WorldWideScience

Sample records for 3a4 enzyme involvement

  1. Interactions of ingested food, beverage, and tobacco components involving human cytochrome P4501A2, 2A6, 2E1, and 3A4 enzymes.

    Science.gov (United States)

    Guengerich, F P; Shimada, T; Yun, C H; Yamazaki, H; Raney, K D; Thier, R; Coles, B; Harris, T M

    1994-01-01

    Human cytochrome P450 (P450) enzymes are involved in the oxidation of natural products found in foods, beverages, and tobacco products and their catalytic activities can also be modulated by components of the materials. The microsomal activation of aflatoxin B1 to the exo-8,9-epoxide is stimulated by flavone and 7,8-benzoflavone, and attenuated by the flavonoid naringenin, a major component of grapefruit. P4502E1 has been demonstrated to play a potentially major role in the activation of a number of very low-molecular weight cancer suspects, including ethyl carbamate (urethan), which is present in alcoholic beverages and particularly stone brandies. The enzyme (P4502E1) is also known to be inducible by ethanol. Tobacco contains a large number of potential carcinogens. In human liver microsomes a significant role for P4501A2 can be demonstrated in the activation of cigarette smoke condensate. Some of the genotoxicity may be due to arylamines. P4501A2 is also inhibited by components of crude cigarette smoke condensate. The tobacco-specific nitrosamines are activated by a number of P450 enzymes. Of those known to be present in human liver, P4501A2, 2A6, and 2E1 can activate these nitrosamines to genotoxic products. PMID:7698084

  2. Polychlorinated biphenyl (PCB) induction of CYP3A4 enzyme activity in healthy Faroese adults

    DEFF Research Database (Denmark)

    Petersen, Maria Skaalum; Halling, Jónrit; Damkier, Per;

    2007-01-01

    The CYP3A4 enzyme is, along with other cytochrome P450 enzymes, involved in the metabolism of environmental pollutants and is highly inducible by these substances. A commercial polychlorinated biphenyl (PCB) mixture, 1,1,1,-trichloro-2-(o-chlorophenyl), 2-(p'-chlorophenyl)ethane (o,p'-DDT) and 1......,1,-dichloro-2,2-bis (p-chlorophenyl)ethene (p,p'-DDE) are known to induce CYP3A4 activity through activation of nuclear receptors, such as the pregnane X receptor. However, this induction of CYP3A4 has not yet been investigated in humans. Thus, the aim of the study was to determine the variability of the CYP3......A4 phenotype in regard to increased concentrations of PCBs and other persistent organohalogen pollutants (POPs) in healthy Faroese adults. In 310 randomly selected Faroese residents aged 18-60 years, the CYP3A4 activity was determined based on the urinary 6beta-hydroxycortisol/cortisol (6beta...

  3. Polychlorinated biphenyl (PCB) induction of CYP3A4 enzyme activity in healthy Faroese adults

    International Nuclear Information System (INIS)

    The CYP3A4 enzyme is, along with other cytochrome P450 enzymes, involved in the metabolism of environmental pollutants and is highly inducible by these substances. A commercial polychlorinated biphenyl (PCB) mixture, 1,1,1,-trichloro-2-(o-chlorophenyl), 2-(p'-chlorophenyl)ethane (o,p'-DDT) and 1,1,-dichloro-2,2-bis (p-chlorophenyl)ethene (p,p'-DDE) are known to induce CYP3A4 activity through activation of nuclear receptors, such as the pregnane X receptor. However, this induction of CYP3A4 has not yet been investigated in humans. Thus, the aim of the study was to determine the variability of the CYP3A4 phenotype in regard to increased concentrations of PCBs and other persistent organohalogen pollutants (POPs) in healthy Faroese adults. In 310 randomly selected Faroese residents aged 18-60 years, the CYP3A4 activity was determined based on the urinary 6β-hydroxycortisol/cortisol (6β-OHC/FC) ratio. POP exposures were assessed by measuring their concentrations in serum lipid. The results showed a unimodal distribution of the 6β-OHC/FC ratio with values ranging from 0.58 to 27.38. Women had a slightly higher 6β-OHC/FC ratio than men (p = 0.07). Confounder-adjusted multiple regression analysis showed significant associations between 6β-OHC/FC ratios and ΣPCB, PCB-TEQ and p,p'-DDE, o,p'-DDT and HCB, respectively, but the associations were statistically significant for men only

  4. 肝药酶CYP3A4与抗癫(癎)药物的代谢研究进展%Progress on the metabolism of antiepileptic drugs by human hepatic CYP3A4 enzymes

    Institute of Scientific and Technical Information of China (English)

    张君梅

    2011-01-01

    癫(癎)是危害人类健康的常见神经系统疾病,临床常用抗癫(癎)药多通过细胞色素P450等肝药酶代谢.CYP3A4是P450酶系中最重要的代谢酶,参与40%~60%的药物代谢,与临床常用抗癫(癎)药的代谢也有非常紧密的关系.该文对CYP3A4的一般特性及其与抗癫(癎)药物的代谢研究进展作一概述.%Epilepsy is a common disease in nervous system.Most antiepileptic drugs are metabolized by liver enzymes.such as cytochrome P450 enzyme.CYP3A4 iS the most important enzyme in P450 family.involved in the metabolism of about 40%~60% of the drugs use for clinic.It also has a close relationship with the metabolism of antiepileptie drugs.This review summarizes the general characteristic of CYP3A4 and itsrelationship with the metabolism of antiepileptic drugs.

  5. Interaction between four herb compounds and a western drug by CYP3A4 enzyme metabolism in vitro%3种中药成分对大鼠CYP3A4酶代谢的影响

    Institute of Scientific and Technical Information of China (English)

    沈国林; 梁爱华; 赵雍; 曹春雨; 刘婷; 李春英; Odd Georg Nilsen

    2009-01-01

    目的:探讨3种中药成分(延胡索乙素、甲基莲心碱、三七总皂苷)对CYP3A4酶代谢活性的影响,以了解中药与CYP3A4酶底物联合用药时可能产生的相互作用.方法:采用超高速离心法制备大鼠肝脏微粒体,建立体外肝脏微粒体混合酶代谢体系.以睾丸酮作为底物探针,用HPLC建立检测CYP3A4酶代谢活性的方法,分别考察体外代谢体系的最适宜底物浓度、代谢时间、pH、孵育温度以及磷酸盐浓度.在确定的条件下,将3种中药成分稀释成不同浓度,分别与睾丸酮共同孵育于肝微粒体代谢体系中,测定在有或无中药成分存在下代谢产物6β-羟基睾丸酮的产生量,以评估中药成分对CYP3A4酶代谢的影响.结果:在肝微粒体孵育体系中,睾丸酮代谢为6β-羟基睾丸酮最适宜的体外代谢条件为底物浓度200μmol·L~(-1),代谢时间3.5 h,pH 7.0,孵育温度37℃,磷酸盐终浓度0.1 mol·L~(-1).延胡索乙素和三七总皂苷均对CYP3A4酶的抑制作用较弱,IC_(50)>100μmol·L~(-1),甲基莲心碱有一定的抑制作用,IC_(50)为(47.5±2.3)μmol·L~(-1).结论:延胡索乙素和三七总皂苷对CYP3A4酶代谢无明显影响,提示这2种中药成分与CYP3A4酶底物之间的相互作用较低,甲基莲心碱有可能会产生微弱的药物相互作用.%Objective: To explore the interaction between herbal medicines and western drugs based on CYP3A4 enzyme metabolism by using testotesrone as a probe in liver microsome metabolism system in vitro. Method: The mixed liver microsome enzymatic system consisting of rat liver microsomes by ultra-high-speed centrifuge was established. The substrate testosterone was added into the system and enzyme CYP3A4 metabolic activity was expressed by the output of 6β-hydroxy-testosterone which was measured by HPLC method. The proper conditions for testotesrone metabolism in liver microsome system included substrate concentration, incubation time,pH and incubation

  6. Systemic uptake of miconazole during vaginal suppository use and effect on CYP1A2 and CYP3A4 associated enzyme activities in women

    DEFF Research Database (Denmark)

    Kjærstad, Mia Birkhøj; Nielsen, Flemming; Nøhr-Jensen, Lene;

    2010-01-01

    To investigate if the ordinary use of a vaginal suppository containing miconazole results in systemic absorption that is sufficient to affect the activities of CYP1A2 and CYP3A4, which are major drug- and steroid-metabolising enzymes....

  7. Interactions of endosulfan and methoxychlor involving CYP3A4 and CYP2B6 in human HepaRG cells.

    Science.gov (United States)

    Savary, Camille C; Jossé, Rozenn; Bruyère, Arnaud; Guillet, Fabrice; Robin, Marie-Anne; Guillouzo, André

    2014-08-01

    Humans are usually exposed to several pesticides simultaneously; consequently, combined actions between pesticides themselves or between pesticides and other chemicals need to be addressed in the risk assessment. Many pesticides are efficient activators of pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR), two major nuclear receptors that are also activated by other substrates. In the present work, we searched for interactions between endosulfan and methoxychlor, two organochlorine pesticides whose major routes of metabolism involve CAR- and PXR-regulated CYP3A4 and CYP2B6, and whose mechanisms of action in humans remain poorly understood. For this purpose, HepaRG cells were treated with both pesticides separately or in mixture for 24 hours or 2 weeks at concentrations relevant to human exposure levels. In combination they exerted synergistic cytotoxic effects. Whatever the duration of treatment, both compounds increased CYP3A4 and CYP2B6 mRNA levels while differently affecting their corresponding activities. Endosulfan exerted a direct reversible inhibition of CYP3A4 activity that was confirmed in human liver microsomes. By contrast, methoxychlor induced this activity. The effects of the mixture on CYP3A4 activity were equal to the sum of those of each individual compound, suggesting an additive effect of each pesticide. Despite CYP2B6 activity being unchanged and increased with endosulfan and methoxychlor, respectively, no change was observed with their mixture, supporting an antagonistic effect. Altogether, our data suggest that CAR and PXR activators endosulfan and methoxychlor can interact together and with other exogenous substrates in human hepatocytes. Their effects on CYP3A4 and CYP2B6 activities could have important consequences if extrapolated to the in vivo situation.

  8. Enzymes involved in triglyceride hydrolysis.

    Science.gov (United States)

    Taskinen, M R; Kuusi, T

    1987-08-01

    The lipolytic enzymes LPL and HL play important roles in the metabolism of lipoproteins and participate in lipoprotein interconversions. LPL was originally recognized to be the key enzyme in the hydrolysis of chylomicrons and triglyceride, but it also turned out to be one determinant of HDL concentration in plasma. When LPL activity is high, chylomicrons and VLDL are rapidly removed from circulation and a concomitant rise of the HDL2 occurs. In contrast, low LPL activity impedes the removal of triglyceride-rich particles, resulting in the elevation of serum triglycerides and a decrease of HDL (HDL2). Concordant changes of this kind in LPL and HDL2 are induced by many physiological and pathological perturbations. Finally, the operation of LPL is also essential for the conversion of VLDL to LDL. This apparently clear-cut role of LPL in lipoprotein interconversions is contrasted with the enigmatic actions of HL. The enzyme was originally thought to participate in the catalyses of chylomicron and VLDL remnants generated in the LPL reaction. However, substantial in vitro and in vivo data indicate that HL is a key enzyme in the degradation of plasma HDL (HDL2) in a manner which opposes LPL. A scheme is presented for the complementary actions of the two enzymes in plasma HDL metabolism. In addition, recent studies have attributed a role to HL in the catabolism of triglyceride-rich lipoproteins, particularly those containing apo E. However, this function becomes clinically important only under conditions where the capacity of the LPL-mediated removal system is exceeded. Such a situation may arise when the input of triglyceride-rich particles (chylomicrons and/or VLDL) is excessive or LPL activity is decreased or absent.

  9. Development and validation of an enzyme-linked immunosorbent assay for the quantification of cytochrome 3A4 in human liver microsomes.

    Science.gov (United States)

    De Bock, Lies; Colin, Pieter; Boussery, Koen; Van Bocxlaer, Jan

    2012-09-15

    Little is known about the influence of hepatic pathologies on cytochrome P450 (CYP) mediated drug metabolism in children. The determination of the abundance of the different isoforms in pediatric microsomes may provide valuable information on the mechanisms of possible changes in activity. Until now, western blotting was mostly used for abundance measurements, but this technique only provides semi-quantitative data. Therefore, this study aimed to develop and validate an indirect ELISA for the quantification of the most important CYP isoform, CYP3A4, in human liver microsomes, using commercially available reagents. Samples, calibrators and validation samples were diluted to a final concentration of 10 μg microsomal protein/ml. A polyclonal antibody raised against the full length human protein was used as primary antibody; horseradish peroxidase conjugated secondary antibodies for detection. The assay was validated for sensitivity, working range and calibration, accuracy and precision. Amounts of CYP3A4 between 2 and 300 pmol/mg microsomal protein could be quantified with a 5-parameter logistics function with 1/x weighting factor. Coefficients of variation of intra and inter assay variability were between 9.54 and 13.98% (16.34% at LLOQ), and between 10.51 and 14.55% (19.44% at LLOQ), respectively. The relative error (%RE) varied between -5.96 and 6.68% (11.53% at LLOQ), and the total error between 11.93 and 21.23% (30.97% at LLOQ). The cross-reactivity of the method with human CYP2E1 showed to have no significant effect on the accuracy of the results. Successful analysis of five samples from an ongoing study demonstrated the usefulness of the method.

  10. Pyrethroid insecticides: isoform-dependent hydrolysis, induction of cytochrome P450 3A4 and evidence on the involvement of the pregnane X receptor.

    Science.gov (United States)

    Yang, Dongfang; Wang, Xiliang; Chen, Yi-Tzai; Deng, Ruitang; Yan, Bingfang

    2009-05-15

    Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity.

  11. Genes Encoding Enzymes Involved in Ethanol Metabolism

    Science.gov (United States)

    Hurley, Thomas D.; Edenberg, Howard J.

    2012-01-01

    The effects of beverage alcohol (ethanol) on the body are determined largely by the rate at which it and its main breakdown product, acetaldehyde, are metabolized after consumption. The main metabolic pathway for ethanol involves the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Seven different ADHs and three different ALDHs that metabolize ethanol have been identified. The genes encoding these enzymes exist in different variants (i.e., alleles), many of which differ by a single DNA building block (i.e., single nucleotide polymorphisms [SNPs]). Some of these SNPs result in enzymes with altered kinetic properties. For example, certain ADH1B and ADH1C variants that are commonly found in East Asian populations lead to more rapid ethanol breakdown and acetaldehyde accumulation in the body. Because acetaldehyde has harmful effects on the body, people carrying these alleles are less likely to drink and have a lower risk of alcohol dependence. Likewise, an ALDH2 variant with reduced activity results in acetaldehyde buildup and also has a protective effect against alcoholism. In addition to affecting drinking behaviors and risk for alcoholism, ADH and ALDH alleles impact the risk for esophageal cancer. PMID:23134050

  12. CYP3A4*1G gene Polymorphism on Javanese People

    Directory of Open Access Journals (Sweden)

    Em Sutrisna

    2015-11-01

    Full Text Available AbtractMost of drugs are metabolized by cytochrome P 450 (CYP enzyme. Cytochrome P450 3A4 is the cytochrome that is involved in metabolizing more than 60% of all medicine used in human. The variation of this CYP3A4 gene will affect the catalytic activity of this enzyme. Recently, CYP3A4*1G in intron 10 was found in Chinese and Japanese population. There is a substitution of G to A at position 82266 in intron 10. The purpose of this research was to investigate the frequency of allele and genotype CYP3A4*1G. Samples were taken from bloods of the subjects of the research. The examination of CYP3A4*1G was conducted by RTLP-PCR method.As the results of this research, the frequency of CYP3A4*1G in Javanese people is CYP3A4*1/*1 0.25, CYP3A4*1/*1G 0.55 and CYP3A4*1G/*1G 0.20. Frequency of allele G: 0.53, allele A: 0.47. The Fisher’s exact- test shows that the allele and genotype frequencyis p. 1.000. The allele and genotype frequency of Javanese people isstill in Hardy-Weinberg equilibrium.Keywords : CYP3A4*1G gene, polymorphism, Javanese people

  13. Bacterial enzymes involved in lignin degradation.

    Science.gov (United States)

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-10-20

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the (bio)processing of lignocellulosic feedstocks, more effective degradation methods of lignin are in demand. Nature has found ways to fully degrade lignin through the production of dedicated ligninolytic enzyme systems. While such enzymes have been well thoroughly studied for ligninolytic fungi, only in recent years biochemical studies on bacterial enzymes capable of lignin modification have intensified. This has revealed several types of enzymes available to bacteria that enable them to act on lignin. Two major classes of bacterial lignin-modifying enzymes are DyP-type peroxidases and laccases. Yet, recently also several other bacterial enzymes have been discovered that seem to play a role in lignin modifications. In the present review, we provide an overview of recent advances in the identification and use of bacterial enzymes acting on lignin or lignin-derived products. PMID:27544286

  14. High-throughput fluorescence assay of cytochrome P450 3A4

    OpenAIRE

    Cheng, Qian; Guengerich, F. Peter

    2013-01-01

    Microtiter plate-based fluorescence assays allow rapid measurement of the catalytic activities of cytochrome P450 oxygenases (P450s). We describe a high-throughput fluorescence assay of P450 3A4, one of the key enzymes involved in xenobiotic metabolism. The assay involves the oxidative debenzylation of 7-hydroxy-4-trifluoromethyl coumarin, producing an increase in fluorescence.

  15. Artificial concurrent catalytic processes involving enzymes.

    Science.gov (United States)

    Köhler, Valentin; Turner, Nicholas J

    2015-01-11

    The concurrent operation of multiple catalysts can lead to enhanced reaction features including (i) simultaneous linear multi-step transformations in a single reaction flask (ii) the control of intermediate equilibria (iii) stereoconvergent transformations (iv) rapid processing of labile reaction products. Enzymes occupy a prominent position for the development of such processes, due to their high potential compatibility with other biocatalysts. Genes for different enzymes can be co-expressed to reconstruct natural or construct artificial pathways and applied in the form of engineered whole cell biocatalysts to carry out complex transformations or, alternatively, the enzymes can be combined in vitro after isolation. Moreover, enzyme variants provide a wider substrate scope for a given reaction and often display altered selectivities and specificities. Man-made transition metal catalysts and engineered or artificial metalloenzymes also widen the range of reactivities and catalysed reactions that are potentially employable. Cascades for simultaneous cofactor or co-substrate regeneration or co-product removal are now firmly established. Many applications of more ambitious concurrent cascade catalysis are only just beginning to appear in the literature. The current review presents some of the most recent examples, with an emphasis on the combination of transition metal with enzymatic catalysis and aims to encourage researchers to contribute to this emerging field.

  16. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes

    Directory of Open Access Journals (Sweden)

    Takashi eMoriyama

    2014-09-01

    Full Text Available Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  17. Characterization of the cytochrome P450 enzymes involved in the metabolism of a new cardioprotective agent KR-33028.

    Science.gov (United States)

    Kim, Hyojin; Yoon, Yune-Jung; Kim, Hyunmi; Kang, Suil; Cheon, Hyae Gyeong; Yoo, Sung-Eun; Shin, Jae-Gook; Liu, Kwang-Hyeon

    2006-10-10

    KR-33028 (N-[4-cyano-benzo[b]thiophene-2-carbonyl]guanidine) is a new cardioprotective agent for preventing ischemia-reperfusion injury. This study was performed to characterize the cytochrome P450 (CYP) enzymes that are involved in the metabolism of KR-33028. Hydroxylation (5-hydroxy- and 7-hydroxy-KR-33028) is major pathways for the metabolism of KR-33028 in human liver microsomes. Among the nine c-DNA expressed CYP isoforms tested, KR-33028 was 5-hydroxylated by CYP3A4 and 7-hydroxylated by CYP1A2, CYP3A4, and CYP2C19. These findings were supported by the combination of chemical inhibition studies in human liver microsomes and correlation analysis. Furafylline and ketoconazole potently inhibited hydroxylation of KR-33028 in human liver microsomes. Correlation analysis between the known CYP enzyme activities and the rates of the formation of 5-hydroxy- and 7-hydroxy-KR-33028 in the 16 human liver microsomes has showed significant correlations with CYP3A4-mediated midazolam 1'-hydroxylation and CYP1A2-mediated phenacetin O-deethylation, respectively. A 7-hydroxy-KR-33028 formation is also weakly correlated with CYP3A4-mediated midazolam 1'-hydroxylation. The kinetics of the major biotransformation of KR-33028 were studied: CYP3A4 mediated the formation of 5-hydroxy-KR-33028 from KR-33028 with Cl(int)=0.22microl/min/pmol CYP. The intrinsic clearance for 7-hydroxy-KR-33028 formation by CYP1A2, CYP2C19, and CYP3A4 were 0.26, 0.19, and 0.03microl/min/pmol CYP, respectively. Taken together, these results provide evidence that CYP3A4 and CYP1A2 are the major isoforms responsible for the hydroxy metabolites formation from KR-33028.

  18. The effect of interferon-α on the expression of cytochrome P450 3A4 in human hepatoma cells

    International Nuclear Information System (INIS)

    Interferon α (IFNα) is used to treat malignancies and chronic viral infections. It has been found to decrease the rate of drug metabolism by acting on cytochrome P450 enzymes, but no studies have investigated the consequences of IFNα treatment on the CYP3A4 isoform, responsible for the metabolism of a majority of drugs. In this study, we have examined the effect of IFNα on CYP3A4 catalytic activity and expression in human hepatoma cells. We found that IFNα inhibits CYP3A4 activity and rapidly down-regulates the expression of CYP3A4, independent of de novo protein synthesis. Pharmacologic inhibitors and a dominant-negative mutant expression plasmid were used to dissect the molecular pathway required for CYP3A4 suppression, revealing roles for Jak1 and Stat1 and eliminating the involvement of the p38 mitogen-activated and extracellular regulated kinases. Treatment of hepatoma cells with IFNα did not affect the nuclear localization or relative abundance of Sp1 and Sp3 transcription factors, suggesting that the suppression of CYP3A4 by IFNα does not result from inhibitory Sp3 out-competing Sp1. To our knowledge, this is the first report that IFNα down-regulates CYP3A4 expression largely through the JAK-STAT pathway. Since IFNα suppresses CYP3A4 expression, caution is warranted when IFNα is administered in combination with CYP3A4 substrates to avoid the occurrence of adverse drug interactions.

  19. Lupine protein hydrolysates inhibit enzymes involved in the inflammatory pathway

    OpenAIRE

    Millán-Linares, María del Carmen; Yust, María del Mar; Alcaide-Hidalgo, J. M.; Millán, Francisco; Pedroche, Justo

    2014-01-01

    Lupine protein hydrolysates (LPHs) were obtained from a lupine protein isolate (LPI) by enzymatic hydrolysis using two proteases, Izyme AL and Alcalase 2.4 L, and their potential anti-inflammatory capacities were studied by determining their in vitro inhibition of the following enzymes that are involved in the inflammatory process: phospholipase A2 (PLA2), cyclooxygenase 2 (COX-2), thrombin, and transglutaminase (TG). The strongest inhibitory activities toward PLA2 and TG were found in the hy...

  20. Accessory enzymes from Aspergillus involved in xylan and pectin degradation

    NARCIS (Netherlands)

    Vries, de R.P.

    1999-01-01

    The xylanolytic and pectinolytic enzyme systems from Aspergillus have been the subject of study for many years. Although the main chain cleaving enzymes and their encoding genes have been studied in detail, little information is available about most of the accessory enzymes and their corresponding g

  1. Identification of human liver cytochrome P450 enzymes involved in the metabolism of SCH 530348 (Vorapaxar), a potent oral thrombin protease-activated receptor 1 antagonist.

    Science.gov (United States)

    Ghosal, Anima; Lu, Xiaowen; Penner, Natalia; Gao, Lan; Ramanathan, Ragu; Chowdhury, Swapan K; Kishnani, Narendra S; Alton, Kevin B

    2011-01-01

    Vorapaxar (SCH 530348), a potent oral thrombin protease-activated receptor 1 antagonist, is being developed as an antiplatelet agent for patients with established vascular disease. The objective of this study was to identify the human liver cytochrome P450 (P450) enzyme(s) responsible for the metabolism of SCH 530348. Human liver microsomes metabolized SCH 530348 to M19, an amine metabolite formed via carbamate cleavage, and M20 (monohydroxy-SCH 530348). Recombinant human CYP3A4 exhibited the most activity (11.5% profiled radioactivity) for the formation of M19, followed by markedly less substrate conversion with CYP1A1 and CYP2C19. Trace levels of M19, a major excreted human metabolite, were detected with CYP1A2, CYP3A5, and CYP4F3A. Formation of M19 by human liver microsomes was inhibited 89% by ketoconazole (IC(50), 0.73 μM), 34% by tranylcypromine, and 89% by anti-CYP3A4 monoclonal antibody. There was a significant correlation between the rate of M19 formation and midazolam 1'-hydroxylation (r = 0.75) or M19 formation and testosterone 6β-hydroxylation (r = 0.92). The results of screening, inhibition, and correlation studies confirmed that CYP3A4 is the major P450 enzyme responsible for M19 formation from SCH 530348. In contrast, formation of M20, a major circulating human metabolite at steady state, was primarily catalyzed by CYP3A4 and CYP2J2. M20 is pharmacologically equipotent to SCH 530348, whereas M19 is an inactive metabolite. Formation of M20 by human liver microsomes was inhibited 89% by ketoconazole, 75% by astemizole (a CYP2J2 inhibitor), and 43% by CYP3A4 monoclonal antibody. These results suggest that CYP3A4 and CYP2J2 are both involved in the formation of M20 metabolite. PMID:20926621

  2. Microbial urea-formaldehyde degradation involves a new enzyme, methylenediurease.

    Science.gov (United States)

    Jahns, T; Schepp, R; Siersdorfer, C; Kaltwasser, H

    1998-01-01

    The enzymic mechanism of metabolization of urea-formaldehyde condensation products (methyleneureas; MU) and the fate of the degradation products ammonium, urea and formaldehyde were studied in bacteria isolated from garden soil, which were able to use methyleneureas as the sole source of nitrogen for growth. An organism identified as Ochrobactrum anthropi completely degraded methylenediurea (MDU) and dimethylenetriurea (DMTU) to urea, ammonia, formaldehyde and carbon dioxide. An enzyme designated as methylenediurease (methylenediurea deiminase; MDUase) was responsible for the degradation of both MDU and DMTU as well as higher polymerized MU. Growth on MU as the nitrogen source specifically induced the synthesis of this enzyme, which seems to be located in the periplasm of the bacterium. Under these growth conditions, urease as well as NAD-specific formaldehyde and formiate dehydrogenase were expressed to high levels, efficiently using the products of MU degradation, and high-affinity transport systems for urea and ammonia were synthesized scavenging the environment for these products. PMID:10526991

  3. A RALDH-like enzyme involved in Fusarium verticillioides development

    KAUST Repository

    Díaz-Sánchez, Violeta

    2015-12-11

    Retinaldehyde dehydrogenases (RALDHs) convert retinal to retinoic acid, an important chordate morphogen. Retinal also occurs in some fungi, such as Fusarium and Ustilago spp., evidenced by the presence of rhodopsins and β–carotene cleaving, retinal-forming dioxygenases. Based on the assumption that retinoic acid may also be formed in fungi, we searched the Fusarium protein databases for RALDHs homologs, focusing on Fusarium verticillioides. Using crude lysates of Escherichia coli cells expressing the corresponding cDNAs, we checked the capability of best matches to convert retinal into retinoic acid in vitro. Thereby, we identified an aldehyde dehydrogenase, termed CarY, as a retinoic acid-forming enzyme, an activity that was also exerted by purified CarY. Targeted mutation of the carY gene in F. verticillioides resulted in alterations of mycelia development and conidia morphology in agar cultures, and reduced capacity to produce perithecia as a female in sexual crosses. Complementation of the mutant with a wild-type carY allele demonstrated that these alterations are caused by the lack of CarY. However, retinoic acid could not be detected by LC-MS analysis either in the wild type or the complemented carY strain in vivo, making elusive the connection between CarY enzymatic activity and retinoic acid formation in the fungus.

