WorldWideScience

Sample records for 3c-sic crystals irradiated

  1. Irradiation Defects in Silicon Crystal

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The application of irradiation in silicon crystal is introduced.The defects caused by irradiation are reviewed and some major ways of studying defects in irradiated silicon are summarized.Furthermore the problems in the investigation of irradiated silicon are discussed as well as its properties.

  2. Folding two dimensional crystals by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.

  3. Charge carrier rearrangement in spinel crystals irradiated at low temperatures

    International Nuclear Information System (INIS)

    The results of an investigation of thermoluminescence (TL) in nominally pure MgAl2O4 spinel single crystals in the temperature range between 80-670 K are presented. For a heating rate of 0.21 K/s, TL spectra exhibit glow peaks in three distinct temperature ranges: 100-160, 270-370 and 470-670 K. The most prominent peaks are at 115, 140, 305, 335, 525, 570 and 605 K. The locations of the temperature maxima, as well as the intensity of the peaks, vary depending on the treatment of the crystals, the type of irradiation and the temperature of irradiation. Measurements of the glow peaks at different emission wavelengths and the use of partial bleaching and isothermal decay techniques for TL, allowed us to propose mechanisms for charge carrier rearrangement at lattice defects and impurity ions, during irradiation and subsequent heating

  4. Proton irradiation of liquid crystal based adaptive optical devices

    International Nuclear Information System (INIS)

    To assess its radiation hardness, a liquid crystal based adaptive optical element has been irradiated using a 60 MeV proton beam. The device with the functionality of an optical beam steerer was characterised before, during and after the irradiation. A systematic set of measurements on the transmission and beam deflection angles was carried out. The measurements showed that the transmission decreased only marginally and that its optical performance degraded only after a very high proton fluence (1010p/cm2). The device showed complete annealing in the functionality as a beam steerer, which leads to the conclusion that the liquid crystal technology for optical devices is not vulnerable to proton irradiation as expected in space.

  5. Transient compression produced in a crystal by laser irradiation

    International Nuclear Information System (INIS)

    Multikilobar transient strains were produced in single crystal silicon by laser irradiation. Variations of the lattice spacing with time and in depth were observed by pulsed x-ray diffraction. Targets were (111) silicon wafers, overcoated with 1000 A aluminum to provide a short laser absorption depth, and further overcoated with a 25 μm plastic layer. The target was irradiated with a 1 nsec pulse of 1.06 μm laser light at 0.8 - 8 J cm/sup -2/. At these low irradiances, the plastic layer is transparent; the laser light produces a low temperature aluminum plasma/vapor within the target structure. The plastic overcoat provides inertial confinement of the plasma and results in an enhancement of the pressure pulse

  6. Electron irradiation effect on single crystal of niobium

    International Nuclear Information System (INIS)

    The effect of electron irradiation (900 KeV) on gliding dislocations of single crystal Nb with its tensile axe in the [941] orientation was observed for the in-situ deformation in a high voltage electron microscope (HVEM) at Argonne National Laboratory. The experimental was carried out by the 1 hour-electron irradiation with no stress applied. Straight dislocations actuating as sinks for the electron produced defects became helicoidal as the irradiation proceeded. Frenkel pairs were created in Nb for electron energies > = 650 KeV and, as the single vacancies do not undergo long-range migration in Nb at temperatures much below 620 K, the defects that are entrapped by the dislocations are self-interstitials produced by electron displacement. Applying the stress it was possible to observe that modified dislocations did not glide while the dislocations not affected by the irradiation are visibly in movement. This important result explains the neutron and electron-irradiation induced work-hardening effect for Nb that was previously observed. (Author)

  7. EPR studies of gamma-irradiated taurine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, A. E-mail: abulut@samsun.omu.edu.tr; Karabulut, B.; Tapramaz, R.; Koeksal, F

    2000-04-01

    An EPR study of gamma-irradiated taurine [C{sub 2}H{sub 7}NO{sub 3}S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of {sup 32}SO{sup -}{sub 2} and {sup 33}SO{sup -}{sub 2} radicals. The hyperfine values of {sup 33}SO{sup -}{sub 2} radical were used to obtain O-S-O bond angle for both sites.

  8. EPR studies of gamma-irradiated taurine single crystals

    Science.gov (United States)

    Bulut, A.; Karabulut, B.; Tapramaz, R.; Köksal, F.

    2000-04-01

    An EPR study of gamma-irradiated taurine [C 2H 7NO 3S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of 32ṠO -2 and 33ṠO -2 radicals. The hyperfine values of 33ṠO -2 radical were used to obtain O-S-O bond angle for both sites.

  9. Liquid crystal alignment on excimer laser irradiated polyimide

    International Nuclear Information System (INIS)

    Grating and photoinduced anisotropic modifications are made to polyimide layers to promote homogeneous and pretilted nematic liquid crystal alignment. Gratings are etched into the polyimide by irradiating a phase mask of period 1.1 μm with the output from a KrF excimer laser of wavelength 248 nm with fluences above the threshold required for ablation. Grating depths from 10 to 190 nm have been achieved using a simple pulse from the laser, and the liquid crystal azimuthal anchoring energy is determined as a function of the grating depth. Values up to 1.3 x 10-5 Jm-2 are found. Discrepancies are found when comparisons are made between experimental data and a theory based upon elastic strain energy minimisation. A modified theory taking finite polar anchoring into account shows better agreement. Polarised excimer laser radiation at normal incidence is used to induce an anisotropy which gives rise to homogeneous liquid crystal alignment. The strength of the azimuthal anchoring energy is similar to that produced by grating alignment. Spectroscopic analysis reveals that the alignment originates from the stronger depletion of polyimide chains parallel to the exposure polarisation direction. The dependence of beam fluence and exposure time on the anchoring energy is measured, and the degradation mechanism of the polyimide is investigated as a function of the exposure. We find that oxidative degradation takes place. We also use these techniques to identify the chemical composition of the polyimide material. Pretilted liquid crystal alignment has also been achieved, with pretilt angles up to 3.7 deg. A tilted polymer distribution is generated by oblique exposure of the polyimide to an elliptically polarised beam. We measure the liquid crystal pretilt angle as a function of the angle of incidence, and exposure time and present a theoretical analysis of the polyimide chain azimuthal distribution which agrees with the experimental results. Finally, a simple and novel technique

  10. Systematic Study of the PbWO4 Crystal Short Term Instalibity Under Irradiation

    CERN Document Server

    Annenkov, Alexander; Chipaux, Rémi; Drobychev, Gleb; Fedorov, Andrey; Géléoc, Marie; Golubev, Nikolai; Korzhik, Mikhail; Lecoq, Paul; Ligun, A B; Missevitch, Oleg; Pavlenko, V B; Peigneux, Jean-Pierre; Singovsky, Alexander

    1997-01-01

    The effect of the irradiation on the lead tungstate ( PWO) scintillator properties has been studied at different irradiation facilities. Lead tungstate crystals grown with the tuning of oxides content in the melt to the stoichiometry of pure sheelite or sheelite-like type crystals and doped with heterovalent, trivalent and pentavalent impurities have been studied in order to optimize their resistance to irradiation. A combination of a selective cleaning of raw materials, a tuning of the melt from crystallization to crystallisation, and a destruction or compensation of the point structure defects has been used to minimize the short-term instability of PWO parameters under irradiation.

  11. Comprehensive studies on irradiated single-crystal diamond sensors

    Energy Technology Data Exchange (ETDEWEB)

    Stegler, Martin [DESY, Zeuthen (Germany)

    2015-07-01

    Single-crystal diamond sensors are used as part of the Beam and Radiation Instrumentation and Luminosity (BRIL) projects of the CMS experiment. Due to an upgrade of the Fast Beam Conditions Monitor (BCM1F) these diamond sensors are exchanged and the irradiated ones are now used for comprehensive studies. Current over voltage (IV), current over time (CT) and charge collection efficiency (CCE) measurements were performed for a better understanding of the radiation damage incurred during operation and to compensate in the future. The effect of illumination with various light sources on the charge collection efficiency was investigated and led to interesting results. Intensity and wavelength of the light were varied for deeper insight of polarization effects.

  12. Effect of SR irradiation on crystallization of amorphous tin oxide film

    CERN Document Server

    Kimura, Y; Hanamoto, K; Sasaki, M; Kimura, S; Nakada, Tatsuya; Nakayama, Y; Kaito, C

    2001-01-01

    In order to see the effect of SR irradiation on crystal growth, crystallization of tin oxide films has been performed in vacuum under SR irradiation. A thin amorphous tin oxide film 50 nm thick was prepared on the carbon substrate by vacuum evaporation of SnO sub 2 power. A SnO crystal appeared between 450-500 deg. C upon vacuum heating, with a preferred orientation of (0 0 1). By SR irradiation using a cylindrical mirror for 20 s, the SnO crystal appeared with the preferred orientation of (1 1 1). The crystal with the crystallographic shear structure was grown by SR irradiation. This growth under a SR beam is discussed in terms of SR beam excitation of lone-pair electrons seen in the SnO crystal structure.

  13. Piezoelectric resonance calorimetry of nonlinear-optical crystals under laser irradiation

    Science.gov (United States)

    Ryabushkin, Oleg A.; Konyashkin, Aleksey V.; Myasnikov, Daniil V.; Tyrtyshnyy, Valentin A.; Vershinin, Oleg I.

    2013-09-01

    Novel method is proposed for determination of nonlinear-optical crystal both heat transfer and optical absorption coefficients by measuring kinetics of the laser-irradiated crystal temperature-dependent piezoelectric resonance frequency. When laser radiation propagates through the crystal its temperature evaluation with time is directly determined from crystal piezoelectric resonance frequency shift, which is precisely measured by analyzing crystal response to the applied ac electric voltage. Heat transfer and optical absorption coefficients are obtained using measured characteristic time of crystal laser heating kinetics by solving nonstationary heat conduction equation. Experiments were performed with nonlinear-optical α-quartz, lithium triborate (LBO) and periodically poled lithium niobate (PPLN) crystals.

  14. High resolution X-ray diffraction studies on unirradiated and irradiated strontium hexaferrite crystals

    Indian Academy of Sciences (India)

    Balwinder Kaur; Monita Bhat; F Licci; Ravi Kumar; K K Bamzai; P N Kotru

    2012-04-01

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator combination is used to study the irradiation induced defects in flux grown Sr-hexaferrite crystals irradiated with 50 MeV Li3+ ion beams at room temperature with a fluence value of 1 × 1014 ions/cm2. The diffraction curves of the irradiated crystals suggest the possibility of creation of low angle grain boundaries and other point/clusters of defects causing amorphization in the irradiated crystals. The perfection of the irradiated and unirradiated (0001) cleaved surfaces of the crystals is studied using the bulk method of X-ray topography. The topographs supplement the findings suggestive of modifications in the crystalline quality of SrFe12O19 on irradiation with SHI of Li3+. Etching of the (0001) cleaved surfaces in H3PO4 at 120°C suggests that the dissolution characteristics of the surfaces get affected on irradiation with SHI of Li3+, besides supporting the findings of HRXRD and X-ray topography regarding modifications in the perfection of SrFe12O19 on irradiation.

  15. Neutron irradiation of Czochralski and temperature gradient technique grown YAG crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Chengyong [Faculty of Scinece, Ningbo University, Ningbo 315211 (China)]. E-mail: Jiangchengyong@nbu.edu.cn

    2006-03-01

    Absorption, fluorescence and thermoluminescence spectra are presented for 1.5-MeV neutron-irradiated YAG crystals grown by Czochralski (CZ) and temperature gradient technique (TGT). F{sup +} centers were formed in both YAG samples and valence of iron impurities in TGT-grown YAG crystals switched from divalent to trivalent after neutron irradiation. At 350 and 300 deg. C thermoluminescence was observed in CZ-grown and TGT-grown YAG crystals, respectively, and assigned to irradiation-induced color centers. Calculated with the initial elevation method, thermoluminescence trap depths of the 350 deg. C band and of the 300 deg. C band are 0.379 and 0.768 eV, respectively. The significant difference in thermoluminescence intensities between CZ- and TGT-grown YAG crystals is associated with the irradiation-induced color centers and quenching effect of Fe{sup 3+} ions.

  16. New effect of ionizing irradiation: anisotropic expansion of a peptide crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, S.; Kurita, Y.; Miyagawa, I.

    1985-10-01

    Expansion of crystals resulting from X irradiation was studied in the case of a peptide, N-acetyl-D, L-alanine. This expansion was discovered by examining several irradiated organic solids for possible expansion, which was suggested by the recent observation of crystal imperfections in another peptide. The expansion, which occurred anisotropically along the c axis, was found to depend on dose, the maximum being as large as 20% when assisted by heat treatment.

  17. Ferromagnetism in proton irradiated 4H-SiC single crystal

    Directory of Open Access Journals (Sweden)

    Ren-Wei Zhou

    2015-04-01

    Full Text Available Room-temperature ferromagnetism is observed in proton irradiated 4H-SiC single crystal. An initial increase in proton dose leads to pronounced ferromagnetism, accompanying with obvious increase in vacancy concentration. Further increase in irradiation dose lowers the saturation magnetization with the decrease in total vacancy defects due to the defects recombination. It is found that divacancies are the mainly defects in proton irradiated 4H-SiC and responsible for the observed ferromagnetism.

  18. Enhanced Au induced lateral crystallization in electron-irradiated amorphous Ge on SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sakiyama, Shin; Kaneko, Takahiro; Ootsubo, Takanobu; Sakai, Takatsugu; Nakashima, Kazutoshi; Moto, Kenta; Yoneoka, Masashi; Takakura, Kenichiro; Tsunoda, Isao, E-mail: isao_tsunoda@kumamoto-nct.ac.jp

    2014-04-30

    We have investigated the low temperature of Au induced lateral crystallization of electron irradiated amorphous Ge on SiO{sub 2}/Si substrate. The reduction of the critical annealing time to cause the Au induced lateral crystallization is realized by high energy electron irradiation. In addition, the lateral crystallization region of the sample with electron irradiation has high crystalline quality as well as the sample without electron irradiation. We have speculated that the Au induced lateral crystallization of amorphous Ge on SiO{sub 2}/Si substrate was enhanced by electron irradiation, due to the introduction of point defects into amorphous Ge able to diffuse easily of Au atoms. - Highlights: • Au induced lateral crystallization of electron irradiated Ge is investigated. • Crystallization annealing time is significantly reduced. • High crystalline quality of lateral region was not changed by electron irradiation.

  19. Inhomogeneous strain induced by fast neutron irradiation in NaKSO4 crystals

    International Nuclear Information System (INIS)

    The effect of fast neutron irradiation on the thermal properties of NaKSO4 crystals was studied around the phase transition temperature Tc=453 K. The thermal expansion coefficient as well as the phase transition temperature were found to be dependent upon the irradiation dose. The specific heat, Cp, showed multiple peaks in the phase transition temperature region. An explanation of this behaviour was based on the induced inhomogeneous strain in the crystal casued by the neutron irradiation process. (author). 10 refs, 3 figs

  20. Particle irradiation and electron work function: Fe single crystal bombarded with Ar+ ions

    Science.gov (United States)

    Horváth, Ákos; Nagy, Norbert; Schiller, Robert

    2016-07-01

    Accelerated Ar+ ions of 30 keV energy were used to mimic the effect of fast neutrons on Fe single crystal. Both Monte-Carlo calculations and X-ray Photoelectron Spectroscopy (XPS) measurements indicated that the fast ions did not alter the surface causing damage only at several nm depth. The change in the electrode potential, characteristic also to corrosion processes, was determined by the Kelvin method of work function measurement in order to avoid any post-irradiation process. Irradiation with fluences between 5×1014 and 6×1015 cm-2 decreased the electrode potential of the sample by about 60 mV in qualitative agreement with earlier results about the work functions of Fe single crystal and polycrystalline sample. Thus ion irradiation turns the interior of the single crystal into a disordered, polycrystalline substance increasing the crystal's readiness to be corroded.

  1. Influence of electron irradiation upon the properties of MgAl2O4 crystals

    International Nuclear Information System (INIS)

    Nominally pure crystals MgOxAl2O3 and MgOx2Al2O3 have been studied. The crystals have been irradiated by an 12 MeV electron beam with the integrated flux of 3x1015 electron/cm-2. Measurements have been taken of optical absorption spectra and of curves of thermoluminescence of magnesium-aluminium spinel crystals. A crystallographic analysis has shown that in the spinel structure, oxygen ions form an almost perfect close-packed cubic lattice, with Mg and Al ions are in tetraedric (A) and octaedric (B) vacancies formed. On irradiation, free electrons and holes are formed which transform into optically active centers. Absorption spectra of the irradiated crystals of 2Al2O3 are presented. When the samples are annealed, the colour centers are destroyed, with a subsequent thermoluminescence (TL). A conclusion may be drawn that irradiation of Mg-Al spinel crystals by 12 MeV electrons leads to intense formation of colour centers with absorption band maxima at 270, 360, 390, 470 and 580 nm. On the TL curves, maxima were observed at 390, 430, 450, 470 and 500 K. A comparison of the absorption bands and TL maxima with the previously observed absorption and TL spectra allows to identify V and F centers, as well as charge exchange of impurity ions during irradiation

  2. Thermoluminescence of CsI:Sr++ crystals irradiated with X-rays

    International Nuclear Information System (INIS)

    Thermoluminescence and optical absorption studies have been made in pure and Sr++ doped CsI crystals irradiated with X-rays. In undoped cesium iodide there are glow peaks at 363 and 401oK for 5 minutes of X-ray irradiation. These two glow peaks are attributed to thermal decay of F-centre. Three glow peaks at 348 K, 386 K and 396 K have been observed in CsI:Sr++ crystals for 5 minutes of irradiation. The glow peaks at 348 K and 396 K for CsI:Sr++ crystals could be attributed to thermal decay of F-centres. The F-centre glow peaks of doped samples exhibit a shift towards the lower temperature side. The glow peak at 386 K is attributed to thermal decay of Z1 centres. (author). 4 refs., 2 figs

  3. Metallic Na formation in NaCl crystals with irradiation of electron or vacuum ultraviolet photon

    Energy Technology Data Exchange (ETDEWEB)

    Owaki, Shigehiro [Osaka Prefecture Univ., Sakai, Osaka (Japan). Coll. of Integrated Arts and Sciences; Koyama, Shigeko; Takahashi, Masao; Kamada, Masao; Suzuki, Ryouichi

    1997-03-01

    Metallic Na was formed in NaCl single crystals with irradiation of a variety of radiation sources and analyzed the physical states with several methods. In the case of irradiation of 21 MeV electron pulses to the crystal blocks, the optical absorption and lifetime measurement of positron annihilation indicated appearance of Na clusters inside. Radiation effects of electron beam of 30 keV to the crystals in vacuum showed the appearance of not only metallic Na but atomic one during irradiation with Auger electron spectroscopy. Intense photon fluxes in vacuum ultraviolet region of synchrotron radiation were used as another source and an analyzing method of ultraviolet photoelectron spectroscopy. The results showed the metallic Na layered so thick that bulk plasmon can exist. (author)

  4. Coloration of cadmium halide crystals due to reactor irradiation at low temperature

    International Nuclear Information System (INIS)

    The optical absorption spectra and ESR spectra of cadmium halide crystals were measured after the reactor irradiation at low temperature to study the coloration. The irradiated neutron dose was about 5 x 1017 n/cm2. In the measurement of ESR spectra, the crystal was rotated around the v-axis (the two-fold axis) in the magnetic field of fixed direction. The optical absorption spectra showed that the Cd3+ center was generated. From the analysis of the angular dependence of ESR spectra, the centers of C(2h) symmetry and the centers of D(3d) symmetry were considered to be generated. The models of these centers were considered, and the angular dependence was analyzed. It can be concluded from the present experiment that the coloration of cadmium halide crystals is recognized as the results of the reactor irradiation at low temperature. (Kato, T.)

  5. AFM studies of swift heavy ion and electron irradiated mixed barium strontium borate nonlinear optical crystal

    International Nuclear Information System (INIS)

    Single crystals of novel nonlinear optical material of mixed barium strontium borate is grown in our laboratory by employing the low-temperature solution technique. Equal proportion (1:1 molar ratio) of AR grade barium borate and strontium borate are mixed together in double distilled water to prepare a supersaturated solution. The solution is allowed to evaporate at constant temperature (30 deg. C) in a Petri dish for about a week which resulted in the formation of seed crystals. These seed crystals are used to grow larger crystals by suspending them using fine silk thread in the supersaturated mother solution. The solution is allowed to evaporate at constant temperature. This resulted in the growth of good transparent crystals of dimension 15 mmx10 mmx1 mm after about one month. These crystals show good second harmonic generation (SHG) efficiency. The mixed barium strontium borate crystal is found to be a promising nonlinear optical crystal, which possibly can be used for fabrication of photonic devices. The single crystals of mixed barium strontium borate are irradiated by 120 MeV Ag+13 swift heavy ions (SHI) of fluence 5x1011 ions/cm2 at Nuclear Science Centre, New Delhi and also by electrons of 8 MeV energy with a fluence 5.7x109/cm2 using Microtron accelerator at Mangalore University. Surface morphology studies of these crystals are carried out using atomic force microscope. The AFM topographical images of these SHI/electron irradiated single crystals of mixed barium strontium borate are obtained from different frames of the sample taken at different magnifications using atomic force microscope. An attempt is made to explain the surface damage caused due to SHI/electron irradiation using the observed AFM images

  6. Study on irradiation damage of Bi-doped PbWO4 crystal

    International Nuclear Information System (INIS)

    The luminescence and point defects of pure lead tungstate crystals (PbWO4) and Bismuth (Bi) doping crystal (PbWO4:Bi) grown by modified Bridgman method are studied. It is found that irradiation results in the great change of the transmission and X-ray excited emission after γ-ray irradiation about 4 Mrad dose. The defects in PbWO4 crystal have been studied by means of positron annihilation lifetime and X-ray photoelectron spectra. The results show that Bi dopant suppresses the concentrations of positron capture centers and low-valent oxygen ions. After γ-ray irradiation, in the pure crystal the concentration of lead vacancy (VPb) is decreased and that of low-valent oxygen increased; on the contrary, in Bi dopant crystal the concentrations of positron capture centers increased and that of low-valent oxygen ions suppressed. It is tentatively proposed that Bi3+ dopants would mainly occupy the site of lead vacancies resulted from Pb volatilization. And irradiation changes the chemical valence of Bi element, which is Bi3+→Bi5+. the Bi5+ will replace the lattice W6+ ions and it will cause some (WO4)2- replaced by (BiO3 + Vo)-

  7. D-D neutron irradiation effects on single-crystal TiO2

    International Nuclear Information System (INIS)

    Rutile single-crystal TiO2 were irradiated by 2.5 MeV neutrons from D-D reaction on a neutron generator at Lanzhou University. Positron annihilation lifetime spectra and X-ray diffraction (XRD) patterns of the irradiated samples were compared with those of the virgin. Considering the fact that the threshold displacement energy of titanium atoms is almost two times of that of oxygen atoms, more oxygen vacancies (VO) would be produced than that of titanium vacancies (VTi) under the neutron irradiation. Lifetime results indicated that the irradiated samples had larger electron density of titanium vacancies than the virgin rutile, as a result of increased oxygen vacancies surrounding the Ti vacancy, because of the coulombic repulsion. From the XRD results, distance along the c-axis shrank slightly and the crystallinity became weaker after the neutron irradiation. (authors)

  8. Development of a neutron irradiation device with a cooled crystal filter: Radiation physical properties and applications in in vivo irradiations

    International Nuclear Information System (INIS)

    The radiation-physical and geometrical properties of a neutron-beam, collimated with a Bi-crystal filter were investigated at the reactor BER II. The influence of the crystal temperature as well as the actions of a reflector and a collimator on neutron flux-density and neutron field of the thermal neutrons were investigated. The dose contributions of the thermal, epithermal and fast neutrons as well as γ-radiation was determined by activation of the sample respective with TLD-measurements. The influence of irradiation and measurement geometry on the sensitivity and detection probability was investigated by means of phantom irradiations. The method prooved to be suitable, to detect changes of the Ca-content in a rat hind leg by about 10%. In investigations on animal groups of about 10 animals a threshold of detectability for changes of the ca-content is to be expected by about 4%. In a further group experiment it was found, that even in the case of multiple radiation the procedure of irradiation and measurement was not followed by a significant change in the Ca-content of the hind legs of the testing animals. (orig.)

  9. Dielectric spectra of doped and X-ray irradiated calcium fluoride crystals

    International Nuclear Information System (INIS)

    Calcium fluoride crystals doped with PbF2 and codoped with LiF, NaF have been grown using the vertical Bridgman method. The frequency (1-100 kHz) dependence of the real and imaginary parts of the complex dielectric constant, ε1 and ε2, have been studied in the temperature range 160-300 K; the activation parameters of the relaxation process have been determined for various doped and X-irradiated calcium fluoride crystals. The optical absorption spectra of the crystals are also investigated. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Studies on Ag{sup 8+} and Li{sup 4+} ions irradiated LAHCl single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, K. [Crystal Growth and Thin film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Ramesh Babu, R., E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Ramamurthi, K. [Crystal Growth and Thin film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Singh, Fouran; Asokan, K. [Inter-University Accelerator Centre, P.O. Box 10502, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2013-01-15

    Semi-organic single crystals of LAHCl were grown by unidirectional solution growth method. The grown single crystals were subjected to Ag{sup 8+} and Li{sup 4+} ions irradiation of energy 100 MeV and 50 MeV, respectively. Breaking of bonds in the irradiated LAHCl molecules and the lattice deformations are analyzed by Fourier transform infrared spectroscopy and X-ray diffraction studies, respectively. The modifications induced by ion irradiation in dielectric, mechanical stability and nonlinear optical property are studied at different ion fluence. Highlights: Black-Right-Pointing-Pointer LAHCl single crystals were irradiated with Ag{sup 8+} and Li{sup 4+} ions for the first time. Black-Right-Pointing-Pointer Dielectric constant and hardness of the LAHCl increased at low ion fluence. Black-Right-Pointing-Pointer Increased dielectric constant in irradiated LAHCl may enhance the electro-optic coefficient. Black-Right-Pointing-Pointer The difference in effect of Ag{sup 8+} and Li{sup 4+} on physical properties LAHCl was also discussed.

  11. Defect-production efficiency in spinel crystals under electron and gamma-neutron irradiation

    International Nuclear Information System (INIS)

    The origin and concentration of defects in MgOxnAl2O3 (n=1 and 2.5) crystals were investigated after irradiation with reactor neutrons, electrons, X-rays and UV-light. Low efficiency of defect production in cation sublattice are explained by small coefficient of cation site filling

  12. EPR investigation of gamma irradiated single crystal guaifenesin: A combined experimental and computational study

    Science.gov (United States)

    Tasdemir, Halil Ugur; Sayin, Ulku; Türkkan, Ercan; Ozmen, Ayhan

    2016-04-01

    Gamma irradiated single crystal of Guaifenesin (Glyceryl Guaiacolate), an important expectorant drug, were investigated with Electron Paramagnetic Resonance (EPR) spectroscopy between 123 and 333 K temperature at different orientations in the magnetic field. Considering the chemical structure and the experimental spectra of the gamma irradiated single crystal of guaifenesin sample, we assumed that alkoxy or alkyl-type paramagnetic species may be produced by irradiation. Depending on this assumption, eight possible alkoxy and alkyl-type radicals were modeled and EPR parameters of these modeled radicals were calculated using the B3LYP/6-311++G(d,p)-level of density functional theory (DFT). Theoretically calculated values of alkyl-type modeled radical(R3) are in good agreement with experimentally determined EPR parameters of single crystal. Furthermore, simulation spectra which are obtained by using the theoretical initial values are well matched with the experimental spectra. It was determined that a stable Cα •H2αCβHβCγH2γ (R3) alkyl radical was produced in the host crystal as a result of gamma irradiation.

  13. Kinetics of nucleation and coarsening of colloids and voids in crystals under irradiation

    NARCIS (Netherlands)

    Dubinko, V.I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    2002-01-01

    The kinetics of nucleation and coarsening of vacancy clusters in irradiated crystals are considered with account of their elastic interaction with point defects resulting in the biased absorption of vacancies and interstitial atoms. It is shown that in the technologically important range of high dos

  14. Crystal lattice dependency of the free radicals found in irradiated glycine

    NARCIS (Netherlands)

    Bie, M.J.A. de; Braams, R.

    1969-01-01

    The EPR spectra, and hence the stable free radicals, are different for the - or γ-irradiated α-, β- and γ-crystal forms of polycrystalline glycone. Therefore comparisons of the trideutero-glycine EPR spectrum with the EPR spectra of non-deuterated glycine are open to question

  15. Co-doped sodium chloride crystals exposed to different irradiation temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Morales, A. [Unidad Profesional Interdisciplinaria de Ingenieria y Tecnologias Avanzadas, IPN, Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico D.F., Mexico and Unidad de Irradiacion y Segurid (Mexico); Cruz-Zaragoza, E.; Furetta, C. [Unidad de Irradiacion y Seguridad Radiologica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F (Mexico); Kitis, G. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Flores J, C.; Hernandez A, J.; Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP. 20-364, 01000 Mexico D.F (Mexico)

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of the dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.

  16. Photon irradiation response of photonic crystal fibres and flat fibres at radiation therapy doses

    International Nuclear Information System (INIS)

    Radiation effects of photon irradiation in pure Photonic Crystal Fibres (PCF) and Flat fibres (FF) are still much less investigated in thermoluminescense dosimetry (TLD). We have reported the TL response of PCF and FF subjected to 6 MV photon irradiation. The proposed dosimeter shows good linearity at doses ranging from 1 to 4 Gy. The small size of these detectors points to its use as a dosimeter at megavoltage energies, where better tissue-equivalence and the Bragg–Gray cavity theory prevails. - Highlights: • First study about radiation effects of photon irradiation in pure Photonic Crystal Fibres (PCF) and Flat fibres (FF). • PCF and FF. have been found to have good dose linearity (up to 4 Gy). • The value of Zeff obtained is in the range of 10.3–11.3 and 11.3–11.8 for PCF and FF respectively

  17. Active Loss of Light Yield of PbWO4:Y Scintillation Crystals After Irradiation

    Institute of Scientific and Technical Information of China (English)

    任国浩; 王绍华; 沈定中; 殷之文

    2004-01-01

    PWO crystals doped with yttrium were grown with the Bridgman method in platinum crucible and by using an indigenously developed resistive heating furnace. After an exposure of γ-ray from a 60 Co source, with the dose rate of 15 rad/h for 20 h, the light output increases for about 15%, accompanied with vanishing of an optical absorption band at 420 nm. The excitation and emission spectra of PWO crystals were measured before and after irradiation with different dose rates. The optical absorption band at 420nm was also found in the PWO sample annealed in oxygen-rich atmosphere. It is suggested that the absorption band at 420nm is related to Pb3+ point defects existing in the PWO crystal. The unusual change of light output after irradiation probably results from the transformation of lead ions from Pbs+ to Pb2+.

  18. Mobility of edge dislocations in stressed iron crystals during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Korchuganov, A. V., E-mail: avkor@ispms.ru; Zolnikov, K. P.; Kryzhevich, D. S. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Chernov, V. M. [A.A. Bochvar High-Technology Scientific Research Institute for Inorganic Materials, Moscow, 123098 (Russian Federation); Psakhie, S. G. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Skolkovo Institute of Science and Technology, Skolkovo, 143025 (Russian Federation)

    2015-10-27

    The behavior of a/2(111)(110) edge dislocations in iron in shear loading and irradiation conditions was studied by means of molecular dynamics simulation. Edge dislocations were exposed to shock waves formed by atomic displacement cascades of different energies. It was shown that starting from a certain threshold amplitude shock waves cause displacement of edge dislocations in the loaded samples. Calculations showed that the larger the shear load and the amplitude of the shock wave, the greater the displacement of dislocations in the crystallite.

  19. Gamma irradiated LDPE in presence of oxygen. Part I. Non-isothermal crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, V.A. [Composite Materials Group (CoMP), Research Institute of Material Science and Technology (INTEMA), Engineering Faculty, National University of Mar del Plata UNMdP, Solís 7575, B7608FDQ, Mar del Plata (Argentina); Perez, C.J., E-mail: cjperez@fi.mdp.edu.ar [Science and Technology Polymer Group, Research Institute of Material Science and Technology (INTEMA) – National University of Mar del Plata (UNMdP), Av. Juan B. Justo 4302, B7608FDQ, Mar del Plata (Argentina)

    2013-10-20

    Highlights: • Dynamical crystallization process of irradiated LDPE in different atmospheres was studied. • The radiation dose retards the overall crystallization process of LDPE in a given atmosphere. • At constant radiation dose, crystallization is accelerated with increasing the oxygen content. • Parameters of the used models and CCT diagrams are in good agreement with explained tendencies. - Abstract: Non isothermal crystallization of low density polyethylene (LDPE) samples irradiated under three different atmospheres was analyzed. The used doses were between 33 and 222 kGy and the atmospheres content 0, 21 and 100% of oxygen. At a given radiation dose, the amount of produced gel is higher when the oxygen content present in the radiation process is lower. The temperature and the enthalpy of crystallization of the modified polymer decreased almost linearly with the radiation dose. Different classic models were used to predict the development of the relative degree of crystallinity (in the range 0.01–0.3 crystallinity fraction) as a function of temperature and several parameters were analyzed. The values of half-time of crystallization (t{sub 1/2}) and the parameter Z{sub c}, from Avrami's method which characterize the kinetics of non-isothermal crystallization, showed that the crystallization rate, at the same cooling rate, decreased with increasing radiation dose and, at the same dose, with the decrease in the oxygen content. The activation energy for crystallization increased with the radiation dose and with the reduction of the oxygen content, indicating that the increment in molecular crosslinking restricts the crystallization process.

  20. Irradiation damage in aluminium single crystals produced by 50-keV aluminium and copper ions

    DEFF Research Database (Denmark)

    Henriksen, L.; Johansen, A.; Koch, J.;

    1968-01-01

    Aluminium single crystals, thin enough to be examined by electron microscopy, have been irradiated with 50-keV aluminium and copper ions. The irradiation fluxes were in the range 1011–1014 cm−2 s−1 and the doses were from 6 × 1012 to 6 × 1014 cm−2. Irradiation along either a or a direction produces...... rows of dislocation loops all lying parallel to one particular direction. If the aluminium target is quenched from 600 °C and annealed at room temperature prior to irradiation with aluminium ions, the rows of loops are suppressed. The amount of damage observed is considerably less than would...

  1. Helium release from neutron-irradiated Li{sub 2}O single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Daiju; Tanifuji, Takaaki; Noda, Kenji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Helium release behavior in post-irradiation heating tests was investigated for Li{sub 2}O single crystals which had been irradiated with thermal neutrons in JRR-4 and JRR-2, and fast neutrons in FFTF. It is clarified that the helium release curves from JRR-4 and JRR-2 specimens consists of only one broad peak. From the dependence of the peak temperatures on the neutron fluence and the crystal diameter, and the comparison with the results obtained for sintered pellets, it is considered that the helium generated in the specimen is released through the process of bulk diffusion with trapping by irradiation defects such as some defect clusters. For the helium release from FFTF specimens, two broad peaks were observed in the release curves. It is considered to suggest that two different diffusion paths exist for helium migration in the specimen, that is, bulk diffusion and diffusion through the micro-crack due to the heavy irradiation. In addition, helium bubble formation after irradiation due to the high temperature over 800K is suggested. (J.P.N.)

  2. Effects of the auto irradiation in KBr:Eu2+ crystals

    International Nuclear Information System (INIS)

    In KCl :Eu2+ crystals and in KBr :Eu2+ crystals it has been detected the effect of the auto irradiation with 40 K isotope. In this work, a study of auto irradiation thermoluminescence in KBr :Eu2+ crystals with different Eu2+ concentrations and different thermal treatments is presented. The form of the Tl curve shows mainly a sparkle at 110 Centigrade degrees. The sparkle intensity increases linearly in a time interval around 3600 sec. After this time the increase of intensity was slower. In the linear interval, the lukewarm effects are almost scornful. The analysis of results is looked to the relation between the thermoluminescence and the Eu2+ additions. It is discussed the form of the curve comparing it with the Tl induced by external irradiation sources on this type of materials. Also it is discussed the temporary dependence of the quantity of induced defects. Finally, the Tl intensity results for crystals with and without previous luke warms are compared. (Author)

  3. Low-temperature properties of neutron irradiated CuGeO3 single crystals

    Science.gov (United States)

    Gladczuk, L.; Mosiniewicz-Szablewska, E.; Dabkowska, H.; Baran, M.; Pytel, B.; Szymczak, R.; Szymczak, H.

    2000-07-01

    The effect of neutron irradiation on the magnetic properties of CuGeO3 single crystal which shows the spin-Peierls transition below T sp=14 K was investigated by means of electron paramagnetic resonance (EPR) and susceptibility measurements. It was found that the irradiation led to a decrease of the spin-Peierls transition temperature and induced appreciable changes in the EPR signal intensity, resonance linewidth, g-factor and magnetic susceptibility of this material. These changes may be associated with a partial suppression of both the energy gap and the dimerization within the Cu chains.

  4. Effects of ultrasonic irradiation on crystallization and structural properties of EMT-type zeolite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Eng-Poh, E-mail: epng@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia); Awala, Hussein [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Ghoy, Jia-Pei [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia); Vicente, Aurélie [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Ling, Tau Chuan [Institute of Biological Sciences, Faculty of Science, University of Malaya (Malaysia); Ng, Yun Hau [School of Chemical Engineering, The University of New South Wales, Sydney (Australia); Mintova, Svetlana [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Adam, Farook, E-mail: farook@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia)

    2015-06-01

    Synthesis of EMT zeolite nanocrystals from rice husk ash biomass (RHA) under continuous ultrasonic irradiation is reported. The aging, nucleation and crystallization stages of EMT zeolite in the system were monitored at ambient temperature, and compared with the conventional hydrothermal method. It was found that ultrasonic wave induced rapid crystal growth of the nanosized EMT zeolite. Complete crystallization of EMT nanocrystals was achieved within 24 h which was much faster than conventional hydrothermal synthesis (36 h). Furthermore, XRD and TEM analyses revealed that more nuclei were formed during the nucleation stage, allowing the preparation of smaller zeolite nanocrystals with high crystallinity. The results also showed that sonocrystallization produced EMT zeolite with high yield (ca. 80%). The ultrasound-prepared EMT nanocrystals were also found to have high porosity and high hydrophilicity, making the material promising for water sorption applications including vapor sensing, heat pump and adsorption technologies. - Highlights: • Nanosized EMT zeolites are formed from rice husk ash under ultrasonic irradiation. • The effects of ultrasonic waves in nanosized EMT zeolite synthesis are studied. • Ultrasound induces rapid crystal growth and produces high zeolite yield. • Smaller zeolite nanocrystals with high crystallinity and large defect sites are obtained. • Improved surface hydrophilicity of crystals is beneficial for water sorption applications.

  5. Digested livestock wastewater treatment using gamma-ray irradiation and struvite crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tak Hyun; Lee, Sang Ryul; Nam, Youn Ku; Lee, Myun Joo [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Livestock wastewater generally contains high strength of organics (COD), ammonia nitrogen (NH{sub 4}{sup +} -N), phosphate phosphorus (PO{sub 4}{sup 3-} -P) and suspended solids. It is very difficult to treat by conventional wastewater treatment techniques. In this study, struvite crystallization was carried out to treat the digested livestock wastewater. 1.0 :1.2 :1.2 was determined as an optimal NH{sub 4}+ :Mg{sup 2+} : PO{sub 4}{sup 3-} mol ratio of struvite crystallization. For the digested livestock wastewater, COD, NH{sub 4}{sup +} -N and PO{sub 4}{sup 3-} -P removal efficiencies by struvite crystallization were 72.4%, 98.9%, and 74.8%, respectively. Gamma-ray irradiation was carried out prior to struvite crystallization of livestock wastewater. The enhancement of struvite crystallization efficiency could be obtained by the pretreatment of gamma-ray irradiation due to the decrease of COD, NH{sub 4}{sup +} -N and PO{sub 4}{sup 3-} -P concentration.

  6. Thermoluminescence studies on γ-irradiated Mn:Li2B4O7 single crystals

    International Nuclear Information System (INIS)

    Manganese doped Li2B4O7 (LTB) crystals were grown by Czochralski technique and various kinetic parameter of thermoluminescence (TL) were measured. Crystals were irradiated with different γ-dose using Co60 source. Thermoluminescence curves were recorded at various heating rates. Trap depth and frequency factor were calculated. Fading of Mn: Li2B4O7 was found only ∼5%-6% in 6 months. Thermoluminescence intensity of Mn: Li2B4O7 was found highly sensitive to the mass of the material, and it varies abruptly with mass change of +/− 1 mg, irradiated with the same dose. Therefore, the accuracy in mass is important parameter for thermoluminescence dosimeter badge.

  7. Peak Effect Evolution In Successive Proton Irradiated YBa2Cu3O7-d Single Crystals

    Science.gov (United States)

    Tobos, Valentina; Paulius, L. M.; Petrean, A. M.; Olsson, R. J.; Kwok, W.-K.; Ferguson, S.; Crabtree, G. W.

    2000-03-01

    We report on the effects of point-like disorder on the pinning properties of an untwinned, single crystal of YBa2Cu3O7-d. We use magnetic hysteresis measurements in order to determine the critical current density for temperatures ranging from 10 K to 80 K in fields up to 7 T. Measurements were performed on a high quality, detwinned, single crystal of YBa2Cu3O7-d that displays a first order vortex melting transition. The sample was cleaved in two parts. One half was used for electrical transport measurements, and the other for magnetization measurements, making it possible to compare between the effects of irradiation induced defects on the critical current density in two different ranges of temperatures. We discuss the effects of the irradiation on the magnetization, critical current density, the peak effect, and vortex phase diagram. This work was supported by National Scince Foundation grant DMR-97-03732 and DMR-96-24047.

  8. Liquid Crystal Alignment on Solution Derived Zinc Oxide Films via Ion Beam Irradiation.

    Science.gov (United States)

    Park, Hong-Gyu; Han, Jae-Jun; Seo, Dae-Shik

    2016-03-01

    A 75-nm-thick ZnO film was deposited by a sol-gel method on indium-tin oxide (ITO)-coated glass. This film served as a liquid crystal (LC) alignment layer. We report the fabrication and characteristics of this film after ion-beam (IB) irradiation. Uniform LC alignment was achieved at an IB incident energy above 2400 eV. The IB-treated ZnO surface was analyzed by X-ray photoelectron spectroscopy (XPS), monitoring the intensity of the Zn 2p and O 1s peaks as a function of IB-irradiation energy density. The electro-optical (EO) characteristics of a twisted nematic-liquid crystal display (TN-LCD) were comparable to rubbed polyimide. PMID:27455726

  9. Zenithal alignment of liquid crystal on homeotropic polyimide film irradiated by ion beam

    OpenAIRE

    Choi, Yoonseuk; Yoon, Tae-Hoon; Kwon, Jin Hyuk; Yi, Jonghoon; Gwag, Jin Seog

    2012-01-01

    We investigate the pretilt characteristics of a nematic liquid crystal [LC] in terms of ion beam exposure conditions on the homeotropic polyimide alignment layer. The pretilt angle of LCs in the case of high-energy ion beam treatment was decreased considerably almost the same to that of the homogenous alignment layer though we used homeotropic polyimide film at first. Increasing irradiating energy, we could control the pretilt from 90° to 1° with several steps. We believe that this is because...

  10. Mechanoluminescence produced during cleavage of γ-irradiated alkali halide crystals

    International Nuclear Information System (INIS)

    When g-irradiated alkali halide crystals are cleaved, then in their mechanoluminescence (ML) intensity versus time curve, two peak intensities Im1 and Im2 are observed at time tm1 and tm2 respectively. The ML intensity both beyond tm1 and tm2 decrease exponentially. It is shown that ML provides a new technique for determining the pinning time of dislocations and lifetime of the electrons in dislocation band. (author)

  11. {beta}-ray irradiation effects in RbBr: Eu crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco B, J.M.; Rodriguez M, R.; Perez S, R. [Universidad de Sonora, 83190 hermosillo, Sonora (Mexico)

    2006-07-01

    Defects induced by {beta}-ray irradiation in RbBr: Eu{sup 2+} crystals doped with a high concentration of Eu{sup 2+} ions are studied by means of optical absorption (OA), thermoluminescence (TL), and optically stimulated TL (OSTL). The fading, dose, and optical bleaching effects on the TL glow curves of room temperature irradiated samples has been analyzed. OA indicates that irradiation of samples at room temperature induce the formation of F but not F{sub z} centers. The TL glow curves show peaks at 267, 303, and 403 K. The 267 K glow peak disappear in less than 1 s under blue light or infrared radiation photo bleaching. A high sensitivity to the ionizing radiation has been observed. These results confirm that this material is an efficient phosphor. (Author)

  12. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber

    Science.gov (United States)

    Zeltner, R.; Bykov, D. S.; Xie, S.; Euser, T. G.; Russell, P. St. J.

    2016-06-01

    We report an irradiation sensor based on a fluorescent "flying particle" that is optically trapped and propelled inside the core of a water-filled hollow-core photonic crystal fiber. When the moving particle passes through an irradiated region, its emitted fluorescence is captured by guided modes of the fiber core and so can be monitored using a filtered photodiode placed at the fiber end. The particle speed and position can be precisely monitored using in-fiber Doppler velocimetry, allowing the irradiation profile to be measured to a spatial resolution of ˜10 μm. The spectral response can be readily adjusted by appropriate choice of particle material. Using dye-doped polystyrene particles, we demonstrate detection of green (532 nm) and ultraviolet (340 nm) light.

  13. Large-area regular nanodomain patterning in He-irradiated lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ofan, A; Gaathon, O; Osgood, R M Jr [Center for Integrated Science and Technology, Columbia University, New York, NY 10027 (United States); Lilienblum, M; Hoffmann, A; Soergel, E [Institute of Physics, University of Bonn, Wegelerstrasse 8, 53115 Bonn (Germany); Sehrbrock, A; Irsen, S [Center of Advanced European Studies and Research (CAESAR), Ludwig-Erhard-Allee 2, 53175 Bonn (Germany); Bakhru, S; Bakhru, H, E-mail: ao2199@columbia.edu, E-mail: soergel@uni-bonn.de [College of Nanoscale Science and Engineering, State University of New York at Albany, Albany, NY 12222 (United States)

    2011-07-15

    Large-area ferroelectric nanodomain patterns, which are desirable for nonlinear optical applications, were generated in previously He-implanted lithium niobate crystals by applying voltage pulses to the tip of a scanning force microscope. The individual nanodomains were found to be of uniform size, which depended only on the inter-domain spacing and the pulse amplitude. We explain this behavior by the electrostatic repulsion of poling-induced buried charges between adjacent domains. The domain patterns were imaged by piezoresponse force microscopy and investigated by domain-selective etching in conjunction with focused ion beam etching followed by scanning electron microscopy imaging. In order to optimize the He-irradiation parameters for easy and reliable nanodomain patterning a series of samples subjected to various irradiation fluences and energies was prepared. The different samples were characterized by investigating nanodomains generated with a wide range of pulse parameters (amplitude and duration). In addition, these experiments clarified the physical mechanism behind the facile poling measured in He-irradiated lithium niobate crystals: the damage caused by the energy loss that takes place via electronic excitations appears to act to stabilize the domains, whereas the nuclear-collision damage degrades the crystal quality, and thus impedes reliable nanodomain generation.

  14. Structure of InP single crystals irradiated with reactor neutrons

    International Nuclear Information System (INIS)

    The structural characteristics of InP single crystals have been investigated depending on the radiation effects produced by fast neutrons and the full spectrum of the reactor neutrons and subsequent heat treatment procedures. The lattice parameter of InP single crystals decreases under neutron irradiation as opposed to other III-V semiconductor compounds. Fast neutrons make the main contribution to the change of the lattice parameter. A thermal neutron component initiates the formation of Sn atoms in the material, but does not influence the change of the lattice parameter significantly. Heat treatment of the irradiated samples up to 600 deg. C causes annealing of the radiation defects and recovery of the lattice parameter. With increasing neutron fluences, the lattice parameter becomes even higher than before irradiation. The data analysis proves the following assumption: anti-site defects PIn mainly contribute to the lattice parameter decrease during neutron irradiation of InP. In this case, anti-site imperfections produce an effect similar to that of vacancy defects

  15. Isothermal crystallization of gamma irradiated LDPE in the presence of oxygen

    Science.gov (United States)

    Lanfranconi, M. R.; Alvarez, V. A.; Perez, C. J.

    2015-06-01

    This work is focused on the study of the effect of oxygen on the isothermal crystallization process of gamma irradiated low density polyethylene (LDPE). The induction time increased with the dose indicating a retarding effect. On other hand, at the same dose, this parameter decreased with the augment in the oxygen content. The classical Avrami equation was used to analyze the crystallization kinetic of these materials. n values suggested that both, the dose and the oxygen content, did not affect the mechanism of crystals growth. An Arrhenius type equation was used for the rate constant (k). Used models correctly reproduced the experimental data. TTT diagrams of studied materials were constructed and also reflected the effects of the doses and the oxygen content.

  16. Radiation electromagnetic effect in germanium crystals under high-energy. cap alpha. -particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-05-01

    Results of experimental investigation into radiation electromagnetic effect (REM) in samples of germanium crystals under approximately 40 MeV ..cap alpha..-particle irradiation in a cyclotron are presented. A high level of excitation, volumetric character of generation of non-equilibrium carriers and formation of defects as well as the form of their spatial distribution are shown to result in some peculiarities of the EMF of the REM effect on the particle flux, fluence and sample parameters. Agreement of theoretical calculations, conducted with account of specificity of ..cap alpha..-particle interaction with a crystal, and experimental data is obtained. It is revealed that the REM effect can be applied in obtaining data on spatial distribution of non-equilibrium carrier concentrations along the particle trajectory in the crystal.

  17. Radiation-electromagnetic effect in germanium crystals irradiated with high-energy. cap alpha. particles

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-05-01

    An experimental investigation was made of the radiation-electromagnetic effect in germanium crystals irradiated in a cyclotron with ..cap alpha.. particles of energies up to 40 MeV. The high excitation rate, the bulk nature of generation of nonequilibrium carriers and defects, and their spatial distributions gave rise to several special features in the dependence of the emf due to the radiation-electromagnetic effect on the particle flux, fluence, and parameters of samples. Theoretical calculations carried out allowing for the specific nature of the interaction of ..cap alpha.. particles with crystals agreed well with the experimental results. The radiation-electromagnetic effect could be used to obtain information on the nature of the spatial distribution of the density of nonequilibrium carriers along the trajectory of a particle in a crystal.

  18. Cation disordering in magnesium aluminate spinel crystals induced by electron or ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Takeshi E-mail: soeda@regroup5.nucl.kyushu-u.ac.jp; Matsumura, Syo; Kinoshita, Chiken; Zaluzec, Nestor J

    2000-12-01

    Structural changes in magnesium aluminate spinel (MgO {center_dot} nAl{sub 2}O{sub 3}) single crystals, which were irradiated with 900 keV electrons or 1 MeV Ne{sup +} ions at 873 K, were examined by electron channeling enhanced X-ray microanalysis. Unirradiated MgO {center_dot} Al{sub 2}O{sub 3} has a tendency to form the normal spinel configuration, where Mg{sup 2+} ions and Al{sup 3+} ions occupy mainly the tetrahedral and the octahedral sites, respectively. Electron irradiation induces simple cation disordering between the tetrahedral sites and the octahedral sites in MgO {center_dot} Al{sub 2}O{sub 3}. In addition to cation disordering, slight evacuation of cations from the tetrahedral sites to the octahedral sites occurs in a peak-damaged area in MgO {center_dot} Al{sub 2}O{sub 3} irradiated with Ne{sup +} ions. In contrast, cation disordering is suppressed in MgO {center_dot} 2.4Al{sub 2}O{sub 3} irradiated with electrons. The structural vacancies, present in the non-stoichiometric compound, appear to be effective in promoting irradiation damage recovery through interstitial-vacancy recombination.

  19. AG, TL, and IRSL dosimetric properties in X-ray irradiated HPHT diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Tolano, M.I. [Programa de Posgrado, Departamento de Investigacion en Fisica, Universidad de Sonora, A. P. 5-088, Hermosillo, Sonora, 83190, Mexico (Mexico); Melendrez, R.; Lancheros-Olmos, J.C.; Soto-Puebla, D.; Chernov, V.; Pedroza-Montero, M.; Barboza-Flores, M. [Departamento de Investigacion en Fisica, Universidad de Sonora, A. P. 5-088, Hermosillo, Sonora, 83190, Mexico (Mexico); Castaneda, B. [Departamento de Fisica, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo, Sonora, 83000, Mexico (Mexico)

    2014-10-15

    HPHT diamonds have been studied for several years for their potential in different applications. In previous studies it has been found that the thermoluminescence (TL) glow curves of ''as-grown'' HPHT diamonds are non-reproducible. In this work, we study the afterglow (AG), thermoluminescent (TL), and optically stimulated luminescence (OSL) response of commercial samples of synthetic HPHT type-Ib diamond crystals exposed to X-ray irradiation (0.75 mA, 35 kV) at a dose rate of 0.624 Gy/s, after a high gamma ({sup 60}Co) dose irradiation of 500 kGy followed by a thermal treatment at 1073 K for 1 h in nitrogen atmosphere. Deconvolution of the TL glow curves shows four peaks, located around 379, 509, 561, and 609 K. The crystals exhibit evident AG recorded for 300 s immediately after X-ray irradiation, due to the thermal emptying of the traps responsible for the low-temperature TL peaks (below 400 K). The stimulation of irradiated crystals with 870-nm light, creates pronounced OSL and destroys all TL peaks with the exception of the high-temperature peak at 609 K. The dose responses of the integrated AG, TL, and OSL are linear in the range of 0.6-5 Gy and saturated at higher doses. The reproducibility of AG, TL, and OSL measurements is about 5%. The fading in the first hour of storage in dark conditions at RT of TL signal of HPHT diamond is mainly associated to the emptying of the traps responsible for the 379-K TL peaks. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Switching processes in TGS crystals irradiated by high-current electron beam

    CERN Document Server

    Efimov, V V; Klevtsova, E A; Tyutyunnikov, S I

    2002-01-01

    The relaxation processes study of the dielectric permittivity epsilon during commutation of the external electric field in triglycine sulphate (NH sub 2 CH sub 2 COOH) sub 3 centre dot H sub 2 SO sub 4 (TGS) single crystal plates before and after irradiation by a high-current pulsed electron beam with different doses at various temperatures is presented. The parameters of the electron beam produced by the accelerator facility as a source were: energy E = 250 keV, current density I = 1000 A/cm sup 2 , fluence F = 15 J/cm sup 2 , pulse duration tau = 300 ns, beam density 5 centre dot sup 1 5 electrons/cm sup 2 per pulse. It was shown that the dependences of epsilon (t) are described by the Kohlrausch law: epsilon (t) approx exp (-t/tau) supalpha, where alpha is the average relaxation time of the all volume samples, 0 < alpha <1. Besides, it was found that switching processes in the irradiated crystals were much more intensive than those in the non-irradiated ones. The relaxation times decrease with rising...

