CBCT) system used to accurately position the patient during head-and-neck image guided procedures. The on-board imaging (OBI) systems (v.1.5) of Clinac iX and TrueBeam (Varian) accelerators were used to evaluate the imparted dose to the eye lenses and some additional points of the head. All CBCT scans were acquired with the Standard-Dose Head protocol from Varian. Doses were measured using thermoluminescence dosimeters (TLDs) placed in an anthropomorphic phantom. TLDs were calibrated at the beam quality used to reduce their energy dependence. Average dose to the lens due to the OBI systems of the Clinac iX and the TrueBeam were 0.71  ±  0.07 mGy/CBCT and 0.70  ±  0.08 mGy/CBCT, respectively. The extra absorbed dose received by the eye lenses due to one CBCT acquisition with the studied protocol is far below the 500 mGy threshold established by ICRP for cataract formation (ICRP 2011 Statement on Tissue Reactions). However, the incremental effect of several CBCT acquisitions during the whole treatment should be taken into account. PMID:26457404

  2. Semi-Analytic Integration of Hypersingular Galerkin BIEs for 3D Potential Problems

    Energy Technology Data Exchange (ETDEWEB)

    Nintcheu Fata, Sylvain [ORNL; Gray, Leonard J [ORNL

    2009-01-01

    An accurate and efficient semi-analytic integration technique is developed for three-dimensional hypersingular boundary integral equations of potential theory. Investigated in the context of a Galerkin approach, surface integrals are defined as limits to the boundary and linear surface elements are employed to approximate the geometry and field variables on the boundary. In the inner integration procedure, all singular and non-singular integrals over a triangular boundary element are expressed exactly as analytic formulae over the edges of the integration triangle. In the outer integration scheme, closed-form expressions are obtained for the coincident case, wherein the divergent terms are identified explicitly and are shown to cancel with corresponding terms from the edge-adjacent case. The remaining surface integrals, containing only weak singularities, are carried out successfully by use of standard numerical cubatures. Sample problems are included to illustrate the performance and validity of the proposed algorithm.

  3. An innovative hybrid 3D analytic-numerical model for air breathing parallel channel counter-flow PEM fuel cells.

    Science.gov (United States)

    Tavčar, Gregor; Katrašnik, Tomaž

    2014-01-01

    The parallel straight channel PEM fuel cell model presented in this paper extends the innovative hybrid 3D analytic-numerical (HAN) approach previously published by the authors with capabilities to address ternary diffusion systems and counter-flow configurations. The model's core principle is modelling species transport by obtaining a 2D analytic solution for species concentration distribution in the plane perpendicular to the cannel gas-flow and coupling consecutive 2D solutions by means of a 1D numerical pipe-flow model. Electrochemical and other nonlinear phenomena are coupled to the species transport by a routine that uses derivative approximation with prediction-iteration. The latter is also the core of the counter-flow computation algorithm. A HAN model of a laboratory test fuel cell is presented and evaluated against a professional 3D CFD simulation tool showing very good agreement between results of the presented model and those of the CFD simulation. Furthermore, high accuracy results are achieved at moderate computational times, which is owed to the semi-analytic nature and to the efficient computational coupling of electrochemical kinetics and species transport. PMID:25125112

  4. An Innovative Hybrid 3D Analytic-Numerical Approach for System Level Modelling of PEM Fuel Cells

    Directory of Open Access Journals (Sweden)

    Gregor Tavčar

    2013-10-01

    Full Text Available The PEM fuel cell model presented in this paper is based on modelling species transport and coupling electrochemical reactions to species transport in an innovative way. Species transport is modelled by obtaining a 2D analytic solution for species concentration distribution in the plane perpendicular to the gas-flow and coupling consecutive 2D solutions by means of a 1D numerical gas-flow model. The 2D solution is devised on a jigsaw puzzle of multiple coupled domains which enables the modelling of parallel straight channel fuel cells with realistic geometries. Electrochemical and other nonlinear phenomena are coupled to the species transport by a routine that uses derivative approximation with prediction-iteration. A hybrid 3D analytic-numerical fuel cell model of a laboratory test fuel cell is presented and evaluated against a professional 3D computational fluid dynamic (CFD simulation tool. This comparative evaluation shows very good agreement between results of the presented model and those of the CFD simulation. Furthermore, high accuracy results are achieved at computational times short enough to be suitable for system level simulations. This computational efficiency is owed to the semi-analytic nature of its species transport modelling and to the efficient computational coupling of electrochemical kinetics and species transport.

  5. High performance cone-beam spiral backprojection with voxel-specific weighting

    Science.gov (United States)

    Steckmann, Sven; Knaup, Michael; Kachelrieß, Marc

    2009-06-01

    Cone-beam spiral backprojection is computationally highly demanding. At first sight, the backprojection requirements are similar to those of cone-beam backprojection from circular scans such as it is performed in the widely used Feldkamp algorithm. However, there is an additional complication: the illumination of each voxel, i.e. the range of angles the voxel is seen by the x-ray cone, is a complex function of the voxel position. In general, one needs to multiply a voxel-specific weight w(x, y, z, α) prior to adding a projection from angle α to a voxel at position x, y, z. Often, the weight function has no analytically closed form and must be numerically determined. Storage of the weights is prohibitive since the amount of memory required equals the number of voxels per spiral rotation times the number of projections a voxel receives contributions and therefore is in the order of up to 1012 floating point values for typical spiral scans. We propose a new algorithm that combines the spiral symmetry with the ability of today's 64 bit operating systems to store large amounts of precomputed weights, even above the 4 GB limit. Our trick is to backproject into slices that are rotated in the same manner as the spiral trajectory rotates. Using the spiral symmetry in this way allows one to exploit data-level paralellism and thereby to achieve a very high level of vectorization. An additional postprocessing step rotates these slices back to normal images. Our new backprojection algorithm achieves up to 17 giga voxel updates per second on our systems that are equipped with four standard Intel X7460 hexa core CPUs (Intel Xeon 7300 platform, 2.66 GHz, Intel Corporation). This equals the reconstruction of 344 images per second assuming that each slice consists of 512 × 512 pixels and receives contributions from 512 projections. Thereby, it is an order of magnitude faster than a highly optimized code that does not make use of the spiral symmetry. In its present version, the

  6. Clinical utility of dental cone-beam computed tomography: current perspectives

    OpenAIRE

    Jaju PP; Jaju SP

    2014-01-01

    Prashant P Jaju,1 Sushma P Jaju21Oral Medicine and Radiology, 2Conservative Dentistry and Endodontics, Rishiraj College of Dental Sciences and Research Center, Bhopal, IndiaAbstract: Panoramic radiography and computed tomography were the pillars of maxillofacial diagnosis. With the advent of cone-beam computed tomography, dental practice has seen a paradigm shift. This review article highlights the potential applications of cone-beam computed tomography in the fields of dental implantology an...

  7. Analytical-BEM coupling method for fast 3-D Interconnect resistance extraction

    Institute of Scientific and Technical Information of China (English)

    WANG Xi-ren; YU Wen-jian; WANG Ze-yi

    2006-01-01

    Deep submicron process technology is widely being used and interconnect structures are becoming more and more complex.This means that the resistance calculation based on two-dimensional models can no longer provide sufficiently accurate results.This paper presents a three-dimensional resistance calculation method called the combined analytical formula and boundary element method (ABEM).The method cuts selected interconnecting lines then it calculates the resistances of straight sections using an analytical formula and the resistances of the other sections using the boundary element method (BEM).The resistances of the different sub-regions are combined to calculate the resistance of the entire region.Experiments on actual layouts show that compared with the commercial software Raphael based on finite difference method,the proposed method is 2-3 orders of magnitude faster.The ABEM method uses much less memory (about 0.1%-1%),and is more accurate than Raphael with default mesh partitions.The results illustrate that the proposed method is efficient and accurate.

  8. Renyi Entropies, the Analytic Bootstrap, and 3D Quantum Gravity at Higher Genus

    CERN Document Server

    Headrick, Matthew; Perlmutter, Eric; Zadeh, Ida G

    2015-01-01

    We compute the contribution of the vacuum Virasoro representation to the genus-two partition function of an arbitrary CFT with central charge $c>1$. This is the perturbative pure gravity partition function in three dimensions. We employ a sewing construction, in which the partition function is expressed as a sum of sphere four-point functions of Virasoro vacuum descendants. For this purpose, we develop techniques to efficiently compute correlation functions of holomorphic operators, which by crossing symmetry are determined exactly by a finite number of OPE coefficients; this is an analytic implementation of the conformal bootstrap. Expanding the results in $1/c$, corresponding to the semiclassical bulk gravity expansion, we find that---unlike at genus one---the result does not truncate at finite loop order. Our results also allow us to extend earlier work on multiple-interval Renyi entropies and on the partition function in the separating degeneration limit.

  9. Vertical bone measurements from cone beam computed tomography images using different software packages

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Taruska Ventorini; Neves, Frederico Sampaio; Moraes, Livia Almeida Bueno; Freitas, Deborah Queiroz, E-mail: tataventorini@hotmail.com [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Faculdade de Odontologia

    2015-03-01

    This article aimed at comparing the accuracy of linear measurement tools of different commercial software packages. Eight fully edentulous dry mandibles were selected for this study. Incisor, canine, premolar, first molar and second molar regions were selected. Cone beam computed tomography (CBCT) images were obtained with i-CAT Next Generation. Linear bone measurements were performed by one observer on the cross-sectional images using three different software packages: XoranCat®, OnDemand3D® and KDIS3D®, all able to assess DICOM images. In addition, 25% of the sample was reevaluated for the purpose of reproducibility. The mandibles were sectioned to obtain the gold standard for each region. Intraclass coefficients (ICC) were calculated to examine the agreement between the two periods of evaluation; the one-way analysis of variance performed with the post-hoc Dunnett test was used to compare each of the software-derived measurements with the gold standard. The ICC values were excellent for all software packages. The least difference between the software-derived measurements and the gold standard was obtained with the OnDemand3D and KDIS3D (‑0.11 and ‑0.14 mm, respectively), and the greatest, with the XoranCAT (+0.25 mm). However, there was no statistical significant difference between the measurements obtained with the different software packages and the gold standard (p > 0.05). In conclusion, linear bone measurements were not influenced by the software package used to reconstruct the image from CBCT DICOM data. (author)

  10. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT)

    International Nuclear Information System (INIS)

    Aims: To compare image quality and visibility of anatomical structures in the mandible between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: One dry mandible was scanned with five CBCT scanners (Accuitomo 3D, i-CAT, NewTom 3G, Galileos, Scanora 3D) and one MSCT system (Somatom Sensation 16) using 13 different scan protocols. Visibility of 11 anatomical structures and overall image noise were compared between CBCT and MSCT. Five independent observers reviewed the CBCT and the MSCT images in the three orthographic planes (axial, sagittal and coronal) and assessed image quality on a five-point scale. Results: Significant differences were found in the visibility of the different anatomical structures and image noise level between MSCT and CBCT and among the five CBCT systems (p = 0.0001). Delicate structures such as trabecular bone and periodontal ligament were significantly less visible and more variable among the systems in comparison with other anatomical structures (p = 0.0001). Visibility of relatively large structures such as mandibular canal and mental foramen was satisfactory for all devices. The Accuitomo system was superior to MSCT and all other CBCT systems in depicting anatomical structures while MSCT was superior to all other CBCT systems in terms of reduced image noise. Conclusions: CBCT image quality is comparable or even superior to MSCT even though some variability exists among the different CBCT systems in depicting delicate structures. Considering the low radiation dose and high-resolution imaging, CBCT could be beneficial for dentomaxillofacial radiology.

  11. Vertical bone measurements from cone beam computed tomography images using different software packages

    International Nuclear Information System (INIS)

    This article aimed at comparing the accuracy of linear measurement tools of different commercial software packages. Eight fully edentulous dry mandibles were selected for this study. Incisor, canine, premolar, first molar and second molar regions were selected. Cone beam computed tomography (CBCT) images were obtained with i-CAT Next Generation. Linear bone measurements were performed by one observer on the cross-sectional images using three different software packages: XoranCat®, OnDemand3D® and KDIS3D®, all able to assess DICOM images. In addition, 25% of the sample was reevaluated for the purpose of reproducibility. The mandibles were sectioned to obtain the gold standard for each region. Intraclass coefficients (ICC) were calculated to examine the agreement between the two periods of evaluation; the one-way analysis of variance performed with the post-hoc Dunnett test was used to compare each of the software-derived measurements with the gold standard. The ICC values were excellent for all software packages. The least difference between the software-derived measurements and the gold standard was obtained with the OnDemand3D and KDIS3D (‑0.11 and ‑0.14 mm, respectively), and the greatest, with the XoranCAT (+0.25 mm). However, there was no statistical significant difference between the measurements obtained with the different software packages and the gold standard (p > 0.05). In conclusion, linear bone measurements were not influenced by the software package used to reconstruct the image from CBCT DICOM data. (author)

  12. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT)

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xin, E-mail: Xin.Liang@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); College of Stomatology, Dalian Medical University (China); Jacobs, Reinhilde, E-mail: Reinhilde.Jacobs@uz.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Hassan, Bassam, E-mail: b.hassan@acta.n [Department of Oral Radiology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam (Netherlands); Li Limin, E-mail: Limin.Li@uz.kuleuven.b [Department of Paediatric Dentistry and Special Dental Care, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Pauwels, Ruben, E-mail: Ruben.Pauwels@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Corpas, Livia, E-mail: LiviaCorpas@gmail.co [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Souza, Paulo Couto, E-mail: Paulo.CoutoSouza@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Martens, Wendy, E-mail: wendy.martens@uhasselt.b [Department of Basic Medical Sciences, Faculty of Medicine, University of Hasselt, Diepenbeek (Belgium); Shahbazian, Maryam, E-mail: Maryam.Shahbazian@student.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Alonso, Arie, E-mail: ariel.alonso@uhasselt.b [Department of Biostatistics and Statistical Bioinformatics, Universiteit Hasselt (Belgium)

    2010-08-15

    Aims: To compare image quality and visibility of anatomical structures in the mandible between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: One dry mandible was scanned with five CBCT scanners (Accuitomo 3D, i-CAT, NewTom 3G, Galileos, Scanora 3D) and one MSCT system (Somatom Sensation 16) using 13 different scan protocols. Visibility of 11 anatomical structures and overall image noise were compared between CBCT and MSCT. Five independent observers reviewed the CBCT and the MSCT images in the three orthographic planes (axial, sagittal and coronal) and assessed image quality on a five-point scale. Results: Significant differences were found in the visibility of the different anatomical structures and image noise level between MSCT and CBCT and among the five CBCT systems (p = 0.0001). Delicate structures such as trabecular bone and periodontal ligament were significantly less visible and more variable among the systems in comparison with other anatomical structures (p = 0.0001). Visibility of relatively large structures such as mandibular canal and mental foramen was satisfactory for all devices. The Accuitomo system was superior to MSCT and all other CBCT systems in depicting anatomical structures while MSCT was superior to all other CBCT systems in terms of reduced image noise. Conclusions: CBCT image quality is comparable or even superior to MSCT even though some variability exists among the different CBCT systems in depicting delicate structures. Considering the low radiation dose and high-resolution imaging, CBCT could be beneficial for dentomaxillofacial radiology.

  13. Reducing metal artifacts in cone-beam CT images by preprocessing projection data

    International Nuclear Information System (INIS)

    Purpose: Computed tomography (CT) streak artifacts caused by metallic implants remain a challenge for the automatic processing of image data. The impact of metal artifacts in the soft-tissue region is magnified in cone-beam CT (CBCT), because the soft-tissue contrast is usually lower in CBCT images. The goal of this study was to develop an effective offline processing technique to minimize the effect. Methods and Materials: The geometry calibration cue of the CBCT system was used to track the position of the metal object in projection views. The three-dimensional (3D) representation of the object can be established from only two user-selected viewing angles. The position of the shadowed region in other views can be tracked by projecting the 3D coordinates of the object. Automatic image segmentation was used followed by a Laplacian diffusion method to replace the pixels inside the metal object with the boundary pixels. The modified projection data were then used to reconstruct a new CBCT image. The procedure was tested in phantoms, prostate cancer patients with implanted gold markers and metal prosthesis, and a head-and-neck patient with dental amalgam in the teeth. Results: Both phantom and patient studies demonstrated that the procedure was able to minimize the metal artifacts. Soft-tissue visibility was improved near or away from the metal object. The processing time was 1-2 s per projection. Conclusion: We have implemented an effective metal artifact-suppressing algorithm to improve the quality of CBCT images

  14. Estimating cancer risk from dental cone-beam CT exposures based on skin dosimetry

    International Nuclear Information System (INIS)

    The aim of this study was to measure entrance skin doses on patients undergoing cone-beam computed tomography (CBCT) examinations, to establish conversion factors between skin and organ doses, and to estimate cancer risk from CBCT exposures. 266 patients (age 8–83) were included, involving three imaging centres. CBCT scans were acquired using the SCANORA 3D (Soredex, Tuusula, Finland) and NewTom 9000 (QR, Verona, Italy). Eight thermoluminescent dosimeters were attached to the patient's skin at standardized locations. Using previously published organ dose estimations on various CBCTs with an anthropomorphic phantom, correlation factors to convert skin dose to organ doses were calculated and applied to estimate patient organ doses. The BEIR VII age- and gender-dependent dose-risk model was applied to estimate the lifetime attributable cancer risk. For the SCANORA 3D, average skin doses over the eight locations varied between 484 and 1788 µGy. For the NewTom 9000 the range was between 821 and 1686 µGy for Centre 1 and between 292 and 2325 µGy for Centre 2. Entrance skin dose measurements demonstrated the combined effect of exposure and patient factors on the dose. The lifetime attributable cancer risk, expressed as the probability to develop a radiation-induced cancer, varied between 2.7 per million (age >60) and 9.8 per million (age 8–11) with an average of 6.0 per million. On average, the risk for female patients was 40% higher. The estimated radiation risk was primarily influenced by the age at exposure and the gender, pointing out the continuing need for justification and optimization of CBCT exposures, with a specific focus on children. (paper)

  15. Estimating cancer risk from dental cone-beam CT exposures based on skin dosimetry

    Science.gov (United States)

    Pauwels, Ruben; Cockmartin, Lesley; Ivanauskaité, Deimante; Urbonienė, Ausra; Gavala, Sophia; Donta, Catherine; Tsiklakis, Kostas; Jacobs, Reinhilde; Bosmans, Hilde; Bogaerts, Ria; Horner, Keith; SEDENTEXCT Project Consortium, The

    2014-07-01

    The aim of this study was to measure entrance skin doses on patients undergoing cone-beam computed tomography (CBCT) examinations, to establish conversion factors between skin and organ doses, and to estimate cancer risk from CBCT exposures. 266 patients (age 8-83) were included, involving three imaging centres. CBCT scans were acquired using the SCANORA 3D (Soredex, Tuusula, Finland) and NewTom 9000 (QR, Verona, Italy). Eight thermoluminescent dosimeters were attached to the patient's skin at standardized locations. Using previously published organ dose estimations on various CBCTs with an anthropomorphic phantom, correlation factors to convert skin dose to organ doses were calculated and applied to estimate patient organ doses. The BEIR VII age- and gender-dependent dose-risk model was applied to estimate the lifetime attributable cancer risk. For the SCANORA 3D, average skin doses over the eight locations varied between 484 and 1788 µGy. For the NewTom 9000 the range was between 821 and 1686 µGy for Centre 1 and between 292 and 2325 µGy for Centre 2. Entrance skin dose measurements demonstrated the combined effect of exposure and patient factors on the dose. The lifetime attributable cancer risk, expressed as the probability to develop a radiation-induced cancer, varied between 2.7 per million (age >60) and 9.8 per million (age 8-11) with an average of 6.0 per million. On average, the risk for female patients was 40% higher. The estimated radiation risk was primarily influenced by the age at exposure and the gender, pointing out the continuing need for justification and optimization of CBCT exposures, with a specific focus on children.

  16. Vertical bone measurements from cone beam computed tomography images using different software packages

    Directory of Open Access Journals (Sweden)

    Taruska Ventorini VASCONCELOS

    2015-01-01

    Full Text Available This article aimed at comparing the accuracy of linear measurement tools of different commercial software packages. Eight fully edentulous dry mandibles were selected for this study. Incisor, canine, premolar, first molar and second molar regions were selected. Cone beam computed tomography (CBCT images were obtained with i-CAT Next Generation. Linear bone measurements were performed by one observer on the cross-sectional images using three different software packages: XoranCat®, OnDemand3D® and KDIS3D®, all able to assess DICOM images. In addition, 25% of the sample was reevaluated for the purpose of reproducibility. The mandibles were sectioned to obtain the gold standard for each region. Intraclass coefficients (ICC were calculated to examine the agreement between the two periods of evaluation; the one-way analysis of variance performed with the post-hoc Dunnett test was used to compare each of the software-derived measurements with the gold standard. The ICC values were excellent for all software packages. The least difference between the software-derived measurements and the gold standard was obtained with the OnDemand3D and KDIS3D (-0.11 and -0.14 mm, respectively, and the greatest, with the XoranCAT (+0.25 mm. However, there was no statistical significant difference between the measurements obtained with the different software packages and the gold standard (p> 0.05. In conclusion, linear bone measurements were not influenced by the software package used to reconstruct the image from CBCT DICOM data.

  17. Measurement of the spatial resolution and the relative density resolution in an industrial cone-beam micro computed tomography system

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-Fang; QUE Jie-Min; CAO Da-Quan; SUN Cui-Li; ZHAO Wei; WEI Cun-Feng; SHI Rong-Jian

    2013-01-01

    The spatial resolution and the relative density resolution are the two most critical indicators in CT system.The method recommended in the ASTM E1695-95 and GJB 5311-2004 is only suitable to the fan-beam CT system.In this paper,for industrial cone-beam micro CT system,we will adopt the edge response function (ERF) created by the step edges of a steel ball to measure the system 3D PSF and MTF.To describe the contrast discrimination function more accurately,we will first propose to extend the two-dimensional measurement region to the three-dimensional space.Our experimental spatial resolution is (55.56±0.56) lp/mm and the relative density resolution is 1% within 300 μm×300 μm×300 μm according to the 3σ rule.

  18. Evaluation of pixel value of dental cone beam CT

    International Nuclear Information System (INIS)

    CT number derived from medical CT (MDCT) is effective for evaluating the quality of bone. On the other hand, in dental cone beam CT (CBCT), it is questionable whether the pixel value of the CBCT reflects the quality of bone. To investigate this matter, we prepared a dry skull with gypsum markers attached at different positions, scanned by MDCT and CBCT, and compared the CT number or pixel value between gypsum markers. Sixteen gypsum markers were attached on labial and buccal sites of maxillary and mandibular bone of a dry skull. They were scanned by a MDCT and three dental CBCT devices. The CT numbers or pixel values of gypsum markers measured by CT devices were examined, and their position and CT device dependencies were compared and discussed. In the case of MDCT, the average CT number and standard deviation of 16 markers was 2,011±79. In the case of CBCT, pixel value was 2,815±305. The pixel value changed significantly by a slight change in position of the dry skull. Similar results were obtained for other CBCT devices. These results are considered to be due mainly to the scattered beams in the CBCT. The incident beam extends conically-shaped in the CBCT and there is much beam scattering depending on the position of the measured object, causing pixel values to deviate. Flat panel detector equipped in the CBCT is not effective to defend scattered beam on the edges of the detector. An effective device such as a collimator to eliminate beam scattering or software to compensate for beam scattering needs to be developed. (author)

  19. Assessment of vertical fracture using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Moudi, Ehsan; Madani, Zahrasadat; Alhavaz, Abdolhamid; Bijani, Ali [Dental Material Research Center, Dental School, Babol University of Medical Sciences, Babol, (Korea, Republic of); Bagheri, Mohammad [Social Determinants of Health Research Center, Babol University of Medical Sciences, Babol (Korea, Republic of)

    2014-03-15

    The aim of this study was to investigate the accuracy of cone-beam computed tomography (CBCT) in the diagnosis of vertical root fractures in a tooth with gutta-percha and prefabricated posts. This study selected 96 extracted molar and premolar teeth of the mandible. These teeth were divided into six groups as follows: Groups A, B, and C consisted of teeth with vertical root fractures, and groups D, E, and F had teeth without vertical root fractures; groups A and D had teeth with gutta-percha and prefabricated posts; groups B and E had teeth with gutta-percha but without prefabricated posts, and groups C and F had teeth without gutta-percha or prefabricated posts. Then, the CBCT scans were obtained and examined by three oral and maxillofacial radiologists in order to determine the presence of vertical root fractures. The data were analyzed using IBM SPSS 20.0 (IBM Corp., Armonk, NY, USA). The kappa coefficient was 0.875 ± 0.049. Groups A and D showed a sensitivity of 81% and a specificity of 100%; groups E and B, a sensitivity of 94% and a specificity of 100%; and groups C and F, a sensitivity of 88% and a specificity of 100%. The CBCT scans revealed a high accuracy in the diagnosis of vertical root fractures; the accuracy did not decrease in the presence of gutta-percha. The presence of prefabricated posts also had little effect on the accuracy of the system, which was, of course, not statistically significant.

  20. Radiation Exposure of Abdominal Cone Beam Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, Anna M., E-mail: anni.sailer@mumc.nl [Maastricht University Medical Centre (MUMC), Department of Radiology (Netherlands); Schurink, Geert Willem H., E-mail: gwh.schurink@mumc.nl [Maastricht University Medical Centre, Department of Surgery (Netherlands); Wildberger, Joachim E., E-mail: j.wildberger@mumc.nl; Graaf, Rick de, E-mail: r.de.graaf@mumc.nl; Zwam, Willem H. van, E-mail: w.van.zwam@mumc.nl; Haan, Michiel W. de, E-mail: m.de.haan@mumc.nl; Kemerink, Gerrit J., E-mail: gerrit.kemerink@mumc.nl; Jeukens, Cécile R. L. P. N., E-mail: cecile.jeukens@mumc.nl [Maastricht University Medical Centre (MUMC), Department of Radiology (Netherlands)

    2015-02-15

    PurposeTo evaluate patients radiation exposure of abdominal C-arm cone beam computed tomography (CBCT).MethodsThis prospective study was approved by the institutional review board; written, informed consent was waived. Radiation exposure of abdominal CBCT was evaluated in 40 patients who underwent CBCT during endovascular interventions. Dose area product (DAP) of CBCT was documented and effective dose (ED) was estimated based on organ doses using dedicated Monte Carlo simulation software with consideration of X-ray field location and patients’ individual body weight and height. Weight-dependent ED per DAP conversion factors were calculated. CBCT radiation dose was compared to radiation dose of procedural fluoroscopy. CBCT dose-related risk for cancer was assessed.ResultsMean ED of abdominal CBCT was 4.3 mSv (95 % confidence interval [CI] 3.9; 4.8 mSv, range 1.1–7.4 mSv). ED was significantly higher in the upper than in the lower abdomen (p = 0.003) and increased with patients’ weight (r = 0.55, slope = 0.045 mSv/kg, p < 0.001). Radiation exposure of CBCT corresponded to the radiation exposure of on average 7.2 fluoroscopy minutes (95 % CI 5.5; 8.8 min) in the same region of interest. Lifetime risk of exposure related cancer death was 0.033 % or less depending on age and weight.ConclusionsMean ED of abdominal CBCT was 4.3 mSv depending on X-ray field location and body weight.

  1. Anatomical background and generalized detectability in tomosynthesis and cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Gang, G. J.; Tward, D. J.; Lee, J.; Siewerdsen, J. H. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9 (Canada) and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2010-05-15

    Purpose: Anatomical background presents a major impediment to detectability in 2D radiography as well as 3D tomosynthesis and cone-beam CT (CBCT). This article incorporates theoretical and experimental analysis of anatomical background ''noise'' in cascaded systems analysis of 2D and 3D imaging performance to yield ''generalized'' metrics of noise-equivalent quanta (NEQ) and detectability index as a function of the orbital extent of the (circular arc) source-detector orbit. Methods: A physical phantom was designed based on principles of fractal self-similarity to exhibit power-law spectral density ({kappa}/f{sup {beta}}) comparable to various anatomical sites (e.g., breast and lung). Background power spectra [S{sub B}(f)] were computed as a function of source-detector orbital extent, including tomosynthesis ({approx}10 deg. - 180 deg.) and CBCT (180 deg. +fan to 360 deg.) under two acquisition schemes: (1) Constant angular separation between projections (variable dose) and (2) constant total number of projections (constant dose). The resulting S{sub B} was incorporated in the generalized NEQ, and detectability index was computed from 3D cascaded systems analysis for a variety of imaging tasks. Results: The phantom yielded power-law spectra within the expected spatial frequency range, quantifying the dependence of clutter magnitude ({kappa}) and correlation ({beta}) with increasing tomosynthesis angle. Incorporation of S{sub B} in the 3D NEQ provided a useful framework for analyzing the tradeoffs among anatomical, quantum, and electronic noise with dose and orbital extent. Distinct implications are posed for breast and chest tomosynthesis imaging system design--applications varying significantly in {kappa} and {beta}, and imaging task and, therefore, in optimal selection of orbital extent, number of projections, and dose. For example, low-frequency tasks (e.g., soft-tissue masses or nodules) tend to benefit from larger orbital

  2. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    .9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.

  3. Stray light in cone beam optical computed tomography: I. Measurement and reduction strategies with planar diffuse source

    Science.gov (United States)

    Granton, Patrick V.; Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light’s spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.

  4. Evaluation of positioning errors of the patient using cone beam CT megavoltage; Evaluacion de errores de posicionamiento del paciente mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Zucca Aparicio, D.; Perez Moreno, J. M.; Minambres Moro, A.

    2013-07-01

    Image-guided radiation therapy allows you to assess and fix the positioning of the patient in the treatment unit, thus reducing the uncertainties due to the positioning of the patient. This work assesses errors systematic and errors of randomness from the corrections made to a series of patients of different diseases through a protocol off line of cone beam CT (CBCT) megavoltage. (Author)

  5. Cone-beam computed tomography in hypofractionated stereotactic radiotherapy for brain metastases

    Directory of Open Access Journals (Sweden)

    Ingrosso Gianluca

    2012-04-01

    Full Text Available Abstract Background To assess interfraction translational and rotational setup errors, in patients treated with image-guded hypofractionated stereotactic radiotherapy, immobilized by a thermoplastic mask and a bite-block and positioned using stereotactic coordinates. Methods 37 patients with 47 brain metastases were treated with hypofractionated stererotactic radiotherapy. All patients were immobilized with a combination of a thermoplastic mask and a bite-block fixed to a stereotactic frame support. Daily cone-beam CT scans were acquired for every patient before the treatment session and were matched online with planning CT images, for 3D image registration. The mean value and standard deviation of all translational (X, Y, Z and rotational errors (θx, θy, θz were calculated for the matching results of bone matching algorithm. Results A total of 194 CBCT scans were analyzed. Mean +/- standard deviation of translational errors (X, Y, Z were respectively 0.5 +/- 1.6 mm (range -5.7 and 5.9 mm in X; 0.4 +/- 2.7 mm (range -8.2 and 12.1 mm in Y; 0.4 +/- 1.9 mm (range -7.0 and 14 mm in Z; median and 90th percentile were respectively within 0.5 mm and 2.4 mm in X, 0.3 mm and 3.2 mm in Y, 0.3 mm and 2.2 mm in Z. Mean +/- standard deviation of rotational errors (θx, θy, θz were respectively 0.0 degrees+/- 1.3 degrees (θx (range -6.0 degrees and 3.1 degrees; -0.1 degrees +/- 1.1 degrees (θy (range -3.0 degrees and 2.4 degrees; -0.6 degrees +/- 1.4 degrees (θz (range -5.0 degrees and 3.3 degrees. Median and 90th percentile of rotational errors were respectively within 0.1 degrees and 1.4 degrees (θx, 0.0 degrees and 1.2 degrees (θy, 0.0 degrees and 0.9 degrees (θz. Mean +/- SD of 3D vector was 3.1 +/- 2.1 mm (range 0.3 and 14.9 mm; median and 90th percentile of 3D vector was within 2.7 mm and 5.1 mm. Conclusions Hypofractionated stereotactic radiotherapy have the significant limitation of uncertainty in interfraction repeatability of the patient

  6. Cone-beam CT技术及其在口腔正畸学中的应用进展%Current advance in application of cone-beam CT in orthodontics

    Institute of Scientific and Technical Information of China (English)

    王婷; 厉松

    2011-01-01

    在正畸的诊断治疗过程中,cone-beam CT已广泛应用于口腔界的各个领域,本文旨在对cone-beamCT的原理、特点及其在口腔正畸领域中的应用进行综述,以期增加正畸医师对于Cone-beam CT的理解.

  7. Cervical vertebral column morphology in patients with obstructive sleep apnoea assessed using lateral cephalograms and cone beam CT. A comparative study

    DEFF Research Database (Denmark)

    Sonnesen, L; Jensen, K E; Petersson, A R;

    2013-01-01

    OBJECTIVES: Few studies have described morphological deviations in obstructive sleep apnoea (OSA) patients on two-dimensional (2D) lateral cephalograms, and the reliability of 2D radiographs has been discussed. The objective is to describe the morphology of the cervical vertebral column on cone...... beam CT (CBCT) in adult patients with OSA and to compare 2D lateral cephalograms with three-dimensional (3D) CBCT images. METHODS: For all 57 OSA patients, the cervical vertebral column morphology was evaluated on lateral cephalograms and CBCT images and compared according to fusion anomalies...

  8. Rotational artifacts in on-board cone beam computed tomography

    International Nuclear Information System (INIS)

    Rotational artifacts in image guidance systems lead to registration errors that affect non-isocentric treatments and dose to off-axis organs-at-risk. This study investigates a rotational artifact in the images acquired with the on-board cone beam computed tomography system XVI (Elekta, Stockholm, Sweden). The goals of the study are to identify the cause of the artifact, to characterize its dependence on other quantities, and to investigate possible solutions. A 30 cm diameter cylindrical phantom is used to acquire clockwise and counterclockwise scans at five speeds (120 to 360 deg min−1) on six Elekta linear accelerators from three generations (MLCi, MLCi2 and Agility). Additional scans are acquired with different pulse widths and focal spot sizes for the same mAs. Image quality is evaluated using a common phantom with an in-house three dimensional contrast transfer function attachment. A robust, operator-independent analysis is developed which quantifies rotational artifacts with 0.02° accuracy and imaging system delays with 3 ms accuracy. Results show that the artifact is caused by mislabelling of the projections with a lagging angle due to various imaging system delays. For the most clinically used scan speed (360 deg min−1), the artifact is ∼0.5°, which corresponds to ∼0.25° error per scan direction with the standard Elekta procedure for angle calibration. This leads to a 0.5 mm registration error at 11 cm off-center. The artifact increases linearly with scan speed, indicating that the system delay is independent of scan speed. For the most commonly used pulse width of 40 ms, this delay is 34 ± 1 ms, part of which is half the pulse width. Results are consistent among the three linac generations. A software solution that corrects the angles of individual projections is shown to eliminate the rotational error for all scan speeds and directions. Until such a solution is available from the manufacturer, three clinical solutions are

  9. Actively triggered 4d cone-beam CT acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Martin F.; Wisotzky, Eric [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Oelfke, Uwe; Nill, Simeon [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  10. Iodized oil uptake assessment with cone-beam CT in chemoembolization of small hepatocellular carcinomas

    Institute of Scientific and Technical Information of China (English)

    Ung Bae Jeon; Jun Woo Lee; Ki Seok Choo; Chang Won Kim; Suk Kim; Tae Hong Lee; Yeon Joo Jeong; Dae Hwan Kang

    2009-01-01

    AIM: To evaluate the utility of assessing iodized oil uptake with cone-beam computed tomography (CT) in transarterial chemoembolization (TACE) for small hepatocellular carcinoma (HCC). METHODS: Cone-beam CT provided by a biplane flatpanel detector angiography suite was performed on eighteen patients (sixteen men and two women; 41-76 years; mean age, 58.9 years) directly after TACE for small HCC (26 nodules under 30 mm; mean diameter, 11.9 mm; range, 5-28 mm). The pre-procedural locations of the tumors were evaluated using triphasic multi-detector row helical computed tomography (MDCT). The tumor locations on MDCT and the iodized oil uptake by the tumors were analyzed on cone-beam CT and on spot image directly after the procedures. RESULTS: All lesions on preprocedural MDCT were detected using iodized oil uptake in the lesions on conebeam CT (sensitivity 100%, 26/26). Spot image depicted iodized oil uptake in 22 of the lesions (sensitivity 85%). The degree of iodized oil uptake was overestimated (9%, 2/22) or underestimated (14%, 3/22) on spot image in five nodules compared with that of cone-beam CT. CONCLUSION: Cone-beam CT is a useful and convenient tool for assessing the iodized oil uptake of small hepatic tumors (< 3 cm) directly after TACE.