  4. A RALDH-like enzyme involved in Fusarium verticillioides development.

    Science.gov (United States)

    Díaz-Sánchez, Violeta; Limón, M Carmen; Schaub, Patrick; Al-Babili, Salim; Avalos, Javier

    2016-01-01

    Retinaldehyde dehydrogenases (RALDHs) convert retinal to retinoic acid, an important chordate morphogen. Retinal also occurs in some fungi, such as Fusarium and Ustilago spp., evidenced by the presence of rhodopsins and β-carotene cleaving, retinal-forming dioxygenases. Based on the assumption that retinoic acid may also be formed in fungi, we searched the Fusarium protein databases for RALDHs homologs, focusing on Fusarium verticillioides. Using crude lysates of Escherichia coli cells expressing the corresponding cDNAs, we checked the capability of best matches to convert retinal into retinoic acid in vitro. Thereby, we identified an aldehyde dehydrogenase, termed CarY, as a retinoic acid-forming enzyme, an activity that was also exerted by purified CarY. Targeted mutation of the carY gene in F. verticillioides resulted in alterations of mycelia development and conidia morphology in agar cultures, and reduced capacity to produce perithecia as a female in sexual crosses. Complementation of the mutant with a wild-type carY allele demonstrated that these alterations are caused by the lackof CarY. However, retinoic acid could not be detected by LC-MS analysis either in the wild type or the complemented carY strain in vivo, making elusive the connection between CarY enzymatic activity and retinoic acid formation in the fungus.

  5. Phosphorylating enzymes involved in glucose fermentation of Actinomyces naeslundii.

    OpenAIRE

    Takahashi, N.; Kalfas, S; Yamada, T.

    1995-01-01

    Enzymatic activities involved in glucose fermentation of Actinomyces naeslundii were studied with glucose-grown cells from batch cultures. Glucose could be phosphorylated to glucose 6-phosphate by a glucokinase that utilized polyphosphate and GTP instead of ATP as a phosphoryl donor. Glucose 6-phosphate was further metabolized to the end products lactate, formate, acetate, and succinate through the Embden-Meyerhof-Parnas pathway. The phosphoryl donor for phosphofructokinase was only PPi. Phos...

  6. Microsomal cytochrome P450-3A4 (CYP3A4) nanobiosensor for the determination of 2,4-dichlorophenol-An endocrine disruptor compound

    International Nuclear Information System (INIS)

    Cytochrome P450-3A4 (CYP3A4) is a monooxygenase enzyme that plays a major role in the detoxification of bioactive compounds and hydrophobic xenobiotics (e.g. medicines, drugs, environmental pollutants, food supplements and steroids). Physiologically the monooxygenation reactions of this class II, microsomal, b-type heme enzyme, usually requires cytochrome P450 reductase, NADPH. A novel CYP3A4 biosensor system that essentially simplified the enzymatic redox processes by allowing electron transfer between the electrode and the enzyme redox centre to occur, without any need for the physiological redox partners, was developed for the detection of 2,4-dichlorophenol (2,4-DCP), a priority environmental pollutant and an endocrine disruptor. The biosensor, GC/Naf-Co(Sep)3+/CYP3A4/Naf, was constructed by encapsulating CYP3A4 in a Nafion-cobalt (III) sepulchrate (Naf-Co(Sep)3+) composite film on a glassy carbon (GC) electrode. The responses of the biosensor to 2,4-dichlorophenol, erythromycin (CYP3A4 native substrate) and ketoconazole (CYP 3A4 natural inhibitor) were studied by cyclic and square wave voltammetric techniques. The detection limit (DL) of the biosensor for 2,4-dichlorophenol was 0.043 μg L-1, which is by an order of magnitude lower than the EU limit (0.3 μg L-1) for any pesticide compound in ground water. The biosensor's DL is lower than the U.S. Environmental Protection Agency's drinking water equivalent level (DWEL) value for 2,4-DCP, which is 2 μg L-1

  7. Inhibitory Effects of Vegetable Juices on CYP3A4 Activity in Recombinant CYP3A4 and LS180 Cells.

    Science.gov (United States)

    Tsujimoto, Masayuki; Uchida, Tomoe; Kozakai, Hiroyuki; Yamamoto, Saori; Minegaki, Tetsuya; Nishiguchi, Kohshi

    2016-01-01

    It is thought that eating habits induces individual variation in intestinal absorption and metabolism of drugs. The objective of this research was to clarify the influence of vegetables juices on CYP3A4 activity, which is an important enzyme in intestine. Five vegetables juices (VJ-o, Kagome Original(®); VJ-g, Kagome 30 kinds of vegetables and fruits(®); VJ-p, Kagome Purple vegetables(®); VJ-r, Kagome Sweet Tomato(®); and VJ-y, Kagome Fruity Salada(®); KAGOME Co., Ltd., Aichi, Japan) were centrifuged (1630×g, 10 min) and filtered using filter paper and 0.45-µm membrane filters. In this study, recombinant CYP3A4 and LS180 cells were used for the evaluation of CYP3A4 activity. The metabolisms to 6β-hydroxytestosterone by recombinant CYP3A4 were significantly inhibited by VJ-o, VJ-g, and VJ-y in a preincubation time-dependent manner, and CYP3A4 activity in LS180 cells were significantly inhibited by VJ-o and VJ-y. These results show that the difference in ingestion volume of vegetable juices and vegetables might partially induce individual difference in intestinal drug metabolism. PMID:27582329

  8. Inhibitory Effects of Vegetable Juices on CYP3A4 Activity in Recombinant CYP3A4 and LS180 Cells.

    Science.gov (United States)

    Tsujimoto, Masayuki; Uchida, Tomoe; Kozakai, Hiroyuki; Yamamoto, Saori; Minegaki, Tetsuya; Nishiguchi, Kohshi

    2016-01-01

    It is thought that eating habits induces individual variation in intestinal absorption and metabolism of drugs. The objective of this research was to clarify the influence of vegetables juices on CYP3A4 activity, which is an important enzyme in intestine. Five vegetables juices (VJ-o, Kagome Original(®); VJ-g, Kagome 30 kinds of vegetables and fruits(®); VJ-p, Kagome Purple vegetables(®); VJ-r, Kagome Sweet Tomato(®); and VJ-y, Kagome Fruity Salada(®); KAGOME Co., Ltd., Aichi, Japan) were centrifuged (1630×g, 10 min) and filtered using filter paper and 0.45-µm membrane filters. In this study, recombinant CYP3A4 and LS180 cells were used for the evaluation of CYP3A4 activity. The metabolisms to 6β-hydroxytestosterone by recombinant CYP3A4 were significantly inhibited by VJ-o, VJ-g, and VJ-y in a preincubation time-dependent manner, and CYP3A4 activity in LS180 cells were significantly inhibited by VJ-o and VJ-y. These results show that the difference in ingestion volume of vegetable juices and vegetables might partially induce individual difference in intestinal drug metabolism.

  9. GW4064, an agonist of farnesoid X receptor, represses CYP3A4 expression in human hepatocytes by inducing small heterodimer partner expression.

    Science.gov (United States)

    Zhang, Shu; Pan, Xian; Jeong, Hyunyoung

    2015-05-01

    Farnesoid X receptor (FXR) functions as a regulator of bile acid and lipid homeostasis and is recognized as a promising therapeutic target for metabolic diseases. The biologic function of FXR is mediated in part by a small heterodimer partner (SHP); ligand-activated FXR enhances SHP expression, and SHP in turn represses the activity of multiple transcription factors. This study aimed to investigate the effect of FXR activation on expression of the major drug-metabolizing enzyme CYP3A4. The effects of 3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064), a synthetic agonist of FXR, on the expression and activity of CYP3A4 were examined in primary human hepatocytes by using quantitative real-time polymerase chain reaction and S9 phenotyping. In human hepatocytes, treatment of GW4064 (1 μM) for 48 hours resulted in a 75% decrease in CYP3A4 mRNA expression and a 25% decrease in CYP3A4 activity, accompanied by ∼3-fold increase in SHP mRNA expression. In HepG2 cells, SHP repressed transactivation of CYP3A4 promoter by pregnane X receptor (PXR), constitutive androstane receptor (CAR), and glucocorticoid receptor. Interestingly, GW4064 did not repress expression of CYP2B6, another target gene of PXR and CAR; GW4064 enhanced CYP2B6 promoter activity. In conclusion, GW4064 represses CYP3A4 expression in human hepatocytes, potentially through upregulation of SHP expression and subsequent repression of CYP3A4 promoter activity. Clinically significant drug-drug interaction involving FXR agonists and CYP3A4 substrates may occur. PMID:25725071

  10. Structure and function of enzymes involved in the anaerobic degradation of L-threonine to propionate

    Indian Academy of Sciences (India)

    Dhirendra K Simanshu; Sagar Chittori; H S Savithri; M R N Murthy

    2007-09-01

    In Escherichia coli and Salmonella typhimurium, L-threonine is cleaved non-oxidatively to propionate via 2-ketobutyrate by biodegradative threonine deaminase, 2-ketobutyrate formate-lyase (or pyruvate formate-lyase), phosphotransacetylase and propionate kinase. In the anaerobic condition, L-threonine is converted to the energy-rich keto acid and this is subsequently catabolised to produce ATP via substrate-level phosphorylation, providing a source of energy to the cells. Most of the enzymes involved in the degradation of L-threonine to propionate are encoded by the anaerobically regulated tdc operon. In the recent past, extensive structural and biochemical studies have been carried out on these enzymes by various groups. Besides detailed structural and functional insights, these studies have also shown the similarities and differences between the other related enzymes present in the metabolic network. In this paper, we review the structural and biochemical studies carried out on these enzymes.

  11. Sugarcane expressed sequences tags (ESTs encoding enzymes involved in lignin biosynthesis pathways

    Directory of Open Access Journals (Sweden)

    Ramos Rose Lucia Braz

    2001-01-01

    Full Text Available Lignins are phenolic polymers found in the secondary wall of plant conductive systems where they play an important role by reducing the permeability of the cell wall to water. Lignins are also responsible for the rigidity of the cell wall and are involved in mechanisms of resistance to pathogens. The metabolic routes and enzymes involved in synthesis of lignins have been largely characterized and representative genes that encode enzymes involved in these processes have been cloned from several plant species. The synthesis of lignins is liked to the general metabolism of the phenylpropanoids in plants, having enzymes (e.g. phenylalanine ammonia-lyase (PAL, cinnamate 4-hydroxylase (C4H and caffeic acid O-methyltransferase (COMT common to other processes as well as specific enzymes such as cinnamoyl-CoA reductase (CCR and cinnamyl alcohol dehydrogenase (CAD. Some maize and sorghum mutants, shown to have defective in CAD and/or COMT activity, are easier to digest because they have a reduced lignin content, something which has motivated different research groups to alter the lignin content and composition of model plants by genetic engineering try to improve, for example, the efficiency of paper pulping and digestibility. In the work reported in this paper, we have made an inventory of the sugarcane expressed sequence tag (EST coding for enzymes involved in lignin metabolism which are present in the sugarcane EST genome project (SUCEST database. Our analysis focused on the key enzymes ferulate-5-hydroxylase (F5H, caffeic acid O-methyltransferase (COMT, caffeoyl CoA O-methyltransferase (CCoAOMT, hydroxycinnamate CoA ligase (4CL, cinnamoyl-CoA reductase (CCR and cinnamyl alcohol dehydrogenase (CAD. The comparative analysis of these genes with those described in other species could be used as molecular markers for breeding as well as for the manipulation of lignin metabolism in sugarcane.

  12. Characterization of the Promoter Region of Biosynthetic Enzyme Genes Involved in Berberine Biosynthesis in Coptis japonica

    Science.gov (United States)

    Yamada, Yasuyuki; Yoshimoto, Tadashi; Yoshida, Sayumi T.; Sato, Fumihiko

    2016-01-01

    The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs), a plant-specific WRKY-type TF, CjWRKY1, and a basic helix-loop-helix TF, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4′OMT and CYP719A1) were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC) reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay and by a chromatin immunoprecipitation assay. In addition, CjbHLH1 also activated transcription from truncated 4′OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed. PMID:27642289

  13. Characterization of the Promoter Region of Biosynthetic Enzyme Genes Involved in Berberine Biosynthesis in Coptis japonica.

    Science.gov (United States)

    Yamada, Yasuyuki; Yoshimoto, Tadashi; Yoshida, Sayumi T; Sato, Fumihiko

    2016-01-01

    The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs), a plant-specific WRKY-type TF, CjWRKY1, and a basic helix-loop-helix TF, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4'OMT and CYP719A1) were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC) reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay and by a chromatin immunoprecipitation assay. In addition, CjbHLH1 also activated transcription from truncated 4'OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed. PMID:27642289

  14. Characterization of Human Hepatic and Extrahepatic UDP-Glucuronosyltransferase Enzymes Involved in the Metabolism of Classic Cannabinoids

    OpenAIRE

    Mazur, Anna; Lichti, Cheryl F.; Prather, Paul L.; Zielinska, Agnieszka K.; Bratton, Stacie M.; Gallus-Zawada, Anna; Finel, Moshe; Miller, Grover P.; Radomińska-Pandya, Anna; Moran, Jeffery H.

    2009-01-01

    Tetrahydrocannabinol (Δ9-THC), the primary psychoactive ingredient in marijuana, is subject to cytochrome P450 oxidation and subsequent UDP-glucuronosyltransferase (UGT)-dependent glucuronidation. Many studies have shown that CYP2C9 and CYP3A4 are the primary enzymes responsible for these cytochrome P450-dependent oxidations, but little work has been done to characterize phase II metabolic pathways. In this study, we test the hypothesis that there are specific human UG...

  15. Studies on enzymes involved in DNA synthesis and thymine nucleotide formation in potato tuber slices

    International Nuclear Information System (INIS)

    Activity changes of several enzymes involved in DNA synthesis were investigated in potato tuber tissue in which DNA synthesis was induced by slicing. Nucleoside phosphotransferase activity increased only slightly during aging of the tissue discs. Thymidine monophosphate (TMP) kinase activity increased about 36% after aging for 24 hr. Protein synthesis in an early stage of aging was necessary for the activity increase. A 2.7-fold increase was observed in DNA polymerase activity after aging for 36 hr. The activity increase was due to continuous synthesis of enzyme protein. In vivo examination of TMP synthetase suggests that its activity does not necessarily increase before full development of DNA synthesis. It was concluded that among the enzymes examined, TMP kinase activity may increase shortly after slicing to support a massive supply of thymidine triphosphate and the increased activity of DNA polymerane may contribute to the active synthesis of DNA in aged discs. (auth.)

  16. Structure and Characterization of Proteins and Enzymes Involved in Nucleotide Metabolism and Iron-Sulfur Proteins

    DEFF Research Database (Denmark)

    Løvgreen, Monika Nøhr; Ooi, Bee Lean

    it is stabilized in the active conformation. The active conformation for the WT enzyme is likely to be the same as seen in Mj DCD-DUT:dUMPNPP, and this conformation does not allow dTTP binding because of steric hindrance. Hyperbolic dCTP and dUTP saturation curves support that the WT enzyme was present solely....... This distinction between dCTP and dUTP as substrates could be related to Ala115 being involved in dCTP deamination in the WT enzyme. The flexible Gly115 backbone of the A115G variant may require adjustment for the deamination to take place, whereas the conformation of this residue is indifferent...

  17. The effect of complementary and alternative medicines on CYP3A4-mediated metabolism of three different substrates : 7-benzyloxy-4-trifluoromethyl-coumarin, midazolam and docetaxel

    NARCIS (Netherlands)

    Mooiman, Kim D; Maas-Bakker, Roel F; Hendrikx, Jeroen J M A; Bank, Paul C D; Rosing, Hilde; Beijnen, Jos H; Schellens, Jan H M; Meijerman, Irma

    2014-01-01

    OBJECTIVE: Concomitant use of complementary and alternative medicine (CAM) and anticancer drugs can affect the pharmacokinetics of anticancer drugs by inhibiting the metabolizing enzyme cytochrome P450 3A4 (CYP3A4) (EC 1.14.13.157). Several in vitro studies determined whether CAM can inhibit CYP3A4,

  18. novPTMenzy: a database for enzymes involved in novel post-translational modifications.

    Science.gov (United States)

    Khater, Shradha; Mohanty, Debasisa

    2015-01-01

    With the recent discoveries of novel post-translational modifications (PTMs) which play important roles in signaling and biosynthetic pathways, identification of such PTM catalyzing enzymes by genome mining has been an area of major interest. Unlike well-known PTMs like phosphorylation, glycosylation, SUMOylation, no bioinformatics resources are available for enzymes associated with novel and unusual PTMs. Therefore, we have developed the novPTMenzy database which catalogs information on the sequence, structure, active site and genomic neighborhood of experimentally characterized enzymes involved in five novel PTMs, namely AMPylation, Eliminylation, Sulfation, Hydroxylation and Deamidation. Based on a comprehensive analysis of the sequence and structural features of these known PTM catalyzing enzymes, we have created Hidden Markov Model profiles for the identification of similar PTM catalyzing enzymatic domains in genomic sequences. We have also created predictive rules for grouping them into functional subfamilies and deciphering their mechanistic details by structure-based analysis of their active site pockets. These analytical modules have been made available as user friendly search interfaces of novPTMenzy database. It also has a specialized analysis interface for some PTMs like AMPylation and Eliminylation. The novPTMenzy database is a unique resource that can aid in discovery of unusual PTM catalyzing enzymes in newly sequenced genomes. Database URL: http://www.nii.ac.in/novptmenzy.html

  19. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  20. Comparison of Paeoniflorin and Albiflorin on Human CYP3A4 and CYP2D6

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2015-01-01

    Full Text Available Peony (Paeonia lactiflora Pall- is a plant medicine and a functional food ingredient with wide application for more than 2000 years. It can be coadministrated with many other drugs, composed of traditional Chinese medicine compound such as shaoyao-gancao decoction. In order to explore the efficacy and safety of peony, effects of paeoniflorin and albiflorin (the principal components of peony on cytochrome P450 (CYP 3A4 and CYP2D6 were analyzed in human hepatoma HepG2 cells and evaluated from the level of recombinant CYP enzymes in vitro. The findings indicated that albiflorin possessed stronger regulation on the mRNA expression of CYP3A4 and CYP2D6 than paeoniflorin. For the protein level of CYP3A4, albiflorin showed significant induction or inhibition with the concentration increasing from 10−7 M to 10−5 M, but no remarkable variation was observed in paeoniflorin-treated group. Enzyme activity assay implied that both paeoniflorin and albiflorin could regulate CYP3A4 and CYP2D6 with varying degrees. The results showed that albiflorin should be given more attention because it may play a vital role on the overall efficacy of peony. The whole behavior of both paeoniflorin and albiflorin should be focused on ensuring the rationality and effectiveness of clinical application.

  1. A Cytochrome P450 3A4 Biosensor Based on Generation 4.0 PAMAM Dendrimers for the Detection of Caffeine.

    Science.gov (United States)

    Müller, Michael; Agarwal, Neha; Kim, Jungtae

    2016-01-01

    Cytochromes P450 (CYP, P450) are a large family of heme-active-site proteins involved in many catalytic processes, including steroidogenesis. In humans, four primary enzymes are involved in the metabolism of almost all xenobiotics. Among these enzymes, CYP3A4 is responsible for the inactivation of the majority of used drugs which makes this enzyme an interesting target for many fields of research, especially pharmaceutical research. Since the late 1970s, attempts have been made to construct and develop electrochemical sensors for the determination of substrates. This paper is concerned with the establishment of such a CYP3A4-containing biosensor. The sensor was constructed by adsorption of alternating layers of sub-nanometer gold particle-modified PAMAM (poly-amido-amine) dendrimers of generation 4.0, along with the enzyme by a layer-by-layer assembly technique. Atomic force microscopy (AFM), quartz crystal microbalance (QCM), and Fourier-transformed infrared spectroscopy (FTIR) were employed to elucidate the sensor assembly. Additionally, the biosensor was tested by cyclic voltammetry using caffeine as a substrate. PMID:27548239

  2. A Cytochrome P450 3A4 Biosensor Based on Generation 4.0 PAMAM Dendrimers for the Detection of Caffeine

    Science.gov (United States)

    Müller, Michael; Agarwal, Neha; Kim, Jungtae

    2016-01-01

    Cytochromes P450 (CYP, P450) are a large family of heme-active-site proteins involved in many catalytic processes, including steroidogenesis. In humans, four primary enzymes are involved in the metabolism of almost all xenobiotics. Among these enzymes, CYP3A4 is responsible for the inactivation of the majority of used drugs which makes this enzyme an interesting target for many fields of research, especially pharmaceutical research. Since the late 1970s, attempts have been made to construct and develop electrochemical sensors for the determination of substrates. This paper is concerned with the establishment of such a CYP3A4-containing biosensor. The sensor was constructed by adsorption of alternating layers of sub-nanometer gold particle-modified PAMAM (poly-amido-amine) dendrimers of generation 4.0, along with the enzyme by a layer-by-layer assembly technique. Atomic force microscopy (AFM), quartz crystal microbalance (QCM), and Fourier-transformed infrared spectroscopy (FTIR) were employed to elucidate the sensor assembly. Additionally, the biosensor was tested by cyclic voltammetry using caffeine as a substrate. PMID:27548239

  3. In Vitro Optimization of Enzymes Involved in Precorrin-2 Synthesis Using Response Surface Methodology.

    Science.gov (United States)

    Fang, Huan; Dong, Huina; Cai, Tao; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    In order to maximize the production of biologically-derived chemicals, kinetic analyses are first necessary for predicting the role of enzyme components and coordinating enzymes in the same reaction system. Precorrin-2 is a key precursor of cobalamin and siroheme synthesis. In this study, we sought to optimize the concentrations of several molecules involved in precorrin-2 synthesis in vitro: porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD), uroporphyrinogen III synthase (UROS), and S-adenosyl-l-methionine-dependent urogen III methyltransferase (SUMT). Response surface methodology was applied to develop a kinetic model designed to maximize precorrin-2 productivity. The optimal molar ratios of PBGS, PBGD, UROS, and SUMT were found to be approximately 1:7:7:34, respectively. Maximum precorrin-2 production was achieved at 0.1966 ± 0.0028 μM/min, agreeing with the kinetic model's predicted value of 0.1950 μM/min. The optimal concentrations of the cofactor S-adenosyl-L-methionine (SAM) and substrate 5-aminolevulinic acid (ALA) were also determined to be 200 μM and 5 mM, respectively, in a tandem-enzyme assay. By optimizing the relative concentrations of these enzymes, we were able to minimize the effects of substrate inhibition and feedback inhibition by S-adenosylhomocysteine on SUMT and thereby increase the production of precorrin-2 by approximately five-fold. These results demonstrate the effectiveness of kinetic modeling via response surface methodology for maximizing the production of biologically-derived chemicals.

  4. Subcellular Localization of Enzymes Involved in Indole Alkaloid Biosynthesis in Catharanthus roseus1

    Science.gov (United States)

    De Luca, Vincenzo; Cutler, Adrian J.

    1987-01-01

    The subcellular localization of enzymes involved in indole alkaloid biosynthesis in leaves of Catharanthus roseus has been investigated. Tryptophan decarboxylase and strictosidine synthase which together produce strictosidine, the first indole alkaloid of this pathway, are both cytoplasmic enzymes. S-Adenosyl-l-methionine: 16-methoxy-2,3-dihydro-3-hydroxytabersonine-N-methyltransferase which catalyses the third to last step in vindoline biosynthesis could be localized in the chloroplasts of Catharanthus leaves and is specifically associated with thylakoids. Acetyl-coenzyme-A-deacetylvindoline-O-acetyltransferase which catalyses the last step in vindoline biosynthesis could also be localized in the cytoplasm. The participation of the chloroplast in this pathway suggests that indole alkaloid intermediates enter and exit this compartment during the biosynthesis of vindoline. PMID:16665811

  5. Study Liver Cytochrome P450 3A4 Inhibition and Hepatotoxicity Using DMSO-Differentiated HuH-7 Cells.

    Science.gov (United States)

    Liu, Yitong

    2016-01-01

    Metabolically competent, inexpensive, and robust in vitro cell models are needed for studying liver drug-metabolizing enzymes and hepatotoxicity. Human hepatoma HuH-7 cells develop into a differentiated in vitro model resembling primary human hepatocytes after a 2-week dimethyl sulfoxide (DMSO) treatment. DMSO-treated HuH-7 cells express elevated cytochrome P450 3A4 (CYP3A4) enzyme gene expression and activity compared to untreated HuH-7 cells. This cell model could be used to study CYP3A4 inhibition by reversible and time-dependent inhibitors, including drugs, food-related substances, and environmental chemicals. The DMSO-treated HuH-7 model is also a suitable tool for investigating hepatotoxicity. This chapter describes a detailed methodology for developing DMSO-treated HuH-7 cells, which are subsequently used for CYP3A4 inhibition and hepatotoxicity studies. PMID:27518624

  6. Metabolism of cryptic peptides derived from neuropeptide FF precursors: the involvement of insulin-degrading enzyme.

    Science.gov (United States)

    Grasso, Giuseppe; Mielczarek, Przemyslaw; Niedziolka, Magdalena; Silberring, Jerzy

    2014-09-22

    The term "cryptome" refers to the subset of cryptic peptides with bioactivities that are often unpredictable and very different from the parent protein. These cryptic peptides are generated by proteolytic cleavage of proteases, whose identification in vivo can be very challenging. In this work, we show that insulin-degrading enzyme (IDE) is able to degrade specific amino acid sequences present in the neuropeptide pro-NPFFA (NPFF precursor), generating some cryptic peptides that are also observed after incubation with rat brain cortex homogenate. The reported experimental findings support the increasingly accredited hypothesis, according to which, due to its wide substrate selectivity, IDE is involved in a wide variety of physiopathological processes.

  7. A Mechanism-Based Model for the Prediction of the Metabolic Sites of Steroids Mediated by Cytochrome P450 3A4

    Directory of Open Access Journals (Sweden)

    Zi-Ru Dai

    2015-06-01

    Full Text Available Early prediction of xenobiotic metabolism is essential for drug discovery and development. As the most important human drug-metabolizing enzyme, cytochrome P450 3A4 has a large active cavity and metabolizes a broad spectrum of substrates. The poor substrate specificity of CYP3A4 makes it a huge challenge to predict the metabolic site(s on its substrates. This study aimed to develop a mechanism-based prediction model based on two key parameters, including the binding conformation and the reaction activity of ligands, which could reveal the process of real metabolic reaction(s and the site(s of modification. The newly established model was applied to predict the metabolic site(s of steroids; a class of CYP3A4-preferred substrates. 38 steroids and 12 non-steroids were randomly divided into training and test sets. Two major metabolic reactions, including aliphatic hydroxylation and N-dealkylation, were involved in this study. At least one of the top three predicted metabolic sites was validated by the experimental data. The overall accuracy for the training and test were 82.14% and 86.36%, respectively. In summary, a mechanism-based prediction model was established for the first time, which could be used to predict the metabolic site(s of CYP3A4 on steroids with high predictive accuracy.

  8. Endogenous enzymes involved in the transformation of oleuropein in Spanish table olive varieties.

    Science.gov (United States)

    Ramírez, Eva; Medina, Eduardo; Brenes, Manuel; Romero, Concepción

    2014-10-01

    The main Spanish table olive varieties supplied by different olive cooperatives were investigated for their polyphenol compositions and the endogenous enzymes involved in their transformations during two growing seasons. Olives of the Manzanilla variety had the highest concentration in total polyphenols, followed by the Hojiblanca and Gordal varieties. The Gordal and Manzanilla cultivars showed the highest polyphenol oxidase activities. The Gordal cultivar presented a greater β-glucosidase and esterase activity than the others. An important influence of pH and temperature on the optimal activity of these enzymes was also observed. The polyphenol oxidase activity increased with temperature, and peroxidase activity was optimal at 35 °C. The β-glucosidase and esterase activities were at their maximum at 30 and 55 °C, respectively. The oxidase and β-glucosidase activities were at their maximum at the pH of the raw fruit. These results will contribute to the knowledge of the enzyme transformation of oleuropein in natural table olives. PMID:25209163

  9. Enzymes involved in DNA ligation and end-healing in the radioresistant bacterium Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Shevelev Igor V

    2007-08-01

    Full Text Available Abstract Background Enzymes involved in DNA metabolic events of the highly radioresistant bacterium Deinococcus radiodurans are currently examined to understand the mechanisms that protect and repair the Deinococcus radiodurans genome after extremely high doses of γ-irradiation. Although several Deinococcus radiodurans DNA repair enzymes have been characterised, no biochemical data is available for DNA ligation and DNA endhealing enzymes of Deinococcus radiodurans so far. DNA ligases are necessary to seal broken DNA backbones during replication, repair and recombination. In addition, ionizing radiation frequently leaves DNA strand-breaks that are not feasible for ligation and thus require end-healing by a 5'-polynucleotide kinase or a 3'-phosphatase. We expect that DNA ligases and end-processing enzymes play an important role in Deinococcus radiodurans DNA strand-break repair. Results In this report, we describe the cloning and expression of a Deinococcus radiodurans DNA ligase in Escherichia coli. This enzyme efficiently catalyses DNA ligation in the presence of Mn(II and NAD+ as cofactors and lysine 128 was found to be essential for its activity. We have also analysed a predicted second DNA ligase from Deinococcus radiodurans that is part of a putative DNA repair operon and shows sequence similarity to known ATP-dependent DNA ligases. We show that this enzyme possesses an adenylyltransferase activity using ATP, but is not functional as a DNA ligase by itself. Furthermore, we identified a 5'-polynucleotide kinase similar to human polynucleotide kinase that probably prepares DNA termini for subsequent ligation. Conclusion Deinococcus radiodurans contains a standard bacterial DNA ligase that uses NAD+ as a cofactor. Its enzymatic properties are similar to E. coli DNA ligase except for its preference for Mn(II as a metal cofactor. The function of a putative second DNA ligase remains unclear, but its adenylyltransferase activity classifies it as a

  10. Expression pattern of glycoside hydrolase genes in Lutzomyia longipalpis reveals key enzymes involved in larval digestion

    Directory of Open Access Journals (Sweden)

    Caroline da Silva Moraes

    2014-08-01

    Full Text Available The sand fly Lutzomyia longipalpis is the most important vector of American Visceral Leishmaniasis. Adults are phytophagous (males and females or blood feeders (females only, and larvae feed on solid detritus. Digestion in sand fly larvae has scarcely been studied, but some glycosidase activities putatively involved in microorganism digestion were already described. Nevertheless, the molecular nature of these enzymes, as the corresponding genes and transcripts, were not explored yet. Catabolism of microbial carbohydrates in insects generally involves β-1,3-glucanases, chitinases and digestive lysozymes. In this work, the transcripts of digestive β-1,3-glucanase and chitinases were identified in the L. longipalpis larvae throughout analysis of sequences and expression patterns of glycoside hydrolases families 16, 18 and 22. The activity of one i-type lysozyme was also registered. Interestingly, this lysozyme seems to play a role in immunity, rather than digestion. This is the first attempt to identify the molecular nature of sand fly larval digestive enzymes.