  1. Characterization of high energy Xe ion irradiation effects in single crystal molybdenum with depth-resolved synchrotron microbeam diffraction

    Science.gov (United States)

    Yun, Di; Miao, Yinbin; Xu, Ruqing; Mei, Zhigang; Mo, Kun; Mohamed, Walid; Ye, Bei; Pellin, Michael J.; Yacout, Abdellatif M.

    2016-04-01

    Microbeam X-ray diffraction experiments were conducted at beam line 34-ID of the Advanced Photon Source (APS) on fission fragment energy Xe heavy ion irradiated single crystal Molybdenum (Mo). Lattice strain measurements were obtained with a depth resolution of 0.7 μm, which is critical in resolving the peculiar heterogeneity of irradiation damage associated with heavy ion irradiation. Q-space diffraction peak shift measurements were correlated with lattice strain induced by the ion irradiations. Transmission electron microscopy (TEM) characterizations were performed on the as-irradiated materials as well. Nanometer sized Xe bubble microstructures were observed via TEM. Molecular Dynamics (MD) simulations were performed to help interpret the lattice strain measurement results from the experiment. This study showed that the irradiation effects by fission fragment energy Xe ion irradiations can be collaboratively understood with the depth resolved X-ray diffraction and TEM measurements under the assistance of MD simulations.

  2. Proton irradiation effects on critical current of bulk single-crystal superconducting YBCO wire

    International Nuclear Information System (INIS)

    The authors have investigated the effects of 10 MeV proton irradiation on the magnetization M and critical current density Jc of bulk single-crystal YBa2Cu3O7-δ (YBCO) superconducting thick wire filaments produced through laser-heated floating zone (LHFZ) technique. M and Jc were determined both along the length and perpendicular to the length of the wire. Radiation-induced enhancement of Jc along the length of the wire was observed while there was a small decrease in Jc perpendicular to its length. Jc values along the length of the wire up to ∼1.4 x 105 A/cm2 at 77K and ∼1.3 x 106 A/cm2 at 30K and in applied magnetic field H = 1 T were observed in the irradiated samples. In the unirradiated sample, the difference in magnetization ΔM at a given field in the magnetic hysteresis loop for increasing and decreasing field applied perpendicular to the sample length was observed to depend on the orientation of the sample about its axis. This indicates anisotropy in Jc along the sample length. This anisotropy increased on irradiation relative to the direction of irradiation. They believe that these Jc values along the length are amongst the highest published Jc values for bulk high temperature superconductor (HTS) thick wire filament

  3. EPR study of gamma irradiated DL-methionine sulfone single crystals

    Science.gov (United States)

    Karabulut, Bünyamin; Yıldırım, İlkay

    2015-12-01

    Electron paramagnetic resonance (EPR) study of gamma irradiated dl-2-amino-4-(Methylsulfonyl) butyric acid (dl-methionine sulfone, hereafter dl-ABA) single crystals and powder was performed at room temperature. It has been found that this compound indicates the existence of C. O2- and N. H2 radicals after γ-irradiation. While g and hyperfine splitting values for the N. H2 radical were observed, for the C. O2- radical, only the g factor was measured. The EPR spectra have shown that N. H2 radical has two groups each having two distinct sites and C. O2- radical has one site. The principal g and hyperfine values for all sites were analyzed.

  4. Radiation Damage and Recovery in Neutron-Irradiated MgO Crystal

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    MgO single crystal was irradiated by neutron up to a dose of 5.74×1018 cm-2. The radiation damage and its recovery were studied by means of UV-VIS and EM spectroscopy. The results indicate that the irradiation generates large amount of optically detectable defects such as single anion vacancies (F+ center), anion divacancies (F2) and some higher order defects. Through isochronal annealing, these defects started a series of processes of diminishing and transforming, and finally all disappeared while annealing at 900 ℃. It seems that the absorption bands of 573 nm are resulted from a higher order and more complex aggregated center than that of 424, 451 nm bands.

  5. Intensification of electroluminescence of ZnSe(Te,O) crystals after gamma-irradiation

    International Nuclear Information System (INIS)

    Full text: Wide-gap A2B6 semiconductors are of special interest within eyeshot of energy-saving, on the base of which light sources are produced. Excitation voltage for injection electro luminescence (EL) corresponds to a transition potential barrier height, and wavelength determines the radiative transition energy and a recombination level position. The problem is in increasing the EL excitation efficiency, in particular the way of lowering the working voltage. The aim of the present work is experimental researches of possible amendment of EL characteristics of wide-gap ZnSe(Te,O) single crystals by influence of ionizing gamma-radiation on the electrical and optical active centers, and also exposure of possibility for creation of light emitting structures. We studied ZnSe crystals grown with Bridgman method at the Research Institute for Single Crystals (Kharkov, Ukraine). Diffusion doping with Te was used for creation of p-n transition in ZnSe crystals, that resulted in additional generation of Zn vacancies, treatment in oxidizing environment caused formation of extra Zn interstitials. Dominating evaporation of Zn, which is stipulated by a higher mobility of Zni, leads to the increase of defect concentration of VZn type, this process is vividly expressed in the crystals doped with Te that may be explained by the formation of stable VZnTeSeZni associates. A few samples of each series were irradiated with≅ 1.25 MeV gamma-rays of 60Co radioisotope source at the dose power of 10 Gy/s to the dose of 106 Gy at 300 K and compared with the non-irradiated reference samples. Spectra of EL were measured in the wave range of 200-900 nm at 300 K. A constant voltage in the range of 7-80 V was applied in straight and inverse direction for exposing hysteresis in the EL voltage-brightness dependences. The EL spectra include a wide band with the maximum at 600 nm. For the untreated samples the threshold voltage was 70-80 V, when the EL intensity began growing sharply, depending

  6. Aqueous photofate of crystal violet under simulated and natural solar irradiation: Kinetics, products, and pathways.

    Science.gov (United States)

    Li, Yong; Yang, Shaogui; Sun, Cheng; Wang, Lianhong; Wang, Qingeng

    2016-01-01

    In this work photodegradation rates and pathways of an illegal veterinary drug, crystal violet, were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in the aquatic environment. Factors influencing the photodegradation process under simulated sunlight were investigated, including pH, humic acid, Fe(2+), Ca(2+), [Formula: see text] , and [Formula: see text] , of which favorable conditions were optimized by the orthogonal array design. The degradation processes of crystal violet conformed to pseudo first-order kinetics, with different rate constants under different conditions. Reactive oxygen species such as hydroxyl radical, singlet oxygen, and superoxide anion participated in the indirect photolysis process, leading to much higher decolorization efficiencies than those of direct photolysis and hydrolysis. Contrasting to simulated irradiation, solar irradiation led to complete decolorization. Sixty-four products were identified by high resolution liquid chromatography-time-of-flight mass spectrometry and gas chromatography-mass spectrometry, elucidating relatively complete mineralization through photolysis. Based on the analyses of the degradation products and calculations of the frontier electron density, transformation pathways were proposed as singlet oxygen addition, N-demethylation, hydroxyl addition, decomposition of conjugated structure, the removal of benzene ring and the ring-opening reaction. As a result, small products generated as carboxylic acids, alcohols and amines, which were not likely to cause severe hazards to the environment. This study provided both a reference for photodegradation of crystal violet and future safety applications and predictions of decontamination of related triphenylmethane veterinary drug under environmental conditions.

  7. Defect-induced magnetism in neutron irradiated 6H-SiC single crystals.

    Science.gov (United States)

    Liu, Yu; Wang, Gang; Wang, Shunchong; Yang, Jianhui; Chen, Liang; Qin, Xiubo; Song, Bo; Wang, Baoyi; Chen, Xiaolong

    2011-02-25

    Defect-induced magnetism is firstly observed in neutron irradiated SiC single crystals. We demonstrated that the intentionally created defects dominated by divacancies (V(Si)V(C)) are responsible for the observed magnetism. First-principles calculations revealed that defect states favor the formation of local moments and the extended tails of defect wave functions make long-range spin couplings possible. Our results confirm the existence of defect-induced magnetism, implying the possibility of tuning the magnetism of wide band-gap semiconductors by defect engineering.

  8. Paramagnetic centres in X-irradiated LiNaSO4 single crystals

    International Nuclear Information System (INIS)

    The EPR and optical absorption spectra of paramagnetic centers produced by X-irradiation in LiNaSO4 single crystals were investigated. 7 EPR lines are observed at room temperature and 6 more lines at LNT. The angular dependences of line positions at LNT are studied and the principal g-factor values are defined. The comparison with published data permitted to assign six the most anisotropic lines to ion-radical SO4- with different orientations in the lattice; two lines to ion-radical SO2-; slightly anisotropic doublet line to O3- ozonide ion; isotropic line with g = 2.0045 to ion radical SO3-. (author)

  9. Microwave emission by nonlinear crystals irradiated with a high-intensity, mode-locked laser

    CERN Document Server

    Borghesani, A F; Guarise, M

    2016-01-01

    We report on the experimental investigation of the efficiency of some nonlinear crystals to generate microwave (RF) radiation as a result of optical rectification (OR) when irradiated with intense pulse trains delivered by a mode-locked laser at $1064\\,$nm. We have investigated lithium triborate (LBO), lithium niobate (LiNbO$_3$), zinc selenide (ZnSe), and also potassium titanyl orthophosphate (KTP) for comparison with previous measurements. The results are in good agreement with the theoretical predictions based on the form of the second-order nonlinear susceptibility tensor. For some crystals we investigated also the second harmonic generation (SHG) to cross check the theoretical model. We confirm the theoretical prediction that OR leads to the production of higher order RF harmonics that are overtones of the laser repetition rate.

  10. Microwave emission by nonlinear crystals irradiated with a high-intensity, mode-locked laser

    Science.gov (United States)

    Borghesani, A. F.; Braggio, C.; Guarise, M.

    2016-06-01

    We report on the experimental investigation of the efficiency of some nonlinear crystals to generate microwave (RF) radiation as a result of optical rectification (OR) when irradiated with intense pulse trains delivered by a mode-locked laser at 1064 nm. We have investigated lithium triborate (LBO), lithium niobate (LiNbO3), zinc selenide (ZnSe), and also potassium titanyl orthophosphate (KTP) for comparison with previous measurements. The results are in good agreement with the theoretical predictions based on the form of the second-order nonlinear susceptibility tensor. For some crystals we investigated also the second harmonic generation (SHG) to cross check the theoretical model. We confirm the theoretical prediction that OR leads to the production of higher order RF harmonics that are overtones of the laser repetition rate.

  11. CHARACTERIZATION OF γ-IRRADIATED CRYSTALLINE POLYMERS Ⅱ ISOTHERMAL CRYSTALLIZATION KINETICS OF γ-RADIATION INDUCED CROSSLINKED POLYAMIDE 1010

    Institute of Scientific and Technical Information of China (English)

    FENG Jinhua; ZHANG Lihua; CHEN Donglin

    1989-01-01

    Polyamide 1010 is a γ-radiation crosslinkable polymer. After irradiation, it is possible to raise its service temperature up to 240 ℃ . Network formation greatly changes the crystallization behaviour of the polymer. In the present work, DSC was used to examine its isothermal crystallization kinetics. It is found that in addition to the necessity of more undercooling and the lowering of crystallization rate, the primary crystallization stage of the irradiated polymer is shortened. This effect is more evident with increasing radiation dose and content of enhanced difunctional crosslinking agent. However, the crystallization mechanism of the primary stage is not changed as evidenced by the constancy of Avrami exponent. The lamella end surface free energy σe calculated according to Hoffman's equation is very sensitive to γ- radiation. It increases abruptly in 2 - 3 fold even though theradiation dose is not high enough. The origin of this phenomenon may be accounted for in terms of network structure of the polymer.

  12. Thermoluminescence studies on γ-irradiated CaF2:Dy:Pb:Na single crystals

    Institute of Scientific and Technical Information of China (English)

    S. Masilla Moses Kennedy

    2009-01-01

    Thermoluminescence (TL) glow, thermoluminescence emission (TLE) and thermal decay (TD) of optical absorption (OA) bands were studied on γ-irradiated CaF2:Dy (0.010at.%):Pb (0.188at.%):Na (0.026at.%) single crystals (hereafter called crystal-I). The TL glow ex-hibited four glow peaks in the temperature region 300-600 K. The TL response with dose was studied up to ~7.5 kGy. The total glow showed linear, supra linear and exponential growth with dose. The TLE showed bands characteristic of Dy3+ ions (around 1.65, 1.87, 2.18 and 2.63 eV) and sodium associated (SA) colour centres (CCs) such as MNa (around 1.67 eV) and XNa (a new SA CC, with an emission band around 2.63 eV). The OA bands of MNa CC around 3.23 and 2.07 eV were found to decrease with temperature almost in accordance with the TL glow. The R+A centre absorption around 2.48 eV was found to grow with temperature initially and then decayed. The formation/growth of the CCs R+A and XNa might be from the conversion of the irradiation produced CC MNa- An attempt was made to explain the TL mechanism in the present system.

  13. Effects of gamma ray irradiation on the struvite crystallization of livestock wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byeong Hak; Jo, Seong Hui; Lee, Myun Joo; Kim, Tak Hyun [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-12-15

    The struvite crystallization was applied to remove NH{sub 4}{sup +} in livestock wastewater. The ammonium ions can be very toxic to the aquatic creatures. In this experiments, the livestock wastewater from Gongju livestock wastewater treatment plant was used. The behaviors of various parameters such as pH, mole ratio of Mg{sup 2+} : NH{sub 4}{sup +}: PO{sub 4}{sup 3-} and reaction temperature for struvite crystallization of livestock wastewater and the effect of gamma ray irradiation were evaluated. As results, for the pH variation, the NH{sub 4}{sup +} removal efficiency showed the highest, 88%, at pH 9 {approx} 9.25. The removal efficiency of NH{sub 4}{sup +}, Mg{sup 2+} and PO{sub 4}{sup 3-} was showed highest when same molar ratio of Mg{sup 2+} and PO{sub 4}{sup 3-} were applied. The NH{sub 4}{sup +} removal efficiency showed 82% at 7 .deg. C, and 90% at 30 .deg. C, with temperature. When the wastewater was irradiated with 20 kGy of gamma ray, NH{sub 4}{sup +} was removed as much as 83%.

  14. ESR of trapped centers in γ irradiated silver chlorates single crystals

    International Nuclear Information System (INIS)

    The paramagnetic centers O-3, ClO2, and (ClO2--Cl)- have been identified in irradiated AgClO3 single crystals by X and Q band ESR experiments at room temperatures and by the optical absorption bands at 480 and 360 nm, characteristic of the first two centers, respectively. The ESR spectrum and its angular dependence show that the first two centers have two magnetically inequivalent sites per unit cell. The third center was clearly observed only at certain orientations. The data for ClO2 show that the principal directions of the g and A tensors do not coincide; the two magnetically inequivalent sites have similar principal values of the g and A tensors related by a 900 rotation about the tetragonal crystal axis of symmetry, and can therefore be assumed to be chemically equivalent. It is found that the ClO2 center is formed substitutionally in the ClO-3 ion position, but that the ozonide O-3 is not. The thermal annealing of the γ irradiated AgClO3 has revealed an increase in the concentration of the O-3 radical that seems to be connected with the simultaneous destruction of the ClO2 center

  15. Electrical and structural properties of InSb crystals irradiated with reactor neutrons

    International Nuclear Information System (INIS)

    The structural transformations in InSb crystals irradiated with fast neutrons (E>0.1MeV) and the full spectrum of reactor neutrons with the ratio of the slow to fast neutron fluxes φsn/φfn∼1 are studied. Two ranges on the dose dependence can be selected according to the influence of fast neutron irradiation on the lattice parameter. Increase of the lattice parameter is not observed at the low flux (Ffn17cm-2). As it follows from the X-ray diffuse scattering analysis, vacancy-type clusters dissociate in this range, and the number of small interstitial-type clusters simultaneously increases in this range. At Ffn>2.5x1017cm-2 the lattice parameter linearly increases with flux. A great number of small interstitial- and vacancy-type clusters, which can trap Sn impurity atoms, are formed. The heat treatment of irradiated samples up to 400oC completely recovers the values of the lattice parameter

  16. Effects of annealing treatment and gamma irradiation on the absorption and fluorescence spectra of Cr:GSGG laser crystal

    Science.gov (United States)

    Sun, D. L.; Luo, J. Q.; Xiao, J. Z.; Zhang, Q. L.; Jiang, H. H.; Yin, S. T.; Wang, Y. F.; Ge, X. W.

    2008-09-01

    The influence of annealing treatments and gamma-ray irradiation on the absorption and fluorescence spectra of Cr:GSGG crystals grown by the Czochralski method has been investigated. Two absorption bands located near 686 nm and 1050 nm were weakened markedly after the crystal was re-annealed in H2 atmosphere, which is due to the Cr4+ ions being de-oxidized into Cr3+ ions. The other two weak additional absorption bands induced by gamma-ray irradiation appearing near 310 nm and 480 nm are ascribed to the Fe2+ ions and F-type color centers, respectively. In particular, the gamma-ray irradiation with a dose of 100 Mrad has an effect of improving slightly the luminescence properties of Cr:GSGG crystals. The improvement mechanism is analyzed and discussed.

  17. Vortex dynamics in a ring-like irradiated Bi2Sr2CaCu2O8 crystal

    International Nuclear Information System (INIS)

    A Bi2Sr2CaCu2O8 crystal selectively irradiated near the edges is studied using a Hall-sensor array. Vortices penetrating into the central Jc = 0 region are open-quotes focusedclose quotes in the center of the sample on increasing the applied field. In decreasing field, vortices leave the center and a large vortex accumulation is observed on the inner rim of the irradiated region. Spatially resolved magnetization measurements confirm the developed theoretical model

  18. Crystallization of Ge2Sb2Te5 thin films by nano- and femtosecond single laser pulse irradiation

    Science.gov (United States)

    Sun, Xinxing; Ehrhardt, Martin; Lotnyk, Andriy; Lorenz, Pierre; Thelander, Erik; Gerlach, Jürgen W.; Smausz, Tomi; Decker, Ulrich; Rauschenbach, Bernd

    2016-06-01

    The amorphous to crystalline phase transformation of Ge2Sb2Te5 (GST) films by UV nanosecond (ns) and femtosecond (fs) single laser pulse irradiation at the same wavelength is compared. Detailed structural information about the phase transformation is collected by x-ray diffraction and high resolution transmission electron microscopy (TEM). The threshold fluences to induce crystallization are determined for both pulse lengths. A large difference between ns and fs pulse irradiation was found regarding the grain size distribution and morphology of the crystallized films. For fs single pulse irradiated GST thin films, columnar grains with a diameter of 20 to 60 nm were obtained as evidenced by cross-sectional TEM analysis. The local atomic arrangement was investigated by high-resolution Cs-corrected scanning TEM. Neither tetrahedral nor off-octahedral positions of Ge-atoms could be observed in the largely defect-free grains. A high optical reflectivity contrast (~25%) between amorphous and completely crystallized GST films was achieved by fs laser irradiation induced at fluences between 13 and 16 mJ/cm2 and by ns laser irradiation induced at fluences between 67 and 130 mJ/cm2. Finally, the fluence dependent increase of the reflectivity is discussed in terms of each photon involved into the crystallization process for ns and fs pulses, respectively.

  19. Crystallization of Ge2Sb2Te5 thin films by nano- and femtosecond single laser pulse irradiation

    Science.gov (United States)

    Sun, Xinxing; Ehrhardt, Martin; Lotnyk, Andriy; Lorenz, Pierre; Thelander, Erik; Gerlach, Jürgen W.; Smausz, Tomi; Decker, Ulrich; Rauschenbach, Bernd

    2016-01-01

    The amorphous to crystalline phase transformation of Ge2Sb2Te5 (GST) films by UV nanosecond (ns) and femtosecond (fs) single laser pulse irradiation at the same wavelength is compared. Detailed structural information about the phase transformation is collected by x-ray diffraction and high resolution transmission electron microscopy (TEM). The threshold fluences to induce crystallization are determined for both pulse lengths. A large difference between ns and fs pulse irradiation was found regarding the grain size distribution and morphology of the crystallized films. For fs single pulse irradiated GST thin films, columnar grains with a diameter of 20 to 60 nm were obtained as evidenced by cross-sectional TEM analysis. The local atomic arrangement was investigated by high-resolution Cs-corrected scanning TEM. Neither tetrahedral nor off-octahedral positions of Ge-atoms could be observed in the largely defect-free grains. A high optical reflectivity contrast (~25%) between amorphous and completely crystallized GST films was achieved by fs laser irradiation induced at fluences between 13 and 16 mJ/cm2 and by ns laser irradiation induced at fluences between 67 and 130 mJ/cm2. Finally, the fluence dependent increase of the reflectivity is discussed in terms of each photon involved into the crystallization process for ns and fs pulses, respectively. PMID:27292819

  20. Synthesis of calcium oxalate crystals in culture medium irradiated with non-equilibrium atmospheric-pressure plasma

    Science.gov (United States)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Yamanishi, Yoko; Hori, Masaru

    2016-09-01

    Octahedral particulates several tens of microns in size were synthesized in a culture medium irradiated through contact with a plume of non-equilibrium atmospheric-pressure plasma (NEAPP). The particulates were identified in the crystalline phase as calcium oxalate dihydrate (COD). The original medium contained constituents such as NaCl, d-glucose, CaCl2, and NaHCO3 but not oxalate or oxalic acid. The oxalate was clearly synthesized and crystallized in the medium as thermodynamically unstable COD crystals after the NEAPP irradiation.

  1. Effect of irradiation temperature on crystallization of {alpha}-Fe induced by He irradiations in Fe{sub 80}B{sub 20} amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    San-noo, Toshimasa; Toriyama, Tamotsu; Wakabayashi, Hidehiko; Iijima, Hiroshi [Musashi Inst. of Tech., Tokyo (Japan); Hayashi, Nobuyuki; Sakamoto, Isao

    1997-03-01

    Since amorphous alloys are generally highly resistant to irradiation and their critical radiation dose is an order of magnitude higher for Fe-B amorphous alloy than Mo-methods, these alloys are expected to become applicable as for fusion reactor materials. The authors investigated {alpha}-Fe crystallization in an amorphous alloy, Fe{sub 80}B{sub 20} using internal conversion electron Moessbauer spectroscopy. The amount of {alpha}-Fe component was found to increase by raising the He-irradiation dose. The target part was modified to enable He ion radiation at a lower temperature (below 400 K) by cooling with Peltier element. Fe{sub 80}B{sub 20} amorphous alloy was cooled to keep the temperature at 300 K and exposed to 40 keV He ion at 1-3 x 10{sup 8} ions/cm{sup 2}. The amount of {alpha}-Fe crystal in each sample was determined. The crystal formation was not observed for He ion radiation below 2 x 10{sup 18} ions/cm{sup 2}, but that at 3 x 10{sup 8} ions/ cm{sup 2} produced a new phase ({delta} +0.40 mm/sec, {Delta} = 0.89 mm/sec). The decrease in the radiation temperature from 430 to 300 K resulted to extremely repress the production of {alpha}-Fe crystal, suggesting that the crystallization induced by He-radiation cascade is highly depending on the radiation temperature. (M.N.)

  2. FLUKA studies of hadron-irradiated scintillating crystals for calorimetry at the High-Luminosity LHC

    International Nuclear Information System (INIS)

    Calorimetry at the High-Luminosity LHC (HL-LHC) will be performed in a harsh radiation environment with high hadron fluences. The upgraded CMS electromagnetic calorimeter design and suitable scintillating materials are a focus of current research. In this paper, first results using the Monte Carlo simulation program FLUKA are compared to measurements performed with proton-irradiated LYSO, YSO and cerium fluoride crystals. Based on these results, an extrapolation to the behavior of an electromagnetic sampling calorimeter, using one of the inorganic scintillators above as an active medium, is performed for the upgraded CMS experiment at the HL-LHC. Characteristic parameters such as the induced ambient dose, fluence spectra for different particle types and the residual nuclei are studied, and the suitability of these materials for a future calorimeter is surveyed. Particular attention is given to the creation of isotopes in an LYSO-tungsten calorimeter that might contribute a prohibitive background to the measured signal

  3. FLUKA studies of hadron-irradiated scintillating crystals for calorimetry at the High-Luminosity LHC

    CERN Document Server

    Quittnat, Milena Eleonore

    2015-01-01

    Calorimetry at the High-Luminosity LHC (HL-LHC) will be performed in a harsh radiation environment with high hadron fluences. The upgraded CMS electromagnetic calorimeter design and suitable scintillating materials are a focus of current research. In this paper, first results using the Monte Carlo simulation program FLUKA are compared to measurements performed with proton-irradiated LYSO, YSO and cerium fluoride crystals. Based on these results, an extrapolation to the behavior of an electromagnetic sampling calorimeter, using one of the inorganic scintillators above as an active medium, is performed for the upgraded CMS experiment at the HL-LHC. Characteristic parameters such as the induced ambient dose, fluence spectra for different particle types and the residual nuclei are studied, and the suitability of these materials for a future calorimeter is surveyed. Particular attention is given to the creation of isotopes in an LYSO-tungsten calorimeter that might contribute a prohibitive background to the measu...

  4. Zenithal alignment of liquid crystal on homeotropic polyimide film irradiated by ion beam

    Science.gov (United States)

    Choi, Yoonseuk; Yoon, Tae-Hoon; Kwon, Jin Hyuk; Yi, Jonghoon; Gwag, Jin Seog

    2012-01-01

    We investigate the pretilt characteristics of a nematic liquid crystal [LC] in terms of ion beam exposure conditions on the homeotropic polyimide alignment layer. The pretilt angle of LCs in the case of high-energy ion beam treatment was decreased considerably almost the same to that of the homogenous alignment layer though we used homeotropic polyimide film at first. Increasing irradiating energy, we could control the pretilt from 90° to 1° with several steps. We believe that this is because the side chain with hydrophobicity in the used polyimide is broken by ion beam exposure. To confirm it, contact angle measurement was carried out. With this result, we can easily control the LC pretilt in the pixel with appropriate exposure conditions which is critical to achieve excellent electrooptic characteristics and good image quality.

  5. Irradiation-induced voids in alumina single crystal studied by positron annihilation

    International Nuclear Information System (INIS)

    Angular correlation of annihilation radiation (ACAR) has been measured on α-alumina single crystals irradiated with fast neutrons to a dose of 3x1024 n/m2 at about 470 K. After post-irradiation annealing above 900 K, remarkable narrowing in ACAR curves has been observed. These ACAR curves can be decomposed into three Gaussian components: a narrow (N), an intermediate (M) and a broad (B) component, with FWHM of 2-5, about 6 and 11 mrad, respectively. The N and M components are attributed to positrons trapped in the voids. A magnetic quenching effect is observed for the N component but not for the M component. This shows that the N component is due to two photon self-annihilation of positronium (Ps) formed in voids. The FWHM of the N component indicates, through the momentum of zero-point motion of Ps, that the average void diameter is 0.6 nm after annealing at 1000 K and 1.7 nm after annealing at 1525 K. Striking similarity of the M component to a void-surface trapping component in metallic Al, together with nearly the same lifetime as that of voids in Al, suggests the existence of metallic surface-conduction-electron states in the voids in α-alumina. ((orig.))

  6. Ion exchange in KTiOPO4 crystals irradiated by copper and hydrogen ions.

    Science.gov (United States)

    Zhang, Ruifeng; Lu, Fei; Lian, Jie; Liu, Hanping; Liu, Xiangzhi; Lu, Qingming; Ma, Hongji

    2008-05-12

    Cs(+)-K+ ion exchanges were produced on KTiOPO4 crystals which is prior irradiated by Cu+ can H+ ions. The energy and dose of implanted Cu+ ions are 1.5 MeV and 0.5 x 10(14) ions/cm2, and that of H+ are 300 keV and 1 x 10(16) ions/cm2, respectively. The temperature of ions exchange is 430 degrees C, and the time range from 15 minutes to 30 minutes. The prism coupling method is used to measure the dark mode spectra of the samples. Compared with results of ion exchange on the sample without irradiations, both the number of guided mode and its corresponding effective refractive index are decreased. The experimental results indicate that the ion exchange rate closely related with the lattice damage and the damage layers formed in the depth of maximum nuclear energy deposition act as a barrier to block the ions diffuse into the sample and the concentration of defects can modify the speed of ion exchange..

  7. Irradiation damage in Gd2Ti2O7 single crystals: Ballistic versus ionization processes

    Science.gov (United States)

    Moll, S.; Sattonnay, G.; Thomé, L.; Jagielski, J.; Decorse, C.; Simon, P.; Monnet, I.; Weber, W. J.

    2011-08-01

    The structural transformations induced in Gd2Ti2O7 single crystals irradiated at high energies (870-MeV Xe), where ionization processes (electronic stopping) dominate, and at low energies (4-MeV Au), where ballistic processes (nuclear stopping) dominate, have been studied via the combination of Rutherford backscattering spectrometry and channeling (RBS/C), Raman spectroscopy, and transmission electron microscopy (TEM) experiments. At high energy, amorphization occurs directly in individual ion tracks from the extreme electronic-energy deposition, and full amorphization results from the overlapping of these tracks as described by a direct impact model. The track diameters lie in the range 6-9 nm. At low energy, amorphization occurs via indirect processes, driven by ballistic nuclear energy deposition from the ions, that is accounted for in the framework of both direct-impact/defect-stimulated and multi-step damage accumulation models. The ion fluence for total amorphization of the irradiated layer is much higher at low energy (0.5 ion nm-2) than at high energy (0.05 ion nm-2), consistent with the nuclear stopping at low energy (5.2 keV/nm) compared to the electronic stopping at high energy (29 keV/nm).

  8. Irradiation Damage in Gd2Ti2O7 Single Crystals: Ballistic vs Ionization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Sandra [Pacific Northwest National Laboratory (PNNL); Sattonnay, Gael [Universite Paris Sud, Orsay, France; Thome, Lionel [Universite Paris Sud, Orsay, France; Jagielski, Jacek [Institute for Electronic Materials Technology; Decorse, C [Universite Paris Sud, Orsay, France; Simon, Patrick [CEMHTI-CNRS, Universite d' Orleans; Monnet, Isabelle [Grand Accelerateur National d' Ions Lourds (GANIL); Weber, William J [ORNL

    2011-01-01

    The structural transformations induced in Gd2Ti2O7 single crystals irradiated at high energies (870 MeV Xe), where ionization processes (electronic stopping) dominate, and at low energies (4 MeV Au), where ballistic processes (nuclear stopping) dominate, have been studied via the combination of Rutherford backscattering spectrometry and channeling, Raman spectroscopy and transmission electron microscopy experiments. At high energy, amorphization occurs directly in individual ion tracks from the extreme electronic energy deposition from ionization, and full amorphization results from the overlapping of these tracks as described by a direct impact model. The track diameters determined from RBS/C and TEM data lie in the range 6-8 nm. At low energy, amorphization occurs via indirect processes, driven by ballistic nuclear energy deposition from the ions, that is accounted for in the framework of both the direct-impact/defect stimulated and multi-step damage accumulation models. The ion fluence for total amorphization of the irradiated layer is much higher (0.5 ion nm-2) at low energy than at high energy (0.05 ion nm-2), consistent with the nuclear stopping at low energy (5.2 keV/nm) compared to the electronic stopping at high energy (29 keV/nm).

  9. ESR study of irradiated single crystals of the cocrystalline complex of cytidine: Salicylic acid

    International Nuclear Information System (INIS)

    Irradiation at 77 K of single crystals of the 1:1 complex of cytidine and salicylic acid produces a phenoxyl radical formed by oxidation of the salicylic acid. Anisotropic hyperfine coupling tensors have been determined for this radical which are associated with the para and ortho hydrogens. No cytidine oxidation products (alkoxy or hydroxyalkyl radicals) were observed at 77 K. Following the decay of the phenoxyl radical at room temperature, four radicals were detected. These include the cytosine 5--yl and 6--yl radicals, formed by H addition to the cytosine ring, and an anisotropic doublet. By UV irradiation at room temperature, it is possible to convert a significant fraction of 6-yl radicals into 5-yl radicals. Hyperfine coupling and g tensors determined for the anisotropic doublet indicate that this radical is formed in the C/sub 1'/-C/sub 2'/ region of the sugar moiety. These results indicate a shift in radiation damage away from the salicylic acid upon warming, and show that the radiation chemistry of the cocrystalline complex is different from that of the isolated bases

  10. Irradiation damage in Gd2Ti2O7 single crystals: Ballistic versus ionization processes

    International Nuclear Information System (INIS)

    The structural transformations induced in Gd2Ti2O7 single crystals irradiated at high energies (870-MeV Xe), where ionization processes (electronic stopping) dominate, and at low energies (4-MeV Au), where ballistic processes (nuclear stopping) dominate, have been studied via the combination of Rutherford backscattering spectrometry and channeling (RBS/C), Raman spectroscopy, and transmission electron microscopy (TEM) experiments. At high energy, amorphization occurs directly in individual ion tracks from the extreme electronic-energy deposition, and full amorphization results from the overlapping of these tracks as described by a direct impact model. The track diameters lie in the range 6-9 nm. At low energy, amorphization occurs via indirect processes, driven by ballistic nuclear energy deposition from the ions, that is accounted for in the framework of both direct-impact/defect-stimulated and multi-step damage accumulation models. The ion fluence for total amorphization of the irradiated layer is much higher at low energy (0.5 ion nm-2) than at high energy (0.05 ion nm-2), consistent with the nuclear stopping at low energy (5.2 keV/nm) compared to the electronic stopping at high energy (29 keV/nm).

  11. Pulsed EPR study of low-dose irradiation effects in L-alanine crystals irradiated with γ-rays, Ne and Si ion beams

    International Nuclear Information System (INIS)

    Low-dose irradiation effects in L-alanine single crystals irradiated with γ-rays, Ne and Si ion beams have been investigated by means of a two-pulse electron spin echo (ESE) technique. An effective phase memory time, TM, was measured from the first stable L-alanine radical, SAR1, and its complex relaxation mechanism is discussed. Both spectral and instantaneous diffusion contributions to the total effective relaxation rate have been extrapolated through the detection of the two-pulse ESE signal as a function of turning angle. The local microscopic concentration of paramagnetic centers C(ions)/C(γ-ray) for low-dose heavy-ion irradiation has been deduced from the corresponding spin-spin interaction

  12. Cladding-like waveguide structure in Nd:YAG crystal fabricated by multiple ion irradiation for enhanced waveguide lasing.

    Science.gov (United States)

    Shang, Zhen; Tan, Yang; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2015-10-19

    We report on a cladding-like waveguide structure in Nd:YAG crystal fabricated by the multiple carbon ion beam irradiation. After the designed multiple irradiation process, the cladding-like waveguide with triple refractive-index layers were constructed in the region near the surface of the crystal. With such a structure, the waveguiding core was compressed and refractive index profile was modified, resulting in a higher light intensity than that of the single ion-beam-irradiated monolayer waveguide. The waveguide lasing at wavelength of 1064 nm was achieved with enhanced performance in the cladding-like structures with both planar and ridge configurations by the optical pump at 810 nm.

  13. Influence of gamma irradiation on electric and dielectric properties of TIGaTe2 crystals

    International Nuclear Information System (INIS)

    Full text: TlGaTe2 has a quasi-one-dimensional layered structures and exhibit para-to-ferroelectric phase transitions through an intermediate incommensurate phase. TlGaTe2 exhibit nonlinear transport properties. This structure is body-centered tetragonal and features c-axis chains of atoms and edge-sharing GaTe4 tetrahedra. The TlGaTe2 monocrystals were grown by the modified Bridgman-Stockbarger method. The measurements were carried out on the sides perpendicular to polar axis. The sides were ground and covered by silver paste. Dielectric constant ε(T) and angle tangent of dielectric losses were measured by the alternating current bridge E7-8 (1 kHz), P5058 (10 kHz), E7-12 (1 mHz) and Tesla BM560 (100 kHz) in the temperature region 150-250K. The velocity of temperature scanning was 0,1 K / min. The loops of dielectric hysteresis were studied at frequency 50 Hz using the modified circuit Soyer-Tower. The pyroeffect has been investigated by the quasistatic method using universal voltmeter V7-30. The samples were irradiated (Co60) at room temperature. The irradiation dose was accumulated through sequential exposures of the same sample and reached 100, 200, 300 and 400 Mrad. The dependences ε(T) and σ(T) were measured after each exposure of the sample to irradiation. Conductivity was measured by the alternating current method. The temperature dependencies of dielectric constant ε(T) of TlGaTe2 crystals at different frequencies are measured. It is known, that the presence of an impurity in the semiconductor results in occurrence of local states near the Fermi level. On these local states the hopping mechanism of charge transport is realized, which essentially influences both on electrical, and dielectrically properties of semiconductor-ferroelectrics. TlGaTe2. According to the temperature dependencies of dielectric constant ε(T) study, TlGaTe2 has temperature instabilities of the crystal lattice lead to ferroelectric ordering. (author)

  14. Homogeneous liquid crystal alignment characteristics on solution-derived HfYGaO films treated with IB irradiation.

    Science.gov (United States)

    Lee, Yun-Gun; Park, Hong-Gyu; Jeong, Hae-Chang; Lee, Ju Hwan; Heo, Gi-Seok; Seo, Dae-Shik

    2015-06-29

    Solution-derived HfYGaO films have been treated by ion beam (IB) irradiation and used as liquid crystal (LC) alignment layers. Solution processing was adopted due to its simplicity, high throughput, and facile composition modification. Homogeneous and uniform LC alignment was achieved on the IB-irradiated HfYGaO films, and when these films were adopted in twisted nematic (TN) cells, electro-optical performance comparable to that of TN cells with conventional polyimide layers was achieved, with almost no capacitance-voltage hysteresis. Moreover, LC cells based on IB-irradiated HfYGaO films had a high thermal budget. The proposed IB-irradiated solution-derived HfYGaO films have considerable potential for use in advanced LC applications. PMID:26191738

  15. Fast crystallization of amorphous Gd2Zr2O7 induced by thermally activated electron-beam irradiation

    International Nuclear Information System (INIS)

    We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd2Zr2O7 synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd2Zr2O7 and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm2). The crystallization occurred on the nanoscale upon ionization irradiation at 400 °C after a dose of less than 1017 electrons/cm2. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism

  16. Electron irradiation effects on 4-amino-5-mercapto- 3-[1-(4-isobutylphenyl)ethyl]-1,2,4-triazole single crystal

    Indian Academy of Sciences (India)

    Vijayalakshmi Rao; K Naseema

    2010-09-01

    In this paper, we report the electron irradiation effects on the properties of an organic NLO single crystal of 4-amino-5-mercapto-3-[1-(4-isobutylphenyl)ethyl]-1,2,4-triazole. The crystal was irradiated with electron beam of different doses and was characterized by powder XRD, UV–Vis, FTIR, DSC, microhardness and SHG measurements. In XRD, the peaks are shifted due to irradiation. The SHG efficiency has been found to enhance rapidly with irradiation. The investigation of the influence of electron irradiation on the surface morphology of the grown crystal reveals the formation of craters on the surface. The laser damage threshold remains constant as the dose rate increases whereas refractive index increases after irradiation.

  17. Influence of Gamma-Ray Irradiation on Absorption and Fluorescent Spectra of Nd:YAG and Yb:YAG Laser Crystals

    Institute of Scientific and Technical Information of China (English)

    SUN Dun-Lu; ZHANG Qing-Li; XIAO Jing-Zhong; LUO Jian-Qiao; JIANG Hai-He; YIN Shao-Tang

    2008-01-01

    We investigate the influence of gamma-ray irradiation on the absorption and fluorescent spectra of Nd3+ : Y3Al5O12 (Nd:YAG) and Yb3+ :Y3Al5O12 (Yb:YAG) crystals grown by the Czochralski method. Two additional absorption (AA) bands induced by gamma-ray irradiation appear at 255nm and 340nm. The former is eontributed due to Fe3+ impurity, the latter is due to Fe2+ ions and F-type colour centres. The intensity of the excitation and emission spectra as well as the fluorescent lifetime of Nd:YAG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, the same dose irradiation does not impair the fluorescent properties of Yb: YA G crystal. These results indicate that Yb: YA G crystal possesses the advantage over Nd: YA G crystal that has better reliability for applications in harsh radiant environment.

  18. The Influence of EB-Irradiated Treatment on Enhancing Barrier Property and Crystallization Behavior of Rubber-Toughened Nanocomposites

    Directory of Open Access Journals (Sweden)

    N. A. Jamal

    2011-01-01

    Full Text Available Electron beam (EB irradiation technique was introduced to modify the crystallization and oxygen (O2 barrier properties of high density-polyethylene (HDPE/ethylene propylene diene monomer (EPDM matrix and HDPE/EPDM filled withorganophilic montmorillonite (OMMT. The absorbed dose for EB-irradiation was fixed at 100 kGy. HDPE/EPDM matrix and HDPE/EPDM filled with OMMT at 4 vol% loading were prepared via melt intercalation method. It was found that the barrier resistance of HDPE/EPDM filled withOMMT against oxygen (O2 transmission was significantly enhanced by EB-irradiation absorbed dose of 100 kGy as compared to the control system. The crystallization temperature, Tc, and melting temperature, Tm, were also improved with the addition of OMMT along with the aids of EB-irradiation technique. Field emission scanning electron microscope (FESEM revealed that the stacking condition of OMMT particles was greatly reduced by EB-irradiation treatment as evidenced by finer surface and less formation of voids.

  19. Synthesis of TiO2 nanoscale rods with MHz femtosecond laser irradiation of single crystal surface and characterisation

    OpenAIRE

    M.Sivakumar; Bo Tan; Krishnan Venkatakrishnan

    2011-01-01

    Growth of nanoscale rods on single crystal rutile TiO2 surface irradiated by MHz pulse repetition rate femtosecond laser in nitrogen environment without a catalyst or template is reported. The rods are of 100 nm in width to 1 micron length. Microraman analysis of the laser irradiated surface shows only a decrease in the intensity of active modes as compared to untreated surface. The growth of TiO2 nanorods can be explained by a method combining nanoparticles formation due to expulsion of molt...

  20. Effect of high-energy heavy ion irradiation on the crystallization kinetics of Co-based metallic glasses

    Indian Academy of Sciences (India)

    Rohit Jain; Deepika Bhandari; N S Saxena; S K Sharma; A Tripathi

    2001-02-01

    Differential scanning calorimeter (DSC) is employed to study the crystallization kinetics of irradiated (at three different fluences with high-energy heavy ion; Ni11+ of 150 MeV) specimens of two Co-based metallic glasses. It is found that the crystallization process in both the glasses is completed in two phases. The DSC data have been analysed in terms of kinetic parameters viz. activation energy (), Avrami exponent (), dimensionality of growth (), using two different theoretical models. The results obtained have been compared with that of virgin samples. The lower activation energy in case of second crystallization occurring at higher temperature indicates the easier nucleation of second phase. The abnormally high value of Avrami exponent in Co–Ni glass indicates very high nucleation rate during first crystallization.

  1. In-situ observation of damage evolution in TiC crystals during helium ion irradiation

    International Nuclear Information System (INIS)

    In-situ observations were performed on bubble formation and growth in TiC during 20 keV helium ion irradiation over the wide range of irradiation temperatures from 12 to 1523 K. No amorphization occurred over this temperature range. The bubble densities and sizes were almost independent of irradiation temperatures from 12 to 1273 K. Remarkable growth and coalescence occurred during irradiation at high temperature above 1423 K and during annealing above 1373 K after irradiation. ((orig.))

  2. Relation between the swelling and the disordering in ionic crystals irradiated by fast heavy ions

    International Nuclear Information System (INIS)

    When fast heavy ions penetrate in matter, they slow down essentially by depositing their energy on the electrons. This can lead to strong electronic excitation densities in the solid and then to structural modifications. In this work, calcium fluoride (CaF2) was used to look further into the damage induced by irradiation with fast heavy ions in ionic crystals. Four techniques were mainly employed to characterise this damage. These techniques of analysis are wide angle X-ray diffraction, surface profilometry, Rutherford backscattering spectrometry and UV-visible optical absorption spectroscopy. The results of this work show that CaF2 answers in a multiple way to the electronic excitations. For stopping powers higher than approximately 5 keV/nm, a polygonization seems to occur. This causes a structural disorder, a swelling of 0.27 % and the formation of fractures in the material. A second damage mechanism is caused above approximately 13 keV/nm and results in a loss of the initial crystalline structure. However, optical centres appear whatever the ion stopping power, which indicates that these defects cannot be the cause of the two above mentioned damage mechanisms. According to a thermal spike model, the two thresholds can be linked to melting and sublimation energy of the material, respectively. (author)

  3. Effects of swift argon-ion irradiation on the proton-exchanged LiNbO3 crystal

    Institute of Scientific and Technical Information of China (English)

    Huang Qing; Liu Peng; Liu Tao; Guo Sha-Sha; Wang Xue-Lin

    2012-01-01

    A proton-exchanged LiNbO3 crystal was subjected to 70-MeV argon-ion irradiation.The lattice damage was investigated by the Rutherford backscattering and channeling technique.It was found that the lattice disorder induced by the proton exchange process was partially recovered and the proton-exchanged layer was broadened.It indicated that the lithium ions underneath the initial proton-exchanged layer migrated to the surface during the swift argon-ion irradiation and supplemented the lack of lithium ions in the initial proton-exchanged layer.This effect was ascribed to the great electronic energy deposition and relaxation.The swift argon-ion irradiation induced an increase in extraordinary refractive index and formed another waveguide structure beneath the proton-exchanged waveguide.

  4. Superior optical properties of homogeneous liquid crystal alignment on a tin (IV) oxide surface sequentially modulated via ion beam irradiation.

    Science.gov (United States)

    Kang, Young-Gu; Park, Hong-Gyu; Kim, Hyung-Jun; Kim, Young-Hwan; Oh, Byeong-Yun; Kim, Byoung-Yong; Kim, Dai-Hyun; Seo, Dae-Shik

    2010-10-11

    We first investigated the alignment characteristics of tin (IV) oxide (SnO(2)) thin films deposited by radio-frequency (RF) magnetron sputtering. This study demonstrates that liquid crystal (LC) molecules could be aligned homogeneously by controlling the Ion Beam (IB) irradiation energy densities. We also show that the pretilt angle of the LC molecules has a close relation with the surface energy. X-ray photoelectron spectroscopy (XPS) indicates that a non-stoichiometric SnO(2-x) surface converted by ion beam irradiation can horizontally align the LC molecules. The measured electro-optical (EO) characteristics showed high performance, comparable with those of rubbed and ion-beam irradiated polyimide (PI) layers. PMID:20941057

  5. Comparative study of effects of low dose gamma-irradiation on phase transitions in single crystals of triglycine sulfate and its deuterated analogue

    International Nuclear Information System (INIS)

    Paper presents the results of the comparative study of the effect of γ-irradiation low (less than 0.5 MR) doses on the specific heat (Cp) of triglycine sulfate crystal and of its deuterated analogue prepared by means of the precision vacuum adiabatic calorimetry within 80-350 K temperature range. One observed essential changes of Cp behaviour of the pure and the γ-irradiated crystals near (Tc) phase transition temperature decreasing as the dose increased

  6. Short-living centers of color and luminescence in LiNbO3 crystals irradiated by pulsed electron beams

    International Nuclear Information System (INIS)

    Paper presents data on investigation into spectra of short-living optical absorption (SOA) and of luminescence inducted in lithium niobate crystals under pulsed electron irradiation (0.25 MeV, 20 ns, 15-160 mJ/Cm2) within 80-350 K temperature range. Within SOA spectra one distinguished anisotropic band with maximums at 1.6 and 4.0 eV resulting from capture of one or two conduction electrons for bunches (NbNb - NbLi) respectively as well as, slightly polarized bands at 2.5 and 3.3 eV caused by holes localized in Li and Nb vacancies. Cathodoluminescence (CL) of lithium niobate crystals is characterized by quick (τ < 4 ns) dying down. Variation of initial defect nature of crystal via their regeneration under 830 K is shown to result in similar for CL and for SOA variation of spectra

  7. Anisotropy and Raman absorption of the polyimide surface irradiated by the ion beam for liquid crystal alignment

    International Nuclear Information System (INIS)

    In this paper, polyimide surfaces irradiated by an ion-beam for liquid crystal alignment are investigated by using atomic force microscopy, Raman spectroscopy, and spectroscopic ellipsometry. A liquid crystal cell aligned homogeneously through the ion-beam exposure exhibits electro-optic switching behavior similar to that of a rubbing-aligned liquid crystal cell. However, we found that the surface morphology and bonding molecules of ion-beam-treated polyimide surfaces show properties very different from mechanically-rubbed ones. Experimental results show that optical anisotropy of ion-beam-treated polyimide surfaces results in the formation of hydrogenated amorphous carbon-like structure with a short main-chain, while mechanical rubbing has little effect on structural and compositional variations of polyimide layers

  8. Gamma-ray irradiation effect on the absorption and luminescence spectra of Nd:GGG and Nd:GSGG laser crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sun Dunlu [Crystal Lab, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shushanhu Road 350, PO Box 1125, Hefei, Anhui 230031 (China); Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal)], E-mail: dlsun@aiofm.ac.cn; Luo Jianqiao; Zhang Qingli [Crystal Lab, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shushanhu Road 350, PO Box 1125, Hefei, Anhui 230031 (China); Xiao Jingzhong [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal); Xu Jiayue [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Jiang Haihe; Yin Shaotang [Crystal Lab, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shushanhu Road 350, PO Box 1125, Hefei, Anhui 230031 (China)

    2008-12-15

    Laser crystals Nd{sup 3+}:Gd{sub 3}Ga{sub 5}O{sub 12} (Nd:GGG) and Nd{sup 3+}:Gd{sub 3}Sc{sub 2}Ga{sub 3}O{sub 12} (Nd:GSGG) were grown by Czochralski method. The influence of gamma-ray irradiation on their absorption and luminescence spectra has been investigated. Two additional absorption (AA) bands induced by gamma-ray irradiation appear in the spectra of Nd:GGG crystal while only a very weak AA band appears for the Nd:GSGG crystal. This indicated that Nd:GSGG crystal has stronger ability to resist the color center formation by irradiation. The intensity of the excitation and emission spectra of Nd:GGG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, a luminescence strengthening effect was observed in Nd:GSGG crystal after exposure to the same irradiation dose. The results showed that the Nd:GSGG crystal is a promising candidate used under radiation environments such as in outer space.

  9. Gamma-ray irradiation effect on the absorption and luminescence spectra of Nd:GGG and Nd:GSGG laser crystals

    International Nuclear Information System (INIS)

    Laser crystals Nd3+:Gd3Ga5O12 (Nd:GGG) and Nd3+:Gd3Sc2Ga3O12 (Nd:GSGG) were grown by Czochralski method. The influence of gamma-ray irradiation on their absorption and luminescence spectra has been investigated. Two additional absorption (AA) bands induced by gamma-ray irradiation appear in the spectra of Nd:GGG crystal while only a very weak AA band appears for the Nd:GSGG crystal. This indicated that Nd:GSGG crystal has stronger ability to resist the color center formation by irradiation. The intensity of the excitation and emission spectra of Nd:GGG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, a luminescence strengthening effect was observed in Nd:GSGG crystal after exposure to the same irradiation dose. The results showed that the Nd:GSGG crystal is a promising candidate used under radiation environments such as in outer space

  10. Laws governing the creation of electronic color centers in LiF crystals acted on by pulsed irradiation

    Science.gov (United States)

    Lisitsyna, L. A.

    1996-11-01

    The processes of creating and transforming electronic color centers in an LiF crystal irradiated with a nanosecond electron pulse are investigated using pulse spectrometry with nanosecond resolution for times in the range 10-8 to 105 sec. It is shown that the thermally activated mechanism of forming Frenkel pairs in the 12 200 K range consists of successively creating exciton states, as the temperature rises, having different degrees of spatial separation of the electron and hole components. It is concluded that the structure of self-trapped excitons evolves as a function of temperature and time, and that this evolution commences for any alkali halide crystal with the creation of self-trapped excitons of D 2h point symmetry at 4 K. It is established that the interaction of electronic excitations with electronic color centers changes the properties of both the electronic excitations themselves and the color centers. In a crystal containing neutral electronic centers there is a fall in the yield of self-trapped excitons and Frenkel pairs and an increase in the contribution of the radiative channel for loss of the irradiation energy by the color centers. A mechanism is proposed for exciting luminescence of electronic color centers. It is established that short-lived irradiation-induced states exist, in particular a change in the spin state or in just the energy state of a center in the irradiation field, and that the appearance of these states changes the efficiency and directivity of the charge evolution of the electronic color centers.

  11. Annihilation behaviour under electron irradiation of athermal ω-phase crystals formed by cooling at 131K in a β-Ti-Mo alloy

    International Nuclear Information System (INIS)

    Formation of athermal ω-phase crystals due to cooling to 131 K has been directly observed in a β-type Ti-15mass%Mo alloy. The athermal ω-phase crystals easily disappear by electron irradiation during the in-situ observation at 131 K. Incubation phenomenon of the annihilation is also recognized. The annihilation behaviour was investigated based on the dependence on electron irradiation conditions and incubation phenomena. It is concluded that the annihilation mechanism is concerned with interactive effects of temperature rise due to electron irradiation and collective oscillation resulted from inelastic scattering of electron beam.

  12. Diamond single crystal-surface modification under high- fluence ion irradiation

    Science.gov (United States)

    Anikin, V. A.; Borisov, A. M.; Kazakov, V. A.; Mashkova, E. S.; Palyanov, Yu N.; Popov, V. P.; Shmytkova, E. A.; Sigalaev, S. K.

    2016-09-01

    The modification of (111) face of synthetic diamond has been studied experimentally for high-fluence 30 keV argon bombardment. It has been found that ion irradiation leads to the electrically conductive layer formation the sheet resistance of which decreases more than 100 times while changing the temperature of the irradiated diamond from 70 to 400 oC. This effect, as well as significant changes of optical transmittance after ion irradiation are associated with ion-induced structural changes of irradiated diamond obtained by the methods of Raman spectroscopy.

  13. Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gontad, F., E-mail: fran_gontad@yahoo.es [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain); Conde, J.C. [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain); Filonovich, S.; Cerqueira, M.F.; Alpuim, P. [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Chiussi, S. [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain)

    2013-06-01

    We report on the excimer laser annealing (ELA) induced temperature gradients, allowing controlled crystallization and dehydrogenation of boron-doped a-Si:H/nc-Si:H multilayers. Depth of the dehydrogenation and crystallization process has been studied numerically and experimentally, showing that temperatures below the monohydride decomposition can be used and that significant changes of the doping profile can be avoided. Calculation of temperature profiles has been achieved through numerical modeling of the heat conduction differential equation. Increase in the amount of nano-crystals, but not in their size, has been demonstrated by Raman spectroscopy. Effective dehydrogenation and shape of the boron profile have been studied by time of flight secondary ion mass spectroscopy. The relatively low temperature threshold for dehydrogenation, below the monohydride decomposition temperature, has been attributed to both, the large hydrogen content of the original films and the partial crystallization during the ELA process. The results of this study show that UV-laser irradiation is an effective tool to improve crystallinity and dopant activation in p{sup +}-nc-Si:H films without damaging the substrate. - Highlights: • An efficient dehydrogenation is possible through excimer laser annealing. • 140 mJ/cm{sup 2} is enough for dehydrogenation without significant changes in doping profile. • Fluences up to 300 mJ/cm{sup 2} promote partial crystallization of the amorphous structures.