  11. Asymptomatic radiopaque lesions of the jaws. A radiographic study using cone-beam computed tomography

    International Nuclear Information System (INIS)

    Panoramic radiography and cone-beam computed tomography (CT) were used to analyze asymptomatic radiopaque lesions in the jaw bones and determine the diagnostic relevance of the lesions based on their relationships to teeth and site of origin. One hundred radiopaque lesions detected between 1998 and 2002 were examined by both panoramic radiography and cone-beam CT. On the basis of panoramic radiographs, the region was classified as periapical, body, or edentulous, and the site was classified as molar or premolar. Follow-up data from medical records were available for only 36 of these cases. The study protocol for simultaneous use of cone-beam CT was approved by the ethics review board of our institution. A large majority of radiopaque lesions were observed in premolar and molar sites of the mandible; 60% of lesions were periapical, 24% were in the body, and 16% were in the edentulous region. An interesting type of radiopaque lesion, which we named a pearl shell structure (PSS), was observed on cone-beam CT in 34 of the 100 lesions. The PSS is a distinctive structure, and this finding on cone-beam CT likely represents the start of bone formation before bone sclerosis. (author)

  12. Asymptomatic radiopaque lesions of the jaws: a radiographic study using cone-beam computed tomography.

    Science.gov (United States)

    Araki, Masao; Matsumoto, Naoyuki; Matsumoto, Kunihito; Ohnishi, Masaaki; Honda, Kazuya; Komiyama, Kazuo

    2011-12-01

    Panoramic radiography and cone-beam computed tomography (CT) were used to analyze asymptomatic radiopaque lesions in the jaw bones and determine the diagnostic relevance of the lesions based on their relationships to teeth and site of origin. One hundred radiopaque lesions detected between 1998 and 2002 were examined by both panoramic radiography and cone-beam CT. On the basis of panoramic radiographs, the region was classified as periapical, body, or edentulous, and the site was classified as molar or premolar. Follow-up data from medical records were available for only 36 of these cases. The study protocol for simultaneous use of cone-beam CT was approved by the ethics review board of our institution. A large majority of radiopaque lesions were observed in premolar and molar sites of the mandible; 60% of lesions were periapical, 24% were in the body, and 16% were in the edentulous region. An interesting type of radiopaque lesion, which we named a pearl shell structure (PSS), was observed on cone-beam CT in 34 of the 100 lesions. The PSS is a distinctive structure, and this finding on cone-beam CT likely represents the start of bone formation before bone sclerosis. PMID:22167028

  13. Task-based modeling and optimization of a cone-beam CT scanner for musculoskeletal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, P.; Zbijewski, W.; Gang, G. J.; Ding, Y.; Stayman, J. W.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2 M9 (Canada); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Carestream Health, Rochester, New York 14615 (United States); Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21287 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2 M9 (Canada) and Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21287 (United States)

    2011-10-15

    Purpose: This work applies a cascaded systems model for cone-beam CT imaging performance to the design and optimization of a system for musculoskeletal extremity imaging. The model provides a quantitative guide to the selection of system geometry, source and detector components, acquisition techniques, and reconstruction parameters. Methods: The model is based on cascaded systems analysis of the 3D noise-power spectrum (NPS) and noise-equivalent quanta (NEQ) combined with factors of system geometry (magnification, focal spot size, and scatter-to-primary ratio) and anatomical background clutter. The model was extended to task-based analysis of detectability index (d') for tasks ranging in contrast and frequency content, and d' was computed as a function of system magnification, detector pixel size, focal spot size, kVp, dose, electronic noise, voxel size, and reconstruction filter to examine trade-offs and optima among such factors in multivariate analysis. The model was tested quantitatively versus the measured NPS and qualitatively in cadaver images as a function of kVp, dose, pixel size, and reconstruction filter under conditions corresponding to the proposed scanner. Results: The analysis quantified trade-offs among factors of spatial resolution, noise, and dose. System magnification (M) was a critical design parameter with strong effect on spatial resolution, dose, and x-ray scatter, and a fairly robust optimum was identified at M {approx} 1.3 for the imaging tasks considered. The results suggested kVp selection in the range of {approx}65-90 kVp, the lower end (65 kVp) maximizing subject contrast and the upper end maximizing NEQ (90 kVp). The analysis quantified fairly intuitive results--e.g., {approx}0.1-0.2 mm pixel size (and a sharp reconstruction filter) optimal for high-frequency tasks (bone detail) compared to {approx}0.4 mm pixel size (and a smooth reconstruction filter) for low-frequency (soft-tissue) tasks. This result suggests a specific

  14. Reconstruction-plane-dependent weighted FDK algorithm for cone beam volumetric CT

    Science.gov (United States)

    Tang, Xiangyang; Hsieh, Jiang

    2005-04-01

    The original FDK algorithm has been extensively employed in medical and industrial imaging applications. With an increased cone angle, cone beam (CB) artifacts in images reconstructed by the original FDK algorithm deteriorate, since the circular trajectory does not satisfy the so-called data sufficiency condition (DSC). A few "circular plus" trajectories have been proposed in the past to reduce CB artifacts by meeting the DSC. However, the circular trajectory has distinct advantages over other scanning trajectories in practical CT imaging, such as cardiac, vascular and perfusion applications. In addition to looking into the DSC, another insight into the CB artifacts of the original FDK algorithm is the inconsistency between conjugate rays that are 180° apart in view angle. The inconsistence between conjugate rays is pixel dependent, i.e., it varies dramatically over pixels within the image plane to be reconstructed. However, the original FDK algorithm treats all conjugate rays equally, resulting in CB artifacts that can be avoided if appropriate view weighting strategy is exercised. In this paper, a modified FDK algorithm is proposed, along with an experimental evaluation and verification, in which the helical body phantom and a humanoid head phantom scanned by a volumetric CT (64 x 0.625 mm) are utilized. Without extra trajectories supplemental to the circular trajectory, the modified FDK algorithm applies reconstruction-plane-dependent view weighting on projection data before 3D backprojection, which reduces the inconsistency between conjugate rays by suppressing the contribution of one of the conjugate rays with a larger cone angle. Both computer-simulated and real phantom studies show that, up to a moderate cone angle, the CB artifacts can be substantially suppressed by the modified FDK algorithm, while advantages of the original FDK algorithm, such as the filtered backprojection algorithm structure, 1D ramp filtering, and data manipulation efficiency, can be

  15. Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?

    Energy Technology Data Exchange (ETDEWEB)

    Cazzato, Roberto Luigi, E-mail: r.cazzato@unicampus.it; Battistuzzi, Jean-Benoit, E-mail: j.battistuzzi@bordeaux.unicancer.fr; Catena, Vittorio, E-mail: vittoriocatena@gmail.com [Institut Bergonié, Department of Radiology (France); Grasso, Rosario Francesco, E-mail: r.grasso@unicampus.it; Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Università Campus Bio-Medico di Roma, Department of Radiology and Diagnostic Imaging (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Università Campus Bio-Medico di Roma, Unit of Measurements and Biomedical Instrumentations, Biomedical Engineering Laboratory (Italy); Buy, Xavier, E-mail: x.buy@bordeaux.unicancer.fr; Palussiere, Jean, E-mail: j.palussiere@bordeaux.unicancer.fr [Institut Bergonié, Department of Radiology (France)

    2015-10-15

    AimTo compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours.Materials and MethodsPatients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (<10, 10–20, >20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported.ResultsForty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = −9.45, t = −3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %).ConclusionCBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.

  16. Cone beam computerized tomography: basics for digital planning in oral surgery and implantology.

    Science.gov (United States)

    Rugani, P; Kirnbauer, B; Arnetzl, G V; Jakse, N

    2009-01-01

    For the diagnosis of bone pathology, planning of complex implant-supported prosthetic restorations, and guaranteeing oral surgery that is as safe and free of complications as possible, a three-dimensional radiological display is frequently indicated. Cone beam computed tomography (CBCT), which can cover a large part of the indications of the dental and oral surgical spectrum, represents an alternative to computed tomography. Moreover, the method offers the advantage that it can also be used in the dental practice, taking the existing radiation protection regulations into account. This guarantees optimum patient and user friendliness, because referral to a specialized CT facility is thus no longer necessary in most cases. In the first 12 months of the trials of the Planmeca Promax 3D at the Department of Dental Surgery and Radiology of the University Clinic for Oral and Maxillofacial Medicine in Graz, the overwhelming majority of referrals for CBCT (almost 90%) was concerned with the field of oral surgery and implantology. Oral surgical questions mainly covered aspects of wisdom tooth anatomy, position of impacted canines, premolars, and mesiodents, as well as cystic lesions. Diagnoses of the maxillary sinuses and the area of tooth preservation represented further indications. Apart from diagnostic purposes, the objective of the referrals was facilitating optimum preparation for the pending operation. In the area of implantology, this was combined frequently with pre- or post-augmentative three-dimensional digital therapy planning. CBCT showed good results in the display of hard tissue structures and can be integrated without difficulty in the daily clinical routine. PMID:19413269

  17. Measurement of small lesions near metallic implants with mega-voltage cone beam CT

    Science.gov (United States)

    Grigorescu, Violeta; Prevrhal, Sven; Pouliot, Jean

    2008-03-01

    Metallic objects severely limit diagnostic CT imaging because of their high X-ray attenuation in the diagnostic energy range. In contrast, radiation therapy linear accelerators now offer CT imaging with X-ray energies in the megavolt range, where the attenuation coefficients of metals are significantly lower. We hypothesized that Mega electron-Voltage Cone-Beam CT (MVCT) implemented on a radiation therapy linear accelerator can detect and quantify small features in the vicinity of metallic implants with accuracy comparable to clinical Kilo electron-Voltage CT (KVCT) for imaging. Our test application was detection of osteolytic lesions formed near the metallic stem of a hip prosthesis, a condition of severe concern in hip replacement surgery. Both MVCT and KVCT were used to image a phantom containing simulated osteolytic bone lesions centered around a Chrome-Cobalt hip prosthesis stem with hemispherical lesions with sizes and densities ranging from 0.5 to 4 mm radius and 0 to 500 mg•cm -3, respectively. Images for both modalities were visually graded to establish lower limits of lesion visibility as a function of their size. Lesion volumes and mean density were determined and compared to reference values. Volume determination errors were reduced from 34%, on KVCT, to 20% for all lesions on MVCT, and density determination errors were reduced from 71% on KVCT to 10% on MVCT. Localization and quantification of lesions was improved with MVCT imaging. MVCT offers a viable alternative to clinical CT in cases where accurate 3D imaging of small features near metallic hardware is critical. These results need to be extended to other metallic objects of different composition and geometry.

  18. A system to track skin dose for neuro-interventional cone-beam computed tomography (CBCT)

    Science.gov (United States)

    Vijayan, Sarath; Xiong, Zhenyu; Rudin, Stephen; Bednarek, Daniel R.

    2016-03-01

    The skin-dose tracking system (DTS) provides a color-coded illustration of the cumulative skin-dose distribution on a closely-matching 3D graphic of the patient during fluoroscopic interventions in real-time for immediate feedback to the interventionist. The skin-dose tracking utility of DTS has been extended to include cone-beam computed tomography (CBCT) of neurointerventions. While the DTS was developed to track the entrance skin dose including backscatter, a significant part of the dose in CBCT is contributed by exit primary radiation and scatter due to the many overlapping projections during the rotational scan. The variation of backscatter inside and outside the collimated beam was measured with radiochromic film and a curve was fit to obtain a scatter spread function that could be applied in the DTS. Likewise, the exit dose distribution was measured with radiochromic film for a single projection and a correction factor was determined as a function of path length through the head. Both of these sources of skin dose are added for every projection in the CBCT scan to obtain a total dose mapping over the patient graphic. Results show the backscatter to follow a sigmoidal falloff near the edge of the beam, extending outside the beam as far as 8 cm. The exit dose measured for a cylindrical CTDI phantom was nearly 10 % of the entrance peak skin dose for the central ray. The dose mapping performed by the DTS for a CBCT scan was compared to that measured with radiochromic film and a CTDI-head phantom with good agreement.

  19. Comparison of CT numbers between cone-beam CT and multi-detector CT

    International Nuclear Information System (INIS)

    To compare the CT numbers on 3 cone-beam CT (CBCT) images with those on multi-detector CT (MDCT) image using CT phantom and to develop linear regressive equations using CT numbers to material density for all the CT scanner each. Mini CT phantom comprised of five 1 inch thick cylindrical models with 1.125 inches diameter of materials with different densities (polyethylene, polystyrene, plastic water, nylon and acrylic) was used. It was scanned in 3 CBCTs (i-CAT, Alphard VEGA, Implagraphy SC) and 1 MDCT (Somatom Emotion). The images were saved as DICOM format and CT numbers were measured using OnDemand 3D. CT numbers obtained from CBCTs and MDCT images were compared and linear regression analysis was performed for the density, ρ(g/cm3), as the dependent variable in terms of the CT numbers obtained from CBCTs and MDCT images. CT numbers on i-CAT and Implagraphy CBCT images were smaller than those on Somatom Emotion MDCT image (p<0.05). Linear relationship on a range of materials used for this study were ρ=0.001 H+1.07 with R2 value of 0.999 for Somatom Emotion, ρ=0.002 H+1.09 with R2 value of 0.991 for Alphard VEGA, ρ=0.001 H+1.43 with R2 value of 0.980 for i-CAT and ρ=0.001 H+1.30 with R2 value of 0.975 for Implagraphy. CT numbers on i-CAT and Implagraphy CBCT images were not same as those on Somatom Emotion MDCT image. The linear regressive equations to determine the density from the CT numbers with very high correlation coefficient were obtained on three CBCT and MDCT scan.

  20. Cone-Beam Computed Tomographic Image Guidance for Lung Cancer Radiation Therapy

    International Nuclear Information System (INIS)

    Purpose: To determine the geometric accuracy of lung cancer radiotherapy using daily volumetric, cone-beam CT (CBCT) image guidance and online couch position adjustment. Methods and Materials: Initial setup accuracy using localization CBCT was analyzed in three lung cancer patient cohorts. The first (n = 19) involved patients with early-stage non-small-cell lung cancer (NSCLC) treated using stereotactic body radiotherapy (SBRT). The second (n = 48) and third groups (n = 20) involved patients with locally advanced NSCLC adjusted with manual and remote-controlled couch adjustment, respectively. For each group, the couch position was adjusted when positional discrepancies exceeded ±3 mm in any direction, with the remote-controlled couch correcting all three directions simultaneously. Adjustment accuracy was verified with a second CBCT. Population-based setup margins were derived from systematic (Σ) and random (σ) positional errors for each group. Results: Localization imaging demonstrates that 3D positioning errors exceeding 5 mm occur in 54.5% of all delivered fractions. CBCT reduces these errors; post-correction Σ and σ ranged from 1.2 to 1.9 mm for Group 1, with 82% of all fractions within ±3 mm. For Group 2, Σ and σ ranged between 0.8 and 1.8 mm, with 76% of all treatment fractions within ±3 mm. For Group 3, the remote-controlled couch raised this to 84%, and Σ and σ were reduced to 0.4 to 1.7 mm. For each group, the postcorrection setup margins were 4 to 6 mm, 3 to 4 mm, and 2 to 3 mm, respectively. Conclusions: Using IGRT, high geometric accuracy is achievable for NSCLC patients, potentially leading to reduced PTV margins, improved outcomes and empowering adaptive radiation therapy for lung cancer

  1. Modeling Semantic Emotion Space Using a 3D Hypercube-Projection: An Innovative Analytical Approach for the Psychology of Emotions.

    Science.gov (United States)

    Trnka, Radek; Lačev, Alek; Balcar, Karel; Kuška, Martin; Tavel, Peter

    2016-01-01

    The widely accepted two-dimensional circumplex model of emotions posits that most instances of human emotional experience can be understood within the two general dimensions of valence and activation. Currently, this model is facing some criticism, because complex emotions in particular are hard to define within only these two general dimensions. The present theory-driven study introduces an innovative analytical approach working in a way other than the conventional, two-dimensional paradigm. The main goal was to map and project semantic emotion space in terms of mutual positions of various emotion prototypical categories. Participants (N = 187; 54.5% females) judged 16 discrete emotions in terms of valence, intensity, controllability and utility. The results revealed that these four dimensional input measures were uncorrelated. This implies that valence, intensity, controllability and utility represented clearly different qualities of discrete emotions in the judgments of the participants. Based on this data, we constructed a 3D hypercube-projection and compared it with various two-dimensional projections. This contrasting enabled us to detect several sources of bias when working with the traditional, two-dimensional analytical approach. Contrasting two-dimensional and three-dimensional projections revealed that the 2D models provided biased insights about how emotions are conceptually related to one another along multiple dimensions. The results of the present study point out the reductionist nature of the two-dimensional paradigm in the psychological theory of emotions and challenge the widely accepted circumplex model.

  2. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements

  3. Cone Beam CT在牙种植术中应用的临床观察

    Institute of Scientific and Technical Information of China (English)

    李蓓

    2009-01-01

    文章通过对64例拟行牙种植术患者进行Cone Beam CT检查,观察CT影像在牙种植手术适应证评价与手术设计中的作用.与X线曲面断层片及模型观测结果相比,Cone Beam CT影像提供了更直观,更精确的种植区骨条件信息,提高了牙种植手术的效率,牙种植手术无1例失败.Cone Beam CT应用于牙种植术,能够使手术更加安全、高效,具有较高的临床应用价值.

  4. Exact cone beam reconstruction formulae for functions and their gradients for spherical and flat detectors

    Science.gov (United States)

    Louis, Alfred K.

    2016-11-01

    We derive unified inversion formulae for the cone beam transform similar to the Radon transform. Reinterpreting Grangeat’s formula we find a relation between the Radon transform of the gradient of the searched-for function and a quantity computable from cone beam data. This gives a uniqueness result for the cone beam transform of compactly supported functions under much weaker assumptions than the Tuy-Kirillov condition. Furthermore this relation leads to an exact formula for the direct calculation of derivatives of the density distribution; but here, similar to the classical Radon transform, complete Radon data are needed, hence the Tuy-Kirillov condition has to be imposed. Numerical experiments reported in Hahn B N et al (2013 Meas. Sci. Technol. 24 125601) indicate that these calculations are less corrupted by beam-hardening noise. Finally, we present flat detector versions for these results, which are mathematically less attractive but important for applications.

  5. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongmei; Zhu, Shouping, E-mail: zhusp2009@gmail.com; Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin [Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi' an, Shaanxi 710071 (China)

    2014-11-10

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging.

  6. Cone beam CT findings of retromolar canals: Report of cases and literature review

    International Nuclear Information System (INIS)

    A retromolar canal is an anatomical variation in the mandible. As it includes the neurovascular bundle, local anesthetic insufficiency can occur, and an injury of the retromolar canal during dental surgery in the mandible may result in excessive bleeding, paresthesia, and traumatic neuroma. Using imaging analysis software, we evaluated the cone-beam computed tomography (CT) images of two Korean patients who presented with retromolar canals. Retromolar canals were detectable on the sagittal and cross-sectional images of cone-beam CT, but not on the panoramic radiographs of the patients. Therefore, the clinician should pay particular attention to the identification of retromolar canals by preoperative radiographic examination, and additional cone beam CT scanning would be recommended.

  7. Motion tolerant iterative reconstruction algorithm for cone-beam helical CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hisashi; Goto, Taiga; Hirokawa, Koichi; Miyazaki, Osamu [Hitachi Medical Corporation, Chiba-ken (Japan). CT System Div.

    2011-07-01

    We have developed a new advanced iterative reconstruction algorithm for cone-beam helical CT. The features of this algorithm are: (a) it uses separable paraboloidal surrogate (SPS) technique as a foundation for reconstruction to reduce noise and cone-beam artifact, (b) it uses a view weight in the back-projection process to reduce motion artifact. To confirm the improvement of our proposed algorithm over other existing algorithm, such as Feldkamp-Davis-Kress (FDK) or SPS algorithm, we compared the motion artifact reduction, image noise reduction (standard deviation of CT number), and cone-beam artifact reduction on simulated and clinical data set. Our results demonstrate that the proposed algorithm dramatically reduces motion artifacts compared with the SPS algorithm, and decreases image noise compared with the FDK algorithm. In addition, the proposed algorithm potentially improves time resolution of iterative reconstruction. (orig.)

  8. Cone beam CT findings of retromolar canals: Report of cases and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Sun [Dept. of Dental Hygiene, Eulji University, Seongnam (Korea, Republic of); Park, Chang Seo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Yonsei University, Seoul (Korea, Republic of)

    2013-12-15

    A retromolar canal is an anatomical variation in the mandible. As it includes the neurovascular bundle, local anesthetic insufficiency can occur, and an injury of the retromolar canal during dental surgery in the mandible may result in excessive bleeding, paresthesia, and traumatic neuroma. Using imaging analysis software, we evaluated the cone-beam computed tomography (CT) images of two Korean patients who presented with retromolar canals. Retromolar canals were detectable on the sagittal and cross-sectional images of cone-beam CT, but not on the panoramic radiographs of the patients. Therefore, the clinician should pay particular attention to the identification of retromolar canals by preoperative radiographic examination, and additional cone beam CT scanning would be recommended.

  9. Tetrahedron-based orthogonal simultaneous scan for cone-beam computed tomography.

    Science.gov (United States)

    Ye, Ivan B; Wang, Ge

    2012-08-01

    In this article, a cone-beam computed tomography scanning mode is designed using four x-ray sources and a spherical sample. The x-ray sources are mounted at the vertices of a regular tetrahedron. On the circumsphere of the tetrahedron, four detection panels are mounted opposite of each vertex. To avoid x-ray interference, the largest half angle of each x-ray cone beam is 27°22', while the radius of the largest ball fully covered by all the cone beams is 0.460, when the radius of the circumsphere is 1. A proposed scanning scheme consists of two rotations about orthogonal axes, such that, each quarter turn provides sufficient data for theoretically exact and stable reconstruction. This design can be used in biomedical or industrial settings, such as when a sequence of reconstructions of an object is desired.

  10. Segmentation of large periapical lesions toward dental computer-aided diagnosis in cone-beam CT scans

    Science.gov (United States)

    Rysavy, Steven; Flores, Arturo; Enciso, Reyes; Okada, Kazunori

    2008-03-01

    This paper presents an experimental study for assessing the applicability of general-purpose 3D segmentation algorithms for analyzing dental periapical lesions in cone-beam computed tomography (CBCT) scans. In the field of Endodontics, clinical studies have been unable to determine if a periapical granuloma can heal with non-surgical methods. Addressing this issue, Simon et al. recently proposed a diagnostic technique which non-invasively classifies target lesions using CBCT. Manual segmentation exploited in their study, however, is too time consuming and unreliable for real world adoption. On the other hand, many technically advanced algorithms have been proposed to address segmentation problems in various biomedical and non-biomedical contexts, but they have not yet been applied to the field of dentistry. Presented in this paper is a novel application of such segmentation algorithms to the clinically-significant dental problem. This study evaluates three state-of-the-art graph-based algorithms: a normalized cut algorithm based on a generalized eigen-value problem, a graph cut algorithm implementing energy minimization techniques, and a random walks algorithm derived from discrete electrical potential theory. In this paper, we extend the original 2D formulation of the above algorithms to segment 3D images directly and apply the resulting algorithms to the dental CBCT images. We experimentally evaluate quality of the segmentation results for 3D CBCT images, as well as their 2D cross sections. The benefits and pitfalls of each algorithm are highlighted.

  11. Cone beam CT evaluation of patient set-up accuracy as a QA tool

    DEFF Research Database (Denmark)

    Nielsen, Morten; Bertelsen, Anders; Westberg, Jonas;

    2009-01-01

    Purpose. To quantify by means of cone beam CT the random and systematic uncertainty involved in radiotherapy, and to determine if this information can be used for e.g. technical quality assurance, evaluation of patient immobilization and determination of margins for the treatment planning. Patients...... and methods. Eighty four cancer patients have been cone beam CT scanned at treatment sessions 1, 2, 3, 10 and 20. Translational and rotational errors are analyzed. Results and conclusions. For the first three treatment sessions the mean translational error in the AP direction is 1 mm; this indicates a small...

  12. Protocol of image guided off-line using cone beam CT megavoltage; Protocolo de imagen guiada off-line mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Perez Moreno, J. M.; Zucca Aparicio, D.; Minambres Moro, A.

    2013-07-01

    The goal of image guided protocols offline is to reduce systematic errors in positioning of the patient in the treatment unit, being more important than the random errors, since the systematic have one contribution in the margin of the CTV to the PTV. This paper proposes a protocol for image guided offline with the different actions to take with their threshold values evaluated previously by anatomic location in a sample of 474 patients and 4821Cone beam Megavoltaje CT (CBCT). (Author)

  13. Investigation of respiration induced intra- and inter-fractional tumour motion using a standard Cone Beam CT

    DEFF Research Database (Denmark)

    Gottlieb, Karina Lindberg; Hansen, Christian R; Hansen, Olfred;

    2010-01-01

    To investigate whether a standard Cone beam CT (CBCT) scan can be used to determined the intra- and inter-fractional tumour motion for lung tumours that have infiltrated the mediastinum.......To investigate whether a standard Cone beam CT (CBCT) scan can be used to determined the intra- and inter-fractional tumour motion for lung tumours that have infiltrated the mediastinum....

  14. Evaluation of Cone Beam Computed Tomography in Diagnosis and Treatment Plan of Impacted Maxillary Canines Evaluation of Cone Beam Computed Tomography in Diagnosis and Treatment Plan of Impacted Maxillary Canines

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Hoseini Zarch

    2013-06-01

    Full Text Available Introduction: Maxillary canines have important roles in facial appearance, development of arch, and functional occlusion. Radiographs are important in evaluating the location and nature of these anomalies. The purpose of this study was to evaluate two types of 2D and 3D imaging technique in diagnosis and treatment of maxillary impacted canines. Methods: Thirty eight patients (50 impacted canines were enrolled. An oral radiologist assessed all of patients’ panoramic radiographs and then cone beam computed tomography (CBCT to determine the presence of adjacent teeth root resorption, root dilacerations before dental extraction, dental rotation, and buccolingual localization ofimpacted canine crown and root contact with sinus and nasal cavity.Then using the patient’s radiographs the treatment plan of each impacted canine was determined by an orthodontist. Results: Differences between panoramic radiography and CBCT in diagnosis of root resorption and dental rotation were significant. There was an agreement between panoramic radiographs and CBCT in localization of impacted teeth crown. Only the treatment plans of 20% of impacted canines were different between panoramic radiographs and CBCT and treatment plan of 80% of impacted teeth was similar. Conclusion: These results showed that 2D and 3D images of impacted maxillary canines can produce different diagnoses and treatment plans.  

  15. MHD and deep mixing in evolved stars. 1. 2D and 3D analytical models for the AGB

    CERN Document Server

    Nucci, M C

    2014-01-01

    The advection of thermonuclear ashes by magnetized domains emerging from near the H-shell was suggested to explain AGB star abundances. Here we verify this idea quantitatively through exact MHD models. Starting with a simple 2D geometry and in an inertia frame, we study plasma equilibria avoiding the complications of numerical simulations. We show that, below the convective envelope of an AGB star, variable magnetic fields induce a natural expansion, permitted by the almost ideal MHD conditions, in which the radial velocity grows as the second power of the radius. We then study the convective envelope, where the complexity of macro-turbulence allows only for a schematic analytical treatment. Here the radial velocity depends on the square root of the radius. We then verify the robustness of our results with 3D calculations for the velocity, showing that, for both the studied regions, the solution previously found can be seen as a planar section of a more complex behavior, in which anyway the average radial vel...

  16. Implementing a Matrix-free Analytical Jacobian to Handle Nonlinearities in Models of 3D Lithospheric Deformation

    Science.gov (United States)

    Kaus, B.; Popov, A.

    2015-12-01

    The analytical expression for the Jacobian is a key component to achieve fast and robust convergence of the nonlinear Newton-Raphson iterative solver. Accomplishing this task in practice often requires a significant algebraic effort. Therefore it is quite common to use a cheap alternative instead, for example by approximating the Jacobian with a finite difference estimation. Despite its simplicity it is a relatively fragile and unreliable technique that is sensitive to the scaling of the residual and unknowns, as well as to the perturbation parameter selection. Unfortunately no universal rule can be applied to provide both a robust scaling and a perturbation. The approach we use here is to derive the analytical Jacobian for the coupled set of momentum, mass, and energy conservation equations together with the elasto-visco-plastic rheology and a marker in cell/staggered finite difference method. The software project LaMEM (Lithosphere and Mantle Evolution Model) is primarily developed for the thermo-mechanically coupled modeling of the 3D lithospheric deformation. The code is based on a staggered grid finite difference discretization in space, and uses customized scalable solvers form PETSc library to efficiently run on the massively parallel machines (such as IBM Blue Gene/Q). Currently LaMEM relies on the Jacobian-Free Newton-Krylov (JFNK) nonlinear solver, which approximates the Jacobian-vector product using a simple finite difference formula. This approach never requires an assembled Jacobian matrix and uses only the residual computation routine. We use an approximate Jacobian (Picard) matrix to precondition the Krylov solver with the Galerkin geometric multigrid. Because of the inherent problems of the finite difference Jacobian estimation, this approach doesn't always result in stable convergence. In this work we present and discuss a matrix-free technique in which the Jacobian-vector product is replaced by analytically-derived expressions and compare results

  17. Evaluation of web-based instruction for anatomical interpretation in maxillofacial cone beam computed tomography

    NARCIS (Netherlands)

    W.T. Al-Rawi; R. Jacobs; B.A. Hassan; G. Sanderink; W.C. Scarfe

    2007-01-01

    Objectives: To evaluate the effectiveness of a web-based instruction in the interpretation of anatomy in images acquired with maxillofacial cone beam CT (CBCT). Methods: An interactive web-based education course for the interpretation of craniofacial CBCT images was recently developed at our institu

  18. Time-resolved cardiac cone beam CT using an interventional C-arm system

    NARCIS (Netherlands)

    Schomberg, H.

    2012-01-01

    It is both desirable and challenging to make interventional C-arm systems fit for cardiac cone beam CT. A number of methods towards thisgoal have been proposed, some of which even attempt to generate 4Dimages of the beating heart. A promising candidate of this type, proposed earlier by this author,

  19. Accuracy and repeatability of anthropometric facial measurements using cone beam computed tomography

    NARCIS (Netherlands)

    Fourie, Zacharias; Damstra, Janalt; Gerrits, Peter O.; Ren, Yijin

    2011-01-01

    Objective: The purpose of this study was to determine the accuracy and repeatability of linear anthropometric measurements on the soft tissue surface model generated from cone beam computed tomography scans. Materials and Methods: The study sample consisted of seven cadaver heads. The accuracy and r

  20. Should cavitation in proximal surfaces be reported in cone beam computed tomography examination?

    DEFF Research Database (Denmark)

    Sansare, K; Singh, D; Sontakke, S;

    2014-01-01

    Aim: A clinical study was done to assess the clinical diagnostic accuracy of cone beam computed tomography (CBCT) in detecting proximal cavitated carious lesions in order to determine whether cavitation should be reported when a CBCT examination is available. Materials and Methods: 79 adjacent...

  1. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement.

    NARCIS (Netherlands)

    Guerrero, M.E.; Jacobs, R.; Loubele, M.; Schutyser, F.A.C.; Suetens, P.; Steenberghe, D van

    2006-01-01

    Orofacial diagnostic imaging has grown dramatically in recent years. As the use of endosseous implants has revolutionized oral rehabilitation, a specialized technique has become available for the preoperative planning of oral implant placement: cone beam computed tomography (CT). This imaging techno

  2. Cone-beam computed tomography: An inevitable investigation in cleidocranial dysplasia

    Directory of Open Access Journals (Sweden)

    Nandita S Gupta

    2015-01-01

    Full Text Available Cleidocranial dysplasia is a heritable skeletal dysplasia and one of the most common features of this syndrome is multiple impacted supernumerary teeth. Cone-beam computed tomography, the most recent advancement in maxillofacial imaging, provides the clinician to view the morphology of the skull and the dentition in all three dimensions and help in treatment planning for the patient.

  3. Registration-based Reconstruction of Four-dimensional Cone Beam Computed Tomography

    DEFF Research Database (Denmark)

    Christoffersen, Christian; Hansen, David Christoffer; Poulsen, Per Rugaard;

    2013-01-01

    We present a new method for reconstruction of four-dimensional (4D) cone beam computed tomography from an undersampled set of X-ray projections. The novelty of the proposed method lies in utilizing optical flow based registration to facilitate that each temporal phase is reconstructed from the full...

  4. Point spread function modeling and images restoration for cone-beam CT

    CERN Document Server

    Zhang, Hua; Shi, Yikai; Xu, Zhe

    2014-01-01

    X-ray cone-beam computed tomography (CT) has the notable features such as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection images degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed firstly. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection images restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection images restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasib...

  5. Cone Beam Computed Tomography-Dawn of A New Imaging Modality in Orthodontics

    OpenAIRE

    Mamatha, J; Chaitra, K R; Paul, Renji K; George, Merin; Anitha, J; Khanna, Bharti

    2015-01-01

    Today, we are in a world of innovations, and there are various diagnostics aids that help to take a decision regarding treatment in a well-planned way. Cone beam computed tomography (CBCT) has been a vital tool for imaging diagnostic tool in orthodontics. This article reviews case reports during orthodontic treatment and importance of CBCT during the treatment evaluation.

  6. Influence of cone beam CT scanning parameters on grey value measurements at an implant site

    NARCIS (Netherlands)

    A. Parsa; N. Ibrahim; B. Hassan; A. Motroni; P. van der Stelt; D. Wismeijer

    2013-01-01

    Objectives: The aim of this study was to determine the grey value variation at the implant site with different scan settings, including field of view (FOV), spatial resolution, number of projections, exposure time and dose selections in two cone beam CT (CBCT) systems and to compare the results with

  7. The application of cone-beam CT in the aging of bone calluses: a new perspective?

    Science.gov (United States)

    Cappella, A; Amadasi, A; Gaudio, D; Gibelli, D; Borgonovo, S; Di Giancamillo, M; Cattaneo, C

    2013-11-01

    In the forensic and anthropological fields, the assessment of the age of a bone callus can be crucial for a correct analysis of injuries in the skeleton. To our knowledge, the studies which have focused on this topic are mainly clinical and still leave much to be desired for forensic purposes, particularly in looking for better methods for aging calluses in view of criminalistic applications. This study aims at evaluating the aid cone-beam CT can give in the investigation of the inner structure of fractures and calluses, thus acquiring a better knowledge of the process of bone remodeling. A total of 13 fractures (three without callus formation and ten with visible callus) of known age from cadavers were subjected to radiological investigations with digital radiography (DR) (conventional radiography) and cone-beam CT with the major aim of investigating the differences between DR and tomographic images when studying the inner and outer structures of bone healing. Results showed how with cone-beam CT the structure of the callus is clearly visible with higher specificity and definition and much more information on mineralization in different sections and planes. These results could lay the foundation for new perspectives on bone callus evaluation and aging with cone-beam CT, a user-friendly and skillful technique which in some instances can also be used extensively on the living (e.g., in cases of child abuse) with reduced exposition to radiation. PMID:23389391

  8. Contours identification of elements in a cone beam computed tomography for investigating maxillary cysts

    Science.gov (United States)

    Chioran, Doina; Nicoarǎ, Adrian; Roşu, Şerban; Cǎrligeriu, Virgil; Ianeş, Emilia

    2013-10-01

    Digital processing of two-dimensional cone beam computer tomography slicesstarts by identification of the contour of elements within. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating and implementation of algorithms in dental 2D imagery.

  9. Integration of digital dental casts in cone-beam computed tomography scans

    NARCIS (Netherlands)

    Rangel, F.A.; Maal, T.J.J.; Berge, S.J.; Kuijpers-Jagtman, A.M.

    2012-01-01

    Cone-beam computed tomography (CBCT) is widely used in maxillofacial surgery. The CBCT image of the dental arches, however, is of insufficient quality to use in digital planning of orthognathic surgery. Several authors have described methods to integrate digital dental casts into CBCT scans, but all

  10. Influence of scan setting selections on root canal visibility with cone beam CT

    NARCIS (Netherlands)

    B.A. Hassan; J. Payam; B. Juyanda; P. van der Stelt; P.R. Wesselink

    2012-01-01

    Objectives The aim of this study was to assess the influence of scan setting selection, including field of view (FOV) ranging from small to large, number of projections and scan modes on the visibility of the root canal with cone beam CT (CBCT). Methods One human mandible cadaver was scanned with CB

  11. Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications

    International Nuclear Information System (INIS)

    Purpose: To evaluate the radiation exposure for operating personel associated with rotational flat-panel angiography and C-arm cone beam CT. Materials and methods: Using a dedicated angiography-suite, 2D and 3D examinations of the liver were performed on a phantom to generate scattered radiation. Exposure was measured with a dosimeter at predefined heights (eye, thyroid, breast, gonads and knee) at the physician's location. Analysis included 3D procedures with a field of view (FOV) of 24 cm × 18 cm (8 s/rotation, 20 s/rotation and 5 s/2 rotations), and 47 cm × 18 cm (16 s/2 rotations) and standard 2D angiography (10 s, FOV 24 cm × 18 cm). Results: Measurements showed the highest radiation dose at the eye and thyroid level. In comparison to 2D-DSA (3.9 μSv eye-exposure), the 3D procedures caused an increased radiation exposure both in standard FOV (8 s/rotation: 28.0 μSv, 20 s/rotation: 79.3 μSv, 5 s/2 rotations: 32.5 μSv) and large FOV (37.6 μSv). Proportional distributions were measured for the residual heights. With the use of lead glass, irradiation of the eye lens was reduced to 0.2 μSv (2D DSA) and 10.6 μSv (3D technique with 20 s/rotation). Conclusion: Rotational flat-panel angiography and C-arm cone beam applications significantly increase radiation exposure to the attending operator in comparison to 2D angiography. Our study indicates that the physician should wear protective devices and leave the examination room when performing 3D examinations.

  12. Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Boris, E-mail: boris.schell@googlemail.com [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Heidenreich, Ralf, E-mail: ralf.heidenreich@roentgen-consult.de [Röntgen-Consult Company, Schulhausstrasse 37, 79199 Kirchzarten (Germany); Heidenreich, Monika, E-mail: info@roentgen-consult.de [Röntgen-Consult Company, Schulhausstrasse 37, 79199 Kirchzarten (Germany); Eichler, Katrin, E-mail: k.eichler@em.uni-frankfurt.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Thalhammer, Axel, E-mail: axel.thalhammer@kgu.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Naeem, Naguib Nagy Naguib, E-mail: nagynnn@yahoo.com [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Vogl, Thomas Josef, E-mail: T.Vogl@em.uni-frankfurt.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany); Zangos, Stefan, E-mail: Zangos@em.uni-frankfurt.de [Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Theodor-Stern-Kai 7, 60590 Frankfurt (Germany)

    2012-12-15

    Purpose: To evaluate the radiation exposure for operating personel associated with rotational flat-panel angiography and C-arm cone beam CT. Materials and methods: Using a dedicated angiography-suite, 2D and 3D examinations of the liver were performed on a phantom to generate scattered radiation. Exposure was measured with a dosimeter at predefined heights (eye, thyroid, breast, gonads and knee) at the physician's location. Analysis included 3D procedures with a field of view (FOV) of 24 cm × 18 cm (8 s/rotation, 20 s/rotation and 5 s/2 rotations), and 47 cm × 18 cm (16 s/2 rotations) and standard 2D angiography (10 s, FOV 24 cm × 18 cm). Results: Measurements showed the highest radiation dose at the eye and thyroid level. In comparison to 2D-DSA (3.9 μSv eye-exposure), the 3D procedures caused an increased radiation exposure both in standard FOV (8 s/rotation: 28.0 μSv, 20 s/rotation: 79.3 μSv, 5 s/2 rotations: 32.5 μSv) and large FOV (37.6 μSv). Proportional distributions were measured for the residual heights. With the use of lead glass, irradiation of the eye lens was reduced to 0.2 μSv (2D DSA) and 10.6 μSv (3D technique with 20 s/rotation). Conclusion: Rotational flat-panel angiography and C-arm cone beam applications significantly increase radiation exposure to the attending operator in comparison to 2D angiography. Our study indicates that the physician should wear protective devices and leave the examination room when performing 3D examinations.