  11. Imatinib treatment and pharmacogenotype CYP3A4 in relation with the clonal expansion Ph(+ in chronic myeloid leukemia (CML.

    Directory of Open Access Journals (Sweden)

    Mauricio Camargo

    2009-12-01

    Full Text Available Introduction: Imatinib is an inhibitor of the BCR-ABL tyrosine-kinase that has dramatically changed the treatment of patient with Chronic myeloid leukemia (CML positive for the Philadelphia chromosome (Ph+. This compound is mainly metabolized by the cytochrome CYP3A4 enzyme, coded by a gene with individual variations that could interfere with the effectiveness of the treatment, due to the fact that particular single nucleotide polymorphisms (SNPs, i.e., CYP3A4*1B y CYP3A4*2, have shown to exert a significant influence on the metabolic activity of this pharmacologically important enzyme. Objective: Evaluate the frequency of pharmacogenetically important polymorphisms in the CYP3A4 gen in a Colombian population of patients with CML being treated with this novel drug (Imatinib, in parallel with a control population of 164 healthy individuals. Correlate the evolution of the clonal expansion Ph(+ with the presence of these SNPs and the length of treatment. Methodology: PCR-RFLP genotyping for the CYP3A4* 1B y CYP3A4*2 SNPs. RBHG replication banding for the evaluation of the presence of the Ph(+ markers in spontaneous mitotic blasts. Results: A positive cytogenetic response and/or correlation was detected between the length of the imatinib treatment and a reduction in the percentage of Ph(+ blasts. Genotyping indicate that CYP3A4*1B polymorphism does no affect the cytogenetic response in imatinib treated Ph(+ patients, and that the pharmacorelevant CYP3A4*2 SNP is not present in this population of patients and controls (N=194. Conclusions: The pharmacogenotype CYP3A4*2 (exon 7 does not affect the induced positive cytogenetic response triggered by the imatinib treatment, that generally induces a reduction in Ph(+ blasts en relation with the duration of the treatment.

  12. Exploration of soil metagenome diversity for prospection of enzymes involved in lignocellulosic biomass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, T.M.; Squina, F.M. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Paixao, D.A.A.; Franco Cairo, J.P.L.; Buchli, F.; Ruller, R. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Campinas, SP (Brazil); Prade, R. [Oklahoma State University, Sillwater, OK (United States)

    2012-07-01

    Full text: Metagenomics allows access to genetic information encoded in DNA of microorganisms recalcitrant to cultivation. They represent a reservoir of novel biocatalyst with potential application in environmental friendly techniques aiming to overcome the dependence on fossil fuels and also to diminish air and water pollution. The focus of our work is the generation of a tool kit of lignocellulolytic enzymes from soil metagenome, which could be used for second generation ethanol production. Environmental samples were collected at a sugarcane field after harvesting, where it is expected that the microbial population involved on lignocellulose degradation was enriched due to the presence of straws covering the soil. Sugarcane Bagasse-Degrading-Soil (SBDS) metagenome was massively-parallel-454-Roche-sequenced. We identified a full repertoire of genes with significant match to glycosyl hydrolases catalytic domain and carbohydrate-binding modules. Soil metagenomics libraries cloned into pUC19 were screened through functional assays. CMC-agar screening resulted in positive clones, revealing new cellulases coding genes. Through a CMC-zymogram it was possible to observe that one of these genes, nominated as E-1, corresponds to an enzyme that is secreted to the extracellular medium, suggesting that the cloned gene carried the original signal peptide. Enzymatic assays and analysis through capillary electrophoresis showed that E-1 was able to cleave internal glycosidic bonds of cellulose. New rounds of functional screenings through chromogenic substrates are being conducted aiming the generation of a library of lignocellulolytic enzymes derived from soil metagenome, which may become key component for development of second generation biofuels. (author)

  13. Exploration of soil metagenome diversity for prospection of enzymes involved in lignocellulosic biomass conversion

    International Nuclear Information System (INIS)

    Full text: Metagenomics allows access to genetic information encoded in DNA of microorganisms recalcitrant to cultivation. They represent a reservoir of novel biocatalyst with potential application in environmental friendly techniques aiming to overcome the dependence on fossil fuels and also to diminish air and water pollution. The focus of our work is the generation of a tool kit of lignocellulolytic enzymes from soil metagenome, which could be used for second generation ethanol production. Environmental samples were collected at a sugarcane field after harvesting, where it is expected that the microbial population involved on lignocellulose degradation was enriched due to the presence of straws covering the soil. Sugarcane Bagasse-Degrading-Soil (SBDS) metagenome was massively-parallel-454-Roche-sequenced. We identified a full repertoire of genes with significant match to glycosyl hydrolases catalytic domain and carbohydrate-binding modules. Soil metagenomics libraries cloned into pUC19 were screened through functional assays. CMC-agar screening resulted in positive clones, revealing new cellulases coding genes. Through a CMC-zymogram it was possible to observe that one of these genes, nominated as E-1, corresponds to an enzyme that is secreted to the extracellular medium, suggesting that the cloned gene carried the original signal peptide. Enzymatic assays and analysis through capillary electrophoresis showed that E-1 was able to cleave internal glycosidic bonds of cellulose. New rounds of functional screenings through chromogenic substrates are being conducted aiming the generation of a library of lignocellulolytic enzymes derived from soil metagenome, which may become key component for development of second generation biofuels. (author)

  14. Metabolism of Cryptic Peptides Derived from Neuropeptide FF Precursors: The Involvement of Insulin-Degrading Enzyme

    Directory of Open Access Journals (Sweden)

    Giuseppe Grasso

    2014-09-01

    Full Text Available The term “cryptome” refers to the subset of cryptic peptides with bioactivities that are often unpredictable and very different from the parent protein. These cryptic peptides are generated by proteolytic cleavage of proteases, whose identification in vivo can be very challenging. In this work, we show that insulin-degrading enzyme (IDE is able to degrade specific amino acid sequences present in the neuropeptide pro-NPFFA (NPFF precursor, generating some cryptic peptides that are also observed after incubation with rat brain cortex homogenate. The reported experimental findings support the increasingly accredited hypothesis, according to which, due to its wide substrate selectivity, IDE is involved in a wide variety of physiopathological processes.

  15. Flavonoids activate pregnane × receptor-mediated CYP3A4 gene expression by inhibiting cyclin-dependent kinases in HepG2 liver carcinoma cells

    Directory of Open Access Journals (Sweden)

    Wu Jing

    2010-06-01

    Full Text Available Abstract Background The expression of the drug-metabolizing enzyme cytochrome P450 3A4 (CYP3A4 is regulated by the pregnane × receptor (PXR, which is modulated by numerous signaling pathways, including the cyclin-dependent kinase (Cdk pathway. Flavonoids, commonly consumed by humans as dietary constituents, have been shown to modulate various signaling pathways (e.g., inhibiting Cdks. Flavonoids have also been shown to induce CYPs expression, but the underlying mechanism of action is unknown. Here, we report the mechanism responsible for flavonoid-mediated PXR activation and CYP expression. Results In a cell-based screen designed to identify compounds that activate PXR-mediated CYP3A4 gene expression in HepG2 human carcinoma cells, we identified several flavonoids, such as luteolin and apigenin, as PXR activators. The flavonoids did not directly bind to PXR, suggesting that an alternative mechanism may be responsible for flavonoid-mediated PXR activation. Consistent with the Cdk5-inhibitory effect of flavonoids, Cdk5 and p35 (a non-cyclin regulatory subunit required to activate Cdk5 were expressed in HepG2. The activation of Cdk5 attenuated PXR-mediated CYP3A4 expression whereas its downregulation enhanced it. The Cdk5-mediated downregulation of CYP3A4 promoter activity was restored by flavonoids, suggesting that flavonoids activate PXR by inactivating Cdk5. In vitro kinase assays showed that Cdk5 directly phosphorylates PXR. The Cdk kinase profiling assay showed that apigenin inhibits multiple Cdks, suggesting that several Cdks may be involved in activation of PXR by flavonoids. Conclusions Our results for the first time link the stimulatory effect of flavonoids on CYP expression to their inhibitory effect on Cdks, through a PXR-mediated mechanism. These results may have important implications on the pharmacokinetics of drugs co-administered with herbal remedy and herbal-drug interactions.

  16. Mixing apples and oranges: Analysis of heterotropic cooperativity in cytochrome P450 3A4.

    Science.gov (United States)

    Frank, Daniel J; Denisov, Ilia G; Sligar, Stephen G

    2009-08-15

    Heterotropic cooperative phenomena have been documented in studies with cytochrome P450 3A4, with few attempts to quantify this behavior other than to show the apparent stimulatory effect of certain CYP3A4 substrates on the enzyme's catalytic activity for others. Here CYP3A4 solubilized in Nanodiscs is studied for its ability to interact with two substrates, alpha-naphthoflavone and testosterone, which produce transitions in the heme spin state with apparent spectral affinities (corrected for membrane partitioning) of 7 and 38 microM, respectively. Simultaneous addition of both substrates at fixed molar ratios allows for the separation of specific heterotropic cooperative interactions from the simple additive affinities for the given substrate ratios. The absence of any changes in the normalized spectral dissociation constant due to changes in substrate ratio reveals that the observed stimulatory effect is largely due to differences in the relative substrate affinities and the presence of additional substrate in the system, rather than any specific positive heterotropic interactions between the two substrates. PMID:19560436

  17. CYP3A4*1B polymorphism and cancer risk: a HuGE review and meta-analysis.

    Science.gov (United States)

    Zhou, Li-Ping; Yao, Fan; Luan, Hong; Wang, Yin-Ling; Dong, Xi-Hua; Zhou, Wen-Wen; Wang, Qi-Hui

    2013-04-01

    CYP450 3A4 (CYP3A4), encoded by the CYP3A4 gene, is a major enzyme catalyzing the metabolism of both endogenous and exogenous agents that may play a role in the etiology of carcinogenesis. Several potentially functional polymorphisms of the CYP3A4 gene have been implicated in cancer risk, but individually published studies have shown inconclusive results. The aim of this Human Genome Epidemiology (HuGE) review and meta-analysis was to investigate the association between CYP3A4*1B (rs2740574 A > G) polymorphism and cancer risk. Eleven studies were included with a total of 3,810 cancer patients and 3,173 healthy controls. We found that the G allele and GG genotype of CYP3A4*1B polymorphism were associated with increased risk of cancers using the fixed effects model (allele model: odds ratio (OR) = 1.24, 95 %CI: 1.09-1.42, P = 0.001; recessive model: OR = 1.77, 95 %CI: 1.30-2.41, P cancer type showed that the G allele and G carrier (AG + GG) of CYP3A4*1B polymorphism had significant associations with increased risk of prostate cancer, but not with breast cancer, leukemia, or other cancers. With further subgroup analysis based on different ethnicities, the results indicated that the GG genotype of CYP3A4*1B polymorphism might increase the risk of cancer among African populations. However, similar associations were not observed among Caucasian and Asian populations. Results from the current meta-analysis indicate that the G allele and GG genotype of CYP3A4*1B polymorphism might be associated with increased cancer risk, especially for prostate cancer among African populations.

  18. A simultaneous assessment of CYP3A4 metabolism and induction in the DPX-2 cell line.

    Science.gov (United States)

    Trubetskoy, Olga; Marks, Bryan; Zielinski, Thomas; Yueh, Mei-Fei; Raucy, Judy

    2005-03-04

    The DPX-2 cell line, a derivative of HepG2 cells, harbors human PXR and a luciferase-linked CYP3A4 promoter. These cells were used in a panel of cell-based assays for a parallel assessment of CYP3A4 induction, metabolism, and inhibition at the cellular level. CYP3A4 induction in the DPX-2 cell line by various agents was monitored in 96-well plates by a luciferase-based transcriptional activation assay. Of the prototypical CYP3A4 inducers examined, all exhibited elevated luciferase activity in DPX-2 cells. CYP3A4 enzyme activity in noninduced and rifampicin-induced DPX-2 cells was also assessed using Vivid fluorogenic substrates. Significantly elevated CYP3A4 activity levels (2.8-fold +/- 0.2-fold above DMSO-treated cells) were found in DPX-2 cells after 48 hours of exposure to rifampicin, but were undetectable in parental HepG2 cells. Rifampicin-induced activity levels were found to be suitable for assessing the inhibitory potential of new chemical entities in downstream CYP3A4 inhibition assays. The elevated CYP3A4 activity was inhibited 85% by 10 microM ketoconazole. In addition, a cytotoxicity assay to correct for possible toxic effects of compounds at the cellular level was applied. The comparative data obtained with a combination of the above assays suggests that the application of several independent in vitro technologies used in DPX-2 cells is the best possible strategy for the assessment of the complex phenomena of CYP3A4 induction and inhibition.

  19. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets

    Science.gov (United States)

    Pinto-Fernandez, Adan; Kessler, Benedikt M.

    2016-01-01

    Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.

  20. Genetic variability in CYP3A4 and CYP3A5 in primary liver, gastric and colorectal cancer patients

    Directory of Open Access Journals (Sweden)

    García Monserrat

    2007-07-01

    Full Text Available Abstract Background Drug-metabolizing enzymes play a role in chemical carcinogenesis through enzymatic activation of procarcinogens to biologically reactive metabolites. The role of gene polymorphisms of several cytochrome P450 enzymes in digestive cancer risk has been extensively investigated. However, the drug-metabolizing enzymes with the broader substrate specificity, CYP3A4 and CYP3A5, have not been analyzed so far. This study aims to examine associations between common CYP3A4 and CYP3A5 polymorphisms and digestive cancer risk. Methods CYP3A4 and CYP3A5 genotypes were determined in 574 individuals including 178 patients with primary liver cancer, 82 patients with gastric cancer, 151 patients with colorectal cancer, and 163 healthy individuals. Results The variant allele frequencies for patients with liver cancer, gastric cancer, colorectal cancer and healthy controls, respectively, were: CYP3A4*1B, 4.8 % (95% C.I. 2.6–7.0, 3.7 % (0.8–6.6 4.3% (2.0–6.6 and 4.3% (2.1–6.5; CYP3A5*3, 91.8 % (93.0–97.4, 95.7% (92.6–98.8, 91.7% (88.6–94.8 and 90.8% (87.7–93.9. The association between CYP3A4*1B and CYP3A5*3 variant alleles did not significantly differ among patients and controls. No differences in genotypes, allele frequencies, or association between variant alleles were observed with regard to gender, age at diagnosis, tumour site or stage. Conclusion Common polymorphisms on CYP3A4 and CYP3A5 genes do not modify the risk of developing digestive cancers in Western Europe.

  1. In Vitro and in Vivo Inhibitory Effects of Glycyrrhetinic Acid in Mice and Human Cytochrome P450 3A4

    Directory of Open Access Journals (Sweden)

    Qiao-Li Lv

    2015-12-01

    Full Text Available Glycyrrhetinic acid (GA has been used clinically in the treatment of patients with chronic hepatitis. This study evaluated the effect of GA on the activity of five P450(CYP450 cytochrome enzymes: CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, in human liver microsomes (HLMs and recombinant cDNA-expressed enzyme systems using a HPLC-MS/MS CYP-specific probe substrate assay. With midazolam as the probe substrate, GA greatly decreased CYP3A4 activity with IC50 values of 8.195 μM in HLMs and 7.498 μM in the recombinant cDNA-expressed CYP3A4 enzyme system, respectively. It significantly decreased CYP3A4 activity in a dose- but not time-dependent manner. Results from Lineweaver–Burk plots showed that GA could inhibit CYP3A4 activity competitively, with a Ki value of 1.57 μM in HLMs. Moreover, CYP2C9 and CYP2C19 could also be inhibited significantly by GA with IC50 of 42.89 and 40.26 μM in HLMs, respectively. Other CYP450 isoforms were not markedly affected by GA. The inhibition was also confirmed by an in vivo study of mice. In addition, it was observed that mRNA expressions of the Cyps2c and 3a family decreased significantly in the livers of mice treated with GA. In conclusion, this study indicates that GA may exert herb-drug interactions by competitively inhibiting CYP3A4.

  2. Hepatic fatty acid oxidation : activity, localization and function of some enzymes involved

    NARCIS (Netherlands)

    A. van Tol (Arie)

    1971-01-01

    textabstractFatty acid oxidation is an important pathway for energy production in mammals and birds. In animal tissues the enzymes of fatty acid oxidation are located in the mitochondrion. Recent reports suggest that this is not the case in Castor bean endosperm. In this tissue the enzymes of B-oxid

  3. A Fibroblast Growth Factor 21-Pregnane X Receptor Pathway Downregulates Hepatic CYP3A4 in Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Woolsey, Sarah J; Beaton, Melanie D; Mansell, Sara E; Leon-Ponte, Matilde; Yu, Janice; Pin, Christopher L; Adams, Paul C; Kim, Richard B; Tirona, Rommel G

    2016-10-01

    Nonalcoholic fatty liver disease (NAFLD) alters drug response. We previously reported that NAFLD is associated with reduced in vivo CYP3A drug-metabolism activity and hepatic CYP3A4 expression in humans as well as mouse and human hepatoma models of the disease. Here, we investigated the role of the lipid- and glucose-modulating hormone fibroblast growth factor 21 (FGF21) in the molecular mechanism regulating CYP3A4 expression in NAFLD. In human subjects, mouse and cellular NAFLD models with lower CYP3A4 expression, circulating FGF21, or hepatic FGF21 mRNA levels were elevated. Administration of recombinant FGF21 or transient hepatic overexpression of FGF21 resulted in reduced liver CYP3A4 luciferase reporter activity in mice and decreased CYP3A4 mRNA expression and activity in cultured Huh7 hepatoma cells. Blocking canonical FGF21 signaling by pharmacological inhibition of MEK1 kinase in Huh7 cells caused de-repression of CYP3A4 mRNA expression with FGF21 treatment. Mice with high-fat diet-induced simple hepatic steatosis and lipid-loaded Huh7 cells had reduced nuclear localization of the pregnane X receptor (PXR), a key transcriptional regulator of CYP3A4 Furthermore, decreased nuclear PXR was observed in mouse liver and Huh7 cells after FGF21 treatment or FGF21 overexpression. Decreased PXR binding to the CYP3A4 proximal promoter was found in FGF21-treated Huh7 cells. An FGF21-PXR signaling pathway may be involved in decreased hepatic CYP3A4 metabolic activity in NAFLD.

  4. Effects of isorhamnetin on CYP3A4 and herb-drug interaction%异鼠李素对CYP3A4的调节及药物相互作用分析

    Institute of Scientific and Technical Information of China (English)

    丁丽丽; 张晶晶; 窦薇

    2012-01-01

    观察异鼠李素对CYP3A4的转录激活、mRNA诱导及酶活性的影响,并对其在联合用药中的药物相互作用进行评价.在HepG2细胞中,采用瞬时共转染报告基因实验检测异鼠李素对PXR介导的CYP3A4的转录激活作用;荧光定量RT-PCR方法检测其对CYP3A4 mRNA的诱导作用;底物化学发光法检测其对细胞CYP3A4酶活性的影响;细胞增殖实验检测其对化疗药物伊立替康肝癌细胞毒性的影响.结果表明,异鼠李素(1、10及25 μmol·L 1)可以剂量依赖性通过激活PXR而诱导CYP3A4的转录,同时可剂量依赖性上调CYP3A4mRNA表达,但对CYP3A4酶活性无影响,对化疗药物伊立替康肝癌细胞毒作用也无影响.提示异鼠李素对CYP3A4 mRNA的诱导可能与PXR途径有关,并且可能不会干扰与其联用的其他药物的代谢.本研究可以为异鼠李素临床合理用药提供参考.%The study is to report the investigation of the effects of isorhamnetin on CYP3 A4 and herb-drug interaction. A reporter gene assay is used to test pregnane X receptor transactivation action, qRT-PCR and a luminescence-based assay were applied to determine mRNA induction and enzyme activity of CYP3A4 after isorhamnetin treatment. The interaction of irinotecan and isorhamnetin was assessed by inhibition assay of cell proliferation. Isorhamnetin at 1, 10 and 25 umol·L-1 transactivated the CYP3A4 reporter construct and upregulated CYP3A4 mRNA as well in a dose-dependent manner. However, isorhamnetin had no effect on enzyme activity of CYP3A4 and irinotecan HepG2 cytotoxicity. In conclusion, activation of PXR by isorhamnetin played a role in the upregulation of CYP3A4 mRNA. Moreover, joint action of isorhamnetin with other drugs may not be associated with the herb-drug interaction.

  5. Enzymes involved in 3,5-diaminohexanoate degradation by Brevibacterium sp.

    OpenAIRE

    Barker, H. A.; Kahn, J. M.; Chew, S

    1980-01-01

    Cell-free extracts of Brevibacterium sp. L5 grown on DL-erythro-3,5-diaminohexanoate were found to contain a 3-keto-5-aminohexanoate cleavage enzyme that converts 3-keto-5-aminohexanoate and acetyl-coenzyme A (CokA) to 3-aminobutyryl-CoA and acetoacetate and a deaminase that coverts L-3-aminobutyryl-CoA to crotonyl-CoA. The cleavage enzyme has been purified extensively, and some of its properties have been determined for comparison with the 3-keto-6-acetamido-hexanoate cleavage enzyme of Pseu...

  6. Developmental changes in enzymes involved in the conversion of hexose phosphate and its subsequent metabolites during early tuberization of potato

    NARCIS (Netherlands)

    Appeldoorn, N.J.G.; Bruijn, de S.M.; Koot-Gronsveld, E.A.M.; Visser, R.G.F.; Vreugdenhil, D.; Plas, van der L.H.W.

    1999-01-01

    A highly synchronized in vitro tuberization system, based on single-node cuttings containing an axillary bud, was used to investigate the activity patterns of enzymes involved in the conversion of hexose phosphates and related products during stolon-to-tuber transition of potato (Solanum tuberosum L

  7. High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved.

    Directory of Open Access Journals (Sweden)

    Gregory Kohn

    Full Text Available BACKGROUND: We recently characterized a specific inorganic triphosphatase (PPPase from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPP(i is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPP(i but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. CONCLUSIONS AND GENERAL SIGNIFICANCE: We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPP(i in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPP(i, which could be cytotoxic because of its high affinity for Ca(2+, thereby interfering with Ca(2+ signaling.

  8. Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity.

    Science.gov (United States)

    Zsengellér, Zsuzsanna K; Ellezian, Lena; Brown, Dan; Horváth, Béla; Mukhopadhyay, Partha; Kalyanaraman, Balaraman; Parikh, Samir M; Karumanchi, S Ananth; Stillman, Isaac E; Pacher, Pál

    2012-07-01

    Cisplatin is a widely used antineoplastic agent. However, its major limitation is dose-dependent nephrotoxicity whose precise mechanism is poorly understood. Recent studies have suggested that mitochondrial dysfunction in tubular epithelium contributes to cisplatin-induced nephrotoxicity. Here the authors extend those findings by describing the role of an important electron transport chain enzyme, cytochrome c oxidase (COX). Immunohistochemistry for COX 1 protein demonstrated that, in response to cisplatin, expression was mostly maintained in focally damaged tubular epithelium. In contrast, COX enzyme activity in proximal tubules (by light microscopy) was decreased. Ultrastructural analysis of the cortex and outer stripe of the outer medulla showed decreased mitochondrial mass, disruption of cristae, and extensive mitochondrial swelling in proximal tubular epithelium. Functional electron microscopy showed that COX enzyme activity was decreased in the remaining mitochondria in the proximal tubules but maintained in distal tubules. In summary, cisplatin-induced nephrotoxicity is associated with structural and functional damage to the mitochondria. More broadly, using functional electron microscopy to measure mitochondrial enzyme activity may generate mechanistic insights across a spectrum of renal disorders. PMID:22511597

  9. Purification and characterization of the enzymes involved in nicotinamide adenine dinucleotide degradation by Penicillium brevicompactum NRC 829

    OpenAIRE

    Ali, Thanaa Hamed; El-Ghonemy, Dina Helmy

    2016-01-01

    The present study was conducted to investigate a new pathway for the degradation of nicotinamide adenine dinucleotide (NAD) by Penicillium brevicompactum NRC 829 extracts. Enzymes involved in the hydrolysis of NAD, i.e. alkaline phosphatase, aminohydrolase and glycohydrolase were determined. Alkaline phosphatase was found to catalyse the sequential hydrolysis of two phosphate moieties of NAD molecule to nicotinamide riboside plus adenosine. Adenosine was then deaminated by aminohydrolase to i...

  10. Arsenite and its metabolites, MMAIII and DMAIII, modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice

    International Nuclear Information System (INIS)

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half the drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMAIII induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMAIII increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMAIII induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice.

  11. Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes

    DEFF Research Database (Denmark)

    Danielsen, E M

    1995-01-01

    , and their insolubility increased to that of the steady-state level soon after they achieved their mature, complex glycosylation, i.e., after passage through the Golgi complex. Detergent-insoluble complexes isolated by density gradient centrifugation were highly enriched in brush border enzymes, and the enrichment......-insoluble complexes commonly known as glycolipid "rafts". Thus, aminopeptidase N (EC 3.4.11.2), aminopeptidase A (EC 3.4.11.7), dipeptidyl peptidase IV (EC 3.4.14.5), and sucrase-isomaltase (EC 3.2.1.48-10) were 34-48% detergent-insoluble. Maltase-glucoamylase (EC 3.2.1.20) was markedly less detergent-insoluble (20......%), and lactase-phlorizin hydrolase (EC 3.2.1.23-62) was essentially fully soluble in detergent. In radioactively labeled, mucosal explants, the newly synthesized brush border enzymes began to associate with detergent-insoluble complexes while still in their transient, high mannose-glycosylated form...

  12. Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4

    Directory of Open Access Journals (Sweden)

    Liu W

    2015-10-01

    Full Text Available Wenqin Liu,1,2,* Jian Shi,1,2,* Lijun Zhu,2 Lingna Dong,1 Feifei Luo,2 Min Zhao,2 Ying Wang,2 Ming Hu,2,3 Linlin Lu,2 Zhongqiu Liu1,2 1Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China; 2International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China; 3Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA *These authors contributed equally to this work Abstract: Oxymatrine (OMT is a pharmacologically active primary quinolizidine alkaloid with various beneficial and toxic effects. It is confirmed that, after oral administration, OMT could be transformed to the more toxic metabolite matrine (MT, and this process may be through the reduction reaction, but the study on the characteristics of this transformation is limited. The aim of this study was to investigate the characteristics of this transformation of OMT in the human liver microsomes (HLMs and human intestinal microsomes (HIMs and the cytochrome P450 (CYP isoforms involved in this transformation. The current studies demonstrated that OMT could be metabolized to MT rapidly in HLMs and HIMs and CYP3A4 greatly contributed to this transformation. All HLMs, HIMs, and CYP3A4 isoform mediated reduction reaction followed typical biphasic kinetic model, and Km, Vmax, and CL were significant higher in HLMs than those in HIMs. Importantly, different oxygen contents could significantly affect the metabolism of OMT, and with the oxygen content decreased, the formation of metabolite was increased, suggesting this transformation was very likely a reduction reaction. Results of this in vitro study elucidated the metabolic pathways and characteristics of metabolism of OMT to MT and would provide a theoretical basis and guidance for the safe application of OMT

  13. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    Energy Technology Data Exchange (ETDEWEB)

    Istrate, Monica A., E-mail: monicai@scripps.edu [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Nussler, Andreas K., E-mail: nuessler@uchir.me.tum.de [Department of Traumatology, Technical University Munich, Ismaningerstr. 22, 81675 Munich (Germany); Eichelbaum, Michel, E-mail: michel.eichelbaum@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Burk, Oliver, E-mail: oliver.burk@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany)

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  14. Fermented wheat aleurone induces enzymes involved in detoxification of carcinogens and in antioxidative defence in human colon cells.