  14. The role of impurities in thermally stimulated luminescence of MgO:Mn2+ and MgO:V2+ crystals irradiated in a reactor

    International Nuclear Information System (INIS)

    The high-temperature thermally stimulated luminescence (TSL) of nominally pure MgO crystals and MgO crystals with excessive amounts of paramagnetic manganese and vanadium ions irradiated in a reactor has been studied. It was observed that the influence of impurity on the TSL of crystal is different at low and relatively high doses. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. The near-infrared waveguide properties of an LGS crystal formed by swift Kr{sup 8+} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yu-Fan; Liu, Peng; Liu, Tao; Zhang, Lian [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China); Sun, Jian-Rong; Wang, Zhi-Guang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Xue-Lin, E-mail: xuelinwang@sdu.edu.cn [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China)

    2013-11-15

    In this work, we report on the optical properties in the near-infrared region of a LGS crystal planar waveguide formed by swift heavy ion irradiation. The planar optical waveguide in a LGS crystal was fabricated by 330 MeV Kr{sup 8+}-ion implantation at a fluence of 1 × 10{sup 12} cm{sup −2}. The initial beam had an energy of 2.1 GeV and was slowed down by passing it through a 259 μm thick Al foil. The guided mode was measured using a prism coupler at a wavelength of 1539 nm. The near-field intensity distribution of the mode was recorded by a CCD camera using the end-face coupling method. The FD-BPM was used to simulate the guided mode profile. The lattice damage induced by SHI irradiation in the LGS crystal was studied using micro-Raman spectroscopy. The Raman spectra are consistent with the stopping power distributions of the Kr{sup 8+} ions simulated by SRIM and with the micro-photograph of the waveguide taken by a microscope using polarized light.

  16. Broadband near-infrared luminescence in gamma-irradiated Bi-doped alpha-BaB(2)O(4) single crystals.

    Science.gov (United States)

    Su, Liangbi; Yu, Jun; Zhou, Peng; Li, Hongjun; Zheng, Lihe; Yang, Yan; Wu, Feng; Xia, Haiping; Xu, Jun

    2009-08-15

    Spectroscopic properties of as-grown and gamma-irradiated undoped and Bi-doped alpha-BBO (BaB(2)O(4)) single crystals were investigated. Bi(2+) and color centers in Bi:alpha-BBO crystals were investigated to be nonluminescent in the near-infrared (NIR) region. Broadband NIR luminescence at 1139 nm with a FWHM of 108 nm and a decay time of 526 mus was realized in Bi:alpha-BBO crystal through gamma irradiation. Bi(+) was attributed to be responsible for the NIR emission, which can be bleached by thermal annealing. The involved physical processes in Bi:alpha-BBO crystal during the courses of irradiation and heat annealing were tentatively established.

  17. Broadband near-infrared luminescence in gamma-irradiated Bi-doped alpha-BaB(2)O(4) single crystals.

    Science.gov (United States)

    Su, Liangbi; Yu, Jun; Zhou, Peng; Li, Hongjun; Zheng, Lihe; Yang, Yan; Wu, Feng; Xia, Haiping; Xu, Jun

    2009-08-15

    Spectroscopic properties of as-grown and gamma-irradiated undoped and Bi-doped alpha-BBO (BaB(2)O(4)) single crystals were investigated. Bi(2+) and color centers in Bi:alpha-BBO crystals were investigated to be nonluminescent in the near-infrared (NIR) region. Broadband NIR luminescence at 1139 nm with a FWHM of 108 nm and a decay time of 526 mus was realized in Bi:alpha-BBO crystal through gamma irradiation. Bi(+) was attributed to be responsible for the NIR emission, which can be bleached by thermal annealing. The involved physical processes in Bi:alpha-BBO crystal during the courses of irradiation and heat annealing were tentatively established. PMID:19684830

  18. Special features of photoelectromagnetic effect and properties of recombination centers in germanium single crystals irradiated by. cap alpha. particles

    Energy Technology Data Exchange (ETDEWEB)

    Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-01-01

    Results of studies on a spatial distribution of defects arising in Ge crystals following ..cap alpha..-particle (40 MeV) irradiation are given. The distribution of defects playing the role of recombination centres is shown to produce the definite effect on diffusion-recombination processes in semiconductors. The carrier capture cross section on recombination centres is determined to be sigma approximately 10/sup -15/ cm/sup -2/. A representation of recombination wall appearing in the vicinity of radiation defect concentration peak is introduced. The experimental data are compared with the developed theoretical representations. It is shown that studies on the photoelectromagnetic effect can give information both on the pattern of radiation defect spatial distribution and recombination parameters of irradiated semiconductors.

  19. Characteristics of the photelectromagnetic effect and properties of recombination centers in germanium single crystals irradiated with. cap alpha. particles

    Energy Technology Data Exchange (ETDEWEB)

    Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-01-01

    The spatial distribution of defects created in Ge crystals by irradiation with 40-MeV ..cap alpha.. particles was investigated. The distribution of the defects acting as recombination centers had a decisive influence on the diffusion-recombination processes in this semiconductor. The carrier-capture cross section of the recombination centers (sigmaapprox.10/sup -15/ cm/sup 2/) was determined. A concept of a recombination wall, which appeared in the region of a maximum of the radiation defect concentration, was introduced. The experimental data were compared with theoretical representations. This comparison demonstrated that an investigation of the photoelectromagnetic effect could give information both on the nature of the spatial distribution of radiation defects and on the recombination parameters of an irradiated semiconductor.

  20. Dosimetric characteristics of ultraviolet and x-ray-irradiated KBr:Eu2+ thermoluminescence crystals

    International Nuclear Information System (INIS)

    Thermoluminescence (TL) characteristics of KBr:Eu2+ (150 ppm) previously exposed to ultraviolet (UV) light (200 endash 300 nm) and x-ray radiation at room temperature have been determined. The TL glow curve of UV-irradiated samples is composed of six peaks located at 337, 384, 402, 435, 475, and 510 K. The TL glow curves of x-irradiated samples show mainly a TL peak around 384 K. The TL intensities of UV-irradiated (402 and 510 K glow peaks) and x-irradiated specimens present a linear dependence as a function of radiation dose as well as fading stability 300 s after irradiation. These results further enhance the possibilities of using europium-doped materials in nonionizing (actinic region) and ionizing radiation detection and dosimetry applications. copyright 1996 American Institute of Physics

  1. Dosimetric characteristics of ultraviolet and x-ray-irradiated KBr:Eu{sup 2+} thermoluminescence crystals

    Energy Technology Data Exchange (ETDEWEB)

    Melendrez, R.; Perez-Salas, R. [Programa de Posgrado en Fisica de Materiales, Centro de Investigacion, Cientifica y de Educacion Superior de Ensenada, Apartado Postal 2681, Ensenada, Baja California, 22800 (Mexico); Aceves, R.; Piters, T.M.; Barboza-Flores, M. [Centro de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora, 83190 (Mexico)

    1996-08-01

    Thermoluminescence (TL) characteristics of KBr:Eu{sup 2+} (150 ppm) previously exposed to ultraviolet (UV) light (200{endash}300 nm) and x-ray radiation at room temperature have been determined. The TL glow curve of UV-irradiated samples is composed of six peaks located at 337, 384, 402, 435, 475, and 510 K. The TL glow curves of x-irradiated samples show mainly a TL peak around 384 K. The TL intensities of UV-irradiated (402 and 510 K glow peaks) and x-irradiated specimens present a linear dependence as a function of radiation dose as well as fading stability 300 s after irradiation. These results further enhance the possibilities of using europium-doped materials in nonionizing (actinic region) and ionizing radiation detection and dosimetry applications. {copyright} {ital 1996 American Institute of Physics.}

  2. Domain configurations in the ferroelectric phase of KH2AsO4 from ENDOR studies of irradiated crystals

    International Nuclear Information System (INIS)

    Using ENDOR spectroscopy, the radical AsO44- created by gamma irradiation in KH2AsO4 crystals has been reexamined. An earlier study by Dalal et al. had shown the existence of two types of domains in the ferro-electric phase. By considering the origin of a small splitting of the ENDOR lines, it is shown that in fact this technique allows the detection of the four domain types which are expected to exist in KH2AsO4 as in KH2PO4

  3. Development and high temperature testing by 14 MeV neutron irradiation of single crystal diamond detectors

    Science.gov (United States)

    Pilotti, R.; Angelone, M.; Pagano, G.; Loreti, S.; Pillon, M.; Sarto, F.; Marinelli, M.; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.

    2016-06-01

    In the present paper, the performances of single crystal diamond detectors "ad hoc" designed to operate at high temperature are reported. The detectors were realized using commercial CVD single crystal diamond films, 500 micron thick with metal contacts deposited by sputtering method on each side. The new detector layout is based upon mechanical contacts between the diamond film and the electric ground. The detector was first characterized by measuring the leakage current as function of temperature and applied biasing voltage (I-V characteristics). The results obtained using two different metal contacts, Pt and Ag respectively, while irradiated with 14 MeV neutrons at the Frascati neutron generator (FNG) are reported and compared. It is shown that diamond detectors with Ag metal contacts can be properly operated in spectrometric mode up to 240oC with energy resolution (FWHM) of about 3.5%.

  4. Magnetoplastic effect in irradiated NaCl and LiF crystals

    International Nuclear Information System (INIS)

    Impact of low doses of X-ray radiation on magnetoplastic effect is alkali-halide crystals, consisting in detachment of dislocations from paramagnetic centers under effect of external magnetic field is studied. The measurements of LiF crystals and three types of NaCl crystals, differing in the admixture content were conducted. Dependence of the dislocations medium run on the sample rotation frequency in the magnetic field proved to be especially sensitive to low doses

  5. Application of ZnO single crystals for light-induced water splitting under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suhak, Yuriy, E-mail: suhak@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Izdebska, Katarzyna; Skupiński, Paweł; Wierzbicka, Aleksandra; Reszka, Anna; Sybilski, Piotr; Kowalski, Bogdan J.; Mycielski, Andrzej; Zytkiewicz, Zbigniew R. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Soszko, Michał [Industrial Chemistry Research Institute, Rydygiera 8, 01-793 Warsaw (Poland); Suchocki, Andrzej [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of Physics, University of Bydgoszcz, Weyssenhoffa 11, 85-072 Bydgoszcz (Poland)

    2014-02-14

    This paper presents experimental results of implementation of ZnO single crystals as photoanodes in photoelectrochemical (PEC) cells for hydrogen generation through the process of water splitting. Both, as-grown and O{sub 2}-annealed ZnO single crystals were investigated for this purpose. A 351 nm argon laser line was used as the light source. The XRD investigations showed that used ZnO crystals are of good crystalline quality. It was found that the as-grown ZnO single crystals possess higher conversion efficiencies comparing to the O{sub 2}-annealed one. The photocurrent density was found to increase significantly with the increase of external bias applied and excitation light intensity. Time dependent photocurrent density characteristics showed that the decay of photocurrent density was not observed within the measurement time. The differences in behaviour of the as-grown and the annealed in O{sub 2} ZnO single crystals are discussed in terms of crystals intrinsic defects. - Highlights: • ZnO single crystals show excellent performance as photoanodes for water splitting. • ZnO single crystals showed good stability in aqueous solution. • Mid-gap band state introduction does not influence the efficiency of water splitting.

  6. Mechanical properties and microstructures of copper, gold and palladium single crystals irradiated with 600 MeV protons

    International Nuclear Information System (INIS)

    In the present work, the defect microstructures and hardening effects produced by 600 MeV proton irradiation in Cu, Pd and Au single crystals have been studied at room temperature. The defect microstructures in the irradiated Cu have been investigated by using transmission electron microscopy (TEM) in a dose range from 9.7x10-4 to 4.6x10-2 dpa. It has been observed that about 90% of the total defect clusters are stacking fault tetrahedra (SFT's). This fraction is independent of the thickness of the foil up to about 130 nm. The irradiation defect cluster densities obtained are in agreement with previous published results of high energy proton irradiation. With the present data at medium doses, the dose dependence of the defect cluster density, in high energy proton irradiated Cu, has been well established. A comparison between the results of Cu irradiated with high energy protons, fusion neutrons and fission neutrons indicates that there is no difference in defect cluster densities produced by these particle irradiations when the results are compared on the basis of dpa. The data compiled can be fitted within a band which shows that the defect cluster density starts to saturate at a value of about 4x1023 m-3. A large transition dose range between the linear dependence to the saturation is located between 3x10-3 and 1x10-1 dpa. The defect cluster size distribution measured under weak beam dark field (WBDF) imaging conditions with (g,6g) (WBDF(g,6g)), g=200, shows that the most probable size is between 1.5 and 2 nm and the mean size is about 2 nm independent of the dose. This result is also in agreement with published results. The defect structure in Au at dose of 1.1x10-1 dpa has been observed. It shows that about 85% of the total defect clusters are SFT's. There are no grouped defect clusters, which may probably be due to the fact that the defect cluster density (5.1x1023) has already saturated at this high dose. The most probable defect cluster size is between 2

  7. Study on the effect of heat-annealing and irradiation on spectroscopic properties of Bi:alpha-BaB2O4 single crystal.

    Science.gov (United States)

    Xu, Jun; Zhao, Hengyu; Su, Liangbi; Yu, Jun; Zhou, Peng; Tang, Huili; Zheng, Lihe; Li, Hongjun

    2010-02-15

    The absorption, excitation, and ultrabroadband near-infrared luminescence spectra of Bismuth were investigated in H(2)-annealed and gamma-irradiated Bi:alpha-BaB(2)O(4)(alpha-BBO) single crystals, respectively. Energy-level diagrams of the near-infrared luminescent centers were fixed. The electronic transition energies of near-infrared active centers are basically consistent with the multiplets of free Bi(+) ions. The minor difference of the energy-level diagrams of Bi(+) ions in H(2)-annealed and gamma-irradiated Bi:alpha-BaB(2)O(4) crystals can be ascribed to the difference of the local lattice environments. The involved physical and chemical processes were discussed. The effect of Ar-, air-annealing and electron-irradiation on Bi:alpha-BaB(2)O(4) crystal were also investigated.

  8. Study on the effect of heat-annealing and irradiation on spectroscopic properties of Bi:alpha-BaB2O4 single crystal.

    Science.gov (United States)

    Xu, Jun; Zhao, Hengyu; Su, Liangbi; Yu, Jun; Zhou, Peng; Tang, Huili; Zheng, Lihe; Li, Hongjun

    2010-02-15

    The absorption, excitation, and ultrabroadband near-infrared luminescence spectra of Bismuth were investigated in H(2)-annealed and gamma-irradiated Bi:alpha-BaB(2)O(4)(alpha-BBO) single crystals, respectively. Energy-level diagrams of the near-infrared luminescent centers were fixed. The electronic transition energies of near-infrared active centers are basically consistent with the multiplets of free Bi(+) ions. The minor difference of the energy-level diagrams of Bi(+) ions in H(2)-annealed and gamma-irradiated Bi:alpha-BaB(2)O(4) crystals can be ascribed to the difference of the local lattice environments. The involved physical and chemical processes were discussed. The effect of Ar-, air-annealing and electron-irradiation on Bi:alpha-BaB(2)O(4) crystal were also investigated. PMID:20389348

  9. Effects of O2+ ions beam irradiation on crystal structure of rare earth sesquioxides

    International Nuclear Information System (INIS)

    We report the results of ion irradiation influence on rare earth sesquioxides structure, which are materials of practical importance as a radiation resistant ceramics in nuclear applications. Y2O3, Gd2O3 and Er2O3 sesquioxides in the pellet form were irradiated by oxygen ions (O2+) beam with the energy of 30 keV and implantation fluence of 5 x 1020 m-2. Samples are characterized by Grazing Incidence X-ray Diffraction (GIXRD), Raman spectroscopy and atomic force microscopy (AFM). By GIXRD it was found partial transformation from cubic (C) to monoclinic (B) phase only in Gd2O3, induced by O2+ irradiation. This was confirmed by Raman spectroscopy. Although full phase transition from C to B phase in Y2O3 was not observed, the splitting and broadening of the main intensity Raman band for C phase could be explained by the stress and the disorder induced by the quenching. Analysis done by AFM showed changes in surface topology, i.e. values of average roughness (Ra) and root mean squared roughness (RMS) were significantly changed after irradiation for all samples. RMSs in Y2O3 before and after irradiation were 35 nm and 26 nm, respectively.

  10. Longitudinal uniformity, time performance and irradiation test of pure CsI crystals

    OpenAIRE

    Angelucci, M.; Atanova, O.; Baccaro, S; Cemmi, A.; Cordelli, M.; Donghia, R.; S. Giovannella; Happacher, F.; Miscetti, S.; I. Sarra; Soleti, S. R.

    2016-01-01

    To study an alternative to BaF2, as the crystal choice for the Mu2e calorimeter, thirteen pure CsI crystals from Opto Materials and ISMA producers have been characterized by determining their light yield (LY) and longitudinal response uniformity (LRU), when read with a UV extended PMT. The crystals show a LY of ~ 100 p.e./MeV (~ 150 p.e./MeV) when wrapped with Tyvek and coupled to the PMT without (with) optical grease. The LRU is well represented by a linear slope that is on average around -0...

  11. Electron spin resonance and E.N.D.O.R. double resonance study of free radicals produced by gamma irradiation of imidazole single crystals

    International Nuclear Information System (INIS)

    Gamma irradiation of imidazole single crystals at 300 deg. K gives two radicals. Identification and detailed studies of their electronic and geometric structure have been made by ESR and ENDOR techniques. A study of the hydrogen bonded protons hyperfine tensor is made and let us conclude to the inexistence of movement and tunneling of these protons. The principal low temperature radical, produced by gamma irradiation at 77 deg. K has been also studied by ESR and a model has been proposed. (author)

  12. Thermal bleaching of optical absorption and photoluminescence spectra of γ-irradiated CaF_2:Dy:Pb:Na single crystals

    Institute of Scientific and Technical Information of China (English)

    S.M.; Moses; Kennedy

    2010-01-01

    The variation of the optical absorption (OA) and photoluminescence (PL) spectra with temperature was studied on γ-irradiated CaF2:Dy:Pb:Na single crystals. The OA spectrum showed bands around 2.05, 3.20, 3.82 and 6.20 eV which could be attributed to different sodium associated (SA) colour centres (CCs) such as MNa and RA+ . Heating the crystal indicated the annihilation and formation of different SACCs. The excitation spectrum for the characteristic Dy3+ emission at 2.14 eV immediately after irradiation was...

  13. Longitudinal uniformity, time performance and irradiation test of pure CsI crystals

    CERN Document Server

    Angelucci, M; Baccaro, S; Cemmi, A; Cordelli, M; Donghia, R; Giovannella, S; Happacher, F; Miscetti, S; Sarra, I; Soleti, S R

    2016-01-01

    To study an alternative to BaF2, as the crystal choice for the Mu2e calorimeter, thirteen pure CsI crystals from Opto Materials and ISMA producers have been characterized by determining their light yield (LY) and longitudinal response uniformity (LRU), when read with a UV extended PMT. The crystals show a LY of ~ 100 p.e./MeV (~ 150 p.e./MeV) when wrapped with Tyvek and coupled to the PMT without (with) optical grease. The LRU is well represented by a linear slope that is on average around -0.6 %/cm. The timing performances of the Opto Materials crystal, read with a UV extended MPPC, have been evaluated with minimum ionizing particles. A timing resolution of ~ 330 ps (~ 440 ps) is achieved when connecting the photosensor to the MPPC with (without) optical grease. The crystal radiation hardness to a ionization dose has also been studied for one pure CsI crystal from SICCAS. After exposing it to a dose of 900 Gy, a decrease of 33% in the LY is observed while the LRU remains unchanged.

  14. Longitudinal uniformity, time performances and irradiation test of pure CsI crystals

    Science.gov (United States)

    Angelucci, M.; Atanova, O.; Baccaro, S.; Cemmi, A.; Cordelli, M.; Donghia, R.; Giovannella, S.; Happacher, F.; Miscetti, S.; Sarra, I.; Soleti, S. R.

    2016-07-01

    To study an alternative to BaF2, as the crystal choice for the Mu2e calorimeter, 13 pure CsI crystals from Opto Materials and ISMA producers have been characterized by determining their light yield (LY) and longitudinal response uniformity (LRU), when read with a UV extended PMT. The crystals show a LY of ~100 p.e./MeV (~150 p.e./MeV) when wrapped with Tyvek and coupled to the PMT without (with) optical grease. The LRU is well represented by a linear slope that is on average δ~ -0.6%/cm. The timing performances of the Opto Materials crystal, read with a UV extended MPPC, have been evaluated with minimum ionizing particles. A timing resolution of ~330 ps (~ 440 ps) is achieved when connecting the photosensor to the MPPC with (without) optical grease. The crystal radiation hardness to a ionization dose has also been studied for one pure CsI crystal from SICCAS. After exposing it to a dose of 900 Gy, a decrease of 33% in the LY is observed while the LRU remains unchanged.

  15. High energy ion irradiation-induced ordered macro-pores in zeolite crystals

    International Nuclear Information System (INIS)

    The present study demonstrated the possibility to form a secondary system of parallel macro-pores in zeolite crystals. The secondary pore formation was predetermined by the creation of defect zones in ZSM-5 crystals. A high energy 238U ion beam was employed to form latent tracks in zeolite crystals, which were further subjected to attack with diluted HF solution and thus developed to uniformly sized macro-pores. The selective extraction of material from latent tracks was due to the higher etching velocity of highly agitated zones created by heavy ion bombardment. The combination of complementary methods unambiguously demonstrated the formation of hierarchical zeolite material comprising parallel macro-pores that extended through the entire crystal. The catalytic tests revealed improved activity at retained selectivity in the reaction ofm-xylene conversion. The possibility to control the number of macro-pores per unit of crystal surface and thus the catalytic performance of the material was demonstrated. This model material is expected to bring better understanding to the effect of a secondary pore system in the catalytic performance of hierarchical zeolites obtained by the top-down or bottom-up approach. (authors)

  16. Vertical Liquid Crystal Orientation on Amorphous Tantalum Pentoxide Surfaces Depending on Anisotropic Dipole-Dipole Interaction via Ion Beam Irradiation

    Science.gov (United States)

    Lee, Jong-Jin; Kim, Hyung-Jun; Kang, Young-Gu; Kim, Young-Hwan; Park, Hong-Gyu; Kim, Byoung-Yong; Seo, Dae-Shik

    2011-03-01

    We achieved vertically aligned (VA) liquid crystals (LCs) on amorphous tantalum pentoxide (Ta2O5) alignment films deposited by radio frequency (rf) magnetron sputtering using ion beam (IB) irradiation. By analyzing measurements by X-ray photoelectron spectroscopy (XPS), we confirmed the bond breaking, as detected from the O 1s spectra, which caused an isotropic dipole-dipole interaction between the LC molecules and the Ta2O5 alignment film to uniformly align the vertical LC molecular orientation as a function of IB energy density. Moreover, by examining the electro-optical (EO) characteristics of the Ta2O5 surfaces compared with those of the polyimide (PI) alignment layer, we confirmed that Ta2O5 has a low threshold voltage and a low power consumption when used as an LC alignment layer.

  17. Neutron-diffraction studies of the crystal structure and the color enhancement in γ-irradiated tourmaline

    Science.gov (United States)

    Maneewong, Apichate; Seong, Baek Seok; Shin, Eun Joo; Kim, Jeong Seog; Kajornrith, Varavuth

    2016-01-01

    Tourmaline gemstones have an extremely complex composition and show great variety in color. Most color centers are related to transition-metal ions. Oxidation/reduction of these ions is known to be related with the color enhancement of tourmaline caused by gamma-ray ( γ)-irradiation and/or thermal treatment. However, the current understanding of the microscopic structure of the color centers remains weak. In this work, γ-irradiation was performed on three types of tourmaline gemstones to enhance the colors of the gemstones: two pink from Afghanistan and one green from Nigeria. All three samples were irradiated at 600 and 800 kGy. Their crystal structural and chemical behaviors have been investigated by using a Rietveld refinement analysis of neutron diffraction data, Energy Dispersive X-ray Fluorescence (EDXRF), Ultraviolet-visible Spectroscopy (UV-Vis) and X-ray Photoelectron Spectroscopy (XPS), and the results were compared with data obtained for samples in the natural state. Pink tourmaline of a high number of Mn ions (T2, 0.24 wt%) showed significant improvement in the quality of the pink color (rubellite) after irradiation of 800 kGy while the pink tourmaline of low MnO content (T1, 0.08 wt%) showed color adulteration. Pink color enhancement in T2, responding to darker pink, was associated with increases in the two absorption bands, one peaking at 396 and the other at 522 nm, after irradiation. These absorption bands are ascribed to d-d transitions of divalent manganese. T1 with color enhancement due to oxidation of Mn2+ showed a slightly larger distance. The green tourmaline containing much higher amounts of both Mn (T3) and Fe ions, 2.59 wt% and 5.7 wt%, respectively, changed to a yellow color after irradiation at 800 kGy. The refined structural parameters of this sample revealed distortions in the Z site. The distance decreased from 2.033 to 2.0192 Å. In addition, the unit-cell parameter was decreased after irradiation. The color change in T3 is ascribed

  18. Computational study of the generation of crystal defects in a bcc metal target irradiated by short laser pulses

    Science.gov (United States)

    Lin, Zhibin; Johnson, Robert A.; Zhigilei, Leonid V.

    2008-06-01

    The generation of crystal defects in a Cr target irradiated by a short, 200 fs, laser pulse is investigated in computer simulations performed with a computational model that combines the classical molecular dynamics method with a continuum description of the laser excitation of conduction band electrons, electron-phonon coupling, and electron heat conduction. Interatomic interactions are described by the embedded atom method (EAM) potential with a parametrization designed for Cr. The potential is tested by comparing the properties of the EAM Cr material with experimental data and predictions of density functional theory calculations. The simulations are performed at laser fluences close to the threshold for surface melting. Fast temperature variation and strong thermoelastic stresses produced by the laser pulse are causing surface melting and epitaxial resolidification, transient appearance of a high density of stacking faults along the {110} planes, and generation of a large number of point defects (vacancies and self-interstitials). The stacking faults appear as a result of internal shifts in the crystal undergoing a rapid uniaxial expansion in the direction normal to the irradiated surface. The stacking faults are unstable and disappear shortly after the laser-induced tensile stress wave leaves the surface region of the target. Thermally activated generation of vacancy-interstitial pairs during the initial temperature spike and quick escape of highly mobile self-interstitials to the melting front or the free surface of the target, along with the formation of vacancies at the solid-liquid interface during the fast resolidification process, result in a high density of vacancies, on the order of 10-3 per lattice site, created in the surface region of the target. The strong supersaturation of vacancies can be related to the incubation effect in multipulse laser ablation/damage and should play an important role in mixing/alloying of multicomponent or composite

  19. Tritium release behavior from neutron-irradiated Li{sub 2}TiO{sub 3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Tanifuji, Takaaki; Yamaki, Daiju; Noda, Kenji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nasu, Shoichi

    1998-03-01

    Li{sub 2}TiO{sub 3} single-crystals with various size (1-2mm) were used as specimens. After the irradiation up to 4 x 10{sup 18} n/cm{sup 2} with thermal neutrons in JRR-2, tritium release from the Li{sub 2}TiO{sub 3} specimens in isothermal heating tests was continuously measured with a proportional counter. The tritium release in the range from 625K to 1373K seems to be controlled by bulk diffusion. The tritium diffusion coefficient (D{sub T}) in Li{sub 2}TiO{sub 3} was evaluated to be D{sub T}(cm{sup 2}/sec) = 0.100exp(-104(kJ/mol)/RT), 625Kirradiated with thermal neutrons up to 2 x 10{sup 19} n/cm{sup 2}. It indicates that the tritium release performance of Li{sub 2}TiO{sub 3} is essentially good as Li{sub 2}O. (author)

  20. Radiation damage induced in Al2O3 single crystal sequentially irradiated with reactor neutrons and 90 MeV Xe ions

    Science.gov (United States)

    Zirour, H.; Izerrouken, M.; Sari, A.

    2016-06-01

    The present investigation reports the effect of 90 MeV Xe ion irradiation on neutron irradiated Al2O3 single crystals. Three irradiation experiments were performed, with neutrons only, 90 MeV Xe ions only and with neutrons followed by 90 MeV Xe ions. Neutron and 90 MeV Xe ion irradiations were performed at NUR research reactor, Algiers, Algeria and at GANIL accelerator, Caen, France respectively. After irradiation, the radiation damage was investigated by Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), optical absorption measurements, and X-ray diffraction (XRD) techniques. Raman technique revealed that the concentration of the defects formed in Al2O3 samples subsequently irradiated with neutrons and 90 MeV Xe ions is lower than that formed in Al2O3 samples which were irradiated only with neutrons. This reveals the occurrence of ionization-induced recovery of the neutron damage. Furthermore, as revealed by XRD analysis, a new peak is appeared at about 2θ = 38.03° after irradiation at high fluence (>3 × 1013 Xe/cm2). It can be assigned to the formation of new lattice plane.

  1. Effect of 520 MeV Kr{sup 20+} ion irradiation on the critical current density of Bi-2212 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Terai, Takayuki; Ito, Yasuyuki [Tokyo Univ. (Japan). Faculty of Engineering; Kishio, Kouji

    1996-10-01

    Change in magnetic properties of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y} (Bi-2212) single crystals due to Kr{sup 20+} ion irradiation is reported, focused on critical current density and irreversibility magnetic field. The Bi-2212 single crystal specimens (3x3x0.3 mm{sup 3}) were prepared by the floating zone method. Each specimen was irradiated with 520 MeV Kr{sup 20+} ions of 10{sup 10}-10{sup 11} cm{sup -2} in the fluence. Magnetic hysteresis was measured at 4.2K-60K with a vibrating sample magnetometer before and after irradiation. Very large enhancement was observed in critical current density and irreversibility magnetic field above 20K. (author)

  2. The influence of crystal structure on ion-irradiation tolerance in the Sm(x)Yb(2-x)TiO5 series

    Energy Technology Data Exchange (ETDEWEB)

    Aughterson, R. D.; Lumpkin, G. R.; de los Reyes, M.; Gault, B.; Baldo, P.; Ryan, E.; Whittle, K. R.; Smith, K. L.; Cairney, J. M.

    2016-04-01

    his ion-irradiation study covers the four major crystal structure types in the Ln(2)TiO(5) series (Ln = lanthanide), namely orthorhombic Pnma, hexagonal P63/mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. This is the first systematic examination of the complete Ln(2)TiO(5) crystal system and the first reported examination of the hexagonal structure. A series of samples, based on the stoichiometry Sm(x)Yb(2-x)TiO5 (where x = 2, 1.4, 1, 0.6, and 0) have been irradiated using 1 MeV Kr2+ ions and characterised in-situ using a transmission electron microscope. Two quantities are used to define ion-irradiation tolerance: critical dose of amorphisation (D-c), which is the irradiating ion dose required for a crystalline to amorphous transition, and the critical temperature (T-c), above which the sample cannot be rendered amorphous by ion irradiation. The structure type plus elements of bonding are correlated to ion-irradiation tolerance. The cubic phases, Yb2TiO5 and Sm0.6Yb1.4TiO5, were found to be the most radiation tolerant, with Tc values of 479 and 697 K respectively. The improved radiation tolerance with a change in symmetry to cubic is consistent with previous studies of similar compounds.

  3. Fabrication of well ordered Zn nanorod arrays by ion irradiation method at room temperature and effect on crystal orientations

    International Nuclear Information System (INIS)

    Highly oriented and densely packed one-dimensional (1D) polycrystalline Zn nanorods were fabricated on zinc plate without any catalyst at room temperature by bombardment with obliquely incident Ar+ ion via ion irradiation method. The sputtered surfaces were fully covered with Zn nanostructures with diameter and the length around 60 nm and 1.3 μm, respectively, confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The crystal orientation of the Zn plate was investigated by electron back scattering pattern method (EBSP). The numerical density and morphology of Zn nanostructures (nanoneedle or nanorods) were found to be 2.1 x 106 to 9 x 106/mm2 depending upon the crystal orientation and the atomic density on different crystallographic faces. (21-bar 1-bar 0) faces of Zn polycrystal tended to form more dense nanostructures compared to (0001-bar) faces. This is because of lower atomic density on (21-bar 1-bar 0) faces in comparison with (0001-bar) faces. This indicates that lower atomic density on any crystallographic faces is favorable to form nanostructure of higher density. The outstanding feature of this growth technique is that it provides a new direction for the controllable growth of desired nanostructures of variable density at room temperature without any catalyst. These well-aligned arrays of Zn nanorods/nanoneedle might be a promising material for the future application in nanodevices.

  4. Study of the temperature evolution of defect agglomerates in neutron irradiated molybdenum single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lambri, O.A. [Instituto de Fisica Rosario. Member of the CONICET' s Research Staff, Avda. Pellegrini 250, (2000) Rosario, Santa Fe (Argentina); Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avda. Pellegrini 250, (2000) Rosario, Santa Fe (Argentina)], E-mail: olambri@fceia.unr.edu.ar; Zelada-Lambri, G.I. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avda. Pellegrini 250, (2000) Rosario, Santa Fe (Argentina); Cuello, G.J. [Institut Laue Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble (France); Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain); Bozzano, P.B. [Laboratorio de Microscopia Electronica. Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avda. Gral. Paz 1499, (1650) San Martin (Argentina); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)

    2009-04-15

    Small angle neutron scattering as a function of temperature, differential thermal analysis, electrical resistivity and transmission electron microscopy studies have been performed in low rate neutron irradiated single crystalline molybdenum, at room temperature, for checking the evolution of the defects agglomerates in the temperature interval between room temperature and 1200 K. The onset of vacancies mobility was found to happen in temperatures within the stage III of recovery. At around 550 K, the agglomerates of vacancies achieve the largest size, as determined from the Guinier approximation for spherical particles. In addition, the decrease of the vacancy concentration together with the dissolution of the agglomerates at temperatures higher than around 920 K was observed, which produce the release of internal stresses in the structure.

  5. Fast crystallization of amorphous Gd{sub 2}Zr{sub 2}O{sub 7} induced by thermally activated electron-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhangyi; Qi, Jianqi, E-mail: qijianqi@scu.edu.cn; Zhou, Li; Feng, Zhao; Yu, Xiaohe [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Gong, Yichao [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Yang, Mao; Wei, Nian [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of High Energy Density Physics of Ministry of Education, Sichuan University, Chengdu 610064 (China); Shi, Qiwu [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Lu, Tiecheng, E-mail: lutiecheng@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Laboratory of High Energy Density Physics of Ministry of Education, Sichuan University, Chengdu 610064 (China)

    2015-12-07

    We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd{sub 2}Zr{sub 2}O{sub 7} synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd{sub 2}Zr{sub 2}O{sub 7} and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm{sup 2}). The crystallization occurred on the nanoscale upon ionization irradiation at 400 °C after a dose of less than 10{sup 17} electrons/cm{sup 2}. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism.

  6. Optical spectroscopy and imaging of colour centres in lithium fluoride crystals and thin films irradiated by 3 MeV proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Piccinini, M., E-mail: massimo.piccinini@enea.it; Ambrosini, F.; Ampollini, A.; Carpanese, M.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Vincenti, M.A.; Montereali, R.M.

    2014-05-01

    Lithium fluoride is a well-known dosimeter material and it is currently under investigation also for high-resolution radiation imaging detectors based on colour centre photoluminescence. In order to extend their applications, proton beams of 3 MeV energy, produced by a linear accelerator, were used to irradiate LiF crystals and thin films in the fluence range of 10{sup 10}–10{sup 15} protons/cm{sup 2}. The irradiation induces the formation of colour centres, mainly the primary F centre and the aggregate F{sub 2} and F{sub 3}{sup +} defects, which are stable at room temperature. By optical pumping in the blue spectral region, the F{sub 2} and F{sub 3}{sup +} centres emit broad photoluminescence bands in the visible spectral range. By conventional fluorescence microscopy, the integrated photoluminescence intensity was carefully measured in LiF crystals and thin films as a function of the irradiation fluence: a linear optical response was obtained in a large range of fluence, which is dependent on the used LiF samples. Colour centres concentrations were estimated in LiF crystals by optical absorption spectroscopy. It was possible to record the transversal proton beam intensity profile by acquiring the photoluminescence image of the irradiated spots on LiF films.

  7. Radiationless decay, fission and fusion of excitons in irradiated molecular crystals

    International Nuclear Information System (INIS)

    The creation and evolution of excited states in ionizing particle tracks were investigated. The passage of high energy ionizing particles in molecular crystals results in the formation of highly excited states which energy is generally above the molecular ionization potential. The theory of non radiative transitions, which describes the transitions from the highly excited states to the lowest singlet and triplet excitons S1 and T1 is developed. Among these non radiative transitions, the fission of singlet excitons into two singlet or triplet excitons of lower energies is studied experimentally. These results and a kinematics study of the S1 and T1 excitons in ionizing particle tracks were used to get a complete description of the scintillation. These results are in good agreement with the experimental measurements on the scintillation

  8. A single-crystal proton ENDOR study of the ClO3 centre in γ-irradiated barium perchlorate at 120 K

    International Nuclear Information System (INIS)

    Hyperfine coupling tensors for 24 protons have been determined from electron nuclear double resonance (ENDOR) measurements of the C1O3 centre trapped in γ-irradiated single crystals of barium perchlorate trihydrate at 120 K. The tensors have small isotropic components and their dipolar components are close to axial so that their interpretation in the point-dipole approximation to reconstruct the proton geometry in the vicinity of the trapped radical is justifiable. The model thus obtained indicates that there is no severe distortion of the crystal structure in the immediate vicinity of the trapped radicals. There are two chemically identical but ENDOR-distinguishable sites related by a reflection in the a1a2 plane of the hexagonal crystal. The observation supports the assignment of the P63/m space group to the crystal. (author)

  9. Thermally stimulated luminescence studies of x-irradiated L-alanine: Cr3+ single crystals

    International Nuclear Information System (INIS)

    Thermally stimulated luminescence studies of x-irradiated L-alanine: Cr3+ have been conducted in the interval 10--300 K. Glow peaks were observed at 42, 60, 72, 148, and 208 K. The 148 K peak has been previously reported, while the one at 208 K was of insufficient intensity to study. Also, the 60 K peak was difficult to analyze due to overlap with the neighboring peaks. Detailed analyses of the 42 and 72 K peaks yielded, respectively, the following parameters: E = 24 meV, s = 5.3 s-1, and l = 1; E = 180 meV, s = 2.4 x 1010 s-1, and l = 2.8, where l is the kinetics order. Identical emission was observed from each peak, characterized by a maximum at 445 nm with FWHM equal to 0.605 eV. A tentative model is presented to explain these results in terms of detrapping and deexcitation via the excited singlet and triplet states

  10. TEM investigation of irradiation damage in single crystal CeO2

    International Nuclear Information System (INIS)

    In order to understand the evolution of radiation damage in oxide nuclear fuel, 150-1000 keV Kr ions were implanted into single crystal CeO2, as a simulation of fluorite ceramic UO2, while in situ transmission electron microscopy (TEM) observations were carried out. Two characteristic defect structures were investigated: dislocation/dislocation loops and nano-size gas bubbles. The growth behavior of defect clusters induced by 1 MeV Kr ions up to doses of 5 x 1015 ions/cm2 were followed at 600 deg. C and 800 deg. C. TEM micrographs clearly show the development of defect structures: nucleation of dislocation loops, transformation to extended dislocation lines, and the formation of tangled dislocation networks. The difference in dislocation growth rates at 600 deg. C and 800 deg. C revealed the important role which Ce-vacancies play in the loop formation process. Bubble formation, studied through 150 keV Kr implantations at room temperature and 600 deg. C, might be influenced by either the mobility of metal-vacancies correlated with at threshold temperature or the limitation of gas solubility as a function of temperature.

  11. Effect of irradiation with reactor neutrons and the temperature of subsequent heat treatment on the structure of InP single crystals

    International Nuclear Information System (INIS)

    The results of studying the features of the effect of irradiation with fast and full-spectrum reactor neutrons and subsequent heat treatments on the structural characteristics of InP single crystals are reported. It is shown that, in contrast to other III-V semiconductor compounds, the lattice constant decreases in InP as a result of irradiation with neutrons. Fast neutrons make the major contribution to the variation in the lattice constant. The presence of the component of thermal neutrons that give rise to Sn atoms in the material does not bring about any appreciable variation in the lattice constant. Heat treatment of irradiated samples at temperatures as high as 600 deg. C leads to annealing of radiation defects and recovery of the lattice constant; in the samples irradiated with high neutron fluences, the lattice constant becomes even larger than that before irradiation. An analysis of the obtained experimental data made it possible to assume that the decrease in the InP lattice constant as a result of irradiation with neutrons is mainly caused by the introduction of the PIn antisite defects that give rise to an effect similar to that of vacancy-related defects

  12. Electro-optical characteristics of ZrO2 nanoparticle doped liquid crystal on ion-beam irradiated polyimide layer.

    Science.gov (United States)

    Park, Hong-Gyu; Kim, Hyung-Jun; Kim, Myoung-Seong; Lee, Il-Hwan; Seo, Dae-Shik

    2012-07-01

    It is well known that doping liquid crystals (LCs) with nanoparticles can readily change the physical and electro-optical properties of LC mixture. In this paper, we report on how the electro-optical properties and thermal stability of an LC system were enhanced by dispersing zirconia (ZrO2) nanoparticles in nematic LCs on ion-beam irradiated polyimide layers. Homogeneous LC alignment was achieved and ZrO2/LC mixture was applied in twisted-nematic (TN) mode. The addition of ZrO2 nanoparticles contributed to improvement of electro-optical properties in the TN LC cell by lowering voltage operation and decreasing response time. The TN LC cells with a ZrO2 nanoparticle concentration of 2.0 wt% showed the lowest threshold voltage of 2.0 V and the fastest response time of 15.3 ms. This enhanced electro-optical performance was likely due to van-der waals interactions and the screening effect of the ZrO2 nanoparticles in the LC medium. The thermal stability of the ZrO2/LC mixture was also improved compared to a pristine LC system. PMID:22966615

  13. Thermoluminescence and electron spin resonance studies of x-irradiated L-alanine:Cr3+ single crystals

    International Nuclear Information System (INIS)

    Single crystals of x-irradiated L-alanine:Cr3+ have been studied between 90 and 300 K by electron spin resonance (ESR) and thermoluminescence (TL) techniques. Ultraviolet (uv) photobleaching of the Cr3+ electron traps and L-alanine radical centers was also investigated. The results demonstrate that the x-ray generated radical centers can be destroyed by uv-induced electron transport activity, and this destruction follows first order kinetics. Also, the transformation of the primary neutral radical species to a secondary radical in L-alanine was found not to be induced by intermolecular electron transport. The TL glow was determined to proceed by first-order kinetics at a temperature of 160 K with an activation energy of 0.3 eV and a frequency factor of 1.0 x 108 s-1. It is suggested that the TL glow may arise from both the decay of the primary cation radical species in L-alanine and the bleaching of the Cr3+ electron traps, and that the Cr3+ impurity acts to enhance the free radical thermoluminescence

  14. Effect of 120 MeV Au{sup 9+} ion irradiation on structural, optical and dielectric properties of YCa{sub 4}O(BO{sub 3}){sub 3} nonlinear optical crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kalidasan, M. [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Arun Kumar, R. [Crystal Growth Centre, Anna University, Chennai 600 025 (India); PSG College of Technology, Coimbatore 641 004 (India); Asokan, K. [Inter University Accelerator Centre, New Delhi 110 067 (India); Dhanasekaran, R., E-mail: rdhanasekaran@annauniv.edu [Crystal Growth Centre, Anna University, Chennai 600 025 (India)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Yttrium calcium oxy-borate crystals were irradiated with 120 MeV Au{sup 9+} ions. Black-Right-Pointing-Pointer Irradiation was carried out at both ambient and liquid nitrogen temperatures. Black-Right-Pointing-Pointer Effects of irradiation on the crystal were analyzed through various studies. Black-Right-Pointing-Pointer All studies reveal that surface level modification has been created by Au{sup 9+} ions. Black-Right-Pointing-Pointer The radiation induced effects are less pronounced at liquid nitrogen temperature. - Abstract: Yttrium calcium oxy borate (YCOB) is an important nonlinear optical (NLO) crystal belongs to RECOB (RE = Gd, Sm, Nd, Er, La and Y) family of crystals with the general formula RECa{sub 4}O(BO{sub 3}){sub 3}. YCOB is a negative biaxial crystal which crystallizes in the monoclinic structure with non-centrosymmetric space group Cm. In the present work, the flux grown YCOB single crystals were irradiated with various fluences of 120 MeV Au{sup 9+} heavy ions at ambient and at liquid nitrogen (LN{sub 2}) temperatures, respectively. Grazing incidence angle X-ray diffraction (GIXRD) studies of pristine and irradiated crystals confirm the ion induced surface modification. UV-Visible spectral analysis shows that there was a red shift of optical edge of the pristine sample with ion fluence from 10{sup 11} to 10{sup 13} ions/cm{sup 2}. Laser Raman spectrum of YCOB crystal presents the intense band of (BO{sub 3}){sup 3-} modes at 1123 cm{sup -1} and its peak intensity reduces with ion fluence. The dielectric loss and relative permittivity of YCOB crystal show a marked increase with ion irradiation fluence.

  15. A photoluminescence study of excitonic grade CuInSe{sub 2} single crystals irradiated with 6 MeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Yakushev, M. V., E-mail: michael.yakushev@strath.ac.uk [Department of Physics, SUPA, Strathclyde University, G4 0NG Glasgow (United Kingdom); Ural Federal University, Ekaterinburg 620002 (Russian Federation); Institute of Solid State Chemistry of RAS, Ekaterinburg 620990 (Russian Federation); Mudryi, A. V.; Borodavchenko, O. M. [Scientific-Practical Material Research Centre of National Academy of Science of Belarus, 220072 Minsk (Belarus); Volkov, V. A. [Ural Federal University, Ekaterinburg 620002 (Russian Federation); Martin, R. W., E-mail: r.w.martin@strath.ac.uk [Department of Physics, SUPA, Strathclyde University, G4 0NG Glasgow (United Kingdom)

    2015-10-21

    High-quality single crystals of CuInSe{sub 2} with near-stoichiometric elemental compositions were irradiated with 6 MeV electrons, at doses from 10{sup 15} to 3 × 10{sup 18 }cm{sup −2}, and studied using photoluminescence (PL) at temperatures from 4.2 to 300 K. Before irradiation, the photoluminescence spectra reveal a number of sharp and well resolved lines associated with free- and bound-excitons. The spectra also show broader bands relating to free-to-bound transitions and their phonon replicas in the lower energy region below 1.0 eV. The irradiation with 6 MeV electrons reduces the intensity of the free- and the majority of the bound-exciton peaks. Such a reduction can be seen for doses above 10{sup 16 }cm{sup −2}. The irradiation induces new PL lines at 1.0215 eV and 0.9909 eV and also enhances the intensity of the lines at 1.0325 and 1.0102 eV present in the photoluminescence spectra before the irradiation. Two broad bands at 0.902 and 0.972 eV, respectively, are tentatively associated with two acceptor-type defects: namely, interstitial selenium (Se{sub i}) and copper on indium site (Cu{sub In}). After irradiation, these become more intense suggesting an increase in the concentration of these defects due to irradiation.

  16. Direct observation of gliding dislocations interactions with defects in irradiated niobium single crystals by means of the high voltage electronic microscopy (HVEM)

    International Nuclear Information System (INIS)

    The interactions of gliding dislocations with defects in irradiated niobium that result in the formation of dislocations channels. The effects in the mechanical behaviour of [941]- and [441]- oriented Nb single crystals due to oxygen addition, neutron and electron irradiation was observed either by macroscopic deformation in a Instron machine or 'in-situ' deformation in the HVEM-High Voltage Electron Microscope. Some specimens were irradiated at IPNS-Intense Pulsed Neutron Source, at 325 K, with 5 x 1017 n/cm2, others were irradiated with electrons in the HVEM. The interactions between gliding dislocations with clusters point defects and dislocations were observed. The primary mechanism for removal of the clusters by the gliding dislocations was the 'sweeping' of the clusters along with the gliding dislocations. As to the point defects, they were 'swept' by the gliding dislocations and left as aligned loops close to the intersections of the gliding dislocations with the upper and lower specimen surfaces. For the illustration of this phenomena, a schematic drawing was made. The mechanism of 'bowing-out' interaction of dislocations with defect clusters was also observed. The reported anomalous slip observed to operate in the [941]- oriented Nb was also directly observed and a qualitive explanation along with a schematic drawing was proposed. This would explain the softenig observed after the yield stress in the [941]- oriented Nb deformed in the Instron machine. (Author)

  17. Effect of post-D{sup +}-irradiation time delay and pre-TDS heating on D retention in single crystal tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Quastel, A.D. [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, ON, M3H 5T6 (Canada); Davis, J.W. [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, ON, M3H 5T6 (Canada); Haasz, A.A. [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, ON, M3H 5T6 (Canada)]. E-mail: tonyhaasz@utias.utoronto.ca; Macaulay-Newcombe, R.G. [University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, ON, M3H 5T6 (Canada)

    2006-12-01

    Deuterium retention measurements using thermal desorption spectroscopy were made for single crystal tungsten (SCW) irradiated with D{sup +} to a fluence of 1 x 10{sup 23} D/m{sup 2} at room temperature following various experimental procedures. The dominant desorption peaks in the TDS spectra were at {approx}400 K and {approx}600 K, with a peak at {approx}500 K also present in some cases. The primary findings were (i) D retention was found to decrease by as much as a factor of 2 with increasing the time delay between D{sup +} irradiation and TDS from <1 h to >8 weeks, indicating the presence of some mobile D in the bulk introduced during irradiation, which could diffuse and escape even at room temperature. (ii) Mild baking of the test chamber to {approx}360 K between D{sup +} irradiation and TDS resulted in the escape of {approx}40% of the trapped deuterium, indicating that additional lower energy traps exist. (iii) Background gas impurities lead to impurity implantation in the near surface of the specimen, which in turn leads to increased trapping of D. However, the effect of impurities on D retention was relatively smaller (about 10-20%) than the effects of mild baking and post-implantation time delay.

  18. Optical ridge waveguides in Nd:LGS crystal produced by combination of swift C5+ ion irradiation and precise diamond blade dicing

    Science.gov (United States)

    Cheng, Yazhou; Lv, Jinman; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2016-07-01

    We report on the fabrication of optical ridge waveguides in Nd:LGS crystal by using combination of swift C5+ ion irradiation and precise diamond blade dicing. The ridge structures support guidance both at 632.8 nm and 1064 nm wavelength along the TE and TM polarizations. The lowest propagation losses of the ridge waveguide for the TM mode are ~1.6 dB/cm at 632.8 nm and ~1.2 dB/cm at 1064 nm, respectively. The investigation of micro-fluorescence spectra and micro-Raman spectra indicates that the Nd3+ luminescence features have been well preserved and the microstructure of the waveguide region has no significant change after C5+ ion irradiation.

  19. Energy loss effect on color center creation in LiF crystals under irradiation with 12C, 14N, 40Ar, 84Kr, and 130Xe ions

    International Nuclear Information System (INIS)

    Color center creation in LiF crystals irradiated with 12C, 14N, 40Ar, 84Kr, and 130Xe MeV ions were studied as a function of the absorbed energy (fluence). For light ions (12C, 14N) the saturation of single F centers takes place at higher absorbed energy (5 × 1023 eV/cm3) than that for 40Ar, 84Kr and 130Xe ions (∼1023 eV/cm3). The saturation concentration of F centers for 12C and 14N (2 × 1019 cm−3) is twice of that for the heavier ions. Further irradiation with light ions decreases concentration of F centers, presumably due to aggregation, whereas for heavy ions the saturation concentration remains approximately the same that can be explained by much stronger recombination losses within single tracks

  20. Characteristics of microdomains and microdomain patterns recorded by electron beam irradiation on Y-cut LiNbO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kokhanchik, L. S. [Institute of Microelectronics Technology and High Purity Materials of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region (Russian Federation); Gainutdinov, R. V.; Volk, T. R., E-mail: volk@ns.crys.ras.ru [Institute of Crystallography of the Russian Academy of Sciences, 119333 Moscow (Russian Federation); Lavrov, S. D. [Moscow State Institute of Radio Engineering, Electronics and Automation, 119454 Moscow (Russian Federation)

    2015-08-21

    We present the results of investigations of planar domain patterns (isolated domains and domain gratings) fabricated by irradiation of the nonpolar Y-surface of LiNbO{sub 3} crystals by an electron beam (EB) incident normally onto the surface. The EB recorded domains were investigated using atomic force microscopy, confocal second harmonic generation microscopy, and chemical etching as an auxiliary method. The dependence of the domain characteristics on irradiation conditions (acceleration voltage U, EB current I, and irradiation time t{sub irr}) were determined. The length L{sub d} of both isolated domains and domain gratings along the polar axis Z grows linearly with t{sub irr} (at U, I = const) with no tending to saturation. The plots L{sub d}(t{sub irr}) obtained for U = 10 and 15 kV are practically identical, whereas the values of L{sub d} for U = 5 kV are essentially lower. The domain thickness T{sub d} along the Y-direction, i.e., the depth of the switched layer grows with acceleration voltage U. These results are discussed in terms of space-charge fields formation arising under EB irradiation of insulators. The linearity of L{sub d}(t{sub irr}) is accounted for by the frontal domain growth via the viscous friction law. The experimental dependence of T{sub d} on U supports the suggestion that the domain thickness is determined by the penetration depth R{sub e} of primary electrons, which in turn is governed by U. The difference in L{sub d}(t{sub irr}) plots for different U is accounted for by different electron emission σ. Indirect evidences of a defect structure modification in a thin surface layer with respect to the crystal bulk are obtained.

  1. Evidence for weakly bound electrons in non-irradiated alkane crystals. The electrons as a probe of structural differences in crystals

    OpenAIRE

    Pietrow, M.; Gagos, M.; Misiak, L. E.; Kornarzynski, K.; Szurkowski, J.; Rochowski, P.; Grzegorczyk, M.

    2014-01-01

    It is generally assumed that weakly bound (trapped) electrons in organic solids come only from radiolytical (or photochemical) processes like ionization caused by an excited positron entering the sample. This paper presents an evidence for the presence of these electrons in non-irradiated samples of docosane. We argue that these electrons can be located (trapped) either in interlamellar gaps or in spaces made by non-planar conformers. The electrons from the former ones are bound more weakly t...

  2. Thermal stability of radiation-induced free radicals in γ-irradiated l-alanine single crystals

    International Nuclear Information System (INIS)

    Decay of the radiation-induced stable free radicals in l-alanine single crystals and powders at the temperatures from 379 to 476K was examined by electron paramagnetic resonance. For single crystals, the calculated activation energy of the radical decay is 104.3±1.7kJ/mol (i.e. 12 538+/-202K) and the frequency factor lnν0 is 24.1±0.4min-1. The lifetime of the radical in single crystals at 296K is 162 years. The results confirm the long-term stability of the radicals, but the decay was found to be faster in large crystals than in powders

  3. Optical absorption of isotopically enriched Li{sub 2}B{sub 4}O{sub 7} single crystals irradiated by thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Burak, Ya.V. E-mail: burak@ifo.lviv.ua; Adamiv, V.T.; Teslyuk, I.M.; Shevel, V.M

    2004-12-01

    Induced absorption spectra in the range 200-900 nm at 77 and 290 K for Li{sub 2}B{sub 4}O{sub 7} single crystals, isotopically Li and B enriched are presented after irradiation of these crystals by thermal neutrons with fluence 1.8x10{sup 16} cm{sup -2}. The dependence of induced absorption spectra on the isotope composition was revealed: for {sup 6}Li{sub 2}{sup 10}B{sub 4}O{sub 7} and {sup 7}Li{sub 2}{sup 10}B{sub 4}O{sub 7} crystals intensive band in the region of 280-294 nm was observed. Under substitution of {sup 7}Li isotope by {sup 6}Li in the lithium tetraborate lattice no changes in the absorption spectra were observed. The nuclear reaction {sup 10}B(n,{alpha}){sup 7}Li is proposed to be the main mechanism of formation of the radiation defects.