  13. Three-dimensional observations of the incisive canal and the surrounding bone using cone-beam computed tomography

    International Nuclear Information System (INIS)

    The shape of the anterior region of the maxilla is critical when planning implant treatment. The purpose of the present study was to assess the typical morphology of the incisive canal and surrounding bone. In total, 70 maxillae of Japanese dry skulls were used after being divided into dentate and edentulous groups. Cone-beam computed tomography (CBCT) images of the maxilla were acquired by using standardized methods. Using the anterior nasal spine as a reference point, the change in position was measured and analyzed statistically. Also, three-dimensional (3-D) images of the incisive canal were classified into five subsets: cylinder, groove, penetration, bifurcation at the superior portion, and bifurcation at the inferior portion. The quantity of alveolar bone in the incisor region was greatly reduced from the alveolar ridge and labial surface. Moreover, the vertical position of the incisive foramen was significantly (P<0.05) superior in the edentulous groups. Regarding the classification of maxillae by the 3-D shape of the incisive canal, many canals were cylindrical. Horizontal bone reduction from the labial side and vertical bone reduction from the alveolar crest were conspicuous; thus, the angle of the anterior alveolar bone changed after the loss of teeth. The incisive canal diameter in the edentulous group was larger than in the dentate group. The nondestructive assessment of the incisive canals and surrounding bone with CBCT showed two typical shapes for the presence or absence of the incisors. These findings indicate the importance of image diagnosis before esthetic restoration. (author)

  14. Circle Plus Partial Helical Scan Scheme for a Flat Panel Detector-Based Cone Beam Breast X-Ray CT

    Directory of Open Access Journals (Sweden)

    Dong Yang

    2009-01-01

    Full Text Available Flat panel detector-based cone beam breast CT (CBBCT can provide 3D image of the scanned breast with 3D isotropic spatial resolution, overcoming the disadvantage of the structure superimposition associated with X-ray projection mammography. It is very difficult for Mammography to detect a small carcinoma (a few millimeters in size when the tumor is occult or in dense breast. CBBCT featured with circular scan might be the most desirable mode in breast imaging due to its simple geometrical configuration and potential applications in functional imaging. An inherited large cone angle in CBBCT, however, will yield artifacts in the reconstruction images when only a single circular scan is employed. These artifacts usually manifest themselves as density drop and object geometrical distortion that are more noticeable in the reconstructed image areas that are further away from the circular scanning plane. In order to combat this drawback, a circle plus partial helical scan scheme is proposed. An exact circle plus straight line scan scheme is also conducted in computer simulation for the purpose of comparison. Computer simulations using a numerical breast phantom demonstrated the practical feasibility of this new scheme and correction to those artifacts to a certain degree.

  15. Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dae Kyo; Lee, Sang Chul; Huh, Kyung Hoe; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2012-06-15

    The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. The effective dose was the highest for Somatom Sensation 10 (425.84 {mu}Sv), followed by AZ3000CT (332.4 {mu}Sv), Somatom Emotion 6 (199.38 {mu}Sv), and 3D eXaM (111.6 {mu}Sv); it was the lowest for Implagraphy (83.09 {mu}Sv). The CBCT showed significant variation in dose level with different device. The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.

  16. Diagnostic performance of cone-beam computed tomography on detection of mechanically-created artificial secondary caries

    Energy Technology Data Exchange (ETDEWEB)

    Charuakkra, Arnon; Prapayasatok, Sangsom; Janhom, Apirum; Pongsirwet, Surawut; Verochana, Karune; Mahasantipiya, Phattaranant [Faculty of Dentistry, Chiang Mai University, Chiang Mai (Thailand)

    2011-12-15

    The aim of this study was to compare the diagnostic accuracy of cone-beam computed tomography (CBCT) images and bitewing images in detection of secondary caries. One hundred and twenty proximal slots of Class II cavities were randomly prepared on human premolar and molar teeth, and restored with amalgam (n=60) and composite resin (n=60). Then, artificial secondary caries lesions were randomly created using round steel No. 4 bur. The teeth were radiographed with a conventional bitewing technique and two CBCT systems; Pax-500ECT and Promax 3D. All images were evaluated by five observers. The area under the receiver operating characteristic (ROC) curve (Az) was used to evaluate the diagnostic accuracy. Significant difference was tested using the Friedman test (p value<0.05). The mean Az values for bitewing, Pax-500ECT, and Promax 3D imaging systems were 0.882, 0.995, and 0.978, respectively. Significant differences were found between the two CBCT systems and film (p=0.007). For CBCT systems, the axial plane showed the greatest Az value. Based on the design of this study, CBCT images were better than bitewing radiographs in detection of secondary caries.

  17. A novel application of normoxic polymer gel dosimeters for near real-time dose measurement using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tung-Hsin; Tsai, Chia-Jung [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taiwan (China); Zhang, Geoffrey [Department of Radiation Oncology, Moffitt Cancer Center, FL (United States); Yu, Chun-Yen; Liang, Ji-An [Department of Radiation Oncology, China Medical University Hospital, Taiwan (China); Wu, Jay [Department of Radiological Technology, Central Taiwan University of Science and Technology, Taiwan (China); Lee, Jason JS. [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taiwan (China); Ho, Yung-Jen, E-mail: d9600@mail.cmuh.org.tw [Department of Biomedical Imaging and Radiological Science, China Medical University, Taiwan (China); Huang, Tzung-Chi, E-mail: tzungchi.huang@mail.cmu.edu.tw [Department of Biomedical Imaging and Radiological Science, China Medical University, Taiwan (China)

    2011-05-15

    The aim of this study is to evaluate the feasibility of using cone-beam CT system as a near real-time measurement device in dose estimation with normoxic polymer gel dosimetry (MAG). Each vial was filled with MAG gel and irradiated with uniform doses of 0-10 Gy to generate dose response curves. After irradiation, a cone-beam CT was used to perform the 3D dose measurement. In this study, two groups of gel samples were irradiated and measured in two ways for comparison: near real-time measurement, in which the gel phantom was read right after the irradiation, and delayed measurement, in which the measurement was performed 30 min, 4 h and 1 day after the irradiation for the gel phantom to be exposed to oxygen. All groups were also performed with and without a full bowtie filter to estimate the influence of a full bowtie filter to dose response. The linear dose response curves with and without a full bowtie filter for the four different CT imaging times were within a range 0.044-0.049{Delta}N{sub CT} cGy{sup -1} and 0.061-0.063{Delta}N{sub CT} cGy{sup -1}, respectively, with no significant difference at different imaging times. Nevertheless, dose response curves with the full bowtie filter were higher than those without, with p-value <0.05 for all the different imaging times tested. Normoxic polymer gel dosimetry combined with cone-beam CT provides a useful method for near real-time dose measurement.

  18. Comparison of Swedish and Norwegian Use of Cone-Beam Computed Tomography: a Questionnaire Study

    Directory of Open Access Journals (Sweden)

    Jerker Edén Strindberg

    2015-12-01

    Full Text Available Objectives: Cone-beam computed tomography in dentistry can be used in some countries by other dentists than specialists in radiology. The frequency of buying cone-beam computed tomography to examine patients is rapidly growing, thus knowledge of how to use it is very important. The aim was to compare the outcome of an investigation on the use of cone-beam computed tomography in Sweden with a previous Norwegian study, regarding specifically technical aspects. Material and Methods: The questionnaire contained 45 questions, including 35 comparable questions to Norwegian clinics one year previous. Results were based on inter-comparison of the outcome from each of the two questionnaire studies. Results: Responses rate was 71% in Sweden. There, most of cone-beam computed tomography (CBCT examinations performed by dental nurses, while in Norway by specialists. More than two-thirds of the CBCT units had a scout image function, regularly used in both Sweden (79% and Norway (75%. In Sweden 4% and in Norway 41% of the respondents did not wait for the report from the radiographic specialist before initiating treatment. Conclusions: The bilateral comparison showed an overall similarity between the two countries. The survey gave explicit and important knowledge of the need for education and training of the whole team, since radiation dose to the patient could vary a lot for the same kind of radiographic examination. It is essential to establish quality assurance protocols with defined responsibilities in the team in order to maintain high diagnostic accuracy for all examinations when using cone-beam computed tomography for patient examinations.

  19. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    Energy Technology Data Exchange (ETDEWEB)

    Siewerdsen, Jeffrey H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Traylor Building, Room 718, 720 Rutland Avenue, Baltimore, MD 21205 (United States)

    2011-08-21

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  20. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    Science.gov (United States)

    Siewerdsen, Jeffrey H.

    2011-08-01

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions—for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in

  1. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    Energy Technology Data Exchange (ETDEWEB)

    Toftegaard, Jakob, E-mail: jaktofte@rm.dk; Fledelius, Walther; Worm, Esben S.; Poulsen, Per R. [Department of Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Seghers, Dieter; Huber, Michael; Brehm, Marcus [Varian Medical Systems, Imaging Laboratory GmbH, Baden-Daettwil 5405 (Switzerland); Elstrøm, Ulrik V. [Department of Medical Physics, Aarhus University Hospital, Aarhus 8000 (Denmark)

    2014-12-15

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  2. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    International Nuclear Information System (INIS)

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  3. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    International Nuclear Information System (INIS)

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  4. Linac-integrated 4D cone beam CT: first experimental results

    Science.gov (United States)

    Dietrich, Lars; Jetter, Siri; Tücking, Thomas; Nill, Simeon; Oelfke, Uwe

    2006-06-01

    A new online imaging approach, linac-integrated cone beam CT (CBCT), has been developed over the past few years. It has the advantage that a patient can be examined in their treatment position directly before or during a radiotherapy treatment. Unfortunately, respiratory organ motion, one of the largest intrafractional organ motions, often leads to artefacts in the reconstructed 3D images. One way to take this into account is to register the breathing phase during image acquisition for a phase-correlated image reconstruction. Therefore, the main focus of this work is to present a system which has the potential to investigate the correlation between internal (movement of the diaphragm) and external (data of a respiratory gating system) information about breathing phase and amplitude using an inline CBCT scanner. This also includes a feasibility study about using the acquired information for a respiratory-correlated 4D CBCT reconstruction. First, a moving lung phantom was used to develop and to specify the required methods which are based on an image reconstruction using only projections belonging to a certain moving phase. For that purpose, the corresponding phase has to be detected for each projection. In the case of the phantom, an electrical signal allows one to track the movement in real time. The number of projections available for the image reconstruction depends on the breathing phase and the size of the position range from which projections should be used for the reconstruction. The narrower this range is, the better the inner structures can be located, but also the noise of the images increases due to the limited number of projections. This correlation has also been analysed. In a second step, the methods were clinically applied using data sets of patients with lung tumours. In this case, the breathing phase was detected by an external gating system (AZ-733V, Anzai Medical Co.) based on a pressure sensor attached to the patient's abdominal region with a

  5. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    Science.gov (United States)

    Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.

    2013-07-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  6. Design and development of C-arm based cone-beam CT for image-guided interventions: initial results

    Science.gov (United States)

    Chen, Guang-Hong; Zambelli, Joseph; Nett, Brian E.; Supanich, Mark; Riddell, Cyril; Belanger, Barry; Mistretta, Charles A.

    2006-03-01

    X-ray cone-beam computed tomography (CBCT) is of importance in image-guided intervention (IGI) and image-guided radiation therapy (IGRT). In this paper, we present a cone-beam CT data acquisition system using a GE INNOVA 4100 (GE Healthcare Technologies, Waukesha, Wisconsin) clinical system. This new cone-beam data acquisition mode was developed for research purposes without interfering with any clinical function of the system. It provides us a basic imaging pipeline for more advanced cone-beam data acquisition methods. It also provides us a platform to study and overcome the limiting factors such as cone-beam artifacts and limiting low contrast resolution in current C-arm based cone-beam CT systems. A geometrical calibration method was developed to experimentally determine parameters of the scanning geometry to correct the image reconstruction for geometric non-idealities. Extensive phantom studies and some small animal studies have been conducted to evaluate the performance of our cone-beam CT data acquisition system.

  7. Clinical use of cone beam CT in impacted maxillary tooth extraction and artifistulation%锥形束CT定位埋伏牙的临床应用

    Institute of Scientific and Technical Information of China (English)

    董辉; 冯春丽; 孙蕾; 祁森荣; 夏登胜

    2011-01-01

    目的 探讨锥形束CT影像和三维重建技术在辅助埋伏牙拔除和正畸开窗牙牵引术中的作用.方法 选择53颗常规曲面断层片难以确定埋伏牙空间位置的患者进行锥形束CT扫描,其中对5例复杂埋伏牙的CT图像进行三维重建.45例埋伏牙依据CT图像选择不同手术入路行拔牙术,8例埋伏牙采用颌骨开窗牵引术.结果 螺旋CT影像对正确选择埋伏牙拔除的手术入路具有良好的指导作用;CT三维重建图像能清楚地显示埋伏牙的牙体形态、唇腭向位置以及和邻牙的关系,正确指导手术开窗牵引的入路和开窗牵引装置的固定.结论 锥形束CT和三维重建技术在显示埋伏牙的位置和牙体形态上明显优于传统的曲面断层和根尖片.%Objective To evaluate the value of cone beam CT and three-dimensional reconstruction in impacted maxillary tooth extraction and artifistulation. Methods Fifty-three patients with impacted maxillary teeth were included and examined by cone beam CT, and 3D reconstruction was conducted in five of them . Results The cone beam CT images clearly denmonstrated the location of the teeth and provided help in the impacted tooth extraction. The threedimensional reconstruction technique guided and simplified the procedure of artifistulation. Conclusion Cone beam CT has more advantages in assistance of impacted tooth extraction and artifistulation in orthodontics compared with traditional panoramic radiography.

  8. A comparative study of high resolution cone beam X-ray tomography and synchrotron tomography applied to Fe- and Al-alloys.

    Science.gov (United States)

    Kastner, Johann; Harrer, Bernhard; Requena, Guillermo; Brunke, Oliver

    2010-10-01

    X-ray computed tomography (XCT) has become a very important method for non-destructive 3D-characterization and evaluation of materials. Due to measurement speed and quality, XCT systems with cone beam geometry and matrix detectors have gained general acceptance. Continuous improvements in the quality and performance of X-ray tubes and XCT devices have led to cone beam CT systems that can now achieve spatial resolutions down to 1 μm and even below. However, the polychromatic nature of the source, limited photon flux and cone beam artefacts mean that there are limits to the quality of the CT-data achievable; these limits are particularly pronounced with materials of higher density like metals. Synchrotron radiation offers significant advantages by its monochromatic and parallel beam of high brilliance. These advantages usually cause fewer artefacts, improved contrast and resolution.Tomography data of a steel sample and of two multi-phase Al-samples (AlSi12Ni1, AlMg5Si7) are recorded by advanced cone beam XCT-systems with a μ-focus (μXCT) and a sub-μm (nano-focus, sub-μXCT) X-ray source with voxel dimensions between 0.4 and 3.5 μm and are compared with synchrotron computed tomography (sXCT) with 0.3 μm/voxel. CT data features like beam hardening and ring artefacts, detection of details, sharpness, contrast, signal-to-noise ratio and the grey value histogram are systematically compared. In all cases μXCT displayed the lowest performance. Sub-μXCT gives excellent results in the detection of details, spatial and contrast resolution, which are comparable to synchrotron-XCT recordings. The signal-to-noise ratio is usually significantly lower for sub-μXCT compared with the two other methods. With regard to measurement costs "for industrial users", scanning volume, accessibility and user-friendliness sub-μXCT has significant advantages in comparison to synchrotron-XCT.

  9. Accuracy and speed of robotic assisted needle interventions using a modern cone beam computed tomography intervention suite: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Boris [Goethe University Hospital, Institute for Diagnostic and Interventional Radiology, Frankfurt (Germany); Goethe University Hospital, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Eichler, Katrin; Siebenhandl, Petra; Gruber-Rouh, Tatjana; Vogl, Thomas Josef; Zangos, Stephan [Goethe University Hospital, Institute for Diagnostic and Interventional Radiology, Frankfurt (Germany); Czerny, Christoph [Goethe University Hospital, Department of Trauma Surgery, Frankfurt (Germany)

    2013-01-15

    To analyse the feasibility and accuracy of robotic aided interventions on a phantom when using a modern C-arm-mounted cone beam computed tomography (CBCT) device in combination with needle guidance software. A small robotic device capable of holding and guiding needles was attached to the intervention table. After acquiring a 3D data set the access path was planned on the CBCT workstation and shown on the intervention monitor. Then the robot was aligned to the live fluoroscopic image. A total of 40 punctures were randomly conducted on a phantom armed with several targets (diameter 2 mm) in single and double oblique trajectory (n = 20 each). Target distance, needle deviation and time for the procedures were analysed. All phantom interventions (n = 40) could be performed successfully. Mean target access path within the phantom was 8.5 cm (min 4.2 cm, max 13.5 cm). Average needle tip deviation was 1.1 mm (min 0 mm, max 4.5 mm), time duration was 3:59 min (min 2:07 min, max 10:37 min). When using the proposed robot device in a CBCT intervention suite, highly accurate needle-based interventional punctures are possible in a reasonable timely manner in single as well as in double oblique trajectories. (orig.)

  10. Utility of the computed tomography indices on cone beam computed tomography images in the diagnosis of osteoporosis in women

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kwang Joon; Kim, Kyung A [School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of)

    2011-09-15

    This study evaluated the potential use of the computed tomography indices (CTI) on cone beam CT (CBCT) images for an assessment of the bone mineral density (BMD) in postmenopausal osteoporotic women. Twenty-one postmenopausal osteoporotic women and 21 postmenopausal healthy women were enrolled as the subjects. The BMD of the lumbar vertebrae and femur were calculated by dual energy X-ray absorptiometry (DXA) using a DXA scanner. The CBCT images were obtained from the unilateral mental foramen region using a PSR-9000N Dental CT system. The axial, sagittal, and coronal images were reconstructed from the block images using OnDemend3D. The new term 'CTI' on CBCT images was proposed. The relationship between the CT measurements and BMDs were assessed and the intra-observer agreement was determined. There were significant differences between the normal and osteoporotic groups in the computed tomography mandibular index superior (CTI(S)), computed tomography mandibular index inferior (CTI(I)), and computed tomography cortical index (CTCI). On the other hand, there was no difference between the groups in the computed tomography mental index (CTMI: inferior cortical width). CTI(S), CTI(I), and CTCI on the CBCT images can be used to assess the osteoporotic women.

  11. Radiologic study of the healing process of the extracted socket of beagle dogs using cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Won; Lee, Won; Lee, Byung Do [Department of Oral and Maxillofacial Radiology, School of Dentistry, Wonkwang University, Iksan (Korea, Republic of); Kim, De Sok [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-03-15

    To longitudinally observe the healing process of extracted socket and the alterations of the residual ridge in healthy adult dogs using cone beam CT (CBCT). The mandibular premolars of two beagle dogs were removed and the extraction sites were covered with the gingival tissue. CBCTs (3D X-ray CT scanner, Alphard vega, Asahi Co.) were taken at baseline and at 1 week interval for 12 weeks. Radiographic density of extracted wounds was measured on normalized images with a custom-made image analysis program. The amount of alveolar crestal resorption after the teeth extraction was measured with a reformatted three-dimensional image using CBCT. Bony healing pattern of extracted wound of each group was also longitudinally observed and analyzed. Dimensional changes occurred during the first 6 weeks following the extraction of dogs' mandibular premolars. The reduction of the height of residual ridge was more pronounced at the buccal than at the lingual aspect of the extraction socket. Radiographic density of extracted wounds increased by week 4, but the change in density stabilized after week 6. New bone formation was observed at the floor and the peripheral side of extracted socket from week 1. The entrance of extracted socket was sealed by a hard-tissue bridge at week 5. The healing process of extracted wound involved a series of events including new bone formation and residual ridge resorption.

  12. Use of Monte Carlo simulation software for the calculation of the effective dose in cone beam Tomography

    International Nuclear Information System (INIS)

    Full text: In this study irradiation geometry applicable to PCXMC and the consequent calculation of effective dose in applications of cone beam computed tomography (CBCT) was developed. Two different CBCT equipment s for dental applications were evaluated: Care Stream Cs-9000 3-Dimensional and Gendex GXCB-500 tomographs. Each protocol initially was characterized by measuring the surface kerma input and the product air kerma-area, PKA. Then, technical parameters of each of the predetermined protocols and geometric conditions in the PCXMC software were introduced to obtain the values of effective dose. The calculated effective dose is within the range of 9.0 to 15.7 μSv for Cs 9000 3-D and in the range 44.5 to 89 mSv for GXCB-500 equipment. These values were compared with dosimetric results obtained using thermoluminescent dosimeters implanted in anthropomorphic mannequin and were considered consistent. The effective dose results are very sensitive to the radiation geometry (beam position); this represents a factor of fragility software usage, but on the other hand, turns out to be a very useful tool for quick conclusions regarding the optimization process of protocols. We can conclude that the use of Monte Carlo simulation software PCXMC is useful in the evaluation of test protocols of CBCT in dental applications. (Author)

  13. Comparison of Cone-Beam Computed Tomography and Periapical Radiography in Predicting Treatment Decision for Periapical Lesions: A Clinical Study

    Directory of Open Access Journals (Sweden)

    Ashok Balasundaram

    2012-01-01

    Full Text Available Objectives. To compare the ability of endodontists to determine the size of apical pathological lesions and select the most appropriate choice of treatment based on lesions’ projected image characteristics using 2 D and 3 D images. Study Design. Twenty-four subjects were selected. Radiographic examination of symptomatic study teeth with an intraoral periapical radiograph revealed periapical lesions equal to or greater than 3 mm in the greatest diameter. Cone-beam Computed tomography (CBCT images were made of the involved teeth after the intraoral periapical radiograph confirmed the size of lesion to be equal to greater than 3 mm. Six observers (endodontists viewed both the periapical and CBCT images. Upon viewing each of the images from the two imaging modalities, observers (1 measured lesion size and (2 made decisions on treatment based on each radiograph. Chi-square test was used to look for differences in the choice of treatment among observers. Results. No significant difference was noted in the treatment plan selected by observers using the two modalities (χ2(3=.036, P>0.05. Conclusion. Lesion size and choice of treatment of periapical lesions based on CBCT radiographs do not change significantly from those made on the basis of 2 D radiographs.

  14. MR cone-beam CT fusion image overlay for fluoroscopically guided percutaneous biopsies in pediatric patients.

    Science.gov (United States)

    Thakor, Avnesh S; Patel, Premal A; Gu, Richard; Rea, Vanessa; Amaral, Joao; Connolly, Bairbre L

    2016-03-01

    Lesions only visible on magnetic resonance (MR) imaging cannot easily be targeted for image-guided biopsy using ultrasound or X-rays but instead require MR guidance with MR-compatible needles and long procedure times (acquisition of multiple MR sequences). We developed an alternative method for performing these difficult biopsies in a standard interventional suite, by fusing MR with cone-beam CT images. The MR cone-beam CT fusion image is then used as an overlay to guide a biopsy needle to the target area under live fluoroscopic guidance. Advantages of this technique include (i) the ability for it to be performed in a conventional interventional suite, (ii) three-dimensional planning of the needle trajectory using cross-sectional imaging, (iii) real-time fluoroscopic guidance for needle trajectory correction and (iv) targeting within heterogeneous lesions based on MR signal characteristics to maximize the potential biopsy yield.

  15. Cone-Beam Computed Tomography Evaluation of Mental Foramen Variations: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Mahnaz Sheikhi

    2015-01-01

    Full Text Available Background. Mental foramen is important in surgical operations of premolars because it transfers the mental nerves and vessels. This study evaluated the variations of mental foramen by cone-beam computed tomography among a selected Iranian population. Materials and Methods. A total number of 180 cone-beam computed tomography projections were analyzed in terms of shape, size, direction, and horizontal and vertical positions of mental foramen in the right and left sides. Results. The most common shape was oval, opening direction was posterior-superior, horizontal position was in line with second premolar, and vertical position was apical to the adjacent dental root. The mean of foremen diameter was 3.59 mm. Conclusion. In addition to the most common types of mental foramen, other variations exist, too. Hence, it reflects the significance of preoperative radiographic examinations, especially 3-dimensional images to prevent nerve damage.

  16. Cone beam computed tomography and intraoral radiography for diagnosis of dental abnormalities in dogs and cats

    International Nuclear Information System (INIS)

    The development of veterinary dentistry has substantially improved the ability to diagnose canine and feline dental abnormalities. Consequently, examinations previously performed only on humans are now available for small animals, thus improving the diagnostic quality. This has increased the need for technical qualification of veterinary professionals and increased technological investments. This study evaluated the use of cone beam computed tomography and intraoral radiography as complementary exams for diagnosing dental abnormalities in dogs and cats. Cone beam computed tomography was provided faster image acquisition with high image quality, was associated with low ionizing radiation levels, enabled image editing, and reduced the exam duration. Our results showed that radiography was an effective method for dental radiographic examination with low cost and fast execution times, and can be performed during surgical procedures

  17. Cone beam computed tomography in veterinary dentistry: description and standardization of the technique

    International Nuclear Information System (INIS)

    Eleven dogs and four cats with buccodental alterations, treated in the Centro Veterinario do Gama, in Brasilia, DF, Brazil, were submitted to cone beam computed tomography. The exams were carried out in a i-CAT tomograph, using for image acquisition six centimeters height, 40 seconds time, 0.2 voxel, 120 kilovolts and 46.72 milli amperes per second. The ideal positioning of the animal for the exam was also determined in this study and it proved to be fundamental for successful examination, which required a simple and safe anesthetic protocol due to the relatively short period of time necessary to obtain the images. Several alterations and diseases were identified with accurate imaging, demonstrating that cone beam computed tomography is a safe, accessible and feasible imaging method which could be included in the small animal dentistry routine diagnosis. (author)

  18. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    Science.gov (United States)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and

  19. A new algorithm for geometric self-calibration in cone-beam CT

    International Nuclear Information System (INIS)

    Geometric misalignment leads to severe artifacts in computed tomography (CT). We suggest a general theory for identification of unknown geometric parameters in cone-beam CT and derive a new computational algorithm to obtain the geometric parameters directly from the scan data. In contrast to many existing approaches, our method requires no dedicated calibration devices and allows us to calibrate the system using an arbitrary phantom or even the patient data. The theory is based on the formalism of the consistency conditions for linear integral operators; the algorithm makes use of the quadratic optimization of the consistency conditions. In the practice, the suggested approach can be viewed as a new concept of 'self-calibration', where the user does not need to be aware of the calibration procedure and plays no role in it, which can be a great advantage in applications of cone-beam CT in interventional radiology and radiotherapy. (orig.)

  20. Development of a cone-beam CT system for radiological technologist education

    International Nuclear Information System (INIS)

    For radiological technologists, it is very important to understand the principle of computed tomography (CT) and CT artifacts derived from mechanical and electrical failure. In this study, a CT system for educating radiological technologists was developed. The system consisted of a cone-beam CT scanner and educational software. The cone-beam CT scanner has a simple structure, using a micro-focus X-ray tube and an indirect-conversion flat panel detector. For the educational software, we developed various educational functions of image reconstruction and reconstruction parameters as well as CT artifacts. In the experiments, the capabilities of the system were evaluated using an acrylic phantom. We verified that the system produced the expected results. (author)

  1. Cone-Beam Computed Tomography Evaluation of Mental Foramen Variations: A Preliminary Study

    International Nuclear Information System (INIS)

    Background. Mental foramen is important in surgical operations of premolars because it transfers the mental nerves and vessels. This study evaluated the variations of mental foramen by cone-beam computed tomography among a selected Iranian population. Materials and Methods. A total number of 180 cone-beam computed tomography projections were analyzed in terms of shape, size, direction, and horizontal and vertical positions of mental foramen in the right and left sides. Results. The most common shape was oval, opening direction was posterior-superior, horizontal position was in line with second premolar, and vertical position was apical to the adjacent dental root. The mean of foremen diameter was 3.59 mm. Conclusion. In addition to the most common types of mental foramen, other variations exist, too. Hence, it reflects the significance of preoperative radiographic examinations, especially 3-dimensional images to prevent nerve damage

  2. A simplified approach for the generation of projection data for cone beam geometry

    Indian Academy of Sciences (India)

    Tushar Roy; P S Sarkar; Amar Sinha

    2011-04-01

    To test a developed reconstruction algorithm for cone beam geometry, whether it is transmission or emission tomography, one needs projection data. Generally, mathematical phantoms are generated in three dimensions and the projection for all rotation angles is calculated. For non-symmetric objects, the process is cumbersome and computation intensive. This paper describes a simple methodology for the generation of projection data for cone beam geometry for both transmission and emission tomographies by knowing the object’s attenuation and/or source spatial distribution details as input. The object details such as internal geometrical distribution are nowhere involved in the projection data calculation. This simple approach uses the pixilated object matrix values in terms of the matrix indices and spatial geometrical coordinates. The projection data of some typical phantoms (generated using this approach) are reconstructed using standard FDK algorithm and Novikov’s inversion formula. Correlation between the original and reconstructed images has been calculated to compare the image quality.

  3. Cracked Tooth: A Report of Two Cases and Role of Cone Beam Computed Tomography in Diagnosis

    Directory of Open Access Journals (Sweden)

    Pishipati Vinayak Kalyan Chakravarthy

    2012-01-01

    Full Text Available Cracked tooth is a distinct type of longitudinal tooth fracture which occurs very commonly and its diagnosis can be challenging. This type of fracture tends to grow and change over time. Clinical diagnosis is difficult because the signs and symptoms are variable or nonspecific and may even resemble post-treatment disease following root canal treatment or periodontal disease. This variety and unpredictability make the cracked tooth a challenging diagnostic entity. The use of cone beam computed tomography (CBCT in diagnosis of complex endodontic cases has been well documented in the literature. In this paper we present two cases of cracked tooth and emphasise on the timely use of cone beam computed tomography as an aid in diagnosis and as a prognostic determinant.

  4. Correction of patient positioning errors based on in-line cone beam CTs: clinical implementation and first experiences

    Directory of Open Access Journals (Sweden)

    Häring Peter

    2006-05-01

    Full Text Available Abstract Background The purpose of the study was the clinical implementation of a kV cone beam CT (CBCT for setup correction in radiotherapy. Patients and methods For evaluation of the setup correction workflow, six tumor patients (lung cancer, sacral chordoma, head-and-neck and paraspinal tumor, and two prostate cancer patients were selected. All patients were treated with fractionated stereotactic radiotherapy, five of them with intensity modulated radiotherapy (IMRT. For patient fixation, a scotch cast body frame or a vacuum pillow, each in combination with a scotch cast head mask, were used. The imaging equipment, consisting of an x-ray tube and a flat panel imager (FPI, was attached to a Siemens linear accelerator according to the in-line approach, i.e. with the imaging beam mounted opposite to the treatment beam sharing the same isocenter. For dose delivery, the treatment beam has to traverse the FPI which is mounted in the accessory tray below the multi-leaf collimator. For each patient, a predefined number of imaging projections over a range of at least 200 degrees were acquired. The fast reconstruction of the 3D-CBCT dataset was done with an implementation of the Feldkamp-David-Kress (FDK algorithm. For the registration of the treatment planning CT with the acquired CBCT, an automatic mutual information matcher and manual matching was used. Results and discussion Bony landmarks were easily detected and the table shifts for correction of setup deviations could be automatically calculated in all cases. The image quality was sufficient for a visual comparison of the desired target point with the isocenter visible on the CBCT. Soft tissue contrast was problematic for the prostate of an obese patient, but good in the lung tumor case. The detected maximum setup deviation was 3 mm for patients fixated with the body frame, and 6 mm for patients positioned in the vacuum pillow. Using an action level of 2 mm translational error, a target point

  5. History of imaging in orthodontics from Broadbent to cone-beam computed tomography.

    Science.gov (United States)

    Hans, Mark G; Palomo, J Martin; Valiathan, Manish

    2015-12-01

    The history of imaging and orthodontics is a story of technology informing biology. Advances in imaging changed our thinking as our understanding of craniofacial growth and the impact of orthodontic treatment deepened. This article traces the history of imaging in orthodontics from the invention of the cephalometer by B. Holly Broadbent in 1930 to the introduction of low-cost, low-radiation-dose cone-beam computed tomography imaging in 2015. PMID:26672697

  6. A Rare Presentation of Bilateral Maxillary Dens Invaginatus Diagnosed Using Cone Beam Computed Tomography

    OpenAIRE

    Sainath Dinapadu; Swathi Aravelli; Srikanth Pasari; Narender Reddy Marukala

    2013-01-01

    Dens invaginatus is a developmental variation in the formation of a tooth that causes changes in the internal anatomy of the tooth. The presence of double dens invaginatus is extremely rare. Understanding the type, extension, and complex morphology of dens invaginatus is essential. Diagnosis of this condition using conventional radiographic techniques is not easy. Advanced imaging techniques, such as cone beam computed tomography (CBCT) are very helpful in diagnosis of these complex anatomic ...

  7. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    Energy Technology Data Exchange (ETDEWEB)

    Ding Huanjun; Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2013-06-15

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of -11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.

  8. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    OpenAIRE

    Kuo Men; Jian-Rong Dai; Ming-Hui Li; Xin-Yuan Chen; Ke Zhang; Yuan Tian; Peng Huang; Ying-Jie Xu

    2015-01-01

    Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT) device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned ...

  9. Feasibility study on effect and stability of adaptive radiotherapy on kilovoltage cone beam CT:

    OpenAIRE

    Yadav, Poonam; Ramasubramanian, Velayudham; Paliwal, Bhudatt R.

    2011-01-01

    Background We have analyzed the stability of CT to density curve of kilovoltage cone-beam computerized tomography (kV CBCT) imaging modality over the period of six months. We also, investigated the viability of using image value to density table (IVDT) generated at different time, for adaptive radiotherapy treatment planning. The consequences of target volume change and the efficacy of kV CBCT for adaptive planning issues is investigated. Materials and methods. Standard electron density phant...

  10. Low-Dose Megavoltage Cone-Beam CT imaging using Thick, Segmented Scintillators

    OpenAIRE

    El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua; Choroszucha, Richard B.; Jiang, Hao; Liu, Langechuan

    2011-01-01

    Megavoltage, cone-beam computed tomography (MV CBCT) employing an electronic portal imaging device (EPID) is a highly promising technique for providing soft-tissue visualization in image-guided radiotherapy. However, current EPIDs based on active matrix flat-panel imagers (AMFPIs), which are regarded as the gold standard for portal imaging and referred to as conventional MV AMFPIs, require high radiation doses to achieve this goal due to poor x-ray detection efficiency (~2% at 6 MV). To overc...

  11. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    OpenAIRE

    Sorapong Aootaphao; Thongvigitmanee, Saowapak S.; Jartuwat Rajruangrabin; Chalinee Thanasupsombat; Tanapon Srivongsa; Pairash Thajchayapong

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter ...

  12. CT to Cone-beam CT Deformable Registration With Simultaneous Intensity Correction

    OpenAIRE

    Zhen, Xin; Gu, Xuejun; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B

    2012-01-01

    Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the orig...

  13. Rare appearance of an odontogenic myxoma in cone-beam computed tomography: a case report

    OpenAIRE

    Dabbaghi, Arash; Nikkerdar, Nafiseh; Bayati, Soheyla; Golshah, Amin

    2016-01-01

    Odontogenic myxoma (OM) is an infiltrative benign bone tumor that occurs almost exclusively in the facial skeleton. The radiographic characteristics of odontogenic myxoma may produce several patterns, making diagnosis difficult. Cone-beam computed tomography (CBCT) may prove extremely useful in clarifying the intraosseous extent of the tumor and its effects on surrounding structures. Here, we report a case of odontogenic myxoma of the mandible in a 27-year-old female. The patient exhibited a ...

  14. Evaluation of a Cone Beam Computed Tomography Geometry for Image Guided Small Animal Irradiation

    OpenAIRE

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-01-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (“tubular” geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (“pancake” geometry). The small animal radiation research platform (SARRP) developed at Johns Hopkins University employs the pancake geometry where a prone-positioned anima...

  15. The impact of cone beam computed tomography on the choice of endodontic diagnosis

    OpenAIRE

    de Almeida, F. J. Mota; Knutsson, K; Flygare, Lennart

    2015-01-01

    Aim To determine whether the outcome of cone beam computed tomography (CBCT) examinations performed in accordance with the European Commission guidelines in a clinical setting has an impact on choosing diagnoses in endodontics. Methodology A prospective observational study was conducted. Fifty-three consecutive patients (81 teeth) from two different endodontic specialist clinics in Sweden were followed. After performing a thorough clinical examination (based on the history, clinical findings,...

  16. The effect of cone beam CT (CBCT) on therapeutic decision-making in endodontics

    OpenAIRE

    Mota de Almeida, F. J.; Knutsson, K; Flygare, Lennart

    2014-01-01

    Objectives: The aim was to assess to what extent cone beam CT (CBCT) used in accordance with current European Commission guidelines in a normal clinical setting has an impact on therapeutic decisions in a population referred for endodontic problems. Methods: The study includes data of consecutively examined patients collected from October 2011 to December 2012. From 2 different endodontic specialist clinics, 57 patients were referred for a CBCT examination using criteria in accordance with cu...

  17. SADMFR Guidelines for the Use of Cone-Beam Computed Tomography/Digital Volume Tomography

    OpenAIRE

    Dula, Karl; Benic, Goran I; Bornstein, Michael; Dagassan-Berndt, Dorothea; Filippi, Andreas; Hicklin, Stefan; Kissling-Jeger, Franziska; Luebbers, Heinz-Theo; Sculean, Anton; Sequeira-Byron, Patrick; Walter, Clemens; Zehnder, Matthias

    2015-01-01

    In 2011, the first consensus conference on guidelines for the use of cone-beam computed tomography (CBCT) was convened by the Swiss Society of Dentomaxillofacial Radiology (SGDMFR). This conference covered topics of oral and maxillofacial surgery, temporomandibular joint dysfunctions and disorders, and orthodontics. In 2014, a second consensus conference was convened on guidelines for the use of CBCT in endodontics, periodontology, reconstructive dentistry and pediatric dentistry. The guideli...

  18. Quantification of organ motion during chemoradiotherapy of rectal cancer using cone-beam computed tomography.

    LENUS (Irish Health Repository)

    Chong, Irene

    2011-11-15

    There has been no previously published data related to the quantification of rectal motion using cone-beam computed tomography (CBCT) during standard conformal long-course chemoradiotherapy. The purpose of the present study was to quantify the interfractional changes in rectal movement and dimensions and rectal and bladder volume using CBCT and to quantify the bony anatomy displacements to calculate the margins required to account for systematic (Σ) and random (σ) setup errors.

  19. Noise power properties of a cone-beam CT system for breast cancer detection

    OpenAIRE

    Yang, Kai; Kwan, Alexander L.C.; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M.

    2008-01-01

    The noise power properties of a cone-beam computed tomography (CT) system dedicated for breast cancer detection were investigated. Uniform polyethylene cylinders of various diameters were scanned under different system acquisition conditions. Noise power spectra were calculated from difference data generated by subtraction between two identical scans. Multidimensional noise power spectra (NPS) were used as the metric to evaluate the noise properties of the breast CT (bCT) under different syst...