    Science.gov (United States)

    Stein, Katrin; Borowicki, Anke; Scharlau, Daniel; Glei, Michael

    2010-10-01

    Dietary fibre is fermented by the human gut flora resulting mainly in the formation of SCFA, for example, acetate, propionate and butyrate. SCFA, in particular butyrate, may be important for secondary cancer prevention by inducing apoptosis and inhibiting cell growth of cancer cells, thereby inhibiting the promotion and/or progression of cancer. Furthermore, SCFA could also act on primary cancer prevention by activation of detoxifying and antioxidative enzymes. We investigated the effects of fermented wheat aleurone on the expression of genes involved in stress response and toxicity, activity of drug-metabolising enzymes and anti-genotoxic potential. Aleurone was digested and fermented in vitro to obtain samples that reflect the content of the colon. HT29 cells and colon epithelial stripes were incubated with the resulting fermentation supernatant fractions (fs) and effects on mRNA expression of CAT, GSTP1 and SULT2B1 and enzyme activity of glutathione S-transferase (GST) and catalase (CAT) were measured. Fermented aleurone was also used to study the protection against H2O2-induced DNA damage in HT29 cells. The fs of aleurone significantly induced the mRNA expression of CAT, GSTP1 and SULT2B1 (HT29) and GSTP1 (epithelial stripes), respectively. The enzyme activities of GST (HT29) and CAT (HT29, epithelial stripes) were also unambiguously increased (1.4- to 3.7-fold) by the fs of aleurone. DNA damage induced by H2O2 was significantly reduced by the fs of aleurone after 48 h, whereupon no difference was observed compared with the faeces control. In conclusion, fermented aleurone is able to act on primary prevention by inducing mRNA expression and the activity of enzymes involved in detoxification of carcinogens and antioxidative defence.

  15. Rifampicin-activated human pregnane X receptor and CYP3A4 induction enhance acetaminophen-induced toxicity.

    Science.gov (United States)

    Cheng, Jie; Ma, Xiaochao; Krausz, Kristopher W; Idle, Jeffrey R; Gonzalez, Frank J

    2009-08-01

    Acetaminophen (APAP) is safe at therapeutic levels but causes hepatotoxicity via N-acetyl-p-benzoquinone imine-induced oxidative stress upon overdose. To determine the effect of human (h) pregnane X receptor (PXR) activation and CYP3A4 induction on APAP-induced hepatotoxicity, mice humanized for PXR and CYP3A4 (TgCYP3A4/hPXR) were treated with APAP and rifampicin. Human PXR activation and CYP3A4 induction enhanced APAP-induced hepatotoxicity as revealed by hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities elevated in serum, and hepatic necrosis after coadministration of rifampicin and APAP, compared with APAP administration alone. In contrast, hPXR mice, wild-type mice, and Pxr-null mice exhibited significantly lower ALT/AST levels compared with TgCYP3A4/hPXR mice after APAP administration. Toxicity was coincident with depletion of hepatic glutathione and increased production of hydrogen peroxide, suggesting increased oxidative stress upon hPXR activation. Moreover, mRNA analysis demonstrated that CYP3A4 and other PXR target genes were significantly induced by rifampicin treatment. Urinary metabolomic analysis indicated that cysteine-APAP and its metabolite S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid were the major contributors to the toxic phenotype. Quantification of plasma APAP metabolites indicated that the APAP dimer formed coincident with increased oxidative stress. In addition, serum metabolomics revealed reduction of lysophosphatidylcholine in the APAP-treated groups. These findings demonstrated that human PXR is involved in regulation of APAP-induced toxicity through CYP3A4-mediated hepatic metabolism of APAP in the presence of PXR ligands.

  16. Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4

    Science.gov (United States)

    Liu, Wenqin; Shi, Jian; Zhu, Lijun; Dong, Lingna; Luo, Feifei; Zhao, Min; Wang, Ying; Hu, Ming; Lu, Linlin; Liu, Zhongqiu

    2015-01-01

    Oxymatrine (OMT) is a pharmacologically active primary quinolizidine alkaloid with various beneficial and toxic effects. It is confirmed that, after oral administration, OMT could be transformed to the more toxic metabolite matrine (MT), and this process may be through the reduction reaction, but the study on the characteristics of this transformation is limited. The aim of this study was to investigate the characteristics of this transformation of OMT in the human liver microsomes (HLMs) and human intestinal microsomes (HIMs) and the cytochrome P450 (CYP) isoforms involved in this transformation. The current studies demonstrated that OMT could be metabolized to MT rapidly in HLMs and HIMs and CYP3A4 greatly contributed to this transformation. All HLMs, HIMs, and CYP3A4 isoform mediated reduction reaction followed typical biphasic kinetic model, and Km, Vmax, and CL were significant higher in HLMs than those in HIMs. Importantly, different oxygen contents could significantly affect the metabolism of OMT, and with the oxygen content decreased, the formation of metabolite was increased, suggesting this transformation was very likely a reduction reaction. Results of this in vitro study elucidated the metabolic pathways and characteristics of metabolism of OMT to MT and would provide a theoretical basis and guidance for the safe application of OMT. PMID:26586934

  17. Expression and purification of lipoprotein-associated phospholipase A2, a key enzyme involved in atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Fu-jun ZHANG; Mao-jun CAI; Jing-kang SHEN; Yi-ping WANG

    2006-01-01

    Aim: To express and purify lipoprotein-associated phospholipase A2 (Lp-PLA2), and to establish a screening model for Lp-PLA2 inhibitors using the expressed Lp-PLA2. Methods: We cloned the full-length cDNA of Lp-PLA2 from differentiated THP-1 cells, and subcloned the cDNA into the baculovirus transfer vector pFastBacl. In addition, we introduced an N-terminal Kozak sequence for highlevel translation initiation and a C-terminal sequence of 6 histidine residues for purification. The fusion enzyme was expressed in Sf9 insect cells and purified by Ni2+ affinity chromatography. Recombinant Lp-PLA2 activity was measured using [3H]PAF as a substrate, and we examined the enzyme activity of recombinant Lp-PLA2 pretreated with the known Lp-PLA2 inhibitor SB435495. Results: We successfully cloned the full-length Lp-PLA2 gene from differentiated THP-1 cells. The fusion enzyme was expressed in Sf9 insect cells at a high level and purified efficiently through a 2-step procedure. The recombinant Lp-PLA2 activity was measured using [3H]PAF as a substrate, and proved to be enzymatically active. Lp-PLA2 inhibitor SB435495 produced a good inhibition curve for inhibition of recombinant Lp-PLA2 with an IC50 of 57±1 μmol/L. Conclusion: We expressed and purified Lp-PLA2 at a high level in insect cell-baculovirus expression system. The yield ratio was much greater than that obtained from human plasma and we established a screening model for Lp-PLA2 inhibitors using the expressed Lp-PLA2.

  18. Involvement of anti-oxidative enzymes, photosynthetic pigments and flavonoid metabolism in the adaptation of Reaumuria soongorica to salt stress

    Institute of Scientific and Technical Information of China (English)

    YuBing Liu; Bo Cao; MeiLing Liu

    2013-01-01

    Reaumuria soongorica is a short woody shrub widely found in semi-arid areas of China. It can survive severe environ-mental stress including high salinity in its natural habitat. Thus, we investigated the involvement of anti-oxidative enzymes, photosynthetic pigments and flavonoid metabolism in the adaptation of R. soongorica to saline environments. R. soon-gorica was treated with 0, 100, 200 and 400 mM NaCl solutions for 14 days. Soil salt content increased significantly by watering with high content of NaCl solution, and no variation between 8 and 14 days during treatment. The levels of pe-roxidation of lipid membranes (measured by malondialdehyde content) and the activities of three antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX)) increased under salt stress. Chlorophyll and carotenoid content decreased with increasing salt content. The ratio of Chl a/Chl b and carotenoid/Chl exhibited sig-nificant increase under 400 mM NaCl. However, total flavonoid and anthocyanin contents and key enzyme activities in the flavonoid pathway including phenylalanine ammonialyase (PAL) and Chalcone isomerase (CHI) decreased under salt stress. These findings possibly suggest that R. soongorica has an adaptation protection mechanism against salt-induced oxidative damage by inducing the activity of antioxidant enzymes and maintaining a steady level of carotenoid/Chl.

  19. Enzymes Involved in Pyrophosphate and Calcium Metabolism as Targets for Anti-scuticociliate Chemotherapy.

    Science.gov (United States)

    Mallo, Natalia; Lamas, Jesús; DeFelipe, Ana-Paula; Sueiro, Rosa-Ana; Fontenla, Francisco; Leiro, José-Manuel

    2016-07-01

    Inorganic pyrophosphate (PPi) is a key metabolite in cellular bioenergetics under chronic stress conditions in prokaryotes, protists and plants. Inorganic pyrophosphatases (PPases) are essential enzymes controlling the cellular concentration of PPi and mediating intracellular pH and Ca(2+) homeostasis. We report the effects of the antimalarial drugs chloroquine (CQ) and artemisinin (ART) on the in vitro growth of Philasterides dicentrarchi, a scuticociliate parasite of turbot; we also evaluated the action of these drugs on soluble (sPPases) and vacuolar H+-PPases (H+-PPases). CQ and ART inhibited the in vitro growth of ciliates with IC50 values of respectively 74 ± 9 μM and 80 ± 8 μM. CQ inhibits the H+ translocation (with an IC50 of 13.4 ± 0.2 μM), while ART increased translocation of H+ and acidification. However, both drugs caused a decrease in gene expression of H+-PPases. CQ significantly inhibited the enzymatic activity of sPPases, decreasing the consumption of intracellular PPi. ART inhibited intracellular accumulation of Ca(2+) induced by ATP, indicating an effect on the Ca(2+) -ATPase. The results suggest that CQ and ART deregulate enzymes associated with PPi and Ca(2+) metabolism, altering the intracellular pH homeostasis vital for parasite survival and providing a target for the development of new drugs against scuticociliatosis. PMID:26751587

  20. Evolutionary History of the Enzymes Involved in the Calvin-Benson Cycle in Euglenids.

    Science.gov (United States)

    Markunas, Chelsea M; Triemer, Richard E

    2016-05-01

    Euglenids are an ancient lineage that may have existed as early as 2 billion years ago. A mere 65 years ago, Melvin Calvin and Andrew A. Benson performed experiments on Euglena gracilis and elucidated the series of reactions by which carbon was fixed and reduced during photosynthesis. However, the evolutionary history of this pathway (Calvin-Benson cycle) in euglenids was more complex than Calvin and Benson could have imagined. The chloroplast present today in euglenophytes arose from a secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga. A long period of evolutionary time existed before this secondary endosymbiotic event took place, which allowed for other endosymbiotic events or gene transfers to occur prior to the establishment of the green chloroplast. This research revealed the evolutionary history of the major enzymes of the Calvin-Benson cycle throughout the euglenid lineage and showed that the majority of genes for Calvin-Benson cycle enzymes shared an ancestry with red algae and/or chromophytes suggesting they may have been transferred to the nucleus prior to the acquisition of the green chloroplast. PMID:26566594

  1. Eucalyptus ESTs involved in the production of 9-cis epoxycarotenoid dioxygenase, a regulatory enzyme of abscisic acid production

    Directory of Open Access Journals (Sweden)

    Iraê A. Guerrini

    2005-01-01

    Full Text Available Abscisic acid (ABA regulates stress responses in plants, and genomic tools can help us to understand the mechanisms involved in that process. FAPESP, a Brazilian research foundation, in association with four private forestry companies, has established the FORESTs database (https://forests.esalq.usp.br. A search was carried out in the Eucalyptus expressed sequence tag database to find ESTs involved with 9-cis epoxycarotenoid dioxygenase (NCED, the regulatory enzyme for ABA biosynthesis, using the basic local BLAST alignment tool. We found four clusters (EGEZLV2206B11.g, EGJMWD2252H08.g, EGBFRT3107F10.g, and EGEQFB1200H10.g, which represent similar sequences of the gene that produces NCED. Data showed that the EGBFRT3107F10.g cluster was similar to the maize (Zea mays NCED enzyme, while EGEZLV2206B11.g and EGJMWD2252H08.g clusters were similar to the avocado (Persea americana NCED enzyme. All Eucalyptus clusters were expressed in several tissues, especially in flower buds, where ABA has a special participation during the floral development process.

  2. Indirubin, a component of Ban-Lan-Gen, activates CYP3A4 gene transcription through the human pregnane X receptor.

    Science.gov (United States)

    Kumagai, Takeshi; Aratsu, Yusuke; Sugawara, Ryosuke; Sasaki, Takamitsu; Miyairi, Shinichi; Nagata, Kiyoshi

    2016-04-01

    Ban-Lan-Gen is the common name for the dried roots of indigo plants, including Polygonum tinctorium, Isatis indigotica, Isatis tinctoria, and Strobilanthes cusia. Ban-Lan-Gen is frequently used as an anti-inflammatory and an anti-viral for the treatment of hepatitis, influenza, and various types of inflammation. One of the cytochrome P450 (CYP) enzymes, CYP3A4, is responsible for the metabolism of a wide variety of xenobiotics, including an estimated 60% of all clinically used drugs. In this study, we investigated the effect of Ban-Lan-Gen on the transcriptional activation of the CYP3A4 gene. Ban-Lan-Gen extract increased CYP3A4 gene reporter activity in a dose-dependent manner. Indirubin, one of the biologically active ingredients in the Ban-Lan-Gen, also dose-dependently increased CYP3A4 gene reporter activity. Expression of short hairpin RNA for the human pregnane X receptor (hPXR-shRNA) inhibited CYP3A4 gene reporter activity, and overexpression of human PXR increased indirubin- and rifampicin-induced CYP3A4 gene reporter activity. Furthermore, indirubin induced CYP3A4 mRNA expression in HepG2 cells. Taken together, these results indicate that indirubin, a component of Ban-Lan-Gen, activated CYP3A4 gene transcription through the activation of the human PXR.

  3. Indirubin, a component of Ban-Lan-Gen, activates CYP3A4 gene transcription through the human pregnane X receptor.

    Science.gov (United States)

    Kumagai, Takeshi; Aratsu, Yusuke; Sugawara, Ryosuke; Sasaki, Takamitsu; Miyairi, Shinichi; Nagata, Kiyoshi

    2016-04-01

    Ban-Lan-Gen is the common name for the dried roots of indigo plants, including Polygonum tinctorium, Isatis indigotica, Isatis tinctoria, and Strobilanthes cusia. Ban-Lan-Gen is frequently used as an anti-inflammatory and an anti-viral for the treatment of hepatitis, influenza, and various types of inflammation. One of the cytochrome P450 (CYP) enzymes, CYP3A4, is responsible for the metabolism of a wide variety of xenobiotics, including an estimated 60% of all clinically used drugs. In this study, we investigated the effect of Ban-Lan-Gen on the transcriptional activation of the CYP3A4 gene. Ban-Lan-Gen extract increased CYP3A4 gene reporter activity in a dose-dependent manner. Indirubin, one of the biologically active ingredients in the Ban-Lan-Gen, also dose-dependently increased CYP3A4 gene reporter activity. Expression of short hairpin RNA for the human pregnane X receptor (hPXR-shRNA) inhibited CYP3A4 gene reporter activity, and overexpression of human PXR increased indirubin- and rifampicin-induced CYP3A4 gene reporter activity. Furthermore, indirubin induced CYP3A4 mRNA expression in HepG2 cells. Taken together, these results indicate that indirubin, a component of Ban-Lan-Gen, activated CYP3A4 gene transcription through the activation of the human PXR. PMID:26987505

  4. Investigation of CYP3A4 and CYP2D6 Interactions of Withania somnifera and Centella asiatica in Human Liver Microsomes.

    Science.gov (United States)

    Savai, Jay; Varghese, Alice; Pandita, Nancy; Chintamaneni, Meena

    2015-05-01

    Withania somnifera is commonly used as a rejuvenator, whereas Centella asiatica is well known for its anxiolytic and nootropic effects. The present study aims at investigating the effect of crude extracts and principal phytoconstituents of both the medicinal plants with CYP3A4 and CYP2D6 enzyme activity in human liver microsomes (HLM). Phytoconstituents were quantified in the crude extracts of both the medicinal plants using reverse phase HPLC. Crude extracts and phytoconstituents of W. somnifera showed no significant interaction with both CYP3A4 and CYP2D6 enzymes in HLM. Of the crude extracts of C. asiatica screened in vitro, methanolic extract showed potent noncompetitive inhibition of only CYP3A4 enzyme (Ki-64.36 ± 1.82 µg/mL), whereas ethanol solution extract showed potent noncompetitive inhibition of only CYP2D6 enzyme (Ki-36.3 ± 0.44 µg/mL). The flavonoids, quercetin, and kaempferol showed potent (IC50 values less than 100 μM) inhibition of CYP3A4 activity, whereas quercetin alone showed potent inhibition of CYP2D6 activity in HLM. Because methanolic extract of C. asiatica showed a relatively high percentage content of quercetin and kaempferol than ethanol solution extract, the inhibitory effect of methanolic extract on CYP3A4 enzyme activity could be attributed to the flavonoids. Thus, co-administration of the alcoholic extracts of C. asiatica with drugs that are substrates of CYP3A4 and CYP2D6 enzymes may lead to undesirable herb-drug interactions in humans.

  5. Safety of Herbal Medicinal Products: Echinacea and Selected Alkylamides Do Not Induce CYP3A4 mRNA Expression

    Directory of Open Access Journals (Sweden)

    Maryam Modarai

    2011-01-01

    Full Text Available A major safety concern with the use of herbal medicinal products (HMP is their interactions with conventional medicines, which are often mediated via the cytochrome P450 (CYP system. Echinacea is a widely used over-the-counter HMP, with proven immunomodulatory properties. Its increasing use makes research into its safety an urgent concern. Previously, we showed that Echinacea extracts and its alkylamides (thought to be important for Echinacea's immunomodulatory activity mildly inhibit the enzymatic activity of the main drug metabolising CYP isoforms, but to this date, there is insufficient work on its ability to alter CYP expression levels. We now report for the first time the effect of a commercial Echinacea extract (Echinaforce and four Echinacea alkylamides on the transcription of the major drug metabolizing enzyme CYP3A4. HepG2 cells were exposed for 96 h to clinically relevant concentrations of Echinaforce (22, 11.6 and 1.16 μg mL−1 or the alkylamides (1.62 and 44 nM. CYP3A4 mRNA levels were quantified using real-time reverse transcription polymerase chain reaction (RT-PCR. Neither Echinaforce nor the alkylamides produced any significant changes in the steady-state CYP3A4 mRNA levels, under these conditions. In contrast, treatment with 50 μM rifampicin resulted in a 3.8-fold up-regulation over the vehicle control. We conclude that Echinaforce is unlikely to affect CYP3A4 transcriptional levels, even at concentrations which can inhibit the enzymatic activity of CYP3A4. Overall, our data provides further evidence for the lack of interactions between Echinacea and conventional drugs.

  6. Erectogenic and Aphrodisiac Effects of Butea frondosa Koenig ex Roxb. in Rats: Involvement of Enzyme Inhibition

    Directory of Open Access Journals (Sweden)

    Sumanta Kumar Goswami

    2013-01-01

    Full Text Available Butea frondosa Koenig ex Roxb. (BF is traditionally used to manage male sexual disorders including erectile dysfunction (ED. Methanol extract of BF (bark inhibited Rho-kinase 2 (ROCK-II enzyme activity in vitro with an IC50 of 20.29±1.83 μg/mL. The relaxant effect of methanol extract of BF (MEBF was studied on phenylephrine precontracted corpus cavernosum smooth muscle (CCSM isolated from young rats. The effect of MEBF treatment on sexual behaviour of both young (5 month and aged (24 month rats was also studied in addition to the influence on smooth muscle, collagen (collagen-I and -III level in penis, and sperm characteristics of young and aged rats. MEBF relaxed CCSM up to 21.77±2.57% and increased sexual behavior of young and aged rats. This increase in sexual function could be attributed to ROCK-II inhibition and increase in ratio of smooth muscle to collagen level in rat penile tissue. Increased sperm production and decreased defective sperms in young and aged rats corroborate the usefulness of Butea frondosa in male infertility in addition to ED.

  7. Cloning and expression of murine enzymes involved in the salvage pathway of GDP-L-fucose.

    Science.gov (United States)

    Niittymäki, Jaana; Mattila, Pirkko; Roos, Christophe; Huopaniemi, Laura; Sjöblom, Solveig; Renkonen, Risto

    2004-01-01

    In the salvage pathway of GDP-L-fucose, free cytosolic fucose is phosphorylated by L-fucokinase to form L-fucose-L-phosphate, which is then further converted to GDP-L-fucose in the reaction catalyzed by GDP-L-fucose pyrophosphorylase. We report here the cloning and expression of murine L-fucokinase and GDP-L-fucose pyrophosphorylase. Murine L-fucokinase is expressed as two transcripts of 3057 and 3270 base pairs, encoding proteins of 1019 and 1090 amino acids with predicted molecular masses of 111 kDa and 120 kDa respectively. Only the longer splice variant of L-fucokinase was enzymatically active when expressed in COS-7 cells. Murine GDP-L-fucose pyrophosphorylase has an open reading frame of 1773 base pairs encoding a protein of 591 amino acids with a predicted molecular mass of 65.5 kDa. GDP-L-fucose, the reaction product of GDP-L-pyrophosphorylase, was identified by HPLC and MALDI-TOF MS analysis. The tissue distribution of murine L-fucokinase and GDP-L-fucose pyrophosphorylase was investigated by quantitative real time PCR, which revealed high expression of L-fucokinase and GDP-L-fucose pyrophosphorylase in various tissues. The wide expression of both enzymes can also be observed from the large amount of data collected from a number of expressed sequence tag libraries, which indicate that not only the de novo pathway alone, but also the salvage pathway, could have a significant role in the synthesis of GDP-L-fucose in the cytosol. PMID:14686921

  8. Size and surface modification of amorphous silica particles determine their effects on the activity of human CYP3A4 in vitro

    Science.gov (United States)

    Imai, Shunji; Yoshioka, Yasuo; Morishita, Yuki; Yoshida, Tokuyuki; Uji, Miyuki; Nagano, Kazuya; Mukai, Yohei; Kamada, Haruhiko; Tsunoda, Shin-ichi; Higashisaka, Kazuma; Tsutsumi, Yasuo

    2014-12-01

    Because of their useful chemical and physical properties, nanomaterials are widely used around the world - for example, as additives in food and medicines - and such uses are expected to become more prevalent in the future. Therefore, collecting information about the effects of nanomaterials on metabolic enzymes is important. Here, we examined the effects of amorphous silica particles with various sizes and surface modifications on cytochrome P450 3A4 (CYP3A4) activity by means of two different in vitro assays. Silica nanoparticles with diameters of 30 and 70 nm (nSP30 and nSP70, respectively) tended to inhibit CYP3A4 activity in human liver microsomes (HLMs), but the inhibitory activity of both types of nanoparticles was decreased by carboxyl modification. In contrast, amine-modified nSP70 activated CYP3A4 activity. In HepG2 cells, nSP30 inhibited CYP3A4 activity more strongly than the larger silica particles did. Taken together, these results suggest that the size and surface characteristics of the silica particles determined their effects on CYP3A4 activity and that it may be possible to develop silica particles that do not have undesirable effects on metabolic enzymes by altering their size and surface characteristics.

  9. Functional characterization of enzymes involved in cysteine biosynthesis and H(2)S production in Trypanosoma cruzi.

    Science.gov (United States)

    Marciano, Daniela; Santana, Marianela; Nowicki, Cristina

    2012-10-01

    Trypanosoma cruzi is expected to synthetize de novo cysteine by different routes, among which the two-step pathway involving serine acetyltransferase and cysteine synthase (CS) is comprised. Also, cystathionine β synthase (CBS) might contribute to the de novo generation of cysteine in addition to catalyze the first step of the reverse transsulfuration route producing cystathionine. However, neither the functionality of CS nor that of cystathionine γ lyase (CGL) has been assessed. Our results show that T. cruzi CS could participate notably more actively than CBS in the de novo synthesis of cysteine. Interestingly, at the protein level T. cruzi CS is more abundant in amastigotes than in epimastigotes. Unlike the mammalian homologues, T. cruzi CGL specifically cleaves cystathionine into cysteine and is unable to produce H(2)S. The expression pattern of T. cruzi CGL parallels that of CBS, which unexpectedly suggests that in addition to the de novo synthesis of cysteine, the reverse transsulfuration pathway could be operative in the mammalian and insect stages. Besides, T. cruzi CBS produces H(2)S by decomposing cysteine or via condensation of cysteine with homocysteine. The latter reaction leads to cystathionine production, and is catalyzed remarkably more efficiently than the breakdown of cysteine. In T. cruzi like in other organisms, H(2)S could exert regulatory effects on varied metabolic processes. Notably, T. cruzi seems to count on stage-specific routes involved in cysteine production, the multiple cysteine-processing alternatives could presumably reflect this parasite's high needs of reducing power for detoxification of reactive oxygen species.

  10. Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis.

    Science.gov (United States)

    Nakatsubo, Tomoyuki; Mizutani, Masaharu; Suzuki, Shiro; Hattori, Takefumi; Umezawa, Toshiaki

    2008-06-01

    A lignan, lariciresinol, was isolated from Arabidopsis thaliana, the most widely used model plant in plant bioscience sectors, for the first time. In the A. thaliana genome database, there are two genes (At1g32100 and At4g13660) that are annotated as pinoresinol/lariciresinol reductase (PLR). The recombinant AtPLRs showed strict substrate preference toward pinoresinol but only weak or no activity toward lariciresinol, which is in sharp contrast to conventional PLRs of other plants that can reduce both pinoresinol and lariciresinol efficiently to lariciresinol and secoisolariciresinol, respectively. Therefore, we renamed AtPLRs as A. thaliana pinoresinol reductases (AtPrRs). The recombinant AtPrR2 encoded by At4g13660 reduced only (-)-pinoresinol to (-)-lariciresinol and not (+)-pinoresinol in the presence of NADPH. This enantiomeric selectivity accords with that of other PLRs of other plants so far reported, which can reduce one of the enantiomers selectively, whatever the preferential enantiomer. In sharp contrast, AtPrR1 encoded by At1g32100 reduced both (+)- and (-)-pinoresinols to (+)- and (-)-lariciresinols efficiently with comparative k(cat)/K(m) values. Analysis of lignans and spatiotemporal expression of AtPrR1 and AtPrR2 in their functionally deficient A. thaliana mutants and wild type indicated that both genes are involved in lariciresinol biosynthesis. In addition, the analysis of the enantiomeric compositions of lariciresinol isolated from the mutants and wild type showed that PrRs together with a dirigent protein(s) are involved in the enantiomeric control in lignan biosynthesis. Furthermore, it was demonstrated conclusively for the first time that differential expression of PrR isoforms that have distinct selectivities of substrate enantiomers can determine enantiomeric compositions of the product, lariciresinol.

  11. In situ analysis of enzymes involved in sucrose to hexose-phosphate conversion during stolon-to-tuber transition of potato

    NARCIS (Netherlands)

    Appeldoorn, N.J.G.; Sergeeva, L.; Vreugdenhil, D.; Plas, van der L.H.W.; Visser, R.G.F.