  4. Effect of dose rate, temperature and impurity content on the radiation damage in the electron irradiated NaCl crystals

    NARCIS (Netherlands)

    Dubinko, V.I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    2000-01-01

    The dependencies of void formation and radiolytic sodium accumulation on the irradiation dose, dose rate, temperature and impurity content are analyzed within a framework of a theoretical model, which is based on a new mechanism of dislocation climb. The mechanism involves the production of V-F cent

  5. Evidence for weakly bound electrons in non-irradiated alkane crystals. The electrons as a probe of structural differences in crystals

    CERN Document Server

    Pietrow, M; Misiak, L E; Kornarzynski, K; Szurkowski, J; Rochowski, P; Grzegorczyk, M

    2014-01-01

    It is generally assumed that weakly bound (trapped) electrons in organic solids come only from radiolytical (or photochemical) processes like ionization caused by an excited positron entering the sample. This paper presents an evidence for the presence of these electrons in non-irradiated samples of docosane. We argue that these electrons can be located (trapped) either in interlamellar gaps or in spaces made by non-planar conformers. The electrons from the former ones are bound more weakly than those from the latter ones. The origin of Vis absorption for the samples is explained. These spectra can be used as a probe indicating differences in the solid structures of hydrocarbons.

  6. Free radicals in L-arginine·HCl·H2O single crystals X-irradiated at 298 K-EPR, ENDOR and DFT studies

    International Nuclear Information System (INIS)

    Electron Paramagnetic Resonance (EPR), Electron-Nuclear DOuble Resonance (ENDOR) and ENDOR Induced EPR (EIE) results indicated at least three radicals produced in L-arginine·HCl·H2O single crystals irradiated at 298 K. Radical RI dominated the central portion of the EPR spectra and was identified as the main-chain deamination radical, and Density Function Theory (DFT) calculations indicated that RI has protonated carboxyl group, (H2…OOC)ĊH(CH2)3 NHC(NH2)2+, and the COOH protons are transferred from the hydrogen bonded amino group and guanidyl group in two different neighboring molecules. Radicals RII and RIII were identified respectively as the radicals dehydrogenated at C5, −(OOC)CH(NH3)+(CH2)2ĊHNHC(NH2)2+, and at C2, −(OOC)Ċ(NH3)+(CH2)3NHC(NH2)2+. Two conformations of RII were detected, denoted as RIIa and RIIb, and the conformational differences are mainly due to the different dihedral angles of the two β-protons bonded to C4, which were supported by the modeling calculations for RIIa and RIIb. - Highlights: • Three distinct free radicals formed in X-ray irradiated L-arginine·HCl·H2O single crystals at 298 K were identified. • DFT modeling computations indicated the main-chain deamination radical has protonated carboxyl group. • Two conformations of the radical dehydrogenated at C5 were detected. The conformational differences were analyzed with experimental and computational methods. • The annealing experiments indicated these three radicals are stable radicals

  7. Evidence for weakly bound electrons in non-irradiated alkane crystals: The electrons as a probe of structural differences in crystals.

    Science.gov (United States)

    Pietrow, M; Gagoś, M; Misiak, L E; Kornarzyński, K; Szurkowski, J; Rochowski, P; Grzegorczyk, M

    2015-02-14

    It is generally assumed that weakly bound (trapped) electrons in organic solids come only from radiolytical (or photochemical) processes like ionization caused by an excited positron entering the sample. This paper presents evidence for the presence of these electrons in non-irradiated samples of docosane. This can be due to the triboelectrification process. We argue that these electrons can be located (trapped) either in interlamellar gaps or in spaces made by non-planar conformers. Electrons from the former ones are bound more weakly than electrons from the latter ones. The origin of Vis absorption for the samples is explained. These spectra can be used as a probe indicating differences in the solid structures of hydrocarbons. PMID:25681918

  8. Evidence for weakly bound electrons in non-irradiated alkane crystals: The electrons as a probe of structural differences in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pietrow, M., E-mail: mrk@kft.umcs.lublin.pl; Misiak, L. E. [Institute of Physics, M. Curie-Skłodowska University, ul. Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Gagoś, M. [Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin (Poland); Kornarzyński, K. [Department of Physics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin (Poland); Szurkowski, J.; Grzegorczyk, M. [Institute of Experimental Physics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk (Poland); Rochowski, P. [Institute of Experimental Physics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk (Poland); Pomeranian University in Słupsk, Arciszewskiego 22b, 76-200 Słupsk (Poland)

    2015-02-14

    It is generally assumed that weakly bound (trapped) electrons in organic solids come only from radiolytical (or photochemical) processes like ionization caused by an excited positron entering the sample. This paper presents evidence for the presence of these electrons in non-irradiated samples of docosane. This can be due to the triboelectrification process. We argue that these electrons can be located (trapped) either in interlamellar gaps or in spaces made by non-planar conformers. Electrons from the former ones are bound more weakly than electrons from the latter ones. The origin of Vis absorption for the samples is explained. These spectra can be used as a probe indicating differences in the solid structures of hydrocarbons.

  9. Possibilities of capture of swift bombarding heavy Kr 86 ions with energy EKr=394 MeV and FKA from its into axial channeling regime under irradiation GaAs single crystal

    International Nuclear Information System (INIS)

    The results of radiation damage study at GaAs [100] after irradiation by swift heavy 84Kr7+ with energy EKr=394 MeV up to the fluence Φt=5·1012 ion/cm2. The distribution of damage along the projected ranges of ions in crystal was investigated using selective chemical etching of cross-sections. (authors)

  10. 90 MeV {sup 16}O heavy-ion irradiation effects on La{sub 0.9}Pb{sub 0.1}MnO{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh Babu, M., E-mail: ramesh_cgc@yahoo.com [Crystal Growth Centre, Anna University, Chennai 600025 (India); Han, X.F. [State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Mandal, P. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064 (India); Kumar, Ravi; Asokan, K. [Inter University Accelerator Centre (IUAC), New Delhi 110067 (India); Jayavel, R. [Crystal Growth Centre, Anna University, Chennai 600025 (India)

    2009-09-15

    Effect of 90 MeV heavy-ion irradiation on the surface morphology, transport and magnetic properties of La{sub 0.9}Pb{sub 0.1}MnO{sub 3} (LPMO) single crystals has been reported. It was found that at low ion-fluence the metal-insulator transition temperature (T{sub MI}) increases by {approx}3 K and the Curie temperature (T{sub c}) increases {approx}4 K, and the resistivity decreases as the irradiation increases up to 1 x 10{sup 12}. However, we have observed that the T{sub MI} reduces with an increase in resistivity for the fluence of 1 x 10{sup 13}. These results correlate well with the irradiation induced strain, creation of point defect and grain boundaries in the crystals.

  11. Comparative Study of the Effects of Electron Irradiation and Natural Disorder in Single Crystals of SrFe2(As1-xPx)2 Superconductor (x=0.35)

    Energy Technology Data Exchange (ETDEWEB)

    Strehlow, C P [Ames Laboratory; Konczykowski, M. [Laboratoire des Solides Irradies; Murphy, J. A. [Ames Laboratory; Teknowijoyo, S. [Ames Laboratory; Cho, K. [Ames Laboratory; Tanatar, M. A. [Ames Laboratory; Kobayashi, T. [Osaka University; Miyasaka, S. [Osaka University; Tajima, S. [Osaka University; Prozorov, Ruslan [Ames Laboratory

    2014-07-01

    The London penetration depth λ(T) was measured in single crystals of a SrFe2(As1-xPx)2 (x=0.35) iron-based superconductor. The influence of disorder on the transition temperature Tc and on λ(T) was investigated. The effects of scattering controlled by the annealing of as-grown crystals was compared with the effects of artificial disorder introduced by 2.5 MeV electron irradiation. The low-temperature behavior of λ(T) can be described by a power-law function Δλ(T)=ATn, with the exponent n close to one in pristine annealed samples, as expected for a superconducting gap with line nodes. Upon electron irradiation with a dose of 1.2×1019 e/cm2, the exponent n increases rapidly, exceeding a dirty limit value of n=2, implying that the nodes in the superconducting gap are accidental and can be lifted by the disorder. The variation of the exponent n with Tc is much stronger in the irradiated crystals compared to the crystals in which disorder was controlled by the annealing of the growth defects. We discuss the results in terms of different influence of different types of disorder on intraband and interband scattering.

  12. Relation between the swelling and the disordering in ionic crystals irradiated by fast heavy ions; Relation entre le gonflement et la creation de defauts dans les cristaux ioniques irradies par des ions lourds rapides

    Energy Technology Data Exchange (ETDEWEB)

    Boccanfuso, M

    2001-12-01

    When fast heavy ions penetrate in matter, they slow down essentially by depositing their energy on the electrons. This can lead to strong electronic excitation densities in the solid and then to structural modifications. In this work, calcium fluoride (CaF{sub 2}) was used to look further into the damage induced by irradiation with fast heavy ions in ionic crystals. Four techniques were mainly employed to characterise this damage. These techniques of analysis are wide angle X-ray diffraction, surface profilometry, Rutherford backscattering spectrometry and UV-visible optical absorption spectroscopy. The results of this work show that CaF{sub 2} answers in a multiple way to the electronic excitations. For stopping powers higher than approximately 5 keV/nm, a polygonization seems to occur. This causes a structural disorder, a swelling of 0.27 % and the formation of fractures in the material. A second damage mechanism is caused above approximately 13 keV/nm and results in a loss of the initial crystalline structure. However, optical centres appear whatever the ion stopping power, which indicates that these defects cannot be the cause of the two above mentioned damage mechanisms. According to a thermal spike model, the two thresholds can be linked to melting and sublimation energy of the material, respectively. (author)

  13. The interaction of 193-nm excimer laser irradiation with single-crystal zinc oxide: Positive ion emission

    International Nuclear Information System (INIS)

    We examine UV laser-induced ion emission from a wide bandgap semiconductor, single-crystal ZnO, at fluences well below both the damage threshold and plasma formation. At fluences below 200 mJ/cm2, we observe only Zn+, and the Zn+ intensity decreases monotonically during exposure. At higher fluences, after an initial decrease, the emission is sustained; in addition O+ and O2+ are observed. We explain: how Zn ions of several eV in energy can be produced on the surface of a semiconductor, how sustained emission can be maintained, and the origin of an anomalous emission of slow Zn+ ions -- the latter is shown to arise from photoionization of atomic Zn, also emitted by this radiation.

  14. Size characterisation of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing

    International Nuclear Information System (INIS)

    Highlights: ► Systematic study on the formation of Ag and Au nano-particles in Al2O3. ► Annealing in a reducing atmosphere, below the metal melting point is more suitable. ► Au nano-particles grow up to 15 nm and Ag nano-particles up to 45 nm in radius. ► Ostwald ripening is the mechanism responsible for the formation of large nanoparticles. ► Optical properties of metallic nano-particles in Al2O3 can be related to their size. - Abstract: Metallic nano-particles embedded in transparent dielectrics are very important for new technological applications because of their unique optical properties. These properties depend strongly on the size and shape of the nano-particles. In order to achieve the synthesis of metallic nano-particles it has been used the technique of ion implantation. This is a very common technique because it allows the control of the depth and concentration of the metallic ions inside the sample, limited mostly by straggling, without introducing other contaminant agents. The purpose of this work was to measure the size of the nano-particles grown under different conditions in Sapphire and its size evolution during the growth process. To achieve this goal, α-Al2O3 single crystals were implanted with Ag or Au ions at room temperature with different fluences (from 2 × 1016 ions/cm2 to 8 × 1016 ions/cm2). Afterwards, the samples were annealed at different temperatures (from 600 °C to 1100 °C) in oxidising, reducing, Ar or N2 atmospheres. We measured the ion depth profile by Rutherford Backscattering Spectroscopy (RBS) and the nano-crystals size distribution by using two methods, the surface plasmon resonance in the optical extinction spectrum and the Transmission Electron Microscopy (TEM).

  15. Thermally stimulated luminescence studies of x-irradiated L-alanine: Cr/sup 3 +/ single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, D.W.; Jahan, M.S.

    1983-06-01

    Thermally stimulated luminescence studies of x-irradiated L-alanine: Cr/sup 3 +/ have been conducted in the interval 10--300 K. Glow peaks were observed at 42, 60, 72, 148, and 208 K. The 148 K peak has been previously reported, while the one at 208 K was of insufficient intensity to study. Also, the 60 K peak was difficult to analyze due to overlap with the neighboring peaks. Detailed analyses of the 42 and 72 K peaks yielded, respectively, the following parameters: E = 24 meV, s = 5.3 s/sup -1/, and l = 1; E = 180 meV, s = 2.4 x 10/sup 10/ s/sup -1/, and l = 2.8, where l is the kinetics order. Identical emission was observed from each peak, characterized by a maximum at 445 nm with FWHM equal to 0.605 eV. A tentative model is presented to explain these results in terms of detrapping and deexcitation via the excited singlet and triplet states.

  16. Bose-glass transition in highly anisotropic BSCCO and isotropic (K,Ba)BiO3 heavy ion irradiated single crystals

    International Nuclear Information System (INIS)

    The current-voltage characteristics has been investigated by transport measurements in highly anisotropic Bi2Sr2CaCu2O8+δ and isotropic (K,Ba)BiO3 single crystals irradiated in the direction parallel with to c-axis. We show that, for Bphi/10phi (where Bphi is the matching field), the same scaling functions can be used to describe the transition in these two systems emphasizing the universality of this transition. The field and sample-independent critical exponents which were found to be νperpendicular=1.1±0.1, z=5.3±0.2 and α(≡ν///νperpendicular)=2, are in a very good agreement with numerical simulations in the case of strongly screened vortex line interactions. Surprisingly, in (K,Ba)BiO3, the Bose-glass formalism can be used to describe the transport properties up to magnetic fields about as twice as the matching field

  17. Space-Selective Precipitation of Ba2TiSi2O8 Crystals in Sm3+-Doped BaO-TiO2-SiO2 Glass by Femtosecond Laser Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZHU Bin; DAI Ye; MA Hong-Liang; LIN Geng; QIU Jian-Rong

    2008-01-01

    The ferroelectric crystal Ba2TiSi2O8 with high second-order optical nonlinearity is precipitated in Sm3+-doped BaO-TiO2-SiO2 glass by a focused 800 nm,250 kHz and 150 fs femtosecond laser irradiation.No apparent blue and red emissions are observed at the beginning,while strong blue emission due to second harmonic generation and red emission due to the f-f transitions of Sm3+ are observed near the focal point of the laser beam after irradiation for 25 s. Micro-Raman spectra confirm that Ba2TiSi2O8 crystalline dots and lines are formed after laser irradiation.The mechanism of the phenomenon is discussed.

  18. Radiation-damage-induced defects in quartz. I. Single-crystal W-band EPR study of hole centers in an electron-irradiated quartz

    Science.gov (United States)

    Nilges, Mark J.; Pan, Yuanming; Mashkovtsev, Rudolf I.

    2008-03-01

    Single-crystal W-band electron paramagnetic resonance (EPR) spectra of an electron-irradiated quartz, measured at room temperature, 110 and 77 K, disclose three previously reported hole centers (#1, G and an ozonide radical). The W-band EPR spectra of these three centers clearly resolve six magnetically nonequivalent sites each, whereas previous X- and Q-band EPR studies reported Centers #1 and the ozonide radical to consist of only three symmetry-related components and interpreted them to reside on twofold symmetry axes in the quartz structure. The calculated g matrices of Center #1 and the ozonide radical show that deviations from twofold symmetry axes are <10°, which are probably attributable to distortion related to neighboring charge compensating ions. The W-band EPR spectra of Center G not only result in improved g matrices but also allow quantitative determination of the nuclear hyperfine ( A) and quadrupole ( P) matrices of its 27Al hyperfine structure that was incompletely resolved before. In particular, the g-maximum and g-minimum principal axes of Center G are approximately along two pairs of O-O edges of the SiO4 tetrahedron, while the unique A principal axis is approximately along a Si-Si direction. These new spin-Hamiltonian parameters suggest that Center G most likely involves trapping of a hole between two oxygen atoms related to a silicon vacancy and stabilized by an Al3+ ion in the neighboring tetrahedron (hence an O{2/n-}-Al3+ defect, where n is either 1 or 3).

  19. Optical waveguide properties of Ca{sub 0.4}Ba{sub 0.6}Nb{sub 2}O{sub 6} crystal formed by oxygen ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tie-Jun; Zhou, Yu-Fan; Yu, Xiao-Fei; Liu, Tao; Zhang, Lian; Song, Hong-Lian; Qiao, Mei; Wang, Xue-Lin, E-mail: xuelinwang@sdu.edu.cn

    2015-07-01

    We report the fabrication of a planar optical waveguide in a Ca{sub 0.4}Ba{sub 0.6}Nb{sub 2}O{sub 6} crystal by irradiation with 6.0 MeV oxygen ions. We measured the guiding mode by the prism-coupling method at 633 nm and 1539 nm. The near-field intensity distributions were measured by the end-face coupling setup at a wavelength of 633 nm. The reflectivity calculation method (RCM) was used for reconstructing refractive index profiles. SRIM was used to simulate the electronic and nuclear stopping power caused by oxygen ion irradiation, and the finite-difference beam propagation method (FD-BPM) was used to simulate the near-field intensity distributions. Micro-Raman spectra were measured at room temperature in air to study the differences between the substrate and waveguide region.

  20. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  1. Irradiation-Induced Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Birtcher, R.C.; Ewing, R.C.; Matzke, Hj.; Meldrum, A.; Newcomer, P.P.; Wang, L.M.; Wang, S.X.; Weber, W.J.

    1999-08-09

    This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.

  2. Synthesis and Crystal Structure of N-cyclopropyl-9-(3,4-dicholophenyl)-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    FENG You-Jian; JIA Run-Hong; TU Shu-Jiang; ZHANG Xiao-Jin; JIANG Bo; ZHANG Yan; ZHANG Jun-Yong

    2005-01-01

    The N-cyclopropyl-9-(3,4-dicholophenyl)-1,2,3,4,5,6,7,8,9,10-decahydroacri- dine-1,8-dione was synthesized by the reaction of 1,3-cyclohexanedione, N-cyclopropylamine and 3,4-dicholoaldehyde in water and glycol under microwave irradiation. Its crystal structure was determined by single-crystal X-ray diffraction analysis. It possesses P212121 space group, with a = 9.9103(5), b = 13.3597(8), c = 14.5633(8)(A), V = 1928.16(18)(A)3, Mr = 402.30, Z = 4, Dc = 1.386 g/cm3, λ = 0.7107(A), μ(MoKα) = 0.354 mm-1 and F (000) = 840. The structure was refined to R = 0.0280 and wR = 0.0757. In the structure, the pyridine ring adopts a boat conformation.

  3. EPR study of gamma irradiated N-methyl taurine (C 3H 9NO 3S) and sodium hydrogen sulphate monohydrate (NaHSO 3·H 2O) single crystals

    Science.gov (United States)

    Yıldırım, İlkay; Karabulut, Bünyamin

    2011-03-01

    EPR study of gamma irradiated C 3H 9NO 3S and NaHSO 3.H 2O single crystals have been carried out at room temperature. There is one site for the radicals in C 3H 9NO 3S and two magnetically distinct sites for the radicals in NaHSO 3. The observed lines in the EPR spectra have been attributed to the species of SO3- and RH radicals for N-methyl taurine, and to the SO3- and OH radicals for sodium hydrogen sulfate monohydrate single crystals. The principal values of the g for SO3-, the hyperfine values of RH and OH proton splitting have been calculated and discussed.

  4. Post-irradiation effects in polyethylenes irradiated under various atmospheres

    International Nuclear Information System (INIS)

    If a large amount of polymer free radicals remain trapped after irradiation of polymers, the post-irradiation effects may result in a significant alteration of physical properties during long-term shelf storage and use. In the case of polyethylenes (PEs) some failures are attributed to the post-irradiation oxidative degradation initiated by the reaction of residual free radicals (mainly trapped in crystal phase) with oxygen. Oxidation products such as carbonyl groups act as deep traps and introduce changes in carrier mobility and significant deterioration in the PEs electrical insulating properties. The post-irradiation behaviour of three different PEs, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) was studied; previously, the post-irradiation behaviour of the PEs was investigated after the irradiation in air (Suljovrujic, 2010). In this paper, in order to investigate the influence of different irradiation media on the post-irradiation behaviour, the samples were irradiated in air and nitrogen gas, to an absorbed dose of 300 kGy. The annealing treatment of irradiated PEs, which can substantially reduce the concentration of free radicals, is used in this study, too. Dielectric relaxation behaviour is related to the difference in the initial structure of PEs (such as branching, crystallinity etc.), to the changes induced by irradiation in different media and to the post-irradiation changes induced by storage of the samples in air. Electron spin resonance (ESR), differential scanning calorimetry (DSC), infra-red (IR) spectroscopy and gel measurements were used to determine the changes in the free radical concentration, crystal fraction, oxidation and degree of network formation, respectively. - Highlights: • The post-irradiation behaviour of three different PEs, LDPE, LLDPE and HDPE, was studied. • In order to investigate influence of different irradiation media on post-irradiation behaviour, samples

  5. Optical Properties of Irradiated Yttrium Aluminum Garnet

    International Nuclear Information System (INIS)

    The results of investigation of the photoluminescence (PL) and optical absorption of crystals Y3Al5O12(YAG) doped with different concentrations of manganese ions exposed to fast neutron irradiation and electron irradiation are presented. Photoluminescence spectra of YAG before neutron irradiation at T=80 K contain fine lines in orange region of spectrum, ascribed to Mn2+ ions in octahedral position. After irradiation band broadening is observed in the luminescence spectra of garnet crystals. Electron irradiation produced broad band with a complex structure related to Mn4+ ions. Exchange interaction between radiation defect and impurity ions during neutron irradiation and electron irradiation leads to appearance of additional lines and luminescence bands broadening in investigated crystals.

  6. Thermodynamic studies on the ferroelectric phase transition in neutron irradiated (Li(sub x)K(1-x))2SO4 crystals at high temperature

    Science.gov (United States)

    Kassem, M. E.; El-Khatib, A. M.; Ammar, E. A.; Denton, M. M.

    1989-05-01

    Thermodynamic studies of (Li(x)K(1-x))2SO4, LKS, mixed crystals have been made in the concentration range (x=0.1,0.2,..., x=0.5). The thermal behavior has been investigated by differential thermal analysis, DTA, and differential scanning calorimeter, DSC, in the vicinity of high temperature phases. Also, the effect of the mixed neutron field of fast and thermal neutrons (10 percent of the reactor neutron pile is fast neutrons) on the thermal properties of mixed crystals was studied. The results show a change in the transition temperature Tc, as well as the value of specific heat Cp at transition temperature, due to the change of the stoichiometric ratio and the radiation doses. The changes of enthalpy and entropy of mixed crystals have been estimated numerically. The obtained small values of Delta S/R is characteristic of incommensurate phase transition as previously confirmed by the results of neutron diffraction technique.

  7. Spectrometry of the Rutherford backscattering of ions and the Raman scattering of light in GaS single crystals irradiated with 140-keV H{sub 2}{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Garibov, A. A.; Madatov, R. S., E-mail: msrahim@mail.ru [Azerbaijan National Academy of Sciences, Institute of Radiation Problems (Azerbaijan); Komarov, F. F.; Pilko, V. V. [Belarus State University, RTCCU of “Nanotechnology and Physical Electronics” (Belarus); Mustafayev, Yu. M.; Akhmedov, F. I.; Jakhangirov, M. M. [Azerbaijan National Academy of Sciences, Institute of Radiation Problems (Azerbaijan)

    2015-05-15

    The methods of the Raman scattering of light and Rutherford backscattering are used to study the degree of structural disorder in layered GaS crystals before and after irradiation with 140-keV H{sub 2}{sup +} ions. It is shown that the distribution of the crystal’s components over depth is homogeneous; for doses as high as 5 × 10{sup 15} cm{sup −2}, the stoichiometric composition of the compound’s components is retained. The experimental value of the critical dose for the beginning of amorphization amounts to about 5 × 10{sup 15} cm{sup −2} and is in accordance with the calculated value. The results obtained by the method of the Raman scattering of light confirm conservation of crystalline structure and the start of the amorphization process.

  8. Lattice damage and compositional changes in Xe ion irradiated InxGa1-xN (x = 0.32-1.0) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Limin; Jiang, Weilin; Dissanayake, Amila C.; Peng, Jinxin; Ai, Wensi; Zhang, Jiandong; Zhu, Zihua; Wang, Tieshan; Shutthanandan, V.

    2016-06-27

    Lattice disorder and compositional changes in InxGa1-xN (x=0.32, 0.47, 0.7, 0.8 and 1.0) films on GaN/Al2O3 substrates, induced by room-temperature irradiation of 5 MeV Xe ions, have been investigated using both Rutherford backscattering spectrometry under ion-channeling conditions and time-of-flight secondary ion mass spectrometry. The results show that for a fluence of 3E13 cm-2, the relative level of lattice disorder in InxGa1-xN increases monotonically from 59% to 90% with increasing indium concentration x from 0.32 to 0.7; a further increase in x up to 1.0 leads to little increase in the disorder level. In contrast to Ga-rich InxGa1-xN (x=0.32 and 0.47), significant volume swelling of up to ~25% accompanied with oxidation in In-rich InxGa1-xN (x=0.7, 0.8 and 1.0) is observed. In addition, irradiation-induced atomic mixing occurs at the interface of In-rich InxGa1-xN and GaN. The results from this study indicate an extreme susceptibility of the high In-content InxGa1-xN to heavy-ion irradiation, and suggest that cautions must be exercised in applying ion-implantation techniques to these materials at room temperature. Further studies of the irradiation behavior at elevated temperatures are warranted.

  9. Lattice damage and compositional changes in Xe ion irradiated InxGa1-xN (x = 0.32-1.0) single crystals

    Science.gov (United States)

    Zhang, Limin; Jiang, Weilin; Dissanayake, Amila; Peng, Jinxin; Ai, Wensi; Zhang, Jiandong; Zhu, Zihua; Wang, Tieshan; Shutthanandan, Vaithiyalingam

    2016-06-01

    Lattice disorder and compositional changes in InxGa1-xN (x = 0.32, 0.47, 0.7, 0.8, and 1.0) films on GaN/Al2O3 substrates, induced by room-temperature irradiation of 5 MeV Xe ions, have been investigated using both Rutherford backscattering spectrometry under ion-channeling conditions and time-of-flight secondary ion mass spectrometry. The results show that for a fluence of 3 × 1013 cm-2, the relative level of lattice disorder in InxGa1-xN increases monotonically from 59% to 90% with increasing indium concentration x from 0.32 to 0.7; a further increase in x up to 1.0 leads to little increase in the disorder level. In contrast to Ga-rich InxGa1-xN (x = 0.32 and 0.47), significant volume swelling of up to ˜25% accompanied with oxidation in In-rich InxGa1-xN (x = 0.7, 0.8, and 1.0) is observed. In addition, irradiation-induced atomic mixing occurs at the interface of In-rich InxGa1-xN and GaN. The results from this study indicate an extreme susceptibility of the high In-content InxGa1-xN to heavy-ion irradiation, and suggest that cautions must be exercised in applying ion-implantation techniques to these materials at room temperature. Further studies of the irradiation behavior at elevated temperatures are warranted.

  10. Beam tests of proton-irradiated PbWO$_4$ crystals and evaluation of double-sided read-out technique for mitigation of radiation damage effects

    CERN Document Server

    Lucchini, Marco Toliman

    2016-01-01

    The harsh radiation environment in which detectors will have to operate during the High Luminosity phase of the LHC (HL-LHC) represents a crucial challenge for many calorimeter technologies. In the CMS forward calorimeters, ionizing doses and hadron fluences will reach up to 300 kGy (at a dose rate of 30 Gy/h) and $2\\times10^{14}$ cm$^{-2}$, respectively, at the pseudorapidity region of $\\lvert \\eta\\rvert=2.6$. To evaluate the evolution of the CMS ECAL performance in such conditions, a set of PbWO$_4$ crystals, exposed to 24 GeV protons up to integrated fluences between $2.1\\times10^{13}$ cm$^{-2}$ and $1.3\\times10^{14}$ cm$^{-2}$, has been studied in beam tests. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The evolution of the performance of the PbWO$_4$ crystals has been well understood and parame...

  11. Influence of polarization on irradiating LiF crystal by femtosecond laser%偏振对飞秒激光辐照LiF晶体的影响∗

    Institute of Scientific and Technical Information of China (English)

    王承伟; 赵全忠; 张扬; 王关德; 钱静; 鲍宗杰; 李阳博; 柏锋; 范文中

    2015-01-01

    The processing morphology of cubic crystal LiF irradiated by femtosecond laser varies with the polarization direc-tion. When the polarization direction is parallel to the crystal orientation⟨110⟩, the distance between the starting point and the surface is 1.08 times that along ⟨100⟩ polarization, and the distance between the end point and the surface is 1.01 times. While the cubic crystal is irradiated by a femtosecond laser, self-focusing and inverse bremsstrahlung are two probable mechanisms dependent on polarization. In order to investigate the relation between the self-focusing and polarization, in this paper we report the nonlinear refractive index n2 of LiF crystal which is linear with respect to self-focusing coefficient. The Z-scan technique is used to measure the nonlinear refractive indexes at different polarizations. As the polarization direction is rotated from⟨110⟩to⟨100⟩, the nonlinear refractive index decreases, and the self-focusing effect becomes weaker. If self-focusing leads to the dependence of morphology on polarization, the distance between the starting point and the surface for ⟨100⟩ polarization should be longer than that for ⟨110⟩ polarization. However, the experiment exhibits an opposite result that the distance between starting point and the surface for⟨100⟩polarization is shorter than that for⟨110⟩polarization. Therefore, the processing morphology which changes with polarization is not a consequence of the self-focusing. So in order to understand why the processing morphology varies with polarization, in this paper we present a model which combines inverse bremsstrahlung, avalanche ionization and radiationless transition. We believe that the recombination due to radiationless transition has a great effect on laser machining. The inverse bremsstrahlung coefficient of ⟨110⟩ polarization is less than that of ⟨100⟩ polarization, as a result, the density of free electrons which are produced by inverse

  12. A defect density-based constitutive crystal plasticity framework for modeling the plastic deformation of Fe-Cr-Al cladding alloys subsequent to irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Anirban [Los Alamos National Laboratory; Wen, Wei [Los Alamos National Laboratory; Martinez Saez, Enrique [Los Alamos National Laboratory; Tome, Carlos [Los Alamos National Laboratory

    2016-02-05

    It is essential to understand the deformation behavior of these Fe-Cr-Al alloys, in order to be able to develop models for predicting their mechanical response under varied loading conditions. Interaction of dislocations with the radiation-induced defects governs the crystallographic deformation mechanisms. A crystal plasticity framework is employed to model these mechanisms in Fe-Cr-Al alloys. This work builds on a previously developed defect density-based crystal plasticity model for bcc metals and alloys, with necessary modifications made to account for the defect substructure observed in Fe-Cr-Al alloys. The model is implemented in a Visco-Plastic Self Consistent (VPSC) framework, to predict the mechanical behavior under quasi-static loading.

  13. Synthesis under Microwave Irradiation and Crystal Structure of 4-(3,4-Methylenedioxylphenyl)-6-methyl- 5-ethoxycaronyl-3,4-dihydropyrimidin-2(H)-one

    Institute of Scientific and Technical Information of China (English)

    TU Shu-Jiang; FANG Fang; JIANG Hong; ZHU Song-Lei; LI Tuan-Jie; ZHANG Xiao-Jing; SHI Da-Qing

    2004-01-01

    The title compound 4-(3,4-methylenedioxylphenyl)-6-methyl-5-ethoxycaronyl-3,4- dihydropyrimidin-2(H)-one (C15H16N2O5) has been synthesized and determined by single-crystal X-ray diffraction. The crystal is of triclinic, space group Pī with a = 7.580(1), b = 7.920(2), c = 13.168(4)(A。),α = 96.44(2),β = 96.71(2), γ = 109.81(2)°, V = 728.8(3) (A。)3, Z = 2, Mr = 304.30, Dc = 1.387 g/cm3, F(000) = 320, μ(MoKα) = 0.105 mm-1 (λ = 0.71073(A。)), R = 0.0446 and wR = 0.1205. In the molecule the pyrimidine ring adopts a boat conformation.

  14. Passivation of the surfaces of single crystal gadolinium molybdate (Gd2(MoO4)3) against attack by hydrofluoric acid by inert ion beam irradiation

    International Nuclear Information System (INIS)

    The passivation effect from inert ion beam bombardment has been studied on a ferroelectric surface. The mechanism in these materials may have some additional contributions because of the polarization charges of the domains and the dipole effect (ion beam and surface species) on the surfaces. For these studies Gd2(MoO4)3 (GMO) crystals were selected. Two possible mechanisms of passivation of GMO surfaces when bombarded with ion beams are discussed

  15. A microstructurally-based model for the evolution of irradiation-induced re-crystallization in U-MO monolithic and AL-dispersion fuels

    International Nuclear Information System (INIS)

    Full text: In a monolithic U-Mo fuel design, in the absence of substantial interaction product development fuel swelling will be the primary deformation mechanism. Irradiation-induced recrystallization appears to be a general phenomenon in that it has been observed to occur in a variety of nuclear fuel types, e.g. U-x Mo, UO2, and U3O8. The recrystallization process results in sub-micron sized grains that accelerate fission-gas swelling due to the combination of short diffusion distances, increased grain-boundary area per unit volume, and greater intergranular bubble growth rates as compared to that in the grain interior. An expression has been derived for the fission density at which irradiation-induced recrystallization is initiated that is athermal and weakly dependent on fission rate. The initiation of recrystallization is to be distinguished from the subsequent progression and eventual consumption of the original fuel grain. The formulation takes into account the observed microstructural evolution of the fuel, the role of precipitate pinning and fission gas bubbles, the triggering event for recrystallization, as well as the evolution of recrystallization as a function of burnup. The calculated dislocation density, fission gas bubble size distribution, fission density at which recrystallization first appears, and the subsequent progression as a function of burnup are compared to measured quantities. Estimates of fuel swelling for a monolithic U-Mo fuel design are provided. (author)

  16. Food irradiation

    International Nuclear Information System (INIS)

    Food irradiation is a promising technology in which food products are exposed to a controlled amount of radiant energy to eliminate disease-causing bacteria. The process can also control parasites and insects, reduce spoilage and inhibit ripening and sprouting. Food irradiation is endorsed by the most important health organisations (WHO, CDC, USDA, FDA, EFSA, etc.) and allowed in nearly 40 Countries. It is to remember that irradiation is not a substitute either for comprehensive food safety programs or for good food-handling practices. Irradiated foods must be labelled with either the statement treated with radiation or treated by irradiation and the international symbol for irradiation, the radura. Some consumer associations suppose negative aspects of irradiation, such as increase of the number of free radicals in food and decrease of antioxidant vitamins that neutralize them

  17. Rows of Dislocation Loops in Aluminium Irradiated by Aluminium Ions

    DEFF Research Database (Denmark)

    Henriksen, L.; Johansen, A.; Koch, J.;

    1967-01-01

    Single-crystal aluminium specimens, irradiated with 50-keV aluminium ions, contain dislocation loops that are arranged in regular rows along <110 > directions. ©1967 The American Institute of Physics......Single-crystal aluminium specimens, irradiated with 50-keV aluminium ions, contain dislocation loops that are arranged in regular rows along directions. ©1967 The American Institute of Physics...

  18. Food irradiation

    International Nuclear Information System (INIS)

    The author reviews in outline the present status of industrial gamma irradiation plants for food and medical sterilization and in particular lists commercial irradiation plants currently operating in the U.K., considering briefly plant design, efficiency, costs and dose control. (UK)

  19. Food irradiation

    International Nuclear Information System (INIS)

    The paper discusses the need for effective and efficient technologies in improving the food handling system. It defines the basic premises for the development of food handling. The application of food irradiation technology is briefly discussed. The paper points out key considerations for the adoption of food irradiation technology in the ASEAN region (author)

  20. Food irradiation

    International Nuclear Information System (INIS)

    Food irradiation can have a number of beneficial effects, including prevention of sprouting; control of insects, parasites, pathogenic and spoilage bacteria, moulds and yeasts; and sterilization, which enables commodities to be stored for long periods. It is most unlikely that all these potential applications will prove commercially acceptable; the extend to which such acceptance is eventually achieved will be determined by practical and economic considerations. A review of the available scientific literature indicates that food irradiation is a thoroughly tested food technology. Safety studies have so far shown no deleterious effects. Irradiation will help to ensure a safer and more plentiful food supply by extending shelf-life and by inactivating pests and pathogens. As long as requirement for good manufacturing practice are implemented, food irradiation is safe and effective. Possible risks of food irradiation are not basically different from those resulting from misuse of other processing methods, such as canning, freezing and pasteurization. (author)

  1. Irradiation damage in lithium ceramics

    International Nuclear Information System (INIS)

    The irradiation response of two candidate tritium-breeding materials, LiAlO2 and Li2ZrO3, was investigated using electron irradiation to produce atomic displacements, and EPR and transmission electron microscopy (TEM) to detect damage responses. In a first set of experiments, single crystals and sintered polycrystals of γ-LiAlO2 were irradiated with 2.5 MeV electrons at a temperature of 20 K. EPR measurements made at 4 K on samples kept at 77 K after electron irradiation confirm that paramagnetic defects are created during irradiation, and that most of these defects disappear at about 100 K. TEM observations at room temperature indicate, however, that annealing of these defects does not result in visible defect aggregates. In a second set of experiments, sintered polycrystalline LiAlO2 and Li2ZrO3 samples were thinned to electron transparency and heavily irradiated in situ with 200 keV electrons. In LiAlO2, laths of LiAl5O8 grew intragranularly under irradiation. Li2ZrO3 showed little or no aggregate damage after extensive irradiation near room temperature. (orig.)

  2. Explosive phenomena in heavily irradiated NaCl

    NARCIS (Netherlands)

    denHartog, HW; Vainshtein, DI; Matthews, GE; Williams, RT

    1997-01-01

    In heavily irradiated NaCl crystals explosive phenomena can be initiated during irradiation or afterwards when samples are heated to temperatures between 100 and 250 degrees C. During irradiation of NaCl Na and Cl-2 precipitates and void structures are produced along with the accumulation of stored

  3. Food irradiation

    International Nuclear Information System (INIS)

    Food treatment by means of ionizing energy, or irradiation, is an innovative method for its preservation. In order to treat important volumes of food, it is necessary to have industrial irradiation installations. The effect of radiations on food is analyzed in the present special work and a calculus scheme for an Irradiation Plant is proposed, discussing different aspects related to its project and design: ionizing radiation sources, adequate civil work, security and auxiliary systems to the installations, dosimetric methods and financing evaluation methods of the project. Finally, the conceptual design and calculus of an irradiation industrial plant of tubercles is made, based on the actual needs of a specific agricultural zone of our country. (Author)

  4. Fruits irradiation

    International Nuclear Information System (INIS)

    The objectives of this project in food irradiation are two-fold, to study the effect of irradiation in prolongation of useful storage life of fruits and to evaluate irradiation as a means of preserving fruits. However radiation is not intended to replace existing preservation processes but may be used in conjunction with current methods such as refrigeration, drying, fermentation etc. In fact radiation should combine with proper storage and packaging techniques in order to ensure maximum benefits. Ripening retardation of fruits by irradiation kinds of fruits: papaya, mango, rambutan, longan and durian. Changes in organoleptic properties of fruit flavor and taste, texture changes by taste panel estimation of significance level of results by statistical mathematical methods, chemical changes determination of climacteric peak in fruits by estimation of carbon dioxide evolution, vitamin C determination by Tillmann's method, carotenoid separation by thin layer chromatography, reducing sugars and acidity determination, volatile components of durian by gas-chromatography

  5. Food irradiation

    International Nuclear Information System (INIS)

    The preservation of food using irradiation may replace or be used in combination with traditional or conventional food preservation techniques. Studies have shown that the irradiation technique which uses less energy than other preservation methods is a potential way for reducing post harvest losses. However, economic feasibility among other constraints is the core factor to determine the success of the technique at commercial scale. The need and importance for considering this new technique in Malaysia are discussed here. (author)

  6. Food irradiation

    International Nuclear Information System (INIS)

    A worldwide standard on food irradiation was adopted in 1983 by codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and The World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Inst. of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19 MeV, 1 kW) and industrial unit Electronika (10 MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for irradiation for; spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables. (author)

  7. Thermal Annealing of Paramagnetic Defects Induced by Gamma Irradiation in (NH4)2SO4 and (ND4)2SO4 Single Crystals: Experimental Verification of the Theory of Fletcher and Brown

    International Nuclear Information System (INIS)

    In irradiated (NH4)2SO4 And (ND4)2SO4 crystals two paramagnetic species were identified by means of the electron spin resonance method. The g constant of the first radical is 2.014 and of the second 2.020 for the normal hydrogen compound; for the deuterated compound they are 1.996 and 2.0032 respectively. Study of the annealing of the first radical in the 60°-170°C range showed that in this case the kinetics display a single plateau corresponding to a total recombination of the radicals. For each isotherm it was possible to obtain the appropriate equation using the errors function derived by Fletcher and Brown and taking as a model the recombination of initially correlated (and subsequently liberated) pairs by a random-walk process. Agreement between this function and experimental results was obtained after correcting the function by a factor α. The composite annealing curve is in good agreement with the corrected errors function. Using the phenomenological method of Fletcher and Brown for calculating the activation energy we obtained a value of 1.594 eV, corresponding to the first radical in (NH4)2SO4. On the basis of the variation of the diffusion coefficient with temperature we obtained a value of 1.592 eV for the same activation energy. With the Vand- Primack method we obtained 1.45 eV, which is lower than the two preceding values. We concluded that the recombination of correlated pairs by a random-walk process can be used as a model in the form given by the theory if the interaction between the species formed and the lattice is fairly weak; in this way the pairs which are initially correlated can be liberated. (author)

  8. Crystals in the LHC

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    Bent crystals can be used to deflect charged particle beams. Their use in high-energy accelerators has been investigated for almost 40 years. Recently, a bent crystal was irradiated for the first time in the HiRadMat facility with an extreme particle flux, which crystals would have to withstand in the LHC. The results were very encouraging and confirmed that this technology could play a major role in increasing the beam collimation performance in future upgrades of the machine.   UA9 bent crystal tested with a laser. Charged particles interacting with a bent crystal can be trapped in channelling states and deflected by the atomic planes of the crystal lattice (see box). The use of bent crystals for beam manipulation in particle accelerators is a concept that has been well-assessed. Over the last three decades, a large number of experimental findings have contributed to furthering our knowledge and improving our ability to control crystal-particle interactions. In modern hadron colliders, su...

  9. Commercial irradiator

    International Nuclear Information System (INIS)

    Commercial irradiation, the treatment of products with gamma radiation principally using a Cobalt-60 source, had its beginnings in Europe and Australia 25 years ago. To date the most successful application of the process is the sterilization of medical products and, for a variety of reasons, gamma sterilization is now becoming dominant in this important field. Many other applications have been evaluated over the years and the most exciting is undoubtedly food irradiation for which there is a vast potential. The commercial feasibility of setting up and irradiation facility is a complex subject and the selection of Cobalt-60 gamma plant depends on a number of technical and economic considerations. The parameters which determine the design and capacity of the optimum plant include throughput, product size and dose requirements; a balance has to be struck between plant flexibility and overall economy. The Ansell irradiators are designed primarily for the sterilization of medical products although some experimental food irradiation has been done, particularly in Australia. (author)

  10. Pendellosung effect in photonic crystals

    CERN Document Server

    Savo, S; Miletto, C; Andreone, A; Dardano, P; Moretti, L; Mocella, V

    2008-01-01

    At the exit surface of a photonic crystal, the intensity of the diffracted wave can be periodically modulated, showing a maximum in the "positive" (forward diffracted) or in the "negative" (diffracted) direction, depending on the slab thickness. This thickness dependence is a direct result of the so-called Pendellosung phenomenon, consisting of the periodic exchange inside the crystal of the energy between direct and diffracted beams. We report the experimental observation of this effect in the microwave region at about 14 GHz by irradiating 2D photonic crystal slabs of different thickness and detecting the intensity distribution of the electromagnetic field at the exit surface and inside the crystal itself.

  11. Vinca irradiator

    International Nuclear Information System (INIS)

    The development programme of the VINCA radiosterilisation centre involves plans for an irradiator capable of working in several ways. Discontinuous operation. The irradiator is loaded for a certain period then runs automatically until the moment of unloading. This method is suitable as long as the treatment capacity is relatively small. Continuous operation with permanent batch loading and unloading carried out either manually or automatically (by means of equipment to be installed later). Otherwise the design of the apparatus is highly conventional. The source is a vertical panel submersible in a pool. The conveyor is of the 'bucket' type, with 4 tiers to each bucket. The batches pass successively through all possible irradiation positions. Transfert into and out of the cell take place through a maze, which also provides access to the cell when the sources are in storage at the bottom of the pool

  12. Defect free single crystal thin layer

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud

    2016-01-28

    A gallium nitride film can be a dislocation free single crystal, which can be prepared by irradiating a surface of a substrate and contacting the surface with an etching solution that can selectively etch at dislocations.

  13. Photoluminescence Spectra of Crystal Pattern Written by Femtosecond Laser Irradiation in Rare-earth-doped BaO-TiO2-SiO2 Glasses%飞秒激光诱导稀土掺杂BaO-TiO2-SiO2玻璃析晶的发光光谱

    Institute of Scientific and Technical Information of China (English)

    朱斌; 戴晔; 马洪良; 张松敏; 林耿; 邱建荣

    2007-01-01

    A focused femtosecond laser with 800 nm, 250 kHz and 150 fs was used to irradiate Tm3+-doped and Eu3+-doped BaO-TiO2-SiO2 glasses. White emissions were observed around the focal point of the femtosecond laser beam at the initial stage of the laser irradiation in both glass samples. A blue emission began to emerge from the irradiation region in Tm3+-doped glass after 20 s irradiation, but both blue and red emissions were observed from the irradiation region in Eu3+-doped glass. It was found from micro-Raman spectra that nonlinear optical crystal Ba2TiSi2O8 were precipitated in both glass samples after the laser irradiation. The mechanisms of the observed phenomena are discussed.%使用聚焦的800 nm,120 fs,1 kHz飞秒激光照射TM3+和Eu3+掺杂的BaO-TiO2-SiO2玻璃.照射开始,TM3+和Eu3+掺杂玻璃均在飞秒激光聚焦附近发出强烈白光.照射20 s后, 掺杂TM3+的玻璃在聚焦附近开始有蓝光发出,但在Eu3+掺杂玻璃同时有蓝光和红光发出.由显微拉曼光谱判定:经过激光的照射后,2种玻璃均有Ba2TiSi2O8晶体析出.

  14. Polymer Morphological Change Induced by Terahertz Irradiation.

    Science.gov (United States)

    Hoshina, Hiromichi; Suzuki, Hal; Otani, Chiko; Nagai, Masaya; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro

    2016-01-01

    As terahertz (THz) frequencies correspond to those of the intermolecular vibrational modes in a polymer, intense THz wave irradiation affects the macromolecular polymorph, which determines the polymer properties and functions. THz photon energy is quite low compared to the covalent bond energy; therefore, conformational changes can be induced "softly," without damaging the chemical structures. Here, we irradiate a poly(3-hydroxybutylate) (PHB) / chloroform solution during solvent casting crystallization using a THz wave generated by a free electron laser (FEL). Morphological observation shows the formation of micrometer-sized crystals in response to the THz wave irradiation. Further, a 10-20% increase in crystallinity is observed through analysis of the infrared (IR) absorption spectra. The peak power density of the irradiating THz wave is 40 MW/cm(2), which is significantly lower than the typical laser intensities used for material manipulation. We demonstrate for the first time that the THz wave effectively induces the intermolecular rearrangement of polymer macromolecules. PMID:27272984

  15. Food irradiation: An update

    International Nuclear Information System (INIS)

    Recent regulatory and commercial activity regarding food irradiation is highlighted. The effects of irradiation, used to kill insects and microorganisms which cause food spoilage, are discussed. Special attention is given to the current regulatory status of food irradiation in the USA; proposed FDA regulation regarding the use of irradiation; pending irradiation legislation in the US Congress; and industrial applications of irradiation

  16. Crystal Meth

    Science.gov (United States)

    ... for: Navigation Home / Stories of Hope / Crystal meth Crystal meth Story Of Hope By giovanni January 3rd, ... about my drug addiction having to deal with Crystal meth. I am now in recovery and fighting ...

  17. TSEE from aluminas and spinels subjected to Ar+-ion irradiation

    International Nuclear Information System (INIS)

    TSEE from Ar+-ion and/or X-ray irradiated alumina and spinel was investigated. A TSEE peak at 150 deg C from X-ray irradiated alumina was suppressed when the alumina was further irradiated by Ar+-ions. A TSEE peak at 300 deg C was observed for Ar+-ion irradiated alumina and was suppressed by the combined effect of Ar+-ion and X-ray irradiations. Only weak TSEE peaks were observed between 250 and 350 deg C in Ar+-ion irradiated spinels. Generally, sprayed spinel specimens showed weaker TSEE peaks than the specimens of a single-crystal spinel. This is attributable to the fact that a plasma-sprayed spinel becomes amorphous more easily than its single crystals. X-ray irradiated spinel single-crystal showed well-defined TSEE when they were not irradiated with Ar+-ions. (author)

  18. Irradiation effects in glasses

    International Nuclear Information System (INIS)

    The deposition of irradiation energy can alter the physical properties of glasses through bond-breaking (energetic photons; fast particles) and atomic displacements (Coulombic and collisional: n0, e, ions). These processes can alter UV-visible optical properties via electron-hole trapping and IR-spectra as a result of network damage. The movement of network atoms results in volume dilatation which change the hardness, refractive index, and dissolution rates. All of these changes can be realized with ion implantation and, in addition, implantation of chemically active species can lead to compound formation in the implanted regions. For this reason, emphasis will be placed on the implantation-induced surface modifications of glasses (mostly silicates). The paper includes crystallization, surface stress, refractive index changes and optoelectronic application and chemical reactivity

  19. Defect recovery in aluminum irradiated with protons at 20 K

    DEFF Research Database (Denmark)

    Linderoth, S.; Rajainmäki, H.; Nieminen, R. M.

    1987-01-01

    Aluminum single crystals have been irradiated with 7.0-MeV protons at 20 K. The irradiation damage and its recovery are studied with positron-lifetime spectroscopy between 20 and 500 K. Stage-I recovery is observed at 40 K. At 240 K, loss of freely migrating vacancies is observed. Hydrogen in vac...

  20. Light-Induced Photorefractive Waveguides in Iron-Doped Lithium Niobate Crystals

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Waveguides were fabricated in lithium niobate crystals solely by light irradiation using binary optical masks and SLM-prepared optical masks. Arrayed-waveguides were also obtained by once or twice irradiations of an interferogram of two plane waves.

  1. Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review

    Directory of Open Access Journals (Sweden)

    Wenbo Liu

    2016-02-01

    Full Text Available Nanostructured (NS materials may have different irradiation resistance from their coarse-grained (CG counterparts. In this review, we focus on the effect of grain boundaries (GBs/interfaces on irradiation induced microstructure evolution and the irradiation tolerance of NS materials under irradiation. The features of void denuded zones (VDZs and the unusual behavior of void formation near GBs/interfaces in metals due to the interactions between GBs/interfaces and irradiation-produced point defects are systematically reviewed. Some experimental results and calculation results show that NS materials have enhanced irradiation resistance, due to their extremely small grain sizes and large volume fractions of GBs/interfaces, which could absorb and annihilate the mobile defects produced during irradiation. However, there is also literature reporting reduced irradiation resistance or even amorphization of NS materials at a lower irradiation dose compared with their bulk counterparts, since the GBs are also characterized by excess energy (compared to that of single crystal materials which could provide a shift in the total free energy that will lead to the amorphization process. The competition of these two effects leads to the different irradiation tolerance of NS materials. The irradiation-induced grain growth is dominated by irradiation temperature, dose, ion flux, character of GBs/interface and nanoprecipitates, although the decrease of grain sizes under irradiation is also observed in some experiments.

  2. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez Saez, Enrique [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-31

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  3. Study of the microstructural transformations of borate glass and barium metaborate crystals induced by femtosecond laser

    Institute of Scientific and Technical Information of China (English)

    Chen Bin; Yu Bing-Kun; Yan Xiao-Na; Qiu Jian-Rong; Jiang Xiong-Wei; Zhu Cong-Shan

    2004-01-01

    This paper describes the microstructural transformations of borate glass and barium metaborate crystals induced by femtosecond laser. Such structural transformations were verified by Raman spectroscopy. The borate glass is transformed into low temperature (LT) phase of barium metaborate (BaB2O4) crystals after being irradiated for 10 min by a femtosecond laser. In addition, after 20 min of irradiation, high temperature (HT) phase of BaB2O4 crystals is also produced. Further studies demonstrate that LT phase BaB2O4 crystals are formed in the HT phase BaB2O4 crystals after femtosecond laser irradiation for 10 s.

  4. Instability of nanoscale metallic particles under electron irradiation in TEM

    Science.gov (United States)

    Chen, X. Y.; Zhang, S. G.; Xia, M. X.; Li, J. G.

    2016-03-01

    The stability of nano metallic glass under electron beam in transmission electron microscope (TEM) was investigated. The most common voltage of TEM used in metallic materials characterization was either 200 kV or 300 kV. Both situations were investigated in this work. An amorphous metallic particle with a dimension of a few hundred nanometers was tested under 300 keV electron irradiation. New phase decomposed from the parent phase was observed. Moreover, a crystal particle with the same composition and dimension was tested under 200 keV irradiation. Decomposition process also occurred in this situation. Besides, crystal orientation modification was observed during irradiation. These results proved that the electron beam in TEM have an effect on the stability of nanoscale samples during long time irradiation. Atomic displacement was induced and diffusion was enhanced by electron irradiation. Thus, artifacts would be induced when a nanoscale metallic sample was characterized in TEM.

  5. Axion Crystals

    CERN Document Server

    Ozaki, Sho

    2016-01-01

    The low-energy effective theories for gapped insulators are classified by three parameters: permittivity $\\epsilon$, permeability $\\mu$, and theta angle $\\theta$. Crystals with periodic $\\epsilon$ are known as photonic crystals. We here study the band structure of photons in a new type of crystals with periodic $\\theta$ (modulo $2\\pi$) in space, which we call the axion crystals. We find that the axion crystals have a number of new properties that the usual photonic crystals do not possess, such as the helicity-dependent photonic band gaps and the nonrelativistic gapless dispersion relation at small momentum. We briefly discuss possible realizations of axion crystals in condensed matter systems as well as high-energy physics.