  20. Fast Scatter Artifacts Correction for Cone-Beam CT without System Modification and Repeat Scan

    OpenAIRE

    Zhao, Wei; Zhu, Jun; Wang, Luyao

    2015-01-01

    We provide a fast and accurate scatter artifacts correction algorithm for cone beam CT (CBCT) imaging. The method starts with an estimation of coarse scatter profile for a set of CBCT images. A total-variation denoising algorithm designed specifically for Poisson signal is then applied to derive the final scatter distribution. Qualitatively and quantitatively evaluations using Monte Carlo (MC) simulations, experimental CBCT phantom data, and \\emph{in vivo} human data acquired for a clinical i...

  1. Shading correction algorithm for improvement of cone-beam CT images in radiotherapy

    OpenAIRE

    Marchant, T. E.; Moore, C. J.; Rowbottom, C G; Mackay, R. I.; Williams, P.C.

    2008-01-01

    Cone-beam CT (CBCT) images have recently become an established modality for treatment verification in radiotherapy. However, identification of soft-tissue structures and the calculation of dose distributions based on CBCT images is often obstructed by image artefacts and poor consistency of density calibration. A robust method for voxel-by-voxel enhancement of CBCT images using a priori knowledge from the planning CT scan has been developed and implemented. CBCT scans were enhanced using a lo...

  2. History of imaging in orthodontics from Broadbent to cone-beam computed tomography.

    Science.gov (United States)

    Hans, Mark G; Palomo, J Martin; Valiathan, Manish

    2015-12-01

    The history of imaging and orthodontics is a story of technology informing biology. Advances in imaging changed our thinking as our understanding of craniofacial growth and the impact of orthodontic treatment deepened. This article traces the history of imaging in orthodontics from the invention of the cephalometer by B. Holly Broadbent in 1930 to the introduction of low-cost, low-radiation-dose cone-beam computed tomography imaging in 2015.

  3. Evaluation of radiation dose and image quality for the Varian cone beam computed tomography system

    OpenAIRE

    Kwong, DLW; Cheng, HCY; Wu, VWC; Liu, ESF

    2011-01-01

    Purpose: To compare the image quality and dosimetry on the Varian cone beam computed tomography (CBCT) system between software Version 1.4.13 and Version 1.4.11 (referred to as "new" and "old" protocols, respectively, in the following text). This study investigated organ absorbed dose, total effective dose, and image quality of the CBCT system for the head-and-neck and pelvic regions. Methods and Materials: A calibrated Farmer chamber and two standard cylindrical Perspex CT dosimetry phantoms...

  4. The Applications of Cone-Beam Computed Tomography in Endodontics: A Review of Literature

    OpenAIRE

    Kiarudi, Amir Hosein; Eghbal, Mohammad Jafar; Safi, Yaser; Aghdasi, Mohammad Mehdi; Fazlyab, Mahta

    2014-01-01

    By producing undistorted three-dimensional images of the area under examination, cone-beam computed tomography (CBCT) systems have met many of the limitations of conventional radiography. These systems produce images with small field of view at low radiation doses with adequate spatial resolution that are suitable for many applications in endodontics from diagnosis to treatment and follow-up. This review article comprehensively assembles all the data from literature regarding the potential ap...

  5. Cone beam optical computed tomography for gel dosimetry I: scanner characterization

    Energy Technology Data Exchange (ETDEWEB)

    Olding, Tim; Holmes, Oliver; Schreiner, L John, E-mail: tim.olding@krcc.on.c [Department of Physics, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2010-05-21

    The ongoing development of easily accessible, fast optical readout tools promises to remove one of the barriers to acceptance of gel dosimetry as a viable tool in cancer clinics. This paper describes the characterization of a number of basic properties of the Vista(TM) cone beam CCD-based optical scanner, which can obtain high resolution reconstructed data in less than 20 min total imaging and reconstruction time. The suitability of a filtered back projection cone beam reconstruction algorithm is established for optically absorbing dosimeters using this scanner configuration. The system was then shown to be capable of imaging an optically absorbing media-filled 1 L polyethylene terephthalate (PETE) jar dosimeter to a reconstructed voxel resolution of 0.5 x 0.5 x 0.5 mm{sup 3}. At this resolution, more than 60% of the imaged volume in the dosimeter exhibits minimal spatial distortion, a measurement accuracy of 3-4% and the mean to standard deviation signal-to-noise ratio greater than 100 over an optical absorption range of 0.06-0.18 cm{sup -1}. An inter-day scan precision of 1% was demonstrated near the upper end of this range. Absorption measurements show evidence of stray light perturbation causing artifacts in the data, which if better managed would improve the accuracy of optical readout. Cone beam optical attenuation measurements of scattering dosimeters, on the other hand, are nonlinearly affected by angled scatter stray light. Scatter perturbation leads to significant cupping artifacts and other inaccuracies that greatly limit the readout of scattering polymer gel dosimeters with cone beam optical CT.

  6. Bone Forming Potential of An-Organic Bovine Bone Graft: A Cone Beam CT study

    OpenAIRE

    Uzbek, Usman Haider; Rahman, Shaifulizan Ab; Alam, Mohammad Khursheed; gillani, syed wasif

    2014-01-01

    Purpose: An-organic bovine bone graft is a xenograft with the potential of bone formation. The aim of this study was to evaluate the bone density using cone beam computed tomography scans around functional endosseous implant in the region of both augmented maxillary sinus with the an-organic bovine bone graft and the alveolar bone over which the graft was placed to provide space for the implants.

  7. REVIEW OF RECENT DEVELOPMENTS IN CONE-BEAM CT RECONSTRUCTION ALGORITHMS FOR LONG-OBJECT PROBLEM

    Directory of Open Access Journals (Sweden)

    Kai Zeng

    2011-05-01

    Full Text Available Long-object problem and short-object problem both deal with reconstruction problems with truncated conebeam CT projections acquired with a helical path. They have significantly less practical limitations than original exact cone-beam CT reconstruction algorithms which the cone-beam must cover the whole object. The short-object problem can be defined as reconstruction of the whole object having a finite support in the axial direction with helical scan extends a little bit above and below the object's support. However the longobject problem is to reconstruct the central region of interest (ROI of a long object having an infinite support in the axial direction with helical scan extends a little a bit above and below the ROI. Although the short-object problem is more difficult to solve than the conventional exact reconstruction with non-truncated projections, the long-object problem presents greater challenge to researchers. Recently, with the great development of panel detector technology and computer technology, more and more researchers have been inspired to work on it. Because of great practical value of long-object algorithms, this paper focuses on the review and discussion of recent developments in long-object algorithms. All Long-object algorithms are classified as exact and approximate algorithms. After going briefly over the history of cone-beam algorithms, some novel cone-beam long-object algorithms are introduced, such as: Tam's algorithm, PImethod, PHI-method, etc. Then, the methods described are being compared and discussed.

  8. Dental implants in bilateral bifid canal and compromised interocclusal space using cone beam computerized tomography

    Science.gov (United States)

    Ahmed, Nizar; Arunachalam, Lalitha Tanjore; Jacob, Caroline Annette; Kumar, Suresh Anand

    2016-01-01

    Knowledge of various anatomic landmarks is pivotal for important success. Bifid canals pose a challenge and can lead to difficulties while performing implant surgery in the mandible. Bifid canals can be diagnosed with panoramic radiography and more accurately with cone beam computerized tomography (CBCT). This case report details the placement of the implant in a patient with bilateral bifid canal and compromised interocclusal space, which was successfully treated using CBCT. PMID:27433073

  9. Integration of digital dental casts in cone-beam computed tomography scans

    OpenAIRE

    Rangel, Frits A.; Maal, Thomas J. J.; Stefaan J. Bergé; Anne Marie Kuijpers-Jagtman

    2012-01-01

    Cone-beam computed tomography (CBCT) is widely used in maxillofacial surgery. The CBCT image of the dental arches, however, is of insufficient quality to use in digital planning of orthognathic surgery. Several authors have described methods to integrate digital dental casts into CBCT scans, but all reported methods have drawbacks. The aim of this feasibility study is to present a new simplified method to integrate digital dental casts into CBCT scans. In a patient scheduled for orthognathic ...

  10. Assessment of bifid and trifid mandibular canals using cone-beam computed tomography

    OpenAIRE

    Rashsuren, Oyuntugs; Choi, Jin-Woo; Han, Won-Jeong; Kim, Eun-Kyung

    2014-01-01

    Purpose To investigate the prevalence of bifid and trifid mandibular canals using cone-beam computed tomography (CBCT) images, and to measure their length, diameter, and angle. Materials and Methods CBCT images of 500 patients, involving 755 hemi-mandibles, were used for this study. The presence and type of bifid mandibular canal was evaluated according to a modified classification of Naitoh et al. Prevalence rates were determined according to age group, gender, and type. Further, their diame...

  11. Accuracy of measurements of mandibular anatomy in cone beam computed tomography images

    Science.gov (United States)

    Ludlow, John B.; Laster, William Stewart; See, Meit; Bailey, L’Tanya J.; Hershey, H. Garland

    2013-01-01

    Objectives Cone beam computed tomography (CBCT) images of ideally positioned and systematically mispositioned dry skulls were measured using two-dimensional and three-dimensional software measurement techniques. Image measurements were compared with caliper measurements of the skulls. Study design Cone beam computed tomography volumes of 28 skulls in ideal, shifted, and rotated positions were assessed by measuring distances between anatomic points and reference wires by using panoramic reconstructions (two-dimensional) and direct measurements from axial slices (three-dimensional). Differences between caliper measurements on skulls and software measurements in images were assessed with paired t tests and analysis of variance (ANOVA). Results Accuracy of measurement was not significantly affected by alterations in skull position or measurement of right or left sides. For easily visualized orthodontic wires, measurement accuracy was expressed by average errors less than 1.2% for two-dimensional measurement techniques and less than 0.6% for three-dimensional measurement techniques. Anatomic measurements were significantly more variable regardless of measurement technique. Conclusions Both two-dimensional and three-dimensional techniques provide acceptably accurate measurement of mandibular anatomy. Cone beam computed tomography measurement was not significantly influenced by variation in skull orientation during image acquisition. PMID:17395068

  12. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance

    Energy Technology Data Exchange (ETDEWEB)

    Dang, H.; Otake, Y.; Schafer, S.; Stayman, J. W.; Kleinszig, G.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen 91052 (Germany); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States)

    2012-10-15

    Purpose: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model registration method in which the ARM is a predefined tool, and the second is a Free-Form method in which the ARM is freely configurable. Methods: Studies were performed using a prototype C-arm for CBCT and a surgical tracking system. A simple ARM was designed with markers comprising a tungsten sphere within infrared reflectors to permit detection of markers in both x-ray projections and by an infrared tracker. The Known-Model method exercised a predefined specification of the ARM in combination with 3D-2D registration to estimate the transformation that yields the optimal match between forward projection of the ARM and the measured projection images. The Free-Form method localizes markers individually in projection data by a robust Hough transform approach extended from previous work, backprojected to 3D image coordinates based on C-arm geometric calibration. Image-domain point sets were transformed to world coordinates by rigid-body point-based registration. The robustness and registration accuracy of each method was tested in comparison to manual registration across a range of body sites (head, thorax, and abdomen) of interest in CBCT-guided surgery, including cases with interventional tools in the radiographic scene. Results: The automatic methods exhibited similar target registration error (TRE) and were comparable or superior to manual registration for placement of the ARM within {approx}200 mm of C-arm isocenter. Marker localization in projection data was robust across all

  13. Accuracy and reliability of a novel method for fusion of digital dental casts and cone beam computed tomography scans

    OpenAIRE

    Rangel, Frits A.; Maal, Thomas J. J.; Ewald M Bronkhorst; K Hero Breuning; Schols, Jan G. J. H.; Bergé, Stefaan J.; Anne Marie Kuijpers-Jagtman

    2013-01-01

    Several methods have been proposed to integrate digital models into Cone Beam Computed Tomography scans. Since all these methods have some drawbacks such as radiation exposure, soft tissue deformation and time-consuming digital handling processes, we propose a new method to integrate digital dental casts into Cone Beam Computed Tomography scans. Plaster casts of 10 patients were randomly selected and 5 titanium markers were glued to the upper and lower plaster cast. The plaster models were sc...

  14. Technical Note: Suppression of artifacts arising from simultaneous cone-beam imaging and RF transponder tracking in prostate radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Poludniowski, Gavin; Webb, Steve; Evans, Philip M. [Joint Department of Physics, Division of Radiotherapy and Imaging, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT (United Kingdom)

    2012-03-15

    Purpose: Artifacts in treatment-room cone-beam reconstructions have been observed at the authors' center when cone-beam acquisition is simultaneous with radio frequency (RF) transponder tracking using the Calypso 4D system (Calypso Medical, Seattle, WA). These artifacts manifest as CT-number modulations and increased CT-noise. The authors present a method for the suppression of the artifacts. Methods: The authors propose a three-stage postprocessing technique that can be applied to image volumes previously reconstructed by a cone-beam system. The stages are (1) segmentation of voxels into air, soft-tissue, and bone; (2) application of a 2D spatial-filter in the axial plane to the soft-tissue voxels; and (3) normalization to remove streaking along the axial-direction. The algorithm was tested on patient data acquired with Synergy XVI cone-beam CT systems (Elekta, Crawley, United Kingdom). Results: The computational demands of the suggested correction are small, taking less than 15 s per cone-beam reconstruction on a desktop PC. For a moderate loss of spatial-resolution, the artifacts are strongly suppressed and low-contrast visibility is improved. Conclusions: The correction technique proposed is fast and effective in removing the artifacts caused by simultaneous cone-beam imaging and RF-transponder tracking.

  15. 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device.

    Science.gov (United States)

    Ge, Lei; Wang, Shoumei; Song, Xianrang; Ge, Shenguang; Yu, Jinghua

    2012-09-01

    A novel 3D microfluidic paper-based immunodevice, integrated with blood plasma separation from whole blood samples, automation of rinse steps, and multiplexed CL detections, was developed for the first time based on the principle of origami (denoted as origami-based device). This 3D origami-based device, comprised of one test pad surrounded by four folding tabs, could be patterned and fabricated by wax-printing on paper in bulk. In this work, a sandwich-type chemiluminescence (CL) immunoassay was introduced into this 3D origami-based immunodevice, which could separate the operational procedures into several steps including (i) folding pads above/below and (ii) addition of reagent/buffer under a specific sequence. The CL behavior, blood plasma separation, washing protocol, and incubation time were investigated in this work. The developed 3D origami-based CL immunodevice, combined with a typical luminuol-H(2)O(2) CL system and catalyzed by Ag nanoparticles, showed excellent analytical performance for the simultaneous detection of four tumor markers. The whole blood samples were assayed and the results obtained were in agreement with the reference values from the parallel single-analyte test. This paper-based microfluidic origami CL detection system provides a new strategy for a low-cost, sensitive, simultaneous multiplex immunoassay and point-of-care diagnostics. PMID:22763468

  16. Surface Potential and Threshold Voltage Model of Fully Depleted Narrow Channel SOI MOSFET Using Analytical Solution of 3D Poisson’s Equation

    Directory of Open Access Journals (Sweden)

    Prashant Mani

    2015-06-01

    Full Text Available The present paper is about the modeling of surface potential and threshold voltage of Fully Depleted Silicon on Insulator MOSFET. The surface potential is calculated by solving the 3D Poisson’s equation analytically. The appropriate boundary conditions are used in calculations. The effect of narrow channel width and short channel length for suppression of SCE is analyzed. The narrow channel width effect in the threshold voltage is analyzed for thin film Fully Depleted SOI MOSFET.

  17. 3D seismic response of a limited valley via BEM using 2.5D analytical Green's functions for an infinite free-rigid layer

    OpenAIRE

    António, Julieta; Tadeu, António

    2002-01-01

    This paper presents analytical solutions for computing the 3D displacements in a flat solid elastic stratum bounded by a rigid base, when it is subjected to spatially sinusoidal harmonic line loads. These functions are also used as Greens functions in a boundary element method code that simulates the seismic wave propagation in a confined or semi-confined 2D valley, avoiding the discretization of the free and rigid horizontal boundaries.

  18. Evaluation of subjective image quality in relation to diagnostic task for cone beam computed tomography with different fields of view

    Energy Technology Data Exchange (ETDEWEB)

    Lofthag-Hansen, Sara, E-mail: sara.lofthag-hansen@vgregion.se [Department of Oral and Maxillofacial Radiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg (Sweden); Clinic of Oral and Maxillofacial Radiology, Public Dental Health, Gothenburg (Sweden); Thilander-Klang, Anne, E-mail: anne.thilander-klang@vgregion.se [Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg (Sweden); Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg (Sweden); Groendahl, Kerstin, E-mail: kerstin.grondahl@lj.se [Department of Oral and Maxillofacial Radiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg (Sweden); Department of Oral and Maxillofacial Radiology, The Institute for Postgraduate Dental Education, Joenkoeping (Sweden)

    2011-11-15

    Aims: To evaluate subjective image quality for two diagnostic tasks, periapical diagnosis and implant planning, for cone beam computed tomography (CBCT) using different exposure parameters and fields of view (FOVs). Materials and methods: Examinations were performed in posterior part of the jaws on a skull phantom with 3D Accuitomo (FOV 3 cm x 4 cm) and 3D Accuitomo FPD (FOVs 4 cm x 4 cm and 6 cm x 6 cm). All combinations of 60, 65, 70, 75, 80 kV and 2, 4, 6, 8, 10 mA with a rotation of 180{sup o} and 360{sup o} were used. Dose-area product (DAP) value was determined for each combination. The images were presented, displaying the object in axial, cross-sectional and sagittal views, without scanning data in a random order for each FOV and jaw. Seven observers assessed image quality on a six-point rating scale. Results: Intra-observer agreement was good ({kappa}{sub w} = 0.76) and inter-observer agreement moderate ({kappa}{sub w} = 0.52). Stepwise logistic regression showed kV, mA and diagnostic task to be the most important variables. Periapical diagnosis, regardless jaw, required higher exposure parameters compared to implant planning. Implant planning in the lower jaw required higher exposure parameters compared to upper jaw. Overall ranking of FOVs gave 4 cm x 4 cm, 6 cm x 6 cm followed by 3 cm x 4 cm. Conclusions: This study has shown that exposure parameters should be adjusted according to diagnostic task. For this particular CBCT brand a rotation of 180{sup o} gave good subjective image quality, hence a substantial dose reduction can be achieved without loss of diagnostic information.

  19. Cone beam breast CT with multiplanar and three dimensional visualization in differentiating breast masses compared with mammography

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Binghui [Department of Radiology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai 200072 (China); Zhang, Xiaohua [Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627 (United States); Cai, Weixing [Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY 14642 (United States); Conover, David [Koning Corporation, West Henrietta, NY 14586 (United States); Ning, Ruola, E-mail: ruola_ning@urmc.rochester.edu [Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY 14642 (United States)

    2015-01-15

    Objective: This pilot study was to evaluate cone beam breast computed tomography (CBBCT) with multiplanar and three dimensional (3D) visualization in differentiating breast masses in comparison with two-view mammograms. Methods: Sixty-five consecutive female patients (67 breasts) were scanned by CBBCT after conventional two-view mammography (Hologic, Motarget, compression factor 0.8). For CBBCT imaging, three hundred (1024 × 768 × 16 b) two-dimensional (2D) projection images were acquired by rotating the x-ray tube and a flat panel detector (FPD) 360 degree around one breast. Three-dimensional CBBCT images were reconstructed from the 2D projections. Visage CS 3.0 and Amira 5.2.2 were used to visualize reconstructed CBBCT images. Results: Eighty-five breast masses in this study were evaluated and categorized under the breast imaging reporting and data system (BI-RADS) according to plain CBBCT images and two-view mammograms, respectively, prior to biopsy. BI-RADS category of each breast was compared with biopsy histopathology. The results showed that CBBCT with multiplanar and 3D visualization would be helpful to identify the margin and characteristics of breast masses. The category variance ratios for CBBCT under the BI-RADS were 23.5% for malignant tumors (MTs) and 27.3% for benign lesions in comparison with pathology, which were evidently closer to the histopathology results than those of two-view mammograms, p value <0.01. With the receiver operating characteristic (ROC) curve analysis, the area under the curve (AUC) of CBBCT was 0.911, larger than that (AUC 0.827) of two-view mammograms, p value <0.01. Conclusion: CBBCT will be a distinctive noninvasive technology in differentiating and categorizing breast masses under BI-RADS. CBBCT may be considerably more effective to identify breast masses, especially some small, uncertain or multifocal masses than conventional two-view mammography.

  20. Exact and efficient cone-beam reconstruction algorithm for a short-scan circle combined with various lines

    Science.gov (United States)

    Dennerlein, Frank; Katsevich, Alexander; Lauritsch, Guenter; Hornegger, Joachim

    2005-04-01

    X-ray 3D rotational angiography based on C-arm systems has become a versatile and established tomographic imaging modality for high contrast objects in interventional environment. Improvements in data acquisition, e.g. by use of flat panel detectors, will enable C-arm systems to resolve even low-contrast details. However, further progress will be limited by the incompleteness of data acquisition on the conventional short-scan circular source trajectories. Cone artifacts, which result from that incompleteness, significantly degrade image quality by severe smearing and shading. To assure data completeness a combination of a partial circle with one or several line segments is investigated. A new and efficient reconstruction algorithm is deduced from a general inversion formula based on 3D Radon theory. The method is theoretically exact, possesses shift-invariant filtered backprojection (FBP) structure, and solves the long object problem. The algorithm is flexible in dealing with various circle and line configurations. The reconstruction method requires nothing more than the theoretically minimum length of scan trajectory. It consists of a conventional short-scan circle and a line segment approximately twice as long as the height of the region-of-interest. Geometrical deviations from the ideal source trajectory are considered in the implementation in order to handle data of real C-arm systems. Reconstruction results show excellent image quality free of cone artifacts. The proposed scan trajectory and reconstruction algorithm assure excellent image quality and allow low-contrast tomographic imaging with C-arm based cone-beam systems. The method can be implemented without any hardware modifications on systems commercially available today.

  1. A Novel Markerless Technique to Evaluate Daily Lung Tumor Motion Based on Conventional Cone-Beam CT Projection Data

    International Nuclear Information System (INIS)

    Purpose: In this study, we present a novel markerless technique, based on cone beam computed tomography (CBCT) raw projection data, to evaluate lung tumor daily motion. Method and Materials: The markerless technique, which uses raw CBCT projection data and locates tumors directly on every projection, consists of three steps. First, the tumor contour on the planning CT is used to create digitally reconstructed radiographs (DRRs) at every projection angle. Two sets of DRRs are created: one showing only the tumor, and another with the complete anatomy without the tumor. Second, a rigid two-dimensional image registration is performed to register the DRR set without the tumor to the CBCT projections. After the registration, the projections are subtracted from the DRRs, resulting in a projection dataset containing primarily tumor. Finally, a second registration is performed between the subtracted projection and tumor-only DRR. The methodology was evaluated using a chest phantom containing a moving tumor, and retrospectively in 4 lung cancer patients treated by stereotactic body radiation therapy. Tumors detected on projection images were compared with those from three-dimensional (3D) and four-dimensional (4D) CBCT reconstruction results. Results: Results in both static and moving phantoms demonstrate that the accuracy is within 1 mm. The subsequent application to 22 sets of CBCT scan raw projection data of 4 lung cancer patients includes about 11,000 projections, with the detected tumor locations consistent with 3D and 4D CBCT reconstruction results. This technique reveals detailed lung tumor motion and provides additional information than conventional 4D images. Conclusion: This technique is capable of accurately characterizing lung tumor motion on a daily basis based on a conventional CBCT scan. It provides daily verification of the tumor motion to ensure that these motions are within prior estimation and covered by the treatment planning volume.

  2. Palatal bone thickness measured by palatal index method using cone-beam computed tomography in nonorthodontic patients for placement of mini-implants

    Directory of Open Access Journals (Sweden)

    W S Manjula

    2015-01-01

    Full Text Available Introduction: The purpose of this study was to compare the bone thickness of the palatal areas in different palatal index (PI groups. Materials and Methods: Cone-beam computed tomography scans of 10 subjects were selected with a mean age group of 18 years. The measurements of palatal bone thickness were made at 36 sites using CareStream 3D Imaging software. The PI was measured using Korkhaus ratio (palatal height/palatal width. One-way analysis of variance was used to analyze intergroup differences, as well as the PI difference. Results: Bone thickness was higher in the anterior region than in the middle and posterior regions P<0.001. Furthermore, significant differences were found among the midline, medial, and lateral areas of the palate. Conclusions: These findings might be helpful for clinicians to enhance the successful use of temporary anchorage devices in the palate.

  3. The combination of digital surface scanners and cone beam computed tomography technology for guided implant surgery using 3Shape implant studio software: a case history report.

    Science.gov (United States)

    Lanis, Alejandro; Álvarez Del Canto, Orlando

    2015-01-01

    The incorporation of virtual engineering into dentistry and the digitization of information are providing new perspectives and innovative alternatives for dental treatment modalities. The use of digital surface scanners with surgical planning software allows for the combination of the radiographic, prosthetic, surgical, and laboratory fields under a common virtual scenario, permitting complete digital treatment planning. In this article, the authors present a clinical case in which a guided implant surgery was performed based on a complete digital surgical plan combining the information from a cone beam computed tomography scan and the virtual simulation obtained from the 3Shape TRIOS intraoral surface scanner. The information was imported to and combined in the 3Shape Implant Studio software for guided implant surgery planning. A surgical guide was obtained by a 3D printer, and the surgical procedure was done using the Biohorizons Guided Surgery Kit and its protocol.

  4. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Gu, Xuejun [Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-8808 (United States)

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion

  5. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method

    International Nuclear Information System (INIS)

    Purpose: Four-dimensional cone beam computed tomography (4D-CBCT) has been developed to provide respiratory phase-resolved volumetric imaging in image guided radiation therapy. Conventionally, it is reconstructed by first sorting the x-ray projections into multiple respiratory phase bins according to a breathing signal extracted either from the projection images or some external surrogates, and then reconstructing a 3D CBCT image in each phase bin independently using FDK algorithm. This method requires adequate number of projections for each phase, which can be achieved using a low gantry rotation or multiple gantry rotations. Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. 4D-CBCT images at different breathing phases share a lot of redundant information, because they represent the same anatomy captured at slightly different temporal points. Taking this redundancy along the temporal dimension into account can in principle facilitate the reconstruction in the situation of inadequate number of projection images. In this work, the authors propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. Methods: The authors define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward–backward splitting algorithm and a Gauss–Jacobi iteration method are employed to solve the problems. The algorithms implementation

  6. Image-domain shading correction for cone-beam CT without prior patient information.

    Science.gov (United States)

    Fan, Qiyong; Lu, Bo; Park, Justin C; Niu, Tianye; Li, Jonathan G; Liu, Chihray; Zhu, Lei

    2015-01-01

    In the era of high-precision radiotherapy, cone-beam CT (CBCT) is frequently utilized for on-board treatment guidance. However, CBCT images usually contain severe shading artifacts due to strong photon scatter from illumination of a large volume and non-optimized patient-specific data measurements, limiting the full clinical applications of CBCT. Many algorithms have been proposed to alleviate this problem by data correction on projections. Sophisticated methods have also been designed when prior patient information is available. Nevertheless, a standard, efficient, and effective approach with large applicability remains elusive for current clinical practice. In this work, we develop a novel algorithm for shading correction directly on CBCT images. Distinct from other image-domain correction methods, our approach does not rely on prior patient information or prior assumption of patient data. In CBCT, projection errors (mostly from scatter and non-ideal usage of bowtie filter) result in dominant low-frequency shading artifacts in image domain. In circular scan geometry, these artifacts often show global or local radial patterns. Hence, the raw CBCT images are first preprocessed into the polar coordinate system. Median filtering and polynomial fitting are applied on the transformed image to estimate the low-frequency shading artifacts (referred to as the bias field) angle-by-angle and slice-by-slice. The low-pass filtering process is done firstly along the angular direction and then the radial direction to preserve image contrast. The estimated bias field is then converted back to the Cartesian coordinate system, followed by 3D low-pass filtering to eliminate possible high-frequency components. The shading-corrected image is finally obtained as the uncorrected volume divided by the bias field. The proposed algorithm was evaluated on CBCT images of a pelvis patient and a head patient. Mean CT number values and spatial non-uniformity on the reconstructed images were

  7. A new method for x-ray scatter correction: first assessment on a cone-beam CT experimental setup

    Energy Technology Data Exchange (ETDEWEB)

    Rinkel, J [CEA-LETI MINATEC, Division of Micro Technologies for Biology and Healthcare, 38054 Grenoble Cedex 09 (France); Gerfault, L [CEA-LETI MINATEC, Division of Micro Technologies for Biology and Healthcare, 38054 Grenoble Cedex 09 (France); Esteve, F [INSERM U647-RSRM, ESRF, BP200, 38043 Grenoble Cedex 09 (France); Dinten, J-M [CEA-LETI MINATEC, Division of Micro Technologies for Biology and Healthcare, 38054 Grenoble Cedex 09 (France)

    2007-08-07

    Cone-beam computed tomography (CBCT) enables three-dimensional imaging with isotropic resolution and a shorter acquisition time compared to a helical CT scanner. Because a larger object volume is exposed for each projection, scatter levels are much higher than in collimated fan-beam systems, resulting in cupping artifacts, streaks and quantification inaccuracies. In this paper, a general method to correct for scatter in CBCT, without supplementary on-line acquisition, is presented. This method is based on scatter calibration through off-line acquisition combined with on-line analytical transformation based on physical equations, to adapt calibration to the object observed. The method was tested on a PMMA phantom and on an anthropomorphic thorax phantom. The results were validated by comparison to simulation for the PMMA phantom and by comparison to scans obtained on a commercial multi-slice CT scanner for the thorax phantom. Finally, the improvements achieved with the new method were compared to those obtained using a standard beam-stop method. The new method provided results that closely agreed with the simulation and with the conventional CT scanner, eliminating cupping artifacts and significantly improving quantification. Compared to the beam-stop method, lower x-ray doses and shorter acquisition times were needed, both divided by a factor of 9 for the same scatter estimation accuracy.

  8. Development of the three dimensional image display program for limited cone beam X-ray CT for dental use (Ortho-CT)

    International Nuclear Information System (INIS)

    We have already developed and reported a limited cone beam X-ray CT system for dental use (Ortho-CT). This system has been used clinically since 1997. In this study, we report a 3D surface display program for Ortho-CT which has been newly-developed by the authors. The 3D surface display software has been developed using visual C++ (Microsoft Co. WA. USA) and a personal computer (Pentium 450MHz Intel Co. CA USA, Windows NT 4.0 Microsoft WA. USA). In this software, the 3D surface images are recorded as AVI files and can be displayed on the personal computer. The 3D images can be rotated and a stepwise change of the threshold voxel value for binary image formation can be automatically used. We have applied these 3D surface images to clinical studies from January 1999 to May 1999 at the Radiology section in our Dental hospital. The images can be displayed very easily in personal computers using AVI files. Thirty-five cases have been reconstructed using 3D surface images in this way. The 3D surface image is useful in the diagnosis of fractures of the mandibular head and impacted teeth. Only teeth are observed when a relative threshold voxel value is set at a high level such as about 0.37. When the threshold is changed to a lower value (about 0.3), we can observe both teeth and the surface of the bone. We have developed a 3D surface display program for personal computers. The images are useful for the diagnosis of the pathosis in the maxillofacial region. (author)

  9. A quality assurance framework for the fully automated and objective evaluation of image quality in cone-beam computed tomography

    International Nuclear Information System (INIS)

    Purpose: Thousands of cone-beam computed tomography (CBCT) scanners for vascular, maxillofacial, neurological, and body imaging are in clinical use today, but there is no consensus on uniform acceptance and constancy testing for image quality (IQ) and dose yet. The authors developed a quality assurance (QA) framework for fully automated and time-efficient performance evaluation of these systems. In addition, the dependence of objective Fourier-based IQ metrics on direction and position in 3D volumes was investigated for CBCT. Methods: The authors designed a dedicated QA phantom 10 cm in length consisting of five compartments, each with a diameter of 10 cm, and an optional extension ring 16 cm in diameter. A homogeneous section of water-equivalent material allows measuring CT value accuracy, image noise and uniformity, and multidimensional global and local noise power spectra (NPS). For the quantitative determination of 3D high-contrast spatial resolution, the modulation transfer function (MTF) of centrally and peripherally positioned aluminum spheres was computed from edge profiles. Additional in-plane and axial resolution patterns were used to assess resolution qualitatively. The characterization of low-contrast detectability as well as CT value linearity and artifact behavior was tested by utilizing sections with soft-tissue-equivalent and metallic inserts. For an automated QA procedure, a phantom detection algorithm was implemented. All tests used in the dedicated QA program were initially verified in simulation studies and experimentally confirmed on a clinical dental CBCT system. Results: The automated IQ evaluation of volume data sets of the dental CBCT system was achieved with the proposed phantom requiring only one scan for the determination of all desired parameters. Typically, less than 5 min were needed for phantom set-up, scanning, and data analysis. Quantitative evaluation of system performance over time by comparison to previous examinations was also

  10. A quality assurance framework for the fully automated and objective evaluation of image quality in cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Steiding, Christian; Kolditz, Daniel; Kalender, Willi A., E-mail: willi.kalender@imp.uni-erlangen.de [Institute of Medical Physics, University of Erlangen-Nürnberg, Henkestraße 91, 91052 Erlangen, Germany and CT Imaging GmbH, 91052 Erlangen (Germany)

    2014-03-15

    Purpose: Thousands of cone-beam computed tomography (CBCT) scanners for vascular, maxillofacial, neurological, and body imaging are in clinical use today, but there is no consensus on uniform acceptance and constancy testing for image quality (IQ) and dose yet. The authors developed a quality assurance (QA) framework for fully automated and time-efficient performance evaluation of these systems. In addition, the dependence of objective Fourier-based IQ metrics on direction and position in 3D volumes was investigated for CBCT. Methods: The authors designed a dedicated QA phantom 10 cm in length consisting of five compartments, each with a diameter of 10 cm, and an optional extension ring 16 cm in diameter. A homogeneous section of water-equivalent material allows measuring CT value accuracy, image noise and uniformity, and multidimensional global and local noise power spectra (NPS). For the quantitative determination of 3D high-contrast spatial resolution, the modulation transfer function (MTF) of centrally and peripherally positioned aluminum spheres was computed from edge profiles. Additional in-plane and axial resolution patterns were used to assess resolution qualitatively. The characterization of low-contrast detectability as well as CT value linearity and artifact behavior was tested by utilizing sections with soft-tissue-equivalent and metallic inserts. For an automated QA procedure, a phantom detection algorithm was implemented. All tests used in the dedicated QA program were initially verified in simulation studies and experimentally confirmed on a clinical dental CBCT system. Results: The automated IQ evaluation of volume data sets of the dental CBCT system was achieved with the proposed phantom requiring only one scan for the determination of all desired parameters. Typically, less than 5 min were needed for phantom set-up, scanning, and data analysis. Quantitative evaluation of system performance over time by comparison to previous examinations was also

  11. Analytical 1-D dual-porosity equivalent solutions to 3-D discrete single-continuum models. Application to karstic spring hydrograph modelling

    CERN Document Server

    Cornaton, F

    2011-01-01

    One dimensional analytical porosity-weighted solutions of the dual-porosity model are derived, providing insights on how to relate exchange and storage coefficients to the volumetric density of the high-permeability medium. It is shown that porosity-weighted storage and exchange coefficients are needed when handling highly heterogeneous systems - such as karstic aquifers - using equivalent dual-porosity models. The sensitivity of these coefficients is illustrated by means of numerical experiments with theoretical karst systems. The presented 1-D dual-porosity analytical model is used to reproduce the hydraulic responses of reference 3-D karst aquifers, modelled by a discrete single-continuum approach. Under various stress conditions, simulation results show the relations between the dual-porosity model coefficients and the structural features of the discrete single-continuum model. The calibration of the equivalent 1-D analytical dual-porosity model on reference hydraulic responses confirms the dependence of ...

  12. Reduction of beam hardening artifacts in cone-beam CT imaging via SMART-RECON algorithm

    Science.gov (United States)

    Li, Yinsheng; Garrett, John; Chen, Guang-Hong

    2016-03-01

    When an automatic exposure control is introduced in C-arm cone beam CT data acquisition, the spectral inconsistencies between acquired projection data are exacerbated. As a result, conventional water/bone correction schemes are not as effective as in conventional diagnostic x-ray CT acquisitions with a fixed tube potential. In this paper, a new method was proposed to reconstruct several images with different degrees of spectral consistency and thus different levels of beam hardening artifacts. The new method relies neither on prior knowledge of the x-ray beam spectrum nor on prior compositional information of the imaging object. Numerical simulations were used to validate the algorithm.

  13. Florid cemento-osseous dysplasia: A rare case report evaluated with cone-beam computed tomography

    Directory of Open Access Journals (Sweden)

    Eren Yildirim

    2016-01-01

    Full Text Available A 29-year-old systemically healthy female patient presented to our department. Cone-beam computed tomographic images showed multiple well-defined sclerotic masses with radiolucent border in both right and left molar regions of the mandible. These sclerotic masses were surrounded by a thin radiolucent border. We diagnosed the present pathology as florid cemento-osseous dysplasia and decided to follow the patient without taking biopsy. For the patient, who did not have any clinical complaints, radiographic followupis recommended twice a year. The responsibility of the dentist is to ensure the follow-up of the diagnosed patients and take necessary measures for preventing the infections.

  14. Cone-beam computed tomography: Time to move from ALARA to ALADA

    Energy Technology Data Exchange (ETDEWEB)

    Jaju, Prashant P.; Jaju, Sushma P. [Rishiraj College of Dental Sciences and Research Centre, Bhopa(Indonesia)

    2015-12-15

    Cone-beam computed tomography (CBCT) is routinely recommended for dental diagnosis and treatment planning. CBCT exposes patients to less radiation than does conventional CT. Still, lack of proper education among dentists and specialists is resulting in improper referral for CBCT. In addition, aiming to generate high-quality images, operators may increase the radiation dose, which can expose the patient to unnecessary risk. This letter advocates appropriate radiation dosing during CBCT to the benefit of both patients and dentists, and supports moving from the concept of 'as low as reasonably achievable' (ALARA) to 'as low as diagnostically acceptable' (ALADA.