    2002-01-01

    An in situ study of enzymes involved in sucrose to hexose-phosphate conversion during in vitro stolon-to-tuber transition of potato (Solanum tuberosum L. cv. Bintje) was employed to follow developmental changes in spatial patterns. In situ activity of the respective enzymes was visualized by specifi

  12. CYP3A4 mediated in vitro metabolism of vinflunine in human liver microsomes

    Institute of Scientific and Technical Information of China (English)

    Xiao-ping ZHAO; Jiao ZHONG; Xiao-quan LIU; Guang-ji WANG

    2007-01-01

    Aim: To study the metabolism of vinflunine and the effects of selective cyto-chrome P-450 (CYP450) inhibitors on the metabolism of vinflunine in human liver microsomes. Methods: Individual selective CYP450 inhibitors were used to inves-tigate their effects on the metabolism of vinflunine and the principal CYP450 isoform involved in the formation of metabolites M1 and M2 in human liver microsomes.Results: Vinflunine was rapidly metabolized to 2 metabolites: M1 and M2 in human liver microsomes. M1 and M2 were tentatively presumed to be the N-oxide metabo-lite or hydroxylated metabolite and epoxide metabolite of vinflunine, respectively. Ketoconazole uncompetitively inhibited the formation of M1, and competitively inhibited the formation of M2, while α-naphthoflavone, sulfaphenazole, diethyl dithiocarbamate, tranylcypromine and quinidine had little or no inhibitory effect on the formation of M1 and M2. Conclusion: Vinflunine is rapidly metabolized in human liver microsomes, and CYP3A4 is the major human CYP450 involved in the metabolism of vinflunine.

  13. C-terminal methylation of truncated neuropeptides: an enzyme-assisted extraction artifact involving methanol.

    Science.gov (United States)

    Stemmler, Elizabeth A; Barton, Elizabeth E; Esonu, Onyinyechi K; Polasky, Daniel A; Onderko, Laura L; Bergeron, Audrey B; Christie, Andrew E; Dickinson, Patsy S

    2013-08-01

    Neuropeptides are the largest class of signaling molecules used by nervous systems. Today, neuropeptide discovery commonly involves chemical extraction from a tissue source followed by mass spectrometric characterization. Ideally, the extraction procedure accurately preserves the sequence and any inherent modifications of the native peptides. Here, we present data showing that this is not always true. Specifically, we present evidence showing that, in the lobster Homarus americanus, the orcokinin family members, NFDEIDRSGFG-OMe and SSEDMDRLGFG-OMe, are non-native peptides generated from full-length orcokinin precursors as the result of a highly selective peptide modification (peptide truncation with C-terminal methylation) that occurs during extraction. These peptides were observed by MALDI-FTMS and LC-Q-TOFMS analyses when eyestalk ganglia were extracted in a methanolic solvent, but not when tissues were dissected, co-crystallized with matrix, and analyzed directly with methanol excluded from the sample preparation. The identity of NFDEIDRSGFG-OMe was established using MALDI-FTMS/SORI-CID, LC-Q-TOFMS/MS, and comparison with a peptide standard. Extraction substituting deuterated methanol for methanol confirmed that the latter is the source of the C-terminal methyl group, and MS/MS confirmed the C-terminal localization of the added CD3. Surprisingly, NFDEIDRSGFG-OMe is not produced via a chemical acid-catalyzed esterification. Instead, the methylated peptide appears to result from proteolytic truncation in the presence of methanol, as evidenced by a reduction in conversion with the addition of a protease-inhibitor cocktail; heat effectively eliminated the conversion. This unusual and highly specific extraction-derived peptide conversion exemplifies the need to consider both chemical and biochemical processes that may modify the structure of endogenous neuropeptides.

  14. Screening of Chonemorpha fragrans Bioactive Extracts for Cytotoxicity Potential and Inhibition Studies of Key Enzymes Involved in Replication

    Science.gov (United States)

    Kedari, Pradnya Prakash; Malpathak, Nutan Padmanabh

    2016-01-01

    Background: Chonemorpha fragrans (Moon) Alston, a liana belonging to family Apocynaceae, is used in traditional medicinal systems for the treatment of various ailments. It is an unexplored medicinal plant with respect to its anticancer potential. Objective: Cytotoxicity of sequential as well as crude extracts of in vivo plant parts (leaves, bark, and roots), in vitro cultures, and callus were compared. Materials and Methods: 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay was used to compare the extracts of various in vivo plant parts (leaves, bark, and roots) along with in vitro culture systems (in vitro plantlets, callus). Furthermore, the extracts were used to evaluate inhibition of key enzymes involved in replication, i.e. topoisomerase (Topo) I and II, DNA polymerase, to check the probable mechanism of action for this cytotoxicity. Results: MTT assay showed that the chloroform extract of callus has potent anticancer potential. The plant has a promising anticancer activity against human colon epithelium, lung carcinoma, and epidermoidal carcinoma cell lines. It was found to possess Topo as well as DNA polymerase inhibitory activity. Conclusion: The results have pointed toward pharmaceutical importance of this plant. This study is the first report of exploring the antiproliferative potential as well as inhibition studies of key enzymes involved in replication, which was useful to point out probable mechanism of action for extracts of C. fragrans. SUMMARY It's a first report of cytotoxicity studies and inhibition of enzyme involved in the replication process by Chonemorpha fragrans plant extracts. The results reveal the pharmaceutical importance of this plant. From various assays performed here, a potent anticancer potential of chloroform extract of callus was revealed showing Topo I (E. coli and human) inhibitory activity, DNA pol inhibitory activity. Considering the importance of these activities, plant further needs

  15. Evidence for a two-metal-ion mechanism in the cytidyltransferase KdsB, an enzyme involved in lipopolysaccharide biosynthesis.

    Directory of Open Access Journals (Sweden)

    Helgo Schmidt

    Full Text Available Lipopolysaccharide (LPS is located on the surface of Gram-negative bacteria and is responsible for maintaining outer membrane stability, which is a prerequisite for cell survival. Furthermore, it represents an important barrier against hostile environmental factors such as antimicrobial peptides and the complement cascade during Gram-negative infections. The sugar 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo is an integral part of LPS and plays a key role in LPS functionality. Prior to its incorporation into the LPS molecule, Kdo has to be activated by the CMP-Kdo synthetase (CKS. Based on the presence of a single Mg²⁺ ion in the active site, detailed models of the reaction mechanism of CKS have been developed previously. Recently, a two-metal-ion hypothesis suggested the involvement of two Mg²⁺ ions in Kdo activation. To further investigate the mechanistic aspects of Kdo activation, we kinetically characterized the CKS from the hyperthermophilic organism Aquifex aeolicus. In addition, we determined the crystal structure of this enzyme at a resolution of 2.10 Å and provide evidence that two Mg²⁺ ions are part of the active site of the enzyme.

  16. Expression, cellular localization, and involvement of the pentose phosphate pathway enzymes in the regulation of ram sperm capacitation.

    Science.gov (United States)

    Luna, C; Serrano, E; Domingo, J; Casao, A; Pérez-Pé, R; Cebrián-Pérez, J A; Muiño-Blanco, T

    2016-08-01

    Spermatozoa require substantially more ATP than other cells, not only for sustaining sperm motility but also for regulating protein phosphorylation during capacitation. In this study, we have reported for the first time the presence of the two key enzymes of the pentose phosphate pathway (PPP), glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in ovine spermatozoa by indirect immunofluorescence, Western blotting, in-gel activity, and reverse transcription polymerase chain reaction analysis. We found that the activity of both enzymes significantly increased after in vitro capacitation in the presence of high-cAMP levels, with a concomitant increase in protein tyrosine phosphorylation and in the proportion of sperm-capacitated pattern assessed by the chlortetracycline staining. These results suggest that PPP is related with the progress of capacitation and that a relationship between calcium compartmentalization, protein tyrosine phosphorylation and PPP seems to exist. This is the first report that shows a connection between the PPP, cAMP/PKA signaling pathways and sperm capacitation. These findings can be of high-biological importance to improve our knowledge of the biochemical mechanisms involved in the acquisition of mammalian sperm functional competence and, ultimately, fertility.

  17. Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBOMe and 25I-NBOH

    DEFF Research Database (Denmark)

    Nielsen, Line Marie; Holm, Niels Bjerre; Leth-Petersen, Sebastian;

    2016-01-01

    )ethylamino]methyl]phenol (25I-NBOH) and to characterize the metabolites. The following approaches were used to identify the main enzymes involved in primary metabolism: incubation with a panel of CYP and monoamine oxidase (MAO) enzymes and incubation in pooled human liver microsomes (HLM) with and without specific CYP...... intoxication cases have been reported in the scientific literature. The aim of this study was to determine the importance of the different cytochrome P450 enzymes (CYP) involved in the metabolism of 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2methoxybenzyl)ethanamine (25I-NBOMe) and 2-[[2-(4-iodo-2,5dimethoxyphenyl....... The biotransformations included hydroxylation, O-demethylation, N-dealkylation, dehydrogenation, and combinations thereof. The most abundant metabolites were all identified by retention time and spectrum matching with synthesized reference standards. The major CYP enzymes involved in the metabolism of 25I-NBOMe and 25...

  18. Combined application of plasma mutagenesis and gene engineering leads to 5-oxomilbemycins A3/A4 as main components from Streptomyces bingchenggensis.

    Science.gov (United States)

    Wang, Hai-Yan; Zhang, Ji; Zhang, Yue-Jing; Zhang, Bo; Liu, Chong-Xi; He, Hai-Rong; Wang, Xiang-Jing; Xiang, Wen-Sheng

    2014-12-01

    Milbemycin oxime has been commercialized as effective anthelmintics in the fields of animal health, agriculture, and human infections. Currently, milbemycin oxime is synthesized by a two-step chemical reaction, which involves the ketonization of milbemycins A3/A4 to yield the intermediates 5-oxomilbemycins A3/A4 using CrO3 as catalyst. Due to the low efficiency and environmental unfriendliness of the ketonization of milbemycins A3/A4, it is imperative to develop alternative strategies to produce 5-oxomilbemycins A3/A4. In this study, the atmospheric and room temperature plasma (ARTP) mutation system was first employed to treat milbemycin-producing strain Streptomyces bingchenggensis, and a mutant strain BC-120-4 producing milbemycins A3, A4, B2, and B3 as main components was obtained, which favors the construction of genetically engineered strains producing 5-oxomilbemycins. Importantly, the milbemycins A3/A4 yield of BC-120-4 reached 3,890 ± 52 g/l, which was approximately two times higher than that of the initial strain BC-109-6 (1,326 ± 37 g/l). The subsequent interruption of the gene milF encoding a C5-ketoreductase responsible for the ketonization of milbemycins led to strain BCJ60 (∆milF) with the production of 5-oxomilbemycins A3/A4 and the elimination of milbemycins A3, A4, B2, and B3. The high 5-oxomilbemycins A3/A4 yield (3,470 ± 147 g/l) and genetic stability of BCJ60 implied the potential use in industry to prepare 5-oxomilbemycins A3/A4 for the semisynthesis of milbemycins oxime. PMID:25081559

  19. A comparative study of CYP3A4 polymorphisms in Mexican Amerindian and Mestizo populations.

    Science.gov (United States)

    Reyes-Hernández, Octavio D; Lares-Asseff, Ismael; Sosa-Macias, Martha; Vega, Libia; Albores, Arnulfo; Elizondo, Guillermo

    2008-01-01

    Cytochrome P-450 3A4 (CYP3A4) contributes to the metabolism of approximately half the drugs in clinical use today. The aim of the present study was to determine the frequency of the CYP3A4*1B, *2, *4, *5, and *18 alleles amongst both Tepehuan Amerindians, a native group that has inhabited northern Mexico for thousands of years, and Mestizo Mexicans, and to compare the data with those of other populations. Genotyping experiments revealed that 8.8 and 8.0% of the Mestizo and Tepehuano subjects, respectively, carried the CYP3A4*1B allele. Only one Mestizo subject was heterozygous for the CYP3A4*2 variant, while CYP3A4*4, *5 and *18 allelic variants were not detected in either group. On the other hand, the frequencies of the CYP3A4*1B variant in Mestizos and Tepehuanos were similar to those reported for Caucasians, but different from those observed for African and Asian populations.

  20. Characterization of a dual-active enzyme, DcpA, involved in cyclic diguanosine monophosphate turnover in Mycobacterium smegmatis.

    Science.gov (United States)

    Sharma, Indra Mani; Prakash, Sunita; Dhanaraman, Thillaivillalan; Chatterji, Dipankar

    2014-10-01

    We have reported previously that the long-term survival of Mycobacterium smegmatis is facilitated by a dual-active enzyme MSDGC-1 (renamed DcpA), which controls the cellular turnover of cyclic diguanosine monophosphate (c-di-GMP). Most mycobacterial species possess at least a single copy of a DcpA orthologue that is highly conserved in terms of sequence similarity and domain architecture. Here, we show that DcpA exists in monomeric and dimeric forms. The dimerization of DcpA is due to non-covalent interactions between two protomers that are arranged in a parallel orientation. The dimer shows both synthesis and hydrolysis activities, whereas the monomer shows only hydrolysis activity. In addition, we have shown that DcpA is associated with the cytoplasmic membrane and exhibits heterogeneous cellular localization with a predominance at the cell poles. Finally, we have also shown that DcpA is involved in the change in cell length and colony morphology of M. smegmatis. Taken together, our study provides additional evidence about the role of the bifunctional protein involved in c-di-GMP signalling in M. smegmatis.

  1. H2O2-Activated Up-Regulation of Glutathione in Arabidopsis Involves Induction of Genes Encoding Enzymes Involved in Cysteine Synthesis in the Chloroplast

    Institute of Scientific and Technical Information of China (English)

    Guillaume Queval; Dorothée Thominet; Hélène Vanacker; Myroslawa Miginiac-Maslow; Bertrand Gakière; Graham Noctor

    2009-01-01

    Glutathione is a key player in cellular redox homeostasis and, therefore, in the response to H2O2, but the factors regulating oxidation-activated glutathione synthesis are still unclear. We investigated H2O2-induced glutathione synthesis in a conditional Arabidopsis catalase-deficient mutant (cat2). Plants were grown from seed at elevated CO2 for 5 weeks, then transferred to air in either short-day or long-day conditions. Compared to cat2 at elevated CO2 or wild-type plants in any condition, transfer of cat2 to air in both photoperiods caused measurable oxidation of the leaf glutathione pool within hours. Oxidation continued on subsequent days and was accompanied by accumulation of glutathione. This effect was stronger in cat2 transferred to air in short days, and was not linked to appreciable increases in the extractable activities of or transcripts encoding enzymes involved in the committed pathway of glutathione synthesis. In contrast, it was accompanied by increases in serine, O-acetylserine, and cysteine. These changes in metabolites were accompanied by induction of genes encoding adenosine phosphosulfate reductase (APR), particularly APR3, as well as a specific serine acetyltransferase gene (SAT2.1) encoding a chloroplastic SAT. Marked induction of these genes was only observed in cat2 transferred to air in short-day conditions, where cysteine and glutathione accumulation was most dramatic. Unlike other SAT genes, which showed negligible induction in cat2, the relative abundance of APR and SAT2.1 transcripts was closely correlated with marker transcripts for H2O2 signaling. Together, the data underline the importance of cysteine synthesis in oxidant-induced up-regulation of glutathione synthesis and suggest that the chloroplast makes an important contribution to cysteine production under these circumstances.

  2. Effects of the activities of key enzymes involved in starch biosynthesis on the fine structure of amylopectin in developing rice (Oryza sativa L.) endosperms

    Institute of Scientific and Technical Information of China (English)

    L(U) Bing; GUO ZhiGang; LIANG JianSheng

    2008-01-01

    The dynamic changes of the activities of enzymes involving in starch biosynthesis, including ADP-glucose pyrophosphorylase (AGPase), soluble starch synthases (SSS), starch branching enzyme (SBE) and starch debranching enzymes (DBE) were studied, and changes of fine structure of amy-Iopectin were characterized by isoamylase treatment during rice grain development, using trans anti-waxy gene rice plants. The relationships between the activities of those key enzymes were also analyzed. The amylose synthesis was significantly inhibited in transgenic Wanjing 9522, but the total starch content and final grain weight were less affected as compared with those of non-transgenic Wanjing 9522 rice cultivar. Analyses on the changes of activities of enzymes involving in starch bio-synthesis showed that different enzyme activities were expressed differently during rice endosperm development. Soluble starch synthase is relatively highly expressed in earlier stage of endosperm de-velopment, whilst maximal expression of granule-bound starch synthase (GBSS) occurred in mid-stage of endosperm development. No obvious differences in changes of the activities of AGPase and SBE between two rice cultivars investigated, except the DBEs. Distribution patterns of branches of amy-Iopectin changed continually during the development of rice grains and varied between two rice culti-vars. It was suggested that amylopectin synthesis be prior to the synthesis of amylose and different enzymes have different roles in controlling syntheses of branches of amylopectin.

  3. Effects of the activities of key enzymes involved in starch biosynthesis on the fine structure of amylopectin in developing rice (Oryza sativa L.) endosperms.

    Science.gov (United States)

    Lü, Bing; Guo, ZhiGang; Liang, JianSheng

    2008-10-01

    The dynamic changes of the activities of enzymes involving in starch biosynthesis, including ADP-glucose pyrophosphorylase (AGPase), soluble starch synthases (SSS), starch branching enzyme (SBE) and starch debranching enzymes (DBE) were studied, and changes of fine structure of amylopectin were characterized by isoamylase treatment during rice grain development, using trans anti-waxy gene rice plants. The relationships between the activities of those key enzymes were also analyzed. The amylose synthesis was significantly inhibited in transgenic Wanjing 9522, but the total starch content and final grain weight were less affected as compared with those of non-transgenic Wanjing 9522 rice cultivar. Analyses on the changes of activities of enzymes involving in starch biosynthesis showed that different enzyme activities were expressed differently during rice endosperm development. Soluble starch synthase is relatively highly expressed in earlier stage of endosperm development, whilst maximal expression of granule-bound starch synthase (GBSS) occurred in mid-stage of endosperm development. No obvious differences in changes of the activities of AGPase and SBE between two rice cultivars investigated, except the DBEs. Distribution patterns of branches of amylopectin changed continually during the development of rice grains and varied between two rice cultivars. It was suggested that amylopectin synthesis be prior to the synthesis of amylose and different enzymes have different roles in controlling syntheses of branches of amylopectin.

  4. Effects of the activities of key enzymes involved in starch biosynthesis on the fine structure of amylopectin in developing rice (Oryza sativa L.) endosperms

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The dynamic changes of the activities of enzymes involving in starch biosynthesis, including ADP-glucose pyrophosphorylase (AGPase), soluble starch synthases (SSS), starch branching enzyme (SBE) and starch debranching enzymes (DBE) were studied, and changes of fine structure of amy- lopectin were characterized by isoamylase treatment during rice grain development, using trans anti-waxy gene rice plants. The relationships between the activities of those key enzymes were also analyzed. The amylose synthesis was significantly inhibited in transgenic Wanjing 9522, but the total starch content and final grain weight were less affected as compared with those of non-transgenic Wanjing 9522 rice cultivar. Analyses on the changes of activities of enzymes involving in starch bio- synthesis showed that different enzyme activities were expressed differently during rice endosperm development. Soluble starch synthase is relatively highly expressed in earlier stage of endosperm de- velopment, whilst maximal expression of granule-bound starch synthase (GBSS) occurred in mid-stage of endosperm development. No obvious differences in changes of the activities of AGPase and SBE between two rice cultivars investigated, except the DBEs. Distribution patterns of branches of amy- lopectin changed continually during the development of rice grains and varied between two rice culti- vars. It was suggested that amylopectin synthesis be prior to the synthesis of amylose and different enzymes have different roles in controlling syntheses of branches of amylopectin.

  5. Linkage and association of haplotypes at the APOA1/C3/A4/A5 genecluster to familial combined hyperlipidemia

    Energy Technology Data Exchange (ETDEWEB)

    Eichenbaum-Voline, Sophie; Olivier, Michael; Jones, Emma L.; Naoumova, Rossitza P.; Jones, Bethan; Gau, Brian; Seed, Mary; Betteridge,D. John; Galton, David J.; Rubin, Edward M.; Scott, James; Shoulders,Carol C.; Pennacchio, Len A.

    2002-09-15

    Combined hyperlipidemia (CHL) is a common disorder of lipidmetabolism that leads to an increased risk of cardiovascular disease. Thelipid profile of CHL is characterised by high levels of atherogeniclipoproteins and low levels of high-density-lipoprotein-cholesterol.Apolipoprotein (APO) A5 is a newly discovered gene involved in lipidmetabolism located within 30kbp of the APOA1/C3/A4 gene cluster. Previousstudies have indicated that sequence variants in this cluster areassociated with increased plasma lipid levels. To establish whethervariation at the APOA5 gene contributes to the transmission of CHL, weperformed linkage and linkage disequilibrium (LD) tests on a large cohortof families (n=128) with familial CHL (FCHL). The linkage data producedevidence for linkage of the APOA1/C3/A4/A5 genomic interval to FCHL (NPL= 1.7, P = 0.042). The LD studies substantiated these data. Twoindependent rare alleles, APOA5c.56G and APOC3c.386G of this gene clusterwere over-transmitted in FCHL (P = 0.004 and 0.007, respectively), andthis was associated with a reduced transmission of the most commonAPOA1/C3/A4/A5 haplotype (frequency 0.4425) to affected subjects (P =0.013). The APOA5c.56G allele was associated with increased plasmatriglyceride levels in FCHL probands, whereas the second, andindependent, APOC3c.386G allele was associated with increased plasmatriglyceride levels in FCHL pedigree founders. Thus, this allele (or anallele in LD) may mark a quantitative trait associated with FCHL, as wellas representing a disease susceptibility locus for the condition. Thisstudy establishes that sequence variation in the APOA1/C3/A4/A5 genecluster contributes to the transmission of FCHL in a substantialproportion of affected families, and that these sequence variants mayalso contribute to the lipid abnormalities of the metabolic syndrome,which is present in up to 40 percent of persons with cardiovasculardisease.

  6. Involvement of TNF-α converting enzyme in the development of psoriasis-like lesions in a mouse model.

    Directory of Open Access Journals (Sweden)

    Kenji Sato

    Full Text Available TNF-α plays a crucial role in psoriasis; therefore, TNF inhibition has become a gold standard for the treatment of psoriasis. TNF-α is processed from a membrane-bound form by TNF-α converting enzyme (TACE to soluble form, which exerts a number of biological activities. EGF receptor (EGFR ligands, including heparin-binding EGF-like growth factor (HB-EGF, amphiregulin and transforming growth factor (TGF-α are also TACE substrates and are psoriasis-associated growth factors. Vascular endothelial growth factor (VEGF, one of the downstream molecules of EGFR and TNF signaling, plays a key role in angiogenesis for developing psoriasis. In the present study, to assess the possible role of TACE in the pathogenesis of psoriasis, we investigated the involvement of TACE in TPA-induced psoriasis-like lesions in K5.Stat3C mice, which represent a mouse model of psoriasis. In this mouse model, TNF-α, amphiregulin, HB-EGF and TGF-α were significantly up-regulated in the skin lesions, similar to human psoriasis. Treatment of K5.Stat3C mice with TNF-α or EGFR inhibitors attenuated the skin lesions, suggesting the roles of TACE substrates in psoriasis. Furthermore, the skin lesions of K5.Stat3C mice showed down-regulation of tissue inhibitor of metalloproteinase-3, an endogenous inhibitor of TACE, and an increase in soluble TNF-α. A TACE inhibitor abrogated EGFR ligand-dependent keratinocyte proliferation and VEGF production in vitro, suggesting that TACE was involved in both epidermal hyperplasia and angiogenesis during psoriasis development. These results strongly suggest that TACE contributes to the development of psoriatic lesions through releasing two kinds of psoriasis mediators, TNF-α and EGFR ligands. Therefore, TACE could be a potential therapeutic target for the treatment of psoriasis.

  7. Molecular modeling and simulation of FabG, an enzyme involved in the fatty acid pathway of Streptococcus pyogenes.

    Science.gov (United States)

    Shafreen, Rajamohmed Beema; Pandian, Shunmugiah Karutha

    2013-09-01

    Streptococcus pyogenes (SP) is the major cause of pharyngitis accompanied by strep throat infections in humans. 3-keto acyl reductase (FabG), an important enzyme involved in the elongation cycle of the fatty acid pathway of S. pyogenes, is essential for synthesis of the cell-membrane, virulence factors and quorum sensing-related mechanisms. Targeting SPFabG may provide an important aid for the development of drugs against S. pyogenes. However, the absence of a crystal structure for FabG of S. pyogenes limits the development of structure-based drug designs. Hence, in the present study, a homology model of FabG was generated using the X-ray crystallographic structure of Aquifex aeolicus (PDB ID: 2PNF). The modeled structure was refined using energy minimization. Furthermore, active sites were predicted, and a large dataset of compounds was screened against SPFabG. The ligands were docked using the LigandFit module that is available from Discovery Studio version 2.5. From this list, 13 best hit ligands were chosen based on the docking score and binding energy. All of the 13 ligands were screened for Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties. From this, the two best descriptors, along with one descriptor that lay outside the ADMET plot, were selected for molecular dynamic (MD) simulation. In vitro testing of the ligands using biological assays further substantiated the efficacy of the ligands that were screened based on the in silico methods. PMID:23988477

  8. Overexpression, purification, and biochemical characterization of GumC, an enzyme involved in the biosynthesis of exopolysaccharide by Xylella fastidiosa.

    Science.gov (United States)

    de Pieri, Celina; Beltramini, Leila M; Selistre-de-Araújo, Heloisa S; Vettore, André L; da Silva, Felipe R; Arruda, Paulo; Oliva, Glaucius; de Souza, Dulce H F

    2004-04-01

    GumC is one of nine enzymes involved in the biosynthesis of fastidian gum, an exopolysaccharide produced by Xylella fastidiosa that may be linked directly to the pathogenicity of the microorganism. GumC may be responsible for gum polymerization or secretion through the membrane of X. fastidiosa. To perform structure and functions studies, we developed an expression system for the production of GumC as a fusion protein with maltose binding protein (MBP) using pMAL-c2x vector. The GumC-MBP fusion protein was expressed as a 94 kDa protein, which strongly reacts with anti-MBP antibodies. GumC-MBP was isolated by affinity chromatography through an amylose column and used to produce antibodies against the fusion protein. After the enzymatic cleavage of MBP, GumC was purified on a Q Sepharose Fast Flow column. GumC showed a molecular weight corresponding to the expected one (52 kDa) and its N-terminal sequence was identical to that deduced from the DNA. The shape of the circular dichroism spectrum was compatible with a folded protein that contains alpha-helical regions in its structure. Therefore, in this study we describe, for the first time, the production of GumC recombinant protein. PMID:15003255

  9. Effect of Curcuma longa on CYP2D6- and CYP3A4-mediated metabolism of dextromethorphan in human liver microsomes and healthy human subjects.

    Science.gov (United States)

    Al-Jenoobi, Fahad Ibrahim; Al-Thukair, Areej A; Alam, Mohd Aftab; Abbas, Fawkeya A; Al-Mohizea, Abdullah M; Alkharfy, Khalid M; Al-Suwayeh, Saleh A

    2015-03-01

    Effect of Curcuma longa rhizome powder and its ethanolic extract on CYP2D6 and CYP3A4 metabolic activity was investigated in vitro using human liver microsomes and clinically in healthy human subjects. Dextromethorphan (DEX) was used as common probe for CYP2D6 and CYP3A4 enzymes. Metabolic activity of CYP2D6 and CYP3A4 was evaluated through in vitro study; where microsomes were incubated with NADPH in presence and absence of Curcuma extract. In clinical study phase-I, six healthy human subjects received a single dose (30 mg) of DEX syrup, and in phase-II DEX syrup was administered with Curcuma powder. The enzyme CYP2D6 and CYP3A4 mediated O- and N-demethylation of dextromethorphan into dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. Curcuma extract significantly inhibited the formation of DOR and 3-MM, in a dose-dependent and linear fashion. The 100 μg/ml dose of curcuma extract produced highest inhibition, which was about 70 % for DOR and 80 % for 3-MM. Curcuma significantly increases the urine metabolic ratio of DEX/DOR but the change in DEX/3-MM ratio was statistically insignificant. Present findings suggested that curcuma significantly inhibits the activity of CYP2D6 in in vitro as well as in vivo; which indicates that curcuma has potential to interact with CYP2D6 substrates.

  10. Echinococcus multilocularis phosphoglucose isomerase (EmPGI): a glycolytic enzyme involved in metacestode growth and parasite-host cell interactions.