  6. Irradiation damage in γ-LiA102

    International Nuclear Information System (INIS)

    Using EPR measurements at temperatures ranging from 30 K to 300 K, we studied the response of lithium aluminate single crystals to the irradiation with electrons in the MeV range at 20 K and with X-rays at room temperature. In the electron-irradiated γ-LiA102 sample, we observed three different paramagnetic defects - that were absent prior irradiation - whose EPR features are described here. Two of these defects were also present in the X-ray irradiated sample. The latter result proves that, in the γ-LiA102 sample, a photochemical mechanism exists, that is efficient in producing these two defects

  7. Synthesis and Crystal Structure of N-Methyl-9-(3,4-dimethoxylphenyl)-1,8-dioxo-1,2,3,4,5,6,7,8,9,10- decahydroacridine under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    章晓镜; 屠树江; 朱晓彤; 张金鹏; 徐佳宁; 王倩

    2005-01-01

    The crystal structure of the title compound (C26H33NO4 (C25.68H32.04No.68O4.32, Mr = 419.35)) has been determined by single-crystal X-ray diffraction. The crystal is of triclinic, space P21/c with a = 7.519(2), b = 28.933(5), c = 10.654(3) (A), β = 91.78(2)°, V= 2316.7(7) (A)3, Z = 4, Dc = 1.202 g/cm3,μ = 0.081 mm-1, F(000) = 902, Mr = 423, the final R = 0.0424 and wR = 0.0911. In the structure, the pyridine ring adopts a boat conformation.

  8. Synthesis and Crystal Structure of N-methyl-9-(4-bromophenyl)-1,2,3,4,5,6,7,8,9,10- decahydroacridine-1,8-dione under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    HUA Guo-Ping; ZHANG Xiao-Jing; TU Shu-Jiang; ZHU Song-Lei; LI Tuan-Jie; ZHU Xiao-Tong; ZHANG Jin-Peng

    2005-01-01

    The crystal structure N-methyl-9-(4-bromophenyl)-1,8-dioxo-1,2,3,4,5,6,7,8,9,10- decahydroacridine(C20H20BrNO2) was determined by single-crystal X-ray diffraction analysis. It belongs to P21/n space group, with a = 10.7999(18), b = 13.845(3), c = 11.4031(3) (A), β = 99.324(4)°, Dc = 1.525 g/cm3, Z = 4, λ = 0.71070(A), μ(MoKα = 2.455 mm-1, Mr = 386.28, V = 1682.5(5) (A)3, F(000) = 792, the final R = 0.0463 and wR = 0.1053. In the crystal structure, the pyridine ring adopts a boat conformation, the two six-numbered rings fused with pyridine ring adopt twisting boat con- formation.

  9. Irradiation Behavior in High Entropy Alloys

    Institute of Scientific and Technical Information of China (English)

    Song-qin XIA; Zhen WANG; Teng-fei YANG; Yong ZHANG

    2015-01-01

    As an increasing demand of advanced nuclear fission reactors and fusion facilities, the key requirements for the materials used in advanced nuclear systems should encompass superior high temperature property, good behavior in corrosive environment, and high irradiation resistance, etc. Recently, it was found that some selected high entropy alloys (HEAs) possess excellent mechanical properties at high temperature, high corrosion resistance, and no grain coarsening and self-healing abil-ity under irradiation, especially, the exceptional structural stability and lower irradiation-induced volume swelling, compared with other conventional materials. Thus, HEAs have been considered as the potential nuclear materials used for future ifssion or fusion reactors, which are designed to operate at higher temperatures and higher radiation doses up to several hundreds of displacement per atom (dpa). An insight into the irradiation behavior of HEAs was given, including fundamental researches to investigate the irradiation-induced phase crystal structure change and volume swelling in HEAs. In summary, a brief overview of the irradiation behavior in HEAs was made and the irradiation-induced structural change in HEAs may be relatively insensi-tive because of their special structures.

  10. Contribution to knowledge of radiation damage in KCl crystals doped with Sr

    International Nuclear Information System (INIS)

    The radiation damages in KCl crystals doped with Sr++ using thermo-ionic technique (ITC) and optical absorption measurements were studied. The variation of the entropy for the dipole jump starting from results reported by several authors was calculated. The irradiation effects with three different exposures were analysed: irradiation with gamma rays; irradiation with fast neutrons added to gamma irradiation; and irradiation with thermal neutrons together with fast neutrons and gamma rays. (Author)

  11. Continuous wave laser irradiation of explosives

    Energy Technology Data Exchange (ETDEWEB)

    McGrane, Shawn D.; Moore, David S.

    2010-12-01

    Quantitative measurements of the levels of continuous wave (CW) laser light that can be safely applied to bare explosives during contact operations were obtained at 532 nm, 785 nm, and 1550 nm wavelengths. A thermal camera was used to record the temperature of explosive pressed pellets and single crystals while they were irradiated using a measured laser power and laser spot size. A visible light image of the sample surface was obtained before and after the laser irradiation. Laser irradiation thresholds were obtained for the onset of any visible change to the explosive sample and for the onset of any visible chemical reaction. Deflagration to detonation transitions were not observed using any of these CW laser wavelengths on single crystals or pressed pellets in the unconfined geometry tested. Except for the photochemistry of DAAF, TATB and PBX 9502, all reactions appeared to be thermal using a 532 nm wavelength laser. For a 1550 nm wavelength laser, no photochemistry was evident, but the laser power thresholds for thermal damage in some of the materials were significantly lower than for the 532 nm laser wavelength. No reactions were observed in any of the studied explosives using the available 300 mW laser at 785 nm wavelength. Tables of laser irradiance damage and reaction thresholds are presented for pressed pellets of PBX9501, PBX9502, Composition B, HMX, TATB, RDX, DAAF, PETN, and TNT and single crystals of RDX, HMX, and PETN for each of the laser wavelengths.

  12. Study on thermal properties and crystallization behavior of electron beam irradiated ethylene vinyl acetate (EVA)/waste tyre dust (WTD) blends in the presence of polyethylene graft maleic anhydride (PEgMAH)

    International Nuclear Information System (INIS)

    The aim of this article is to show the effects of the electron beam irradiation dose and presence of a compatibiliser on the thermal properties and crystallinity of EVA/WTD blends. The purpose of applying electron beam radiation with doses range 50 to 200 kGy and adding a compatibiliser was to enhance the compatibility of the studied blends and at the same time to investigate the possibility of using this technique in the process of recycling polymeric materials. As the compatibilisers, the polyethylene grafted maleic anhydride (PEgMAH) was utilized, they were added at the amounts of 1-5 phr respectively. The enhancement of thermal properties was accompanied by the following effects, discussed in this article: i) an irradiated EVA/WTD blend at 200kGy was found to improve the thermal properties of EVA, ii) the addition of PEgMAH in EVA/WTD blends and the subsequent irradiation allowed prevention of degradation mechanism. iii) the ΔHf and crystallinity percentage decrease at higher PEgMAH content

  13. Study on thermal properties and crystallization behavior of electron beam irradiated ethylene vinyl acetate (EVA)/waste tyre dust (WTD) blends in the presence of polyethylene graft maleic anhydride (PEgMAH)

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, Syuhada; Ahmad, S. H. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan (Malaysia); Ratnam, C. T. [Radiation Processing Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang (Malaysia); Athirah, Nurul [School of Materials and Mineral Resources, USM Engineering Campus (Malaysia)

    2013-11-27

    The aim of this article is to show the effects of the electron beam irradiation dose and presence of a compatibiliser on the thermal properties and crystallinity of EVA/WTD blends. The purpose of applying electron beam radiation with doses range 50 to 200 kGy and adding a compatibiliser was to enhance the compatibility of the studied blends and at the same time to investigate the possibility of using this technique in the process of recycling polymeric materials. As the compatibilisers, the polyethylene grafted maleic anhydride (PEgMAH) was utilized, they were added at the amounts of 1-5 phr respectively. The enhancement of thermal properties was accompanied by the following effects, discussed in this article: i) an irradiated EVA/WTD blend at 200kGy was found to improve the thermal properties of EVA, ii) the addition of PEgMAH in EVA/WTD blends and the subsequent irradiation allowed prevention of degradation mechanism. iii) the ΔH{sub f} and crystallinity percentage decrease at higher PEgMAH content.

  14. Study on thermal properties and crystallization behavior of electron beam irradiated ethylene vinyl acetate (EVA)/waste tyre dust (WTD) blends in the presence of polyethylene graft maleic anhydride (PEgMAH)

    Science.gov (United States)

    Ramli, Syuhada; Ratnam, C. T.; Ahmad, S. H.; Athirah, Nurul

    2013-11-01

    The aim of this article is to show the effects of the electron beam irradiation dose and presence of a compatibiliser on the thermal properties and crystallinity of EVA/WTD blends. The purpose of applying electron beam radiation with doses range 50 to 200 kGy and adding a compatibiliser was to enhance the compatibility of the studied blends and at the same time to investigate the possibility of using this technique in the process of recycling polymeric materials. As the compatibilisers, the polyethylene grafted maleic anhydride (PEgMAH) was utilized, they were added at the amounts of 1-5 phr respectively. The enhancement of thermal properties was accompanied by the following effects, discussed in this article: i) an irradiated EVA/WTD blend at 200kGy was found to improve the thermal properties of EVA, ii) the addition of PEgMAH in EVA/WTD blends and the subsequent irradiation allowed prevention of degradation mechanism. iii) the ΔHf and crystallinity percentage decrease at higher PEgMAH content.

  15. Modelling irradiation creep of zirconium alloys

    International Nuclear Information System (INIS)

    The effect of texture and dislocation structure on irradiation creep of Zircaloy-2 (irradiated at about 340 K) and Zr-2.5Nb alloys (irradiated at about 558 K) is studied by means of a self-consistent model. The model relates the creep behaviour of polycrystals to that of single crystals by taking into account the crystallographic texture, dislocation density, grain shape and the intergranular stesses generated due to the crystallographic anisotropy. Three independent creep compliances of the polycrystal obtained from creep tests on a reference material are used to derive the single crystal creep compliances. These are used to calculate the polycrystalline compliances for the remaining materials. At low irradiation temperatures the predicted polycrystalline compliances agree well with the measured values. The observed behaviour can be described by a climb-assisted glide mechanism, in which the creep strain is accommodated mainly by prismatic slip, with smaller contributions from basal and pyramidal slip systems. At higher irradiation temperatures, the self-consistent approach can also describe well the creep behaviour of Zr-2.5Nb samples

  16. Proton induced radiation damage in fast crystal scintillators

    Science.gov (United States)

    Yang, Fan; Zhang, Liyuan; Zhu, Ren-Yuan; Kapustinsky, Jon; Nelson, Ron; Wang, Zhehui

    2016-07-01

    This paper reports proton induced radiation damage in fast crystal scintillators. A 20 cm long LYSO crystal, a 15 cm long CeF3 crystal and four liquid scintillator based sealed quartz capillaries were irradiated by 800 MeV protons at Los Alamos up to 3.3 ×1014 p /cm2. Four 1.5 mm thick LYSO plates were irradiated by 24 GeV protons at CERN up to 6.9 ×1015 p /cm2. The results show an excellent radiation hardness of LYSO crystals against charged hadrons.

  17. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  18. Protein Crystallization

    Science.gov (United States)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  19. Computational crystallization.

    Science.gov (United States)

    Altan, Irem; Charbonneau, Patrick; Snell, Edward H

    2016-07-15

    Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed.

  20. Computational crystallization.

    Science.gov (United States)

    Altan, Irem; Charbonneau, Patrick; Snell, Edward H

    2016-07-15

    Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed. PMID:26792536

  1. Irradiation of goods

    International Nuclear Information System (INIS)

    The necessary dose and the dosage limits to be observed depend on the kind of product and the purpose of irradiation. Product density and density distribution, product dimensions, but also packaging, transport and storage conditions are specific parameters influencing the conditions of irradiation. The kind of irradiation plant - electron accelerator or gamma plant - , its capacity, transport system and geometric arrangement of the radiation field are factors influencing the irradiation conditions as well. This is exemplified by the irradiation of 3 different products, onions, deep-frozen chicken and high-protein feed. Feasibilities and limits of the irradiation technology are demonstrated. (orig.)

  2. Effect of gamma irradiation on Korean traditional multicolored paintwork

    International Nuclear Information System (INIS)

    Gamma irradiation can destroy fungi and insects involved in the bio-deterioration of organic cultural heritages. However, this irradiation procedure can alter optical and structural properties of historical pigments used in wooden cultural heritage paintings. The crystal structure and color centers of these paintings must be maintained after application of the irradiation procedure. In this study, we investigated the effects of gamma irradiation on Korean traditional multicolored paintwork (Dancheong) for the preservation of wooden cultural heritages. The main pigments in Korean traditional wooden cultural heritages, Sukganju (Hematite; Fe2O3), Jangdan (Minium; Pb3O4), Whangyun (Crocoite; PbCrO4), and Jidang (Rutile; TiO2), were irradiated by gamma radiation at doses of 1, 5, and 20 kGy. After irradiation, changes in Commision Internationale d’Eclairage (CIE) color values (L*, a*, b*) were measured using the color difference meter, and their structural changes were analyzed using X-ray diffraction (XRD) analysis. The slightly change in less than 1 dE* unit by gamma irradiation was observed, and structural changes in the Dancheong were stable after exposure to 20 kGy gamma irradiation. In addition, gamma irradiation could be applied to painted wooden cultural properties from the Korean Temple. Based on the color values, gamma irradiation of 20 kGy did not affect the Dancheong and stability was maintained for five months. In addition, the fungicidal and insecticidal effect by less than 5 kGy gamma irradiation was conformed. Therefore, the optical and structural properties of Dancheong were maintained after gamma irradiation, which suggested that gamma irradiation can be used for the preservation of wooden cultural heritages painted with Dancheong. - Highlights: • Effects of gamma irradiation on the Dancheong were evaluated. • We confirmed that optical and structural properties of Dancheong were maintained. • Irradiation can contribute the decontamination for

  3. Irradiation damage of SiC semiconductor device (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10{sup 16} N{sup +} ions/cm{sup 2} and 3.6 x 10{sup 17} e/cm{sup 2} and 1.08 x 10{sup 18} e/cm{sup 2} , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix.

  4. Irradiation damage of SiC semiconductor device (I)

    International Nuclear Information System (INIS)

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x1016 N+ ions/cm2 and 3.6 x 1017 e/cm2 and 1.08 x 1018 e/cm2 , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix

  5. Radiation piezoelectric effect in germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1977-06-01

    Irradiation with ionizing particles of a germanium single crystal and uniaxial deformation at right-angles to the particle beam produced an electric field and a corresponding emf due to the radiation piezoelectric effect. Measurements were carried out when such a single crystal was irradiated with ..cap alpha.. particles and protons. The piezoelectric emf increased linearly with the compressive stress and the ..cap alpha..-particle flux intensity. The emf depended weakly on the particle energy. The observed effect was due to the anisotropy resulting from uniaxial deformation.

  6. Irradiation dose determination below room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Bernal, S. E-mail: ramos@nuclecu.unam.mx; Cruz, E.; Negron-Mendoza, A.; Bustos, E

    2002-03-01

    The measurements presented were undertaken to provide quantitative information on the low temperature irradiation of thermoluminiscence phosphors. The crystals used were (a) LiF co-doped with Mg, Cu and P, and (b) CaSO{sub 4} doped with Dy. The absorbed dose values in the interval studied showed a linear behavior at low doses and low temperature. The aim of this work is to test if these crystals can be used to measure the dose absorbed by solids at low temperature.

  7. Crystal Data

    Science.gov (United States)

    SRD 3 NIST Crystal Data (PC database for purchase)   NIST Crystal Data contains chemical, physical, and crystallographic information useful to characterize more than 237,671 inorganic and organic crystalline materials. The data include the standard cell parameters, cell volume, space group number and symbol, calculated density, chemical formula, chemical name, and classification by chemical type.

  8. Food irradiation in China

    International Nuclear Information System (INIS)

    In this paper, the author discussed the recent situation of food irradiation in China, its history, facilities, clearance, commercialization, and with emphasis on market testing and public acceptance of irradiated food. (author)

  9. Economics of food irradiation

    International Nuclear Information System (INIS)

    Economic aspects of food irradiation and direct economic benefits accruing from the application of food irradiation are discussed. A formula is presented to estimate the net economic benefit due to radiation processing of food. (M.G.B .)

  10. Defect formation in MgOxnAl2O3 at gamma-neutron irradiation

    International Nuclear Information System (INIS)

    Optical and mechanical characteristics of spinel crystals after reactor irradiation are investigated. The comparison of the concentrations of radiation-induced anion vacancies and stable F-centers has shown that less than one tenth of the point defects is stabilized at room temperature. The annealing of these vacancies occurs at 800 K. The vacancy formation during gamma-neutron irradiation of nominally pure spinel crystals improves the crack resistance. The irradiation of Fe- and Mn ion-doped crystals MgOxnAl2O3, is accompanied by the coagulation stresses and crack resistance decrease

  11. X-ray and optical study on point defect formation and interaction under irradiation adn doping of KCl

    International Nuclear Information System (INIS)

    Optical and X-ray diffuse scattering methods have been applied to investigate structural changes, taking place in KCl crystals during irradiation with γ-quanta and doping with barium. It is shown that γ-irradiation of ''pure'' and doped KCl crystals mainly leads to formation of F-centers and spherical vacancy complexes. F-center concentration in irradiated addition crystals (3x10-6) has turned out to be 25% lower, than in irradiated pure ones (4x10-6), which is connected with interaction of radiation and addition defects. The type of defects, causing assymetry in the distribution of diffuse scattering has been determined. Appearance of scattering ability modulation over direction during irradiation of KCl pure crystals has been found. Critical radius of spherical complexes formed during irradiation has been estimated, it appeared to be 2.5 a, where a is a lattice period

  12. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 1025 n/m2. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  13. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  14. JMTR irradiation handbook

    International Nuclear Information System (INIS)

    A wide variety of nuclear irradiation and post-irradiation experiments are available using the JMTR (Japan Materials Testing Reactor, 50 MW) and the multi-cell hot laboratory associated with the JMTR. In this Handbook, an application manual for conducting irradiation and post-irradiation experiments using those facilities is provided. The Handbook is primarily designed to aid the experimenter and to serve as a reference for communications between the experimenter and the Division of JMTR Project. (author)

  15. Degradation of insulating ceramics due to irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tomohiro; Terai, Takayuki; Yoneoka, Toshiaki; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Radiation-induced electrical degradation was investigated on single crystal alumina under 2.2 MeV electron irradiation with a dose rate of 5.7 x 10{sup 5} Gy/s and an electrical field of 1.6 x 10{sup 5} V/m at 773 K. After irradiation, electrical resistivity both on the surface and in the bulk decreased in the temperature range of 300 to 773 K. Substantial resistivity decreased from the initial value due to the irradiation, the degradation ratio was much smaller than the case of poly-crystalline specimens. On the other hands, surface resistivity decreased with increasing temperature for measurement with an abrupt change by 4 orders of magnitude around 600 K, and it showed thermal hysteresis. (author)

  16. Defect controlled ferromagnetism in xenon ion irradiated zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Satyarthi, P.; Ghosh, S. [Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Mishra, P.; Sekhar, B.R. [Institute of Physics, Bhubaneswar 751005 (India); Singh, F.; Kumar, P.; Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Dhaka, R.S. [Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Srivastava, P., E-mail: pankajs@physics.iitd.ac.in [Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2015-07-01

    We report evolution of magnetic properties in zinc oxide (ZnO) single crystals and polycrystalline films induced by 500 KeV xenon ion (Xe{sup 3+}) irradiation. Room temperature ferromagnetism (RT-FM) behavior is observed in as deposited polycrystalline ZnO film and strength of FM enhances with ion fluence up to 2×10{sup 17} ions/cm{sup 2} and then decreases. However, RT-FM is not observed in ZnO single crystals even after irradiation with fluence up to 3.5×10{sup 17} ions/cm{sup 2}. The X-ray diffraction (XRD) and Raman measurements of ZnO single crystal reveal slightly disordered hexagonal wurtzite structure after irradiation. However, as deposited and irradiated polycrystalline ZnO films indicate excessive lattice defects in the wurtzite structure. X-ray photoelectron spectroscopy (XPS) reveals that Zn vacancy/interstitial defects are absent in all samples, although oxygen vacancy lattice defects are present. Density of oxygen vacancies is much higher in as deposited and irradiated polycrystalline ZnO films as compared to single crystals. This seems to be the determining factor for the presence and absence of RT-FM in ZnO films and single crystals respectively. The observed FM behavior in as deposited and irradiated polycrystalline ZnO films is explained on the basis of spin split impurity band formation from singly and doubly occupied oxygen vacancies which initiates d{sup 0} ferromagnetism. - Highlights: • We report defect controlled ferromagnetism in inert xenon ion irradiated ZnO. • Threshold concentration of O vacancies is essential to trigger ferromagnetism. • Spin imbalance of singly and doubly occupied oxygen vacancies induces ferromagnetism. • We reveal importance of d{sup 0} ferromagnetism in ZnO for future spintronics devices.

  17. Extraction of radiometal nuclides from reactor irradiated metal phthalocyanines: evaluation of the Ostwald-ripening mechanism

    International Nuclear Information System (INIS)

    Finely ground samples of β-copper phthalocyanine and β-zinc phthalocyanine were irradiated and subsequently submitted to extraction into a crystallizing solvent/dilute aqueous acid system. The quantities of radionuclide extracted are only slightly greater than those obtained from unground crystals of the β-metal phthalocyanines. Thus, the mechanism of extraction probably does not relate directly to crystal growth in the crystallizing solvent, as previously suggested. (author)

  18. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron;

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.......We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  19. Polymer Morphological Change Induced by Terahertz Irradiation

    Science.gov (United States)

    Hoshina, Hiromichi; Suzuki, Hal; Otani, Chiko; Nagai, Masaya; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro

    2016-06-01

    As terahertz (THz) frequencies correspond to those of the intermolecular vibrational modes in a polymer, intense THz wave irradiation affects the macromolecular polymorph, which determines the polymer properties and functions. THz photon energy is quite low compared to the covalent bond energy; therefore, conformational changes can be induced “softly,” without damaging the chemical structures. Here, we irradiate a poly(3-hydroxybutylate) (PHB) / chloroform solution during solvent casting crystallization using a THz wave generated by a free electron laser (FEL). Morphological observation shows the formation of micrometer-sized crystals in response to the THz wave irradiation. Further, a 10‑20% increase in crystallinity is observed through analysis of the infrared (IR) absorption spectra. The peak power density of the irradiating THz wave is 40 MW/cm2, which is significantly lower than the typical laser intensities used for material manipulation. We demonstrate for the first time that the THz wave effectively induces the intermolecular rearrangement of polymer macromolecules.

  20. Radiation processes in crystal solid solutions

    CERN Document Server

    Gladyshev, Gennadi

    2012-01-01

    This is a monograph explaining processes occurring in two classes of crystal solids (metal alloys and doped alkali halide) under irradiation by various types of radiation (alpha, beta, gamma, X-radiations, ions). This e-book is a useful reference for advanced readers interested in the physics of radiation and solid state physics.

  1. Effect of gamma irradiation on Korean traditional multicolored paintwork

    Science.gov (United States)

    Yoon, Minchul; Kim, Dae-Woon; Choi, Jong-il; Chung, Yong-Jae; Kang, Dai-Ill; Hoon Kim, Gwang; Son, Kwang-Tae; Park, Hae-Jun; Lee, Ju-Woon

    2015-10-01

    Gamma irradiation can destroy fungi and insects involved in the bio-deterioration of organic cultural heritages. However, this irradiation procedure can alter optical and structural properties of historical pigments used in wooden cultural heritage paintings. The crystal structure and color centers of these paintings must be maintained after application of the irradiation procedure. In this study, we investigated the effects of gamma irradiation on Korean traditional multicolored paintwork (Dancheong) for the preservation of wooden cultural heritages. The main pigments in Korean traditional wooden cultural heritages, Sukganju (Hematite; Fe2O3), Jangdan (Minium; Pb3O4), Whangyun (Crocoite; PbCrO4), and Jidang (Rutile; TiO2), were irradiated by gamma radiation at doses of 1, 5, and 20 kGy. After irradiation, changes in Commision Internationale d'Eclairage (CIE) color values (L*, a*, b*) were measured using the color difference meter, and their structural changes were analyzed using X-ray diffraction (XRD) analysis. The slightly change in less than 1 dE* unit by gamma irradiation was observed, and structural changes in the Dancheong were stable after exposure to 20 kGy gamma irradiation. In addition, gamma irradiation could be applied to painted wooden cultural properties from the Korean Temple. Based on the color values, gamma irradiation of 20 kGy did not affect the Dancheong and stability was maintained for five months. In addition, the fungicidal and insecticidal effect by less than 5 kGy gamma irradiation was conformed. Therefore, the optical and structural properties of Dancheong were maintained after gamma irradiation, which suggested that gamma irradiation can be used for the preservation of wooden cultural heritages painted with Dancheong.

  2. THERMAL BEHAVIOUR OF γ-IRRADIATED NYLON 610

    Institute of Scientific and Technical Information of China (English)

    JIN Yan; CHEN Donglin

    1988-01-01

    The thermal behaviour of γ-irradiated nylon 610 was investigated. In DSC (differential scanning calorimetry) thermograms in addition to general features characteristic of γ-irradiation cross-linked crystalline polymers, a typical cold-crystallization phenomenon was observed during the sceond scan for samples that had been subjected to high radiation dose. G-values for crosslinking nylon 610 were estimated from gel fraction measurement and TMA (thermomechanical analysis), From TMA curves it was estimated that the dimensional stability of properly irradiated nylon 610 articles might be raised up to ca. 300℃.

  3. Double melting in polytetrafluoroethylene {gamma}-irradiated above its melting point

    Energy Technology Data Exchange (ETDEWEB)

    Serov, S.A., E-mail: servo@nifhi.ru [Karpov Institute of Physical Chemistry, Vorontsovo Pole Street 10, Moscow 105064 (Russian Federation); Khatipov, S.A.; Sadovskaya, N.V.; Tereshenkov, A.V.; Chukov, N.A. [Karpov Institute of Physical Chemistry, Vorontsovo Pole Street 10, Moscow 105064 (Russian Federation)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer PTFE irradiation leads to formation of double melting peaks in DSC curves. Black-Right-Pointing-Pointer This is connected to dual crystalline morphology typical for PTFE. Black-Right-Pointing-Pointer Two crystalline types exist in the PTFE irradiated in the melt. - Abstract: PTFE irradiation above its melting point leads to formation of double melting and crystallization peaks in DSC curves. Splitting of melting peaks is connected to dual crystalline morphology typical for PTFE irradiated in the melt. According to electron microscopy, two crystalline types with different size and packing density exist in the irradiated PTFE.

  4. Optical Studies on Sol-Gel Derived Lead Chloride Crystals

    OpenAIRE

    Rejeena, I; Lillibai, B; Nithyaja, B; Nampoori, P.N V; P. Radhakrishnan

    2013-01-01

    Optical characterization of lead chloride crystals prepared by sol-gel method is reported. The relevant sol-gel technique is used for the preparation of PbCl2 samples with five different types. In this paper, we report the absorption and fluorescence behaviour of pure, UV& IR irradiated and electric & magnetic field applied lead chloride crystal samples in solution phase at two different concentrations. Optical bandgap and emission studies of these crystals are also done.

  5. Ultraviolet Photoelectric Effect in ZrO2 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    XING Jie; WANG Xu; ZHAO Kun; LI Jie; JIN Kui-Juan; HE Meng; ZHENG Dong-Ning; L(U) Hui-Bin

    2007-01-01

    Nanosecond photoelectric effect is observed in a ZrO2 single crystal at ambient temperature for the first time.The rise time is 20ns and the full width at half maximum is about 30ns for the photovoltaic pulse when the wafer surface of the ZrO2 single crystal is irradiated by 248nm KrF laser pulses. The experimental results show that ZrO2 single crystals may be a potential candidate in UV photodetectors.

  6. Surface modification of multilayer graphene using Ga ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Shao, Ying; Ge, Daohan; Ren, Naifei [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yang, Qizhi [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); State key laboratory of Robotics, Chinese Academy of Sciences, Shengyang 110000 (China)

    2015-04-28

    The effect of Ga ion irradiation intensity on the surface of multilayer graphene was examined. Using Raman spectroscopy, we determined that the irradiation caused defects in the crystal structure of graphene. The density of defects increased with the increase in dwell times. Furthermore, the strain induced by the irradiation changed the crystallite size and the distance between defects. These defects had the effect of doping the multilayer graphene and increasing its work function. The increase in work function was determined using contact potential difference measurements. The surface morphology of the multilayer graphene changed following irradiation as determined by atomic force microscopy. Additionally, the adhesion between the atomic force microscopy tip and sample increased further indicating that the irradiation had caused surface modification, important for devices that incorporate graphene.

  7. Matrix ENDOR of the protonated carboxylic anion radical in γ-irradiated l-alanine. Simulation using a general matrix ENDOR line-shape model and single crystal data

    International Nuclear Information System (INIS)

    The matrix ENDOR line from the CH3CH(+NH3)COOOH- radical in γ-irradiated L-alanine powder at 77 K was simulated by using a generalized matrix ENDOR line-shape theory. The input includes hyperfine coupling constants for all protons in the proximity of the radical site as well as the pure dipolar interaction for more distant protons, microwave and radio-frequency magnetic field magnitudes, and nuclear and electron spin-lattice and spin-spin relaxation times. Simulated matrix ENDOR lines were tested against experimental line shapes, line widths, and the intensity of the ENDOR response as a function of the radio-frequency magnetic field. The simulated ENDOR response was found to be very sensitive to the value of the nuclear spin-lattice relaxation time, and a value of 0.15 s satisfactorily reproduces the experimental results. The relevant conclusion from this study is that an angularly independent nuclear relaxation mechanism dominates the ENDOR response

  8. Channelling phenomenon in the gamma irradiated Benzo-quinone and other compounds observed under the scanning electron microscope

    International Nuclear Information System (INIS)

    Scanning Electron Microscope (S.E.M.), has been used to examine the gamma irradiated pure crystals of Benzo-quinone and other compounds in the polycrystaline form. After gamma irradiation, shallow lines (channels) were observed on the crystal's surfaces when the crystal layers arrangements are parallel to the photons beam direction. Holes were also observed when those layers of the crystals are in the nonparallel case. The phenomenon has been studied and analysed in connected with the H-atom bonds disruption, and H-atoms migration through the crystal's layers. (author)

  9. Ion transport in Au+ doped/undoped KDP crystals with KI/NaI as additives

    Indian Academy of Sciences (India)

    R Ananda Kumari; R Chandramani

    2003-02-01

    Undoped KDP and KDP crystals containing KI/NaI with/without gold doping were grown by slow evaporation technique. All the grown crystals were -irradiated using 60Co source. Electrical conductivity measurements were carried out on all these crystals perpendicular to the unique direction before and after -irradiation. The present results show that the conductivity of KDP crystals increases with the addition of KI/NaI and with gold doping as well as upon rise in temperature. Computed values of activation energies from the conductivity measurements are given. For all the grown crystals, dielectric constant is measured as a function of frequency.

  10. Liquid Crystals

    Science.gov (United States)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  11. 大口径 DKDP 晶体受激拉曼散射增益系数的测量%Measurement of Raman scattering gain coefficient in large-aperture DKDP crystals irradiated by 351 nm pulses

    Institute of Scientific and Technical Information of China (English)

    韩伟; 魏晓峰; 郑万国; 巩马理; 向勇; 王芳; 周丽丹; 冯斌; 李富全; 赵军普; 郑奎兴; 朱启华

    2016-01-01

    Transverse stimulated Raman scattering (TSRS)gain coefficient in a large aperture 65% deu-terated potassium dihydrogen phosphate (DKDP)is measured at 35 1 nm.The measurement involves the use of an optical fiber sensor system to detect Raman scattering light in the DKDP crystal.A Raman scattering gain coefficient of 0.109 cm/GW is obtained and will be used to set upper limit of the DKDP crystals in our laser fa-cility to avoid the TSRS induced energy loss and laser damage.The effect of bulk damage on growth behavior of TSRS is also examined and it is found that bulk damage has little impact on the TSRS growth.Thus the influ-ence of bulk damage on the measurement of TSRS gain coefficient can be ignored.%大口径 KDP/DKDP 晶体在强紫外光辐照下产生横向受激拉曼散射效应(TSRS),受激放大的拉曼散射光将导致激光能量损失甚至激光损伤,测量 DKDP 晶体 TSRS 增益系数对设置激光装置的运行区间以确保晶体的安全使用非常重要。采用高精度光谱仪探测大口径 DKDP 晶体(氘含量65%)在351 nm 激光辐照下的横向拉曼散射信号,得到了拉曼散射光的增长曲线,拟合得到的拉曼增益系数为0.109 cm/GW。同时,实验结果表明晶体体损伤不影响 TSRS 增长行为,表明晶体体损伤对拉曼增益系数测量结果的影响可以忽略。

  12. Food irradiation. An alternative

    International Nuclear Information System (INIS)

    In order to start a food irradiation program, one needs to perform some tests, such as: local handling problems, consumer acceptance and government licenses. At this point the cost of a special food irradiator can be considered a too high investment. It is proposed that for the irradiation of a few tons of several food items, a commercial irradiator for medical products sterilization be employed. With the use of an ''experimental loop'' and some special positions inside the irradiation chamber, it is possible to irradiate even potatoes and onions, at doses ranging from 100 Gy to 200 Gy. The quantities, depending on the source activity, can be around 300 kg per hour. For doses near 10 kGy, the normal procedure used for sterilization of medical products can be employed, while changing the cycle on the machine. In the case of an experimental loop within a JS-7400 (AECC) irradiator at a dose rate of 20 Gy per minute, around 200 kg of potatoes per hour can be irradiated. The experimental positions inside the chamber have a dose rate of 60 Gy per hour, and the batch capacity is 250 kg, so that 250 kg can be irradiated each 1,5 hour

  13. Irradiation of food

    International Nuclear Information System (INIS)

    A committee has on instructions from the swedish government made an inquiry into the possible effects on health and working environment from irradition of food. In this report, a review is presented on the known positiv and negative effects of food irradiation Costs, availabilty, shelf life and quality of irradiated food are also discussed. According to the report, the production of radiolysis products during irradiation is not easily evaluated. The health risks from irradiation of spices are estimated to be lower than the risks associated with the ethenoxid treatment presently used. (L.E.)

  14. Single- and double energy N{sup +} ion irradiated planar optical waveguides in Er: Tungsten–tellurite oxide glass and sillenite type Bismuth Germanate crystals working up to telecommunications wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Department of Crystal Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Zolnai, Z.; Fried, M.; Lohner, T. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Righini, G.C. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Pelli, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2013-07-15

    Ion implantation proved to be a universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er{sup 3+}-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Fabrication of channel waveguides in such a material via N{sup +} ion implantation was reported recently. Sillenite type Bismuth Germanate (BGO) crystals are good nonlinear optical materials. Parameters of waveguide fabrication in both materials via implantation of MeV-energy N{sup +} ions were optimized. First single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in both materials. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.1 MeV were performed to suppress leaky modes by increasing barrier width. Improvement of waveguide characteristics was found by m-line spectroscopy and spectroscopic ellipsometry.

  15. Photonic crystals

    CERN Document Server

    Busch, Kurt; Wehrspohn, Ralf B; Föll, Helmut

    2006-01-01

    The majority of the contributions in this topically edited book stems from the priority program SPP 1113 ""Photonische Kristalle"" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micr

  16. RADIATION-DAMAGE IN NACL .1. OPTICAL-ABSORPTION EXPERIMENTS ON HEAVILY IRRADIATED SAMPLES

    NARCIS (Netherlands)

    WEERKAMP, JRW; GROOTE, JC; SEINEN, J; DENHARTOG, HW

    1994-01-01

    Results of optical-absorption experiments on heavily irradiated NaCl single crystals are presented. The dose rates were between 4 and 250 Mrad/h; the doses between 1 and 7 Grad. The irradiation temperatures were in the range of 20-150-degrees-C. Because of the intense optical bands, the thickness of

  17. Defects in 700 keV oxygen ion irradiated ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Pal, S. [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700009 (India); Chattopadhyay, S. [Department of Basic Science and Humanities, Calcutta Institute of Engineering and Management, 24/1A Chandi Ghosh Road, Kolkata 700040 (India); Chakrabarti, Mahuya [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Sanyal, D. [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700064 (India); Kumar, P.; Kanjilal, D. [Inter-University Accelerator Centre, P.O. Box 10502, Aruna Asaf Ali Marg, New Delhi 110067 (India); Rakshit, T.; Ray, S.K. [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721302 (India); Jana, D., E-mail: djphy@caluniv.ac.in [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009 (India)

    2013-09-15

    Highlights: •ZnO samples (both poly and single crystal) have been irradiated with 700 keV O ions. •Non-monotonic variation of room temperature sheet resistance has been observed. •NBE PL emission is largely reduced due to O ion irradiation. •Absorption spectrum of irradiated ZnO crystal show a sub-band gap absorption. •Oxygen irradiation generated new absorption band in ZnO is at 3.05 eV. -- Abstract: It is well known that energetic oxygen ions induce heavy crystalline disorder in ZnO, however, systematic study on this regard is very much limited. Here, we present photoluminescence (PL), optical absorption and sheet resistance measurements on poly and single crystalline ZnO samples irradiated with 700 keV O ions. Results have been compared with the effects of 1.2 MeV Ar irradiation on similar ZnO target. Colour change of the samples with increasing O irradiation fluence has also been noted. Non-monotonic variation of room temperature sheet resistance with the increase of fluence has been observed for polycrystalline ZnO. Such an outcome has been understood as point defects transforming to bigger size clusters. Near band edge (NBE) PL emission is largely reduced due to O ion irradiation. However, at 10 K NBE emission can be observed for irradiated polycrystalline samples. Irradiated ZnO single crystal does not show any band to band transition even at 10 K. It is evident that dynamic recovery of defects is more effective in polycrystalline samples. Ultraviolet–visible absorption spectrum of the irradiated ZnO crystal show pronounced sub-band gap absorption. Oxygen irradiation generated new absorption band in ZnO is at 3.05 eV. In the light of earlier reports, this particular band can be ascribed to absorption by neutral oxygen vacancy defects.

  18. Modification of Hydroxyapatite Crystal Using IR Laser

    CERN Document Server

    Satoh, Saburoh; Goto, M; Guan, W; Hayashi, N; Ihara, S; Yamabe, C; Yamaguchi, Y

    2004-01-01

    The first application of laser technology to dentistry was for the removal of caries. However, reports of laser application on improvement of dental surface were emerged, much attention has been focused on the laser’s potential to enhance enamel’s hardness and resistance to acid. Most of the previous reports concentrated on the photo issue interaction. Few research has pursued the photochemical phenomenon occurred during laser irradiation on biological tissues. In order to find a creative method to remineralize the dissociating enamel and exposed coronal of dentine, the authors developed a novel procedure during laser irradiation. Slice of sound molar and artificial HAp pellet were irradiated separately, with CO2 laser under different laser parameters. Tow series of samples covered with saturation calcium ion solution were irradiated separately. To investigate the crystal morphology, XRD pattern were surveyed. The comparison of each cases show that the chemical coating affected the ablation process evidentl...

  19. Facts about food irradiation: Chemical changes in irradiated foods

    International Nuclear Information System (INIS)

    This fact sheet addresses the safety of irradiated food. The irradiation process produces very little chemical change in food, and laboratory experiments have shown no harmful effects in animals fed with irradiated milk powder. 3 refs

  20. The Influence of Radiation Damage on the Deflection of High-Energy Beams in Bent Silicon Crystals

    CERN Document Server

    Biino, C; Doble, Niels T; Elsener, K; Gatignon, L; Grafström, P; Mikkelsen, U; Kirsebom, K; Møller, S P; Uggerhøj, Erik; Worm, T

    1996-01-01

    Experimental results obtained for deflection of 450 GeV/c protons channeling along the {111} planes in a bent, strongly irradiated silicon crystal are presented. A comparison between the deflection efficiencies in irradiated areas and non-irradiated areas in the crystal shows that irradiation by 2.4 · 1020 protons/cm2 leads to a reduction of around 30 % in deflection efficiency. As a consequence, beam-splitting and extraction from an accelerator by means of a bent crystal are feasible solutions at high energies even for intense beams and during long periods.

  1. Present status of studies on special irradiation of materials

    International Nuclear Information System (INIS)

    The study on radiation damage under severe irradiation condition has been developed in connection with the materials for fusion reactors. This paper is a report of a study meeting concerning the radiation damage. The free migration of interstitial atoms is discussed on the basis of the measurement of internal friction. The point defects of pure iron irradiated by reactor neutrons at low temperature, the 304 stainless steel and FeSiB amorphous alloy irradiated by He ions at room temperature were studied by the measurement of Moessbauer effect. The study on radiation defect by X-ray diffuse scattering is reported. Discussion on the lattice defects in insulating crystals is presented. Sputtering by high density electron excitation, and the behavior of T, D and H atoms in low temperature solids are discussed. Other topics presented in this report are neutron irradiated FCC metal crystals, the radiation effects on cadmium halide crystals and impurity metal ions, and the effects on the properties of semi-conductors by irradiation. The reports on the joint meeting of International Cryogenic Material Conference and Cryogenic Engineering Conference of U.S.A., and the IAEA meeting on the nuclear data for radiation damage and safety are presented. (Kato, T.)

  2. Irradiation application of electronic beam accelerator NBL-1010

    International Nuclear Information System (INIS)

    The application of electronic beam accelerator NBL-1010 in semiconductor denature, gem coloring, waster treatment, chemical synthesize of radiation, degrading of agricultural waster, sterilization of one-off medical treatment, sterilization of herbs, food preservation, crystal coloring and preservation of commodities was studied for its effects equaled with cobalt gamma irradiation

  3. Preparation of ZnO nanocrystals via ultrasonic irradiation

    DEFF Research Database (Denmark)

    Qian, D.; Jiang, Jianzhong; Hansen, P. L.

    2003-01-01

    A simple and rapid process has been developed for the preparation of nanometer-sized ZnO crystals via ultrasonic irradiation, by which pure ZnO nanocrystals with an average size of 6 nm and narrow size distribution can be synthesized in a short time and without using any solvents...... for the precipitation of ZnO....

  4. Materials modified by irradiation

    International Nuclear Information System (INIS)

    Application of radiation in pharmaceutical sciences and cosmetology, polymer materials, food industry, environment, health camre products and packing production is described. Nanotechnology is described more detailed, because it is less known as irradiation using technology. Economic influence of the irradiation on the materials value addition is shown

  5. Food irradiation control

    International Nuclear Information System (INIS)

    A brief review is given of the control and monitoring of food irradiation with particular emphasis on the UK situation. After describing legal aspects, various applications of food irradiation in different countries are listed. Other topics discussed include code of practice for general control for both gamma radiation and electron beam facilities, dose specification, depth dose distribution and dosimetry. (U.K.)

  6. Phase stability under irradiation

    International Nuclear Information System (INIS)

    Experimental evidences of radiation induced instability are described then it is shown what theoretical approaches are relevant. Radiation induced segregation and precipitation in alloys irradiated at constant chemical composition, precipitate re-solution, order-disorder transition under irradiation and amorphization are examined

  7. Photonic crystals principles and applications

    CERN Document Server

    Gong, Qihuang

    2013-01-01

    IntroductionPrimary Properties of Photonic CrystalsFabrication of Photonic CrystalsPhotonic Crystal All-Optical SwitchingTunable Photonic Crystal FilterPhotonic Crystal LaserPhotonic Crystal Logic DevicesPhotonic Crystal Sensors

  8. Irradiation of goods

    International Nuclear Information System (INIS)

    Mechanical handling apparatus is adapted to handle goods, such as boxed fruit, during a process of irradiation, in palletized form. Palletized goods are loaded onto wheeled vehicles in a loading zone. Four vehicles are wheeled on a track into an irradiation zone via a door in a concrete shield. The vehicles are arranged in orthogonal relationship around a source of square section. Turntables are positioned at corners of the square shaped rail truck around the source selectively to turn the vehicles to align then with track sections. Mechanical manipulating devices are positioned in the track sections opposed to sides of the source. During irradiation, the vehicles and their palletized goods are cylically moved toward the source to offer first sides of the goods for irradiation and are retraced from the source and are pivoted through 900 to persent succeeding sides of the goods for irradiation

  9. Issues in food irradiation

    International Nuclear Information System (INIS)

    This discussion paper has two goals: first, to raise public awareness of food irradiation, an emerging technology in which Canada has the potential to build a new industry, mainly oriented to promising overseas markets; and second, to help build consensus among government and private sector decision makers about what has to be done to realize the domestic and export potential. The following pages discuss the potential of food irradiation; indicate how food is irradiated; outline the uses of food irradiation; examine questions of the safety of the equipment and both the safety and nutritional value of irradiated food; look at international commercial developments; assess the current and emerging domestic scene; and finally, draw some conclusions and offer suggestions for action

  10. Neutron irradiation influence on magnesium aluminium spinel inversion

    Science.gov (United States)

    Skvortsova, V.; Mironova-Ulmane, N.; Ulmanis, U.

    2002-05-01

    Grown by the Verneuil method MgO · nAl 2O 3 single crystals and natural spinel crystal have been studied using X-ray diffraction and photoluminescence spectra. The fast neutron irradiation of magnesium aluminium spinel leads to the lattice parameter decrease. The bond lengths of Mg-O and Al-O vary with the u-parameter and the lattice parameter. On the other hand, the bond lengths are related with the inversion parameter. Using changes of the lattice parameter during irradiation we have calculated the inversion parameter, which is 15-20%. In the luminescence spectra, the fast neutron radiation (fluence 10 16 cm -2) produces an increase in the intensity ratio of the N- to R-lines by 5-20%. Taking into account that intensity of the N-lines is closely associated with the inversion parameter, it is possible to state that the neutron irradiation causes the increasing of the spinel inversion.

  11. Neutron irradiation influence on magnesium aluminium spinel inversion

    International Nuclear Information System (INIS)

    Grown by the Verneuil method MgO · nAl2O3 single crystals and natural spinel crystal have been studied using X-ray diffraction and photoluminescence spectra. The fast neutron irradiation of magnesium aluminium spinel leads to the lattice parameter decrease. The bond lengths of Mg-O and Al-O vary with the u-parameter and the lattice parameter. On the other hand, the bond lengths are related with the inversion parameter. Using changes of the lattice parameter during irradiation we have calculated the inversion parameter, which is 15-20%. In the luminescence spectra, the fast neutron radiation (fluence 1016 cm-2) produces an increase in the intensity ratio of the N- to R-lines by 5-20%. Taking into account that intensity of the N-lines is closely associated with the inversion parameter, it is possible to state that the neutron irradiation causes the increasing of the spinel inversion

  12. Doping of monocrystalline silicon with phosphorus by means of neutron irradiation at the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    The first neutron irradiation experiments with monocrystal silicon in the IEA-R1 research reactor of IPEN are related. The silicon is irradiated with phosphorus producing a N type semiconductor with a very small resistivity variation throughout the crystal volume. The neutrons induce nuclear reactions in Si-30 isotope and these atoms are then transformed in to phosphorous atoms. This process is known as Neutron Transmutation Doping. In order to irradiate the silicon crystals in the reactor, a specific device has been constructed, and it permits the irradiation of up to 2.5'' diameter monocrystals. (author)

  13. A study on the microstructural parameters of 550 keV electron irradiated Lexan polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Hareesh, K.; Pramod, R.; Petwal, V. C.; Dwivedi, Jishnu; Sangappa; Sanjeev, Ganesh [Microtron Centre, Department of Physics, Mangalore University, Mangalagangotri-574199 (India); PSIA Division, Raja Rammana Centre for Advanced Technology, Indore-452013 (India); Department of Physics, Mangalore University, Mangalagangotri-574199 (India); Microtron Centre, Department of Physics, Mangalore University, Mangalagangotri-574199 (India)

    2012-06-05

    Lexan polymer films irradiated with 550 keV Electron Beam (EB) were characterized using Wide Angle Xray Scattering (WAXS) data to study the microstructural parameters. The crystal imperfection parameters like crystal size , lattice strain (g in %) and enthalpy ({alpha}) have been determined by Line Profile Analysis (LPA) using Fourier method of Warren.

  14. Food irradiation 2009

    International Nuclear Information System (INIS)

    Food irradiation principles; its main applications, advantages and limitations; wholesomeness, present activities at Ezeiza Atomic Centre; research coordinated by the International Atomic Energy Agency; capacity building; and some aspects on national and international regulations, standards and commercialization are briefly described. At present 56 countries authorize the consumption of varied irradiated foods; trade is performed in 32 countries, with about 200 irradiation facilities. Argentina pioneered nuclear energy knowledge and applications in Latin America, food irradiation included. A steady growth of food industrial volumes treated in two gamma facilities can be observed. Food industry and producers show interest towards new facilities construction. However, a 15 years standstill in incorporating new approvals in the Argentine Alimentary Code, in spite of consecutive request performed either by CNEA or some food industries restricts, a wider industrial implementation, which constitute a drawback to future regional commercialization in areas such as MERCOSUR, where Brazil since 2000 freely authorize food irradiation. Besides, important chances in international trade with developed countries will be missed, like the high fresh fruits and vegetables requirements United States has in counter-season, leading to convenient sale prices. The Argentine food irradiation facilities have been designed and built in the country. Argentina produces Cobalt-60. These capacities, unusual in the world and particularly in Latin America, should be protected and enhanced. Being the irradiation facilities scarce and concentrated nearby Buenos Aires city, the possibilities of commercial application and even research and development are strongly limited for most of the country regions. (author)

  15. Economics of Food Irradiation

    International Nuclear Information System (INIS)

    This paper reviews and evaluates current developments relating to the prospects for commercial food irradiation within the United States. The study, recognizes that one cannot generalize about the prospects for food irradiation either by process or product. Both technical and economic potentials vary widely for different food products subjected to the same or different types of treatment. Food irradiation processes and products are evaluated. Recent studies concerned with the economics of food irradiation are briefly reviewed and evaluated and findings and conclusions relating to economic potentials summarized. Industry reactions to a proposed pilot plant meat irradiator, sponsored by the U.S. Army and U.S. AEC and coordinated by the Department of Commerce, are discussed and factors which will determine the future direction, extent and commercial success of food preservation by ionizing irradiation are analysed. Developments in all these categories are essential for success, and if not achieved would be limiting factors. Nevertheless, the successful and profitable marketing of irradiated foods must finally be dependent upon customer acceptance and favourable cost versus benefit relations. Benefits will include lower costs and higher profits through spoilage reductions, extensions of shelf-life and shipping distances, market expansions, and quality Improvements. Ultimately, the economic success of this new technology must depend upon the clear demonstration that these benefits will exceed the additional processing costs by a margin sufficient to induce the necessary private investments and willingness to accept related risks in this new field. (author)

  16. Crystals channel high-energy beams in the LHC

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    Bent crystals can be used to deflect particle beams, as suggested by E. Tsyganov in 1976. Experimental demonstrations have been carried out for four decades in various laboratories worldwide. In recent tests, a bent crystal inserted into the LHC beam halo successfully channelled and deflected 6.5 TeV protons into an absorber, with reduced secondary irradiation.    Quasimosaic crystal for the LHC (developed by PNPI). Bent crystal technology was introduced at CERN and further developed for the LHC by the UA9 Collaboration. For about ten years, experts from CERN, INFN (Italy), Imperial College (UK), LAL (France), and PNPI, IHEP and JINR (Russia) have been investigating the advantages of using bent crystals in the collimation systems of high-energy hadron colliders. A bent crystal replacing the primary collimator can deflect the incoming halo deeply inside the secondary collimators, improving their absorption efficiency. “The bent crystals we have just tested at the world-record en...

  17. A preliminary investigation of cell growth after irradiation using a modulated x-ray intensity pattern

    Science.gov (United States)

    Bromley, Regina; Davey, Ross; Oliver, Lyn; Harvie, Rozelle; Baldock, Clive

    2006-08-01

    In this study we have investigated a spatial distribution of cell growth after their irradiation using a modulated x-ray intensity pattern. An A549 human non-small cell lung cancer cell line was grown in a 6-well culture. Two of the wells were the unirradiated control wells, whilst another two wells were irradiated with a modulated x-ray intensity pattern and the third two wells were uniformly irradiated. A number of plates were incubated for various times after irradiation and stained with crystal violet. The spatial distribution of the stained cells within each well was determined by measurement of the crystal violet optical density at multiple positions in the plate using a microplate photospectrometer. The crystal violet optical density for a range of cell densities was measured for the unirradiated well and this correlated with cell viability as determined by the MTT cell viability assay. An exponential dose response curve was measured for A549 cells from the average crystal violet optical density in the uniformly irradiated well up to a dose of 30 Gy. By measuring the crystal violet optical density distribution within a well the spatial distribution of cell growth after irradiation with a modulated x-ray intensity pattern can be plotted. This method can be used for in vitro investigation into the changes in radiation response associated with treatment using intensity modulated radiation therapy (IMRT).

  18. A preliminary investigation of cell growth after irradiation using a modulated x-ray intensity pattern

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Regina [Northern Sydney Cancer Centre, Radiation Oncology, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Davey, Ross [Institute of Medical Physics, School of Physics, Sydney University, NSW 2006 (Australia); Oliver, Lyn [Northern Sydney Cancer Centre, Radiation Oncology, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Harvie, Rozelle [Institute of Medical Physics, School of Physics, Sydney University, NSW 2006 (Australia); Baldock, Clive [Bill Walsh Cancer Research Laboratories, Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)

    2006-08-07

    In this study we have investigated a spatial distribution of cell growth after their irradiation using a modulated x-ray intensity pattern. An A549 human non-small cell lung cancer cell line was grown in a 6-well culture. Two of the wells were the unirradiated control wells, whilst another two wells were irradiated with a modulated x-ray intensity pattern and the third two wells were uniformly irradiated. A number of plates were incubated for various times after irradiation and stained with crystal violet. The spatial distribution of the stained cells within each well was determined by measurement of the crystal violet optical density at multiple positions in the plate using a microplate photospectrometer. The crystal violet optical density for a range of cell densities was measured for the unirradiated well and this correlated with cell viability as determined by the MTT cell viability assay. An exponential dose response curve was measured for A549 cells from the average crystal violet optical density in the uniformly irradiated well up to a dose of 30 Gy. By measuring the crystal violet optical density distribution within a well the spatial distribution of cell growth after irradiation with a modulated x-ray intensity pattern can be plotted. This method can be used for in vitro investigation into the changes in radiation response associated with treatment using intensity modulated radiation therapy (IMRT)

  19. Irradiation in action

    International Nuclear Information System (INIS)

    The extent to which food irradiation takes place and the regulations governing the process in America, Brazil, Chile, and European countries is reported. The development and operation of a pilot plant built in Holland to test the application of the process to the sterilization of medical supplies and certain foods and the setting up and operation, by Gammester, of a special food irradiation plant in 1982, is described. In this plant 36 foods, mainly dry ingredients such as spices, dried vegetables, egg powder and blood proteins are irradiated. Research looks promising for the future. The implementation of international legal acceptance and more public information is stressed. (U.K.)