  15. Florid cemento-osseous dysplasia: A rare case report evaluated with cone-beam computed tomography.

    Science.gov (United States)

    Yildirim, Eren; Bağlar, Serdar; Ciftci, Mehmet Ertugrul; Ozcan, Erdal

    2016-01-01

    A 29-year-old systemically healthy female patient presented to our department. Cone-beam computed tomographic images showed multiple well-defined sclerotic masses with radiolucent border in both right and left molar regions of the mandible. These sclerotic masses were surrounded by a thin radiolucent border. We diagnosed the present pathology as florid cemento-osseous dysplasia and decided to follow the patient without taking biopsy. For the patient, who did not have any clinical complaints, radiographic followupis recommended twice a year. The responsibility of the dentist is to ensure the follow-up of the diagnosed patients and take necessary measures for preventing the infections. PMID:27601835

  16. Cone beam computed tomography aided diagnosis and treatment of endodontic cases: Critical analysis.

    Science.gov (United States)

    Yılmaz, Funda; Kamburoglu, Kıvanç; Yeta, Naz Yakar; Öztan, Meltem Dartar

    2016-07-28

    Although intraoral radiographs still remain the imaging method of choice for the evaluation of endodontic patients, in recent years, the utilization of cone beam computed tomography (CBCT) in endodontics showed a significant jump. This case series presentation shows the importance of CBCT aided diagnosis and treatment of complex endodontic cases such as; root resorption, missed extra canal, fusion, oblique root fracture, non-diagnosed periapical pathology and horizontal root fracture. CBCT may be a useful diagnostic method in several endodontic cases where intraoral radiography and clinical examination alone are unable to provide sufficient information. PMID:27551342

  17. Conservative Management of Type III Dens in Dente Using Cone Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    K Pradeep

    2012-01-01

    Full Text Available Dens in dente, also known as dens invaginatus, dilated composite odontoma, or deep foramen caecum, is a developmental malformation that usually affects maxillary incisor teeth, particularly lateral incisors. It may occur in teeth anywhere within the jaws, other locations are comparatively rare. It can occur within both the crown and the root, although crown invaginations are more common. The use of cone beam computed tomography (CBCT is very helpful in endodontic diagnosis of complex anatomic variations. In this case we demonstrate the use of CBCT in the evaluation and endodontic management of a Type III dens in dente (Oehler′s Type III.

  18. Cone Beam Computed Tomography Image Guidance System for a Dedicated Intracranial Radiosurgery Treatment Unit

    Energy Technology Data Exchange (ETDEWEB)

    Ruschin, Mark, E-mail: Mark.Ruschin@sunnybrook.ca [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Komljenovic, Philip T.; Ansell, Steve [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Menard, Cynthia [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Bootsma, Gregory [Department of Medical Biophysics, University of Toronto, Ontario (Canada); Cho, Young-Bin; Chung, Caroline; Jaffray, David [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada)

    2013-01-01

    Purpose: Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. Methods and Materials: A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210 Degree-Sign of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Results: Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited <0.2 mm peak-to-peak variation. With a 0.5-mm voxel pitch, the maximum targeting error was 0.4 mm. Images of 2 patients were analyzed offline and submillimeter agreement was confirmed with conventional frame. Conclusions: A cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of

  19. Use of cone-beam computed tomography in early detection of implant failure.

    Science.gov (United States)

    Yepes, Juan F; Al-Sabbagh, Mohanad

    2015-01-01

    Preimplant planning with complex imaging techniques has long been a recommended practice for assessing the quality and quantity of alveolar bone before dental implant placement. When maxillofacial imaging is necessary, static film or digital images lack the depth and dimension offered by computed tomography. Cone-beam computed tomography (CBCT) offers the dentist not only a radiographic volumetric view of alveolar bone but also a 3-dimensional reconstruction. This article reviews the use of CBCT for assessing implant placement and early detection of failure, and compares the performance of CBCT with that of other imaging modalities in the early detection of implant failure. PMID:25434558

  20. Use of Cone Beam Computed Tomography in the Diagnosis of Superior Semicircular Canal Dehiscence

    Directory of Open Access Journals (Sweden)

    Ilson Sepulveda

    2014-01-01

    Full Text Available Superior semicircular canal dehiscence is a relatively new syndrome in the field of otology. It is of unknown etiology presenting with a variety of vestibular and auditory symptoms and radiologic findings play a crucial role in its diagnosis. Cone beam computed tomography has been shown to be a powerful tool in the field of otolaryngology. It is a three dimensional technique that uses lower radiation resulting in fewer artifacts and offers higher resolution when compared with multi-slice computed tomography. It is considered to be an excellent imaging modality for radiological exploration of the ear.

  1. Evaluation of Sparse-view Reconstruction from Flat-panel-detector Cone-beam CT

    OpenAIRE

    Bian, J.; Siewerdsen, J. H.; Han, X.; Sidky, E. Y.; Prince, J. L.; Pelizzari, C. A.; Pan, X.

    2010-01-01

    Flat-panel-detector X-ray cone-beam computed tomography (CBCT) is used in a rapidly increasing host of imaging applications, including image-guided surgery and radiotherapy. The purpose of the work is to investigate and evaluate image reconstruction from data collected at projection views significantly fewer than what is used in current CBCT imaging. Specifically, we carried out imaging experiments by use of a bench-top CBCT system that was designed to mimic imaging conditions in image-guided...

  2. Cone beam computed tomography aided diagnosis and treatment of endodontic cases: Critical analysis

    Science.gov (United States)

    Yılmaz, Funda; Kamburoglu, Kıvanç; Yeta, Naz Yakar; Öztan, Meltem Dartar

    2016-01-01

    Although intraoral radiographs still remain the imaging method of choice for the evaluation of endodontic patients, in recent years, the utilization of cone beam computed tomography (CBCT) in endodontics showed a significant jump. This case series presentation shows the importance of CBCT aided diagnosis and treatment of complex endodontic cases such as; root resorption, missed extra canal, fusion, oblique root fracture, non-diagnosed periapical pathology and horizontal root fracture. CBCT may be a useful diagnostic method in several endodontic cases where intraoral radiography and clinical examination alone are unable to provide sufficient information. PMID:27551342

  3. 3D analytical and numerical modelling of the regional topography influence on the surface deformation due to underground heat source

    Science.gov (United States)

    Brimich, Ladislav; Charco, María; Kohút, Igor; Fernández, José

    2011-01-01

    Thermo-elastic strains and stresses play a considerable role in the stress state of the lithosphere and its dynamics, especially at pronounced positive geothermal anomalies. Topography has a significant effect on ground deformation. In this paper we describe two methods for including the topographic effects in the thermo-viscoelastic model. First we use an approximate methodology which assumes that the main effect of the topography is due to distance from the source to the free surface and permits to have an analytical solution very attractive for solving the inverse problem. A numerical solution using Finite Element Method (FEM) is also computed. The numerical method allows to include the local shape of the topography in the modelling. In the numerical model the buried magmatic body is represented by a finite volume thermal source. The temperature distribution is computed by the higher-degree FEM. For analytical as well as numerical model solution only the forces of thermal origin are considered. The comparison of the results obtained using both analytical and numerical techniques shows the qualitative agreement of the vertical displacements. In the numerical values small differences were obtained. The results show that for the volcanic areas with an important relief the perturbation of the thermo-viscoelastic solution (deformation and total gravity anomaly) due to the topography can be quite significant. In consequence, neglecting topography could give erroneous results in the estimated source parameters.

  4. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Tselikas, Lambros, E-mail: lambros.tselikas@gmail.com; Joskin, Julien, E-mail: j.joskin@gmail.com [Gustave Roussy, Interventional Radiology Department (France); Roquet, Florian, E-mail: florianroquet@hotmail.com [Gustave Roussy, Biostatistics Department (France); Farouil, Geoffroy, E-mail: g.farouil@gmail.com [Gustave Roussy, Interventional Radiology Department (France); Dreuil, Serge, E-mail: serge.dreuil@gustaveroussy.fr [Gustave Roussy, Medical Physics Department (France); Hakimé, Antoine, E-mail: thakime@yahoo.com; Teriitehau, Christophe, E-mail: cteriitehau@me.com [Gustave Roussy, Interventional Radiology Department (France); Auperin, Anne, E-mail: anne.auperin@gustaveroussy.fr [Gustave Roussy, Biostatistics Department (France); Baere, Thierry de, E-mail: thierry.debaere@gustaveroussy.fr; Deschamps, Frederic, E-mail: frederic.deschamps@gustaveroussy.fr [Gustave Roussy, Interventional Radiology Department (France)

    2015-02-15

    PurposeThis study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).MethodsSixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.ResultsAll biopsies were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).ConclusionsFP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.

  5. Daily cone-beam computed tomography used to determine tumour shrinkage and localisation in lung cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Marquard Knap, Marianne; Nordsmark, Marianne (Aarhus Univ. Hospital, Dept. of Oncology, Aarhus (Denmark)), E-mail: mariknap@rm.dk; Hoffmann, Lone; Vestergaard, Anne (Aarhus Univ. Hospital, Dept. of Medical Physics, Aarhus (Denmark))

    2010-10-15

    Purpose/Objective. Daily Cone-beam computed tomography (CBCT) in room imaging is used to determine tumour shrinkage during a full radiotherapy (RT) course. In addition, relative interfractional tumour and lymph node motion is determined for each RT fraction. Material and methods. From November 2009 to March 2010, 20 consecutive lung cancer patients (14 NSCLC, 6 SCLC) were followed with daily CBCT during RT. The gross tumour volume for lung tumour (GTV-t) was visible in all daily CBCT scans and was delineated at the beginning, at the tenth and the 20th fraction, and at the end of treatment. Whenever visible, the gross tumour volume for lymph nodes (GTV-n) was also delineated. The GTV-t and GTV-n volumes were determined. All patients were setup according to an online bony anatomy match. Retrospectively, matching based on the internal target volume (ITV), the GTV-t or the GTV-n was performed. Results. In eight patients, we observed a significant GTV-t shrinkage (15-40%) from the planning CT until the last CBCT. Only five patients presented a significant shrinkage (21-37%) in the GTV-n. Using the daily CBCT imaging, it was found that the mean value of the difference between a setup using the skin tattoo and an online matching using the ITV was 7.3+-2.9 mm (3D vector in the direction of ITV). The mean difference between the ITV and bony anatomy matching was 3.0+-1.3 mm. Finally, the mean distance between the GTV-t and the GTV-N was 2.9+-1.6 mm. Conclusion. One third of all patients with lung cancer undergoing chemo-RT achieved significant tumour shrinkage from planning CT until the end of the radiotherapy. Differences in GTV-t and GTV-n motion was observed and matching using the ITV including both GTV-t and GTV-n is therefore preferable.

  6. The incidence and configuration of the bifid mandibular canal in Koreans by using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ju Han; Lee, Kook Sun; Oh, Min Gyu; Choi, Hwa Young; Lee, Sae Rom; Oh, Song Hee; Choi, Yoon Joo; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan [Dept. of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    2014-03-15

    This study was performed to investigate the incidence and configuration of the bifid mandibular canal in a Korean population by using cone-beam computed tomography (CBCT) imaging. CBCT images of 1933 patients (884 male and 1049 female) were evaluated using PSR-9000N and Alphard-Vega 3030 Dental CT units (Asahi Roentgen Ind. Co., Ltd, Kyoto, Japan). Image analysis was performed by using OnDemand3D software (CyberMed Inc., Seoul, Korea). The bifid mandibular canal was identified and classified into four types, namely, the forward canal, buccolingual canal, dental canal, and retromolar canal. Statistical analysis was performed by using the chi-squared test and one-way analysis of variance (ANOVA). Bifid mandibular canals were observed in 198 (10.2%) of 1933 patients. The most frequently observed type of bifid mandibular canal was the retromolar canal (n=104, rate: 52.5%) without any significant difference among the incidence of each age and gender. The mean diameter of the accessory canal was 1.27 mm (range: 0.27-3.29 mm) without any significant difference among the mean diameter of each type of the bifid mandibular canal. The mean length of the bifid mandibular canals was 14.97mm(range: 2.17-38.8 mm) with only a significant difference between the dental canal and the other types. The bifid mandibular canal is not uncommon in Koreans and has a prevalence of 10.2% as indicated in the present study. It is suggested that a CBCT examination be recommended for detecting a bifid canal.

  7. Development and validation of a hybrid simulation technique for cone beam CT: application to an oral imaging system

    Science.gov (United States)

    Zhang, G.; Pauwels, R.; Marshall, N.; Shaheen, E.; Nuyts, J.; Jacobs, R.; Bosmans, H.

    2011-09-01

    This paper proposes a hybrid technique to simulate the complete chain of an oral cone beam computed tomography (CBCT) system for the study of both radiation dose and image quality. The model was developed around a 3D Accuitomo 170 unit (J Morita, Japan) with a tube potential range of 60-90 kV. The Monte Carlo technique was adopted to simulate the x-ray generation, filtration and collimation. Exact dimensions of the bow-tie filter were estimated iteratively using experimentally acquired flood images. Non-flat radiation fields for different exposure settings were mediated via 'phase spaces'. Primary projection images were obtained by ray tracing at discrete energies and were fused according to the two-dimensional energy modulation templates derived from the phase space. Coarse Monte Carlo simulations were performed for scatter projections and the resulting noisy images were smoothed by Richardson-Lucy fitting. Resolution and noise characteristics of the flat panel detector were included using the measured modulation transfer function (MTF) and the noise power spectrum (NPS), respectively. The Monte Carlo dose calculation was calibrated in terms of kerma free-in-air about the isocenter, using an ionization chamber, and was subsequently validated by comparison against the measured air kerma in water at various positions of a cylindrical water phantom. The resulting dose discrepancies were found artifact pattern in comparison to experimentally acquired images, with <5% difference for voxel values of the aluminum and air insert regions and <3% difference for voxel uniformity across the homogeneous PMMA region. The detector simulation by use of the MTF and NPS data exhibited a big influence on noise and the sharpness of the resulting images. The hybrid simulation technique is flexible and has wide applicability to CBCT systems.

  8. Five-dimensional motion compensation for respiratory and cardiac motion with cone-beam CT of the thorax region

    Science.gov (United States)

    Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc

    2016-03-01

    We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.

  9. Evaluation of the setup margins for cone beam computed tomography-guided cranial radiosurgery: A phantom study.

    Science.gov (United States)

    Calvo Ortega, Juan Francisco; Wunderink, Wouter; Delgado, David; Moragues, Sandra; Pozo, Miquel; Casals, Joan

    2016-01-01

    The aim of this study is to evaluate the setup margins from the clinical target volume (CTV) to planning target volume (PTV) for cranial stereotactic radiosurgery (SRS) treatments guided by cone beam computed tomography (CBCT). We designed an end-to-end (E2E) test using a skull phantom with an embedded 6mm tungsten ball (target). A noncoplanar plan was computed (E2E plan) to irradiate the target. The CBCT-guided positioning of the skull phantom on the linac was performed. Megavoltage portal images were acquired after 15 independent deliveries of the E2E plan. The displacement 2-dimensional (2D) vector between the centers of the square field and the ball target on each portal image was used to quantify the isocenter accuracy. Geometrical margins on each patient׳s direction (left-right or LR, anterior-posterior or AP, superior-inferior or SI) were calculated. Dosimetric validation of the margins was performed in 5 real SRS cases: 3-dimesional (3D) isocenter deviations were mimicked, and changes in CTV dose coverage and organs-at-risk (OARs) dosage were analyzed. The CTV-PTV margins of 1.1mm in LR direction, and 0.7mm in AP and SI directions were derived from the E2E tests. The dosimetric analysis revealed that a 1-mm uniform margin was sufficient to ensure the CTV dose coverage, without compromising the OAR dose tolerances. The effect of isocenter uncertainty has been estimated to be 1mm in our CBCT-guided SRS approach. PMID:26994824

  10. Noise study on cone-beam CT FDK image reconstruction by improved area-simulating-volume technique

    Science.gov (United States)

    Liu, Yan; Wang, Jin; Zhang, Hao; Fan, Yi; Liang, Zhengrong

    2014-03-01

    Previous studies have reported that the volume-weighting technique has advantages over the linear interpolation technique for cone-beam computed tomography (CBCT) image reconstruction. However, directly calculating the intersecting volume between the pencil beam X-ray and the object is a challenge due to the computational complexity. Inspired by previous works in area-simulating volume (ASV) technique for 3D positron emission tomography, we proposed an improved ASV (IASV) technique, which can fast calculate the geometric probability of the intersection between the pencil beam and the object. In order to show the improvements of using IASV technique in volumeweighting based Feldkamp-Davis-Kress (VW-FDK) algorithm compared to the conventional linear interpolation technique based FDK algorithm (LI-FDK), the variances images from both theoretical prediction and empirical determination are described basing on the assumption of the uncorrelated and stationary noise for each detector bin. In digital phantom study, both of the theoretically predicted variance images and the empirically determined variance images concurred and demonstrated that the VW-FDK algorithm can result in uniformly distributed noise across the FOV. In the physical phantom study, the performance enhancements by the VW-FDK algorithm were quantitatively evaluated by the contrast-noise-ratio (CNR) merit. The CNR values from the VW-FDK result were about 40% higher than the conventional LI-FDK result. Therefore it can be concluded that the VW-FDK algorithm can efficiently address the non-uniformity noise and suppress noise level of the reconstructed images.

  11. TH-A-18C-02: An Electrostatic Model for Assessment of Joint Space Morphology in Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Q; Thawait, G; Gang, G; Zbijewski, W; Riegel, T; Demehri, S; Siewerdsen, J [Johns Hopkins University, Baltimore, MD (United States)

    2014-06-15

    Purpose: High-resolution cone-beam CT (CBCT) of the extremities presents a potentially valuable basis for image-based biomarkers of arthritis, trauma, and risk of injury. We present a new method for 3D joint space analysis that exploits the high isotropic spatial resolution of CBCT and is sensitive to small changes in disease-related morphology. Methods: The approach uses an “electrostatic” model in which joint surfaces (e.g., distal femur and proximal tibia) are labeled as charge densities between which the electric field is solved by approximation to the Laplace equation. The method yields a unique solution determined by the field lines across the “capacitor” and is hypothesized to be more sensitive than conventional (Sharp) scores and immune to degeneracies that limit simple distance-along-axis or closest-point analysis. The algorithm was validated in CBCT phantom images and applied in two clinical scenarios: osteoarthritis (OA, change in loadbearing tibiofemoral joint space); and assessment of injury risk (correlation of 3D joint space to tibial slope). Results: Joint space maps computed from the electrostatic model were accurate to within the voxel size (0.26 mm). The method highlighted subtle regions of morphological change that would likely be missed by conventional scalar metrics. Regions of subtle cartilage erosion were well quantified, and the method confidently discriminated OA and non-OA cohorts. 3D joint space maps correlated well with tibial slope and provide a new basis for principal component analysis of loadbearing injury risk. Runtime was less than 5 min (235×235×121 voxel subvolume in Matlab). Conclusion: A new method for joint space assessment was reported as a possible image-based biomarker of subtle articular change. The algorithm yields accurate quantitation of the joint in a manner that is robust against operator and patient setup variation. The method shows promising initial results in ongoing trials of CBCT in osteoarthritis

  12. A 3D Self-Consistent, Analytical Model for Longitudinal Plasma Oscillation in a Relativistic Electron Beam

    CERN Document Server

    Geloni, G; Schneidmiller, E; Yurkov, M V

    2004-01-01

    Longitudinal plasma oscillations are becoming a subject of great interest for XFEL physics in connection with LSC microbunching instability[1] and certain pump-probe synchronization schemes[2]. In the present paper we developed the first exact analytical treatment for longitudinal oscillations within an axis-symmetric, (relativistic) electron beam, which can be used as a primary standard for benchmarking space-charge simulation codes. Also, this result is per se of obvious theoretical relevance as it constitutes one of the few exact solutions for the evolution of charged particles under the action of self-interactions.

  13. Accuracy Assessment of Three-dimensional Surface Reconstructions of In vivo Teeth from Cone-beam Computed Tomography

    Science.gov (United States)

    Sang, Yan-Hui; Hu, Hong-Cheng; Lu, Song-He; Wu, Yu-Wei; Li, Wei-Ran; Tang, Zhi-Hui

    2016-01-01

    Background: The accuracy of three-dimensional (3D) reconstructions from cone-beam computed tomography (CBCT) has been particularly important in dentistry, which will affect the effectiveness of diagnosis, treatment plan, and outcome in clinical practice. The aims of this study were to assess the linear, volumetric, and geometric accuracy of 3D reconstructions from CBCT and to investigate the influence of voxel size and CBCT system on the reconstructions results. Methods: Fifty teeth from 18 orthodontic patients were assigned to three groups as NewTom VG 0.15 mm group (NewTom VG; voxel size: 0.15 mm; n = 17), NewTom VG 0.30 mm group (NewTom VG; voxel size: 0.30 mm; n = 16), and VATECH DCTPRO 0.30 mm group (VATECH DCTPRO; voxel size: 0.30 mm; n = 17). The 3D reconstruction models of the teeth were segmented from CBCT data manually using Mimics 18.0 (Materialise Dental, Leuven, Belgium), and the extracted teeth were scanned by 3Shape optical scanner (3Shape A/S, Denmark). Linear and volumetric deviations were separately assessed by comparing the length and volume of the 3D reconstruction model with physical measurement by paired t-test. Geometric deviations were assessed by the root mean square value of the imposed 3D reconstruction and optical models by one-sample t-test. To assess the influence of voxel size and CBCT system on 3D reconstruction, analysis of variance (ANOVA) was used (α = 0.05). Results: The linear, volumetric, and geometric deviations were −0.03 ± 0.48 mm, −5.4 ± 2.8%, and 0.117 ± 0.018 mm for NewTom VG 0.15 mm group; −0.45 ± 0.42 mm, −4.5 ± 3.4%, and 0.116 ± 0.014 mm for NewTom VG 0.30 mm group; and −0.93 ± 0.40 mm, −4.8 ± 5.1%, and 0.194 ± 0.117 mm for VATECH DCTPRO 0.30 mm group, respectively. There were statistically significant differences between groups in terms of linear measurement (P < 0.001), but no significant difference in terms of volumetric measurement (P = 0.774). No statistically significant difference were

  14. Comparison of radiation absorbed dose in target organs in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography and computed tomography

    Directory of Open Access Journals (Sweden)

    Panjnoush M.

    2009-12-01

    Full Text Available "nBackground and Aim: The objective of this study was to measure and compare the tissue absorbed dose in thyroid gland, salivary glands, eye and skin in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography (CBCT and computed tomography (CT."nMaterials and Methods: Thermoluminescent dosimeters (TLD were implanted in 14 sites of RANDO phantom to measure average tissue absorbed dose in thyroid gland, parotid glands, submandibular glands, sublingual gland, lenses and buccal skin. The Promax (PLANMECA, Helsinki, Finland unit was selected for Panoramic, conventional linear tomography and cone beam computed tomography examinations and spiral Hispeed/Fxi (General Electric,USA was selected for CT examination. The average tissue absorbed doses were used for the calculation of the equivalent and effective doses in each organ."nResults: The average absorbed dose for Panoramic ranged from 0.038 mGY (Buccal skin to 0.308 mGY (submandibular gland, linear tomography ranged from 0.048 mGY (Lens to 0.510 mGY (submandibular gland,CBCT ranged from 0.322 mGY (thyroid glad to 1.144 mGY (Parotid gland and in CT ranged from 2.495 mGY (sublingual gland to 3.424 mGY (submandibular gland. Total effective dose in CBCT is 5 times greater than Panoramic and 4 times greater than linear tomography, and in CT, 30 and 22 times greater than Panoramic and linear tomography, respectively. Total effective dose in CT is 6 times greater than CBCT."nConclusion: For obtaining 3-dimensional (3D information in maxillofacial region, CBCT delivers the lower dose than CT, and should be preferred over a medical CT imaging. Furthermore, during maxillofacial imaging, salivary glands receive the highest dose of radiation.

  15. Quality control and radioprotection in dental cone beam computed tomography - case study

    International Nuclear Information System (INIS)

    The radiological protection in medical and odontologic radiology follows The Order (Portaria) 453/98 of the Ministry of Health, which presents the minimum set of tests for the constancy X-ray equipment. These tests follow the procedures set forth in the Resolution no. 64, the National Agency for Sanitary Vigilance. This work aims to show a study on dental cone beam computed tomography (CBCT), evaluating the physical parameters that influence the performance and image quality and presenting the appropriate tests to this new system. The authors analyzed the tests specific for computed tomography (CT) of the Resolution no. 64, feasibility assessment of them and if their interpretations are compatible with CBCT. Once determined if testing is feasible, compare with those presented in the manual provided by the equipment manufacturer. The CT scanner used was the Mini-Cat Tomography Scanner Xoran Technologies of KAVO. In the study it was verified that four tests could be reproduced in CBCT: noise, accuracy and uniformity in the number of CT of water and spatial resolution. Considering experimental data, the methodology and tolerance of manufacturer for the first two tests were more appropriate. For the uniformity test of the CT number, we recommend using the phantom quality control. Three new tests were suggested to be made in the quality control of the Cone Beam: linearity, artifacts and alignment of the beam. (author)

  16. Scattering-compensated cone beam x-ray luminescence computed tomography

    Science.gov (United States)

    Gao, Peng; Rong, Junyan; Pu, Huangsheng; Liu, Wenlei; Liao, Qimei; Lu, Hongbing

    2016-04-01

    X-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging with x-ray. It is a dual modality imaging technique based on the principle that some nanophosphors can emit near-infrared (NIR) light when excited by x-rays. The x-ray scattering effect is a great issue in both CT and XLCT reconstruction. It has been shown that if the scattering effect compensated, the reconstruction average relative error can be reduced from 40% to 12% in the in the pencil beam XLCT. However, the scattering effect in the cone beam XLCT has not been proved. To verify and reduce the scattering effect, we proposed scattering-compensated cone beam x-ray luminescence computed tomography using an added leading to prevent the spare x-ray outside the irradiated phantom in order to decrease the scattering effect. Phantom experiments of two tubes filled with Y2O3:Eu3+ indicated that the proposed method could reduce the scattering by a degree of 30% and can reduce the location error from 1.8mm to 1.2mm. Hence, the proposed method was feasible to the general case and actual experiments and it is easy to implement.

  17. Investigation of saddle trajectories for cardiac CT imaging in cone-beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Jed D [Department of Radiology, University of Utah, Salt Lake City, UT 84112 (United States); Noo, Frederic [Department of Radiology, University of Utah, Salt Lake City, UT 84112 (United States); Kudo, H [Department of Computer Science, Graduate School of Systems and Information Engineering, University of Tsukuba (Japan)

    2004-06-07

    This paper investigates cone-beam tomography for a wide class of x-ray source trajectories called saddles. In particular, a mathematical analysis of the number of intersections between a saddle and an arbitrary plane is given. This analysis demonstrates that axially truncated cone-beam projections acquired along a saddle can be used for exact reconstruction at any point in a large volume. The reconstruction can be achieved either using a new algorithm presented herein or using a formula recently introduced by Katsevich (2003 Int. J. Math. Math. Sci. 21 1305-21). The shape of the reconstructed volume and the properties of saddles make saddles attractive for cardiac imaging. Three examples of saddles are presented with a discussion of implementation on devices similar to modern C-arm systems and multislice CT scanners. Reconstruction with one of these saddles has been tested using computer-simulated data, with and without truncation. The imaged phantom for the truncated data is a FORBILD head phantom (representing the heart) that has been modified and embedded inside the FORBILD thorax phantom. The non-truncated data were generated by excluding the thorax. The reconstructed images demonstrate the accuracy of the mathematical results.

  18. A novel image-domain-based cone-beam computed tomography enhancement algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Li Tianfang; Yang Yong; Heron, Dwight E; Huq, M Saiful, E-mail: lix@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232 (United States)

    2011-05-07

    Kilo-voltage (kV) cone-beam computed tomography (CBCT) plays an important role in image-guided radiotherapy. However, due to a large cone-beam angle, scatter effects significantly degrade the CBCT image quality and limit its clinical application. The goal of this study is to develop an image enhancement algorithm to reduce the low-frequency CBCT image artifacts, which are also called the bias field. The proposed algorithm is based on the hypothesis that image intensities of different types of materials in CBCT images are approximately globally uniform (in other words, a piecewise property). A maximum a posteriori probability framework was developed to estimate the bias field contribution from a given CBCT image. The performance of the proposed CBCT image enhancement method was tested using phantoms and clinical CBCT images. Compared to the original CBCT images, the corrected images using the proposed method achieved a more uniform intensity distribution within each tissue type and significantly reduced cupping and shading artifacts. In a head and a pelvic case, the proposed method reduced the Hounsfield unit (HU) errors within the region of interest from 300 HU to less than 60 HU. In a chest case, the HU errors were reduced from 460 HU to less than 110 HU. The proposed CBCT image enhancement algorithm demonstrated a promising result by the reduction of the scatter-induced low-frequency image artifacts commonly encountered in kV CBCT imaging.

  19. Quality control and radioprotection in dental cone beam computed tomography - case study

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Ligiane C.N.; Ferreira, Nadya M.P.D., E-mail: lnadya@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The radiological protection in medical and odontologic radiology follows The Order (Portaria) 453/98 of the Ministry of Health, which presents the minimum set of tests for the constancy X-ray equipment. These tests follow the procedures set forth in the Resolution no. 64, the National Agency for Sanitary Vigilance. This work aims to show a study on dental cone beam computed tomography (CBCT), evaluating the physical parameters that influence the performance and image quality and presenting the appropriate tests to this new system. The authors analyzed the tests specific for computed tomography (CT) of the Resolution no. 64, feasibility assessment of them and if their interpretations are compatible with CBCT. Once determined if testing is feasible, compare with those presented in the manual provided by the equipment manufacturer. The CT scanner used was the Mini-Cat Tomography Scanner Xoran Technologies of KAVO. In the study it was verified that four tests could be reproduced in CBCT: noise, accuracy and uniformity in the number of CT of water and spatial resolution. Considering experimental data, the methodology and tolerance of manufacturer for the first two tests were more appropriate. For the uniformity test of the CT number, we recommend using the phantom quality control. Three new tests were suggested to be made in the quality control of the Cone Beam: linearity, artifacts and alignment of the beam. (author)

  20. Assessment of simulated mandibular condyle bone lesions by cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Alexandre Perez; Perrella, Andreia; Arita, Emiko Saito; Pereira, Marlene Fenyo Soeiro de Matos; Cavalcanti, Marcelo de Gusmao Paraiso, E-mail: alexperez34@gmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Odontologia. Dept. de Estomatologia

    2010-10-15

    There are many limitations to image acquisition, using conventional radiography, of the temporomandibular joint (TMJ) region. The Computed Tomography (CT) scan is a better option, due to its higher accuracy, for purposes of diagnosis, surgical planning and treatment of bone injuries. The aim of the present study was to analyze two protocols of cone beam computed tomography for the evaluation of simulated mandibular condyle bone lesions. Spherical lesions were simulated in 30 dry mandibular condyles, using dentist drills and drill bits sizes 1, 3 and 6. Each of the mandibular condyles was submitted to cone beam computed tomography (CBCT) using two protocols: axial, coronal and sagittal multiplanar reconstruction (MPR); and sagittal plus coronal slices throughout the longitudinal axis of the mandibular condyles. For these protocols, 2 observers analyzed the CBCT images independently, regarding the presence or not of injuries. Only one of the observers, however, performed on 2 different occasions. The results were compared to the gold standard, evaluating the percentage of agreement, degree of accuracy of CBCT protocols and observers' examination. The z test was used for the statistical analysis. The results showed there were no statistically significant differences between the 2 protocols. There was greater difficulty in the assessment of small-size simulated lesions (drill no.1). From the results of this study, it can be concluded that CBCT is an accurate tool for analyzing mandibular condyle bone lesions, with the MPR protocol showing slightly better results than the sagittal plus coronal slices throughout the longitudinal axis. (author)

  1. Planar cone-beam computed tomography with a flat-panel detector

    Science.gov (United States)

    Kim, S. H.; Kim, D. W.; Youn, H.; Kim, D.; Kam, S.; Jeon, H.; Kim, H. K.

    2015-12-01

    For a dedicated x-ray inspection of printed-circuit boards (PCBs), a bench-top planar cone-beam computed tomography (pCT) system with a flat-panel detector has been built in the laboratory. The system adopts the tomosynthesis technique that can produce cross-sectional images parallel to the axis of rotation for a limited angular range. For the optimal operation of the system and further improvement in the next design, we have evaluated imaging performances, such as modulation-transfer function, noise-power spectrum, and noise-equivalent number of quanta. The performances are comparatively evaluated with the coventional cone-beam CT (CBCT) acquisition for various scanning angular ranges, applied tube voltages, and geometrical magnification factors. The pCT scan shows a poorer noise performance than the conventional CBCT scan because of less number of projection views used for reconstruction. However, the pCT shows a better spatial-resolution performance than the CBCT. Because the image noise can be compensated by an elevated exposure level during scanning, the pCT can be a useful modality for the PCB inspection that requires higher spatial-resolution performance.

  2. Assessment of simulated mandibular condyle bone lesions by cone beam computed tomography

    Directory of Open Access Journals (Sweden)

    Alexandre Perez Marques

    2010-12-01

    Full Text Available There are many limitations to image acquisition, using conventional radiography, of the temporomandibular joint (TMJ region. The Computed Tomography (CT scan is a better option, due to its higher accuracy, for purposes of diagnosis, surgical planning and treatment of bone injuries. The aim of the present study was to analyze two protocols of cone beam computed tomography for the evaluation of simulated mandibular condyle bone lesions. Spherical lesions were simulated in 30 dry mandibular condyles, using dentist drills and drill bits sizes 1, 3 and 6. Each of the mandibular condyles was submitted to cone beam computed tomography (CBCT using two protocols: 1 axial, coronal and sagittal multiplanar reconstruction (MPR; and 2 sagittal plus coronal slices throughout the longitudinal axis of the mandibular condyles. For these protocols, 2 observers analyzed the CBCT images independently, regarding the presence or not of injuries. Only one of the observers, however, performed on 2 different occasions. The results were compared to the gold standard, evaluating the percentage of agreement, degree of accuracy of CBCT protocols and observers' examination. The z test was used for the statistical analysis. The results showed there were no statistically significant differences between the 2 protocols. There was greater difficulty in the assessment of small-size simulated lesions (drill # 1. From the results of this study, it can be concluded that CBCT is an accurate tool for analyzing mandibular condyle bone lesions, with the MPR protocol showing slightly better results than the sagittal plus coronal slices throughout the longitudinal axis.

  3. Variation of patient imaging doses with scanning parameters for linac-integrated kilovoltage cone beam CT.

    Science.gov (United States)

    Liao, Xiongfei; Wang, Yunlai; Lang, Jinyi; Wang, Pei; Li, Jie; Ge, Ruigang; Yang, Jack

    2015-01-01

    To evaluate the Elekta kilovoltage CBCT doses and the associated technical protocols with patient dosimetry estimation. Image guidance technique with cone-beam CT (CBCT) in radiation oncology on a daily basis can deliver a significant dose to the patient. To evaluate the patient dose from LINAC-integrated kV cone beam CT imaging in image-guided radiotherapy. CT dose index (CTDI) were measured with PTW TM30009 CT ion chamber in air, in head phantom and body phantom, respectively; with different combinations of tube voltage, current, exposure time per frame, collimator and gantry rotation range. Dose length products (DLP) were subsequently calculated to account for volume integration effects. The CTDI and DLP were also compared to AcQSim™ simulator CT for routine clinical protocols. Both CTDIair and CTDIw depended quadratically on the voltage, while linearly on milliampere x seconds (mAs) settings. It was shown that CTDIw and DLP had very close relationship with the collimator settings and the gantry rotation ranges. Normalized CTDIw for Elekta XVI™ CBCT was lower than that of ACQSim simulator CT owing to its pulsed radiation output characteristics. CTDIw can be used to assess the patient dose in CBCT due to its simplicity for measurement and reproducibility. Regular measurement should be performed in QA & QC program. Optimal image parameters should be chosen to reduce patient dose during CBCT. PMID:26405932

  4. Direct aneurysm sac catheterization and embolization of an enlarging internal iliac aneurysm using cone-beam CT

    Science.gov (United States)

    Merchant, Monish; Shah, Rohan; Resnick, Scott

    2015-01-01

    Since cone-beam computed tomography (CT) has been adapted for use with a C-arm system it has brought volumetric CT capabilities in the interventional suite. Although cone-beam CT image resolution is far inferior to that generated by traditional CT scanners, the system offers the ability to place an access needle into position under tomographic guidance and use the access to immediately begin a fluoroscopic procedure without moving the patient. We describe a case of a “jailed” enlarging internal iliac artery aneurysm secondary to abdominal aortic aneurysm repair, in which direct percutaneous puncture of the internal iliac artery aneurysm sac was performed under cone-beam CT guidance. PMID:25858522

  5. Cone beam computed tomography (CBCT) as a tool for the analysis of nonhuman skeletal remains in a medico-legal setting.

    Science.gov (United States)

    Lucena, Joaquin; Mora, Esther; Rodriguez, Lucia; Muñoz, Mariela; Cantin, Mario G; Fonseca, Gabriel M

    2016-09-01

    To confirm the nature and forensic significance of questioned skeletal material submitted a medico-legal setting is a relatively common procedure, although not without difficulties when the remains are fragmented or burned. Different methodologies have been described for this purpose, many of them invasive, time and money consuming or dependent on the availability of the analytical instrument. We present a case in which skeletal material with unusual conditions of preservation and curious discovery was sent to a medico-legal setting to determine its human/nonhuman origin. A combined strategy of imagenological procedures (macroscopic, radiographic and cone beam computed tomography - CBCT-technology) was performed as non-invasive and rapid methods to assess the nonhuman nature of the material, specifically of pig (Sus scrofa) origin. This hypothesis was later confirmed by DNA analysis. CBCT data sets provide accurate three-dimensional reconstructions, which demonstrate its reliable use as a forensic tool.

  6. Breathing Motion Analysis Based on Cone Beam CT Images%基于Cone Beam CT图像的呼吸运动分析

    Institute of Scientific and Technical Information of China (English)

    白相志; 周付根

    2008-01-01

    呼吸运动是有一定规律性的运动,传统呼吸运动模型用公式描述,不能准确反映不同病人的特点或同一病人不同时期的特点,无法满足实时准确分析的需要.为此,我们提出了一种通过跟踪病人自由呼吸状态下所采集的Cone Beam CT图像序列中的横隔膜的运动来建立病人呼吸运动模型的方法.该方法建立的模型与传统的呼吸运动理论模型非常相似,证明了它是可行且有效的,同时该方法更能实时准确地反映病人的呼吸运动规律,具有很高的临床实用价值.

  7. Capabilities of Cone-Beam Computed Tomography in the Assessment of the Structure of Wrist and Hand Bones

    OpenAIRE

    А.Yu. Vasiliev, PhD, MD; N.N. Blinov, PhD, MD; Е.A. Egorova, PhD, MD; D.V. Makarova; E.G. Gorlycheva; M.O. Dutova

    2013-01-01

    An analysis of the capabilities of cone-beam computed tomography (CBCT) in the assessment of the form and structure of wrist and hand bones was the aim of the research. Cone-beam CT of wrist and hand was conducted in a group of voluntary patients, which included 40 members aged 22- 68 years. Magnetic resonance imaging (МRI) was carried out in 80.0% (n = 32) of cases, multislice computed tomography (MSCT) in 40.0% (n=16) of cases. In 62.5 % (n=25) of cases, digital microfocus radiography on X-...