    Science.gov (United States)

    Stadelmann, Britta; Spiliotis, Markus; Müller, Joachim; Scholl, Sabrina; Müller, Norbert; Gottstein, Bruno; Hemphill, Andrew

    2010-11-01

    In Echinococcus multilocularis metacestodes, the surface-associated and highly glycosylated laminated layer, and molecules associated with this structure, is believed to be involved in modulating the host-parasite interface. We report on the molecular and functional characterisation of E. multilocularis phosphoglucose isomerase (EmPGI), which is a component of this laminated layer. The EmPGI amino acid sequence is virtually identical to that of its homologue in Echinococcus granulosus, and shares 64% identity and 86% similarity with human PGI. Mammalian PGI is a multi-functional protein which, besides its glycolytic function, can also act as a cytokine, growth factor and inducer of angiogenesis, and plays a role in tumour growth, development and metastasis formation. Recombinant EmPGI (recEmPGI) is also functionally active as a glycolytic enzyme and was found to be present, besides the laminated layer, in vesicle fluid and in germinal layer cell extracts. EmPGI is released from metacestodes and induces a humoral immune response in experimentally infected mice, and vaccination of mice with recEmPGI renders these mice more resistant towards secondary challenge infection, indicating that EmPGI plays an important role in parasite development and/or in modulating the host-parasite relationship. We show that recEmPGI stimulates the growth of isolated E. multilocularis germinal layer cells in vitro and selectively stimulates the proliferation of bovine adrenal cortex endothelial cells but not of human fibroblasts and rat hepatocytes. Thus, besides its role in glycolysis, EmPGI could also act as a factor that stimulates parasite growth and potentially induces the formation of novel blood vessels around the developing metacestode in vivo.

  11. Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus.

    Science.gov (United States)

    Trapero, Almudena; Ahrazem, Oussama; Rubio-Moraga, Angela; Jimeno, Maria Luisa; Gómez, Maria Dolores; Gómez-Gómez, Lourdes

    2012-08-01

    UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed its absence in certain species. The analysis of the glucosylated flavonoids present in Crocus tepals reveals the presence of two major flavonoid compounds in saffron: kaempferol-3-O-β-D-glucopyranosyl-(1-2)-β-D-glucopyranoside and quercetin-3-O-β-D-glucopyranosyl-(1-2)-β-D-glucopyranoside, both of which were absent from the tepals of those Crocus species that did not express UGT707B1. Transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing UGT707B1 under the control of the cauliflower mosaic virus 35S promoter have been constructed and their phenotype analyzed. The transgenic lines displayed a number of changes that resembled those described previously in lines where flavonoid levels had been altered. The plants showed hyponastic leaves, a reduced number of trichomes, thicker stems, and flowering delay. Levels of flavonoids measured in extracts of the transgenic plants showed changes in the composition of flavonols when compared with wild-type plants. The major differences were observed in the extracts from stems and flowers, with an increase in 3-sophoroside flavonol glucosides. Furthermore, a new compound not detected in ecotype Columbia wild-type plants was detected in all the tissues and identified as kaempferol-3-O-sophoroside-7-O-rhamnoside. These data reveal the involvement of UGT707B1 in the biosynthesis of flavonol-3-O-sophorosides and how significant changes in flavonoid homeostasis can be caused by the overproduction of a flavonoid-conjugating enzyme.

  12. GW4064, an Agonist of Farnesoid X Receptor, Represses CYP3A4 Expression in Human Hepatocytes by Inducing Small Heterodimer Partner Expression

    OpenAIRE

    Zhang, Shu; Pan, Xian; Jeong, Hyunyoung

    2015-01-01

    Farnesoid X receptor (FXR) functions as a regulator of bile acid and lipid homeostasis and is recognized as a promising therapeutic target for metabolic diseases. The biologic function of FXR is mediated in part by a small heterodimer partner (SHP); ligand-activated FXR enhances SHP expression, and SHP in turn represses the activity of multiple transcription factors. This study aimed to investigate the effect of FXR activation on expression of the major drug-metabolizing enzyme CYP3A4. The ef...

  13. Identification of the human P450 enzymes involved in the in vitro metabolism of the synthetic steroidal hormones Org 4060 and Org 30659

    NARCIS (Netherlands)

    Verhoeven, CHJ; Van Munster, TTM; Groothuis, GMM; Vos, RME; Rietjens, IMCM

    2002-01-01

    1. The type of human P450 enzymes involved in the in vitro metabolism of Org 4060 and Org 30659, two synthetic steroidal hormones currently under clinical development by NV Organon for use in oral contraceptive and hormone replacement therapy, was investigated. 2. Both steroids were mainly hydroxyla

  14. Global (Q)SAR models on substrates for human Cytochrome P450 3A4

    DEFF Research Database (Denmark)

    Ringsted, Tine; Nikolov, Nikolai Georgiev; Wedebye, Eva Bay;

    % of prescribed drugs. Literature on substrates and non-substrates primarily based on in vivo human data on the CYP 3A4 isoenzyme was collected and a training set of 863 chemicals was used to create (Q)SAR models. The modeling systems used were MultiCASE, Leadscope and MDL QSAR and the developed models cross...

  15. Molecular Docking of 3-Methylindole-containing Drugs Binding into CYP3A4

    Institute of Scientific and Technical Information of China (English)

    MENG Xuan-yu; LI Zhuo; NIU Rui-juan; ZHANG Hong-xing; ZHENG Qing-chuan

    2012-01-01

    Drugs SPD-304(6,7-dimethyl-3- { [methyl-(2-{methyl-[ 1-(3-trifluoromethyl-phenyl)- 1H-indol-3-ylmethyl]-amino}-ethyl)-amino]-methyl}-chromen-4-one) and zafirlukast contain a common structural element of 3-substituted indole moiety which closely relates to a dehydrogenated reaction catalyzed by cytochrome P450s(CYPs).It was reported that the dehydrogenation can produce a reactive electrophilic intermediate which cause toxicities and inactivate CYPs. Drug L-745,870(3-{[4-(4-chlorophenyl)piperazin-l-yl]-methyl}-1H-pyrrolo-2,3-β-pyridine) might have similar effect since it contains the same structural element.We used molecular docking approach combined with molecular dynamics(MD) simulation to model three-dimensional(3D) complex structures of SPD-304,zafirlukast and L-745,870 into CYP3A4,respectively.The results show that these three drugs can stably bind into the active site and the 3-methylene carbons of the drugs keep a reasonable reactive distance from the heme iron.The complex structure of SPD-304-CYP3A4 is in agreement with experimental data.For zafirlukast,the calculation results indicate that 3-methylene carbon might be the dehydrogenation reaction site.Docking model of L-745,870-CYP3A4 shows a potential possibility of L-745,870 dehydrogenated by CYP3A4 at 3-methylene carbon which is in agreement with experiment in vivo.In addition,residues in the phenylalanine cluster as well as S119 and R212 play a critical role in the ligands binding based on our calculations.The docking models could provide some clues to understand the metabolic mechanism of the drugs by CYP3A4.

  16. The use of isomeric testosterone dimers to explore allosteric effects in substrate binding to cytochrome P450 CYP3A4.

    Science.gov (United States)

    Denisov, Ilia G; Mak, Piotr J; Grinkova, Yelena V; Bastien, Dominic; Bérubé, Gervais; Sligar, Stephen G; Kincaid, James R

    2016-05-01

    Cytochrome P450 CYP3A4 is the main drug-metabolizing enzyme in the human liver, being responsible for oxidation of 50% of all pharmaceuticals metabolized by human P450 enzymes. Possessing a large substrate binding pocket, it can simultaneously bind several substrate molecules and often exhibits a complex pattern of drug-drug interactions. In order to better understand structural and functional aspects of binding of multiple substrate molecules to CYP3A4 we used resonance Raman and UV-VIS spectroscopy to document the effects of binding of synthetic testosterone dimers of different configurations, cis-TST2 and trans-TST2. We directly demonstrate that the binding of two steroid molecules, which can assume multiple possible configurations inside the substrate binding pocket of monomeric CYP3A4, can lead to active site structural changes that affect functional properties. Using resonance Raman spectroscopy, we have documented perturbations in the ferric and Fe-CO states by these substrates, and compared these results with effects caused by binding of monomeric TST. While the binding of trans-TST2 yields results similar to those obtained with monomeric TST, the binding of cis-TST2 is much tighter and results in significantly more pronounced conformational changes of the porphyrin side chains and Fe-CO unit. In addition, binding of an additional monomeric TST molecule in the remote allosteric site significantly improves binding affinity and the overall spin shift for CYP3A4 with trans-TST2 dimer bound inside the substrate binding pocket. This result provides the first direct evidence for an allosteric effect of the peripheral binding site at the protein-membrane interface on the functional properties of CYP3A4. PMID:26774838

  17. Modeling chemical interaction profiles: II. Molecular docking, spectral data-activity relationship, and structure-activity relationship models for potent and weak inhibitors of cytochrome P450 CYP3A4 isozyme.

    Science.gov (United States)

    Tie, Yunfeng; McPhail, Brooks; Hong, Huixiao; Pearce, Bruce A; Schnackenberg, Laura K; Ge, Weigong; Buzatu, Dan A; Wilkes, Jon G; Fuscoe, James C; Tong, Weida; Fowler, Bruce A; Beger, Richard D; Demchuk, Eugene

    2012-03-15

    Polypharmacy increasingly has become a topic of public health concern, particularly as the U.S. population ages. Drug labels often contain insufficient information to enable the clinician to safely use multiple drugs. Because many of the drugs are bio-transformed by cytochrome P450 (CYP) enzymes, inhibition of CYP activity has long been associated with potentially adverse health effects. In an attempt to reduce the uncertainty pertaining to CYP-mediated drug-drug/chemical interactions, an interagency collaborative group developed a consensus approach to prioritizing information concerning CYP inhibition. The consensus involved computational molecular docking, spectral data-activity relationship (SDAR), and structure-activity relationship (SAR) models that addressed the clinical potency of CYP inhibition. The models were built upon chemicals that were categorized as either potent or weak inhibitors of the CYP3A4 isozyme. The categorization was carried out using information from clinical trials because currently available in vitro high-throughput screening data were not fully representative of the in vivo potency of inhibition. During categorization it was found that compounds, which break the Lipinski rule of five by molecular weight, were about twice more likely to be inhibitors of CYP3A4 compared to those, which obey the rule. Similarly, among inhibitors that break the rule, potent inhibitors were 2-3 times more frequent. The molecular docking classification relied on logistic regression, by which the docking scores from different docking algorithms, CYP3A4 three-dimensional structures, and binding sites on them were combined in a unified probabilistic model. The SDAR models employed a multiple linear regression approach applied to binned 1D ¹³C-NMR and 1D ¹⁵N-NMR spectral descriptors. Structure-based and physical-chemical descriptors were used as the basis for developing SAR models by the decision forest method. Thirty-three potent inhibitors and 88 weak

  18. Modeling Chemical Interaction Profiles: II. Molecular Docking, Spectral Data-Activity Relationship, and Structure-Activity Relationship Models for Potent and Weak Inhibitors of Cytochrome P450 CYP3A4 Isozyme

    Directory of Open Access Journals (Sweden)

    Eugene Demchuk

    2012-03-01

    Full Text Available Polypharmacy increasingly has become a topic of public health concern, particularly as the U.S. population ages. Drug labels often contain insufficient information to enable the clinician to safely use multiple drugs. Because many of the drugs are bio-transformed by cytochrome P450 (CYP enzymes, inhibition of CYP activity has long been associated with potentially adverse health effects. In an attempt to reduce the uncertainty pertaining to CYP-mediated drug-drug/chemical interactions, an interagency collaborative group developed a consensus approach to prioritizing information concerning CYP inhibition. The consensus involved computational molecular docking, spectral data-activity relationship (SDAR, and structure-activity relationship (SAR models that addressed the clinical potency of CYP inhibition. The models were built upon chemicals that were categorized as either potent or weak inhibitors of the CYP3A4 isozyme. The categorization was carried out using information from clinical trials because currently available in vitro high-throughput screening data were not fully representative of the in vivo potency of inhibition. During categorization it was found that compounds, which break the Lipinski rule of five by molecular weight, were about twice more likely to be inhibitors of CYP3A4 compared to those, which obey the rule. Similarly, among inhibitors that break the rule, potent inhibitors were 2–3 times more frequent. The molecular docking classification relied on logistic regression, by which the docking scores from different docking algorithms, CYP3A4 three-dimensional structures, and binding sites on them were combined in a unified probabilistic model. The SDAR models employed a multiple linear regression approach applied to binned 1D 13C-NMR and 1D 15N-NMR spectral descriptors. Structure-based and physical-chemical descriptors were used as the basis for developing SAR models by the decision forest method. Thirty-three potent inhibitors

  19. An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme

    NARCIS (Netherlands)

    Romagnoli, G.; Verhoeven, M.D.; Mans, R.; Fleury Rey, Y.; Bel-Rhlid, R.; Van den Broek, M.; Maleki Seifar, R.; Ten Pierick, A.; Thompson, M.; Müller, V.; Wahl, S.A.; Pronk, J.T.; Daran, J.M.

    2014-01-01

    Most available knowledge on fungal arginine metabolism is derived from studies on Saccharomyces cerevisiae, in which arginine catabolism is initiated by releasing urea via the arginase reaction. Orthologues of the S. cerevisiae genes encoding the first three enzymes in the arginase pathway were clon

  20. Lipolytic enzymes involving lipolysis in Teleost: Synteny, structure, tissue distribution, and expression in grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Sun, Jian; Ji, Hong; Li, Xue-Xian; Shi, Xiao-Chen; Du, Zhen-Yu; Chen, Li-Qiao

    2016-08-01

    Lipolysis is the biochemical pathway responsible for the sequential hydrolysis of triacylglycerols (TAGs) stored in cellular lipid droplets. Three enzymes are known to participate in TAGs hydrolysis, including adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase (MGL), and each is present in mammals as only one isoform. Here we show that the genome of grass carp (Ctenopharyngodon idella) and other teleosts codes for one ATGL, two HSLs, and one MGL isoforms. Two isoforms of HSL gene, HSLa and HSLb, derived from paralogous genes that could be originated from teleost-specific genome duplication (TSGD) event. The genes encoding for fish ATGL and MGL were conserved and contained nine and seven coding exons, respectively. However, two isoforms of HSL gene had a remarkable variation in gene structure, such as HSLa gene contained ten and HSLb contained thirteen exons. All three enzymes, including two isoforms of HSL, were expressed in a wide range of tissues, but the abundance of each gene mRNA showed the tissue-dependent expression patterns. During fasting, only ATGL and HSLa showed a significant increase in adipose tissue and adipocyte, indicating that ATGL and HSLa may be the main rate-limiting enzymes controlling the hydrolysis of TAGs in fasting-induced lipolysis. Different expression of HSLa and HSLb suggests that they might serve different roles in fasting-induced lipolysis. These results provide evidence about the conservation and divergence of genes of fish lipolytic enzymes. PMID:27131420

  1. Going Beyond Common Drug Metabolizing Enzymes: Case Studies of Biotransformation Involving Aldehyde Oxidase, γ-Glutamyl Transpeptidase, Cathepsin B, Flavin-Containing Monooxygenase, and ADP-Ribosyltransferase.

    Science.gov (United States)

    Fan, Peter W; Zhang, Donglu; Halladay, Jason S; Driscoll, James P; Khojasteh, S Cyrus

    2016-08-01

    The significant roles that cytochrome P450 (P450) and UDP-glucuronosyl transferase (UGT) enzymes play in drug discovery cannot be ignored, and these enzyme systems are commonly examined during drug optimization using liver microsomes or hepatocytes. At the same time, other drug-metabolizing enzymes have a role in the metabolism of drugs and can lead to challenges in drug optimization that could be mitigated if the contributions of these enzymes were better understood. We present examples (mostly from Genentech) of five different non-P450 and non-UGT enzymes that contribute to the metabolic clearance or bioactivation of drugs and drug candidates. Aldehyde oxidase mediates a unique amide hydrolysis of GDC-0834 (N-[3-[6-[4-[(2R)-1,4-dimethyl-3-oxopiperazin-2-yl]anilino]-4-methyl-5-oxopyrazin-2-yl]-2-methylphenyl]-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxamide), leading to high clearance of the drug. Likewise, the rodent-specific ribose conjugation by ADP-ribosyltransferase leads to high clearance of an interleukin-2-inducible T-cell kinase inhibitor. Metabolic reactions by flavin-containing monooxygenases (FMO) are easily mistaken for P450-mediated metabolism such as oxidative defluorination of 4-fluoro-N-methylaniline by FMO. Gamma-glutamyl transpeptidase is involved in the initial hydrolysis of glutathione metabolites, leading to formation of proximate toxins and nephrotoxicity, as is observed with cisplatin in the clinic, or renal toxicity, as is observed with efavirenz in rodents. Finally, cathepsin B is a lysosomal enzyme that is highly expressed in human tumors and has been targeted to release potent cytotoxins, as in the case of brentuximab vedotin. These examples of non-P450- and non-UGT-mediated metabolism show that a more complete understanding of drug metabolizing enzymes allows for better insight into the fate of drugs and improved design strategies of molecules in drug discovery. PMID:27117704

  2. Paramecium bursaria Chlorella virus 1 encodes two enzymes involved in the biosynthesis of GDP-L-fucose and GDP-D-rhamnose.

    Science.gov (United States)

    Tonetti, Michela; Zanardi, Davide; Gurnon, James R; Fruscione, Floriana; Armirotti, Andrea; Damonte, Gianluca; Sturla, Laura; De Flora, Antonio; Van Etten, James L

    2003-06-13

    At least three structural proteins in Paramecium bursaria Chlorella virus (PBCV-1) are glycosylated, including the major capsid protein Vp54. However, unlike other glycoprotein-containing viruses that use host-encoded enzymes in the endoplasmic reticulum-Golgi to glycosylate their proteins, PBCV-1 encodes at least many, if not all, of the glycosyltransferases used to glycosylate its structural proteins. As described here, PBCV-1 also encodes two open reading frames that resemble bacterial and mammalian enzymes involved in de novo GDP-L-fucose biosynthesis. This pathway, starting from GDP-D-mannose, consists of two sequential steps catalyzed by GDP-D-mannose 4,6 dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, respectively. The two PBCV-1-encoded genes were expressed in Escherichia coli, and the recombinant proteins had the predicted enzyme activity. However, in addition to the dehydratase activity, PBCV-1 GMD also had a reductase activity, producing GDP-D-rhamnose. In vivo studies established that PBCV-1 GMD and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase are expressed after virus infection and that both GDP-L-fucose and GDP-D-rhamnose are produced in virus-infected cells. Thus, PBCV-1 is the first virus known to encode enzymes involved in nucleotide sugar metabolism. Because fucose and rhamnose are components of the glycans attached to Vp54, the pathway could circumvent a limited supply of GDP sugars by the algal host. PMID:12679342

  3. PARTIAL PURIFICATION OF THE ENZYME INVOLVED IN BIOCONVERSION OF ARTEANNUIN B TO ARTEMISNIN FROM A STREPTOMYCES SP.

    Directory of Open Access Journals (Sweden)

    PARCH SREENIVASA RAO

    2006-01-01

    Full Text Available Artemisinin and its derivatives are the most rapidly acting antimalarial drugs effective against falciparum malaria including multidrug resistant infection. An enzyme catalyzing the bioconversion of arteannin-B, a biogenetic precursor of artemisinin to the later is partiallt purified from a soil isolate, Streptomyces sp. Crude cell free extract of a 72 h old culture of Streptomyces sp. on incubation with the precursor arteannuin B had shown bioconversion of 17.64% to artemisinin on molor basis with a specific activity of 0.11 units/mg. Partial pruification of the enzyme by ammonium sulfate precipitation and ion exchange chromatography has resulted in .5.60 fold increase of specific activity with 64.71% of bioconversion

  4. Sterols and triterpenoids as potential anti-inflammatories: Molecular docking studies for binding to some enzymes involved in inflammatory pathways.

    Science.gov (United States)

    Loza-Mejía, Marco A; Salazar, Juan Rodrigo

    2015-11-01

    Triterpenes and sterols are good candidates for the development of anti-inflammatory drugs and use in chemoprevention or chemotherapy of cancer via the interaction with therapeutic targets related to inflammation, such as COX-1 and -2; LOX-5; MPO, PLA2 and i-NOS. In this study, we use molecular docking to evaluate the potential binding of a database of selected sterol and triterpenoid compounds with several skeletons against enzymes related to inflammation to propose structural requirements beneficial for anti-inflammatory activity that can be used for the design of more potent and selective anti-inflammatory and antitumor drugs. Our results suggest that the substitution pattern is important and that there is an important relationship between the class of sterol or triterpenoid skeleton and enzyme binding.

  5. Effects of the CYP3A4*1B Genetic Polymorphism on the Pharmacokinetics of Tacrolimus in Adult Renal Transplant Recipients: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Wei-Long Shi

    Full Text Available The association between the CYP3A4*1B single nucleotide polymorphism (SNP and tacrolimus pharmacokinetics in different studies is controversial. Therefore, a meta-analysis was employed to evaluate the correlation between the CYP3A4*1B genetic polymorphism and tacrolimus pharmacokinetics at different post-transplantation times in adult renal transplant recipients.Studies evaluating the CYP3A4*1B genetic polymorphism and tacrolimus pharmacokinetics were retrieved through a systematical search of Embase, PubMed, the Cochrane Library, ClinicalTrials.gov and three Chinese literature databases (up to Sept. 2014. The pharmacokinetic parameters (weight-adjusted tacrolimus daily dose and tacrolimus trough concentration/weight-adjusted tacrolimus daily dose ratio were extracted, and the meta-analysis was performed using Stata 12.1.Seven studies (involving 1182 adult renal transplant recipients were included in this meta-analysis. For the weight-adjusted tacrolimus daily dose, in all included renal transplant recipients (European & Indian populations, CYP3A4*1/*1 recipients required a significantly lower weight-adjusted tacrolimus daily dose than did CYP3A4*1B carriers at 7 days (WMD -0.048; 95% CI -0.083 ~ -0.014, 6 months (WMD -0.058; 95% CI -0.081 ~ -0.036 and 12 months (WMD - 0.061; 95% CI -0.096 ~ -0.027 post-transplantation. In light of the heterogeneity, the analysis was repeated after removing the only study in an Indian population, and CYP3A4*1/*1 European recipients (mostly Caucasian required a lower weight-adjusted tacrolimus daily dose within the first year post-transplantation. The tacrolimus trough concentration/weight-adjusted tacrolimus daily dose ratio (C0/Dose ratio was significantly higher in CYP3A4*1/*1 recipients than in CYP3A4*1B carriers at 6 months (WMD 52.588; 95% CI 22.387 ~ 82.789 and 12 months (WMD 62.219; 95% CI 14.218 ~ 110.221 post-transplantation. When the only study in an Indian population was removed to examine European

  6. A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation

    OpenAIRE

    Cazzonelli, Christopher I.; Nisar, Nazia; Roberts, Andrea C.; Murray, Kevin D.; Borevitz, Justin O; Pogson, Barry J.

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzym...

  7. X-Ray Solution Scattering Study of Four Escherichia coli Enzymes Involved in Stationary-Phase Metabolism.

    Directory of Open Access Journals (Sweden)

    Liubov A Dadinova

    Full Text Available The structural analyses of four metabolic enzymes that maintain and regulate the stationary growth phase of Escherichia coli have been performed primarily drawing on the results obtained from solution small angle X-ray scattering (SAXS and other structural techniques. The proteins are (i class I fructose-1,6-bisphosphate aldolase (FbaB; (ii inorganic pyrophosphatase (PPase; (iii 5-keto-4-deoxyuronate isomerase (KduI; and (iv glutamate decarboxylase (GadA. The enzyme FbaB, that until now had an unknown structure, is predicted to fold into a TIM-barrel motif that form globular protomers which SAXS experiments show associate into decameric assemblies. In agreement with previously reported crystal structures, PPase forms hexamers in solution that are similar to the previously reported X-ray crystal structure. Both KduI and GadA that are responsible for carbohydrate (pectin metabolism and acid stress responses, respectively, form polydisperse mixtures consisting of different oligomeric states. Overall the SAXS experiments yield additional insights into shape and organization of these metabolic enzymes and further demonstrate the utility of hybrid methods, i.e., solution SAXS combined with X-ray crystallography, bioinformatics and predictive 3D-structural modeling, as tools to enrich structural studies. The results highlight the structural complexity that the protein components of metabolic networks may adopt which cannot be fully captured using individual structural biology techniques.

  8. Distribution of cytochrome P450 2C, 2E1, 3A4, and 3A5 in human colon mucosa

    DEFF Research Database (Denmark)

    Parlesak, Alexandr

    2005-01-01

    BACKGROUND: Despite the fact that the alimentary tract is part of the body's first line of defense against orally ingested xenobiotica, little is known about the distribution and expression of cytochrome P450 (CYP) enzymes in human colon. Therefore, expression and protein levels of four...... representative CYPs (CYP2C(8), CYP2E1, CYP3A4, and CYP3A5) were determined in human colon mucosa biopsies obtained from ascending, descending and sigmoid colon. METHODS: Expression of CYP2C, CYP2E1, CYP3A4, and CYP3A5 mRNA in colon mucosa was determined by RT-PCR. Protein concentration of CYPs was determined...... to the descending colon. CONCLUSION: The current data suggest that the expression of CYP2C, CYP2E1, and CYP3A5 varies in different parts of the colon....

  9. In vitro herb-drug interaction mediated by CYP3A4 and its potential application in the treatment of AIDS%艾滋病中药和化学药通过CYP3A4的代谢性相互作用的体外研究

    Institute of Scientific and Technical Information of China (English)

    毛玉昌; 王军; 孙易; 侴桂新; 胡卓汉

    2012-01-01

    Objective: To evaluate CYP3A4-mediated interaction of herb medicines with HIV protease inhibitors, and to explore the potential efficacy enhancement by herb-drug metabolic interaction in the treatment of AIDS. The 24 traditional Chinese medicines (TCM) for AIDS treatment and the HIV protease inhibitor indinavir were studied. Methods: Totally 65 extracts from 24 TCM isolated by a standardized method were pre-incubated with pooled human liver microsomes for 15 min, and then incubated with p-NADPH and testosterone as CYP3A4 probe substrate for 30 min. The enzyme activity of CYP3A4 was measured by LC-MS/MS and the IC50 of six extracts were calculated. Results: The extracts from Rhizoma Et Radix Polygoni Cuspidati and Radix Scutellariae showed stronger inhibitory effects on CYP3A4 with IC50 3.25 -8. 19 and 10.0 -29.0 μg·mL-1 , respectively, a-mong the 24 test herbs. The extracts from Radix Et Rhizoma Glycyrrhizae, Radix Sophorae flavescentis, Cortex Moutan, Rhizoma Smilacis Clabrae and Radix Linderae showed different inhibitory effects. No significant inhibition on CYP3A4 was observed in the extracts from Herba Patriniae, Radix Isatidis, Radix Angelicae Sinensis, Radix Astragali and Radix Et Rhizoma Gentianae. Conclusion: The inhibitive effect of different extracts from TCM on enzyme activity of CYP3A4 was much different.%目的:评价应用于艾滋病治疗的24个中药的提取物对人肝微粒体细胞色素P450氧化代谢酶3A4( CYP3 A4)活性的抑制作用,为阐明中药和化学药在治疗艾滋病时的代谢性相互作用的增效机制提供数据.方法:用标准化方法提取24个中药的65个部位,并在生理条件下与混合人肝微粒体进行预孵15 min后,加入探针底物睾酮和辅酶β-NADPH进行孵育30 min,用LC-MS/MS对CYP3A4的活性进行定量检测,计算抑制率( IC50).结果:在24个中药中虎杖和黄芩对CYP3A4具有较强的抑制,其不同部位的IC50分别为3.25 ~8.19和10.0~29.0 μg·mL-1.其他测试的

  10. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Schuetz, Erin G. [Department of Pharmaceutical Sciences, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Chen, Taosheng, E-mail: taosheng.chen@stjude.org [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States)

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  11. Analysis of CYP3A4*1B and CYP3A5*3 polymorphisms in population of Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Sabina Semiz

    2011-02-01

    Full Text Available Aim Differences in the frequency of distribution of the cytochromeP450 (CYP allelic variants have been demonstrated between distinct ethnic groups, contributing to observed interindividual variation in drug response. In this study we determined, for the irst time, prevalence of the common allelic variants of the polymorphic CYP enzymes, CYP3A4*1B and CYP3A5*3, in the population of Bosnia and Herzegovina (BH. Methods Genomic DNA was extracted from blood samples collected from 140 unrelated subjects. A real-time PCR was used for the detection of CYP polymorphisms, with the application of the speciic TaqMan® SNP Genotyping Assay (Applied Biosystemsfor CYP3A5*3, while CYP3A4*1B was genotyped by high-resolution melting analysis. Results Our results have shown that the distribution of CYP3A4*1B and CYP3A5*3 alleles was in line with the data reported in European Caucasians. We conirmed that CYP3A4*1B mutant allele is rare in Caucasians, being present in only 5.1% individuals. However, CYP3A5*3 polymorphism was found to be predominant in the Bosnian population with an incidence of 94%, similarly to other European populations tested so far. Interestingly, we have demonstrated a strong linkage disequilibrium between CYP3A5*3 and CYP3A4*1B alleles. No signiicant difference in allele frequencies for CYP3A4*1B and CYP3A5*3 has been shown between male and female subjects participating in our study. Conclusion Our data demonstrated the high prevalence of CYP3A5*3 allele in Bosnian population, indicating signiicance of analysis of CYP3A5 and CYP3A4 polymorphisms and corresponding allele frequencies in speciic ethnic groups. Importantly, results of this study may lead to translation of pharmacogenetics and individualized therapeutic approach in current clinical practices in BH.