  20. Alaskan Commodities Irradiation Project

    International Nuclear Information System (INIS)

    The ninety-ninth US Congress commissioned a six-state food irradiation research and development program to evaluate the commercial potential of this technology. Hawaii, Washington, Iowa, Oklahoma and Florida as well as Alaska have participated in the national program; various food products including fishery products, red meats, tropical and citrus fruits and vegetables have been studied. The purpose of the Alaskan study was to review and evaluate those factors related to the technical and economic feasibility of an irradiator in Alaska. This options analysis study will serve as a basis for determining the state's further involvement in the development of food irradiation technology. 40 refs., 50 figs., 53 tabs

  1. Pendellösung effect in photonic crystals

    Science.gov (United States)

    Savo, S.; di Gennaro, E.; Miletto, C.; Andreone, A.; Dardano, P.; Moretti, L.; Mocella, V.

    2008-06-01

    At the exit surface of a photonic crystal, the intensity of the diffracted wave can be periodically modulated, showing a maximum in the "positive" (forward diffracted) or in the "negative" (diffracted) direction, depending on the slab thickness. This thickness dependence is a direct result of the so-called Pendellosung phenomenon, consisting of the periodic exchange inside the crystal of the energy between direct and diffracted beams. We report the experimental observation of this effect in the microwave region at about 14 GHz by irradiating 2D photonic crystal slabs of different thickness and detecting the intensity distribution of the electromagnetic field at the exit surface and inside the crystal itself.

  2. The influence on the crystallization of Ag doped Gd2 O3-MoO3-B2 O3 glass induced by 250 kHz,800 nm femtosecond laser irradiation%Ag掺杂对高重复频率飞秒激光诱导Gd2 O3-MoO3-B2 O3玻璃析晶的影响

    Institute of Scientific and Technical Information of China (English)

    韩咏梅; 易传祥; 刘丽萍; 张子辰; 钟敏建; 马洪良

    2014-01-01

    We report the influence of the Ag doping on the crystallization ofβ′-Gd2 (MoO4 )3 crystal in the Gd2 O3-MoO3-B2 O3 glasses induced by femtosecond laser irradiation.The fs laser pulses were focused on the surface of Ag-doped Gd2 O3-MoO3-B2 O3 glasses and non-doped Gd2 O3-MoO3-B2 O3 glasses,and the effect of silver on crystallization of b¢-Gd2 (MoO4 )3 crystals in glasses were analyzed.The results indica-ted that the silver greatly enhanced the crystallization of the glass during the fs pulses irradiation.The responsible mechanism for the observed phenomenon can be explained as follows:The glass oxygen bonds are broken by mlti-photon absorption during the femtosecond irradiation,which results in the non-bridging oxygen holes and free electrons.The Ag+ ions capture free electrons to form Ag atoms. Ag atoms move and aggregate to form nanoclaster owning to the thermal driving.Ag nanoclusters act as nuclear and greatly promote the crystallization of the glass.%将800 nm高重复频率250 kHz的飞秒激光分别聚焦到掺Ag和没有掺Ag的Gd2 O3-MoO3-B2 O3玻璃表面,研究掺 Ag对飞秒激光诱导析晶的影响。对激光辐照的区域显微拉曼分析发现对于没掺 Ag 玻璃,诱导玻璃析晶需要的激光功率和辐照时间比掺了 Ag的玻璃要大要长,这说明 Ag的掺入促进了玻璃的析晶。其机理可能为飞秒激光的多光子吸收效应,导致玻璃基质中桥氧键断裂,产生非桥氧空穴和自由电子,玻璃中的 Ag离子捕获电离出来的电子被还原成 Ag 原子,Ag 原子在热动力的驱动下移动聚集形成银纳米颗粒,形成的银纳米团簇作为核促进了钼酸盐玻璃的析晶。

  3. Tailoring crystallinity and configuration of silica nanotubes by electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Tomitsugu, E-mail: taguchi.tomitsugu@jaea.go.jp; Yamaguchi, Kenji

    2015-05-01

    Highlights: •Single-crystal SiO{sub 2} nanotubes were successfully synthesized for the first time. •The single-crystal SiO{sub 2} was α-crystobalite. •Desired area of single-crystal nanotube can be changed to amorphous by electron irradiation. •The configuration of nanotube can be controlled using the focused electron irradiation technique. -- Abstract: SiO{sub 2} nanotubes show potential in applications such as nanoscale electronic and optical devices, bioseparation, biocatalysis, and nanomedicine. As-grown SiO{sub 2} nanotubes in the previous studies always have an amorphous wall, and here we demonstrate the successful synthesis of single-crystal nanotubes for the first time by the heat treatment of SiC nanotubes at 1300 °C for 10 h under low-vacuum conditions. According to TEM observations, the single-crystal SiO{sub 2} was α-cristobalite. We also demonstrate that single-crystal SiO{sub 2} nanotubes can be transformed into amorphous SiO{sub 2} nanotubes by electron beam irradiation. Moreover, we synthesized a crystalline/amorphous SiO{sub 2} composite nanotube, in which crystalline and amorphous SiO{sub 2} coexisted in different localized regions. In addition, for biomedical applications such as drug delivery systems, controlling the configuration of the open end, the diameter, and capsulation of SiO{sub 2} nanotubes is crucial. We can also obturate, capsulate, and cut a SiO{sub 2} nanotube, as well as modify the inner diameter of the nanotube at a specific, nanometer-sized region using the focused electron beam irradiation technique.

  4. Facts about food irradiation: Irradiated foods and the consumer

    International Nuclear Information System (INIS)

    This fact sheet discusses market testing of irradiate food, consumer response to irradiated products has always been positive, and in some countries commercial quantities of some irradiated food items have been sold on a regular basis. Consumers have shown no reluctance to buy irradiated food products. 4 refs

  5. Further results on cerium fluoride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.; Auffray, E.; Aziz, T.; Baccaro, S.; Banerjee, S.; Bareyre, P.; Barone, L.E.; Borgia, B.; Boutet, D.; Burq, J.P.; Chemarin, M.; Chipaux, R.; Dafinei, I.; D' Atanasio, P.; De Notaristefani, F.; Dezillie, B.; Dujardin, C.; Dutta, S.; Faure, J.L.; Fay, J.; Ferrere, D.; Francescangeli, O.; Fuchs, B.A.; Ganguli, S.N.; Gillespie, G.; Goyot, M.; Gupta, S.K.; Gurtu, A.; Heck, J.; Herve, A.; Hillemanns, H.; Holdener, F.; Ille, B.; Joensson, L.; Kierstead, J.; Krenz, W.; Kway, W.; Le Goff, J.M.; Lebeau, M.; Lebrun, P.; Lecoq, P.; Lemoigne, Y.; Loomis, G.; Lubelsmeyer, K.; Madjar, N.; Majni, G.; El Mamouni, H.; Mangla, S.; Mares, J.A.; Martin, J.P.; Mattioli, M.; Mauger, G.J.; Mazumdar, K.; Mengucci, P.; Merlo, J.P.; Moine, B.; Nikl, N.; Pansart, J.P.; Pedrini, C.; Poinsignon, J.; Polak, K.; Raghavan, R.; Rebourgeard, P.; Rinaldi, D.; Rosa, J.; Rosowsky, A.; Sahuc, P.; Samsonov, V.; Sarkar, S.; Schegelski, V.; Schmitz, D.; Schneegans, M.; Seliverstov, D.; Stoll, S.; Sudhakar, K.; Sven; Crystal Clear Collaboration

    1993-08-15

    A systematic investigation of the properties of cerium fluoride monocrystals has been performed by the 'Crystal Clear' collaboration in view of a possible use of such crystals for the construction of high precision electromagnetic calorimeters for the future generation of high luminosity accelerators. A large sample of different crystals grown by several producers has been studied. The spectroscopic characteristics, the transmission, luminescence and excitation spectra and the decay time curves are analysed. The light yield of the different crystals is measured with photomultipliers and Si photodiodes and compared to reference standards like BGO and NaI(Tl). The radiation damage behaviour is then presented for [gamma] and neutron irradiations, at different doses and dose rates, including thermal and optical bleaching. (orig.)

  6. Thermal annealing in neutron-irradiated tribromobenzenes

    DEFF Research Database (Denmark)

    Siekierska, K.E.; Halpern, A.; Maddock, A. G.

    1968-01-01

    The distribution of 82Br among various products in neutron-irradiated isomers of tribromobenzene has been investigated, and the effect of thermal annealing examined. Reversed-phase partition chromatography was employed for the determination of radioactive organic products, and atomic bromine...... in the crystals was estimated by means of the 1,2-dibromoethylene exchange technique. The results suggest that, as a consequence of nuclear events, quite a number of different reactions occur whereas the principal annealing reaction is a recombination of atomic bromine with a dibromophenyl radical....

  7. Gamma irradiation of corn starches with different amylose-to-amylopectin ratio

    International Nuclear Information System (INIS)

    Corn starches with different amylose-to-amylopectin ratio (waxy, normal, Hylon V, and Hylon VII) were treated with five doses of gamma irradiation (1, 5, 10, 25, and 50 kGy). The effects of gamma irradiation on the physico-chemical properties of starch samples were investigated. Waxy samples showed an increase of amylose-like fractions when irradiated at 10 kGy. The reduction in apparent amylose content increased with amylose content when underwent irradiation at 25 and 50 kGy. Low amylose starches lost their pasting ability when irradiated at 25 and 50 kGy. Results from thermal behavior and pasting profile suggested that low level of cross-linking occurred in Hylon VII samples irradiated at 5 kGy. Severe reduction in pasting properties, gelatinization temperatures and relative crystallinity with increasing irradiation intensity revealed that waxy samples were affected more by gamma irradiation; this also indicated amylopectin was the starch fraction most affected by gamma irradiation. Alteration level was portrayed differently when different kind of physico-chemical properties were investigated, in which the pasting properties and crystallinity of starches were more immensely influenced by gamma irradiation while thermal behavior was less affected. Despite the irradiation level, the morphology and crystal pattern of starch granules were found remain unchanged by irradiation. (author)

  8. Innovations in irradiator design

    International Nuclear Information System (INIS)

    In the past few years industry has demanded certain changes in irradiator design to meet the needs of the medical manufacturers, and as well service the requirements of new applications for irradiation. The medical manufacturers have, in certain cases, been tending toward larger capacity machines with higher efficiencies to take advantage of economies of scale. Other parts of the industry have been demanding a truly ''Multipurpose'' facility which can process many varied types of products. Coupled with these machine changes there has been an increase in demand for more comprehensive logging of the irradiation process. This has spawned development of several styles of computer monitoring, control and logging systems. This paper will discuss these topics in more detail in order to give some insight into the ''state of the art'' within the irradiator design industry. (author)

  9. Packing for food irradiation

    International Nuclear Information System (INIS)

    Joint FAO/IAEA/WHO Expert Committee approved the use of radiation treatment of foods. Nowadays food packaging are mostly made of plastics, natural or synthetic, therefore effect of irradiation on these materials is crucial for packing engineering for food irradiation technology. By selecting the right polymer materials for food packaging it can be ensured that the critical elements of material and product performance are not compromised. When packaging materials are in contact with food at the time of irradiation that regulatory approvals sometimes apply. The review of the R-and-D and technical papers regarding material selection, testing and approval is presented in the report. The most information come from the USA where this subject is well elaborated, the International Atomic Energy Agency (IAEA) reports are reviewed as well. The report can be useful for scientists and food irradiation plants operators. (author)

  10. Food irradiation : ACA inquiry

    International Nuclear Information System (INIS)

    The executive summary of the report on food irradiation by the Australian Consumers' Association is presented. The key issues which emerged during the inquiry are summarised including safety controls, wholesomeness, the environment, consumer rights and economic considerations

  11. Sterilization by gamma irradiation

    International Nuclear Information System (INIS)

    Since 1980 the National Institute of Nuclear Research counts with an Industrial Gamma Irradiator, for the sterilization of raw materials and finished products. Through several means has been promoted the use of this technology as alternative to conventional methods of sterilization as well as steam treatment and ethylene oxide. As a result of the made promotion this irradiator has come to its saturation limit being the sterilization irradiation one of the main services that National Institute of Nuclear Research offers to producer enterprises of disposable materials of medical use also of raw materials for the elaboration of cosmetic products and pharmaceuticals as well as dehydrated foods. It is presented the trend to the sterilization service by irradiation showed by the compilation data in a survey made by potential customers. (Author)

  12. Economics of food irradiation.

    Science.gov (United States)

    Deitch, J

    1982-01-01

    This article examines the cost competitiveness of the food irradiation process. An analysis of the principal factors--the product, physical plant, irradiation source, and financing--that impact on cost is made. Equations are developed and used to calculate the size of the source for planned product throughput, efficiency factors, power requirements, and operating costs of sources, radionuclides, and accelerators. Methods of financing and capital investment are discussed. A series of tables show cost breakdowns of sources, buildings, equipment, and essential support facilities for both a cobalt-60 and a 10-MeV electron accelerator facility. Additional tables present irradiation costs as functions of a number of parameters--power input, source size, dose, and hours of annual operation. The use of the numbers in the tables are explained by examples of calculations of the irradiation costs for disinfestation of grains and radicidation of feed. PMID:6759046

  13. Proton irradiation of EMCCDs

    OpenAIRE

    Smith, DR; Ingley, R.; Holland, AD

    2006-01-01

    This paper describes the irradiation of 95 electron multiplication charge coupled devices (EMCCDs) at the Paul Scherrer Institut (PSI) in Switzerland, to investigate the effects of proton irradiation on the operational characteristics of CCDs featuring electron multiplication technology for space use. This work was carried out in support of the CCD development for the radial velocity spectrometer (RVS) instrument of the European Space Agency's cornerstone Gaia mission. Previous proton irradia...

  14. Fully portable blood irradiator

    International Nuclear Information System (INIS)

    A fully portable blood irradiator was developed using the beta emitter thulium-170 as the radiation source and vitreous carbon as the body of the irradiator, matrix for isotope encapsulation, and blood interface material. These units were placed in exteriorized arteriovenous shunts in goats, sheep, and dogs and the effects on circulating lymphocytes and on skin allograft retention times measured. The present work extends these studies by establishing baseline data for skin graft rejection times in untreated animals

  15. Food irradiation in Malaysia

    International Nuclear Information System (INIS)

    Food irradiation has recently been visited as a technology that can contribute to the solution of problems associated with food preservation of Malaysia's agriculture produce and products thereby improving the economic status of the rural sector. However, the history of food irradiation in Malaysia is very recent. Research carried out on food irradiation only began in 1974 as a result of the installation of a 60Co facility (initially 10,000 Ci) at the National University of Malaysia. Since its installation several studies have been carried out pertaining to the food irradiation. Presently its development has been slow. Research in this area has been confined to laboratory scale and purely academic. This limitation is due to a number of reasons, among others are: a) limited number of facilities; b) lack of expertise to conduct its research; c) other preservation methods can be improved with lower capital output. An important step towards its development was made when Malaysia actively participated in the RCA/IAEA food irradiation project, viz. the irradiation of pepper which was carried out at the National University of Malaysia in the 80's. As a result of this venture, research and development activities in food irradiation have been geared toward semi-plot scale with the view ot commercialization in the future. In 1982, a group of researchers was formed to conduct feasibility studies using irradiation techniques in trying to overcome several problems associated with our local paddy and rice. Another group is being organized by the National University of Malaysia to look into the problems associated with the preservation of frozen shrimps. (author)

  16. Processing of diamond by laser beam irradiation

    Science.gov (United States)

    Yoshikawa, Masanori; Hirata, Atsushi

    1998-10-01

    YAG and ArF excimer laser beams, of which wavelengths are 1.06 micrometers and 193 nm respectively, have been applied to processing of a variety of diamonds. Cutting and smoothing of natural, CVD and sintered diamonds have been performed. CVD diamond films were prepared by arc discharge plasma jet CVD and microwave plasma CVD, and sintered diamonds contain metallic or ceramic binder have been used. Fundamental removal processes of diamond with YAG and ArF excimer laser have been investigated using natural single crystal and CVD diamonds in various atmospheres changing laser irradiation conditions such as average power, energy density and pulse repetition rates. Cutting of natural and CVD diamonds with YAG laser proceeds at higher peal power that occurs at lower pulse repetition rates. Smooth surfaces are obtained by excimer laser irradiation at the incident angle of 80 percent. In the cases of the processing with YAG laser, the effect of local heating by laser beam irradiation mainly assists the diamond processing, and diamond appears to be removed after graphitization and oxidization following vaporization in the atmosphere contains oxygen. The temperature measurement was carried out at backside of irradiation surface, and increase of temperature when YAG laser beam was irradiated was larger than that when excimer laser was irradiated. On the contrary, the detection of C, C2, C+, O2 and CO from the emission at the irradiation area with ArF excimer laser beam suggest that processing partly proceeds by the separation of carbon atoms from the surface of diamond after braking bonds between carbon atoms caused by laser beam. Cutting of sintered diamond with metallic binder was difficult because metallic binder remains in the groove while ceramic binder was easily removed. Processing technique using laser beams has been applied to surface planing, chip preparation and edge formation of CVD diamond and curved surface formation on sintered diamond. Surface planing was

  17. Total lymphoid irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, D.E.; Ferguson, R.M.; Simmons, R.L.; Kim, T.H.; Slavin, S.; Najarian, J.S.

    1983-05-01

    Total lymphoid irradiation by itself can produce sufficient immunosuppression to prolong the survival of a variety of organ allografts in experimental animals. The degree of prolongation is dose-dependent and is limited by the toxicity that occurs with higher doses. Total lymphoid irradiation is more effective before transplantation than after, but when used after transplantation can be combined with pharmacologic immunosuppression to achieve a positive effect. In some animal models, total lymphoid irradiation induces an environment in which fully allogeneic bone marrow will engraft and induce permanent chimerism in the recipients who are then tolerant to organ allografts from the donor strain. If total lymphoid irradiation is ever to have clinical applicability on a large scale, it would seem that it would have to be under circumstances in which tolerance can be induced. However, in some animal models graft-versus-host disease occurs following bone marrow transplantation, and methods to obviate its occurrence probably will be needed if this approach is to be applied clinically. In recent years, patient and graft survival rates in renal allograft recipients treated with conventional immunosuppression have improved considerably, and thus the impetus to utilize total lymphoid irradiation for its immunosuppressive effect alone is less compelling. The future of total lymphoid irradiation probably lies in devising protocols in which maintenance immunosuppression can be eliminated, or nearly eliminated, altogether. Such protocols are effective in rodents. Whether they can be applied to clinical transplantation remains to be seen.

  18. A commercial gamma-ray irradiation plant in Japan

    International Nuclear Information System (INIS)

    In 1973, a commercial gamma-ray irradiation plant was constructed in Takasaki, about 100 km north of Tokyo. The plant has been used for both production of irradiated commercial products and irradiation services. The irradiation services are being made available for sterilization of both medical appliances such as disposable medical syringes, catheters, surgical sutures, and sterilization of feed stuffs for animals. Treatment of plastic materials and colouring of both crystals and glass wares are also undertaken. This facility can accommodate 600 kCi of 60Co and has a monthly treating capacity of 12,000 packages ( a standard carton of 340 mm x 400 mm x 500 mm) at an irradiation dose of 1 Mrad/hr. A receiving port for packages is on the second floor and the outlet of the irradiated packages on the first floor, with three lines of connecting loop conveyors between them, and the irradiation compartment in the center section. The space arrangement of the facility is well designed and gravity can be utilized for the transportation of the packages. Polymer impregnated coral is put on the market for ornamental building material on an order contract basis. (author)

  19. low temperature irradiation effects in iron-alloys and ceramics

    International Nuclear Information System (INIS)

    Electron beam irradiation at 77K and neutron irradiation at 20K were carried out on Fe-Cr and Fe-Cr-Ni alloys and ZnO and graphite system ceramics, and by measuring positron annihilation lifetime, the micro-information about irradiation-introduced defects was obtained. The temperature of the movement of atomic vacancies in pure iron is about 200K, but it was clarified that by the addition of Cr, it was not much affected. However, in the case of high concentration Cr alloys, the number of atomic vacancies which take part in the formation of micro-voids decreased as compared with the case of pure iron. It is considered that among the irradiation defects of ZnO, O-vac. restored below 300degC. It is considered that in the samples without irradiation, the stage of restoration exists around 550degC, which copes with structural defects. By the measurement of graphite without irradiation, the positron annihilation lifetime corresponding with the interface of matrix and crystal grains, grain boundaries and internal surfaces was almost determined. The materials taken up most actively in the research and development of nuclear fusion reactor materials are austenitic and ferritic stainless steels, and their irradiation defects have been studied. (K.I.)

  20. Optical Constants and Functions of Corundum Single Crystals in the Vacuum Ultraviolat Region

    OpenAIRE

    Harutunyan, V. V.; Hakobyan, T. S.; Hovhannesian, A. S.; Gevorkyan, V. A.; Grigoryan, N. E.; Avakyan, A. K.; Grigoryan, V. A.

    1998-01-01

    Optical reflection spectra of corundum single crystals grown by HOC and Verneil methods are investigated before and after irradiated by electrons and neutrons using synchrotron radiation polarization (5-30eV).

  1. Irradiation of cane sugar spirit

    International Nuclear Information System (INIS)

    The present study deals with the effect of irradiation on the gas-chromatographic profile of irradiated cane sugar spirit irradiated in glass containers in the presence of oak chops with doses of 0-10 kGy. Volatile constituents were analyzed in a CG gas chromatographer with a flame ionization detector using a Megabore CG-745 column. The results are discussed considering the contribution of irradiation to the quality of the spirit and the contribution of the irradiated oak wood. (author)

  2. Irradiated produce reaches Midwest market

    International Nuclear Information System (INIS)

    In March 1992, the Chicago-area store gave its shoppers a choice between purchasing irradiated and nonirradiated fruits. The irradiated fruits were treated at Vindicator Inc., the first U.S. food irradiation facility (starting up on January 10, 1992). The plant, located in Mulberry, Fla., then shipped the fruits in trucks to the store where they were displayed under a hand-lettered sign describing the irradiated fruits and showing the irradiation logo

  3. Consumer response to irradiated foods

    International Nuclear Information System (INIS)

    Apart from the safety and nutritional adequacy of irradiated foods, consumer acceptance would be a major factor in the successful commercialization of irradiation technology. One way to remove the misconceptions about irradiated foods is to serve the food items prepared from irradiated foods to consumers and gauge their response. To evaluate the public perception on irradiated foods, a survey was conducted in various scientific symposia and Bhabha Atomic Research Centre canteens covering a wide spectrum of consumers

  4. Spatially selected synthesis of LaF3 and Er3+-doped CaF2 crystals in oxyfluoride glasses by laser-induced crystallization

    International Nuclear Information System (INIS)

    Oxyfluoride glasses with a small amount of NiO are prepared using a conventional melt quenching technique, and the spatially selected crystallization of LaF3 and CaF2 crystals is induced on the glass surface by irradiations of continuous wave lasers with a wavelength of λ=1064 or 1080 nm. Dots and lines including LaF3 crystals are patterned by heat-assisted (300 deg. C) laser irradiations (λ=1064 nm) with a power of P=1 W and an irradiation time of 10 s for dots and a scanning speed of S=5 μm/s for lines. Lines consisting of CaF2 crystals are also patterned in an ErF3-doped oxyfluoride glass by laser irradiations (λ=1080 nm) with a power of P=1.7 W and a scanning speed of S=2 μm/s, and the incorporation of Er3+ ions into CaF2 crystals is confirmed from micro-photoluminescence spectrum measurements. It is proposed that the lines patterned by laser irradiations in this study are consisted of the composite of LaF3 or CaF2 nanocrystals and SiO2-based oxide glassy phase. It is demonstrated that a combination of Ni2+-dopings and laser irradiations is effective in spatially selected local crystallizations of fluorides in oxyfluoride glasses. - Graphical abstract: This figure shows the polarization optical and confocal scanning laser micrographs for lines obtained by laser irradiations with a laser power of P=1.7 W and a scanning speed of S=2 μm/s in an oxyfluoride glass. It is proposed that the line consists of the composite of CaF2 nanocrystals and oxide glassy phase. This is the first demonstration on the patterning of fluoride crystals in glass by laser irradiations

  5. Irradiation and food processing.

    Science.gov (United States)

    Sigurbjörnsson, B; Loaharanu, P

    1989-01-01

    After more than four decades of research and development, food irradiation has been demonstrated to be safe, effective and versatile as a process of food preservation, decontamination or disinfection. Its various applications cover: inhibition of sprouting of root crops; insect disinfestation of stored products, fresh and dried food; shelf-life extension of fresh fruits, vegetables, meat and fish; destruction of parasites and pathogenic micro-organisms in food of animal origin; decontamination of spices and food ingredients, etc. Such applications provide consumers with the increase in variety, volume and value of food. Although regulations on food irradiation in different countries are largely unharmonized, national authorities have shown increasing recognition and acceptance of this technology based on the Codex Standard for Irradiated Foods and its associated Code of Practice. Harmonization of national legislations represents an important prerequisite to international trade in irradiated food. Consumers at large are still not aware of the safety and benefits that food irradiation has to offer. Thus, national and international organizations, food industry, trade associations and consumer unions have important roles to play in introducing this technology based on its scientific values. Public acceptance of food irradiation may be slow at the beginning, but should increase at a faster rate in the foreseeable future when consumers are well informed of the safety and benefits of this technology in comparison with existing ones. Commercial applications of food irradiation has already started in 18 countries at present. The volume of food or ingredients treated on a commercial scale varies from country to country ranging from several tons of spices to hundreds of thousands of tons of grains per annum. With the increasing interest of national authorities and the food industry in applying the process, it is anticipated that some 25 countries will use some 55 commercial

  6. Longevity of irradiated burros

    International Nuclear Information System (INIS)

    During the course of external radiation exposures of burros to establish a dose-response curve for acute mortality after total irradiation, some of the animals at the three lowest exposures to gamma photons survived. These groups of 10, 9, and 10 burros were exposed to 320, 425, and 545 R, respectively. There were 10 unirradiated controls. In 1953, 20 burros were exposed to 375 R (gamma) in 25-R/week increments without acute mortality and were added to the life-span study. In 1957, 33 burros were exposed to mixed neutron-gamma radiation from nuclear weapons, and 14 controls were added. The total number of irradiated burros in the study was increased to 88 by the addition of 6 animals irradiated with 180 rads of neutron and gamma radiation (4:1) in a Godiva-type reactor in 1959. In this experiment two acute deaths occurred which were not included in the analysis. In the first 4 years after the single gamma exposures, there were deaths from pancytopenia and thrombocytopenia, obviously related to radiation-induced bone-marrow damage. After that period, however, deaths were from common equine diseases; no death has resulted from a malignant neoplasm. Of the original 112 burros, 15 survive (10 irradiated and 5 controls). Survival curves determined for unirradiated and neutron-gamma- and gamma-irradiated burros showed significant differences. The mean survival times were: controls, 28 years; gamma irradiation only, 26 years; and neutron-gamma irradiation, 23 years. 3 refs., 4 figs., 1 tab

  7. Biological Macromolecule Crystallization Database

    Science.gov (United States)

    SRD 21 Biological Macromolecule Crystallization Database (Web, free access)   The Biological Macromolecule Crystallization Database and NASA Archive for Protein Crystal Growth Data (BMCD) contains the conditions reported for the crystallization of proteins and nucleic acids used in X-ray structure determinations and archives the results of microgravity macromolecule crystallization studies.

  8. Gamma Irradiation does not Cause Carcinogenesis of Irradiated Herbs

    International Nuclear Information System (INIS)

    Full text: Microbial contamination of medicinal herbs can be effectively reduced by gamma irradiation. Since irradiation may cause carcinogenicity of the irradiated herbs, the objective of this research is to study the effect of gamma irradiation (10 and 25 kGy) from cobalt-60 on carcinogenicity. The herbs studied were Pueraria candollei Grah., Curcuma longa Linn. Zingiber montanum, Senna alexandrina P. Miller, Eurycoma Longifolia Jack, Gymnostema pentaphylum Makino, Ginkgo biloba, Houttuynia cordata T., Andrographis paniculata, Thunbergia laurifolia L., Garcinia atroviridis G., and Cinnamomum verum J.S.Presl. The results showed that gamma irradiation at the dose of 10 and 25 kGy did not cause carcinogenicity of the irradiated herbs

  9. Post-irradiation diarrhea

    International Nuclear Information System (INIS)

    In radiotherapy of pelvic cancers, the X-ray dose to be delivered to the tumour is limited by the tolerance of healthy surrounding tissue. In recent years, a number of serious complications of irradiation of pelvic organs were encountered. Modern radiotherapy necessitates the acceptance of a calculated risk of complications in order to achieve a better cure rate. To calculate these risks, one has to know the radiation dose-effect relationship of normal tissues. Of the normal tissues most at risk when treating pelvic tumours only the bowel is studied. In the literature regarding post-irradiation bowel complications, severe and mild complications are often mixed. In the present investigation the author concentrated on the group of patients with relatively mild symptoms. He studied the incidence and course of post-irradiation diarrhea in 196 patients treated for carcinoma of the uterine cervix or endometrium. The aims of the present study were: 1) to determine the incidence, course and prognostic significance of post-irradiation diarrhea; 2) to assess the influence of radiotherapy factors; 3) to study the relation of bile acid metabolism to post-irradiation diarrhea; 4) to investigate whether local factors (reservoir function) were primarily responsible. (Auth.)

  10. Ultra fast melting process in femtosecond laser crystallization of thin a-Si layer

    International Nuclear Information System (INIS)

    In this paper, we investigated the mechanism of crystallization induced by femtosecond laser irradiation for an amorphous Si (a-Si) thin layer on a crystalline Si (c-Si) substrate. The fundamental, SHG, THG wavelength of a Ti:Sapphire laser was used for the crystallization process. To investigate the processed areas we performed Laser Scanning Microscopy (LSM), Transmission Electron Microscopy (TEM) and Imaging Pump-Probe measurements. Except for 267 nm femtosecond laser irradiation, the crystallization occurred well. The threshold fluences for the crystallization using 800 nm and 400 nm femtosecond laser irradiations were 100 mJ/cm2 and 30 mJ/cm2, respectively. TEM observation revealed that the crystallization occurred by epitaxial growth from the boundary surface between the a-Si layer and c-Si substrate. The melting depths estimated by Imaging Pump-Probe measurements became shallower when the shorter wavelength was used.

  11. Damage response to irradiation temperature and ion fluence in C+-irradiated 6H-SiC

    International Nuclear Information System (INIS)

    Irradiation experiments have been performed 60 degree off the surface normal for 6H-SiC single crystals at various temperatures (185--870 K) using 550 keV C+ ions over a fluence range from 1 x 1018 to 5 x 1019 ions/m2. Atomic disorder on the Si sublattice, as determined by in-situ RBS/channeling analysis, ranged from dilute defects to complete amorphization. The critical amorphization dose of ∼0.23 dpa (on the Si sublattice) at 185 K has been determined. Asymmetric shapes in angular yield profiles across the crystallographic axis left-angle 0001 right-angle emerged above 1.5 x 1019 C+/m2 (∼0.05 dpa in the near-surface region), which might be associated with the lattice disturbance in the crystal structure. A gradual decrease in half-angular width was observed with the increase of ion fluence in the experiment. The minimum yield exhibits a rather linear relationship with ion dose at the surface. Post-irradiation annealing at the irradiation temperature 470 and 670 K. Results also show that low fluence (18 C+/m2) irradiation at 185 K followed by thermal annealing results in similar defect concentrations to irradiation at that same temperature to the same ion fluence. thus, at low fluences, the accumulated defects are in thermal equilibrium with the structure

  12. Crystallization process

    Science.gov (United States)

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  13. Ribbon crystals.

    Directory of Open Access Journals (Sweden)

    Jakob Bohr

    Full Text Available A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We give a general description of developable ribbons using a ruled procedure where ribbons are uniquely described by two generating functions. This construction defines a differentiable frame, the ribbon frame, which does not have singular points, whereby we avoid the shortcomings of the Frenet-Serret frame. The observed spontaneous pattern is modeled using planar triangles and cylindrical arcs, and the ribbon structure is shown to arise from a maximization of the end-to-end length of the ribbon, i.e. from an optimal use of ribbon length. The phenomenon is discussed in the perspectives of incompatible intrinsic geometries and of the emergence of long-range order.

  14. Self-irradiation of Pu, its alloys and compounds

    Science.gov (United States)

    Timofeeva, L. F.

    2000-07-01

    Self-irradiation of Pu, its alloys and compounds by products of known α-decomposition is a continuous complicated process, which includes numerous different phenomena. The accumulation of Pu decomposition products causes material structure and properties change. This problem is the subject of many works, most of them concerned with the behavior of Pu and its alloys at low (liquid He and N) temperatures. The survey is given of the results of our experiments connected with radiogenic helium behavior, crystal structure and properties of Pu metallic compounds and Pu oxide ceramics in a self-irradiation process at room temperature under isochronal heat treatments.

  15. Effect of Neutron Irradiation on Properties of Pb(Mg(1/3)Nb(2/3))O3-PbTiO3.

    Science.gov (United States)

    Kim, Yong-Il; Choi, Namkyoung; Kim, Geunwoo; Lee, Yun-Hee; Baek, Kwang-Sae; Kim, Ki-Bok

    2015-11-01

    The effect of neutron irradiation on the electrical and piezoelectric properties of a PMN-PT [(Pb(Mg(1/3)Nb(2/3))O3-PbTiO3)] single crystal such as permittivity, electrical impedance and piezoelectric constant d33 has been investigated at 1 kHz. The changes of d33 and permittivity depending on the dose of neutron irradiation for all samples of PMN-PT single crystal were found. In all samples, the permittivity, and piezoelectric constant d33 decreased with the increase of irradiation dose. Changes of XRD patterns depending on the dose of neutron irradiation for all samples were found. From the results of XRDs for analyzing the formation of the PMN-PT single crystals in single phase, the neutron irradiation will affect the crystallinity of PMN-PT single crystals. PMID:26726526

  16. Irradiation of grains and spices

    International Nuclear Information System (INIS)

    The efficacy of food irradiation to extend the storage life and improve the hygienic quality of rice, mungbean and spices was tested by direct involvement with related food industries. The test consisted of storage trials of irradiated rice under commercial conditions, market testing of irradiated food, and a trial irradiation of commercial products. A consumer acceptance test was conducted using a group of educated people from 3 universities. To prove the safety of food irradiation conducted under appropriately controlled conditions, additional data on vitamin B content and the physico-chemical properties of irradiated rice, as well as free radical activity in irradiated rice, mungbean and spices were collected during this study. The results indicated that rice packaged in polyethylene pouch and irradiated up to 1 kGy could be stored for more than 1 year without insect damage. The colour of irradiated rice was slightly darker than that of unirradiated control, but was still acceptable. The vitamin B content of rice irradiated with such a dose was not significantly changed. Many food companies have recognized the ability of food irradiation, but this technology is not well understood by the general public. An irradiation dose of 3 kGy can be recommended as maximum dose to decontaminate rice of certain bacteria. Free radicals produced in irradiated rice, mungbean and spice will disappear within 1 month following irradiation. (author). 10 refs, 2 figs, 10 tabs

  17. Photoinduced Ratchet-Like Rotational Motion of Branched Molecular Crystals.

    Science.gov (United States)

    Zhu, Lingyan; Al-Kaysi, Rabih O; Bardeen, Christopher J

    2016-06-13

    Photomechanical molecular crystals can undergo a variety of light-induced motions, including expansion, bending, twisting, and jumping. The use of more complex crystal shapes may provide ways to turn these motions into useful work. To generate such shapes, pH-driven reprecipitation has been used to grow branched microcrystals of the anthracene derivative 4-fluoroanthracenecarboxylic acid. When these microcrystals are illuminated with light of λ=405 nm, an intermolecular [4+4] photodimerization reaction drives twisting and bending of the individual branches. These deformations drive a rotation of the overall crystal that can be repeated over multiple exposures to light. The magnitude and direction of this rotation vary because of differences in the crystal shape, but a typical branched crystal undergoes a 50° net rotation after 25 consecutive irradiations for 1 s. The ability of these crystals to undergo ratchet-like rotation is attributed to their chiral shape. PMID:27150819

  18. Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y., E-mail: na.huang@materials.ox.ac.uk [Engineering Physics Department, University of Wisconsin-Madison, WI 53706 (United States); Maier, B.R. [Engineering Physics Department, University of Wisconsin-Madison, WI 53706 (United States); Allen, T.R. [Engineering Physics Department, University of Wisconsin-Madison, WI 53706 (United States); Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2014-10-01

    Highlights: • ZrC{sub x} with four different stoichiometries (x = 0.9–1.2 with 0.1 step) were studied. • Proton irradiation at 800 °C introduced large amount of dislocation loops. • No voids were found before or after irradiation. • Dislocation loops size distribution and density varied with stoichiometry. - Abstract: Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for high-temperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 °C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carried out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 °C up to doses of 3 dpa were performed on ZrC{sub x} (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.

  19. 2H-SiC Dendritic Nanocrystals In Situ Formation from Amorphous Silicon Carbide under Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Under electron beam irradiation, the in-situ formation of 2H-SiC dentritic nanocrystals from amorphous silicon carbide at room temperature was observed. The homogenous transition mainly occurs at the thin edge and on the surface of specimen where the energy obtained from electron beam irradiation is high enough to cause the amorphous crystallizing into 2H-SiC.

  20. Food irradiation - general aspects

    International Nuclear Information System (INIS)

    This paper describes research and development experience in food irradiation followed by commercial utilisation of multi-purpose plants. The main design objectives should be high efficiency and uniform dose. Particular care must be given to dosimetry and the use of plastic dosimeters is described. Capital outlay for a 1 MCi Cobalt 60 irradiator is estimated to be 2.5 million dollars giving a unit processing cost of 0.566 dollars/ft3 of throughput for 8000 hour/year use at a dose of 25 kGy. (2.5 Mrad). The sale of irradiated food for human consumption in Britain is not yet permitted but it is expected that enabling legislation will be introduced towards the end of 1985

  1. The Birmingham Irradiation Facility

    International Nuclear Information System (INIS)

    At the end of 2012 the proton irradiation facility at the CERN PS will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1×1 cm2) silicon sensors

  2. The Birmingham Irradiation Facility

    CERN Document Server

    Dervan, P; Hodgson, P; Marin-Reyes, H; Wilson, J

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS [1] will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1 x 1 cm^2 ) silicon sensors.

  3. Neutron irradiation of seeds

    International Nuclear Information System (INIS)

    Neutrons are a valuable type of ionizing radiation for seed irradiation and radiobiological studies and for inducing mutations in crop plants. In experiments where neutrons are used in research reactors for seed irradiation it is difficult to measure the dose accurately and therefore to establish significant comparisons between experimental results obtained in various reactors and between repeated experiments in the same reactor. A further obstacle lies in the nature and response of the seeds themselves and the variety of ways in which they are exposed in reactors. The International Atomic Energy Agency decided to initiate international efforts to improve and standardize methods of exposing seeds in research reactors and of measuring and reporting the neutron dose. For this purpose, an International Neutron Seed Irradiation Programme has been established. The present report aims to give a brief but comprehensive picture of the work so far done in this programme. Refs, figs and tabs

  4. Magnetic properties of proton irradiated BiFeO3

    International Nuclear Information System (INIS)

    The crystal structure and magnetic properties of BiFeO3 samples, proton-irradiated with 0, 10, and 20 pC/μm2, were investigated with x-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy measurements. From the Rietveld refinement analysis of the XRD patterns, the crystal structure of BiFeO3 is determined to be rhombohedral with the space group of R3c. We have observed the decrease in the lattice constant and oxygen occupancy with proton irradiation. The magnetization hysteresis (M-H) curves show the appearance of the weak ferromagnetic behavior in the proton irradiated BiFeO3 samples. The Mössbauer spectra of proton irradiated BiFeO3 samples at 295 K were analyzed with two-sextets (B1 and B2) and doublet. From the isomer shift (δ) values, ionic states were determined to be Fe3+. Compared to non-irradiated sample, having the antiferromagnetic area ratio (two-sextets) of 45.47, 54.53% the antiferromagnetic and paramagnetic area ratios (doublet) of 10 and 20 pC/μm2 proton irradiated BiFeO3 samples are 41.36, 51.26, and 7.38% and 41.03, 50.90, and 8.07%, respectively. Our experimental observation suggests that the increase in the paramagnetic area ratio is due to the disappearance of superexchange interaction, resulted from the removal of the oxygen with proton irradiation. Also, the appearance of the weak ferromagnetic behavior is caused by the breaking of the antiferromagnetic coupling.

  5. Understanding the Irradiation Behavior of Zirconium Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States)

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  6. Economics of food irradiation

    Science.gov (United States)

    Kunstadt, Peter; Eng, P.; Steeves, Colyn; Beaulieu, Daniel; Eng, P.

    1993-07-01

    The number of products being radiation processed worldwide is constantly increasing and today includes such diverse items as medical disposables, fruits and vegetables, spices, meats, seafoods and waste products. This range of products to be processed has resulted in a wide range of irradiator designs and capital and operating cost requirements. This paper discusses the economics of low dose food irradiation applications and the effects of various parameters on unit processing costs. It provides a model for calculating specific unit processing costs by correlating known capital costs with annual operating costs and annual throughputs. It is intended to provide the reader with a general knowledge of how unit processing costs are derived.

  7. Food irradiation processing

    International Nuclear Information System (INIS)

    An international symposium on food irradiation processing dealing with issues which affect the commercial introduction of the food irradiation process was held in Vienna in 1985. The symposium, which attracted close to 300 participants, was planned to interest not only scientists and food technologists, but also representatives of government agencies, the food industry, trade associations and consumer organizations. The symposium included a discussion of the technological and economic feasibility of applying ionizing energy for the preservation of food, and focused on the specific needs of developing countries. Separate abstracts were prepared for the various presentations at this meeting

  8. Effects of irradiation

    International Nuclear Information System (INIS)

    The midday depression of CO2 assimilation in leaves of two cultivars of hazelnut. Effect of UV-B radiation on decay kinetics of long-term delayed luminiscence of green algae Scenedesmus quadricuda. Effects of irradiance on biomass allocation and needle photosynthetic capacity in silver fir seedlings originating from different localities. Chlorophyll fluorescence of UV-B irradiated bean leaves subjected to chilling in light. Preliminary studies on susceptibility of selected varieties of oats to high UV-B radiation dose. Influence of light conditions on oxidative stress in maize callus

  9. Irradiation of dehydrated vegetables

    International Nuclear Information System (INIS)

    The reason for radurization was to decreased the microbial count of dehydrated vegetables. The average absorbed irradiation dose range between 2kGy and 15kGy. The product catagories include a) Green vegetables b) White vegetables c) Powders of a) and b). The microbiological aspects were: Declining curves for the different products of T.P.C., Coliforms, E. Coli, Stap. areus, Yeast + Mold at different doses. The organoleptical aspects were: change in taste, flavour, texture, colour and moisture. The aim is the marketing of irradiated dehydrated vegetables national and international basis

  10. Canadian Irradiation Centre

    International Nuclear Information System (INIS)

    The Canadian Irradiation Centre is a non-profit cooperative project between Atomic Energy of Canada Limited, Radiochemical Company and Universite du Quebec, Institut Armand-Frappier, Centre for Applied Research in Food Science. The Centre's objectives are to develop, demonstrate and promote Canada's radiation processing technology and its applications by conducting applied research; training technical, professional and scientific personnel; educating industry and government; demonstrating operational and scientific procedures; developing processing procedures and standards, and performing product and market acceptance trials. This pamphlet outlines the history of radoation technology and the services offered by the Canadian Irradiation Centre

  11. Materials response to irradiation

    International Nuclear Information System (INIS)

    Radiation-induced changes in the mechanical properties of metals, e.g. due to the embrittlement necessitate irradiation experiments with HTR-specific neutron spectra. These experiments help to determine materials behaviour and establish basic data for design and safety testing, especially with a view to the high fluence and temperature loads on absorber cans. The experiments are carried out up to maximum operational fluence (>= 1022nsub(th)/cm2). Results so far have shown the importance of the materials structure for assurance of sufficient residual ductility after irradiation. Secondary experiments, e.g. on He implantation and radiation response of the absorber material B4C, are mentioned. (orig.)

  12. Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries

    Energy Technology Data Exchange (ETDEWEB)

    Y. Huang; B.R. Maier; T.R. Allen

    2014-10-01

    Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for hightemperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 ?C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carried out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 ?C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.

  13. High-Energy Proton Induced Damage in $PbWO_{4}$ Calorimeter Crystals

    CERN Document Server

    Lecomte, P; Nessi-Tedaldi, F; Pauss, F

    2005-01-01

    Eight production-quality PbWO4 crystals of CMS have been irradiated in a 20 GeV/c proton beam up to fluences of 5.4E13 cm-2. The damage recovery in these crystals, stored in the dark at room temperature, has been followed for over a year. Comparative irradiations with 60Co photons have been performed on seven other crystals using a dose rate of 1 kGy/h. In proton-irradiated crystals the light transmission band-edge shifts and the induced absorption length is proportional to 1/lambda**4. In gamma-irradiated crystals the band-edge does not shift but the formation of absorption bands is seen clearly. The absorption length induced by gamma-irradiation in crystals verified to have excellent radiation hardness saturates at a level below 0.5 m-1. In the case of protons, we observe no correlation with the pre-characterised radiation hardness of the crystals and the induced absorption increas es linearly with fluence. After a fluence of 5E13 cm-2, an induced absorption length of ~15 m-1 is seen with no sign of saturat...

  14. Plane shock initiation of detonation in γ-irradiated pentaerythritol tetranitrate

    International Nuclear Information System (INIS)

    The effect of γ irradiation on shock initiation sensitivity of pentaerythritol tetranitrate (PETN) single-crystal explosive was studied experimentally. Shock input strength was 8.6 GPa and detonation transition occurred after 7.3 mm of shock run for as-grown ]110] crystals. Other crystals were given γ-ray doses of up to 1 Mrad from a 60Co source. Crystals were sensitized by doses greater that 0.6 Mrad, with 1 Mrad shortening the distance to detonation transition by almost 40%. The initiation process is apparently still of the homogeneous type. Irradiated crystals were studied by optical microscopy. Evidence of the presence of gas molecules produced by decomposition of PETN molecules induced by γ rays was observed. Platelets 20--50 μm in diameter and about 0.25 μm thick were noted inside the crystal 30 days after irradiation. Growth of penny-shaped crack-flaws was observed and attributed to buildup of internal strains generated by the decomposition gas pressure. It is hypothesized that the source of the increased shock sensitivity after irradiation is due to the additional decomposition sites generated by decomposition of PETN molecules by γ-ray excitation. These sites act as additional nuclei for thermal decomposition in the shocked material

  15. Radiation effects in x-irradiated hydroxy compounds

    Science.gov (United States)

    Budzinski, Edwin E.; Potter, William R.; Box, Harold C.

    1980-01-01

    Radiation effects are compared in single crystals of xylitol, sorbitol, and dulcitol x-irradiated at 4.2 °K. In xylitol and dulcitol, but not in sorbitol, a primary oxidation product is identified as an alkoxy radical. ENDOR measurements detected three proton hyperfine couplings associated with the alkoxy ESR absorption, one of which is attributed to a proton three bond lengths removed from the seat of unpaired spin density. Intermolecular trapping of electrons is observed in all three crystals. ENDOR measurements were made of the hyperfine couplings between the trapped electron and the hydroxy protons forming the trap.

  16. Radiation effects in x-irradiated hydroxy compounds

    International Nuclear Information System (INIS)

    Radiation effects are compared in single crystals of xylitol, sorbitol, and dulcitol x-irradiated at 4.2 0K. In xylitol and dulcitol, but not in sorbitol, a primary oxidation product is identified as an alkoxy radical. ENDOR measurements detected three proton hyperfine couplings associated with the alkoxy ESR absorption, one of which is attributed to a proton three bond lengths removed from the seat of unpaired spin density. Intermolecular trapping of electrons is observed in all three crystals. ENDOR measurements were made of the hyperfine couplings between the trapped electron and the hydroxy protons forming the trap

  17. Defect effects on THz wave emission induced by ion irradiation

    International Nuclear Information System (INIS)

    Background: As the core component of terahertz system, terahertz source determines the performance of the whole system. The THz wave emission efficiency depends decisively on the THz emitting materials which are usually made of low-temperature-grown gallium arsenide. It is found that through ion irradiation better THz wave emission material can be prepared, which overcomes the poor reproducibility of high quality material prepared by the traditional method. Purpose: In order to find out the best irradiation condition for producing the required photoconductive material, we try to clarify the mechanism of the THz wave emission induced by ion implantation. Methods: Applying Monte Carlo method, we simulated the terahertz emission under different defect conditions, and tested the emission efficiency of GaAs and InP(Fe) irradiated by N ions with the energy of 500 keV and 1.5 MeV, respectively. Results: MC simulation study shows that both capture cross-section and trap density can cause changes in terahertz pulse width and peak intensity. From the experiments conducted on ion irradiated semiconductors we found only the peak intensity changes with the irradiation fluence. Conclusion: It is proposed that intrinsic defects introduced during growth of crystals are the key defects that contribute mainly to the terahertz wave emission behavior, and defects introduced by ion irradiation may only modify the transport property of carriers through scattering in semiconductor, by which it changes the terahertz wave emission performance. (authors)

  18. Solar Irradiance Variability

    CERN Document Server

    Solanki, Sami K

    2012-01-01

    The Sun has long been considered a constant star, to the extent that its total irradiance was termed the solar constant. It required radiometers in space to detect the small variations in solar irradiance on timescales of the solar rotation and the solar cycle. A part of the difficulty is that there are no other constant natural daytime sources to which the Sun's brightness can be compared. The discovery of solar irradiance variability rekindled a long-running discussion on how strongly the Sun affects our climate. A non-negligible influence is suggested by correlation studies between solar variability and climate indicators. The mechanism for solar irradiance variations that fits the observations best is that magnetic features at the solar surface, i.e. sunspots, faculae and the magnetic network, are responsible for almost all variations (although on short timescales convection and p-mode oscillations also contribute). In spite of significant progress important questions are still open. Thus there is a debat...

  19. Cellular Response to Irradiation

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; YAN Shi-Wei

    2011-01-01

    To explore the nonlinear activities of the cellular signaling system composed of one transcriptional arm and one protein-interaction arm, we use an irradiation-response module to study the dynamics of stochastic interactions.It is shown that the oscillatory behavior could be described in a unified way when the radiation-derived signal and noise are incorporated.

  20. Profitability of irradiation plants

    International Nuclear Information System (INIS)

    In any industrial process it is seek an attractive profit from the contractor and the social points of view. The use of the irradiation technology in foods allows keep their hygienically, which aid to food supply without risks for health, an increment of new markets and a losses reduction. In other products -cosmetics or disposable for medical use- which are sterilized by irradiation, this process allows their secure use by the consumers. The investment cost of an irradiation plant depends mainly of the plant size and the radioactive material reload that principally is Cobalt 60, these two parameters are in function of the type of products for irradiation and the selected doses. In this work it is presented the economic calculus and the financial costs for different products and capacities of plants. In general terms is determined an adequate utility that indicates that this process is profitable. According to the economic and commercial conditions in the country were considered two types of credits for the financing of this projects. One utilizing International credit resources and other with national sources. (Author)

  1. Pituitary irradiation program

    International Nuclear Information System (INIS)

    The alpha particle pituitary irradiation program continues to be a major research project at Donner Pavilion. A study to determine the incidence of hyperprolactinemia in a large series of acromegalic subjects was undertaken. The relationships between plasma levels of growth hormone and prolactin, sellar volume, duration of acromegaly, and age at time of evaluation were investigated

  2. NSUF Irradiated Materials Library

    Energy Technology Data Exchange (ETDEWEB)

    Cole, James Irvin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs that are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.

  3. Regulatory aspect of food irradiation

    International Nuclear Information System (INIS)

    Interest in the process of food irradiation is reviewed once again internationally. Although food irradiation has been thoroughly investigated, global acceptance is still lacking. Factors which impede the progress of the technology are discussed here. (author)

  4. Research and Development of Crystal Purification for Product of Uranium Crystallization Process

    International Nuclear Information System (INIS)

    and that they make no eutectoid with UNH. On the other hand, it is confirmed that sweating and melting-filtration operations were effective in principle by the experiment with uranium and simulated FP system. After that, its effects verified by beaker scale experiments with the system including plutonium and irradiated fuel. Additionally, engineering scale tests were carried out with a Kureha Crystal Purifier (KCP) type testing device to evaluate that its performance was suitable for UNH purification. This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). (authors)

  5. Process for irradiation of polyethylene

    International Nuclear Information System (INIS)

    Irradiation of polyethylene affects its processabiltiy in the fabrication of products and affects the properties of products already fabricated. The present invention relates to a process for the irradiation of polyethylene, and especially to a process for the irradiation of homopolymers of ethylene and copolymers of ethylene and higher α-olefins, in the form of granules, with low levels of electron or gamma irradiation in the presence of an atomsphere of steam

  6. Food irradiation technology

    International Nuclear Information System (INIS)

    Trade in food and agricultural products is important to all countries, the economies of many developing countries would be significantly improved if they were able to export more food and agricultural products. Unfortunately, many products can not be traded because they are infested with, or hosts to, harmful pests, contaminated with microorganisms, or spoil quickly. Foods contaminated with microorganisms cause economic losses, widespread illness and death. Several technologies and products have been developed to resolve problems in trading food and to improve food safety, but none can provide all the solutions. Irradiation is an effective technology to resolve technical problems in trade of many food and agricultural products, either as a stand- alone technology or in combination with others. As a disinfestation treatment it allows different levels of quarantine security to be targeted and it is one of few methods to control internal pests. The ability of irradiation virtually to eliminate key pathogenic organisms from meat, poultry, and spices is an important public health advantage. In addition to controlling pests and eliminating harmful bacteria, irradiation also extends the storage life of many foods. In the laboratories of Turkish Atomic Energy Authority, many research projects were completed on the effects of gamma irradiation to the storage life of chicken meat, anchovy, Turkish fermented sausage, dried and fresh fruits and vegetables and also research projects were conducted on the effects of gamma irradiation on microorganisms (Salmonella, Campylo-bacteria, E.coli and S.aureus in white and red meat) and parasites (food-borne, trichostrongylus spp. and Nematodes spp.)