  8. A mixed 3D-Shell analytical model for the prediction of sound transmission through sandwich cylinders

    Science.gov (United States)

    Magniez, Julien; Chazot, Jean-Daniel; Hamdi, Mohamed Ali; Troclet, Bernard

    2014-09-01

    The sound transmission through an infinite multilayer cylinder composed of orthotropic skins and an isotropic polymer core is calculated analytically. The motions of the two thin orthotropic skins are described with the first-order shear deformation theory while the isotropic core is modeled with the three-dimensional elasticity theory. The polymer core transfer matrix relating the displacements and the stresses at the two common interfaces between the core and the skins is first calculated. The coupling of the two skins is then made using the modal transfer matrix of the core, leading to the global dynamic equilibrium of the multilayer cylinder. The sound Transmission Loss (TL) of the cylinder excited by an acoustic plane wave is finally calculated. Our results are compared with results published recently in the literature. Excellent agreement is observed for thin cores where the three layers vibrate in phase in the radial direction. The usefulness of the three-dimensional model is demonstrated for a thick and soft core in the higher frequency domain where the skins are vibrating out of phase with a relative displacement in the radial direction. Finally, a parametric study is conducted to demonstrate the influence of the damping of each layer and some observations are made on the shear and compressional strain energies of each layer.

  9. Analytical investigation on 3D non-Boussinesq mountain wave drag for wind profiles with vertical variations

    Institute of Scientific and Technical Information of China (English)

    TANG Jin-yun; TANG Jie; WANG Yuan

    2007-01-01

    A new analytical model was developed to predict the gravity wave drag (GWD) induced by an isolated 3-dimensional mountain, over which a stratified, nonrotating non-Boussinesq sheared flow is impinged. The model is confined to small amplitude motion and assumes the ambient velocity varying slowly with height. The modified Taylor-Goldstein equation with variable coefficients is solved with a Wentzel-KramersBrillouin (WKB) approximation, formally valid at high Richardson numbers. With this WKB solution, generic formulae of second order accuracy, for the GWD and surface pressure perturbation (both for hydrostatic and non-hydrostatic flow) are presented, enabling a rigorous treatment on the effects by vertical variations in wind profiles. In an ideal test to the circular bell-shaped mountain, it was found that when the wind is linearly sheared,that the GWD decreases as the Richardson number decreases. However, the GWD for a forward sheared wind (wind increases with height) decreases always faster than that for the backward sheared wind (wind deceases with height). This difference is evident whenever the model is hydrostatic or not.

  10. SU-E-I-10: Investigation On Detectability of a Small Target for Different Slice Direction of a Volumetric Cone Beam CT Image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C; Han, M; Baek, J [Yonsei University, Incheon (Korea, Republic of)

    2015-06-15

    Purpose: To investigate the detectability of a small target for different slice direction of a volumetric cone beam CT image and its impact on dose reduction. Methods: Analytic projection data of a sphere object (1 mm diameter, 0.2/cm attenuation coefficient) were generated and reconstructed by FDK algorithm. In this work, we compared the detectability of the small target from four different backprojection Methods: hanning weighted ramp filter with linear interpolation (RECON 1), hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON 3), and ramp filter with Fourier interpolation (RECON4), respectively. For noise simulation, 200 photons per measurement were used, and the noise only data were reconstructed using FDK algorithm. For each reconstructed volume, axial and coronal slice were extracted and detection-SNR was calculated using channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels. Results: Detection-SNR of coronal images varies for different backprojection methods, while axial images have a similar detection-SNR. Detection-SNR{sup 2} ratios of coronal and axial images in RECON1 and RECON2 are 1.33 and 1.15, implying that the coronal image has a better detectability than axial image. In other words, using coronal slices for the small target detection can reduce the patient dose about 33% and 15% compared to using axial slices in RECON 1 and RECON 2. Conclusion: In this work, we investigated slice direction dependent detectability of a volumetric cone beam CT image. RECON 1 and RECON 2 produced the highest detection-SNR, with better detectability in coronal slices. These results indicate that it is more beneficial to use coronal slice to improve detectability of a small target in a volumetric cone beam CT image. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Program (NIPA-2014-H0201

  11. Assessment of the Anatomical Position and Shape of Mental Foramen in the Cone Beam Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    A. Eskandarlo

    2012-07-01

    Full Text Available Introduction & Objective: The mental foramen is a part of lower jaw which has neurovascular bundles and also is important in biology. 3D imaging of this area by cone beam computed tomography (CBCT before surgery can prevent some problems. This study aims to evaluate the anatomic position and geometrical shape of the mental foramen by CBCT imagesMaterials & Methods: In this research, the CBCT images (by NewTom and Planmeca promax 3D set of 85 patients referred to dentistry school clinic or other clinics in Hamadan city were studied. These patients did not have their first and second premolar teeth extracted in both right and left sides. The geometrical shape of mental foramen, the canal angle connecting to mental foramen compared to the buccal plate of lower jaw, distance from the lower border of mental foramen to the lower border of lower jaw, position of mental foramen relating to the root of adjacent tooth and the incidence of accessory mental foramen were studied.Results: The means of canal angle connecting to mental foramen in the right side in men and women were 123.3 and 130.1 and in the left side were 123.8 and 133.7, respectively. The mean distance from the lower border of mental foramen to the lower border of lower jaw in the right side in men and women were: 12.4 and 13.3 mm and in the left side were: 12.7 and 13.6 mm, respectively. Also, there is a meaningful statistical relation between gender and the angle of canal of mental foramen, regarding to the buccal plate in both sides.Conclusion: Regarding to the variations in the position and shape of mental foramen and the angle connecting to the mental foramen related to the buccal plate and accessory mental foramen, investigation of CBCT images before placement of implants is necessary.(Sci J Hamadan Univ Med Sci 2012;19(2:39-43

  12. Analytic reconstruction approach for parallel translational computed tomography.

    Science.gov (United States)

    Kong, Huihua; Yu, Hengyong

    2015-01-01

    To develop low-cost and low-dose computed tomography (CT) scanners for developing countries, recently a parallel translational computed tomography (PTCT) is proposed, and the source and detector are translated oppositely with respect to the imaging object without a slip-ring. In this paper, we develop an analytic filtered-backprojection (FBP)-type reconstruction algorithm for two dimensional (2D) fan-beam PTCT and extend it to three dimensional (3D) cone-beam geometry in a Feldkamp-type framework. Particularly, a weighting function is constructed to deal with data redundancy for multiple translations PTCT to eliminate image artifacts. Extensive numerical simulations are performed to validate and evaluate the proposed analytic reconstruction algorithms, and the results confirm their correctness and merits. PMID:25882732

  13. Development and Clinical Evaluation of a Three-Dimensional Cone-Beam Computed Tomography Estimation Method Using a Deformation Field Map

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Lei, E-mail: lren1@hfhs.org [Department of Radiation Oncology, Henry Ford Health System, Detroit, MI (United States); Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Health System, Detroit, MI (United States); Zhang Junan [Department of Radiation Oncology, Oregon Health and Science University, Portland, OR (United States); Jin Jianyue [Department of Radiation Oncology, Henry Ford Health System, Detroit, MI (United States); Wu, Q. Jackie; Yan Hui; Brizel, David M.; Lee, W. Robert [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Movsas, Benjamin [Department of Radiation Oncology, Henry Ford Health System, Detroit, MI (United States); Yin Fangfang [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States)

    2012-04-01

    Purpose: To develop a three-dimensional (3D) cone-beam computed tomography (CBCT) estimation method using a deformation field map, and to evaluate and optimize the efficiency and accuracy of the method for use in the clinical setting. Methods and Materials: We propose a method to estimate patient CBCT images using prior information and a deformation model. Patients' previous CBCT data are used as the prior information, and the new CBCT volume to be estimated is considered as a deformation of the prior image volume. The deformation field map is solved by minimizing deformation energy and maintaining new projection data fidelity using a nonlinear conjugate gradient method. This method was implemented in 3D form using hardware acceleration and multi-resolution scheme, and it was evaluated for different scan angles, projection numbers, and scan directions using liver, lung, and prostate cancer patient data. The accuracy of the estimation was evaluated by comparing the organ volume difference and the similarity between estimated CBCT and the CBCT reconstructed from fully sampled projections. Results: Results showed that scan direction and number of projections do not have significant effects on the CBCT estimation accuracy. The total scan angle is the dominant factor affecting the accuracy of the CBCT estimation algorithm. Larger scan angles yield better estimation accuracy than smaller scan angles. Lung cancer patient data showed that the estimation error of the 3D lung tumor volume was reduced from 13.3% to 4.3% when the scan angle was increased from 60 Degree-Sign to 360 Degree-Sign using 57 projections. Conclusions: The proposed estimation method is applicable for 3D DTS, 3D CBCT, four-dimensional CBCT, and four-dimensional DTS image estimation. This method has the potential for significantly reducing the imaging dose and improving the image quality by removing the organ distortion artifacts and streak artifacts shown in images reconstructed by the conventional

  14. Accessory mental foramen: A rare anatomical variation detected by cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Marianna Guanaes Gomes; De Faro Valverde, Ludmila; Vidal, Manuela Torres Andion; Crusoe-Rebello, Ieda Margarida [Dept. of Oral Radiology, School of Dentistry, Federal University of Bahia, Salvador (Brazil)

    2015-03-15

    The mental foramen is a bilateral opening in the vestibular portion of the mandible through which nerve endings, such as the mental nerve, emerge. In general, the mental foramen is located between the lower premolars. This region is a common area for the placement of dental implants. It is very important to identify anatomical variations in presurgical imaging exams since damage to neurovascular bundles may have a direct influence on treatment success. In the hemimandible, the mental foramen normally appears as a single structure, but there are some rare reports on the presence and number of anatomical variations; these variations may include accessory foramina. The present report describes the presence of accessory mental foramina in the right mandible, as detected by cone-beam computed tomography before dental implant placement.

  15. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    CERN Document Server

    Jones, Bernard L; Miften, Moyed

    2015-01-01

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. Resu...

  16. Establishment of reference mandibular plane for anterior alveolar morphology evaluation using cone beam computed tomography

    Institute of Scientific and Technical Information of China (English)

    Rong-yang WANG; Min HAN; Hong LIU; Chun-ling WANG; Hong-hong XIAN; Lei ZHANG; Shi-jie ZHANG; Dong-xu LIU

    2012-01-01

    To propose a method of establishing the reference mandibular plane (MP),which could be reestablished according to the coordinates of the reference points,and then facilitate the assessment of anterior alveolar morphology using cone beam computed tomography (CBCT),sixty patients with bimaxillary protrusion were randomly selected and CBCT scans were taken.The CBCT scans were transferred to Materialism's interactive medical image control system 10.01 (MIMICS 10.01),and three dimensional models of the entire jaws were constructed.Reference points determining the reference MP were positioned in the coronal,axial,sagittal windows,and the points were exactly located by recording their coordinates in the interfaces of software.The reference MP provided high intra-observer reliability (Pearson's r 0.992 to 0.999),and inter-observer reliability (intra-class correlation coefficients (ICCs)0.996 to 0.999).

  17. Cone Beam CT在口腔种植外科中的应用

    Institute of Scientific and Technical Information of China (English)

    陈宁

    2011-01-01

    Cone beam CT技术已成为口腔颌面部疾病诊断和临床研究的重要方法,与常规的平片以及口腔全景片相比有着许多明显的优势。在口腔种植外科的应用中能够提供精确的、定量的、三维图像信息,这对于解剖学研究、临床评价、术前诊断和随访观察是非常重要的,可以有效地提高种植的成功率,避免并发症。

  18. Cone Beam Computed Tomography (CBCT Features of a Rare Fibro-Osseous Lesion: A Case Report

    Directory of Open Access Journals (Sweden)

    Mahrokh Imanimoghaddam

    2013-03-01

    Full Text Available Cone beam computed tomography is a useful technique for imaging the craniofacial lesions. It produces more realistic images that facilitate interpretation. Juvenile ossifying fibroma (JOF is a rare and benign fibro-osseous neoplasm that arises within the craniofacial bones, especially in the maxilla. Mandibular lesions can be seen in 10% of the cases.In both jaws, it has a predilection for the premolar and molar regions (it is mostly seen in premolar and molar regions. Radiographically, it can be present as a radiolucent, mixed or radiopaque lesion. Radiodensity varies from purely radiolucent masses to mixed densities with prominent radiopacity as the lesion matures.This case report highlights a JOF with large foci of odontome-like radiopacities in a 6-year-old boy's mandibular anterior region. The location of the lesion in the anterior mandible and comparatively rapid formation of large odontome-like radiopaque foci at this early agehas made it a rare entity.

  19. Cone Beam Computed Tomography (CBCT) in the Field of Interventional Oncology of the Liver

    Energy Technology Data Exchange (ETDEWEB)

    Bapst, Blanche, E-mail: blanchebapst@hotmail.com; Lagadec, Matthieu, E-mail: matthieu.lagadec@bjn.aphp.fr [Beaujon Hospital, University Hospitals Paris Nord Val de Seine, Beaujon, Department of Radiology (France); Breguet, Romain, E-mail: romain.breguet@hcuge.ch [University Hospital of Geneva (Switzerland); Vilgrain, Valérie, E-mail: Valerie.vilgrain@bjn.aphp.fr; Ronot, Maxime, E-mail: maxime.ronot@bjn.aphp.fr [Beaujon Hospital, University Hospitals Paris Nord Val de Seine, Beaujon, Department of Radiology (France)

    2016-01-15

    Cone beam computed tomography (CBCT) is an imaging modality that provides computed tomographic images using a rotational C-arm equipped with a flat panel detector as part of the Angiography suite. The aim of this technique is to provide additional information to conventional 2D imaging to improve the performance of interventional liver oncology procedures (intraarterial treatments such as chemoembolization or selective internal radiation therapy, and percutaneous tumor ablation). CBCT provides accurate tumor detection and targeting, periprocedural guidance, and post-procedural evaluation of treatment success. This technique can be performed during intraarterial or intravenous contrast agent administration with various acquisition protocols to highlight liver tumors, liver vessels, or the liver parenchyma. The purpose of this review is to present an extensive overview of published data on CBCT in interventional oncology of the liver, for both percutaneous ablation and intraarterial procedures.

  20. Robust scatter correction method for cone-beam CT using an interlacing-slit plate

    CERN Document Server

    Huang, Kuidong; Zhang, Dinghua; Zhang, Hua; Shi, Wenlong

    2015-01-01

    Cone-beam computed tomography (CBCT) has been widely used in medical imaging and industrial nondestructive testing, but the presence of scattered radiation will cause significant reduction of image quality. In this article, a robust scatter correction method for CBCT using an interlacing-slit plate (ISP) is carried out for convenient practice. Firstly, a Gaussian filtering method is proposed to compensate the missing data of the inner scatter image, and simultaneously avoid too-large values of calculated inner scatter and smooth the inner scatter field. Secondly, an interlacing-slit scan without detector gain correction is carried out to enhance the practicality and convenience of the scatter correction method. Finally, a denoising step for scatter-corrected projection images is added in the process flow to control the noise amplification. The experimental results show that the improved method can not only make the scatter correction more robust and convenient, but also achieve a good quality of scatter-corre...

  1. Scattering correction based on regularization de-convolution for Cone-Beam CT

    CERN Document Server

    Xie, Shi-peng

    2016-01-01

    In Cone-Beam CT (CBCT) imaging systems, the scattering phenomenon has a significant impact on the reconstructed image and is a long-lasting research topic on CBCT. In this paper, we propose a simple, novel and fast approach for mitigating scatter artifacts and increasing the image contrast in CBCT, belonging to the category of convolution-based method in which the projected data is de-convolved with a convolution kernel. A key step in this method is how to determine the convolution kernel. Compared with existing methods, the estimation of convolution kernel is based on bi-l1-l2-norm regularization imposed on both the intermediate the known scatter contaminated projection images and the convolution kernel. Our approach can reduce the scatter artifacts from 12.930 to 2.133.

  2. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT

    Directory of Open Access Journals (Sweden)

    Jintao Zhao

    2015-09-01

    Full Text Available The quality of Computed Tomography (CT images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration.

  3. Anatomical Variation of the Maxillary Sinus in Cone Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Marcelo Lupion Poleti

    2014-01-01

    Full Text Available Purpose. The aim of this paper is to report a case in which the cone beam computed tomography (CBCT was important for the confirmation of the presence of maxillary sinus septum and, therefore, the absence of a suspected pathologic process. Case Description. A 27-year-old male patient was referred for the assessment of a panoramic radiograph displaying a radiolucent area with radiopaque border located in the apical region of the left upper premolars. The provisional diagnosis was either anatomical variation of the maxillary sinuses or a bony lesion. Conclusion. The CBCT was important for an accurate assessment and further confirmation of the presence of maxillary septum, avoiding unnecessary surgical explorations.

  4. A Model-Based Scatter Artifacts Correction for Cone Beam CT

    CERN Document Server

    Zhao, Wei; Zhu, Jun; Wang, Luyao; Xing, Lei

    2016-01-01

    The purpose of this work is to provide a fast and accurate scatter artifacts correction algorithm for cone beam CT (CBCT) imaging. The method starts with an estimation of coarse scatter profiles for a set of CBCT data in either image domain or projection domain. A denoising algorithm designed specifically for Poisson signals is then applied to derive the final scatter distribution. Qualitative and quantitative evaluations using thorax and abdomen phantoms with Monte Carlo (MC) simulations, experimental Catphan phantom data, and in vivo human data acquired for a clinical image guided radiation therapy were performed. Results show that the proposed algorithm can significantly reduce scatter artifacts and recover the correct HU in either projection domain or image domain. For the MC thorax phantom study, four components segmentation yield the best results, while the results of three components segmentation are still acceptable. For the Catphan phantom data, the mean value over all pixels in the residual image is...

  5. Simulation of Cone Beam CT System Based on Monte Carlo Method

    CERN Document Server

    Wang, Yu; Cao, Ruifen; Hu, Liqin; Li, Bingbing

    2014-01-01

    Adaptive Radiation Therapy (ART) was developed based on Image-guided Radiation Therapy (IGRT) and it is the trend of photon radiation therapy. To get a better use of Cone Beam CT (CBCT) images for ART, the CBCT system model was established based on Monte Carlo program and validated against the measurement. The BEAMnrc program was adopted to the KV x-ray tube. Both IOURCE-13 and ISOURCE-24 were chosen to simulate the path of beam particles. The measured Percentage Depth Dose (PDD) and lateral dose profiles under 1cm water were compared with the dose calculated by DOSXYZnrc program. The calculated PDD was better than 1% within the depth of 10cm. More than 85% points of calculated lateral dose profiles was within 2%. The correct CBCT system model helps to improve CBCT image quality for dose verification in ART and assess the CBCT image concomitant dose risk.

  6. Fast Scatter Artifacts Correction for Cone-Beam CT without System Modification and Repeat Scan

    CERN Document Server

    Zhao, Wei; Wang, Luyao

    2015-01-01

    We provide a fast and accurate scatter artifacts correction algorithm for cone beam CT (CBCT) imaging. The method starts with an estimation of coarse scatter profile for a set of CBCT images. A total-variation denoising algorithm designed specifically for Poisson signal is then applied to derive the final scatter distribution. Qualitatively and quantitatively evaluations using Monte Carlo (MC) simulations, experimental CBCT phantom data, and \\emph{in vivo} human data acquired for a clinical image guided radiation therapy were performed. Results show that the proposed algorithm can significantly reduce scatter artifacts and recover the correct HU within either projection domain or image domain. Further test shows the method is robust with respect to segmentation procedure.

  7. Cone Beam Computed Tomography Findings in Calcifying Cystic Odontogenic Tumor Associated with Odontome: A Case Report

    Directory of Open Access Journals (Sweden)

    Tushar Phulambrikar

    2015-12-01

    Full Text Available The calcifying cystic odontogenic tumor (CCOT is a rare cystic odontogenic neoplasm frequently found in association with odontome. This report documents a case of CCOT associated with an odontome arising in the anterior maxilla in a 28-year-old man. Conventional radiographs showed internal calcification within the lesion but were unable to visualize its relation with the adjacent structures and its accurate extent. In this case cone beam computed tomography (CBCT could accurately reveal the extent and the internal structure of the lesion which aided the presumptive diagnosis of the lesion as CCOT. This advanced imaging technique proved to be extremely useful in the radiographic assessment and management of this neoplasm of the maxilla.

  8. Unilateral Fusion of Maxillary Lateral Incisor: Diagnosis Using Cone Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Iury Oliveira Castro

    2014-01-01

    Full Text Available Objective. The objective of this paper is to report a dental fusion case focusing on clinical and radiographic features for the diagnosis. Method. To report a case of right maxillary lateral incisor fusion and a supernumerary tooth, the anatomy of the root canal and dental united portion were assessed by cone beam computed tomography (CBCT. Results. The clinical examination showed dental juxtaposition with the absence of interdental papilla and esthetic impairment in the right maxillary lateral incisor region. The periapical radiography did not provide enough information for the differential diagnosis due to the inherent limitations of this technique. CBCT confirmed the presence of tooth fusion. Conclusion. CBCT examination supports the diagnosis and provides both the identification of changes in tooth development and the visualization of their extent and limits.

  9. Maxillary first molar with seven root canals diagnosed with cone-beam computed tomography scanning

    Directory of Open Access Journals (Sweden)

    Anil Munavalli

    2015-01-01

    Full Text Available Nonsurgical endodontic therapy of a right maxillary first molar with three roots and seven root canals. This unusual morphology was diagnosed using a dental operating microscope (DOM and confirmed with the help of cone-beam computed tomography (CBCT images. CBCT axial images showed that both the palatal and distobuccal root have a Vertucci type II canal pattern, whereas the mesiobuccal root showed a Sert and Bayirli type XVIII canal configuration. The use of a DOM and CBCT imaging in endodontically challenging cases can facilitate a better understanding of the complex root canal anatomy, which ultimately enables the clinician to explore the root canal system and clean, shape, and obturate it more efficiently.

  10. Cone Beam Computed Tomographic Evaluation and Diagnosis of Mandibular First Molar with 6 Canals

    Directory of Open Access Journals (Sweden)

    Shiraz Pasha

    2016-01-01

    Full Text Available Root canal treatment of tooth with aberrant root canal morphology is very challenging. So thorough knowledge of both the external and internal anatomy of teeth is an important aspect of root canal treatment. With the advancement in technology it is imperative to use modern diagnostic tools such as magnification devices, CBCT, microscopes, and RVG to confirm the presence of these aberrant configurations. However, in everyday endodontic practice, clinicians have to treat teeth with atypical configurations for root canal treatment to be successful. This case report presents the management of a mandibular first molar with six root canals, four in mesial and two in distal root, and also emphasizes the use and importance of Cone Beam Computed Tomography (CBCT as a diagnostic tool in endodontics.

  11. Cone Beam Computed Tomography (CBCT) in the Field of Interventional Oncology of the Liver.

    Science.gov (United States)

    Bapst, Blanche; Lagadec, Matthieu; Breguet, Romain; Vilgrain, Valérie; Ronot, Maxime

    2016-01-01

    Cone beam computed tomography (CBCT) is an imaging modality that provides computed tomographic images using a rotational C-arm equipped with a flat panel detector as part of the Angiography suite. The aim of this technique is to provide additional information to conventional 2D imaging to improve the performance of interventional liver oncology procedures (intraarterial treatments such as chemoembolization or selective internal radiation therapy, and percutaneous tumor ablation). CBCT provides accurate tumor detection and targeting, periprocedural guidance, and post-procedural evaluation of treatment success. This technique can be performed during intraarterial or intravenous contrast agent administration with various acquisition protocols to highlight liver tumors, liver vessels, or the liver parenchyma. The purpose of this review is to present an extensive overview of published data on CBCT in interventional oncology of the liver, for both percutaneous ablation and intraarterial procedures. PMID:26178776

  12. Radiochromic film thickness correction with convergent cone- beam optical CT scanner

    International Nuclear Information System (INIS)

    A cone-beam optical computed tomography (CT) scanner was modified by replacing the diffuse planar yellow light emitting diode (LED) source with violet and red LEDs and a large Fresnel lens. The narrow band sources provided transmission images of radiochromic EBT2 film at 420 and 633 nm, with air as a reference. The dose image was not detectable with the violet source. This demonstrated spectral independence of the two images. Assuming attenuation at 420 nm was dominated by absorption from yellow dye in the active film layer allowed a relative thickness image to be calculated. By scaling the 633 nm optical density image for relative thickness, non-uniformities in the recorded dose distribution due to film thickness variations, were removed

  13. Cone Beam Computed Tomography (CBCT) in the Field of Interventional Oncology of the Liver.

    Science.gov (United States)

    Bapst, Blanche; Lagadec, Matthieu; Breguet, Romain; Vilgrain, Valérie; Ronot, Maxime

    2016-01-01

    Cone beam computed tomography (CBCT) is an imaging modality that provides computed tomographic images using a rotational C-arm equipped with a flat panel detector as part of the Angiography suite. The aim of this technique is to provide additional information to conventional 2D imaging to improve the performance of interventional liver oncology procedures (intraarterial treatments such as chemoembolization or selective internal radiation therapy, and percutaneous tumor ablation). CBCT provides accurate tumor detection and targeting, periprocedural guidance, and post-procedural evaluation of treatment success. This technique can be performed during intraarterial or intravenous contrast agent administration with various acquisition protocols to highlight liver tumors, liver vessels, or the liver parenchyma. The purpose of this review is to present an extensive overview of published data on CBCT in interventional oncology of the liver, for both percutaneous ablation and intraarterial procedures.

  14. Dedicated scanner for laboratory investigations on cone-beam CT/SPECT imaging of the breast

    International Nuclear Information System (INIS)

    We describe the design, realization and basic tests of a prototype Cone-Beam Breast Computed Tomography (CBBCT) scanner, combined with a SPECT head consisting of a compact pinhole gamma camera based on a photon counting CdTe hybrid pixel detector. The instrument features a 40 μm focal spot X-ray tube, a 50 μm pitch flat panel detector and a 1-mm-thick, 55 μm pitch CdTe pixel detector. Preliminary imaging tests of the separate CT and gamma-ray units are presented showing a resolution in CT of 3.2 mm-1 at a radial distance of 50 mm from the rotation axis and that the 5 and 8 mm hot masses (99mTc labeled with a 15:1 activity ratio with respect to the background) can be detected in planar gamma-ray imaging with a contrast-to-noise ratio of about 4.

  15. Impact of cone-beam computed tomography on implant planning and on prediction of implant size

    International Nuclear Information System (INIS)

    The aim was to investigate the impact of cone-beam computed tomography (CBCT) on implant planning and on prediction of final implant size. Consecutive patients referred for implant treatment were submitted to clinical examination, panoramic (PAN) radiography and a CBCT exam. Initial planning of implant length and width was assessed based on clinical and PAN exams, and final planning, on CBCT exam to complement diagnosis. The actual dimensions of the implants placed during surgery were compared with those obtained during initial and final planning, using the McNemmar test (p 0.05). It was concluded that CBCT improves the ability of predicting the actual implant length and reduces inaccuracy in surgical dental implant planning. (author)

  16. Using condition and usefulness of dental cone-beam CT in endodontic treatment

    International Nuclear Information System (INIS)

    This study evaluated the condition and usefulness of the dental cone-beam CT (3DX) in clinical endodontic treatments. Images from 55 examinations of 49 patients obtained using 3DX during an 11-month period were evaluated retrospectively to identify the usefulness of this modality compared with periapical or panoramic radiographs. The main indication for using of 3DX was diagnosis of root fracture in 65% of the examinations, second was the presence and expansion of periapical lesion in 22%, and third was to detect the canal system or root abnormality in 13%. The 3DX visualizes bony anatomical structures precisely and detects the presence and expansion of periapical lesions and the canal system of each root of mulirooted teeth that cannot easily be observed by intraoral radiography or panoramic radiography. The results of this study suggest that 3DX is a useful and reliable tool for endodontic treatments. (author)

  17. Developmental salivary gland depression in the ascending mandibular ramus: A cone-beam computed tomography study

    Science.gov (United States)

    Chen, Christine A.; Ahn, Yoonhee; Odell, Scott; Graham, David Mattew

    2016-01-01

    A static, unilateral, and focal bone depression located lingually within the ascending ramus, identical to the Stafne's bone cavity of the angle of the mandible, is being reported. During development of the mandible, submandibular gland inclusion may lead to the formation of a lingual concavity, which could contain fatty tissue, blood vessels, or soft tissue. However, similar occurrences in the ascending ramus at the level of the parotid gland are extremely rare. Similar cases were previously reported in dry, excavated mandibles, and 3 cases were reported in living patients. A 52-year-old African American male patient was seen for pain in the mandibular teeth. Panoramic radiography showed an unusual concavity within the left ascending ramus. Cone-beam computed tomography confirmed this incidental finding. The patient was cleared for the extraction of non-restorable teeth and scheduled for annual follow-up.

  18. Image and surgery-related costs comparing cone beam CT and panoramic imaging before removal of impacted mandibular third molars

    DEFF Research Database (Denmark)

    Petersen, Lars Bo; Olsen, Kim Rose; Christensen, Jennifer Heather;

    2014-01-01

    Objectives: The aim of this prospective clinical study was to derive the absolute and relative costs of cone beam CT (CBCT) and panoramic imaging before removal of an impacted mandibular third molar. Furthermore, the study aimed to analyse the influence of different cost-setting scenarios...

  19. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    DEFF Research Database (Denmark)

    Thing, Rune Slot; Bernchou, Uffe; Mainegra-Hing, Ernesto;

    2016-01-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five...

  20. A dual centre study of setup accuracy for thoracic patients based on Cone-Beam CT data

    DEFF Research Database (Denmark)

    Nielsen, Tine B; Hansen, Vibeke N; Westberg, Jonas;

    2011-01-01

    BACKGROUND AND PURPOSE: To compare setup uncertainties at two different institutions by using identical imaging and analysis techniques for thoracic patients with different fixation equipments. METHODS AND MATERIALS: Patient registration results from Cone-Beam CT (CBCT) scans of 174 patients were...

  1. Value of cone-beam computed tomography in the process of diagnosis and management of disorders of the temporomandibular joint

    NARCIS (Netherlands)

    de Boer, E. W. J.; Dijkstra, P. U.; Stegenga, B.; de Bont, L. G. M.; Spijkervet, F. K. L.

    2014-01-01

    The objective of this study was to assess the value of cone-beam computed tomographic (CT) images in the primary diagnosis and management of 128 outpatients with disorders of the temporomandibular joint (TMJ). Before a diagnosis was made and treatment planned, the history was taken, physical examina

  2. Radiation dose response of normal lung assessed by Cone Beam CT - a potential tool for biologically adaptive radiation therapy

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Schytte, Tine; Bentzen, Søren M;

    2011-01-01

    Density changes of healthy lung tissue during radiotherapy as observed by Cone Beam CT (CBCT) might be an early indicator of patient specific lung toxicity. This study investigates the time course of CBCT density changes and tests for a possible correlation with locally delivered dose....

  3. Factors affecting the possibility to detect buccal bone condition around dental implants using cone beam computed tomography

    DEFF Research Database (Denmark)

    Liedke, Gabriela S; Spin-Neto, Rubens; da Silveira, Heloisa E D;

    2016-01-01

    OBJECTIVES: To evaluate factors with impact on the conspicuity (possibility to detect) of the buccal bone condition around dental implants in cone beam computed tomography (CBCT) imaging. MATERIAL AND METHODS: Titanium (Ti) or zirconia (Zr) implants and abutments were inserted into 40 bone blocks...

  4. Optimizing cone beam CT scatter estimation in egs_cbct for a clinical and virtual chest phantom

    DEFF Research Database (Denmark)

    Slot Thing, Rune; Mainegra-Hing, Ernesto

    2014-01-01

    PURPOSE: Cone beam computed tomography (CBCT) image quality suffers from contamination from scattered photons in the projection images. Monte Carlo simulations are a powerful tool to investigate the properties of scattered photons.egs_cbct, a recent EGSnrc user code, provides the ability...

  5. Cone beam computed tomography guided treatment delivery and planning verification for magnetic resonance imaging only radiotherapy of the brain

    DEFF Research Database (Denmark)

    Edmund, Jens M.; Andreasen, Daniel; Mahmood, Faisal;

    2015-01-01

    Background. Radiotherapy based on MRI only (MRI-only RT) shows a promising potential for the brain. Much research focuses on creating a pseudo computed tomography (pCT) from MRI for treatment planning while little attention is often paid to the treatment delivery. Here, we investigate if cone beam...

  6. Clinical relevance of cone beam computed tomography in mandibular third molar removal: A multicentre, randomised, controlled trial

    NARCIS (Netherlands)

    Ghaeminia, H.; Gerlach, N.L.; Hoppenreijs, T.J.; Kicken, M.; Dings, J.P.; Borstlap, W.A.; Haan, T. de; Berge, S.J.; Meijer, G.J.; Maal, T.J.J.

    2015-01-01

    PURPOSE: The aims of this study were to investigate the effectiveness of cone beam computed tomography (CBCT) compared to panoramic radiography (PR), prior to mandibular third molar removal, in reducing patient morbidity, and to identify risk factors associated with inferior alveolar nerve (IAN) inj

  7. Cone-beam computerized tomography imaging and analysis of the upper airway: a systematic review of the literature.

    NARCIS (Netherlands)

    Guijarro-Martinez, R.; Swennen, G.R.J.

    2011-01-01

    A systematic review of the literature concerning upper airway imaging and analysis using cone-beam computed tomography (CBCT) was performed. A PubMed search (National Library of Medicine, NCBI; revised 9th January 2011) yielded 382 papers published between 1968 and 2010. The 382 full papers were scr

  8. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature.

    NARCIS (Netherlands)

    Vos, W. De; Casselman, J.W.; Swennen, G.R.

    2009-01-01

    This study reviewed the literature on cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial (OMF) region. A PUBMED search (National Library of Medicine, NCBI; revised 1 December 2007) from 1998 to December 2007 was conducted. This search revealed 375 papers, which were scree

  9. Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: a pilot study.

    NARCIS (Netherlands)

    Loubele, M.; Maes, F.; Schutyser, F.A.C.; Marchal, G.; Jacobs, R.; Suetens, P.

    2006-01-01

    OBJECTIVES: The objective of this study was to quantitatively assess the quality of jawbone models generated from cone beam computed tomography (CBCT) by comparison with similar models obtained from multislice spiral computed tomography (MSCT). MATERIAL AND METHODS: Three case studies were performed

  10. Outcome of root canal treatment in dogs determined by periapical radiography and cone-beam computed tomography scans

    NARCIS (Netherlands)

    F.W.G. de Paula-Silva; B. Hassan; L.A.B. da Silva; M.R. Leonardo; M.K. Wu

    2009-01-01

    The purpose of this study was to compare the favorable outcome of root canal treatment determined by periapical radiographs (PRs) and cone beam computed tomography (CBCT) scans. Ninety-six roots of dogs' teeth were used to form four groups (n= 24). In group 1, root canal treatments were performed in

  11. The validity of cone-beam computed tomography in measuring root canal length using a gold standard

    NARCIS (Netherlands)

    Y.H. Liang; L. Jiang; C. Chen; X.J. Gao; P.R. Wesselink; M.K. Wu; H. Shemesh

    2013-01-01

    Introduction The distance between a coronal reference point and the major apical foramen is important for working length determination. The aim of this in vitro study was to determine the accuracy of root canal length measurements performed with cone-beam computed tomographic (CBCT) scans using a go

  12. Guided access cavity preparation using cone-beam computed tomography and optical surface scans - an ex vivo study

    DEFF Research Database (Denmark)

    Buchgreitz, J; Buchgreitz, M; Mortensen, D;

    2016-01-01

    AIM: To evaluate ex vivo, the accuracy of a preparation procedure planned for teeth with pulp canal obliteration (PCO) using a guide rail concept based on a cone-beam computed tomography (CBCT) scan merged with an optical surface scan. METHODOLOGY: A total of 48 teeth were mounted in acrylic bloc...

  13. Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes

    NARCIS (Netherlands)

    Damstra, Janalt; Fourie, Zacharias; Huddleston Slater, James J R; Ren, Yijin

    2010-01-01

    INTRODUCTION: The aims of this study were to determine the linear accuracy of 3-dimensional surface models derived from a commercially available cone-beam computed tomography (CBCT) dental imaging system and volumetric rendering software and to investigate the influence of voxel resolution on the li

  14. Accuracy of trabecular bone microstructural measurement at planned dental implant sites using cone-beam CT datasets

    NARCIS (Netherlands)

    N. Ibrahim; A. Parsa; B. Hassan; P. van der Stelt; I.H.A. Aartman; D. Wismeijer

    2014-01-01

    Objective Cone-beam CT (CBCT) images are infrequently utilized for trabecular bone microstructural measurement due to the system's limited resolution. The aim of this study was to determine the accuracy of CBCT for measuring trabecular bone microstructure in comparison with micro CT (μCT). Materials

  15. The ability of cone-beam computed tomography to detect simulated buccal and lingual recesses in root canals

    NARCIS (Netherlands)

    Y.H. Liang; M. Yuan; G. Li; H. Shemesh; P.R. Wesselink; M.K. Wu

    2012-01-01

    Aim  To compare the ability of cone-beam computed tomography (CBCT) and digital periapical radiographs (PR) to detect simulated tissue-occupied recesses in root canals. Methodology  A standard canal was created in 30 extracted mandibular premolar roots. Each root was longitudinally split into buccal

  16. Influence of object location in different FOVs on trabecular bone microstructure measurements of human mandible: a cone beam CT study

    NARCIS (Netherlands)

    N. Ibrahim; A. Parsa; B. Hassan; P. van der Stelt; I.H.A. Aartman; P. Nambiar

    2014-01-01

    The aim of this study was to assess the influence of different object locations in different fields of view (FOVs) of two cone beam CT (CBCT) systems on trabecular bone microstructure measurements of a human mandible. A block of dry human mandible was scanned at five different locations (centre, lef

  17. Evaluation of imaging reformation with cone beam computed tomography for the assessment of bone density and shape in mandible

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Woo; Kim, Gyu Tae; Choi, Yong Suk; Hwan, Eui Hwan [School of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    2008-03-15

    Diagnostic estimation of destruction and formation of bone has the typical limit according to capacity of x-ray generator and image detector. So the aim of this study was to find out how much it can reproduce the shape and the density of bone in the case of using recently developed dental type of cone beam computed tomography, and which image is applied by new detector and mathematic calculation. Cone beam computed tomography (PSR 9000N, Asahi Roentgen Ind. Co., Ltd., Japan) and soft x-ray radiography were executed on dry mandible that was already decalcified during 5 hours, 10 hours, 15 hours, 20 hours, and 25 hours. Estimating and comparing of those came to the following results. The change of inferior border of mandible and anterior border of ramous in the region of cortical bone was observed between first 5 and 10 hours of decalcification. The reproduction of shape and density in the region of cortical bone and cancellous bone can be hardly observed at cone beam computed tomography compared with soft x-ray radiography. The difference of decrease of bone density according to hours of decalcification increase was not reproduced at cone beam computed tomography compared with soft x-ray radiography. CBCT images revealed higher spatial resolution. However, contrast resolution in region of low contrast sensitivity is the inferiority of images' property.