  12. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    Directory of Open Access Journals (Sweden)

    Amy V. Callaghan

    2013-05-01

    Full Text Available Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM. The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria via ‘reverse methanogenesis’ and is catalyzed by a homologue of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and sulfate-reducing bacteria, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, intra-aerobic pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appears to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase. Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an ‘intra-aerobic’ denitrification pathway similar to that described for ‘M. oxyfera.’

  13. Influence of fermentation conditions on polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Cordyceps militaris.

    Science.gov (United States)

    Zhu, Zhen-Yuan; Liu, Xiao-Cui; Dong, Feng-Ying; Guo, Ming-Zhu; Wang, Xiao-Ting; Wang, Zheng; Zhang, Yong-Min

    2016-05-01

    The influence of different fermentation conditions on intracellular polysaccharide (IPS) production and activities of the phosphoglucomutase (PGM), UDPG-pyrophosphorylase (UGP), phosphoglucose isomerase (PGI), UDPG-dehydrogenase (UGD), and glucokinase (GK) implicated in metabolite synthesis in Cordyceps militaris was evaluated. The highest IPS production (327.57 ± 6.27 mg/100 mL) was obtained when the strain was grown in the optimal medium containing glucose (40 g · L(-1)), beef extract (10 g · L(-1)), and CaCO3 (0.5 g · L(-1)), and the initial pH and temperature were 7 and 25 °C, respectively. The activities of PGM, UGP, and PGI were proved to be influenced by the fermentation conditions. A strong correlation between the activities of these enzymes and the production of IPS was found. The transcription level of the pgm gene (encoding PGM) was 1.049 times and 1.467 times compared to the ugp gene and pgi gene (encoding UGP and PGI), respectively, in the optimal culture medium. This result indicated that PGM might be the highly key enzyme to regulate the biosynthesis of IPS of C. militaris in a liquid-submerged culture. Our study might be helpful for further research on the pathway of polysaccharide biosynthesis aimed to improve the IPS production of C. militaris. PMID:26685672

  14. Substrate-Tuned Catalysis of the Radical S-Adenosyl-L-Methionine Enzyme NosL Involved in Nosiheptide Biosynthesis.

    Science.gov (United States)

    Ji, Xinjian; Li, Yongzhen; Ding, Wei; Zhang, Qi

    2015-07-27

    NosL is a radical S-adenosyl-L-methionine (SAM) enzyme that converts L-Trp to 3-methyl-2-indolic acid, a key intermediate in the biosynthesis of a thiopeptide antibiotic nosiheptide. In this work we investigated NosL catalysis by using a series of Trp analogues as the molecular probes. Using a benzofuran substrate 2-amino-3-(benzofuran-3-yl)propanoic acid (ABPA), we clearly demonstrated that the 5'-deoxyadenosyl (dAdo) radical-mediated hydrogen abstraction in NosL catalysis is not from the indole nitrogen but likely from the amino group of L-Trp. Unexpectedly, the major product of ABPA is a decarboxylated compound, indicating that NosL was transformed to a novel decarboxylase by an unnatural substrate. Furthermore, we showed that, for the first time to our knowledge, the dAdo radical-mediated hydrogen abstraction can occur from an alcohol hydroxy group. Our study demonstrates the intriguing promiscuity of NosL catalysis and highlights the potential of engineering radical SAM enzymes for novel activities.

  15. Mechanism-Based Inhibition of Recombinant Human Cytochrome P450 3A4 by Tomato Juice Extract

    OpenAIRE

    須永, 克佳; 大川, 健一; 中村, 健一; 大久保, 温子; 原田, 園子; 津田, 整

    2012-01-01

    This study investigates whether tomato juice can inhibit cytochrome P450 (CYP) 3A4-mediated drug metabolism. Three commercially available, additive-free tomato juices, along with homogenized fresh tomato, were analyzed for their ability to inhibit testosterone 6β-hydroxylation activity using human recombinant CYP3A4. Results were compared to that of grapefruit juice. Ethyl acetate extracts of the tomato juices moderately reduced residual activity of CYP3A4 testosterone 6β-hydroxylation activi...

  16. Modeling Chemical Interaction Profiles: I. Spectral Data-Activity Relationship and Structure-Activity Relationship Models for Inhibitors and Non-inhibitors of Cytochrome P450 CYP3A4 and CYP2D6 Isozymes

    Directory of Open Access Journals (Sweden)

    Richard D. Beger

    2012-03-01

    Full Text Available An interagency collaboration was established to model chemical interactions that may cause adverse health effects when an exposure to a mixture of chemicals occurs. Many of these chemicals—drugs, pesticides, and environmental pollutants—interact at the level of metabolic biotransformations mediated by cytochrome P450 (CYP enzymes. In the present work, spectral data-activity relationship (SDAR and structure-activity relationship (SAR approaches were used to develop machine-learning classifiers of inhibitors and non-inhibitors of the CYP3A4 and CYP2D6 isozymes. The models were built upon 602 reference pharmaceutical compounds whose interactions have been deduced from clinical data, and 100 additional chemicals that were used to evaluate model performance in an external validation (EV test. SDAR is an innovative modeling approach that relies on discriminant analysis applied to binned nuclear magnetic resonance (NMR spectral descriptors. In the present work, both 1D 13C and 1D 15N-NMR spectra were used together in a novel implementation of the SDAR technique. It was found that increasing the binning size of 1D 13C-NMR and 15N-NMR spectra caused an increase in the tenfold cross-validation (CV performance in terms of both the rate of correct classification and sensitivity. The results of SDAR modeling were verified using SAR. For SAR modeling, a decision forest approach involving from 6 to 17 Mold2 descriptors in a tree was used. Average rates of correct classification of SDAR and SAR models in a hundred CV tests were 60% and 61% for CYP3A4, and 62% and 70% for CYP2D6, respectively. The rates of correct classification of SDAR and SAR models in the EV test were 73% and 86% for CYP3A4, and 76% and 90% for CYP2D6, respectively. Thus, both SDAR and SAR methods demonstrated a comparable performance in modeling a large set of structurally diverse data. Based on unique NMR structural descriptors, the new SDAR modeling method complements the existing SAR

  17. Modeling chemical interaction profiles: I. Spectral data-activity relationship and structure-activity relationship models for inhibitors and non-inhibitors of cytochrome P450 CYP3A4 and CYP2D6 isozymes.

    Science.gov (United States)

    McPhail, Brooks; Tie, Yunfeng; Hong, Huixiao; Pearce, Bruce A; Schnackenberg, Laura K; Ge, Weigong; Valerio, Luis G; Fuscoe, James C; Tong, Weida; Buzatu, Dan A; Wilkes, Jon G; Fowler, Bruce A; Demchuk, Eugene; Beger, Richard D

    2012-03-15

    An interagency collaboration was established to model chemical interactions that may cause adverse health effects when an exposure to a mixture of chemicals occurs. Many of these chemicals--drugs, pesticides, and environmental pollutants--interact at the level of metabolic biotransformations mediated by cytochrome P450 (CYP) enzymes. In the present work, spectral data-activity relationship (SDAR) and structure-activity relationship (SAR) approaches were used to develop machine-learning classifiers of inhibitors and non-inhibitors of the CYP3A4 and CYP2D6 isozymes. The models were built upon 602 reference pharmaceutical compounds whose interactions have been deduced from clinical data, and 100 additional chemicals that were used to evaluate model performance in an external validation (EV) test. SDAR is an innovative modeling approach that relies on discriminant analysis applied to binned nuclear magnetic resonance (NMR) spectral descriptors. In the present work, both 1D ¹³C and 1D ¹⁵N-NMR spectra were used together in a novel implementation of the SDAR technique. It was found that increasing the binning size of 1D ¹³C-NMR and ¹⁵N-NMR spectra caused an increase in the tenfold cross-validation (CV) performance in terms of both the rate of correct classification and sensitivity. The results of SDAR modeling were verified using SAR. For SAR modeling, a decision forest approach involving from 6 to 17 Mold2 descriptors in a tree was used. Average rates of correct classification of SDAR and SAR models in a hundred CV tests were 60% and 61% for CYP3A4, and 62% and 70% for CYP2D6, respectively. The rates of correct classification of SDAR and SAR models in the EV test were 73% and 86% for CYP3A4, and 76% and 90% for CYP2D6, respectively. Thus, both SDAR and SAR methods demonstrated a comparable performance in modeling a large set of structurally diverse data. Based on unique NMR structural descriptors, the new SDAR modeling method complements the existing SAR

  18. An efficient method for following the enzymic reactions involved in camphor biosynthesis in Cinnamomum camphora by use of GC-MS and regiospecifically deuteriated substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yamamitsu, Tohru; Suga, Takayuki (Hiroshima Univ., Kagamiyama (Japan). Dept. of Chemistry); Ohta, Shinji (Hiroshima Univ., Higashisenda-machi, Naka-ku (Japan). Instrument Center for Chemical Analysis)

    1992-05-01

    An efficient method has been developed to follow the enzymic reactions involved in the biosynthesis of camphor in Cinnamomum camphora (camphor tree) by use of (5,5-{sup 2}H{sub 2})geranyl diphosphate as a substrate and GC-MS with selected ion monitoring. Borneol and camphor biosynthesized in the enzymic reactions gave a base peak due to the deuterium-containing ion in its EI mass spectrum. It is possible to detect 1.5 ng of the biosynthesized borneol and camphor per injection into GC-MS. This method enabled us to differentiate easily the biosynthesized camphor from the endogenous camphor and it is a facile and sensitive technique to determine the amount of the biosynthesized camphor. (author).

  19. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses.

    Directory of Open Access Journals (Sweden)

    Elizabeth Henry

    2015-04-01

    Full Text Available Glyceraldehyde-3-phosphate dehydrogenase (GAPDH is an important enzyme in energy metabolism with diverse cellular regulatory roles in vertebrates, but few reports have investigated the importance of plant GAPDH isoforms outside of their role in glycolysis. While animals possess one GAPDH isoform, plants possess multiple isoforms. In this study, cell biological and genetic approaches were used to investigate the role of GAPDHs during plant immune responses. Individual Arabidopsis GAPDH knockouts (KO lines exhibited enhanced disease resistance phenotypes upon inoculation with the bacterial plant pathogen Pseudomonas syringae pv. tomato. KO lines exhibited accelerated programmed cell death and increased electrolyte leakage in response to effector triggered immunity. Furthermore, KO lines displayed increased basal ROS accumulation as visualized using the fluorescent probe H2DCFDA. The gapa1-2 and gapc1 KOs exhibited constitutive autophagy phenotypes in the absence of nutrient starvation. Due to the high sequence conservation between vertebrate and plant cytosolic GAPDH, our experiments focused on cytosolic GAPC1 cellular dynamics using a complemented GAPC1-GFP line. Confocal imaging coupled with an endocytic membrane marker (FM4-64 and endosomal trafficking inhibitors (BFA, Wortmannin demonstrated cytosolic GAPC1 is localized to the plasma membrane and the endomembrane system, in addition to the cytosol and nucleus. After perception of bacterial flagellin, GAPC1 dynamically responded with a significant increase in size of fluorescent puncta and enhanced nuclear accumulation. Taken together, these results indicate that plant GAPDHs can affect multiple aspects of plant immunity in diverse sub-cellular compartments.

  20. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses.

    Science.gov (United States)

    Henry, Elizabeth; Fung, Nicholas; Liu, Jun; Drakakaki, Georgia; Coaker, Gitta

    2015-04-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an important enzyme in energy metabolism with diverse cellular regulatory roles in vertebrates, but few reports have investigated the importance of plant GAPDH isoforms outside of their role in glycolysis. While animals possess one GAPDH isoform, plants possess multiple isoforms. In this study, cell biological and genetic approaches were used to investigate the role of GAPDHs during plant immune responses. Individual Arabidopsis GAPDH knockouts (KO lines) exhibited enhanced disease resistance phenotypes upon inoculation with the bacterial plant pathogen Pseudomonas syringae pv. tomato. KO lines exhibited accelerated programmed cell death and increased electrolyte leakage in response to effector triggered immunity. Furthermore, KO lines displayed increased basal ROS accumulation as visualized using the fluorescent probe H2DCFDA. The gapa1-2 and gapc1 KOs exhibited constitutive autophagy phenotypes in the absence of nutrient starvation. Due to the high sequence conservation between vertebrate and plant cytosolic GAPDH, our experiments focused on cytosolic GAPC1 cellular dynamics using a complemented GAPC1-GFP line. Confocal imaging coupled with an endocytic membrane marker (FM4-64) and endosomal trafficking inhibitors (BFA, Wortmannin) demonstrated cytosolic GAPC1 is localized to the plasma membrane and the endomembrane system, in addition to the cytosol and nucleus. After perception of bacterial flagellin, GAPC1 dynamically responded with a significant increase in size of fluorescent puncta and enhanced nuclear accumulation. Taken together, these results indicate that plant GAPDHs can affect multiple aspects of plant immunity in diverse sub-cellular compartments. PMID:25918875

  1. Possible Involvement of Reactive Oxygen Species Scavenging Enzymes in Desiccation Sensitivity of Antiaris toxicaria Seeds and Axes

    Institute of Scientific and Technical Information of China (English)

    Hong-Yan Cheng; Song-Quan Song

    2008-01-01

    The relationships among desiccation sensitivities of Antiaris toxicaria seeds and axes, changes in activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and dehydroascorbate reductase, (TBA)-reactive substance were studied. Desiccation tolerance of seeds and axes decreased with dehydration. Desiccation tolerance of axes was higher than that of seeds, and that of epicotyls was higher than radicles. Activities of SOD, CAT and DHAR of seeds increased during the initial phase of dehydration, and then decreased with further dehydration, whereas activities of APX and GR decreased with dehydration. These five enzyme activities of axes, however, increased during the initial phase of dehydration, and then decreased with further dehydration. The rate of superoxide radical production, and the contents of H2O2 and TBA-reactive products of seeds and axes gradually increased with dehydration. These results show that the A. toxicaria seed is a typical recalcitrant seed. Loss of desiccation tolerance in seeds and axes was correlated with activities of seeds and axes.

  2. Activity and mRNA Levels of Enzymes Involved in Hepatic Fatty Acid Synthesis in Rats Fed Naringenin.

    Science.gov (United States)

    Hashimoto, Toru; Ide, Takashi

    2015-11-01

    We investigated the physiological activity of naringenin in affecting hepatic lipogenesis and serum and liver lipid levels in rats. Rats were fed diets containing 0, 1, or 2.5 g/kg naringenin for 15 d. Naringenin at a dietary level of 2.5 g/kg significantly decreased the activities and the mRNA levels of various lipogenic enzymes and sterol regulatory element binding protein-1c (SREBP-1c) mRNA level. The activities and the mRNA levels were also 9-22% and 12-38% lower, respectively, in rats fed a 1 g/kg naringenin diet than in the animals fed a naringenin-free diet, although the differences were not significant in many cases. Naringenin at 2.5 g/kg significantly lowered serum triacylglycerol, cholesterol, and phospholipid and hepatic triacylglycerol and cholesterol. This flavonoid at 1.0 g/kg also significantly lowered these parameters except for serum triacylglycerol. Naringenin levels in serum and liver dose-dependently increased, and hepatic concentrations reached levels that can affect various signaling pathways.

  3. Bone marrow involvement in Gaucher disease at MRI: what long-term evolution can we expect under enzyme replacement therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Fedida, Benjamin; Touraine, Sebastien; Laredo, Jean-Denis [Hopital Lariboisiere, AP-HP, Department of Musculoskeletal Imaging, Paris (France); Stirnemann, Jerome [Universite Paris-Diderot Hopital Bichat, AP-HP, Department of Biostatistics and Medical Data Processing, INSERM UMR 738, Paris (France); Geneva University Hospital, Division of General Internal Medicine, Faculty of Medicine, Geneva (Switzerland); Belmatoug, Nadia [Hopital Beaujon, AP-HP, Referral Center for Lysosomal Diseases (RCLD), Clichy (France); Hopital Beaujon, AP-HP, Department of Internal Medicine, Clichy (France); Petrover, David [Hopital Lariboisiere, AP-HP, Department of Musculoskeletal Imaging, Paris (France); Hopital Beaujon, AP-HP, Referral Center for Lysosomal Diseases (RCLD), Clichy (France)

    2015-10-15

    To study the long-term evolution of the bone marrow burden (BMB) score at MRI in patients with Gaucher disease (GD) under enzyme replacement therapy (ERT). Forty patients treated for GD were retrospectively studied in a referral centre. BMB scores were assessed on spine and femur MR examinations performed between January 2003 and June 2014. The long-term evolution of the BMB scores was analyzed using a linear mixed model. A total of 121 MRI examinations were performed during the study period with a mean follow-up of 7.1 years ± 5.6, an average rate of 3.1 MR examinations ± 1.7 per patient and an interval of 2.3 years ± 1.1 between examinations. Patients had received ERT during 12 years on average ± 6.7. The trend of BMB scores with time decreased significantly by 15 % (P = 0.008) during the total study period and 39 % (P = 0.01) during the first 5 years of treatment. No changes in BMB scores were observed after five years of treatment. In Gaucher patients, the trend of MRI BMB scores with time decreased significantly under ERT the first 5 years of treatment before a long-term stabilization. (orig.)

  4. Fatty acid hydroperoxide lyase : a plant cytochrome P450 enzyme involved in wound healing and pest resistance

    OpenAIRE

    Vliegenthart, J. F. G.; Noordermeer, M.A.; Veldink, G.A.

    2001-01-01

    Plants continuously have to defend themselves against life-threatening events such as drought, mechanical damage, temperature stress, and potential pathogens. Nowadays, more and more similarities between the defense mechanism of plants and that of animals are being discovered. In both cases, the lipoxygenase pathway plays an important role. In plants, products of this pathway are involved in wound healing, pest resistance, and signaling, or they have antimicrobial and antifungal activity. The...

  5. Bacterial conversion of hydroxylamino aromatic compounds by both lyase and mutase enzymes involves intramolecular transfer of hydroxyl groups.

    Science.gov (United States)

    Nadeau, Lloyd J; He, Zhongqi; Spain, Jim C

    2003-05-01

    Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H(2)(18)O did not indicate any (18)O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was (18)O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups.

  6. A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition

    Directory of Open Access Journals (Sweden)

    Hiromi Daiyasu

    2005-01-01

    Full Text Available Cellular membrane lipids, of which phospholipids are the major constituents, form one of the characteristic features that distinguish Archaea from other organisms. In this study, we focused on the steps in archaeal phospholipid synthetic pathways that generate polar lipids such as archaetidylserine, archaetidylglycerol, and archaetidylinositol. Only archaetidylserine synthase (ASS, from Methanothermobacter thermautotrophicus, has been experimentally identified. Other enzymes have not been fully examined. Through database searching, we detected many archaeal hypothetical proteins that show sequence similarity to members of the CDP alcohol phosphatidyltransferase family, such as phosphatidylserine synthase (PSS, phosphatidylglycerol synthase (PGS and phosphatidylinositol synthase (PIS derived from Bacteria and Eukarya. The archaeal hypothetical proteins were classified into two groups, based on the sequence similarity. Members of the first group, including ASS from M. thermautotrophicus, were closely related to PSS. The rough agreement between PSS homologue distribution within Archaea and the experimentally identified distribution of archaetidylserine suggested that the hypothetical proteins are ASSs. We found that an open reading frame (ORF tends to be adjacent to that of ASS in the genome, and that the order of the two ORFs is conserved. The sequence similarity of phosphatidylserine decarboxylase to the product of the ORF next to the ASS gene, together with the genomic context conservation, suggests that the ORF encodes archaetidylserine decarboxylase, which may transform archaetidylserine to archaetidylethanolamine. The second group of archaeal hypothetical proteins was related to PGS and PIS. The members of this group were subjected to molecular phylogenetic analysis, together with PGSs and PISs and it was found that they formed two distinct clusters in the molecular phylogenetic tree. The distribution of members of each cluster within Archaea

  7. Right ventricular involvement in patients with Fabry's disease and the effect of enzyme replacement therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, W. [Universitaetsklinikum Erlangen (Germany). Radiologisches Inst.; Machann, W.; Koestler, H.; Hahn, D.; Beer, M. [Universitaetsklinikum Wuerzburg (Germany). Inst. fuer Roentgendiagnostik; Breunig, F.; Weidemann, F.; Wanner, C. [Universitaetsklinikum Wuerzburg (Germany). Medizinische Klinik I

    2011-11-15

    According to echocardiography reports, Fabry cardiomyopathy not only affects the left ventricle (LV) but also the right ventricle (RV). Until now no MRI studies about the effect of enzyme replacement therapy (ERT) on the RV are available. We evaluated the effect of ERT on the RV. In this prospective trial 14 patients with genetically proven Fabry's disease were examined using a 1.5 T MR scanner before ERT and after 13 {+-} 1 months of ERT. All patients underwent cardiac MR imaging and the RV/LV cardiac morphology and function were analyzed. At baseline examination the values were as follows: RV mass 31 {+-} 6 g/m{sup 2}, end-diastolic volume (EDV) 88 {+-} 13 ml/m{sup 2}, end-systolic volume (ESV) 39 {+-} 9 ml/m{sup 2}, stroke volume (SV) 49 {+-} 7 ml/m{sup 2} and ejection fraction (EF) 56 {+-} 5 %. The RV mass and EDV decreased significantly after 13 {+-} 1 months on ERT (mass 27 {+-} 7 g/m{sup 2}, p < 0.05, EDV 76 {+-} 24 ml/m{sup 2}, p < 0.05), with no significant change of ESV (33 {+-} 13 ml/m{sup 2}), SV (43 {+-} 12 ml/m{sup 2}) and EF (57 {+-} 7 %). The LV mass (102 {+-} 26 g/m{sup 2} vs. 94 {+-} 27 g/m{sup 2}, p < 0.05), EDV (76 {+-} 13 ml/m{sup 2} vs. 66 {+-} 22 ml/m{sup 2}, p < 0.05) and ESV (29 {+-} 9 ml/m{sup 2} vs. 23 {+-} 9 ml/m{sup 2}, p < 0.05) decreased significantly while the EF (64 {+-} 7 % vs. 66 {+-} 5 %; p < 0.05) increased significantly. Besides the known beneficial effect on the LV, ERT improves RV mass and EDV. (orig.)

  8. Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification.

    Science.gov (United States)

    Sun, Li; Lu, Yufang; Kronzucker, Herbert J; Shi, Weiming

    2016-07-01

    Fatty acid amides from plant root exudates, such as oleamide and erucamide, have the ability to participate in strong plant-microbe interactions, stimulating nitrogen metabolism in rhizospheric bacteria. However, mechanisms of secretion of such fatty acid amides, and the nature of their stimulatory activities on microbial metabolism, have not been examined. In the present study, collection, pre-treatment, and determination methods of oleamide and erucamide in duckweed root exudates are compared. The detection limits of oleamide and erucamide by gas chromatography (GC) (10.3ngmL(-1) and 16.1ngmL(-1), respectively) are shown to be much lower than those by liquid chromatography (LC) (1.7 and 5.0μgmL(-1), respectively). Quantitative GC analysis yielded five times larger amounts of oleamide and erucamide in root exudates of Spirodela polyrrhiza when using a continuous collection method (50.20±4.32 and 76.79±13.92μgkg(-1) FW day(-1)), compared to static collection (10.88±0.66 and 15.27±0.58μgkg(-1) FW day(-1)). Furthermore, fatty acid amide secretion was significantly enhanced under elevated nitrogen conditions (>300mgL(-1)), and was negatively correlated with the relative growth rate of duckweed. Mechanistic assays were conducted to show that erucamide stimulates nitrogen removal by enhancing denitrification, targeting two key denitrifying enzymes, nitrate and nitrite reductases, in bacteria. Our findings significantly contribute to our understanding of the regulation of nitrogen dynamics by plant root exudates in natural ecosystems. PMID:27152459

  9. FROG INTESTINAL PERFUSION TO EVALUATE DRUG PERMEABILITY: APPLICATION TO P-gp AND CYP3A4 SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Neelima eYerasi

    2015-07-01

    Full Text Available AbstractTo evaluate the reliability of using in situ frog intestinal perfusion technique for permeability assessment of carrier transported drugs which are also substrates for CYP enzymes. Single Pass Intestinal Perfusion (SPIP studies were performed in frogs of the species Rana tigrina using established method for rats with some modifications after inducing anesthesia. Effective permeability coefficient (Peff of losartan and midazolam was calculated in the presence and absence of inhibitors using the parallel-tube model. Peff of losartan when perfused alone was found to be 0.427 ± 0.27×10-4cm/s and when it was co-perfused with inhibitors, significant change in Peff was observed. Peff of midazolam when perfused alone was found to be 2.03 ± 0.07 × 10-4cm/s and when it was co-perfused with inhibitors, no significant change in Peff was observed. Comparison of Peff calculated in frog with that of other available models and also humans suggested that the Peff values are comparable and reflected well with human intestinal permeability. It is possible to determine the Peff value for compounds which are dual substrates of P-gp and CYP3A4 using in situ frog intestinal perfusion technique. The calculated Peff values correlated well with reported Peff values of probe drugs. comparison of the Peff value of losartan obtained with that of reported human’s Peff and Caco 2 cell data, and comparison of the Peff value of midazolam with that of reported rat’s Peff, we could conclude that SPIP from model can be reliably used in preclinical studies for permeability estimation. This model may represent a valuable alternative to the low speed and high cost of conventional animal models (typically rodents for the assessment of intestinal permeability.

  10. Proteomics of Fusarium oxysporum race 1 and race 4 reveals enzymes involved in carbohydrate metabolism and ion transport that might play important roles in banana Fusarium wilt.

    Science.gov (United States)

    Sun, Yong; Yi, Xiaoping; Peng, Ming; Zeng, Huicai; Wang, Dan; Li, Bo; Tong, Zheng; Chang, Lili; Jin, Xiang; Wang, Xuchu

    2014-01-01

    Banana Fusarium wilt is a soil-spread fungal disease caused by Fusarium oxysporum. In China, the main virulence fungi in banana are F. oxysporum race 1 (F1, weak virulence) and race 4 (F4, strong virulence). To date, no proteomic analyses have compared the two races, but the difference in virulence between F1 and F4 might result from their differentially expressed proteins. Here we report the first comparative proteomics of F1 and F4 cultured under various conditions, and finally identify 99 protein species, which represent 59 unique proteins. These proteins are mainly involved in carbohydrate metabolism, post-translational modification, energy production, and inorganic ion transport. Bioinformatics analysis indicated that among the 46 proteins identified from F4 were several enzymes that might be important for virulence. Reverse transcription PCR analysis of the genes for 15 of the 56 proteins revealed that their transcriptional patterns were similar to their protein expression patterns. Taken together, these data suggest that proteins involved in carbohydrate metabolism and ion transport may be important in the pathogenesis of banana Fusarium wilt. Some enzymes such as catalase-peroxidase, galactosidase and chitinase might contribute to the strong virulence of F4. Overexpression or knockout of the genes for the F4-specific proteins will help us to further understand the molecular mechanism of Fusarium-induced banana wilt.

  11. Mutational analyses of the enzymes involved in the metabolism of hydrogen by the hyperthermophilic archaeon Pyrococcus furiosus

    Directory of Open Access Journals (Sweden)

    Gerrit J Schut

    2012-05-01

    Full Text Available Pyrococcus furiosus grows optimally near 100°C by fermenting carbohydrates to produce hydrogen (H2 or, if elemental sulfur (S0, is present hydrogen sulfide instead. It contains two cytoplasmic hydrogenases, SHI and SHII, that use NADP(H as an electron carrier, and a membrane bound hydrogenase (MBH, that utilizes the redox protein ferredoxin. We previously constructed deletion strains lacking SHI and/or SHII and showed that they exhibited no obvious phenotype. This study has now been extended to include biochemical analyses and growth studies using the ΔSHI and ΔSHII deletion strains together with strains lacking a functional MBH (ΔMbhL. Hydrogenase activities in cytoplasmic extracts of ΔSHII and the parent strain were similar but were much lower (<10% in the ΔSHI strain, and no activity was detected in the ΔSHIΔSHII double deletion strain, indicating that SHI is responsible for most of the cytoplasmic hydrogenase activity. In contrast, the ΔmbhL strain showed no growth in the absence of S0, confirming the hypothesis that, in the absence of S0, MBH is the only enzyme that can dispose of reductant (as H2 generated during sugar oxidation. The deletion strain devoid of all three hydrogenases also grew only in the presence of S0 and did not produce any detectable H2. When grown in the presence of limiting S0, both H2S and H2 were produced by the parent and ΔSHI/ΔSHII strains. A significant amount of H2 was also produced by the ΔmbhL strain, showing that SHI can produce H2 from NADPH in vivo, although this does not enable significant growth of ΔmbhL in the absence of S0. We propose that the physiological function of SHI is to recycle H2 and provide a link between external H2 and the intracellular pool of NADPH needed for biosynthesis. This likely has a distinct energetic advantage in the environment, but it is clearly not required for growth of the organism under the usual laboratory conditions. The function of SHII, however, remains

  12. Strictosidine-related enzymes involved in the alkaloid biosynthesis of Uncaria tomentosa root cultures grown under oxidative stress.