  7. About multivendorness of luminescent centers near 2 eV in quartz crystals

    International Nuclear Information System (INIS)

    Photoluminescence of crystals (common nominally pure and with impurities Al, Ge, Fe) irradiated by diverse neutron fluences, protons (E=18 MeV), deuterons (E=16 MeV), α-particles (E=18 MeV) and electrons with energies 100, 120 keV, as well as crystals grown on inoculum irradiated by neutrons before and after of additional neutron irradiation is examined. It is determined that independently on impurity composition the band with maximum at 660 nm is appears related with luminescence of non-bridge oxygen atoms (NOA). The intensity of the band is increasing with Ge concentration growth

  8. Market trials of irradiated chicken

    International Nuclear Information System (INIS)

    The potential market for irradiated chicken breasts was investigated using a mail survey and a retail trial. Results from the mail survey suggested a significantly higher level of acceptability of irradiated chicken than did the retail trial. A subsequent market experiment involving actual purchases showed levels of acceptability similar to that of the mail survey when similar information about food irradiation was provided

  9. Structural and magnetic properties of irradiated SiC

    International Nuclear Information System (INIS)

    We present a comprehensive structural characterization of ferromagnetic SiC single crystals induced by Ne ion irradiation. The ferromagnetism has been confirmed by electron spin resonance, and possible transition metal impurities can be excluded to be the origin of the observed ferromagnetism. Using X-ray diffraction and Rutherford backscattering/channeling spectroscopy, we estimate the damage to the crystallinity of SiC, which mutually influences the ferromagnetism in SiC

  10. Modulation Instability in Biased Photorefractive-Photovoltaic Crystals

    Institute of Scientific and Technical Information of China (English)

    LU Ke-Qing; ZHAO Wei; YANG Yan-Long; SUN Chuan-Dong; GAO Hong-Wen; LI Jin-Ping; ZHANG Yan-Peng

    2004-01-01

    @@ We show the modulation instability of broad optical beams in biased photorefractive-photovoltaic crystals under steady-state conditions. This modulation instability growth rate depends on the external bias field, the bulk photovoltaic effect, and the ratio of the optical beam intensity to that of the dark irradiance. Under appropriate conditions, this modulation instability growth rate is the modulation instability growth rate studied previously in biased photorefractive-nonphotovoltaic crystals, and the modulation instability growth rate in open- and closed-circuit photorefractive-photovoltaic crystals can be predicted.

  11. Pulsed cathodoluminescence and γ-luminescence of scintillation crystals

    Science.gov (United States)

    Kozlov, V. A.; Ochkin, V. N.; Pestovskii, N. V.; Petrov, A. A.; Savinov, S. Yu; Zagumennyi, A. I.; Zavertyaev, M. V.

    2015-11-01

    The spectra and decay time of pulsed cathodoluminescence (PCL) of a scintillating crystals excited by the electron beam is compared to the spectra and decay time of the luminescence of the same crystals initiated by γ-rays (GL). It is shown that spectra and decay time of PCL and GL are identical within the experimental errors. The explanation of these results is based on taking into account the physical processes within the crystal media under the irradiation by high-energy particles. The results of this study confirm that the PCL method may be used for the rapid analysis of the luminescent properties of scintillators.

  12. Defect transformation in GSGG crystals during chromium ion activation

    International Nuclear Information System (INIS)

    Absorption and induced absorption spectra, dose dependence of induced absorption, thermoluminescence of GSGG crystals, nominally pure and activated with chromium and neodymium ions in different concentrations, are investigated. It is shown that it is chromium ion presence in large concentration that decreases the induced coloration in GSGG crystals after γ-irradiation at 300 K. Optimum concentration of chromium ions for the minimum of induced coloration are found. The mechanism of decrease of induced coloration consisting in Fermi level displacement by chromium ion activation is established. Defect concentration and localization and recombination possibilities of electrons and holes in GSGG crystals are estimated by computer simulation

  13. Liquid crystal photoalignment material based on chloromethylated polyimide

    International Nuclear Information System (INIS)

    We report a liquid crystal photoalignment material with high photosensitivity and excellent thermal stability. The chloromethylated aromatic polyimide exhibited defect-free homogeneous alignment of liquid crystals upon irradiation of polarized deep ultraviolet (UV) for 50 s. The aligning ability of the film was retained up to 210 deg. C, and the cell containing liquid crystals could be stored at 85 deg. C for more than 14 days without any deterioration. FT-IR and UV-vis spectra confirmed that the alignment was induced by photodecomposition of polyimide, drastically accelerated by the introduction of chloromethyl side group

  14. Ordered arrangement of irradiation-induced defects of polycrystalline tungsten irradiated with low-energy hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Weiyuan; Yang, Qi; Fan, Hongyu; Liu, Lu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Berthold, Tobias; Benstetter, Günther [Faculty of Electrical Engineering and Media Technology, University of Applied Sciences Deggendorf, Deggendorf 94469 (Germany); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2015-09-15

    Low-energy (20–520 eV) hydrogen ion irradiations were performed at W surface temperature of 373–1073 K and a fluence ranging from 5.0 × 10{sup 23} to 1.0 × 10{sup 25}/m{sup 2}. Conductive atomic force microscopy (CAFM) as a nondestructive analytical technique was successfully used to detect irradiation-induced defects in polycrystalline W. The size and density of these nanometer-sized defects were strongly dependent on the fluence of hydrogen ions. Both ion energy (E) and temperature (T) play a crucial role in determining the ordering of nanometer-sized defects. Ordered arrangements were formed at relatively high E and T. This can be attributed to the stress-driven ripple effect of defect growth at crystal grains, resulting in the movement of W lattice along one certain crystal planes.

  15. Post irradiation test report of irradiated DUPIC simulated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Jung, I. H.; Moon, J. S. and others

    2001-12-01

    The post-irradiation examination of irradiated DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors) simulated fuel in HANARO was performed at IMEF (Irradiated Material Examination Facility) in KAERI during 6 months from October 1999 to March 2000. The objectives of this post-irradiation test are i) the integrity of the capsule to be used for DUPIC fuel, ii) ensuring the irradiation requirements of DUPIC fuel at HANARO, iii) performance verification in-core behavior at HANARO of DUPIC simulated fuel, iv) establishing and improvement the data base for DUPIC fuel performance verification codes, and v) establishing the irradiation procedure in HANARO for DUPIC fuel. The post-irradiation examination performed are {gamma}-scanning, profilometry, density, hardness, observation the microstructure and fission product distribution by optical microscope and electron probe microanalyser (EPMA)

  16. Radiation stability of iron nanoparticles irradiated with accelerated iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Uglov, V.V., E-mail: uglov@bsu.by [Belarusian State University, Nezavisimosty ave., 4, Minsk 220030 (Belarus); Tomsk Polytechnic University, Lenina ave., 2a, Tomsk 634028 (Russian Federation); Remnev, G.E., E-mail: remnev06@mail.ru [Tomsk Polytechnic University, Lenina ave., 2a, Tomsk 634028 (Russian Federation); Kvasov, N.T.; Safronov, I.V.; Shymanski, V.I. [Belarusian State University, Nezavisimosty ave., 4, Minsk 220030 (Belarus)

    2015-07-01

    Highlights: • Dynamic processes in nanoparticles after ion irradiation were studied. • The mechanism of the enhanced radiation stability of nanoparticles was showed. • The criteria of the enhanced radiation stability of nanoparticles was proposed. - Abstract: In the present work the dynamic processes occurring in a nanoscale iron particle exposed to irradiation with iron ions of different energies are studied in detailed. It is shown that the elastic and thermoelastic crystal lattice responses to irradiation form force factors affecting the evolution of defect-impurity system, which, in turn, leads to a decrease in the number of structural defects. Quantitative estimations of the spatial distribution of defects resulting in their migration to the surface were obtained. Such self-organization of nanoparticles exposed to ionizing radiation can be used as a basis for the production of radiation-resistant nanostructured materials capable of sustaining a long-term radiation influence.

  17. Ionic conductivity in irradiated KCL; Conductiviad ionica de KCL irradiado

    Energy Technology Data Exchange (ETDEWEB)

    Vignolo Rubio, J.

    1979-07-01

    The ionic conductivity of X and gamma irradiated KCL single crystals has been studied between room temperature and 600 degree centigree. the radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 degree centigree respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. However. It has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that, samples radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (Author)

  18. Ionization annealing of semiconductor crystals. Part two: the experiment

    Directory of Open Access Journals (Sweden)

    Garkavenko A. S.

    2014-12-01

    Full Text Available There is a conception that irradiation of semiconductor crystals with high energy electrons (300 keV results in a significant and irreversible deterioration of their electrical, optical and structural properties. Semiconductors are typically irradiated by low voltage electron accelerators with a continuous flow, the current density in such accelerators is 10–5—10–6 A/cm2, the energy — 0,3—1 MeV. All changes in the properties after such irradiation are resistant at room temperature, and marked properties recovery to baseline values is observed only after prolonged heating of the crystals to a high temperature. In contrast, the authors in their studies observe an improvement of the structural properties of semiconductor crystals (annealing of defects under irradiation with powerful (high current pulsed electron beams of high energy (E0 = 0,3–1 MeV, t = 0,1—10 ns, Ω = 1—10 Hz, j = 20—300 A/cm2. In their previous paper, the authors presented theoretical basis of this effect. This article describes an experimental study on the influence of high-current pulsed electron beams on the optical homogeneity of semiconductor GaAs and CdS crystals, confirming the theory put forward earlier.

  19. Influence of He-Ne laser irradiation of soybean seeds on seed mycoflora, growth, nodulation, and resistance to Fusarium solani

    International Nuclear Information System (INIS)

    Laser irradiation of soybean seeds for 3 min caused a clear reduction in the number of seed-borne fungi which became more pronounced as the irradiation time was extended. Pretreatment of the seeds with methylene blue, methyl red and carmine enhanced the effect of laser. Rhizoctonia solani, Alternaria tenuissima, Cercospora kikuchii and Colletotrichum truncatum were completely eliminated when the seeds were pretreated with a dye and irradiated for 10 min. Seed germination was stimulated on exposure of the seed to 1-min irradiation. Chlorophyll a, chlorophyll b and carotenoid content of developed plants differed, depending on the irradiation dose and dye treatment of the seeds. The number and dry mass of nodules were mostly greater (as compared to the corresponding control), when the seeds irradiated for 1 or 3 min were pretreated with methyl red, chlorophenol red, crystal violet and methylene blue. Irradiation of pre-sowing seeds greatly protected soybean stands against F. solani

  20. Pressure cryocooling protein crystals

    Science.gov (United States)

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  1. Industrial application of food irradiation

    International Nuclear Information System (INIS)

    In the past three years the author has been irradiating foodstuffs with the Gammaster facility which was originally designed for the sterilization of medical equipment. A great diversity of products have been irradiated. In spite of some limitations of the facility, the process has proved to be very satisfactory. The technology for medical sterilization is directly applicable. At present, besides the sterilization of medical equipment, an average of twenty tonnes of foodstuffs, mainly spices, grains, herbs and fish products, are being irradiated every week. The Pilot Plant for Food Irradiation handles a similar quantity. The construction of the JS 7200, the JS 8500, and the JS 9000 irradiator is discussed. (Auth.)

  2. Commercial food irradiation in practice

    International Nuclear Information System (INIS)

    Dutch research showed great interest in the potential of food irradiation at an early stage. The positive research results and the potential applications for industry encouraged the Ministry of Agriculture and Fisheries to construct a Pilot Plant for Food Irradiation. In 1967 the Pilot Plant for Food Irradiation in Wageningen came into operation. The objectives of the plant were: research into applications of irradiation technology in the food industry and agricultural industry; testing irradiated products and test marketing; information transfer to the public. (author)

  3. Safety aspects of irradiated foods

    International Nuclear Information System (INIS)

    The toxicological and microbiological safety of irradiated foods has been established after extensive research over a period of 30 years. No radioactivity can be induced in foods with the radioisotopes used to irradiate produce. The lethal effects of gamma irradiation on spoilage and pathogenic bacteria as well as insects and parasites, ensure a product of superior quality with regard to maintaining quality and hygiene. Feeding studies of unprecedented scope in the history of food research also proved the toxicological safety of irradiated foods. These findings are supported by recent short-term studies on toxicity and mutagenicity. The production and marketing of irradiated foods are therefore warranted and have indeed started worldwide

  4. The Irradiation Effect of a Simultaneous Laser and Electron Dual-beam on Void Formation

    OpenAIRE

    Zhanbing Yang; Seiichi Watanabe; Takahiko Kato

    2013-01-01

    Randomly distributed lattice point defects such as supersaturated vacancies (SVs) and Frenkel-pairs (FPs, an interstitial and a vacancy) can be simultaneously introduced into the crystal by energetic beam irradiation in outer space and/or nuclear reactors, but their behavior has not been fully understood. Using a high-voltage electron microscope equipped with a laser (laser-HVEM), we show the striking effects of simultaneous laser-electron (photon-electron) dual-beam irradiation on void forma...

  5. Room-temperature effects of UV radiation in KBr:Eu{sup 2+} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Salas, R.; Melendrez, R. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada - IFUNAM, Ensenada, Apartado Postal 2732 Ensenada, BC, 22800 (Mexico); Aceves, R.; Rodriguez, R.; Barboza-Flores, M. [Centro de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088 Hermosillo, Sonora, 83190 (Mexico)

    1996-07-01

    Thermoluminescence and optical absorption measurements have been carried out in KBr:Eu{sup 2+} crystals irradiated with monochromatic UV light (200-300 nm) and x-rays at room temperature. For UV- and x-irradiated crystals strong similarities between the thermoluminescence glow curves have been found, suggesting that the low-energy UV radiation produces the same defects as produced by x-irradiation in this material. The thermoluminescence glow curves are composed of six glow peaks located at 337, 383, 403, 435, 475 and 509 K. Thermal annealing experiments in previously irradiated crystals show clearly a correlation between the glow peak located at 383 K and the F-centre thermal bleaching process. Also, the excitation spectrum for each thermoluminescence glow peak has been investigated, showing that the low-energy radiation induces the formation of F centres. (author)

  6. Influence of Polymer Coatings on the Carrier Life Time in Solar Silicon Crystals

    Directory of Open Access Journals (Sweden)

    L.P. Steblenko

    2014-11-01

    Full Text Available Influence of polymer coatings on the photovoltage drop kinetics in solar Si crystals exposed to magnetic field action and X-ray irradiation is studied. The features found in the behavior of the electrophysical parameters suggest slowing down the photovoltage drop in the presence of polymer coatings at the surface of solar Si crystals. These features may be due to the influence of polymer coatings to reduce the concentration of recombination centers in crystals solar-Si.

  7. Effect of divalent impurities on the thermoluminescence of LiF single crystals

    International Nuclear Information System (INIS)

    The paper reports the effect of divalent impurities on the thermoluminescence (TL) of gamma-irradiated LiF crystals. For Ba, Sr, Ca and Pb doped LiF crystals, it is observed that TL intensity increases considerably with increasing percentage of the dopants as well as with increasing irradiation time without any appreciable change in the glow peak temperatures. The results of TL glow peaks at different temperatures and the TL emission spectra of these doped LiF crystals are reported and discussed. (author). 4 refs., 2 figs

  8. Market Trials of Irradiated Spices

    International Nuclear Information System (INIS)

    Full text: The objectives of the experiment were to disseminate irradiated retail foods to the domestic publics and to test consumer acceptance on irradiated ground chilli and ground pepper. Market trials of irradiated ground chilli and ground pepper were carried out at 2 local markets and 4 in Bangkok and Nontaburi in 2005-2007. Before the start of the experiment, processing room, gamma irradiation room and labels of the products were approved by Food and Drug Administration, Thailand. 50 grams of irradiated products were packaged in plastic bags for the market trials. 688 and 738 bags of ground chilli and ground pepper were sold, respectively. Questionnaires distributed with the products were commented by 59 consumers and statistically analyzed by experimental data pass program. 88.1 and 91.4 percents of the consumers were satisfied with the quality and the price, respectively. 79.7% of the consumers chose to buy irradiated ground chilli and ground pepper because they believed that the quality of irradiated products were better than that of non-irradiated ones. 91.5% of the consumers would certainly buy irradiated chilli and pepper again. Through these market trials, it was found that all of the products were sold out and the majority of the consumers who returned the questionnaires was satisfied with the irradiated ground chilli and ground pepper and also had good attitude toward irradiated foods

  9. Defect trap model of gas behaviour in UO2 fuel during irradiation

    International Nuclear Information System (INIS)

    Fission gas behaviour is one of the central concern in the fuel design, performance and hypothetical accident analysis. The report 'Defect trap model of gas behaviour in UO2 fuel during irradiation' is the worldwide literature review of problems studied, experimental results and solutions proposed in related topics. Some of them were described in details in the report chapters. They are: anomalies in the experimental results; fission gas retention in the UO2 fuel; microstructure of the UO2 fuel after irradiation; fission gas release models; defect trap model of fission gas behaviour; fission gas release from UO2 single crystal during low temperature irradiation in terms of a defect trap model; analysis of dynamic release of fission gases from single crystal UO2 during low temperature irradiation in terms of defect trap model; behaviour of fission gas products in single crystal UO2 during intermediate temperature irradiation in terms of a defect trap model; modification of re-crystallization temperature of UO2 in function of burnup and its impact on fission gas release; apparent diffusion coefficient; formation of nanostructures in UO2 fuel at high burnup; applications of the defect trap model to the gas leaking fuel elements number assessment in the nuclear power station (VVER-PWR)

  10. Irradiated brown dwarfs

    CERN Document Server

    Casewell, S L; Lawrie, K A; Maxted, P F L; Dobbie, P D; Napiwotzki, R

    2014-01-01

    We have observed the post common envelope binary WD0137-349 in the near infrared $J$, $H$ and $K$ bands and have determined that the photometry varies on the system period (116 min). The amplitude of the variability increases with increasing wavelength, indicating that the brown dwarf in the system is likely being irradiated by its 16500 K white dwarf companion. The effect of the (primarily) UV irradiation on the brown dwarf atmosphere is unknown, but it is possible that stratospheric hazes are formed. It is also possible that the brown dwarf (an L-T transition object) itself is variable due to patchy cloud cover. Both these scenarios are discussed, and suggestions for further study are made.

  11. Food Irradiation. Standing legislation

    International Nuclear Information System (INIS)

    The standing legislation in Mexico on food irradiation matter has its basis on the Constitutional Policy of the Mexican United States on the 4 Th. article by its refers to Secretary of Health, 27 Th. article to the Secretary of Energy and 123 Th. of the Secretary of Work and Social Security. The laws and regulations emanated of the proper Constitution establishing the general features which gives the normative frame to this activity. The general regulations of Radiological Safety expedited by the National Commission for Nuclear Safety and Safeguards to state the specifications which must be fulfill the industrial installations which utilizing ionizing radiations, between this line is founded, just as the requirements for the responsible of the radiological protection and the operation of these establishments. The project of Regulation of the General Health Law in matter of Sanitary Control of Benefits and Services, that in short time will be officialized, include a specific chapter on food irradiation which considers the International Organizations Recommendations and the pertaining harmonization stated for Latin America, which elaboration was in charge of specialized group where Mexico was participant. Additionally, the Secretary of Health has a Mexican Official Standard NOM-033-SSA1-1993 named 'Food irradiation; permissible doses in foods, raw materials and support additives' standing from the year 1995, where is established the associated requirements to the control registers, service constancies and dose limits for different groups of foods, moreover of the specific guidelines for its process. This standard will be adequate considering the updating Regulation of Benefits and Services and the limits established the Regulation for Latin America. The associated laws that cover in general terms it would be the requirements for food irradiation although such term is not manageable. (Author)

  12. Low-temperature positron-lifetime studies of proton-irradiated silicon

    DEFF Research Database (Denmark)

    Mäkinen, S.; Rajainmäki, H.; Linderoth, Søren

    1990-01-01

    The positron-lifetime technique has been used to identify defects created in high-purity single-crystal silicon by irradiation with 12-MeV protons at 15 K, and the evolution of the defects has been studied by subsequent annealings between 20 and 650 K. Two clear annealing steps were seen in the s......The positron-lifetime technique has been used to identify defects created in high-purity single-crystal silicon by irradiation with 12-MeV protons at 15 K, and the evolution of the defects has been studied by subsequent annealings between 20 and 650 K. Two clear annealing steps were seen...

  13. Structural transformation of CsI thin film photocathodes under exposure to air and UV irradiation

    CERN Document Server

    Tremsin, A S; Siegmund, O H W

    2000-01-01

    Transmission electron microscopy has been employed to study the structure of polycrystalline CsI thin films and its transformation under exposure to humid air and UV irradiation. The catastrophic degradation of CsI thin film photocathode performance is shown to be associated with the film dissolving followed by its re-crystallization. This results in the formation of large lumps of CsI crystal on the substrate surface, so that the film becomes discontinuous and its performance as a photocathode is permanently degraded. No change in the surface morphology and the film crystalline structure was observed after the samples were UV irradiated.

  14. Phytosanitary applications of irradiation

    International Nuclear Information System (INIS)

    Phytosanitary treatments are used to disinfest agricultural commodities of quarantine pests so that the commodities can be shipped out of quarantined areas. Ionizing irradiation is a promising phytosanitary treatment that is in- creasing in use worldwide. Almost 19000 metric tons of sweet potatoes and several fruits plus a small amount of curry leaf are irradiated each year in 6 countries, including the United States, to control a number of plant quarantine pests. Advantages over other treatments include tolerance by most fresh commodities, ability to treat in the final packaging and in pallet loads, and absence of pesticide residues. A regulatory disadvantage is lack of an independent verification of treatment efficacy because pests may be found alive during commodity inspection, although they will not complete development or reproduce. High-energy X-rays generated by electron beam are ideal for sterilizing large packages and pallet loads of food. The directional concentration and high penetration capability as well as excellent dose uniformity of X-rays allows disinfest efficiently. Application of irradiation phytosanitary in China still in its infancy. (authors)

  15. Control of food irradiation facilities and good irradiation practices

    International Nuclear Information System (INIS)

    Expansion of irradiation facilities employing commercial scale processes is evident in several countries. The list compiled by the Food Preservation Section of the Joint FAO/IAEA Division, Vienna (April 1988) showed that 34 counties have approved the use of irradiation process for more than 40 food commodities. In Asia and the Pacific Region, the main commercial application of irradiation process is still the sterilization of medical devices but applications to food processing are on the rise. To ensure the safety of irradiated foods, laws and regulations have to be promulgated to govern the facilities, the operations and the products. In most cases, there may be more than one governmental agency involved in regulatory control. The control activities include licensing/registration of a food irradiation premises as a food processing plant, registration of irradiated food in accordance with prescribed standards and regulating labelling practice as well as regularly conducting a comprehensive inspection of the facilities. The quality control programme must cover all aspects of treatment, handling, and distribution. It is emphasized that, as with all food technologies, effective quality control systems needs to be installed and adequately monitored at critical control points at the irradiation facility. Foods should be handled, stored, and transported according to GMP before, during, and after irradiation. Only foods meeting microbiological criteria and other quality standards should be accepted for irradiation. Besides, good irradiation practice (GIP) is also a fundamental principle of practice required specifically for food irradiation. With this recognition, the International Consultative Group on Food Irradiation (ICGFI) has elaborated a set of eight codes of GIP. The quality control system would also include proper packaging suitable for the product. Additional use of a logo to identify irradiated food should be permitted and may even become recognized as a symbol

  16. Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions

    Science.gov (United States)

    El-Said, A. S.; Wilhelm, R. A.; Heller, R.; Akhmadaliev, Sh.; Schumann, E.; Sorokin, M.; Facsko, S.; Trautmann, C.

    2016-09-01

    GaP single crystals were irradiated with slow highly charged ions (HCI) using 114 keV 129Xe(33-40)+ and with various swift heavy ions (SHI) of 30 MeV I9+ and 374 MeV-2.2 GeV 197Au25+. The irradiated surfaces were investigated by scanning force microscopy (SFM). The irradiations with SHI lead to nanohillocks protruding from the GaP surfaces, whereas no changes of the surface topography were observed after the irradiation with HCI. This result indicates that a potential energy above 38.5 keV is required for surface nanostructuring of GaP. In addition, strong coloration of the GaP crystals was observed after irradiation with SHI. The effect was stronger for higher energies. This was confirmed by measuring an increased extinction coefficient in the visible light region.

  17. INFLUENCE OF ELECTRON BEAM TREATMENT ON THE CRYSTALLIZATION AND THERMAL STABILITY OF LDPE/EPDM BLENDS

    Directory of Open Access Journals (Sweden)

    Bhuwanesh Kumar Sharma

    2014-01-01

    Full Text Available The effect of blend composition and Electron Beam (EB irradiation on the crystallization and thermal behavior of Low Density Polyethylene (LDPE/Ethylene-Propylene-Diene elastomer (EPDM blends had been studied. Melting temperatures were found to remain unchanged upon variation of blend composition as well as irradiation dose. But the degree of crystallinity and Tc (crystallization temperature were decreased with increase in EPDM content and EB dose. On the other hand, thermal stability (in terms of onset temperature and degradation temperature and activation energy were increased with increase in EPDM content and irradiation dose. But the speed of degradation slowed down with increasing EPDM content and EB dose. Interestingly, once Trimethylolpropane Triacrylate (TMPTA and Triallyl Cynuerate (TAC were incorporated into the blends, the degrees of change of these properties were more in same direction upon irradiation. At higher irradiation dose properties were demoted due to chain scission.

  18. Refractive Index Change and Color Center Formation in LiYF_4 Crystal Induced by a Femtosecond Laser

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The refractive index change and color centers formation in LiYF4 crystal at room temperature are induced by a femtosecond laser irradiation. A mechanism for refractive index change and color centers formation is proposed.

  19. Refractive Index Change and Color Center Formation in LiYF4 Crystal Induced by a Femtosecond Laser

    Institute of Scientific and Technical Information of China (English)

    Quanzhong Zhao; Jianrong Qiu; Lüyun Yang; Xiongwei Jiang; Congshan Zhu

    2003-01-01

    The refractive index change and color centers formation in LiYF4 crystal at room temperature are induced by a femtosecond laser irradiation. A mechanism for refractive index change and color centers formation is proposed.

  20. High-energy proton induced damage in Lead Tungstate calorimeter crystals

    CERN Document Server

    Huhtinen, M; Luckey, D; Nessi-Tedaldi, F; Pauss, Felicitas

    2005-01-01

    Eight production quality PbWO4 crystals of CMS have been irradiated in a 20 GeV/c proton beam up to fluences of 5.4E13cm-2. The damage recovery in these crystals has been followed for over a year. Comparative irradiations with 60Co photons have been performed on seven other crystals using a dose rate of 1 kGy/h. In proton irradiated crystals the light transmission band-edge shifts and the induced absorption length is proportional to the inverse of the 4th power of the wavelength. In gamma-irradiated crystals the band-edge does not shift but formation of absorption bands is seen clearly. The absorption length induced by gamma-radiation in crystals verified to have excellent radiation hardness, saturates at a level below 0.5 m-1. In the case of protons, we observe no correlation with the pre-characterised radiation hardness of the crystals and the induced absorption increases linearly with fluence. After a fluence of 5E13 cm-2, an induced absorption length of approx. 15m-1 is seen with no sign of saturation. Th...

  1. Estimation of irradiation temperature within the irradiation program Rheinsberg

    CERN Document Server

    Stephan, I; Prokert, F; Scholz, A

    2003-01-01

    The temperature monitoring within the irradiation programme Rheinsberg II was performed by diamond powder monitors. The method bases on the effect of temperature on the irradiation-induced increase of the diamond lattice constant. The method is described by a Russian code. In order to determine the irradiation temperature, the lattice constant is measured by means of a X-ray diffractometer after irradiation and subsequent isochronic annealing. The kink of the linearized temperature-lattice constant curves provides a value for the irradiation temperature. It has to be corrected according to the local neutron flux. The results of the lattice constant measurements show strong scatter. Furthermore there is a systematic error. The results of temperature monitoring by diamond powder are not satisfying. The most probable value lays within 255 C and 265 C and is near the value estimated from the thermal condition of the irradiation experiments.

  2. Estimation of irradiation temperature within the irradiation program Rheinsberg

    International Nuclear Information System (INIS)

    The temperature monitoring within the irradiation programme Rheinsberg II was performed by diamond powder monitors. The method bases on the effect of temperature on the irradiation-induced increase of the diamond lattice constant. The method is described by a Russian code. In order to determine the irradiation temperature, the lattice constant is measured by means of a X-ray diffractometer after irradiation and subsequent isochronic annealing. The kink of the linearized temperature-lattice constant curves provides a value for the irradiation temperature. It has to be corrected according to the local neutron flux. The results of the lattice constant measurements show strong scatter. Furthermore there is a systematic error. The results of temperature monitoring by diamond powder are not satisfying. The most probable value lays within 255 C and 265 C and is near the value estimated from the thermal condition of the irradiation experiments. (orig.)

  3. Influence of oxygen impurity atoms on defect clusters and radiation hardening in neutron-irradiated vanadium

    International Nuclear Information System (INIS)

    Single crystal TEM samples and polycrystalline tensile samples of vanadium containing 60-640 wt ppm oxygen were irradiated at about 1000C to about 1.3 x 1019 neutrons/cm2 (E greater than 1 MeV) and post-irradiation annealed up to 8000C. The defect cluster density increased and the average size decreased with increasing oxygen concentration. Higher oxygen concentrations caused the radiation hardening and radiation-anneal hardening to increase. The observations are consistent with the nucleation of defect clusters by small oxygen or oxygen-point defect complexes and the trapping of oxygen at defect clusters upon post-irradiation annealing

  4. Gemstone dedicated gamma irradiation development

    Energy Technology Data Exchange (ETDEWEB)

    Omi, Nelson M.; Rela, Paulo R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: nminoru@ipen.br; prela@ipen.br

    2007-07-01

    The gemstones gamma irradiation process to enhance the color is widely accepted for the jewelry industry. These gems are processed in conventional industrial gamma irradiation plant which are optimized for other purposes, using underwater irradiation devices with high rejection rate due to its poor dose uniformity. A new conception design, which states the working principles and manufacturing ways of the device, was developed in this work. The suggested device's design is based on the rotation of cylindrical baskets and their translation in circular paths inside and outside a cylindrical source rack as a planetary system. The device is meant to perform the irradiation in the bottom of the source storage pool, where the sources remain always shielded by the water layer. The irradiator matches the Category III IAEA classification. To verify the physical viability of the basic principle, tests with rotating cylindrical baskets were performed in the Multipurpose Irradiator constructed in the CTR, IPEN. Also, simulations using the CADGAMMA software, adapted to simulate underwater irradiations, were performed. With the definitive optimized irradiator, the irradiation quality will be enhanced with better dose control and the production costs will be significantly lower than market prices due to the intended treatment device's optimization. This work presents some optimization parameters and the expected performance of the irradiator. (author)

  5. Food irradiation - the retailer's view

    International Nuclear Information System (INIS)

    During October-November 1978 consignments of irradiated and non-irradiated strawberries were offered for sale in three branches of OK Bazaars. Samples were also subjected to simulated store conditions and the shelf life of both irradiated and non-irradiated packs determined. Irradiated packs were unaffected by decay until the 15th day of storage while the non-irradiated packs started to show signs of decay on the 7th day and were totally contaminated with fungus by the 14th day. In general, the response from the public was one of extreme interest and was to a large extent reflected in the encouraging sales. In March 1979, storage trials were carried out on green and ripe Keitt mangoes. The results of the trials show a marked increase in the shelf life of irradiated mangoes. The problems which exist with regard to the quality of fresh mangoes, namely anthracnose, soft brown rot and mango weevil, were all effectively controlled by irradiation. It must be realised that irradiation is no panacea and is not a substitute for other methods of food preservation. Any future marketing trials must be carried out using exclusively irradiated fruit. The customer must have the opportunity of 'seeing' the better fruit and not comparing it with other fruit which may be so near over-ripening on display that the price may have been reduced. The trials are to be continued on a much larger scale

  6. Food Irradiation Development in Japan

    International Nuclear Information System (INIS)

    In Japan, the first food irradiation research was carried out on the preservation of fish and fishery products. In 1966, the Atomic Energy Commission of the Japanese Government (JAEC) decided to promote the National Project on Food Irradiation and, in 1967, the Steering Committee on food irradiation research in the Atomic Energy Bureau, Science and Technology-Agency, selected the following food items as of economic importance to the country, i.e., potatoes, onions, rice, wheat, ''Vienna'' sausage, ''kamaboko'' (fish meat jelly products) and mandarin oranges. The National Project is expected, to finish at the end of the 1981 fiscal year. Based on the studies by the National Project, irradiated potatoes were given ''unconditional acceptance'' for human consumption in 1972. Already in 1973, a commercial potato irradiator was built at Shihoro, Hokkaido. In 1980, the Steering Committee submitted a final report on the effectiveness and wholesomeness studies on irradiated onions to the JAEC. This paper gives a brief explanation of the legal aspects of food irradiation in Japan, and the present status of wholesomeness studies on the seven items of irradiated foods. In addition, topics concerning food irradiation research on ''kamaboko'', especially on the effectiveness and a new detecting method for the irradiation treatment of these products, are outlined. (author)

  7. Facts about food irradiation: Microbiological safety of irradiated food

    International Nuclear Information System (INIS)

    This fact sheet considers the microbiological safety of irradiated food, with especial reference to Clostridium botulinum. Irradiated food, as food treated by any ''sub-sterilizing'' process, must be handled, packaged and stored following good manufacturing practices to prevent growth and toxin production of C. botulinum. Food irradiation does not lead to increased microbiological hazards, nor can it be used to save already spoiled foods. 4 refs

  8. Forsterite Amorphisation by Ion Irradiation: Monitoring by Infrared Spectroscopy

    CERN Document Server

    Brucato, J R; Baratta, G; Colangeli, L

    2003-01-01

    We present experimental results on crystal--amorphous transition of forsterite (Mg2SiO4) silicate under ion irradiation. The aim of this work is to study the structural evolution of one of the most abundant crystalline silicates observed in space driven by ion irradiation. To this aim, forsterite films have been sythesised in laboratory and irradiated with low energy (30--60 keV) ion beams. Structural changes during irradiation with H+, He+, C+, and Ar++ have been observed and monitored by infrared spectroscopy. The fraction of crystalline forsterite converted into amorphous is a function of the energy deposited by nuclear collision by ions in the target. Laboratory results indicate that ion irradiation is a mechanism potentially active in space for the amorphisation of silicates. Physical properties obtained in this work can be used to model the evolution of silicate grains during their life cycle from evolved stars, through different interstellar environments and up to be incorporated in Solar System object...

  9. Fundamentals of laser pulse irradiation of silicon

    International Nuclear Information System (INIS)

    A computer model has been developed to describe the space and time evolution of carrier concentration, carrier energy and lattice temperature during nanosecond and picosecond laser pulse irradiation of Si single crystals. In particular the dynamic response has been evaluated for energy density of the ps laser pulse below and above the density threshold for surface melting. The obtained data allow a comparison with time-resolved reflectivity measurements reported in the literature. The available data are fitted by the computer model assuming a relaxation time for the energy transfer from the carriers to the lattice of 1 ps. The validity of the thermal model used to describe laser annealing in the nanosecond regime is assessed. (author)

  10. Crystallization and crystal properties of squid rhodopsin

    OpenAIRE

    Murakami, Midori; Kitahara, Rei; Gotoh, Toshiaki; Kouyama, Tsutomu

    2007-01-01

    Truncated rhodopsin from the retina of the squid Todarodes pacificus was extracted and crystallized by the sitting-drop vapour-diffusion method. Hexagonal crystals grown in the presence of octylglucoside and ammonium sulfate diffracted to 2.8 Å resolution.

  11. Irradiation of fruit and vegetables

    International Nuclear Information System (INIS)

    There is likely to be less economic incentive to irradiate fruits and vegetables compared with applications which increase the safety of foods such as elimination of Salmonella or decontamination of food ingredients. Of the fruit and vegetable applications, irradiation of mushrooms may offer the clearest economic benefits in North-Western Europe. The least likely application appears to be sprout inhibition in potatoes and onions, because of the greater efficiency and flexibility of chemical sprout inhibitors. In the longer-term, combinations between irradiation/MAP/other technologies will probably be important. Research in this area is at an early stage. Consumer attitudes to food irradiation remain uncertain. This will be a crucial factor in the commercial application of the technology and in the determining the balance between utilisation of irradiation and of technologies which compete with irradiation. (author)

  12. Food irradiation scenario in India

    International Nuclear Information System (INIS)

    Over 3 decades of research and developmental effort in India have established the commercial potential for food irradiation to reduce post-harvest losses and to ensure food safety. Current regulations permit irradiation of onions, potatoes and spices for domestic consumption and operation of commercial irradiators for treatment of food. In May 1997 draft rules have been notified permitting irradiation of several additional food items including rice, wheat products, dry fruits, mango, meat and poultry. Consumers and food industry have shown a positive attitude to irradiated foods. A prototype commercial irradiator for spices set up by Board of Radiation and Isotope Technology (BRIT) is scheduled to commence operation in early 1998. A commercial demonstration plant for treatment of onions is expected to be operational in the next 2 years in Lasalgaon, Nashik district. (author)

  13. Gamma irradiation service in Mexico

    International Nuclear Information System (INIS)

    In 1980 it was installed in Mexico, on the National Institute of Nuclear Research, an irradiator model J S-6500 of a canadian manufacture. Actually, this is the greatest plant in the Mexican Republic that offers a gamma irradiation process at commercial level to diverse industries. However, seeing that the demand for sterilize those products were not so much as the irradiation capacity it was opted by the incursion in other types of products. During 17 years had been irradiated a great variety of products grouped of the following form: dehydrated foods, disposable products for medical use, cosmetics, medicaments, various. Nowadays the capacity of the irradiator is saturated virtue of it is operated the 24 hours during the 365 days of the year and only its operation is suspended by the preventive and corrective maintenance. However, the fresh food market does not be attended since this irradiator was designed for doses greater than 10 kGy (1.0 Mrad)

  14. Market testing of irradiated food

    International Nuclear Information System (INIS)

    Viet Nam has emerged as one of the three top producers and exporters of rice in the world. Tropical climate and poor infrastructure of preservation and storage lead to huge losses of food grains, onions, dried fish and fishery products. Based on demonstration irradiation facility pilot scale studies and marketing of irradiated rice, onions, mushrooms and litchi were successfully undertaken in Viet Nam during 1992-1998. Irradiation technology is being used commercially in Viet Nam since 1991 for insect control of imported tobacco and mould control of national traditional medicinal herbs by both government and private sectors. About 30 tons of tobacco and 25 tons of herbs are irradiated annually. Hanoi Irradiation Centre has been continuing open house practices for visitors from school, universities and various different organizations and thus contributed in improved public education. Consumers were found to prefer irradiated rice, onions, litchi and mushrooms over those nonirradiated. (author)

  15. CEFR Irradiation Test and Application

    International Nuclear Information System (INIS)

    China Experimental Fast Reactor (CEFR) has completed physics start-up tests in 2010 and connected the grid on 40%FP in 2011. During start-up tests, the special irradiation test subassembly has been developed for measurement of distribution of reaction rate, spectrum index and neutron spectrum by using activation method in lower power. Characteristic of neutron field for irradiation in CEFR has been researched by calculation and experiments. In future, CEFR will been operated as an irradiation test facility for fuel, material and other application, and some irradiation projects, such as irradiation of cladding material, MOX fuel and (U, Np)O2 pellet have been planned. Now some irradiation rigs have been developed. (author)

  16. Large area crystallization of amorphous Si with overlapping high repetition rate laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sang-Gil [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740 (United States); Gruber, Ivan [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740 (United States); Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, Sonneggstrasse 3, ETH Zurich, 8092 Zurich (Switzerland); Grigoropoulos, Costas P., E-mail: cgrigoro@me.berkeley.edu [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740 (United States); Poulikakos, Dimos [Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, Sonneggstrasse 3, ETH Zurich, 8092 Zurich (Switzerland); Moon, Seung-Jae [School of Mechanical Engineering, Hanyang University, 17 Haengdang1dong, Seondonggu, Seoul 133-791 (Korea, Republic of)

    2012-09-01

    This paper presents a pulsed laser crystallization technique, enabling large area crystallization of amorphous Si to produce grains having well-defined size and orientation. The method is developed by first determining the parameters influencing crystallization induced by single laser pulses of circular cross-sectional profile. In a second step, crystallization by overlapping round spots is examined. The experiments reveal three zones characterized by distinctly different crystallized morphologies following the laser irradiation. One of these zones corresponds to the regime of lateral crystal growth, wherein grains are driven towards the center of the spot by the radial temperature gradient. These findings are then applied to processing via line beam profiles that facilitate large area crystallization upon rapid translation of the specimen. Crystallization of extended areas hinges on the determination of the crystal growth length for a single spot. The pitch between successive pulses is then set on the basis of this information. It is shown that the pulse energy has only a weak effect on the crystal growth length. - Highlights: Black-Right-Pointing-Pointer Investigated lateral crystal growth in laser annealing of thin silicon films Black-Right-Pointing-Pointer Examined effects of laser beam profile and pulse energy on crystallization Black-Right-Pointing-Pointer Showed the dependence of lateral crystal growth length on laser fluence Black-Right-Pointing-Pointer Demonstrated large area film crystallization using overlapping laser pulses.

  17. Gamma irradiation of fruits

    International Nuclear Information System (INIS)

    At a Joint FAO/IAEA/WHO Expert Committee on Food Irradiation (JECFI) meeting held in 1976, recommendations were made to rationalize the unnecessarily elaborate wholesomeness evaluation procedures for irradiated foodstuffs. Irradiation at the commercially recommended doses did not adversely affect the constituents of mangoes, papayas, litchis and strawberries at the edible-ripe stage. These favourable radiation-chemical results justified the development of a theoretical model mango which could be used for extrapolation of wholesomeness data from an individual fruit species to all others within the same diet class. Several mathematical models of varying orders of sophistication were evolved. In all of them, it was assumed that the radiant energy entering the system reacted solely with water. The extent of the reaction of the other components of the model fruit with the primary water radicals was then determined. No matter which mathematical treatment was employed, it was concluded that the only components which would undergo significant modification would be the sugars. In order to extrapolate these data from the mango to other fruits, mathematical models of three fruits containing less sugar than the mango, viz. the strawberry, tomato and lemon, were compiled. With these models, the conclusion was reached that the theoretical degradation spectra of these fruits were qualitatively similar to the degradation pattern of the model mango. Theory was again substantiated by the practical demonstration of the protective effect of the sugars in the tomato and lemon. The decrease in radiation damage was enhanced by the mutual protection of the components of the whole synthetic fruits with ultimate protection being afforded by the biological systems of the real fruits

  18. Craniospinal irradiation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Scarlatescu, Ioana, E-mail: scarlatescuioana@gmail.com; Avram, Calin N. [Faculty of Physics, West University of Timisoara, Bd. V. Parvan 4, 300223 Timisoara (Romania); Virag, Vasile [County Hospital “Gavril Curteanu” - Oradea (Romania)

    2015-12-07

    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  19. Neoplasms in irradiated populations

    International Nuclear Information System (INIS)

    The paper describes the results of three prospective studies which have been ongoing for 25 years. The study populations include: (1) persons treated with x rays in infancy for alleged enlargement of the thymus gland; (2) persons treated in childhood with x rays and/or radium for lymphoid hyperplasia of the nasopharynx; and (3) women treated with x rays for acute postpartum mastitis. The studies have resulted in the quantification of risk for radiogenic thyroid and breast cancer for periods up to 40 years post irradiation

  20. Growth of dopamine crystals

    Science.gov (United States)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  1. National symposium on food irradiation

    International Nuclear Information System (INIS)

    This report contains abstracts of papers delivered at the National symposium on food irradiation held in Pretoria. The abstracts have been grouped into the following sections: General background, meat, agricultural products, marketing and radiation facilities - cost and plant design. Each abstract has been submutted separately to INIS. Tables listing irradiated food products cleared for human consumption in different countries are given as well as a table listing those irradiated food items that have been cleared in South Africa

  2. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  3. Crystallization from Gels

    Science.gov (United States)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  4. Laser patterning and morphology of two-dimensional planar ferroelastic rare-earth molybdate crystals on the glass surface

    International Nuclear Information System (INIS)

    Research highlights: → Two-dimensional planar ferroelastic β'-(Sm,Gd)2(MoO4)3 crystals are patterned on the glass surface by laser irradiations with a small pitch (0.7 μm) between laser irradiated parts. → A high orientation of crystals is confirmed from micro-Raman scattering spectrum and second harmonic intensity measurements, and the crystal growth direction is perpendicular to the laser scanning direction. → This study proposes the possibility of the control of crystal growth direction in laser-induced crystallization in glass. - Abstract: The laser-induced crystallization method is applied to pattern two-dimensional planar crystals consisting of ferroelastic β'-(Sm,Gd)2(MoO4)3 crystals (designated here as SGMO crystals) on the surface of Sm2O3-Gd2O3-MoO3-B2O3 glass. By scanning Yb:YVO4 fiber lasers (wavelength: 1080 nm) continuously with a small pitch (0.7 μm) between laser irradiated parts, planar SGMO crystals with periodic domain structures showing different refractive indices are patterned successfully, and a high orientation of SGMO crystals is confirmed from micro-Raman scattering spectrum and second harmonic intensity measurements. It is found that the crystal growth direction is perpendicular to the laser scanning direction. This relation, i.e., the perpendicular relation, is a different from the behavior in discrete crystal line patterning, where the crystal growth direction is consistent with the laser scanning direction. The present study proposes the possibility of the control of crystal growth direction in laser-induced crystallization in glasses.

  5. JRR-4 medical irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Torii, Y.; Yamamoto, K.; Hori, N.; Kumada, H.; Horiguchi, Y. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-11-01

    JAERI started Boron Neutron Capture Therapy (BNCT) at JRR-2 in 1990. JRR-2 was performed 33 BNCT until 1996 when JRR-2 operation was terminated for decommissioning the reactor. JRR-4 was constructed to research the reactor shielding of the first Japanese nuclear ship ''Mutsu'' in 1965. JRR-4 was modified for reducing fuel enrichment and constructing a new medical irradiation facility at 1997 when after the terminating operation of JRR-2. The medical irradiation facility is especially using for BNCT of brain cancer. JRR-4 medical irradiation facility was designed for both using of thermal neutron beam and epi-thermal neutron. Thermal neutron is using for conventional Japanese BNCT as inter operative irradiation therapy. Epi-thermal neutron beam will be using advanced BNCT for deep cancer and without craniotomy operation for irradiation at the facility. The first medical irradiation for BNCT of JRR-4 was carried out on October 25, 1999. Since then, seven times of irradiation was performed by the end of June 2000. In BNCT irradiation, boron concentration and thermal flux measurements were performed by JAERI. Boron concentration of patient brood was measured using prompt gamma ray analysis technique. Thermal neutron flux was measured by gold wire activation method using beta - gamma coincidence counting system. There data were furnished to medical doctor for determination the irradiation time of BNCT. (author)

  6. International Developments of Food Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, P. [Head, Food Preservation Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstr. 5, A-1400, Vienna (Austria)

    1997-12-31

    Food irradiation is increasingly accepted and applied in many countries in the past decade. Through its use, food losses and food-borne diseases can be reduced significantly, and wider trade in many food items can be facilitated. The past five decades have witnessed a positive evolution on food irradiation according to the following: 1940`s: discovery of principles of food irradiation; 1950`s: initiation of research in advanced countries; 1960`s: research and development were intensified in some advanced and developing countries; 1970`s: proof of wholesomeness of irradiated foods; 1980`s: establishment of national regulations; 1990`s: commercialization and international trade. (Author)

  7. International Developments of Food Irradiation

    International Nuclear Information System (INIS)

    Food irradiation is increasingly accepted and applied in many countries in the past decade. Through its use, food losses and food-borne diseases can be reduced significantly, and wider trade in many food items can be facilitated. The past five decades have witnessed a positive evolution on food irradiation according to the following: 1940's: discovery of principles of food irradiation; 1950's: initiation of research in advanced countries; 1960's: research and development were intensified in some advanced and developing countries; 1970's: proof of wholesomeness of irradiated foods; 1980's: establishment of national regulations; 1990's: commercialization and international trade. (Author)

  8. Societal benefits of food irradiation

    International Nuclear Information System (INIS)

    Food irradiation has a direct impact on society by reducing the occurrence of food-borne illness, decreasing food spoilage and waste, and facilitating global trade. Food irradiation is approved in 40 countries around the world to decontaminate food of disease and spoilage causing microorganisms, sterilize insect pests, and inhibit sprouting. A recent estimate suggests that 500,000 metric of food is currently irradiated worldwide, primarily to decontaminate spices. Since its first use in the 1960s the use of irradiation for food has grown slowly, but it remains the major technology of choice for certain applications. The largest growth sector in recent years has been phytosanitary irradiation of fruit to disinfest fruit intended for international shipment. For many countries which have established strict quarantine standards, irradiation offers as an effective alternative to chemical fumigants some of which are being phased out due to their effects on the ozone layer. Insects can be sterilized at very low dose levels, thus quality of fruit can be maintained. Irradiation is also highly effective in destroying microbial pathogens such as Salmonella spp., E. coli, and Listeria, hence its application for treatment of spices, herbs, dried vegetables, frozen seafood, poultry, and meat and its contribution to reducing foodborne illnesses. Unfortunately the use of irradiation for improving food safety has been under-exploited. This presentation will provide details on the use, benefits, opportunities, and challenges of food irradiation. (author)

  9. Protein Crystal Based Nanomaterials

    Science.gov (United States)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  10. Artistic Crystal Creations

    Science.gov (United States)

    Lange, Catherine

    2008-01-01

    In this inquiry-based, integrative art and science activity, Grade 5-8 students use multicolored Epsom salt (magnesium sulfate) crystallizing solutions to reveal beautiful, cylindrical, 3-dimensional, needle-shaped structures. Through observations of the crystal art, students analyze factors that contribute to crystal size and formation, compare…

  11. Food irradiation and sterilization

    International Nuclear Information System (INIS)

    Radiation sterilization of food (radappertization) requires exposing food in sealed containers to ionizing radiation at absorbed doses high enough (25 to 70 kGy) to kill all organisms of food spoilage and public health significance. Radappertization is analogous to thermal canning in achieving shelf stability (long term storage without refrigeration). Except for dry products in which autolysis is negligible, the radappertization process also requires that the food be heated to an internal temperature of 70 to 800C (bacon to 530C) to inactivate autolytic enzymes which catalyze spoilage during storage without refrigeration. To minimize the occurrence of irradiation induced off-flavors and odors, undesirable color changes, and textural and nutritional losses from exposure to the high doses required for radappertization, the foods are vacuum sealed and irradiated frozen (-400C to -200C). Radappertized foods have the characteristic of fresh foods prepared for eating. Radappertization can substitute in whole or in part for some chemical food additives such as ethylene oxide and nitrites which are either toxic, carcinogenic, mutagenic, or teratogenic. After 27 years of testing for 'wholesomeness' (safety for consumption) of radappertized foods, no confirmed evidence has been obtained of any adverse effects of radappertization on the 'wholesomeness' characteristics of these foods. (author)

  12. Generic phytosanitary irradiation treatments

    International Nuclear Information System (INIS)

    The history of the development of generic phytosanitary irradiation (PI) treatments is discussed beginning with its initial proposal in 1986. Generic PI treatments in use today are 150 Gy for all hosts of Tephritidae, 250 Gy for all arthropods on mango and papaya shipped from Australia to New Zealand, 300 Gy for all arthropods on mango shipped from Australia to Malaysia, 350 Gy for all arthropods on lychee shipped from Australia to New Zealand and 400 Gy for all hosts of insects other than pupae and adult Lepidoptera shipped to the United States. Efforts to develop additional generic PI treatments and reduce the dose for the 400 Gy treatment are ongoing with a broad based 5-year, 12-nation cooperative research project coordinated by the joint Food and Agricultural Organization/International Atomic Energy Agency Program on Nuclear Techniques in Food and Agriculture. Key groups identified for further development of generic PI treatments are Lepidoptera (eggs and larvae), mealybugs and scale insects. A dose of 250 Gy may suffice for these three groups plus others, such as thrips, weevils and whiteflies. - Highlights: ► The history of phytosanitary irradiation (PI) treatments is given. ► Generic PI treatments in use today are discussed. ► Suggestions for future research are presented. ► A dose of 250 Gy for most insects may suffice.

  13. Food irradiation and sterilization

    Science.gov (United States)

    Josephson, Edward S.

    Radiation sterilization of food (radappertization) requires exposing food in sealed containers to ionizing radiation at absorbed doses high enough (25-70 kGy) to kill all organisms of food spoilage and public health significance. Radappertization is analogous to thermal canning is achieving shelf stability (long term storage without refrigeration). Except for dry products in which autolysis is negligible, the radappertization process also requires that the food be heated to an internal temperature of 70-80°C (bacon to 53°C) to inactivate autolytic enzymes which catalyze spoilage during storage without refrigeration. To minimize the occurence of irradiation induced off-flavors and odors, undesirable color changes, and textural and nutritional losses from exposure to the high doses required for radappertization, the foods are vacuum sealed and irradiated frozen (-40°C to -20°C). Radappertozed foods have the characteristic of fresh foods prepared for eating. Radappertization can substitute in whole or in part for some chemical food additives such as ethylene oxide and nitrites which are either toxic, carcinogenic, mutagenic, or teratogenic. After 27 years of testing for "wholesomeness" (safety for consumption) of radappertized foods, no confirmed evidence has been obtained of any adverse effecys of radappertization on the "wholesomeness" characteristics of these foods.

  14. Facts about food irradiation: Irradiation and food safety

    International Nuclear Information System (INIS)

    This fact sheet focusses on the question of whether irradiation can be used to make spoiled food good. No food processing procedures can substitute for good hygienic practices, and good manufacturing practices must be followed in the preparation of food whether or not the food is intended for further processing by irradiation or any other means. 3 refs

  15. Food irradiation development: Malaysian perspective

    International Nuclear Information System (INIS)

    Malaysia recognised the potential of food irradiation as a technology that can contribute to solving some preservation problems associated with local agricultural produce. Research studies in this technology were initiated in late 1970s and since 1985, all activities pertaining to R and D applications, adoption and technology transfer of food irradiation were coordinated by The National Working Committee on Food Irradiation which comprises of members from research institutes, universities, regulatory agencies and consumer association. To date, technical feasibility studies conducted on 7 food items / agricultural commodities of economic importance demonstrated the efficacy of irradiation in extending shelf-life, improving hygienic quality and overcoming quarantine barriers in trade. Presently, 1 multipurpose Co-60 irradiator (I MCi), 2 gammacells and an electron beam machine (3 MeV) are available at MINT for research and commercial runs. The Malaysian Standards on Guidelines for Irradiation of Food was formulated in 1992 to facilitate application by local food industries. However, Malaysia has not yet commercially adopt the technology. Among many factors contributing to the situation is the apparent lack of interest by food industries and consumers. Consumer attitude study indicated majority of consumers are still unaware of the benefits of the technology and expressed concern for the safety of process and irradiated products due to limited knowledge and adverse publicity by established consumer groups. Although the food processors indicate positive attitude towards food irradiation, there remain many factors delaying its commercial application such as limited knowledge, cost-benefit, logistics and consumer acceptance. On the regulatory aspect, approval is required from the Director-General of Ministry of Health prior to application of irradiation on food and sale of irradiated food but efforts are being geared towards approving irradiation of certain food

  16. Consumer acceptance of irradiated poultry

    International Nuclear Information System (INIS)

    A simulated supermarket setting (SSS) test was conducted to determine whether consumers (n = 126) would purchase irradiated poultry products, and the effects of marketing strategies on consumer purchase of irradiated poultry products. Consumer preference for irradiated poultry was likewise determined using a home-use test. A slide program was the most effective educational strategy in changing consumers' purchase behavior. The number of participants who purchased irradiated boneless, skinless breasts and irradiated thighs after the educational program increased significantly from 59.5 and 61.9% to 83.3 and 85.7% for the breasts and thighs, respectively. Using a label or poster did not increase the number of participants who bought irradiated poultry products. About 84% of the participants consider it either 'somewhat necessary' or 'very necessary' to irradiate raw chicken and would like all chicken that was served in restaurants or fast food places to be irradiated. Fifty-eight percent of the participants would always buy irradiated chicken if available, and an additional 27% would buy it sometimes. About 44% of the participants were willing to pay the same price for irradiated chicken as for nonirradiated. About 42% of participants were willing to pay 5% or more than what they were currently paying for nonirradiated chicken. Seventy-three percent or more of consumers who participated in the home-use test (n = 74) gave the color, appearance, and aroma of the raw poultry products a minimum rating of 7 (= like moderately). After consumers participated in a home-use test, 84 and 88% selected irradiated thighs and breasts, respectively, over nonirradiated in a second SSS test

  17. In-situ monitor of insulator to metal transition in SrTiO3 by Ar+ irradiation

    Science.gov (United States)

    Wang, Qiuru; Zhang, Wanli; Zhang, Wenxu; Zeng, Huizhong

    2016-03-01

    Metallic conduction layer produced by the irradiation of the SrTiO3 surface is an intriguing phenomenon, where the process and mechanism of the insulating to conducting transition are still under debate. We have studied the influence of argon ion bombardment on the SrTiO3 (STO) single crystal by X-ray Photoelectron Spectroscopy (XPS) and Photoluminescence (PL). The former demonstrated the existence of a lower oxidation state of Ti, which implied oxygen vacancies were present at the near-surface region. The latter showed that the oxygen damage enhanced with increasing irradiation time, and decreased by annealing in oxygen at high temperature. The in-situ electrical conductance measurement during irradiation revealed the correlation between the resistance of ion-irradiated STO and the irradiation time. The existence of sufficient amount of oxygen vacancies was proposed to be responsible to the insulator to metal transition during the process of irradiation.