  18. Visibility of microcalcifications in CCD-based cone beam CT: a preliminary study

    Science.gov (United States)

    Shen, Youtao; Chen, Lingyun; Ge, Shuaiping; Yi, Ying; Han, Tao; Zhong, Yuncheng; Lai, Chao-Jen; Liu, Xinming; Wang, Tianpeng; Shaw, Chris C.

    2009-02-01

    In this work, we investigated the visibility of microcalcifications in CCD-based cone beam CT (CBCT) breast imaging. A paraffin cylinder with a diameter of 135 mm and a thickness of 40 mm was used to simulate a 100% adipose breast. Calcium carbonate grains, ranging from 140-150 to 200-212 μm in size, were used to simulate the microcalcifications. Groups of 25 same size microcalcifications were arranged into 5 × 5 clusters. Each cluster was embedded at the center of a smaller (15 mm diameter) cylindrical paraffin phantom, which were inserted into a hole at the center of the breast phantom. The breast phantom with the simulated microcalcifications was scanned on a bench top experimental CCDbased cone beam CT system at various exposure levels with two CCD cameras: Hamamatsu's C4742-56-12ER and Dalsa 99-66-0000-00. 300 projection images were acquired over 360° and reconstructed with Feldkamp's backprojection algorithm using a ramp filter. The images were reviewed by 6 readers independently. The ratios of visible microcalcifications were recorded and averaged over all readers. These ratios were plotted as the function of measured image signal-to-noise ratio (SNR) for various scans. It was found that 94% visibility was achieved for 200-212 μm calcifications at an SNR of 48.2 while 50% visibility was achieved for 200-212, 180-200, 160-180, 150-160 and 140-150 μm calcifications at an SNR of 25.0, 35.3, 38.2, 42.2 and 64.4, respectively.

  19. Patient dose and image quality from mega-voltage cone beam computed tomography imaging.

    Science.gov (United States)

    Gayou, Olivier; Parda, David S; Johnson, Mark; Miften, Moyed

    2007-02-01

    The evolution of ever more conformal radiation delivery techniques makes the subject of accurate localization of increasing importance in radiotherapy. Several systems can be utilized including kilo-voltage and mega-voltage cone-beam computed tomography (MV-CBCT), CT on rail or helical tomography. One of the attractive aspects of mega-voltage cone-beam CT is that it uses the therapy beam along with an electronic portal imaging device to image the patient prior to the delivery of treatment. However, the use of a photon beam energy in the mega-voltage range for volumetric imaging degrades the image quality and increases the patient radiation dose. To optimize image quality and patient dose in MV-CBCT imaging procedures, a series of dose measurements in cylindrical and anthropomorphic phantoms using an ionization chamber, radiographic films, and thermoluminescent dosimeters was performed. Furthermore, the dependence of the contrast to noise ratio and spatial resolution of the image upon the dose delivered for a 20-cm-diam cylindrical phantom was evaluated. Depending on the anatomical site and patient thickness, we found that the minimum dose deposited in the irradiated volume was 5-9 cGy and the maximum dose was between 9 and 17 cGy for our clinical MV-CBCT imaging protocols. Results also demonstrated that for high contrast areas such as bony anatomy, low doses are sufficient for image registration and visualization of the three-dimensional boundaries between soft tissue and bony structures. However, as the difference in tissue density decreased, the dose required to identify soft tissue boundaries increased. Finally, the dose delivered by MV-CBCT was simulated using a treatment planning system (TPS), thereby allowing the incorporation of MV-CBCT dose in the treatment planning process. The TPS-calculated doses agreed well with measurements for a wide range of imaging protocols.

  20. Finger fractures imaging: accuracy of cone-beam computed tomography and multislice computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Faccioli, Niccolo; Foti, Giovanni; Barillari, Marco; Mucelli, Roberto Pozzi [University of Verona, Department of Radiology, G.B. Rossi Hospital, Verona (Italy); Atzei, Andrea [University of Verona, Department of Hand Surgery, G.B. Rossi Hospital, Verona (Italy)

    2010-11-15

    To compare the diagnostic accuracy and radiation exposure of cone beam computed tomography (CBCT) and multislice computed tomography (MSCT) in the evaluation of finger fractures. In a 3-year period, 57 consecutive patients with post-traumatic fractures of the metacarpal-phalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints with involvement of the articular surface were studied by means of CBCT and MSCT. Student's t test was used to compare CBCT and MSCT accuracy in evaluating the percentage of joint surface involvement and in detecting bone fragments. The average tissue-absorbed doses of CBCT and MSCT were also compared. A value of p < 0.05 was considered statistically significant. Inter-observer agreement was calculated. In all cases, CBCT allowed the percentage of articular involvement to be correctly depicted compared with MSCT, showing 100% sensitivity and specificity (p < 0.001). A total of 103 bone fragments were depicted on MSCT (mean 3.8 per patient, range 1-23). CBCT indicated 92 out of 103 fragments (89.3%) compared with MSCT (mean diameter of missed fragments 0.9 mm, range 0.6-1.3 mm), with no statistically significant difference between CBCT and MSCT (p < 0.025). Multislice CT radiation exposure was significantly higher than that of CBCT (0.18 mSv vs 0.06 mSv, p < 0.0025). Inter-observer agreement was good (overall {kappa} = 0.89-0.96). Cone beam CT may be considered a valuable imaging tool in the preoperative assessment of finger fractures, when MSCT is not available. (orig.)

  1. Data consistency-driven scatter kernel optimization for x-ray cone-beam CT

    International Nuclear Information System (INIS)

    Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation. (paper)

  2. Small field dose delivery evaluations using cone beam optical computed tomography-based polymer gel dosimetry

    Directory of Open Access Journals (Sweden)

    Timothy Olding

    2011-01-01

    Full Text Available This paper explores the combination of cone beam optical computed tomography with an N-isopropylacrylamide (NIPAM-based polymer gel dosimeter for three-dimensional dose imaging of small field deliveries. Initial investigations indicate that cone beam optical imaging of polymer gels is complicated by scattered stray light perturbation. This can lead to significant dosimetry failures in comparison to dose readout by magnetic resonance imaging (MRI. For example, only 60% of the voxels from an optical CT dose readout of a 1 l dosimeter passed a two-dimensional Low′s gamma test (at a 3%, 3 mm criteria, relative to a treatment plan for a well-characterized pencil beam delivery. When the same dosimeter was probed by MRI, a 93% pass rate was observed. The optical dose measurement was improved after modifications to the dosimeter preparation, matching its performance with the imaging capabilities of the scanner. With the new dosimeter preparation, 99.7% of the optical CT voxels passed a Low′s gamma test at the 3%, 3 mm criteria and 92.7% at a 2%, 2 mm criteria. The fitted interjar dose responses of a small sample set of modified dosimeters prepared (a from the same gel batch and (b from different gel batches prepared on the same day were found to be in agreement to within 3.6% and 3.8%, respectively, over the full dose range. Without drawing any statistical conclusions, this experiment gives a preliminary indication that intrabatch or interbatch NIPAM dosimeters prepared on the same day should be suitable for dose sensitivity calibration.

  3. Anatomical and Morphological Characterization of the Nasopalatine Canal: A Cone-Beam Computed Tomography Study.

    Science.gov (United States)

    Rodricks, D; Gupta, A; Phulambrikar, T; Singh, S K; Sharma, B K; Agrawal, P

    2016-04-01

    The anterior maxilla, also called pre-maxilla, is an area frequently requiring surgical interventions. Rehabilitation of this area remains a complex restorative challenge. The most prominent anatomical structure within the anterior maxilla is the Nasopalatine Canal. Thorough knowledge about this anatomical structure plays an important role in the successful outcomes of surgical procedures. This retrospective study was done to evaluate the anatomy and morphology of the Nasopalatine Canal using cone-beam computed tomography (CBCT). The study included 125 subjects aged between 15 and 78 years who were divided into the following 5 groups: i) 15-30 years, ii) 30-45 years, iii) 45-60 years, iv) 60-75 years, v) ≥75 years in the Department of Oral Medicine & Radiology, Sri Aurobindo College of Dentistry, Indore, Madhya Pradesh, India from January 2012 to January 2015. Cone-beam computed tomography (CBCT) was performed using a standard exposure and patient positioning protocol. The data of the CBCT images were sliced in three dimensions. Image planes on the three axes (X, Y, and Z) were sequentially analyzed for the location, morphology and dimensions of the Nasopalatine Canal. The correlation of age and gender with all the variables were evaluated. ANOVA and Z-test was used. P value <0.05 was considered statistically significant. Males and females showed significant differences in the length of the canal and anterior bone width in the sagittal sections. Inverted L was identified as a new dimension to the morphological shape of Nasopalatine Canal in central Madhya Pradesh population. The present study highlighted important variability observed in the anatomy and morphology of the Nasopalatine Canal. PMID:27277370

  4. Automatic tracking of implanted fiducial markers in cone beam CT projection images

    Energy Technology Data Exchange (ETDEWEB)

    Marchant, T. E.; Skalski, A.; Matuszewski, B. J. [Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom and Manchester Academic Health Science Centre, University of Manchester, Manchester M20 4BX (United Kingdom); AGH University of Science and Technology, al. A. Mickiewicza 30, Krakow 30-059 (Poland); School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston PR1 2HE (United Kingdom)

    2012-03-15

    Purpose: This paper describes a novel method for simultaneous intrafraction tracking of multiple fiducial markers. Although the proposed method is generic and can be adopted for a number of applications including fluoroscopy based patient position monitoring and gated radiotherapy, the tracking results presented in this paper are specific to tracking fiducial markers in a sequence of cone beam CT projection images. Methods: The proposed method is accurate and robust thanks to utilizing the mean shift and random sampling principles, respectively. The performance of the proposed method was evaluated with qualitative and quantitative methods, using data from two pancreatic and one prostate cancer patients and a moving phantom. The ground truth, for quantitative evaluation, was calculated based on manual tracking preformed by three observers. Results: The average dispersion of marker position error calculated from the tracking results for pancreas data (six markers tracked over 640 frames, 3840 marker identifications) was 0.25 mm (at iscoenter), compared with an average dispersion for the manual ground truth estimated at 0.22 mm. For prostate data (three markers tracked over 366 frames, 1098 marker identifications), the average error was 0.34 mm. The estimated tracking error in the pancreas data was < 1 mm (2 pixels) in 97.6% of cases where nearby image clutter was detected and in 100.0% of cases with no nearby image clutter. Conclusions: The proposed method has accuracy comparable to that of manual tracking and, in combination with the proposed batch postprocessing, superior robustness. Marker tracking in cone beam CT (CBCT) projections is useful for a variety of purposes, such as providing data for assessment of intrafraction motion, target tracking during rotational treatment delivery, motion correction of CBCT, and phase sorting for 4D CBCT.

  5. Magnitude and effects of X-ray scatter of a cone-beam micro-CT for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Y.C. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Jan, M.L. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Chen, K.W. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Cheng, Y.D. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Chuang, K.S. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Fu, Y.K. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China)]. E-mail: fufrank@iner.gov.tw

    2006-12-20

    We have developed a micro-CT system to provide high-resolution and anatomic information to combine with a microPET'' (registered) R4 system. This study was to evaluate the magnitude and effects of scatter for low kVp X-ray in this cone-beam micro-CT system. Slit collimators were used to simulate fan-beam micro-CT for comparison. The magnitudes of X-ray scatter were measured using the beam-stop method and were estimated by polynomial-fitting extrapolation to 0 mm size of stoppers. The scatter-to-primary ratio at center of the cone-beam system were 45% and 20% for rat and mouse phantoms, respectively, and were reduced to 5.86% and 4.2% in fan-beam geometric setup. The effects of X-ray scatter on image uniformity and contrast ratio were evaluated also. The uniformity response was examined by the profile of the reconstructed image. The degrees of 'cupping' in the fan-beam and cone-beam conditions were 1.75% and 3.81%, respectively, in rat phantom. A contrast phantom consisting of four inserts with physical densities similar to that of acrylic was used for measuring the effect of X-ray scatter on image contrast. Contrast ratios of the inserts and acrylic in cone-beam setup degraded 36.9% in average compared with fan-beam setup. A tumor-bearing mouse was scanned by the micro-CT system. The tumor-to-background contrast ratios were measured to be 0.331 and 0.249, respectively, with fan-beam and cone-beam setups.

  6. A comparison of 1D analytical model and 3D finite element analysis with experiments for a rosen-type piezoelectric transformer.

    Science.gov (United States)

    Boukazouha, F; Poulin-Vittrant, G; Tran-Huu-Hue, L P; Bavencoffe, M; Boubenider, F; Rguiti, M; Lethiecq, M

    2015-07-01

    This article is dedicated to the study of Piezoelectric Transformers (PTs), which offer promising solutions to the increasing need for integrated power electronics modules within autonomous systems. The advantages offered by such transformers include: immunity to electromagnetic disturbances; ease of miniaturisation for example, using conventional micro fabrication processes; and enhanced performance in terms of voltage gain and power efficiency. Central to the adequate description of such transformers is the need for complex analytical modeling tools, especially if one is attempting to include combined contributions due to (i) mechanical phenomena owing to the different propagation modes which differ at the primary and secondary sides of the PT; and (ii) electrical phenomena such as the voltage gain and power efficiency, which depend on the electrical load. The present work demonstrates an original one-dimensional (1D) analytical model, dedicated to a Rosen-type PT and simulation results are successively compared against that of a three-dimensional (3D) Finite Element Analysis (COMSOL Multiphysics software) and experimental results. The Rosen-type PT studied here is based on a single layer soft PZT (P191) with corresponding dimensions 18 mm × 3 mm × 1.5 mm, which operated at the second harmonic of 176 kHz. Detailed simulational and experimental results show that the presented 1D model predicts experimental measurements to within less than 10% error of the voltage gain at the second and third resonance frequency modes. Adjustment of the analytical model parameters is found to decrease errors relative to experimental voltage gain to within 1%, whilst a 2.5% error on the output admittance magnitude at the second resonance mode were obtained. Relying on the unique assumption of one-dimensionality, the present analytical model appears as a useful tool for Rosen-type PT design and behavior understanding. PMID:25753623

  7. A comparison of 1D analytical model and 3D finite element analysis with experiments for a rosen-type piezoelectric transformer.

    Science.gov (United States)

    Boukazouha, F; Poulin-Vittrant, G; Tran-Huu-Hue, L P; Bavencoffe, M; Boubenider, F; Rguiti, M; Lethiecq, M

    2015-07-01

    This article is dedicated to the study of Piezoelectric Transformers (PTs), which offer promising solutions to the increasing need for integrated power electronics modules within autonomous systems. The advantages offered by such transformers include: immunity to electromagnetic disturbances; ease of miniaturisation for example, using conventional micro fabrication processes; and enhanced performance in terms of voltage gain and power efficiency. Central to the adequate description of such transformers is the need for complex analytical modeling tools, especially if one is attempting to include combined contributions due to (i) mechanical phenomena owing to the different propagation modes which differ at the primary and secondary sides of the PT; and (ii) electrical phenomena such as the voltage gain and power efficiency, which depend on the electrical load. The present work demonstrates an original one-dimensional (1D) analytical model, dedicated to a Rosen-type PT and simulation results are successively compared against that of a three-dimensional (3D) Finite Element Analysis (COMSOL Multiphysics software) and experimental results. The Rosen-type PT studied here is based on a single layer soft PZT (P191) with corresponding dimensions 18 mm × 3 mm × 1.5 mm, which operated at the second harmonic of 176 kHz. Detailed simulational and experimental results show that the presented 1D model predicts experimental measurements to within less than 10% error of the voltage gain at the second and third resonance frequency modes. Adjustment of the analytical model parameters is found to decrease errors relative to experimental voltage gain to within 1%, whilst a 2.5% error on the output admittance magnitude at the second resonance mode were obtained. Relying on the unique assumption of one-dimensionality, the present analytical model appears as a useful tool for Rosen-type PT design and behavior understanding.

  8. Comparison of the Pharyngeal Airway Volume between Non-Syndromic Unilateral Cleft Palate and Normal Individuals Using Cone Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Shoaleh Shahidi

    2016-09-01

    Full Text Available Statement of the Problem: Individuals with cleft lip and cleft palate mostly have airway problems. Introduction of cone beam computed tomography (CBCT and imaging software has provided the opportunity for a more precisely evaluating 3D volume of the airway. Purpose: The purpose of this study was to analyze and compare 3D the pharyngeal airway volumes of cleft palate patients with normal individuals using CBCT. Materials and Method: 30 complete cleft palate patients were selected from the Department of Orthodontics; Dental University (Shiraz, Iran who had CBCT scans of the head. The control group included 30 individuals with Class I angle occlusion who were matched for age and gender with the experimental group. ITK-SNAP 2.4.0 PC software was used to build 3D models of the airways for the subjects and measuring airway volumes. The statistical analyses were performed using SPSS software (version 19. Mann-Whitney test was adopted with p< 0.05 as statistical significance. Results: The average volume of the pharyngeal airway of cleft group was 18.6 cm3, with mean volumes of 6.8 cm3 for the superior component and 11.3 cm3 for the inferior component. The total and superior airway volume of cleft group were significantly lower than non-cleft groups (p= 0.008, p= 0.00, respectively but the inferior airway volumes were not significantly different between the cleft and non-cleft groups. There was a significant and positive correlation between superior airway volume and inferior airway volume in cleft palate patients (r=+0.786, p< 0.001 and control group (r=+0.575, p= 0.001. Conclusion: 3D analysis showed that the nasal and total airway was restricted in individuals with cleft palate but the inferior airway was not compromised in these individuals. This would be a crucial data to be considered for surgeons during surgical planning.

  9. A comparative study for spatial resolution and subjective image characteristics of a multi-slice CT and a cone-beam CT for dental use

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi, E-mail: hiro.orad@tmd.ac.jp [Oral and Maxillofacial Radiology, Division of Oral Restitution, Graduate School, Tokyo Medical and Dental University, 5-45 Yushima 1-chome, Bunkyo-ku, Tokyo 1138549 (Japan); Honda, Eiichi [Oral and Maxillofacial Radiology, Division of Oral Health Sciences, The University of Tokushima Graduate School (Japan); Tetsumura, Akemi; Kurabayashi, Tohru [Oral and Maxillofacial Radiology, Division of Oral Restitution, Graduate School, Tokyo Medical and Dental University, 5-45 Yushima 1-chome, Bunkyo-ku, Tokyo 1138549 (Japan)

    2011-03-15

    Purpose: Multi-slice CT (MSCT) and cone-beam CT (CBCT) are widely used in dental practice. This study compared the spatial resolution of these CT systems to elucidate which CT modalities should be selected for various clinical cases. Materials and methods: As MSCT and CBCT apparatuses, Somatom Sensation 64 and 3D Accuitomo instruments, respectively, were used. As an objective evaluation of spatial resolution of these CT systems, modulation transfer function (MTF) analysis was performed employing an over-sampling method. The results of MTF analysis were confirmed with a line-pair test using CATPHAN. As a subjective evaluation, a microstructure visualization ability study was performed using a Jcl:SD rat and a head CT phantom. Results: MTF analysis showed that for the in-plane direction, the z-axis ultrahigh resolution mode (zUHR) of the Sensation 64 and 3D Accuitomo instruments had higher spatial resolutions than the conventional mode (64x) of the Sensation 64, but for the longitudinal direction, the 3D Accuitomo had clearly higher spatial resolution than either mode of the Sensation 64. A line-pair test study and microstructure visualization ability studies confirmed the results for MTF analysis. However, images of the rat and the CT phantom revealed that the 3D Accuitomo demonstrated the failure to visualize the soft tissues along with aliasing and beam-hardening artifacts, which were not observed in the Sensation 64. Conclusions: This study successfully applied spatial resolution analysis using MSCT and CBCT systems in a comparative manner. These findings could help in deciding which CT modality should be selected for various clinical cases.

  10. A Bright Fluorescent Probe for H2S Enables Analyte-Responsive, 3D Imaging in Live Zebrafish Using Light Sheet Fluorescence Microscopy.

    Science.gov (United States)

    Hammers, Matthew D; Taormina, Michael J; Cerda, Matthew M; Montoya, Leticia A; Seidenkranz, Daniel T; Parthasarathy, Raghuveer; Pluth, Michael D

    2015-08-19

    Hydrogen sulfide (H2S) is a critical gaseous signaling molecule emerging at the center of a rich field of chemical and biological research. As our understanding of the complexity of physiological H2S in signaling pathways evolves, advanced chemical and technological investigative tools are required to make sense of this interconnectivity. Toward this goal, we have developed an azide-functionalized O-methylrhodol fluorophore, MeRho-Az, which exhibits a rapid >1000-fold fluorescence response when treated with H2S, is selective for H2S over other biological analytes, and has a detection limit of 86 nM. Additionally, the MeRho-Az scaffold is less susceptible to photoactivation than other commonly used azide-based systems, increasing its potential application in imaging experiments. To demonstrate the efficacy of this probe for H2S detection, we demonstrate the ability of MeRho-Az to detect differences in H2S levels in C6 cells and those treated with AOAA, a common inhibitor of enzymatic H2S synthesis. Expanding the use of MeRho-Az to complex and heterogeneous biological settings, we used MeRho-Az in combination with light sheet fluorescence microscopy (LSFM) to visualize H2S in the intestinal tract of live zebrafish. This application provides the first demonstration of analyte-responsive 3D imaging with LSFM, highlighting the utility of combining new probes and live imaging methods for investigating chemical signaling in complex multicellular systems. PMID:26061541

  11. Evaluation of anatomy and morphology of human mandibular premolar teeth by cone-beam computed tomography in Iranian population

    Directory of Open Access Journals (Sweden)

    Amin Sobhani Mohhsen

    2013-08-01

    Full Text Available   Background and Aims: Successful root canal therapy requires knowledge of tooth anatomy and root canal morphology. For permanent mandibular premolars, great variety in size, shape and number of roots and root fusion expression has been reported in the literature. There is a wide variety of methods used in studies for evaluating the root canal morphology. One of these methods is Cone-beam Computed tomography (CBCT that reduces the limitations of two-dimensional X-ray imaging, with less exposure in comparison with other 3D radiographies. Thus, this study was designed to evaluate the differences in the root and canal morphology of permanent mandibular premolars in an Iranian population by means of CBCT images.   Materials and Methods: We searched a database of CBCT scans and evaluated 400 (20-60 years old patients who met the inclusion criteria and teeth in this images (CBCT were evaluated in three dimensions (Axial, Coronal and Sagital. Tooth length, number of roots, number of canals, canal type, root curvature and the effect of gender on any of the items mentioned were evaluated. Data were analyzed using T-test.   Results: The average length of the first premolar of mandibular was 22.27 mm and second premolar was 22.28 mm. 98.4% of the first premolar and 98.2% of the second premolar were single root., and 87.3% and 93.1% were single channel. The incidence of number of canals based on vertochy divisions were:type 1: 90.7% and 90.8%, type 0: 2.2% and 2.8%, type 4: 3.3% and 3.1%, type 6: 1.4% and 2.1% and type 3: 2.5% and 1.5% respectively. In any case, there was no significant difference between males and females (P<0.001.   Conclusion: Results indicate that dentists can obtain valuable information about the anatomy and morphology of the root canals using CBCT.

  12. Development and validation of a hybrid simulation technique for cone beam CT: application to an oral imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G; Marshall, N; Shaheen, E; Bosmans, H [Department of Radiology, University Hospitals Leuven, Herestraat 49, Leuven 3000 (Belgium); Pauwels, R; Jacobs, R [Oral Imaging Center, University Hospitals Leuven, Kapucijnenvoer 33, Leuven 3000 (Belgium); Nuyts, J, E-mail: guozhi.zhang@med.kuleuven.be [Department of Nuclear Medicine, University Hospitals Leuven, Herestraat 49, Leuven 3000 (Belgium)

    2011-09-21

    This paper proposes a hybrid technique to simulate the complete chain of an oral cone beam computed tomography (CBCT) system for the study of both radiation dose and image quality. The model was developed around a 3D Accuitomo 170 unit (J Morita, Japan) with a tube potential range of 60-90 kV. The Monte Carlo technique was adopted to simulate the x-ray generation, filtration and collimation. Exact dimensions of the bow-tie filter were estimated iteratively using experimentally acquired flood images. Non-flat radiation fields for different exposure settings were mediated via 'phase spaces'. Primary projection images were obtained by ray tracing at discrete energies and were fused according to the two-dimensional energy modulation templates derived from the phase space. Coarse Monte Carlo simulations were performed for scatter projections and the resulting noisy images were smoothed by Richardson-Lucy fitting. Resolution and noise characteristics of the flat panel detector were included using the measured modulation transfer function (MTF) and the noise power spectrum (NPS), respectively. The Monte Carlo dose calculation was calibrated in terms of kerma free-in-air about the isocenter, using an ionization chamber, and was subsequently validated by comparison against the measured air kerma in water at various positions of a cylindrical water phantom. The resulting dose discrepancies were found <10% for most cases. Intensity profiles of the experimentally acquired and simulated projection images of the water phantom showed comparable fractional increase over the common area as changing from a small to a large field of view, suggesting that the scatter was accurately accounted. Image validation was conducted using two small phantoms and the built-in quality assurance protocol of the system. The reconstructed simulated images showed high resemblance on contrast resolution, noise appearance and artifact pattern in comparison to experimentally acquired images

  13. IMRT planning and delivery incorporating daily dose from mega-voltage cone-beam computed tomography imaging.

    Science.gov (United States)

    Miften, Moyed; Gayou, Olivier; Reitz, Bodo; Fuhrer, Russell; Leicher, Brian; Parda, David S

    2007-10-01

    The technology of online mega-voltage cone-beam (CB) computed tomography (MV-CBCT) imaging is currently used in many institutions to generate a 3D anatomical dataset of a patient in treatment position. It utilizes an accelerator therapy beam, delivered with 200 degrees gantry rotation, and captured by an electronic portal imager to account for organ motion and setup variations. Although the patient dose exposure from a single volumetric MV-CBCT imaging procedure is comparable to that from standard double-exposure orthogonal portal images, daily image localization procedures can result in a significant dose increase to healthy tissue. A technique to incorporate the daily dose, from a MV-CBCT imaging procedure, in the IMRT treatment planning optimization process was developed. A composite IMRT plan incorporating the total dose from the CB was optimized with the objective of ensuring uniform target coverage while sparing the surrounding normal tissue. One head and neck cancer patient and four prostate cancer patients were planned and treated using this technique. Dosimetric results from the prostate IMRT plans optimized with or without CB showed similar target coverage and comparable sparing of bladder and rectum volumes. Average mean doses were higher by 1.6 +/- 1.0 Gy for the bladder and comparable for the rectum (-0.3 +/- 1.4 Gy). In addition, an average mean dose increase of 1.9 +/- 0.8 Gy in the femoral heads and 1.7 +/- 0.6 Gy in irradiated tissue was observed. However, the V65 and V70 values for bladder and rectum were lower by 2.3 +/- 1.5% and 2.4 +/- 2.1% indicating better volume sparing at high doses with the optimized plans incorporating CB. For the head and neck case, identical target coverage was achieved, while a comparable sparing of the brain stem, optic chiasm, and optic nerves was observed. The technique of optimized planning incorporating doses from daily online MV-CBCT procedures provides an alternative method for imaging IMRT patients. It allows

  14. Antiscatter grids in mobile C-arm cone-beam CT: Effect on image quality and dose

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, S.; Stayman, J.W.; Zbijewski, W.; Schmidgunst, C.; Kleinszig, G.; Siewerdsen, J.H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen, Bavaria 91052 (Germany); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States) and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2012-01-15

    Purpose: X-ray scatter is a major detriment to image quality in cone-beam CT (CBCT). Existing geometries exhibit strong differences in scatter susceptibility with more compact geometries, e.g., dental or musculoskeletal, benefiting from antiscatter grids, whereas in more extended geometries, e.g., IGRT, grid use carries tradeoffs in image quality per unit dose. This work assesses the tradeoffs in dose and image quality for grids applied in the context of low-dose CBCT on a mobile C-arm for image-guided surgery. Methods: Studies were performed on a mobile C-arm equipped with a flat-panel detector for high-quality CBCT. Antiscatter grids of grid ratio (GR) 6:1-12:1, 40 lp/cm, were tested in ''body'' surgery, i.e., spine, using protocols for bone and soft-tissue visibility in the thoracic and abdominal spine. Studies focused on grid orientation, CT number accuracy, image noise, and contrast-to-noise ratio (CNR) in quantitative phantoms at constant dose. Results: There was no effect of grid orientation on possible gridline artifacts, given accurate angle-dependent gain calibration. Incorrect calibration was found to result in gridline shadows in the projection data that imparted high-frequency artifacts in 3D reconstructions. Increasing GR reduced errors in CT number from 31%, thorax, and 37%, abdomen, for gridless operation to 2% and 10%, respectively, with a 12:1 grid, while image noise increased by up to 70%. The CNR of high-contrast objects was largely unaffected by grids, but low-contrast soft-tissues suffered reduction in CNR, 2%-65%, across the investigated GR at constant dose. Conclusions: While grids improved CT number accuracy, soft-tissue CNR was reduced due to attenuation of primary radiation. CNR could be restored by increasing dose by factors of {approx}1.6-2.5 depending on GR, e.g., increase from 4.6 mGy for the thorax and 12.5 mGy for the abdomen without antiscatter grids to approximately 12 mGy and 30 mGy, respectively, with a high

  15. Dosimetric characterization and application of an imaging beam line with a carbon electron target for megavoltage cone beam computed tomography.

    Science.gov (United States)

    Flynn, Ryan T; Hartmann, Julia; Bani-Hashemi, Ali; Nixon, Earl; Alfredo, R; Siochi, C; Pennington, Edward C; Bayouth, John E

    2009-06-01

    Imaging dose from megavoltage cone beam computed tomography (MVCBCT) can be significantly reduced without loss of image quality by using an imaging beam line (IBL), with no flattening filter and a carbon, rather than tungsten, electron target. The IBL produces a greater keV-range x-ray fluence than the treatment beam line (TBL), which results in a more optimal detector response. The IBL imaging dose is not necessarily negligible, however. In this work an IBL was dosimetrically modeled with the Philips Pinnacle3 treatment planning system (TPS), verified experimentally, and applied to clinical cases. The IBL acquisition dose for a 200 degrees gantry rotation was verified in a customized acrylic cylindrical phantom at multiple imaging field sizes with 196 ion chamber measurements. Agreement between the measured and calculated IBL dose was quantified with the 3D gamma index. Representative IBL and TBL imaging dose distributions were calculated for head and neck and prostate patients and included in treatment plans using the imaging dose incorporation (IDI) method. Surface dose was measured for the TBL and IBL for four head and neck cancer patients with MOSFETs. The IBL model, when compared to the percentage depth dose and profile measurements, had 97% passing gamma indices for dosimetric and distance acceptance criteria of 3%, 3 mm, and 100% passed for 5.2%, 5.2 mm. For the ion chamber measurements of phantom image acquisition dose, the IBL model had 93% passing gamma indices for acceptance criteria of 3%, 3 mm, and 100% passed for 4%, 4 mm. Differences between the IBL- and TBL-based IMRT treatment plans created with the IDI method were dosimetrically insignificant for both the prostate and head and neck cases. For IBL and TBL beams with monitor unit values that would result in the delivery of the same dose to the depth of maximum dose under standard calibration conditions, the IBL imaging surface dose was higher than the TBL imaging surface dose by an average of 18

  16. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography

    Science.gov (United States)

    Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G.; Liu, Chihray; Lu, Bo

    2015-12-01

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR). In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the

  17. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography

    International Nuclear Information System (INIS)

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR).In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the

  18. Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-03-01

    Full Text Available Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT. We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1 FDK reconstruction using raw projection data; 2 Rigid Registration of planning CT to the FDK results; 3 MC scatter calculation at sparse view angles using the planning CT; 4 Interpolation of the calculated scatter signals to other angles; 5 Removal of scatter from the raw projections; 6 FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this

  19. Quantification of dental prostheses on cone-beam CT images by the Taguchi method.

    Science.gov (United States)

    Kuo, Rong-Fu; Fang, Kwang-Ming; Ty, Wong; Hu, Chia Yu

    2016-01-01

    The gray values accuracy of dental cone-beam computed tomography (CBCT) is affected by dental metal prostheses. The distortion of dental CBCT gray values could lead to inaccuracies of orthodontic and implant treatment. The aim of this study was to quantify the effect of scanning parameters and dental metal prostheses on the accuracy of dental cone-beam computed tomography (CBCT) gray values using the Taguchi method. Eight dental model casts of an upper jaw including prostheses, and a ninth prosthesis-free dental model cast, were scanned by two dental CBCT devices. The mean gray value of the selected circular regions of interest (ROIs) were measured using dental CBCT images of eight dental model casts and were compared with those measured from CBCT images of the prosthesis-free dental model cast. For each image set, four consecutive slices of gingiva were selected. The seven factors (CBCTs, occlusal plane canting, implant connection, prosthesis position, coping material, coping thickness, and types of dental restoration) were used to evaluate scanning parameter and dental prostheses effects. Statistical methods of signal to noise ratio (S/N) and analysis of variance (ANOVA) with 95% confidence were applied to quantify the effects of scanning parameters and dental prostheses on dental CBCT gray values accuracy. For ROIs surrounding dental prostheses, the accuracy of CBCT gray values were affected primarily by implant connection (42%), followed by type of restoration (29%), prostheses position (19%), coping material (4%), and coping thickness (4%). For a single crown prosthesis (without support of implants) placed in dental model casts, gray value differences for ROIs 1-9 were below 12% and gray value differences for ROIs 13-18 away from pros-theses were below 10%. We found the gray value differences set to be between 7% and 8% for regions next to a single implant-supported titanium prosthesis, and between 46% and 59% for regions between double implant

  20. Three-dimensional finite element analysis of unilateral mastication in malocclusion cases using cone-beam computed tomography and a motion capture system

    Science.gov (United States)

    2016-01-01

    Purpose Stress distribution and mandible distortion during lateral movements are known to be closely linked to bruxism, dental implant placement, and temporomandibular joint disorder. The present study was performed to determine stress distribution and distortion patterns of the mandible during lateral movements in Class I, II, and III relationships. Methods Five Korean volunteers (one normal, two Class II, and two Class III occlusion cases) were selected. Finite element (FE) modeling was performed using information from cone-beam computed tomographic (CBCT) scans of the subjects’ skulls, scanned images of dental casts, and incisor movement captured by an optical motion-capture system. Results In the Class I and II cases, maximum stress load occurred at the condyle of the balancing side, but, in the Class III cases, the maximum stress was loaded on the condyle of the working side. Maximum distortion was observed on the menton at the midline in every case, regardless of loading force. The distortion was greatest in Class III cases and smallest in Class II cases. Conclusions The stress distribution along and accompanying distortion of a mandible seems to be affected by the anteroposterior position of the mandible. Additionally, 3-D modeling of the craniofacial skeleton using CBCT and an optical laser scanner and reproduction of mandibular movement by way of the optical motion-capture technique used in this study are reliable techniques for investigating the masticatory system. PMID:27127690

  1. Experimental study on the application of a compressed-sensing (CS) algorithm to dental cone-beam CT (CBCT) for accurate, low-dose image reconstruction

    Science.gov (United States)

    Oh, Jieun; Cho, Hyosung; Je, Uikyu; Lee, Minsik; Kim, Hyojeong; Hong, Daeki; Park, Yeonok; Lee, Seonhwa; Cho, Heemoon; Choi, Sungil; Koo, Yangseo

    2013-03-01

    In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient data. In computed tomography (CT); for example, image reconstruction from few views would enable fast scanning with reduced doses to the patient. In this study, we investigated and implemented an efficient reconstruction method based on a compressed-sensing (CS) algorithm, which exploits the sparseness of the gradient image with substantially high accuracy, for accurate, low-dose dental cone-beam CT (CBCT) reconstruction. We applied the algorithm to a commercially-available dental CBCT system (Expert7™, Vatech Co., Korea) and performed experimental works to demonstrate the algorithm for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images from several undersampled data and evaluated the reconstruction quality in terms of the universal-quality index (UQI). Experimental demonstrations of the CS-based reconstruction algorithm appear to show that it can be applied to current dental CBCT systems for reducing imaging doses and improving the image quality.

  2. Mask free intravenous 3D digital subtraction angiography (IV 3D-DSA) from a single C-arm acquisition

    Science.gov (United States)

    Li, Yinsheng; Niu, Kai; Yang, Pengfei; Aagaard-Kienitz, Beveley; Niemann, David B.; Ahmed, Azam S.; Strother, Charles; Chen, Guang-Hong

    2016-03-01

    Currently, clinical acquisition of IV 3D-DSA requires two separate scans: one mask scan without contrast medium and a filled scan with contrast injection. Having two separate scans adds radiation dose to the patient and increases the likelihood of suffering inadvertent patient motion induced mis-registration and the associated mis-registraion artifacts in IV 3D-DSA images. In this paper, a new technique, SMART-RECON is introduced to generate IV 3D-DSA images from a single Cone Beam CT (CBCT) acquisition to eliminate the mask scan. Potential benefits of eliminating mask scan would be: (1) both radiation dose and scan time can be reduced by a factor of 2; (2) intra-sweep motion can be eliminated; (3) inter-sweep motion can be mitigated. Numerical simulations were used to validate the algorithm in terms of contrast recoverability and the ability to mitigate limited view artifacts.

  3. Navigation in Orthognathic Surgery: 3D Accuracy.

    Science.gov (United States)

    Badiali, Giovanni; Roncari, Andrea; Bianchi, Alberto; Taddei, Fulvia; Marchetti, Claudio; Schileo, Enrico

    2015-10-01

    This article aims to determine the absolute accuracy of maxillary repositioning during orthognathic surgery according to simulation-guided navigation, that is, the combination of navigation and three-dimensional (3D) virtual surgery. We retrospectively studied 15 patients treated for asymmetric dentofacial deformities at the Oral and Maxillofacial Surgery Unit of the S.Orsola-Malpighi University Hospital in Bologna, Italy, from January 2010 to January 2012. Patients were scanned with a cone-beam computed tomography before and after surgery. The virtual surgical simulation was realized with a dedicated software and loaded on a navigation system to improve intraoperative reproducibility of the preoperative planning. We analyzed the outcome following two protocols: (1) planning versus postoperative 3D surface analysis; (2) planning versus postoperative point-based analysis. For 3D surface comparison, the mean Hausdorff distance was measured, and median among cases was 0.99 mm. Median reproducibility orthognathic surgery, if compared with the surgical computer-designed project realized with a dedicated software, particularly for the vertical dimension, which is the most challenging to manage.