  18. Irradiation effects and diffusion of fission products (cesium and iodine) in silicon carbide; Effets d'irradiation et diffusion des produits de fission (cesium et iode) dans le carbure de silicium

    Energy Technology Data Exchange (ETDEWEB)

    Audren, A

    2007-03-15

    Silicon carbide is envisaged as a cladding material for the nuclear fuel in the fourth generation reactors. The aim of this work is to study the capacity to retain fission products and the structure evolution of this material under the combined effects of temperature and irradiation. The low energy ion implantations and the incorporation of stable analogues of fission products (Cs and I) in single crystalline 6H-SiC samples were performed by using the ion implanter or the accelerator of the CSNSM. The high energy heavy ion irradiations were made at GANIL. The evolution of the implanted ion profiles and the crystal structure were studied by RBS and Channeling. Complementary information were obtained by using the UV-visible absorption spectroscopy. The low energy ion implantations at room temperature induce a fast structural damage in the crystal. On the other hand, it is possible to attain a small disorder rate in the crystal during implantation by increasing the implantation temperature (600 C). The high energy heavy ion irradiations do not damage the SiC crystals. On the contrary, they cause an annealing of the disorder created by the low energy implantations. The implanted ions (I) do not diffuse during low or high energy ion irradiations at room temperature and at 600 C. However, a diffusion of Cs ions was observed during a post-implantation annealing at 1300 C. At this temperature, the crystal which had an extended amorphous layer starts to recover a single-crystal structure. (author)

  19. Cooler for obtaining crystals

    Energy Technology Data Exchange (ETDEWEB)

    Cabric, B.; Danilovic, N. [Faculty of Sciences, P.O. Box 60, 34000 Kragujevac (RS); Pavlovic, T. [Faculty of Sciences, P.O. Box 224, 18000 Nis (RS)

    2011-03-15

    A modular air-cooled tube, with a series of movable Tamman test tubes or plugs (modular unilateral and bilateral ''crystallization comb''), installed in a laboratory tube furnace is presented. The setup allows easy regulation and simultaneous crystallization tests of a series of different crystallization parameters in crucible columns, enabling rapid acquisition of crystals. The relationship between the crystallization parameters has been given and numerically analyzed. This method can also be applied in crucible and chamber furnaces. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Detection methods of irradiated foodstuffs

    International Nuclear Information System (INIS)

    Full text: Food irradiation has, in certain circumstances, an important role to play both in promoting food safety and in reducing food losses. The safety and availability of nutritious food are essential components of primary health care. WHO actively encourages the proper use of food irradiation in the fight against foodborne diseases and food losses. To this end, it collaborates closely with FAO and IAEA. Food irradiation can have a number of beneficial effects, including delay of ripening and prevention of sprouting; control of insects, parasites, helminths, pathogenic and spoilage bacteria, moulds and yeasts; and sterilization, which enables commodities to be stored unrefrigerated for long periods. The 1990s witnessed a significant advancement in food irradiation processing. As a result, progress has been made in commercialization of the technology, culminating in greater international trade in irradiated foods and the implementation of differing regulations relating to its use in many countries. Codex General Standard for Irradiated Foodstuffs and Recommended International Code of Practice for the Operation of Irradiation Facilities Used for the Treatment of Foods regulate food irradiation at international level. At European Union level there are in power Directive 1999/2/EC and Directive1999/3/EC. Every particular country has also its own regulations regarding food irradiation. In Romania, since 2002 the Norms Regarding Foodstuffs and Food Ingredients Treated by Ionizing Radiation are in power. These Norms are in fact the Romanian equivalent law of the European Directives 1999/2/EC and 1999/3/EC. The greater international trade in irradiated foods has led to the demand by consumers that irradiated food should be clearly labeled as such and that methods capable of differentiating between irradiated and nonirradiated products should be available. Thus a practical basis was sought to allow consumers to exercise a free choice as to which food they purchase. If a

  1. Welding Molecular Crystals.

    Science.gov (United States)

    Adolf, Cyril R R; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2015-12-16

    Both for fundamental and applied sciences, the design of complex molecular systems in the crystalline phase with strict control of order and periodicity at both microscopic and macroscopic levels is of prime importance for development of new solid-state materials and devices. The design and fabrication of complex crystalline systems as networks of crystals displaying task-specific properties is a step toward smart materials. Here we report on isostructural and almost isometric molecular crystals of different colors, their use for fabrication of core-shell crystals, and their welding by 3D epitaxial growth into networks of crystals as single-crystalline entities. Welding of crystals by self-assembly processes into macroscopic networks of crystals is a powerful strategy for the design of hierarchically organized periodic complex architectures composed of different subdomains displaying targeted characteristics. Crystal welding may be regarded as a first step toward the design of new hierarchically organized complex crystalline systems. PMID:26581391

  2. Tin-vacancy acceptor levels in electron-irradiated n-type silicon

    DEFF Research Database (Denmark)

    Larsen, A. Nylandsted; Goubet, J. J.; Mejlholm, P.;

    2000-01-01

    Si crystals (n-type, fz) with doping levels between 1.5x10(14) and 2x10(16)cm(-3) containing in addition similar to 10(18) Sn/cm(3) were irradiated with 2-MeV electrons to different doses and subsequently studied by deep level transient spectroscopy, Mossbauer spectroscopy, and positron annihilat...

  3. Tests for mutagencity of free radicals formed in irradiated sugars and amino acids

    International Nuclear Information System (INIS)

    Radicals formed in gamma-irradiated crystals of galactose and glycine were found, upon dissolution, to cause mutagenesis of Salmonella typhimurium strains TA-98 and TA-100. Although the reproducibility of the results has not been adequately determined, they suggest the possibility of developing a test to measure the mutagenic-carcinogenic potential of radiation-induced free radicals with a microbial system

  4. National symposium on food irradiation

    International Nuclear Information System (INIS)

    This report contains proceedings of papers delivered at the national symposium on food irradiation held in Pretoria. The proceedings have been grouped into the following sections: general background; meat; agricultural products; marketing; and radiation facilities - cost and plant design. Each paper has been submitted separately to INIS. Tables listing irradiated food products cleared for human consumption in different countries are given

  5. Nutritional aspects of irradiated shrimp

    International Nuclear Information System (INIS)

    Data available in the literature on the nutritional aspects of irradiated shrimp are reviewed and the indication is that irradiation of shrimp at doses up to about 3.2 kGy does not significantly affect the levels of its protein, fat, carbohydrate and ash. There are no reports on the effect of irradiation of shrimp above 3.2 kGy on these components. Limited information available indicates that there are some minor changes in the fatty acid composition of shrimp as a result of irradiation. Irradiation also causes some changes in the amino acid composition of shrimp; similar changes occur due to canning and hot-air drying. Some of the vitamins in shrimp, such as thiamine, are lost as a result of irradiation but the loss is less extensive than in thermally processed shrimp. Protein quality of shrimp, based on the growth of rats as well as that of Tetrahymena pyriformis, is not affected by irradiation. No adverse effects attributed to irradiation were found either in short-term or long-term animal feeding tests

  6. Craniospinal irradiation using Rapid Arc

    Energy Technology Data Exchange (ETDEWEB)

    Fandino, J. M.; Silva, M. C.; Marino, A.; Candal, A.; Diaz, I.; Fernandez, C.; Gesto, C.; Izquierdo, P.; Losada, C.; Poncet, M.; Soto, M.; Triana, G.

    2013-07-01

    Cranio-Spinal Irradiation is technically very challenging, historically field edge matching is needed because of the mechanical limitations of standard linear accelerators. The purpose of this study is to assess the Volumetric Arc Therapy as a competitive technique for Cranio-Spinal Irradiation compared to the conventional 3D Conformal Radiotherapy technique. (Author)

  7. Elastic wave from fast heavy ion irradiation on solids

    CERN Document Server

    Kambara, T; Kanai, Y; Kojima, T M; Nanai, Y; Yoneda, A; Yamazaki, Y

    2002-01-01

    To study the time-dependent mechanical effects of fast heavy ion irradiations, we have irradiated various solids by a short-bunch beam of 95 MeV/u Ar ions and observed elastic waves generated in the bulk. The irradiated targets were square-shaped plates of poly-crystals of metals (Al and Cu), invar alloy, ceramic (Al sub 2 O sub 3), fused silica (SiO sub 2) and single crystals of KC1 and LiF with a thickness of 10 mm. The beam was incident perpendicular to the surface and all ions were stopped in the target. Two piezo-electric ultrasonic sensors were attached to the surface of the target and detected the elastic waves. The elastic waveforms as well as the time structure and intensity of the beam bunch were recorded for each shot of a beam bunch. The sensor placed opposite to the beam spot recorded a clear waveform of the longitudinal wave across the material, except for the invar and fused silica targets. From its propagation time along with the sound velocity and the thickness of the target, the depth of the...

  8. The crystal counter : A new apparatus in nuclear physics for the investigation of β- and γ-rays. Part II

    NARCIS (Netherlands)

    Heerden, P.J. van; Milatz, J.M.W.

    1950-01-01

    AgCl crystals were irradiated with monochromatic β-rays in a magnetic β-ray spectrograph. The results show that under suitable experimental conditions in the crystal all β-rays of a certain energy cause ionisation pulses of the same value within the errors of measurement. The magnitude of an ionisat

  9. Commercial implementation of food irradiation

    Science.gov (United States)

    Welt, M. A.

    In July 1981, the first specifically designed multi-purpose irradiation facility for food irradiation was put into service by the Radiation Technology, Inc. subsidiary Process Technology, Inc. in West Memphis, Arkansas. The operational experience gained, resulted in an enhanced design which was put into commercial service in Haw River, North Carolina, by another subsidiary, Process Technology (N.C.), Inc. in October 1983. These facilities have enabled the food industry to assess the commercial viability of food irradiation. Further impetus towards commercialization of food irradiation was gained in March 1981 with the filing in the Federal Register, by the FDA, of an Advanced Proposed Notice of Rulemaking for Food Irradiation. Two years later in July 1983, the FDA approved the first food additive regulation involving food irradiation in nineteen years, when they approved the Radiation Technology, Inc. petition calling for the sanitization of spices, onion powder and garlic powder at a maximum dosage of 10 kGy. Since obtaining the spice irradiation approval, the FDA has accepted four additional petitions for filing in the Federal Register. One of the petitions which extended spice irradiation to include insect disinfestation has issued into a regulation while the remaining petitions covering the sanitization of herbs, spice blends, vegetable seasonings and dry powdery enzymes as well as the petition to irradiate hog carcasses and pork products for trichinae control at 1 kGy, are expected to issue either before the end of 1984 or early in 1985. More recently, food irradiation advocates in the United States received another vote of confidence by the announcement that a joint venture food irradiation facility to be constructed in Hawaii by Radiation Technology, is backed by a contractual committment for the processing of 40 million pounds of produce per year. Another step was taken when the Port of Salem, New Jersey announced that the Radiation Technology Model RT-4104

  10. Eatability of the irradiated food

    International Nuclear Information System (INIS)

    A food is eatable and innocuous when it has an acceptable nutritional quality, it is toxicological and microbiologically safe for the human consumption. Not one preservation treatment allows to assure this in absolute form. As it happens with other conservation methods, the irradiation produce biological, chemical and physical changes in the treated food. For to check if such changes could cause damages to the health of the consumer, its have been carried out extensive studies to evaluate the inoculate of the irradiated foods. Analyzing diverse toxicity studies to prove the eatability of the irradiated foods, in this work those are presented but important in chronological order. In summary, until today it exists a great heap of tests that they demonstrate without place to doubts that the foods irradiated with a dose up to 10 KGy its are capable for the human consumption, for what can to be concluded that a safety margin exists to consume foods irradiated. (Author)

  11. Irradiation environment and materials behavior

    International Nuclear Information System (INIS)

    Irradiation environment is unique for materials used in a nuclear energy system. Material itself as well as irradiation and environmental conditions determine the material behaviour. In this review, general directions of research and development of materials in an irradiation environment together with the role of materials science are discussed first, and then recent materials problems are described for energy systems which are already existing (LWR), under development (FBR) and to be realized in the future (CTR). Topics selected are (1) irradiation embrittlement of pressure vessel steels for LWRs, (2) high fluence performance of cladding and wrapper materials for fuel subassemblies of FBRs and (3) high fluence irradiation effects in the first wall and blanket structural materials of a fusion reactor. Several common topics in those materials issues are selected and discussed. Suggestions are made on some elements of radiation effects which might be purposely utilized in the process of preparing innovative materials. (J.P.N.) 69 refs

  12. Consumer acceptance of irradiated food

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, P. [Head, Food Preservation Section, Joint FAO/ IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstr. 5, A-1400, Vienna (Austria)

    1997-12-31

    There was a widely held opinion during the 1970`s and 1980`s that consumers would be reluctant to purchase irradiated food, as it was perceived that consumers would confuse irradiated food with food contaminated by radionuclides. Indeed, a number of consumer attitude surveys conducted in several western countries during these two decades demonstrated that the concerns of consumers on irradiated food varied from very concerned to seriously concerned.This paper attempts to review parameters conducting in measuring consumer acceptance of irradiated food during the past three decades and to project the trends on this subject. It is believed that important lessons learned from past studies will guide further efforts to market irradiated food with wide consumer acceptance in the future. (Author)

  13. Food irradiation seminar: Asia and the Pacific

    International Nuclear Information System (INIS)

    The report covers the Seminar for Asia and the Pacific on the practical application of food irradiation. The seminar assessed the practical application of food irradiation processes, commercial utilisation and international trade of irradiated food

  14. Neutrons from Antiproton Irradiation

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael; Petersen, Jørgen B.B.

    the volume targeted for irradiation. A major part of this peripheral dose arise from neutrons, which in particular are problematic due to their high RBE for secondary cancer incidence. We have measured the fast and thermal neutron spectrum in different geometrical configurations in order to experimentally...... the neutron spectrum. Additionally, we used a cylindrical polystyrene loaded with several pairs of thermoluminescent detectors containing Lithium-6 and Lithium-7, which effectively detects thermalized neutrons. The obtained results are compared with FLUKA imulations. Results: The results obtained...... the annihilation vertex inside the polystyrene phantom produced a response which corresponds to a neutron fluence of 8000 neutrons/cm2 per 107 antiprotons. This is equivalent to a neutron kerma of 1.4e-9 Gy (adult brain) per 107 antiprotons following ICRU 46. Conclusion: The thermalized part of the neutron...

  15. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    Science.gov (United States)

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; Garrison, Lauren M.; Snead, Lance L.; Katoh, Yutai; Hasegawa, Akira

    2016-10-01

    Neutron irradiation to single crystal pure tungsten was performed in the mixed spectrum High Flux Isotope Reactor (HFIR). To investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ∼90-∼800 °C and fast neutron fluences were 0.02-9.00 × 1025 n/m2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. The hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 1025 n/m2 (E > 0.1 MeV). Irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 1025 n/m2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.

  16. Effects of Irradiation on the Structure-activity Relationship of Konjac Glucomannan Molecular Chain Membrane

    Institute of Scientific and Technical Information of China (English)

    WU Chun-Hua; PENG Shu-Hui; WEN Cheng-Rong; WANG Li-Xia; XIONG Bo; LIU Ya-Nan; FAN Lin-Lin; YAO Min-Na; PANG Jie

    2012-01-01

    To know the effects of irradiation on the konjac glucomannan (KGM) molecular chain membrane, KGM membrane solution was treated with the irradiation dose of 0-20 kGy in this study, and the structure and properties of KGM membrane were analyzed with Infrared spectrum, Raman spectrum, X-ray, SEM scanning and so on. The results revealed that the effects of different irradiation doses on the KGM molecular chain structure were different. Higher irradiation dose (20 kGy) resulted in partial damage against KGM membrane crystal structure, and there was no obvious change for the amorphous structure; with membrane property test, the tensile strength of KGM membrane gradually increased with the increase of irradiation dose and its elongation at break reduced, but these changes were not significant, WVP value reduced; with SEM, the membrane surface treated with irradiation was smoother even than the membrane without treatment. In addition, when increasing the irradiation dose, membrane surface became more even, and arrangement was more orderly and compact. KGM membrane nrooerties, and it is an ideal Irradiation modification could effectively improve the modification method.

  17. Natural sunlight irradiated flower-like CuS synthesized from DMF solvothermal treatment

    Science.gov (United States)

    Zhao, Wei; Wang, Zihao; Zhou, Lei; Liu, Nianqi; Wang, Hongxing

    2016-09-01

    Three-dimensional CuS hierarchical crystals with high catalytic activity had been successfully fabricated using a facile solvothermal process. The CuS microparticles showed different flower-like morphology and good dispersion by optimizing reaction conditions. It was found that using N,N-dimethylformamide (DMF) as the solvent reagent in the proper temperature conditions was favorable for the growth of hierarchically structured CuS. The hexagonal flower-like CuS synthesized at 170°C for 60 min displayed broad-spectrum photocatalytic properties under ultraviolet (UV) and visible irradiation. The as-prepared CuS crystals exhibited good performance to decolorize methylene blue (MB) solution under visible light irradiation. The total organic carbon (TOC) removal of rhodamine B (RhB) solution was nearly 60% after 5 h of the natural sunlight irradiation, and the property was stable after testing over four recycles, demonstrating a potential application in waster water treatment.

  18. Monte Carlo simulations of CsI(Tl) scintillation crystals for use in a three-dimensional megavoltage CT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Mosleh-Shirazi, M.A. (Joint Department of Physics, Institute of Cancer Research and Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)); Swindell, W. (Joint Department of Physics, Institute of Cancer Research and Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)); Evans, P.M. (Joint Department of Physics, Institute of Cancer Research and Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom))

    1994-09-01

    A Monte Carlo model has been devised for a study of the effects of various scintillation crystal parameters on light irradiance upon a remote lens. The purpose of these simulations is to optimise the design of the scintillation crystal array for our 3-D megavoltage CT scanner. The scanner will be attached to the gantry of a linear accelerator and will be implemented to measure and reduce errors in patient positioning during a course of cancer treatment with radiotherapy. The scintillator studied here is CsI(Tl) irradiated with 6 MV X-rays. The angular distributions of light emerging from crystals coated with specular and lambertian reflectors are compared. The effect of crystal size on the light output of crystals coated with the above reflectors is shown. The relative dependence of light output (to a remote lens) on crystal optical attenuation length and coating reflectivity is demonstrated. Comparison with some experimental data is also included. ((orig.))

  19. Optical and rheological study of gamma irradiated rare-earth nanoparticle based ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Nibedita [Nanoscience and Soft Matter Laboratory, Department of Physics, Tezpur University, PO Napaam, Tezpur 784 028, Assam (India); Mohanta, Dambarudhar, E-mail: best@tezu.ernet.in [Nanoscience and Soft Matter Laboratory, Department of Physics, Tezpur University, PO Napaam, Tezpur 784 028, Assam (India); Department of Physics, School of Engineering and Applied Sciences, Harvard University, MA 02138 (United States); Saha, Abhijit [UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata 700 098 (India)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Gd{sub 2}O{sub 3} nanoparticle based ferrofluids have been produced with ethanol as carrier medium. Black-Right-Pointing-Pointer PL emission show improvement in defect related emission with {gamma}-irradiation dose. Black-Right-Pointing-Pointer The ferrofluids show shear thinning behavior with bi-exponential decay characteristics. Black-Right-Pointing-Pointer Fast and slow components are found to increase with irradiation dose. - Abstract: The present work reports on the optical and rheological properties of unexposed and gamma irradiated rare-earth (RE) oxide nanoparticle-based ferrofluids (FF). The ferrofluids were prepared by dispersing surfactant coated gadolinium oxide (Gd{sub 2}O{sub 3}) nanoparticles in ethanol medium and later on subjected to energetic gamma irradiation (1.25 MeV) at select doses. As predicted from transmission electron microscopy and X-ray diffraction (XRD) studies, the synthesized nanoparticles are of {approx}7 nm size which crystallize into cubic crystal structure. The photoluminescence response reveals creation of defect states on nanoparticle surfaces when FFs are subjected to gamma irradiation. Whereas, rheology measurements showed unusual shear thinning behavior of the ferrofluids. The flow behavior of all the samples can be correlated to the bi-exponential decay curve fitting which reveals that decay phenomenon is governed by two independent mechanism: fast and slow events. The variation of the decay parameter with irradiation dose is attributed to the creation of point defects and weakening of inter nanoparticle bonding.

  20. Threshold irradiation dose for amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.

  1. Microstructure and nanoindentation of the CLAM steel with nanocrystalline grains under Xe irradiation

    Science.gov (United States)

    Chang, Yongqin; Zhang, Jing; Li, Xiaolin; Guo, Qiang; Wan, Farong; Long, Yi

    2014-12-01

    This work presents an early look at irradiation effects on China low activation martensitic (CLAM) steel with nanocrystalline grains (NC-CLAM steels) under 500 keV Xe-ion bombardment at room temperature to doses up to 5.3 displacements per atom (dpa). The microstructure in the topmost region of the steel is composed of nanocrystalline grains with an average diameter of 13 nm. As the samples were implanted at low dose, the nanocrystalline grains had martensite lath structure, and many dislocations and high density bubbles were introduced into the NC-CLAM steels. As the irradiation dose up to 5.3 dpa, a tangled dislocation network exists in the lath region, and the size of the bubbles increases. X-ray diffraction results show that the crystal quality decreases after irradiation, although the nanocrystals obviously coarsen. Grain growth under irradiation may be ascribed to the direct impact of the thermal spike on grain boundaries in the NC-CLAM steels. In irradiated samples, a compressive stress exists in the surface layer because of grain growth and irradiation-introduced defects, while the irradiation introduced grain-size coarsening and defects gradients from the surface to matrix result in a tensile stress in the irradiated NC-CLAM steels. Nanoindentation was used to estimate changes in mechanical properties during irradiation, and the results show that the hardness of the NC-CLAM steels increases with increasing irradiation dose, which was ascribed to the competition between the grain boundaries and the irradiation-introduced defects.

  2. In situ and ex situ characterization of the ion-irradiation effects in third generation SiC fibers

    International Nuclear Information System (INIS)

    The use of third generation SiC fibers, Tyranno SA3 (TSA3) and Hi Nicalon S (HNS), as reinforcement for ceramic composites for nuclear applications requires the characterization of its structural stability and mechanical behavior under irradiation. Regarding the radiation stability, ion-amorphization kinetics of these fibers have been studied and compared to the model material, i.e. 6H-SiC single crystals, with no significant differences. For all samples, full amorphization threshold dose yields ∼0.4 dpa at room temperature and complete amorphization was not achieved for irradiation temperatures over 200 C. Successively, ion-amorphized samples have been thermally annealed. It is reported that thermal annealing at high temperatures not only induces the recrystallization of the ion-amorphized samples but also causes unrecoverable mechanical failure, i.e. cracking and delamination. Cracking is reported to be a thermally driven phenomenon characterized by activation energy of 1.05 eV. Regarding the mechanical irradiation behavior, irradiation creep of TSA3 fibers has been investigated using a tensile device dedicated to in situ tests coupled to two different ion-irradiation lines. It is reported that ion irradiation (12 MeV C4+ and 92 MeV Xe23+) induces a time-dependent strain under loads where thermal creep is negligible. In addition, irradiation strain is reported to be higher at low irradiation temperatures due to a coupling between irradiation swelling and irradiation creep. At high temperatures, near 1000 C, irradiation swelling is minimized hence allowing the characterization of the irradiation creep. Irradiation creep rate is characterized by a linear correlation between the ion flux and the strain rate and a square root dependence with the applied load. Finally, it has been reported that the higher the electronic energy loss contribution to the stopping regime the higher the irradiation creep of the fiber. (author)

  3. Crystallization of amorphous zirconium thin film using ion implantation by a plasma focus of 1 kJ

    Energy Technology Data Exchange (ETDEWEB)

    Rico, L. [Instituto de Fisica Rosario (CONICET-UNR), Bvrd. 27 de Febrero 210 Bis, S2000EZP Rosario (Argentina)], E-mail: bernardo@fceia.unr.edu.ar; Gomez, B.J.; Feugeas, J. [Instituto de Fisica Rosario (CONICET-UNR), Bvrd. 27 de Febrero 210 Bis, S2000EZP Rosario (Argentina); Sanctis, O. de [Instituto de Fisica Rosario (CONICET-UNR), Bvrd. 27 de Febrero 210 Bis, S2000EZP Rosario (Argentina); Laboratorio de Materiales Ceramicos, Universidad Nacional de Rosario, Pellegrini 250, 2000 Rosario (Argentina)

    2007-10-31

    In this work preliminary results of amorphous zirconium crystallization using ion beam pulses are presented. Energetic argon- and oxygen-ion beams generated by a plasma focus device were used to promote crystallization on amorphous ZrO{sub 2}-2.5 mol% Y{sub 2}O{sub 3} film deposited by chemical solution deposition onto silica glass substrate. The films were burnt at 370 deg. C for 1 h in normal atmosphere previous to plasma irradiation. The irradiation was performed by means of successive pulses of ion beams. The evolution of the surface morphology and crystallization was followed by AFM and X-rays diffraction in a grazing incidence asymmetric Bragg geometry (GIAB), respectively. Argon-irradiated films showed highly nucleated cubic zirconia after 10 pulses. On the other hand, oxygen-irradiated films showed a delayed and less extensive cubic nucleation, but a more ordered structure and well-defined grains.

  4. Beam tests of lead tungstate crystal matrices and a silicon strip preshower detector for the CMS electromagnetic calorimeter

    CERN Document Server

    Auffray, Etiennette; Barney, D; Bassompierre, Gabriel; Benhammou, Ya; Blick, A M; Bloch, P; Bonamy, P; Bourotte, J; Buiron, L; Cavallari, F; Chipaux, Rémi; Cockerill, D J A; Dafinei, I; Davies, G; Depasse, P; Deiters, K; Diemoz, M; Dobrzynski, Ludwik; Donskov, S V; Mamouni, H E; Ercoli, C; Faure, J L; Felcini, Marta; Gautheron, F; Géléoc, M; Givernaud, Alain; Gninenko, S N; Godinovic, N; Graham, D J; Guillaud, J P; Guschin, E; Haguenauer, Maurice; Hillemanns, H; Hofer, H; Ille, B; Inyakin, A V; Jääskeläinen, S; Katchanov, V A; Kirn, T; Kloukinas, Kostas C; Korzhik, M V; Lassila-Perini, K M; Lebrun, P; Lecoq, P; Lecoeur, Gérard; Lecomte, P; Leonardi, E; Locci, E; Loos, R; Longo, E; MacKay, C K; Martin, E; Mendiburu, J P; Musienko, Yu V; Nédélec, P; Nessi-Tedaldi, F; Organtini, G; Paoletti, S; Pansart, J P; Peigneux, J P; Puljak, I; Qian, S; Reid, E; Renker, D; Rosowsky, A; Rosso, E; Rusack, R W; Rykaczewski, H; Schneegans, M; Seez, Christopher J; Semeniouk, I N; Shagin, P M; Sillou, D; Singovsky, A V; Sougonyaev, V; Soric, I; Verrecchia, P; Vialle, J P; Virdee, Tejinder S; Zhu, R Y

    1998-01-01

    Tests of lead tungstate crystal matrices carried out in high-energy electron beams in 1996, using new crystals, new APDs and an improved test set-up, confirm that an energy resolution of better than 0 .6% at 100 GeV can be obtained when the longitudinal uniformity of the struck crystal is adequate. Light loss measurements under low dose irradiation are reported. It is shown that there is no loss of energy resolution after irradiation and that the calibration change due to light loss can be tracked with a precision monitoring system. Finally, successuful tests with a preshower device, equipped wi th silicon strip detector readout, are described.

  5. Optical and electrical phenomena in dielectric materials under irradiation

    CERN Document Server

    Plaksin, O A; Stepanov, P A; Demenkov, P V; Chernov, V M; Krutskikh, A O

    2002-01-01

    Optical and acoustic properties of the materials based on Al sub 2 O sub 3 , SiO sub 2 and BN under 8 MeV proton irradiation (<10 sup 4 Gy/s) have been measured. Electric charge partitioning has been shown to result in charging the microscopic regions in the bulk of the dielectrics under irradiation, which is due to different mobility of free electrons and holes (sapphire), concentration inhomogeneity in the system of charge carrier traps (alumina), or thermodynamic instability of the homogeneous distribution of the filled traps (silica glasses). Prevalent charge carrier recombination in the grain boundaries causes re-crystallization of pyrolytic boron nitride under irradiation, which shows up as simultaneous decrease of the intensity of radiation-induced luminescence (RIL) of the centres in the grain boundaries and the BN. The local charging results in optical inhomogeneity of the silica glasses which is sustained by the optical loss spectra of the irradiated glasses, features of kinetics of bleaching, RI...

  6. Intergranular stress distributions in polycrystalline aggregates of irradiated stainless steel

    Science.gov (United States)

    Hure, J.; El Shawish, S.; Cizelj, L.; Tanguy, B.

    2016-08-01

    In order to predict InterGranular Stress Corrosion Cracking (IGSCC) of post-irradiated austenitic stainless steel in Light Water Reactor (LWR) environment, reliable predictions of intergranular stresses are required. Finite elements simulations have been performed on realistic polycrystalline aggregate with recently proposed physically-based crystal plasticity constitutive equations validated for neutron-irradiated austenitic stainless steel. Intergranular normal stress probability density functions are found with respect to plastic strain and irradiation level, for uniaxial loading conditions. In addition, plastic slip activity jumps at grain boundaries are also presented. Intergranular normal stress distributions describe, from a statistical point of view, the potential increase of intergranular stress with respect to the macroscopic stress due to grain-grain interactions. The distributions are shown to be well described by a master curve once rescaled by the macroscopic stress, in the range of irradiation level and strain considered in this study. The upper tail of this master curve is shown to be insensitive to free surface effect, which is relevant for IGSCC predictions, and also relatively insensitive to small perturbations in crystallographic texture, but sensitive to grain shapes.

  7. A polycrystal plasticity model of strain localization in irradiated iron

    Science.gov (United States)

    Barton, Nathan R.; Arsenlis, Athanasios; Marian, Jaime

    2013-02-01

    At low to intermediate homologous temperatures, the degradation of structural materials performance in nuclear environments is associated with high number densities of nanometric defects produced in irradiation cascades. In polycrystalline ferritic materials, self-interstitial dislocations loops are a principal signature of irradiation damage, leading to a mechanical response characterized by increased yield strengths, decreased total strain to failure, and decreased work hardening as compared to the unirradiated behavior. Above a critical defect concentration, the material deforms by plastic flow localization, giving rise to strain softening in terms of the engineering stress-strain response. Flow localization manifests itself in the form of defect-depleted crystallographic channels, through which all dislocation activity is concentrated. In this paper, we describe the formulation of a crystal plasticity model for pure Fe embedded in a finite element polycrystal simulator and present results of uniaxial tensile deformation tests up to 10% strain. We use a tensorial damage descriptor variable to capture the evolution of the irradiation damage loop subpopulation during deformation. The model is parameterized with detailed dislocation dynamics simulations of tensile tests up to 1.5% deformation of systems containing various initial densities of irradiation defects. The coarse-grained simulations are shown to capture the essential details of the experimental stress response observed in ferritic alloys and steels. Our methodology provides an effective linkage between the defect scale, of the order of one nanometer, and the continuum scale involving multiple grain orientations.

  8. Microbiological Principles in Food Irradiation

    International Nuclear Information System (INIS)

    This paper reviews the important microbiological objectives of irradiation treatments, with special reference to the definitions of the proposed new terms, radappertization, radicidation and radurization. Emphasis is placed on the nature of the food in determining the microbiological requirements of the irradiation treatment. It is suggested that, just as with heat-processed foods, classifications into the major groups of ''acid'' or ''cured'' foods will remain valid with the irradiation process, and that different microbiological criteria will apply to these different classes of foods. The differences depend in part on the influence which the nature of the food has on the effectiveness of the irradiation treatment itself, but more especially on the way in which the nature of the food affects the activities of those microorganisms which might survive irradiation. The principles used to calculate the appropriate doses of radiation are discussed, with comments on the reliability of the fundamental assumptions or the need for further experimentation. The microbiological characteristics of irradiated foods are compared with those of corresponding heat- processed foods, to emphasize points of difference, with special reference to the appropriateness of suggested classifications for heat-processed foods. Finally, some general difficulties are considered, such as uncertainty about the significance and behaviour of food-borne viruses, and about the significance of the mutations which might conceivably be induced in microorganisms surviving-an irradiation process. (author)

  9. Gamma Irradiation of Polyesters Film

    International Nuclear Information System (INIS)

    Experimental investigations on the effects of gamma irradiation in air of aromatic polyesters are carried out, in order to evaluate the influence of aromatic density and the role of oxygen on the radiation resistance. The thermoplastic polyesters PolyEthyleneTerephthalate (PET), PolyButylene Terephthalate (PBT), PolyEthyleneNaphthalate (PEN), Poly1,4-cyclohexanedimethylen terephthalate-co-ethyleneterephthalate (PCT-co-ET) are moulded in thin films of 50 micron and irradiated at different absorbed doses, ranging from 0 to 1000 kGy, using a Co-60 gamma source. The structural changes in the polymers are studied by means of several physical-chemical and nuclear techniques. Electron Paramagnetic Resonance analyses are carried out to detect the radicals induced by irradiation and to follow their decay by oxygen permeation. Viscometric measurements show a similar trend for the different irradiated polyesters: in particular, chain scission induced by irradiation depends on the aromatic density contained in the polymer and shows a saturation effect at the highest doses. Positron Annihilation Lifetime Spectroscopy points out a decrease of the ortho-positronium signal caused by the production of oxidized species inhibiting the positronium formation. Finally, the experimental results obtained on the irradiated films are compared with previous studies carried out on the same polyesters moulded in sheets of 1-2 mm of thickness and γ-irradiated at the same adsorbed doses

  10. Detection of some irradiated foods

    International Nuclear Information System (INIS)

    This study was performed to investigate the possibility of using two rapid methods namely Supercritical Fluid Extraction (SFE) and Direct Solvent Extraction (DSE) methods for extraction and isolation of 2-dodecylcyclobutanone (2-DCB) followed by detecting this chemical marker by Gas chromatography technique and used this marker for identification of irradiated some foods containing fat (beef meat, chicken, camembert cheese and avocado) post irradiation, during cold and frozen storage. Consequently, this investigation was designed to study the following main points:- 1- The possibility of applying SFE-GC and DSE-GC rapid methods for the detection of 2-DCB from irradiated food containing fat (beef meat, chicken, camembert cheese and avocado fruits) under investigation.2-Studies the effect of gamma irradiation doses on the concentration of 2-DCB chemical marker post irradiation and during frozen storage at -18 degree C of chicken and beef meats for 12 months.3-Studies the effect of gamma irradiation doses on the concentration of 2-DCB chemical marker post irradiation and during cold storage at 4±1 degree C of camembert cheese and avocado fruits for 20 days.

  11. Irradiation's potential for preserving food

    International Nuclear Information System (INIS)

    The first experimental studies on the use of ionizing radiation for the preservation of foods were published over thirty years ago (1, 2) . After a period of high expectations and perhaps exaggerated optimism a series of disappointments occurred in the late '60s .The first company specifically created to operate a food irradiation plant, Newfield Products Inc, ran into financial difficulties and had to close its potato irradiation facility in 1966. The irradiator, designed to process 15,000t of potatoes per month for inhibition of sprouting, was in operation during one season only. In 1968 the US Food an Drug Administration refused approval for radiation-sterilisation of ham and withdrew the approval it had granted in 1963 for irradiated bacon. An International Project on the Irradiation of Fruit and Fruit juices, created in 1965 at Seibersdorf, Austria, with the collaboration or 9 countries, ended with general disappointment after three years. The first commercial grain irradiator, built in the Turkish harbour town of Iskenderun by the International Atomic Energy Agency with funds from the United Nations Development Program, never received the necessary operating licence from the Turkish Government and had to be dismantled in 1968. The US Atomic Energy Commission terminated its financial support to all research programmes on food irradiation in 1970. For a number of years, little chance seemed to remain that the new process would ever be practically used. However, research and development work was continued in a number of laboratories all over the world, and it appears that the temporary setbacks now have been overcome. Growing quantities of irradiated foods are being marketed in several countries and indications are that irradiated foods will eventually be as generally accepted as are frozen, dried or heatsterilised foods

  12. Petrology, chemistry, age and irradiation history of Luna 24 samples

    Science.gov (United States)

    Wasserburg, G. J.; Papanastassiou, D. A.; Mcculloch, M. T.; Huneke, J. C.; Dymek, R. F.; Depaolo, D. J.; Chodos, A. A.; Albee, A. L.; Radicati Di Brozolo, F.

    1978-01-01

    The results of petrological, chemical, isotopic age determination and irradiation studies of sample 24170 from the 170 cm depth of the regolith core returned from Mare Crisium by Luna 24 are presented. The sample is found to be comprised of fragments from a single igneous rock, with mineralogical evidence indicating it to be a mare basalt. The crystallization age is determined by Sm-Nd and Ar(40)-Ar(39) ages to be 3.30 AE, establishing the presence of relatively young flows. All soil samples show low trace element compositions with minimum contamination by KREEPUTh-rich materials. Rb-Sr and Sm-Nd relations reflect the absence of significant fractionation at ages younger than 4.5 AE. One soil sample shows extremely large neutron capture effects, imposing a new lower limit to the neutron production rate in the regolith and requiring the addition of irradiated materials from depth.

  13. 3D Reproduction of a Snow Crystal by Stereolithography

    OpenAIRE

    Jun’ichi TAMAKI; Yanagi, Satoshi; Yuya AOKI; Kubo, Akihiko; KAMEDA, Takao; A.M.M. Sharif Ullah; 田牧, 純一; 久保, 明彦; 亀田, 貴雄

    2012-01-01

    A new method was proposed for replicating snow crystals that uses light-curing resin containing no harmful substances, as the replicating material, and the 3D reproduction of a snow crystal by stereolithography was conducted. It was found that a UV light irradiation density of at least 0.6 mW/cm2 was required to complete the light-hardening reaction within 15 min when polyene/polythiol resin (NOA81) was used as the light-curing resin. When the atmospheric temperature was 0 °C, the maximum tem...

  14. Laser-induced microwave generation with nonlinear optical crystals

    Science.gov (United States)

    Borghesani, Francesco; Braggio, Caterina; Carugno, Giovanni; Della Valle, Federico; Ruoso, Giuseppe

    2014-05-01

    We report about a novel technique to generate microwave radiation by the irradiation of a nonlinear optical crystal with uniformly spaced, ultrashort optical pulses delivered by a mode-locked laser. We study systematically the laser polarization and intensity dependence of the microwave signal to conclusively show that it is a nonlinear phenomenon and that it originates from optical rectification. The measurements have been conducted using KTP, LBO and ZnSe crystals. The observed pulsed microwave signals are harmonically related to the laser pulses repetition rate, a feature that can be exploited to develop an innovative ultrafast laser detector.

  15. New facility for post irradiation examination of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo; Kawamura, Hiroshi [Oarai Research Establishment, Ibaraki-Ken (Japan)

    1995-09-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800{degrees}C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and {sup 60}Co;7.4 MBq/day.

  16. Macromolecular crystallization in microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Edward H [Biophysics Group, NASA Marshall Space Flight Center, Code XD42, Huntsville, AL 35812 (United States); Helliwell, John R [Department of Chemistry, The University of Manchester, Manchester, M13 9PL (United Kingdom)

    2005-04-01

    Density difference fluid flows and sedimentation of growing crystals are greatly reduced when crystallization takes place in a reduced gravity environment. In the case of macromolecular crystallography a crystal of a biological macromolecule is used for diffraction experiments (x-ray or neutron) so as to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal then the greater the molecular structure detail that can be extracted. It is this structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences, with major potential in understanding disease pathologies. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyse the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry and mathematics meet to enable insight to the fundamentals of life. As the reader will see, there is a great deal of physics involved when the microgravity environment is applied to crystallization, some of it known, and undoubtedly much yet to

  17. Photonic Crystal Waveguide Fabrication

    OpenAIRE

    Høvik, Jens

    2012-01-01

    This research is entirely devoted to the study and fabrication of structures with periodic dielectric constants, also known as photonic crystals (PhCs). These structures show interesting dispersion characteristics which give them a range of prohibited frequencies that are not allowed to propagate within the crystal. This property makes them suited for a wide array of photonic-based components. One-dimensional photonic crystals are already commercialized and are of widespread use in for exampl...

  18. Ion Coulomb Crystals

    CERN Document Server

    Thompson, Richard C

    2014-01-01

    Ion Coulomb crystals (ICC), formed by atomic ions at low temperatures in radiofrequency and Penning ion traps, are structures that have remarkable properties and many applications. Images of Coulomb crystals are striking and reveal the crystal structure, which arises from a balance between the trapping forces acting on the ions and their mutual Coulomb repulsion. Applications of these structures range from frequency standards and quantum simulation through to measurement of the cross sections of chemical reactions of ions.

  19. Holographic liquid crystal devices

    OpenAIRE

    Pavani, Kotakonda, (Thesis)

    2009-01-01

    Liquid crystals have become natural candidates for use in electro-optic devices for their ability to change the orientation of the director with the application of an electric field, and exhibiting large range of refractive index. The aim of the work presented in this thesis is to fabricate liquid crystal optoelectronic devices such as electrically switchable liquid crystal diffraction gratings and polarization rotators by exploiting the holographic surface relief effect in photopolymer and b...

  20. Growing acceptance of food irradiation

    International Nuclear Information System (INIS)

    In the table are listed food products treated by irradiation which have been cleared for human consumption in a number of Member States of the Agency. The details are based on information up to 1 February 1968. Two words already known to food experts investigating nuclear techniques for preserving food and preventing wastage but perhaps unfamiliar as yet to others, appear in the table. They are radappertization and radurization. The first means sterilization by irradiation and the second extension of market life, also by irradiation. (author)

  1. Food irradiation, profits and limitations

    International Nuclear Information System (INIS)

    The utility of the irradiation to overcome diverse problems of lost nutritious, it has been demonstrated in multiple investigation works, that its have confirmed the value and the inoculation of the irradiated foods. The quantity of energy applied to each food, is in function of the wanted effect. In this document a guide with respect to the practical application and the utility of the irradiation process in different foods, as well as the suggested dose average is shown. Among the limitations of the use of this technology, its are the costs and not being able to apply it to some fresh foods. (Author)

  2. Irradiation a boon to farmers

    International Nuclear Information System (INIS)

    Irradiation sterilization is emerging as a process of tremendous value to the food marketing industry. Much of the latest research has been done by the Atomic Energy Board at Pelindaba, using the strong gamma rays produced by cobalt-60 to kill the pathogens, microprobes, small insects and other food destroying agents usually found in food and fruit. Irradiation also helps delay ripening and ageing to a slight degree, a property of great value to food and fruit exporters. The advantages of various irradiated food are shortly discussed

  3. Irradiation services for crops improvement

    International Nuclear Information System (INIS)

    As an effort to pioneer and promote the use of nuclear technology in plant breeding in Malaysia, MINT has developed the procedures, methodology and service for the irradiation of ornamental plants, food and industrial crops. This paper discusses the issues related to the irradiation services for plant samples for the period of 15 years since the service was started. The main issues include the procedures for sample irradiation, statistics for the services that have been provided, problems and the solutions in providing the services. (Author)

  4. International status of food irradiation

    International Nuclear Information System (INIS)

    Recent international moves that are likely to result in an increasing acceptance of irradiated foods are reviewed. Particular attention is given to the activities of the FAO, WHO, Codex Alimentarius and to attitudes in the United States and the Asian-Pacific region. In 1979, the Codex Alimentarius Commission adopted a Recommended General Standard for Irradiated Food. A resume is given of a revised version of the standard that is presently under consideration. However, remaining barriers to trade in irradiated food are briefly discussed, such as legal and regulatory problems, labelling, public acceptance and economic viability

  5. Therapeutic postprostatectomy irradiation.

    Science.gov (United States)

    Youssef, Emad; Forman, Jeffrey D; Tekyi-Mensah, Samuel; Bolton, Susan; Hart, Kim

    2002-06-01

    The purpose of this study was to determine the outcome of patients receiving external beam radiation for an elevated postprostatectomy prostate-specific antigen (PSA) level. Between December 1991 and September 1998, 108 patients received definitive radiation therapy for elevated postprostatectomy PSA levels. The median dose of irradiation was 68 Gy (range, 48-74 Gy). During treatment, the PSA levels were checked an average of 5 times (range, 3-7 times). Prostate-specific antigen values were judged to decline or increase during treatment if they changed by more than 0.2 ng/mL. After treatment, biochemical failure was defined as a measurable or rising PSA > 0.2 ng/mL. Median follow-up was 51 months (range, 3-112 months). Fifty-eight patients (54%) had evidence of biochemical failure. The 3- and 5-year actuarial biochemical relapse-free (bNED) survivals for all patients were 55% and 39%, respectively. Upon univariate analysis, intratreatment PSA and preradiation PSA were significant predictors of bNED survival. Patients with a PSA level that decreased during treatment had a 5-year bNED survival of 43% compared to 10% in patients with an increasing PSA level (P = 0.0002). Using the preradiation therapy PSA value as a continuous variable, higher preradiation therapy PSA levels were associated with an increased risk of failure (P = 0.004). Cut points of pretreatment PSA were derived at 0.9 ng/mL and 4.2 ng/mL using the Michael Leblanc recursive partitioning algorithm. The 5-year bNED rate for patients with a preradiation therapy PSA or = 4.2 ng/mL (P = 0.0003). Patients with a Gleason score of 7 (P = 0.27). Other factors examined individually that did not reach statistical significance included time from surgery to radiation therapy, race, seminal vesicle involvement, pathological stage, surgical margin, and perineural invasion. Upon multivariate analysis, only preradiation therapy PSA (P < 0.001) and the PSA trend during radiation therapy (P < 0.001) were significant

  6. Currently developing opportunities in food irradiation and modern irradiation facilities

    International Nuclear Information System (INIS)

    I. Factor currently influencing advancing opportunities for food irradiation include: heightened incidence and awareness of food borne illnesses and causes. Concerns about ensuring food safety in international as well as domestic trade. Regulatory actions regarding commonly used fumigants/pesticides e.g. Me Br. II. Modern irradiator design: the SteriGenics Mini Cell. A new design for new opportunities. Faster installation of facility. Operationally and space efficient. Provides local onsite control. Red meat: a currently developing opportunity. (Author)

  7. Facts about food irradiation: Safety of irradiation facilities

    International Nuclear Information System (INIS)

    This fact sheet considers the safety of industrial irradiation facilities. Although there have been accidents, none of them has endangered public health or environmental safety, and the radiation processing industry is considered to have a very good safety record. Gamma irradiators do not produce radioactive waste, and the radiation sources at the facilities cannot explode nor in any other way release radioactivity into the environment. 3 refs

  8. A crystal barrel

    CERN Multimedia

    2007-01-01

    The production of crystals for the barrel of the CMS electromagnetic calorimeter has been completed. This is an important milestone for the experiment, which received the last of its 62,960 crystals on 9 March. The members of the team responsible for the crystal acceptance testing at CERN display the last crystal for the CMS electromagnetic calorimeter barrel. From left to right: Igor Tarasov, Etiennette Auffray and Hervé Cornet.One of the six machines specially developed to measure 67 different parameters on each crystal. Igor Tarasov is seen inserting the last batch of crystals into the machine. The last of the 62,960 CMS barrel crystals arrived at CERN on 9 March. Once removed from its polystyrene protection, this delicate crystal, like thousands of its predecessors, will be inserted into the last of the 36 supermodules of the barrel electromagnetic calorimeter in a few days' time. This marks the end of an important chapter in an almost 15-year-long journey by the CMS crystals team, some of whose member...

  9. Crystallization Formulation Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Crystallization Formulation Lab fills a critical need in the process development and optimization of current and new explosives and energetic formulations. The...

  10. Automation in biological crystallization.

    Science.gov (United States)

    Stewart, Patrick Shaw; Mueller-Dieckmann, Jochen

    2014-06-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.

  11. Phononic crystal devices

    Science.gov (United States)

    El-Kady, Ihab F.; Olsson, Roy H.

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  12. Tunable plasmonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  13. Crystal Packing Analysis of Rhodopsin Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lodowski, D.T.; Salom, D.; Trong, I.Le; Teller, D.C.; Ballesteros, J.A.; Palczewski, K.; Stenkamp, R.E.; /Basel U. /Texas U. /Scripps Res. Inst.

    2007-07-10

    Oligomerization has been proposed as one of several mechanisms to regulate the activity of G protein-coupled receptors (GPCRs), but little is known about the structure of GPCR oligomers. Crystallographic analyses of two new crystal forms of rhodopsin reveal an interaction surface which may be involved in the formation of functional dimers or oligomers. New crystallization conditions lead to the formation of two crystal forms with similar rhodopsin-rhodopsin interactions, but changes in the crystal lattice are induced by the addition of different surfactant additives. However, the intermolecular interactions between rhodopsin molecules in these crystal structures may reflect the contacts necessary for the maintenance of dimers or oligomers in rod outer segment membranes. Similar contacts may assist in the formation of dimers or oligomers in other GPCRs as well. These new dimers are compared with other models proposed by crystallography or EM and AFM studies. The inter-monomer surface contacts are different for each model, but several of these models coincide in implicating helix I, II, and H-8 as contributors to the main contact surface stabilizing the dimers.

  14. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    Science.gov (United States)

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven C.; Weber, William J.

    2016-09-01

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, 'nano-engineered SiC') and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. It was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due to the local increase in electronic energy loss that enhanced dynamic recovery.

  15. Temperature and fluence effects in lead implanted cobalt single crystals

    International Nuclear Information System (INIS)

    The channeled sputtering yields of the hcp and fcc phases of cobalt depend on the crystal structure and the radiation induced damage. Earlier irradiations of cobalt with argon ions channeled in the hcp direction give sputtering yields higher than expected in the temperature range 100-350deg C. This effect was attributed to a combination of radiation induced damage and a possible implantation induced hcp --> fcc phase transition. Sputtering yields for cobalt single crystals irradiated with 150 keV Pb+ ions along the direction of the hcp phase and the direction of the fcc phase have been measured using the weightloss method. The radiation damage and the amount of lead retained in the implanted surface has been investigated by 'in situ' RBS/channeling analysis. Measured partial sputtering yields of lead ≅ 1 atom/ion indicate preferential sputtering of lead atoms. (orig.)

  16. Charge-sensitive deep level transient spectroscopy of helium-ion-irradiated silicon, as-irradiated and after thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Li Bing-Sheng; Zhang Chong-Hong; Yang Yi-Tao; Zhou Li-Hong; Zhang Hong-Hua

    2009-01-01

    Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscopy was employed to study the activation energy and capture cross-section of helium-induced defects in silicon samples. It was shown that the activation energy levels produced by helium-ion irradiation first increased with increasing annealing temperature, with the maximum value of the activation energy occurring at 873 K, and reduced with further increase of the annealing temperature. The energy levels of defects in the samples annealed at 873 and I073 K are found to be located near the mid-forbidden energy gap level so that they can act as thermally stable carrier recombination centres.

  17. Development of blood irradiators

    International Nuclear Information System (INIS)

    The fully portable, vitreous-carbon/thulium-170 (VCTm) irradiators were previously developed and tested in goats, sheep and dogs for effects on circulating lymphocytes and on skin graft rejection. This past year the testing was extended to include studies of effects on kidney transplants in dogs. Six pairs of beagle dogs were tested. One of each pair was treated with an activated VCTm (i.e., containing 170Tm); the other was treated comparably, but had an inactive unit (containing 169Tm). Kidney donors were selected for maximum disparity in cellular immune (DLA) type between donor and host. The host's own kidneys were removed so that survival depended on the functioning of the transplanted kidney. The untreated dogs survived 9 to 23 days (mean = 15) after transplant; treated dogs survived 16 to 45 days (mean = 27 days). Histological examination showed that there was a distinct depletion of cells in all lymphoid tissues and a reduced cellular involvement in kidney tissues of treated animals

  18. Generic phytosanitary irradiation treatments

    International Nuclear Information System (INIS)

    The history of the development of generic phytosanitary irradiation (PI) treatments is discussed beginning with its initial proposal in 1986. Generic PI treatments in use today are 150 Gy for all hosts of Tephritidae, 250 Gy for all arthropods on mango and papaya shipped from Australia to New Zealand, 300 Gy for all arthropods on mango shipped from Australia to Malaysia, 350 Gy for all arthropods on lychee shipped from Australia to New Zealand and 400 Gy for all hosts of insects other than pupae and adult Lepidoptera shipped to the United States. Efforts to develop additional generic PI treatments and reduce the dose for the 400 Gy treatment are ongoing with a broad based 5-year, 12-nation cooperative research project coordinated by the joint Food and Agricultural Organization/International Atomic Energy Agency Program on Nuclear Techniques in Food and Agriculture. Key groups identified for further development of generic PI treatments are Lepidoptera (eggs and larvae), mealybugs and scale insects. A dose of 250 Gy may suffice for these three groups plus others, such as thrips, weevils and whiteflies. (author)

  19. (Irradiation creep of graphite)

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  20. Economics of Grain Irradiation

    International Nuclear Information System (INIS)

    After three years, in which preliminary designs were prepared, a grain irradiation plant has been designed and is being built into an existing silo installation. From this experience actual costs of plant construction are available for a plant using cobalt-60 and this experience is incorporated in estimates for machine installations for high grain throughput. Costs are compared for plants of comparable complexity and they indicate those areas in which each type of plant is pre-eminently suitable and those areas where either type may be best, dependent upon local site conditions, the standard of local technology and methods of operation. The two plants compared are described in sufficient detail to enable the precise extent of the equipment supply covered by the costs to be appreciated. The accounting methods employed have been discussed with industrial accountants to ensure that they are acceptable to the potential users. The methods employed are explained so that they can be applied to problems of a similar nature. (author)