  4. A new method to determine the projected coordinate origin of a cone-beam CT system using elliptical projection

    Institute of Scientific and Technical Information of China (English)

    YANG Min; JIN Xu-Ling; LI Bao-Lei

    2010-01-01

    In order to determine the projected coordinate origin in the cone-beam CT scanning system with respect to the Feldkamp-Davis-Kress(FDK)algorithm,we propose a simple yet feasible method to accurately measure the projected coordinate origin.This method was established on the basis of the theory that the projection of a spherical object in the cone-beam field is an ellipse.We first utilized image processing and the least square estimation method to get each major axis of the elliptical Digital Radiography(DR)projections of a group of spherical objects.Then we determined the intersection point of the group of major axis by solving an over-determined equation set that was composed by the major axis equations of all the elliptical projections.Based on the experimental results,this new method was proved to be easy to implement in practical scanning systems with high accuracy and anti-noise capability.

  5. Capabilities of Cone-Beam Computed Tomography in the Assessment of the Structure of Wrist and Hand Bones

    Directory of Open Access Journals (Sweden)

    А.Yu. Vasiliev, PhD, MD

    2013-06-01

    Full Text Available An analysis of the capabilities of cone-beam computed tomography (CBCT in the assessment of the form and structure of wrist and hand bones was the aim of the research. Cone-beam CT of wrist and hand was conducted in a group of voluntary patients, which included 40 members aged 22- 68 years. Magnetic resonance imaging (МRI was carried out in 80.0% (n = 32 of cases, multislice computed tomography (MSCT in 40.0% (n=16 of cases. In 62.5 % (n=25 of cases, digital microfocus radiography on X-ray unit Pardus (Russia and standard radiography of wrist and hand were conducted. According to the results of the research, CBCT shows a high efficiency in detection of form, measurements and structural changes of bones of the anatomic region.

  6. Impacted lower third molar fused with a supernumerary tooth--diagnosis and treatment planning using cone-beam computed tomography.

    Science.gov (United States)

    Ferreira-Junior, Osny; de Avila, Luciana Dorigatti; Sampieri, Marcelo Bonifácio da Silva; Dias-Ribeiro, Eduardo; Chen, Wei-liang; Fan, Song

    2009-12-01

    This paper reported a case of fusion between an impacted third molar and a supernumerary tooth, in which a surgical intervention was carried out, with the objective of removing the dental elements. The panoramic radiography was complemented by the Donovan's radiographic technique; but because of the proximity of the dental element to the mandibular ramus, it was not possible to have a final fusion diagnosis. Hence, the Cone-Beam Computed Tomography-which provides precise three-dimensional information-was used to determinate the fusion diagnosis and also to help in the surgical planning. In this case report we observed that the periapical, occlusal and panoramic were not able to show details which could only be examined through the cone-beam computed tomography.

  7. Impact of cone-beam computed tomography on implant planning and on prediction of implant size

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso, Ludmila Assuncao de Mello; Silva, Maria Alves Garcia Santos, E-mail: ludmilapedroso@hotmail.com [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia; Garcia, Robson Rodrigues [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Medicina Oral; Leles, Jose Luiz Rodrigues [Universidade Paulista (UNIP), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Cirurgia; Leles, Claudio Rodrigues [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Odontologia. Dept. de Prevencao e Reabilitacao Oral

    2013-11-15

    The aim was to investigate the impact of cone-beam computed tomography (CBCT) on implant planning and on prediction of final implant size. Consecutive patients referred for implant treatment were submitted to clinical examination, panoramic (PAN) radiography and a CBCT exam. Initial planning of implant length and width was assessed based on clinical and PAN exams, and final planning, on CBCT exam to complement diagnosis. The actual dimensions of the implants placed during surgery were compared with those obtained during initial and final planning, using the McNemmar test (p < 0.05). The final sample comprised 95 implants in 27 patients, distributed over the maxilla and mandible. Agreement in implant length was 50.5% between initial and final planning, and correct prediction of the actual implant length was 40.0% and 69.5%, using PAN and CBCT exams, respectively. Agreement in implant width assessment ranged from 69.5% to 73.7%. A paired comparison of the frequency of changes between initial or final planning and implant placement (McNemmar test) showed greater frequency of changes in initial planning for implant length (p < 0.001), but not for implant width (p = 0.850). The frequency of changes was not influenced by implant location at any stage of implant planning (chi-square test, p > 0.05). It was concluded that CBCT improves the ability of predicting the actual implant length and reduces inaccuracy in surgical dental implant planning. (author)

  8. Does hyrax expansion therapy affect maxillary sinus volume? A cone-beam computed tomography report

    Energy Technology Data Exchange (ETDEWEB)

    Darsey, Drew M.; English, Jeryl D.; Ellis, Randy K.; Akyalcin, Sercan [School of Dentistry, University of Texas Health Science Center at Houston, Houston (United States); Kau, Chung H [School of Dentistry, University of Alabama at Birmingham, Birmingham (United States)

    2012-06-15

    The aim of this study was to investigate the initial effects of maxillary expansion therapy with Hyrax appliance and to evaluate the related changes in maxillary sinus volume. Thirty patients (20 females, 10 males; 13.8 years) requiring maxillary expansion therapy, as part of their comprehensive orthodontic treatment, were examined. Each patient had cone-beam computed tomography (CBCT) images taken before (T1) and after (T2) maxillary expansion therapy with a banded Hyrax appliance. Multiplanar slices were used to measure linear dimensions and palatal vault angle. Volumetric analysis was used to measure maxillary sinus volumes. Student t tests were used to compare the pre- and post-treatment measurements. Additionally, differences between two age groups were compared with Mann-Whitney U test. The level of significance was set at p=0.05. Comparison of pre-treatment to post-treatment variables revealed significant changes in the transverse dimension related to both maxillary skeletal and dental structures and palatal vault angle, resulting in a widened palatal vault (p<0.05). Hard palate showed no significant movement in the vertical and anteroposterior planes. Nasal cavity width increased on a mean value of 0.93 mm(SD=0.23, p<0.05). Maxillary sinus volume remained virtually stable. No significant age differences were observed in the sample. Hyrax expansion therapy did not have a significant impact on maxillary sinus volume.

  9. Fractionated changes in prostate cancer radiotherapy using cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Tzung-Chi, E-mail: tzungchi.huang@mail.cmu.edu.tw [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung City, Taiwan (China); Chou, Kuei-Ting [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan (China); Yang, Shih-Neng [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung City, Taiwan (China); Chang, Chih-Kai [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung City, Taiwan (China); Liang, Ji-An [Department of Radiation Oncology, China Medical University Hospital, Taichung City, Taiwan (China); Zhang, Geoffrey [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL (United States)

    2015-10-01

    The high mobility of the bladder and the rectum causes uncertainty in radiation doses prescribed to patients with prostate cancer who undergo radiotherapy (RT) multifraction treatments. The purpose of this study was to estimate the dose received by the bladder, rectum, and prostate from multifraction treatments using daily cone-beam computed tomography (CBCT). Overall, 28 patients with prostate cancer who planned to receive radiation treatments were enrolled in the study. The acquired CBCT before the treatment delivery was registered with the planning CT to map the dose distribution used in the treatment plan for estimating the received dose during clinical treatment. For all 28 patients with 112 data sets, the mean percentage differences (± standard deviation) in the volume and radiation dose were 44% (± 41) and 18% (± 17) for the bladder, 20% (± 21) and 2% (± 2) for the prostate, and 36% (± 29) and 22% (± 15) for the rectum, respectively. Substantial differences between the volumes and radiation dose and those specified in treatment plans were observed. Besides the use of image-guided RT to improve patient setup accuracy, further consideration of large changes in bladder and rectum volumes is strongly suggested when using external beam radiation for prostate cancer.

  10. Accuracy and precision of cone beam computed tomography in periodontal defects measurement (systematic review)

    Science.gov (United States)

    Anter, Enas; Zayet, Mohammed Khalifa; El-Dessouky, Sahar Hosny

    2016-01-01

    Systematic review of literature was made to assess the extent of accuracy of cone beam computed tomography (CBCT) as a tool for measurement of alveolar bone loss in periodontal defect. A systematic search of PubMed electronic database and a hand search of open access journals (from 2000 to 2015) yielded abstracts that were potentially relevant. The original articles were then retrieved and their references were hand searched for possible missing articles. Only articles that met the selection criteria were included and criticized. The initial screening revealed 47 potentially relevant articles, of which only 14 have met the selection criteria; their CBCT average measurements error ranged from 0.19 mm to 1.27 mm; however, no valid meta-analysis could be made due to the high heterogeneity between the included studies. Under the limitation of the number and strength of the available studies, we concluded that CBCT provides an assessment of alveolar bone loss in periodontal defect with a minimum reported mean measurements error of 0.19 ± 0.11 mm and a maximum reported mean measurements error of 1.27 ± 1.43 mm, and there is no agreement between the studies regarding the direction of the deviation whether over or underestimation. However, we should emphasize that the evidence to this data is not strong. PMID:27563194

  11. Ultrafast cone-beam computed tomography imaging and postprocessing data during image-guided therapeutic practice

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Jijo; Vogl, Thomas J. [University Hospital Frankfurt, Diagnostic and Interventional Radiology, Frankfurt/Main (Germany); Mbalisike, Emmanuel C. [Hospital of the Bad Salzungen GmbH, Diagnostic and Interventional Radiology, Bad Salzungen (Germany)

    2014-11-15

    Our objective was to evaluate ultrafast cone-beam computed tomography (u-CBCT) image data using cross-sectional images, perfusion blood volume (PBV), and image fusion during tumour detection at the course of transarterial chemoembolization. One hundred and fifty patients (63 ± 20 years; 33-82) were examined from February to October 2013 with u-CBCT. Tumour delineation and conspicuity were determined using u-CBCT cross-sectional PBV and u-CBCT-magnetic resonance imaging (MRI) fused data sets for hyperenhanced (HYET), heterogeneously enhanced (HEET), and unenhanced (UET) tumour categories. Catheter localisation and tumour feeding vessels were assessed using all data sets. Quantitative and qualitative analyses were performed using appropriate statistical tests. Qualitative and quantitative tumour delineation showed significant difference (all P < 0.05) among tumour categories. Mean tumour-liver-contrast was higher in HYET than in HEET, and UET; moreover, differences between tumour categories were statistically significant (all P < 0.0001). Fused data showed higher value with statistical significance (P < 0.05) compared with other data sets during catheter localisation and feeding-vessel identification. Tumour delineation was clearly possible using u-CBCT cross sections with contrast material. PBV uses color-coded images to increase detection and produces good tumour differentiation. Image fusion helps accurately identify tumour and feeding vessels and locate contrast material injection sites and catheter tips without additional data acquisition. (orig.)

  12. Image characteristics of cone beam computed tomography using a CT performance phantom

    International Nuclear Information System (INIS)

    To evaluate the characteristics of (widely used) cone beam computed tomography (CBCT) images. Images were obtained with CT performance phantoms (The American Association of Physicists in Medicine; AAPM). CT phantom as the destination by using PSR 9000N TM dental CT system (Asahi Roentgen Ind. Co., Ltd., Japan) and i-CAT CBCT (Imaging Science International Inc., USA) that have different kinds of detectors and field of view, and compared these images with the CT number for linear attenuation, contrast resolution, and spatial resolution. CT number of both PSR 9000N TM dental CT system and i-CAT CBCT did not conform to the base value of CT performance phantom. The contrast of i-CAT CBCT is higher than that of PSR 9000N TM dental CT system. Both contrasts were increased according to thickness of cross section. Spatial resolution and shapes of reappearance was possible up to 0.6 mm in PSR 9000N TM dental CT system and up to 1.0 mm in i-CAT CBCT. Low contrast resolution in region of low contrast sensitivity revealed low level at PSR 9000N TM dental CT system and i-CAT CBCT. CBCT images revealed higher spatial resolution, however, contrast resolution in region of low contrast sensitivity was the inferiority of image characteristics

  13. Dedicated scanner for laboratory investigations on cone-beam CT/SPECT imaging of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Mettivier, Giovanni, E-mail: mettivier@na.infn.i [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, I-80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy); Russo, Paolo, E-mail: russo@na.infn.i [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, I-80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy); Cesarelli, Mario; Ospizio, Roberto [Dipartimento di Ingegneria Biomedica, Elettronica e delle Telecomunicazioni, Universita di Napoli Federico II, I-80125 Napoli (Italy); Passeggio, Giuseppe; Roscilli, Lorenzo; Pontoriere, Giuseppe; Rocco, Raffaele [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy)

    2011-02-11

    We describe the design, realization and basic tests of a prototype Cone-Beam Breast Computed Tomography (CBBCT) scanner, combined with a SPECT head consisting of a compact pinhole gamma camera based on a photon counting CdTe hybrid pixel detector. The instrument features a 40 {mu}m focal spot X-ray tube, a 50 {mu}m pitch flat panel detector and a 1-mm-thick, 55 {mu}m pitch CdTe pixel detector. Preliminary imaging tests of the separate CT and gamma-ray units are presented showing a resolution in CT of 3.2 mm{sup -1} at a radial distance of 50 mm from the rotation axis and that the 5 and 8 mm hot masses ({sup 99m}Tc labeled with a 15:1 activity ratio with respect to the background) can be detected in planar gamma-ray imaging with a contrast-to-noise ratio of about 4.

  14. Accuracy and reliability of stitched cone-beam computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Egbert, Nicholas [Private Practice, Reconstructive Dental Specialists of Utah, Salt Lake (United States); Cagna, David R.; Ahuja, Swati; Wicks, Russell A. [Dept. of rosthodontics, University of Tennessee Health Science Center College of Dentistry, Memphis (United States)

    2015-03-15

    This study was performed to evaluate the linear distance accuracy and reliability of stitched small field of view (FOV) cone-beam computed tomography (CBCT) reconstructed images for the fabrication of implant surgical guides. Three gutta percha points were fixed on the inferior border of a cadaveric mandible to serve as control reference points. Ten additional gutta percha points, representing fiduciary markers, were scattered on the buccal and lingual cortices at the level of the proposed complete denture flange. A digital caliper was used to measure the distance between the reference points and fiduciary markers, which represented the anatomic linear dimension. The mandible was scanned using small FOV CBCT, and the images were then reconstructed and stitched using the manufacturer's imaging software. The same measurements were then taken with the CBCT software. The anatomic linear dimension measurements and stitched small FOV CBCT measurements were statistically evaluated for linear accuracy. The mean difference between the anatomic linear dimension measurements and the stitched small FOV CBCT measurements was found to be 0.34 mm with a 95% confidence interval of +0.24 - +0.44 mm and a mean standard deviation of 0.30 mm. The difference between the control and the stitched small FOV CBCT measurements was insignificant within the parameters defined by this study. The proven accuracy of stitched small FOV CBCT data sets may allow image-guided fabrication of implant surgical stents from such data sets.

  15. Comparison between cone-beam and multislice computed tomography for identification of simulated bone lesions

    Energy Technology Data Exchange (ETDEWEB)

    Gaia, Bruno Felipe [University of Sao Paulo (USP), SP (Brazil). Dental School. Stomatology Dept.; Sales, Marcelo Augusto Oliveira de [University of Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dental School. Dept. of Radiology; Perrella, Andreia; Fenyo-Pereira, Marlene; Cavalcanti, Marcelo Gusmao Paraiso, E-mail: mgpcaval@usp.b [University of Sao Paulo (USP), SP (Brazil). Dental School. Dept. of Radiology

    2011-07-15

    There are many studies that compare the accuracy of multislice (MSCT) and cone beam (CBCT) computed tomography for evaluations in the maxillofacial region. However, further studies comparing both acquisition techniques for the evaluation of simulated mandibular bone lesions are needed. The aim of this study was to compare the accuracy of MSCT and CBCT in the diagnosis of simulated mandibular bone lesions by means of cross sectional images and axial/MPR slices. Lesions with different dimensions, shape and locularity were produced in 15 dry mandibles. The images were obtained following the cross sectional and axial/MPR (Multiplanar Reconstruction) imaging protocols and were interpreted independently. CBCT and MSCT showed similar results in depicting the percentage of cortical bone involvement, with great sensitivity and specificity (p < 0.005). There were no significant intra- or inter-examiner differences between axial/MPR images and cross sectional images with regard to sensitivity and specificity. CBCT showed results similar to those of MSCT for the identification of the number of simulated bone lesions. Cross sectional slices and axial/MPR images presented high accuracy, proving useful for bone lesion diagnosis. (author)

  16. Cone-Beam computed tomography evaluation of maxillary expansion in twins with cleft lip and palate

    Directory of Open Access Journals (Sweden)

    Luciane Macedo de Menezes

    2012-04-01

    Full Text Available OBJECTIVE: The establishment of normal occlusal relationships in patients with cleft lip and palate using rapid maxillary expansion may promote good conditions for future rehabilitation. OBJECTIVE: This study describes the clinical case of monozygotic twins with unilateral cleft lip and palate at the age of mixed dentition, who were treated using the same rapid maxillary expansion protocol, but with two different screws (conventional and fan-type expansion screw. Results were evaluated using plaster models, intraoral and extraoral photographs, and Cone-Beam computed tomography (CBCT scans obtained before the beginning of the treatment, (T1. METHODS: The patients were followed up for 6 months after maxillary expansion, when the same tests requested at T1 were obtained again for review (T2. T1 and T2 results were compared using lateral cephalometric tracings and measurements of the intercanine and intermolar distances in the plaster models using a digital caliper. RESULTS: The two types of expansion screws corrected the transverse discrepancy in patients with cleft lip and palate. The shape of the upper arches improved at 10 days after activation. CONCLUSION: CBCT scans provide detailed information about craniofacial, maxillary and mandibular changes resulting from rapid maxillary expansion. The most adequate screw for each type of malocclusion should be chosen after detailed examination of the dental arches.

  17. Prevalence and features of distolingual roots in mandibular molars analyzed by cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Mi Ree; Moon, Young Mi; Seo, Min Seock [Dept. of Conservative Dentistry, Wonkang University Daejeon Dental Hospital, Daejeon (Korea, Republic of)

    2015-12-15

    This study evaluated the prevalence of distolingual roots in mandibular molars among Koreans, the root canal system associated with distolingual roots, and the concurrent appearance of a distolingual root in the mandibular first molar and a C-shaped canal in the mandibular second molar. Cone-beam computed tomographic images of 264 patients were screened and examined. Axial sections of 1056 mandibular molars were evaluated to determine the number of roots. The interorifice distances from the distolingual canal to the distobuccal canal were also estimated. Using an image analysis program, the root canal curvature was calculated. Pearson's chi-square test, the paired t-test, one-way analysis of variance, and post-hoc analysis were performed. Distolingual roots were observed in 26.1% of the subjects. In cases where a distolingual root was observed in the mandibular molar, a significant difference was observed in the root canal curvature between the buccolingual and mesiodistal orientations. The maximum root canal curvature was most commonly observed in the mesiodistal orientation in the coronal portion, but in the apical portion, maximum root canal curvature was most often observed in the buccolingual orientation. The canal curvature of distolingual roots was found to be very complex, with a different direction in each portion. No correlation was found between the presence of a distolingual root in the mandibular first molar and the presence of a C-shaped canal in the mandibular second molar.

  18. Scatter correction for cone-beam computed tomography using self-adaptive scatter kernel superposition

    Institute of Scientific and Technical Information of China (English)

    XIE Shi-Peng; LUO Li-Min

    2012-01-01

    The authors propose a combined scatter reduction and correction method to improve image quality in cone beam computed tomography (CBCT).The scatter kernel superposition (SKS) method has been used occasionally in previous studies.However,this method differs in that a scatter detecting blocker (SDB) was used between the X-ray source and the tested object to model the self-adaptive scatter kernel.This study first evaluates the scatter kernel parameters using the SDB,and then isolates the scatter distribution based on the SKS.The quality of image can be improved by removing the scatter distribution.The results show that the method can effectively reduce the scatter artifacts,and increase the image quality.Our approach increases the image contrast and reduces the magnitude of cupping.The accuracy of the SKS technique can be significantly improved in our method by using a self-adaptive scatter kernel.This method is computationally efficient,easy to implement,and provides scatter correction using a single scan acquisition.

  19. GPU-based Cone Beam CT Reconstruction via Total Variation Regularization

    CERN Document Server

    Jia, Xun; Lewis, John; Li, Ruijiang; Gu, Xuejun; Men, Chunhua; Jiang, Steve B

    2010-01-01

    Cone-beam CT (CBCT) reconstruction is of central importance in image guided radiation therapy due to its broad applications in many clinical contexts. However, the high image dose in CBCT scans is a clinical concern, especially when it is used repeatedly for patient setup purposes before each radiotherapy treatment fraction. A desire for lower imaging does has motivated a vast amount of interest in the CBCT reconstruction based on a small number of X-ray projections. Recently, advances in image processing and compressed sensing have led to tremendous success in recovering signals based on extremely low sampling rates, laying the mathematical foundation for reconstructing CBCT from few projections. In this paper, we present our recent development on a GPU-based iterative algorithm for the highly under-sampled CBCT reconstruction problem. We considered an energy functional consisting of a data fidelity term and a regularization term of a total variation norm. In order to solve our model, we developed a modified...

  20. CT to Cone-beam CT Deformable Registration With Simultaneous Intensity Correction

    CERN Document Server

    Zhen, Xin; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B

    2012-01-01

    Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer g...

  1. Cone-beam CT analysis of patients with obstructive sleep apnea compared to normal controls

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Allison; Kalathingal Sajitha; De Rossi, Scott [Dept. of Oral Health and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta (United States); Cohen, Ruben [Park Avenue Oral and Facial Surgery, New York (United States); Loony, Stephen [Dept. of Biostatistics and Epidemiology, Augusta University Medical College of Georgia, Augusta (United States)

    2016-03-15

    To evaluate the upper airway dimensions of obstructive sleep apnea (OSA) and control subjects using a cone-beam computed tomography (CBCT) unit commonly applied in clinical practice in order to assess airway dimensions in the same fashion as that routinely employed in a clinical setting. This was a retrospective analysis utilizing existing CBCT scans to evaluate the dimensions of the upper airway in OSA and control subjects. The CBCT data of sixteen OSA and sixteen control subjects were compared. The average area, average volume, total volume, and total length of the upper airway were computed. Width and anterior-posterior (AP) measurements were obtained on the smallest axial slice. OSA subjects had a significantly smaller average airway area, average airway volume, total airway volume, and mean airway width. OSA subjects had a significantly larger airway length measurement. The mean A-P distance was not significantly different between groups. OSA subjects have a smaller upper airway compared to controls with the exception of airway length. The lack of a significant difference in the mean A-P distance may indicate that patient position during imaging (upright vs. supine) can affect this measurement. Comparison of this study with a future prospective study design will allow for validation of these results.

  2. A GPU Tool for Efficient, Accurate, and Realistic Simulation of Cone Beam CT Projections

    CERN Document Server

    Jia, Xun; Cervino, Laura; Folkerts, Michael; Jiang, Steve B

    2012-01-01

    Simulation of x-ray projection images plays an important role in cone beam CT (CBCT) related research projects. A projection image contains primary signal, scatter signal, and noise. It is computationally demanding to perform accurate and realistic computations for all of these components. In this work, we develop a package on GPU, called gDRR, for the accurate and efficient computations of x-ray projection images in CBCT under clinically realistic conditions. The primary signal is computed by a tri-linear ray-tracing algorithm. A Monte Carlo (MC) simulation is then performed, yielding the primary signal and the scatter signal, both with noise. A denoising process is applied to obtain a smooth scatter signal. The noise component is then obtained by combining the difference between the MC primary and the ray-tracing primary signals, and the difference between the MC simulated scatter and the denoised scatter signals. Finally, a calibration step converts the calculated noise signal into a realistic one by scali...

  3. View-dependent geometric calibration for offset flat-panel cone beam computed tomography systems

    Science.gov (United States)

    Nguyen, Van-Giang

    2016-04-01

    Geometric parameters that define the geometry of imaging systems are crucial for image reconstruction and image quality in x-ray computed tomography (CT). The problem of determining geometric parameters for an offset flat-panel cone beam CT (CBCT) system, a recently introduced modality with a large field of view, with the assumption of an unstable mechanism and geometric parameters that vary in each view, is considered. To accurately and rapidly find the geometric parameters for each projection view, we use the projection matrix method and design a dedicated phantom that is partially visible in all projection views. The phantom consists of balls distributed symmetrically in a cylinder to ensure the inclusion of the phantom in all views, and a large portion of the phantom is covered in the projection image. To efficiently use calibrated geometric information in the reconstruction process and get rid of approximation errors, instead of decomposing the projection matrix into actual geometric parameters that are manually corrected before being used in reconstruction, as in conventional methods, we directly use the projection matrix and its pseudo-inverse in projection and backprojection operations of reconstruction algorithms. The experiments illustrate the efficacy of the proposed method with a real offset flat-panel CBCT system in dental imaging.

  4. Accuracy of digital peripical radiography and cone-beam computed tomography in detecting external root resorption

    Energy Technology Data Exchange (ETDEWEB)

    Creanga, Adriana Gabriela [Division of Dental Diagnostic Science, Rutgers School of Dental Medicine, Newark (United States); Geha, Hassem; Sankar, Vidya; Mcmahan, Clyde Alex; Noujeim, Marcel [University of Texas Health Science Center San Antonio, San Antonio (United States); Teixeira, Fabrico B. [Dept. of Endodontics, University of Iowa, Iowa City (United States)

    2015-09-15

    The purpose of this study was to evaluate and compare the efficacy of cone-beam computed tomography (CBCT) and digital intraoral radiography in diagnosing simulated small external root resorption cavities. Cavities were drilled in 159 roots using a small spherical bur at different root levels and on all surfaces. The teeth were imaged both with intraoral digital radiography using image plates and with CBCT. Two sets of intraoral images were acquired per tooth: orthogonal (PA) which was the conventional periapical radiograph and mesioangulated (SET). Four readers were asked to rate their confidence level in detecting and locating the lesions. Receiver operating characteristic (ROC) analysis was performed to assess the accuracy of each modality in detecting the presence of lesions, the affected surface, and the affected level. Analysis of variation was used to compare the results and kappa analysis was used to evaluate interobserver agreement. A significant difference in the area under the ROC curves was found among the three modalities (P=0.0002), with CBCT (0.81) having a significantly higher value than PA (0.71) or SET (0.71). PA was slightly more accurate than SET, but the difference was not statistically significant. CBCT was also superior in locating the affected surface and level. CBCT has already proven its superiority in detecting multiple dental conditions, and this study shows it to likewise be superior in detecting and locating incipient external root resorption.

  5. The geometric calibration of cone-beam imaging and delivery systems in radiation therapy

    CERN Document Server

    Matsinos, E; Kaissl, Wolfgang; Matsinos, Evangelos

    2006-01-01

    We propose a method to achieve the geometric calibration of cone-beam imaging and delivery systems in radiation therapy; our approach applies to devices where an X-ray source and a flat-panel detector, facing each other, move in circular orbits around the irradiated object. In order to extract the parameters of the geometry from the data, we use a light needle phantom which is easy to manufacture. A model with ten free parameters (spatial lengths and distortion angles) has been put forth to describe the geometry and the mechanical imperfections of the units being calibrated; a few additional parameters are introduced to account for residual effects (small effects which lie beyond our model). The values of the model parameters are determined from one complete scan of the needle phantom via a robust optimisation scheme. The application of this method to two sets of five counterclockwise (ccw) and five clockwise (cw) scans yielded consistent and reproducible results. A number of differences have been observed be...

  6. Cone beam computed tomography study of apical root resorption induced by Herbst appliance

    Directory of Open Access Journals (Sweden)

    João Paulo SCHWARTZ

    2015-10-01

    Full Text Available Objective This study evaluated the frequency of root resorption during the orthodontic treatment with Herbst appliance by Cone Beam Computed Tomography (CBCT.Material and Methods The sample comprised 23 patients (11 men, 12 women; mean ages 15.76±1.75 years with Class II division 1 malocclusion, treated with Herbst appliance. CBCT was obtained before treatment (T0 and after Herbst treatment (T1. All the dental roots, except third molars, were evaluated, and apical root resorption was determined using the axial guided navigation method. Paired t-tests and Wilcoxon T Test were used to compare the dependent samples in parametric and nonparametric cases, respectively. Chi-Square Test with Yates’ correction was used to evaluate the relationship between apical root resorption and gender. Results were considered at a significance level of 5%.Results Apical resorption was detected by CBCT in 57.96% of 980 roots that underwent Herbst appliance treatment. All patients had minimal resorption and there was no statistical significance between the genders.Conclusion CBCT three-dimensional evaluation showed association between Herbst appliance and minimal apical root resorption, mostly in the anchoring teeth, without clinical significance.

  7. Clinical usefulness of c-arm cone-beam CT inpercutaneous drainage of inaccessible abscess

    Energy Technology Data Exchange (ETDEWEB)

    So, Young Ho; Choi, Young Ho; Woo, Hyun Sik; Moon, Min Hoan; Sung, Chang Kyu [Dept. of Radiology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Hur, Bo Yun [Dept. of Radiology, National Cancer Center, Goyang (Korea, Republic of)

    2015-08-15

    The objective of this study was to evaluate the usefulness of C-arm cone-beam CT (CBCT) in drainage of inaccessible abscesses. To identify the trajectory of the needle or guide wire, CBCT was performed on 21 patients having an inaccessible abscess. CBCT was repeated until proper targeting of the abscess was achieved, before the insertion of a large bore catheter. The etiology, location of the abscess, causes of inaccessibility, radiation dose, technical and clinical success rates of drainage, and any complications confronted, were evaluated. A total of 29 CBCTs were performed for 21 abscesses. Postoperative and non-postoperative abscesses were 9 (42.9%) and 12 (57.1%) in number, respectively. Direct puncture was performed in 18 cases. In 3 cases, the surgical drain or the fistula opening was used as an access route. The causes of inaccessibility were narrow safe window due to adjacent or overlying organs (n = 9), irregularly dispersed abscess (n = 7), deep location with poor sonographic visualization (n = 4), and remote location of the abscess from surgical drain (n = 1). Technical and clinical successes were 95.5% and 100%, respectively. Cumulative air kerma and dose-area product were 21.62 ± 5.41 mGy and 9179.87 ± 2337.70 mGycm2, respectively. There were no procedure related complications. CBCT is a useful technique for identifying the needle and guide wire during drainage of inaccessible abscess.

  8. GPU-based Iterative Cone Beam CT Reconstruction Using Tight Frame Regularization

    CERN Document Server

    Jia, Xun; Lou, Yifei; Jiang, Steve B

    2010-01-01

    X-ray imaging dose from serial cone-beam CT (CBCT) scans raises a clinical concern in most image guided radiation therapy procedures. It is the goal of this paper to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight frame (TF) based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512x512x70 can be reconstructed in about ~139 sec. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm leads to much higher CBCT quality than those obtained from a conventional FDK algorithm in the context of undersamp...

  9. Direct comparison of conventional radiography and cone-beam CT in small bone and joint trauma

    Energy Technology Data Exchange (ETDEWEB)

    Smet, E. de [Antwerp University Hospital, Department of Radiology, Edegem (Belgium); Praeter, G. de [Sint-Maartenziekenhuis, Department of Radiology, Duffel (Belgium); Verstraete, K.L.A. [Ghent University Hospital, Department of Radiology, Ghent (Belgium); Wouters, K. [Antwerp University Hospital, Department of Scientific Coordination and Biostatistics, Edegem (Belgium); Beuckeleer, Luc de [GZA Sint-Augustinus, Department of Radiology, Wilrijk (Belgium); Vanhoenacker, F.M.H.M. [Antwerp University Hospital, Department of Radiology, Edegem (Belgium); Sint-Maartenziekenhuis, Department of Radiology, Duffel (Belgium); Ghent University Hospital, Department of Radiology, Ghent (Belgium)

    2015-08-15

    To compare the diagnostic value of cone-beam computed tomography (CBCT) and conventional radiography (CR) after acute small bone or joint trauma. Between March 2013 and January 2014, 231 patients with recent small bone or joint trauma underwent CR and subsequent CBCT. CR and CBCT examinations were independently assessed by two readers, blinded to the result of the other modality. The total number of fractures as well as the number of complex fractures were compared, and inter- and intraobserver agreement for CBCT was calculated. In addition, radiation doses and evaluation times for both modalities were noted and statistically compared. Fracture detection on CBCT increased by 35 % and 37 % for reader 1 and reader 2, respectively, and identification of complex fractures increased by 236 % and 185 %. Interobserver agreement for CBCT was almost perfect, as was intraobserver agreement for reader 1. The intraobserver agreement for reader 2 was substantial. Radiation doses and evaluation time were significantly higher for CBCT. CBCT detects significantly more small bone and joint fractures, in particular complex fractures, than CR. In the majority of cases, the clinical implication of the additionally detected fractures is limited, but in some patients (e.g., fracture-dislocations), the management is significantly influenced by these findings. As the radiation dose for CBCT substantially exceeds that of CR, we suggest adhering to CR as the first-line examination after small bone and joint trauma and keeping CBCT for patients with clinical-radiographic discordance or suspected complex fractures in need of further (preoperative) assessment. (orig.)

  10. Assessment of maxillary third molars with panoramic radiography and cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yun Hoa; Cho, Bong Hae [Dept.of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Yangsan (Korea, Republic of)

    2015-12-15

    This study investigated maxillary third molars and their relation to the maxillary sinus using panoramic radiography and cone-beam computed tomography (CBCT). A total of 395 maxillary third molars in 234 patients were examined using panoramic radiographs and CBCT images. We examined the eruption level of the maxillary third molars, the available retromolar space, the angulation, the relationship to the second molars, the number of roots, and the relationship between the roots and the sinus. Females had a higher frequency of maxillary third molars with occlusal planes apical to the cervical line of the second molar (Level C) than males. All third molars with insufficient retromolar space were Level C. The most common angulation was vertical, followed by buccoangular. Almost all of the Level C molars were in contact with the roots of the second molar. Erupted teeth most commonly had three roots, and completely impacted teeth most commonly had one root. The superimposition of one third of the root and the sinus floor was most commonly associated with the sinus floor being located on the buccal side of the root. Eruption levels were differently distributed according to gender. A statistically significant association was found between the eruption level and the available retromolar space. When panoramic radiographs showed a superimposition of the roots and the sinus floor, expansion of the sinus to the buccal side of the root was generally observed in CBCT images.

  11. Contrast-enhanced angiographic cone-beam computed tomography without pre-diluted contrast medium

    Energy Technology Data Exchange (ETDEWEB)

    Jo, K.I.; Kim, S.R.; Choi, J.H.; Kim, K.H.; Jeon, P. [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center, Gangnam-gu, Seoul (Korea, Republic of)

    2015-11-15

    Contrast-enhanced cone-beam computed tomography (CBCT) has been introduced and accepted as a useful technique to evaluate delicate vascular anatomy and neurovascular stents. Current protocol for CBCT requires quantitative dilution of contrast medium to obtain adequate quality images. Here, we introduce simple methods to obtain contrast-enhanced CBCT without quantitative contrast dilution. A simple experiment was performed to estimate the change in flow rate in the internal carotid artery during the procedure. Transcranial doppler (TCD) was used to evaluate the velocity change before and after catheterization and fluid infusion. In addition, 0.3 cm{sup 3}/s (n = 3) and 0.2 cm{sup 3}/s (n = 7) contrast infusions were injected and followed by saline flushes using a 300 mmHg pressure bag to evaluate neurovascular stent and host arteries. Flow velocities changed -15 ± 6.8 % and +17 ± 5.5 % from baseline during catheterization and guiding catheter flushing with a 300 mmHg pressure bag, respectively. Evaluation of the stents and vascular structure was feasible using this technique in all patients. Quality assessment showed that the 0.2 cm{sup 3}/s contrast infusion protocol was better for evaluating the stent and host artery. Contrast-enhanced CBCT can be performed without quantitative contrast dilution. Adequate contrast dilution can be achieved with a small saline flush and normal blood flow. (orig.)

  12. Occurrence of maxillary sinus abnormalities detected by cone beam CT in asymptomatic patients

    Directory of Open Access Journals (Sweden)

    Rege Inara Carneiro

    2012-08-01

    Full Text Available Abstract Background Although cone beam computed tomography (CBCT images of the maxillofacial region allow the inspection of the entire volume of the maxillary sinus (MS, identifying anatomic variations and abnormalities in the image volume, this is frequently neglected by oral radiologists when interpreting images of areas at a distance from the dentoalveolar region, such as the full anatomical aspect of the MS. The aim of this study was to investigate maxillary sinus abnormalities in asymptomatic patients by using CBCT. Methods 1113 CBCT were evaluated by two examiners and identification of abnormalities, the presence of periapical lesions and proximity to the lower sinus wall were recorded. Data were analyzed using descriptive statistics, chi-square tests and Kappa statistics. Results Abnormalities were diagnosed in 68.2% of cases (kappa = 0.83. There was a significant difference between genders (p Conclusions Abnormalities in maxillary sinus emphasizes how important it is for the dentomaxillofacial radiologist to undertake an interpretation of the whole volume of CBCT images.

  13. Soft tissue visualization using a highly efficient megavoltage cone beam CT imaging system

    Science.gov (United States)

    Ghelmansarai, Farhad A.; Bani-Hashemi, Ali; Pouliot, Jean; Calderon, Ed; Hernandez, Paco; Mitschke, Matthias; Aubin, Michelle; Bucci, Kara

    2005-04-01

    Recent developments in two-dimensional x-ray detector technology have made volumetric Cone Beam CT (CBCT) a feasible approach for integration with conventional medical linear accelerators. The requirements of a robust image guidance system for radiation therapy include the challenging combination of soft tissue sensitivity with clinically reasonable doses. The low contrast objects may not be perceptible with MV energies due to the relatively poor signal to noise ratio (SNR) performance. We have developed an imaging system that is optimized for MV and can acquire Megavoltage CBCT images containing soft tissue contrast using a 6MV x-ray beam. This system is capable of resolving relative electron density as low as 1% with clinically acceptable radiation doses. There are many factors such as image noise, x-ray scatter, improper calibration and acquisitions that have a profound effect on the imaging performance of CBCT and in this study attempts were made to optimize these factors in order to maximize the SNR. A QC-3V phantom was used to determine the contrast to noise ratio (CNR) and f50 of a single 2-D projection. The computed f50 was 0.43 lp/mm and the CNR for a radiation dose of 0.02cGy was 43. Clinical Megavoltage CBCT images acquired with this system demonstrate that anatomical structures such as the prostate in a relatively large size patient are visible using radiation doses in range of 6 to 8cGy.

  14. Diagnosis and planning in apical surgery: use of cone-beam tomography

    Directory of Open Access Journals (Sweden)

    Regina Karla de Pontes Lima

    2010-10-01

    Full Text Available Introduction and objective: The ability to tridimensionally evaluate pathological and anatomical areas, in apical surgery planning, presents a number of advantages. Cone beam computed tomography (CBC