    Science.gov (United States)

    Vera-Reyes, Ileana; Huerta-Heredia, Ariana A; Ponce-Noyola, Teresa; Flores-Sanchez, Isvett Josefina; Esparza-García, Fernando; Cerda-García-Rojas, Carlos M; Trejo-Tapia, Gabriela; Ramos-Valdivia, Ana C

    2013-01-01

    The activity and gene expression of strictosidine-related enzymes in Uncaria tomentosa root cultures exposed to oxidative stress were studied. Elicitation with 0.2 mM hydrogen peroxide (H2 O2 ) or a combination of 0.8 mM buthionine sulfoximine and 0.2 mM jasmonic acid (BSO-JA) increased peroxidase activities by twofold at Day 8 and glutathione reductase by 1.4-fold at Day 5 in H2 O2 elicited cultures respect to the control. Production of monoterpenoid oxindole alkaloids (MOA), 3α-dihydrocadambine, and dolichantoside was stimulated after H2 O2 elicitation, reaching levels of 886.4 ± 23.6, 847.7 ± 25.4, and 87.5 ± 7.2 µg/g DW, at Day 8 which were 1.7-, 2.1-, and 2.3-fold higher relative to control. BSO-JA elicited cultures produced about twice alkaloids than H2 O2 -treated cultures, following a biphasic pattern with maxima at 0.5 and 8 days. Alkaloid production was preceded by increase in strictosidine synthase (STR) and strictosidine glucosidase (SGD) activities. After elicitation with H2 O2 or BSO-JA, the STR activity (pKat/mg protein) increased by 1.9-fold (93.8 ± 17.8 at 24 h) or 2.5-fold (102.4 ± 2.2 at 6 h) and the SGD activity (pKat/mg protein) by 2.8-fold (245.2 ± 14.4 at 6 h) or 4.2-fold (421.2 ± 1.8 at 18 h) relative to control. STR and SGD transcripts were upregulated after elicitation. H2 O2 -treated roots showed higher levels of STR at 48-192 h and SGD at 24-48 h, while BSO-JA treatments showed STR increased at 12 h and SGD at 24 h. Also, LC/ESI-MS confirmed the biosynthesis of dolichantoside from N-ω-methyltryptamine and secologanin by U. tomentosa protein extracts.

  13. The immunoglobulin M-degrading enzyme of Streptococcus suis, IdeSsuis, is involved in complement evasion.

    Science.gov (United States)

    Seele, Jana; Beineke, Andreas; Hillermann, Lena-Maria; Jaschok-Kentner, Beate; von Pawel-Rammingen, Ulrich; Valentin-Weigand, Peter; Baums, Christoph Georg

    2015-04-19

    Streptococcus (S.) suis is one of the most important pathogens in pigs causing meningitis, arthritis, endocarditis and serositis. Furthermore, it is also an emerging zoonotic agent. In our previous work we identified a highly specific IgM protease in S. suis, designated Ide(Ssuis) . The objective of this study was to characterize the function of Ide(Ssuis) in the host-pathogen interaction. Edman-sequencing revealed that Ide(Ssuis) cleaves the heavy chain of the IgM molecule between constant domain 2 and 3. As the C1q binding motif is located in the C3 domain, we hypothesized that Ide(Ssuis) is involved in complement evasion. Complement-mediated hemolysis induced by porcine hyperimmune sera containing erythrocyte-specific IgM was abrogated by treatment of these sera with recombinant Ide(Ssuis) . Furthermore, expression of Ide(Ssuis) reduced IgM-triggered complement deposition on the bacterial surface. An infection experiment of prime-vaccinated growing piglets suggested attenuation in the virulence of the mutant 10Δide(Ssuis). Bactericidal assays confirmed a positive effect of Ide(Ssuis) expression on bacterial survival in porcine blood in the presence of high titers of specific IgM. In conclusion, this study demonstrates that Ide(Ssuis) is a novel complement evasion factor, which is important for bacterial survival in porcine blood during the early adaptive (IgM-dominated) immune response.

  14. Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion protein activation in cells of the bat reservoir host.

    Directory of Open Access Journals (Sweden)

    Farah El Najjar

    Full Text Available Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing.

  15. Pharmacokinetic variability of clarithromycin and differences in CYP3A4 activity in patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Dalbøge, C S; Nielsen, X C; Dalhoff, K;

    2014-01-01

    BACKGROUND: To investigate the correlation between CYP3A4/5 activity and clarithromycin metabolism, and between CYP3A activity and CYP3A genotype. METHODS: This is an open-label, prospective pharmacokinetic study evaluating CYP3A activity using The Erythromycin Breath Test. Eight blood samples were......3A4-activity and clarithromycin metabolism was demonstrated (P Test could be valuable in identifying cystic fibrosis patients in risk...

  16. Changes in the Activities of Enzymes Involved in Starch Synthesis in the Kernel During Grain Filling in Winter Wheat Cultivars of Different Spike Types

    Institute of Scientific and Technical Information of China (English)

    GAO Song-jie; WANG Wen-jing; GUO Tian-cai; HAN Jin-feng

    2003-01-01

    Two winter wheat(Triticum aestivum L. ) cultivars, large-spike type Yumai66 amd small-spike type Yumai49, were used to study the activities of enzymes involved in starch synthesis in the kernel during grain filling. Starch accumulated faster in the kernel of Yumai49 than Yumai66 up to 25 d after anthesis,thereafter starch accumulated faster in the kernel of Yumai66. Starch accumulation in Yumai66 peaked at 20 -25 d after anthesis, while in Yumai49 starch accumulation peaked at 15 -20 d after anthesis and 25 -30 d after anthesis. The first peak was much higher than that of the second. Sucrose content and sucrose synthase activity peaked at 20 and 15 d after anthesis in Yumai66 and Yumai49, respectively. The sucrose content and sucrose synthase activity in Yumai66 were higher than that in Yunai49 during grain filling. ADP-glucose pyrophosphorylase and starch branching enzyme activity in the kernel of Yumai66 peaked at 20 d after anthesis,while soluble starch synthase activity peaked at 10 and 20 d after anthesis. The second peak was much higher than that of the first.

  17. Inhibition of CYP3A4 and CYP2C9 by podophyllotoxin: Implication for clinical drug–drug interactions

    Indian Academy of Sciences (India)

    Jin-Hui Song; Dong-Xue Sun; Bin Chen; Dai-Hong Ji; Jie Pu; Jie Xu; Feng-De Tian; Lin Guo

    2011-12-01

    Podophyllotoxin (PPT) and its derivatives exert significant anti-cancer activities, and one derivative etoposide is often utilized to treat various cancers in the clinic. The aim of the present study is to investigate the inhibitory effects of PPT on major cytochrome P450 (CYP) isoforms in human livers. Inhibition of CYP3A4, CYP2C9, CYP2C8, CYP2D6, CYP2E1 and CYP2A6 by PPT was investigated in the human liver microsomal system. Time-dependent inhibition of CYP3A4 by PPT was also evaluated. The results showed that PPT strongly exhibited inhibitory effects on CYP3A4 and CYP2C9 in a concentration-dependent manner. Half inhibition concentration (IC50) was 1.1±0.3 and 4.6±0.3 M for CYP3A4 and CYP2C9, respectively. Inhibition kinetic analysis showed that PPT exhibited competitive inhibition towards CYP3A4 and CYP2C9 with Ki of 1.6 and 2.0 M, respectively. Additionally, PPT exerted time-dependent inhibition towards CYP3A4 and the kinetic parameters were 4.4±2.1 M and 0.06±0.01 min–1 for KI and kinact, respectively. Our experimental data indicate that potential drug–drug interaction (DDI) might exist when PPT is co-administered with the substrates which mainly undergo CYP3A4- or CYP2C9-mediated metabolism.

  18. Involvement of insulin-degrading enzyme in insulin- and atrial natriuretic peptide-sensitive internalization of amyloid-β peptide in mouse brain capillary endothelial cells.

    Science.gov (United States)

    Ito, Shingo; Ohtsuki, Sumio; Murata, Sho; Katsukura, Yuki; Suzuki, Hiroya; Funaki, Miho; Tachikawa, Masanori; Terasaki, Tetsuya

    2014-01-01

    Cerebral clearance of amyloid-β peptide (Aβ), which is implicated in Alzheimer's disease, involves elimination across the blood-brain barrier (BBB), and we previously showed that an insulin-sensitive process is involved in the case of Aβ1-40. The purpose of this study was to clarify the molecular mechanism of the insulin-sensitive Aβ1-40 elimination across mouse BBB. An in vivo cerebral microinjection study demonstrated that [125I]hAβ1-40 elimination from mouse brain was inhibited by human natriuretic peptide (hANP), and [125I]hANP elimination was inhibited by hAβ1-40, suggesting that hAβ1-40 and hANP share a common elimination process. Internalization of [125I]hAβ1-40 into cultured mouse brain capillary endothelial cells (TM-BBB4) was significantly inhibited by either insulin, hANP, other natriuretic peptides or insulin-degrading enzyme (IDE) inhibitors, but was not inhibited by phosphoramidon or thiorphan. Although we have reported the involvement of natriuretic peptide receptor C (Npr-C) in hANP internalization, cells stably expressing Npr-C internalized [125I]hANP but not [125I]hAβ1-40, suggesting that there is no direct interaction between Npr-C and hAβ1-40. IDE was detected in plasma membrane of TM-BBB4 cells, and internalization of [125I]hAβ1-40 by TM-BBB4 cells was reduced by IDE-targeted siRNAs. We conclude that elimination of hAβ1-40 from mouse brain across the BBB involves an insulin- and ANP-sensitive process, mediated by IDE expressed in brain capillary endothelial cells.

  19. A food contaminant ochratoxin A suppresses pregnane X receptor (PXR)-mediated CYP3A4 induction in primary cultures of human hepatocytes.

    Science.gov (United States)

    Doricakova, Aneta; Vrzal, Radim

    2015-11-01

    Ochratoxin A (OCHA) is a mycotoxin, which can be found in food such as coffee, wine, cereals, meat, nuts. Since it is absorbed via gastrointestinal tract, it is reasonable to anticipate that the liver will be the first organ to which OCHA comes into the contact before systemic circulation. Many xenobiotics are metabolically modified after the passage of the liver to biologically more active substances, sometimes with more harmful activity. Promoting own metabolism is often achieved via transcriptional regulation of biotransformation enzymes through ligand-activated transcription factors. Pregnane X receptor (PXR) belongs to such a group of regulators and it was demonstrated to be activated by many compounds of synthetic as well as natural origin. Our intention was to investigate if OCHA is capable of activating the PXR with consequent induction of PXR-regulated CYP3A4 gene. We found that OCHA does not activate PXR but displays antagonist-like behavior when combined with rifampicin (RIF) in gene reporter assay in human embryonal kidney cells (Hek293T). It was very weak inducer of CYP3A4 mRNA in primary cultures of human hepatocytes and it antagonized RIF-mediated CYP3A4 induction of mRNA as well as protein. In addition, it caused the decline of PXR protein as well as mRNA which was faster than that with actinomycin D, a transcription inhibitor. Since we found that OCHA induced the expression of miR-148a, which was described to regulate PXR expression, we conclude that antagonist-like behavior of OCHA is not due to the antagonism itself but due to the downregulation of PXR gene expression. Herein we provide important findings which bring a piece of puzzle into the understanding of mechanism of toxic action of ochratoxin A.

  20. A food contaminant ochratoxin A suppresses pregnane X receptor (PXR)-mediated CYP3A4 induction in primary cultures of human hepatocytes.

    Science.gov (United States)

    Doricakova, Aneta; Vrzal, Radim

    2015-11-01

    Ochratoxin A (OCHA) is a mycotoxin, which can be found in food such as coffee, wine, cereals, meat, nuts. Since it is absorbed via gastrointestinal tract, it is reasonable to anticipate that the liver will be the first organ to which OCHA comes into the contact before systemic circulation. Many xenobiotics are metabolically modified after the passage of the liver to biologically more active substances, sometimes with more harmful activity. Promoting own metabolism is often achieved via transcriptional regulation of biotransformation enzymes through ligand-activated transcription factors. Pregnane X receptor (PXR) belongs to such a group of regulators and it was demonstrated to be activated by many compounds of synthetic as well as natural origin. Our intention was to investigate if OCHA is capable of activating the PXR with consequent induction of PXR-regulated CYP3A4 gene. We found that OCHA does not activate PXR but displays antagonist-like behavior when combined with rifampicin (RIF) in gene reporter assay in human embryonal kidney cells (Hek293T). It was very weak inducer of CYP3A4 mRNA in primary cultures of human hepatocytes and it antagonized RIF-mediated CYP3A4 induction of mRNA as well as protein. In addition, it caused the decline of PXR protein as well as mRNA which was faster than that with actinomycin D, a transcription inhibitor. Since we found that OCHA induced the expression of miR-148a, which was described to regulate PXR expression, we conclude that antagonist-like behavior of OCHA is not due to the antagonism itself but due to the downregulation of PXR gene expression. Herein we provide important findings which bring a piece of puzzle into the understanding of mechanism of toxic action of ochratoxin A. PMID:26341324

  1. Contribution of CYP3A4 to catalysis of ketamine in human hepatic microsome%人肝微粒体中CYP3A4对氯胺酮代谢的催化作用

    Institute of Scientific and Technical Information of China (English)

    赵芸慧; 田阿勇; 马虹; 王俊科

    2012-01-01

    目的 研究人肝脏微粒体中细胞色素P4503A4(CYP3A4)对氯胺酮代谢的催化作用.方法 用高效液相色谱法测定氯胺酮在人肝脏微粒体孵育液中的浓度变化,计算其代谢速率;分析该代谢速率与CYP3A4特异性底物硝苯地平代谢速率的相关性;并应用CYP3A4特异性抑制剂孕二烯酮检测CYP3A4对氯胺酮代谢的催化作用.结果 20例人肝脏微粒体中氯胺酮的代谢速率均值为(12.6±3.8)μmol·min-1·g-1 protein.该速率与CYP3A4活性探针硝苯地平代谢速率呈明显正相关(r=0.917,P<0.01).加入特异性抑制剂孕二烯酮组,氯胺酮的平均代谢速率明显低于正常孵育组,为(4.7±1.6)μmol·min-1·g-1 protein(P<0.01),抑制率为62.7%.结论 人肝微粒体中CYP3A4对氯胺酮代谢具有催化作用.%Aim To investigate the contribution of CYP3A4 to catalysis of ketamine in human hepatic mi-crosome. Methods The change of ketamine concentration in an incubation mixture with human hepatic microsomes was determined by high performance liquid chromatography ( HPLC) , and then the metabolic rate of ketamine was calculated. The correlation of the rate with rates of metabolism of CYP3A4 selective substrate nifedipine, and the effect of CYP3A4 specific inhibitor gestodene on ketamine metabolism were examined. Results The metabolic rate of ketamine in the twenty ca -ses of microsomes was ( 12. 6 ± 3. 8 μmol · min-1 ·g-1 protein) on average. The average rate of ketamine metabolism showed obvious positive correlation to that of nifedipine (activity probe of CYP3A4) (r =0. 917, P < 0. 01). After addition of gestodene (the specific inhibitor of CYP3A4) , the average metabolic rate of ketamine (4.7 ±1.6 μmol· min-1 · g-1 protein) was slower than that without gestodene (P < 0. 01). The inhibition degree was 62.7%. Conclusion CYP3A4 is responsible for metabolism of ketamine in human he -patic microsome.

  2. Distinct roles of Ape1 protein, an enzyme involved in DNA repair, in high or low linear energy transfer ionizing radiation-induced cell killing.

    Science.gov (United States)

    Wang, Hongyan; Wang, Xiang; Chen, Guangnan; Zhang, Xiangming; Tang, Xiaobing; Park, Dongkyoo; Cucinotta, Francis A; Yu, David S; Deng, Xingming; Dynan, William S; Doetsch, Paul W; Wang, Ya

    2014-10-31

    High linear energy transfer (LET) radiation from space heavy charged particles or a heavier ion radiotherapy machine kills more cells than low LET radiation, mainly because high LET radiation-induced DNA damage is more difficult to repair. Relative biological effectiveness (RBE) is the ratio of the effects generated by high LET radiation to low LET radiation. Previously, our group and others demonstrated that the cell-killing RBE is involved in the interference of high LET radiation with non-homologous end joining but not homologous recombination repair. This effect is attributable, in part, to the small DNA fragments (≤40 bp) directly produced by high LET radiation, the size of which prevents Ku protein from efficiently binding to the two ends of one fragment at the same time, thereby reducing non-homologous end joining efficiency. Here we demonstrate that Ape1, an enzyme required for processing apurinic/apyrimidinic (known as abasic) sites, is also involved in the generation of small DNA fragments during the repair of high LET radiation-induced base damage, which contributes to the higher RBE of high LET radiation-induced cell killing. This discovery opens a new direction to develop approaches for either protecting astronauts from exposure to space radiation or benefiting cancer patients by sensitizing tumor cells to high LET radiotherapy. PMID:25210033

  3. Towards a Best Practice Approach in PBPK Modeling: Case Example of Developing a Unified Efavirenz Model Accounting for Induction of CYPs 3A4 and 2B6.

    Science.gov (United States)

    Ke, A; Barter, Z; Rowland-Yeo, K; Almond, L

    2016-07-01

    In this study, we present efavirenz physiologically based pharmacokinetic (PBPK) model development as an example of our best practice approach that uses a stepwise approach to verify the different components of the model. First, a PBPK model for efavirenz incorporating in vitro and clinical pharmacokinetic (PK) data was developed to predict exposure following multiple dosing (600 mg q.d.). Alfentanil i.v. and p.o. drug-drug interaction (DDI) studies were utilized to evaluate and refine the CYP3A4 induction component in the liver and gut. Next, independent DDI studies with substrates of CYP3A4 (maraviroc, atazanavir, and clarithromycin) and CYP2B6 (bupropion) verified the induction components of the model (area under the curve [AUC] ratios within 1.0-1.7-fold of observed). Finally, the model was refined to incorporate the fractional contribution of enzymes, including CYP2B6, propagating autoinduction into the model (Racc 1.7 vs. 1.7 observed). This validated mechanistic model can now be applied in clinical pharmacology studies to prospectively assess both the victim and perpetrator DDI potential of efavirenz. PMID:27435752

  4. Towards a Best Practice Approach in PBPK Modeling: Case Example of Developing a Unified Efavirenz Model Accounting for Induction of CYPs 3A4 and 2B6.

    Science.gov (United States)

    Ke, A; Barter, Z; Rowland-Yeo, K; Almond, L

    2016-07-01

    In this study, we present efavirenz physiologically based pharmacokinetic (PBPK) model development as an example of our best practice approach that uses a stepwise approach to verify the different components of the model. First, a PBPK model for efavirenz incorporating in vitro and clinical pharmacokinetic (PK) data was developed to predict exposure following multiple dosing (600 mg q.d.). Alfentanil i.v. and p.o. drug-drug interaction (DDI) studies were utilized to evaluate and refine the CYP3A4 induction component in the liver and gut. Next, independent DDI studies with substrates of CYP3A4 (maraviroc, atazanavir, and clarithromycin) and CYP2B6 (bupropion) verified the induction components of the model (area under the curve [AUC] ratios within 1.0-1.7-fold of observed). Finally, the model was refined to incorporate the fractional contribution of enzymes, including CYP2B6, propagating autoinduction into the model (Racc 1.7 vs. 1.7 observed). This validated mechanistic model can now be applied in clinical pharmacology studies to prospectively assess both the victim and perpetrator DDI potential of efavirenz.

  5. Monoester-Diterpene Aconitum Alkaloid Metabolism in Human Liver Microsomes: Predominant Role of CYP3A4 and CYP3A5

    Science.gov (United States)

    Ye, Ling; Yang, Xiao-Shan; Lu, Lin-lin; Chen, Wei-Ying; Zeng, Shan; Yan, Tong-Meng; Dong, Ling-Na; Peng, Xiao-Juan; Shi, Jian; Liu, Zhong-Qiu

    2013-01-01

    Aconitum, widely used to treat rheumatoid arthritis for thousands of years, is a toxic herb that can frequently cause fatal cardiac poisoning. Aconitum toxicity could be decreased by properly hydrolyzing diester-diterpene alkaloids into monoester-diterpene alkaloids. Monoester-diterpene alkaloids, including benzoylaconine (BAC), benzoylmesaconine (BMA), and benzoylhypaconine (BHA), are the primary active and toxic constituents of processed Aconitum. Cytochrome P450 (CYP) enzymes protect the human body by functioning as the defense line that limits the invasion of toxicants. Our purposes were to identify the CYP metabolites of BAC, BMA, and BHA in human liver microsomes and to distinguish which isozymes are responsible for their metabolism through the use of chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzyme. High-resolution mass spectrometry was used to characterize the metabolites. A total of 7, 8, and 9 metabolites were detected for BAC, BMA, and BHA, respectively. The main metabolic pathways were demethylation, dehydrogenation, demethylation-dehydrogenation, hydroxylation and didemethylation, which produced less toxic metabolites by decomposing the group responsible for the toxicity of the parent compound. Taken together, the results of the chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzymes experiments demonstrated that CYP3A4 and CYP3A5 have essential functions in the metabolism of BAC, BMA, and BHA. PMID:23864901

  6. Monoester-Diterpene Aconitum Alkaloid Metabolism in Human Liver Microsomes: Predominant Role of CYP3A4 and CYP3A5

    Directory of Open Access Journals (Sweden)

    Ling Ye

    2013-01-01

    Full Text Available Aconitum, widely used to treat rheumatoid arthritis for thousands of years, is a toxic herb that can frequently cause fatal cardiac poisoning. Aconitum toxicity could be decreased by properly hydrolyzing diester-diterpene alkaloids into monoester-diterpene alkaloids. Monoester-diterpene alkaloids, including benzoylaconine (BAC, benzoylmesaconine (BMA, and benzoylhypaconine (BHA, are the primary active and toxic constituents of processed Aconitum. Cytochrome P450 (CYP enzymes protect the human body by functioning as the defense line that limits the invasion of toxicants. Our purposes were to identify the CYP metabolites of BAC, BMA, and BHA in human liver microsomes and to distinguish which isozymes are responsible for their metabolism through the use of chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzyme. High-resolution mass spectrometry was used to characterize the metabolites. A total of 7, 8, and 9 metabolites were detected for BAC, BMA, and BHA, respectively. The main metabolic pathways were demethylation, dehydrogenation, demethylation-dehydrogenation, hydroxylation and didemethylation, which produced less toxic metabolites by decomposing the group responsible for the toxicity of the parent compound. Taken together, the results of the chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzymes experiments demonstrated that CYP3A4 and CYP3A5 have essential functions in the metabolism of BAC, BMA, and BHA.

  7. Arabidopsis Indole Synthase,a Homolog of Tryptophan Synthase Alpha,is an Enzyme Involved in the Trp-independent Indole-containing Metabolite Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Rui Zhang; Bing Wang; Jian Ouyang; Jiayang Li; Yonghong Wang

    2008-01-01

    The plant tryptophan (Trp) biosynthetic pathway produces many secondary metabolites with diverse functions.Indole-3-acetic acid (IAA),proposed as a derivative from Trp or its precursors,plays an essential role in plant growth and development.Although the Trp-dependant and Trp-independent IAA biosynthetic pathways have been proposed,the enzymes,reactions and regulatory mechanisms are largely unknown.In Arabidopsis,indole-3-glycerol phosphate (IGP) is suggested to serve as a branchpoint component in the Trp-independent IAA biosynthesis.To address whether other enzymes in addition to Trp synthase α(TSA1) catalyze IGP cleavage,we identified and characterized an indole synthase (INS) gene,a homolog of TSA1 in Arabidopsis.INS exhibits different subcellular localization from TSA1 owing to the lack of chloroplast transit peptide (cTP).In silico data show that the expression levels of INS and TSA1 in all examined organs are quite different.Histochemical staining of INS promoter-GUS transgenic lines indicates that INS is expressed in vascular tissue of cotyledons,hypocotyls,roots and rosette leaves as well as in flowers and siliques.INS is capable of complementing the Trp auxotrophy of Escherichia coil △trpA strain,which is defective in Trp synthesis due to the deletion of TSA.This implies that INS catalyzes the conversion of IGP to indole and may be involved in the biosynthesis of Trp-independent IAA or other secondary metabolites in Arabidopsis.

  8. Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in pseudomonas sp. 1-7

    Directory of Open Access Journals (Sweden)

    Zhang Shuangyu

    2012-03-01

    Full Text Available Abstract Background para-Nitrophenol (PNP, a priority environmental pollutant, is hazardous to humans and animals. However, the information relating to the PNP degradation pathways and their enzymes remain limited. Results Pseudomonas sp.1-7 was isolated from methyl parathion (MP-polluted activated sludge and was shown to degrade PNP. Two different intermediates, hydroquinone (HQ and 4-nitrocatechol (4-NC were detected in the catabolism of PNP. This indicated that Pseudomonas sp.1-7 degraded PNP by two different pathways, namely the HQ pathway, and the hydroxyquinol (BT pathway (also referred to as the 4-NC pathway. A gene cluster (pdcEDGFCBA was identified in a 10.6 kb DNA fragment of a fosmid library, which cluster encoded the following enzymes involved in PNP degradation: PNP 4-monooxygenase (PdcA, p-benzoquinone (BQ reductase (PdcB, hydroxyquinol (BT 1,2-dioxygenase (PdcC, maleylacetate (MA reductase (PdcF, 4-hydroxymuconic semialdehyde (4-HS dehydrogenase (PdcG, and hydroquinone (HQ 1,2-dioxygenase (PdcDE. Four genes (pdcDEFG were expressed in E. coli and the purified pdcDE, pdcG and pdcF gene products were shown to convert HQ to 4-HS, 4-HS to MA and MA to β-ketoadipate respectively by in vitro activity assays. Conclusions The cloning, sequencing, and characterization of these genes along with the functional PNP degradation studies identified 4-NC, HQ, 4-HS, and MA as intermediates in the degradation pathway of PNP by Pseudomonas sp.1-7. This is the first conclusive report for both 4-NC and HQ- mediated degradation of PNP by one microorganism.

  9. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis.

    Science.gov (United States)

    Meng, Qiang; Chen, Xin-Li; Wang, Chang-Yuan; Liu, Qi; Sun, Hui-Jun; Sun, Peng-Yuan; Huo, Xiao-Kui; Liu, Zhi-Hao; Yao, Ji-Hong; Liu, Ke-Xin

    2015-03-15

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. PMID:25655198

  10. Rapid LC-MS Drug Metabolite Profiling Using Microsomal Enzyme Bioreactors in a Parallel Processing Format

    Science.gov (United States)

    Bajrami, Besnik; Zhao, Linlin; Schenkman, John B.; Rusling, James F.

    2009-01-01

    Silica nanoparticle bioreactors featuring thin films of enzymes and polyions were utilized in a novel high-throughput 96-well plate format for drug metabolism profiling. The utility of the approach was illustrated by investigating the metabolism of the drugs diclofenac (DCF), troglitazone (TGZ) and raloxifene, for which we observed known metabolic oxidation and bioconjugation pathways and turnover rates. A broad range of enzymes was included by utilizing human liver (HLM), rat liver (RLM) and bicistronic human-cyt P450 3A4 (bicis.-3A4) microsomes as enzyme sources. This parallel approach significantly shortens sample preparation steps compared to an earlier manual processing with nanoparticle bioreactors, allowing a range of significant enzyme reactions to be processed simultaneously. Enzyme turnover rates using the microsomal bioreactors were 2-3 fold larger compared to using conventional microsomal dispersions, most likely because of better accessibility of the enzymes. Ketoconazole (KET) and quinidine (QIN), substrates specific to cyt P450 3A enzymes, were used to demonstrate applicability to establish potentially toxic drug-drug interactions involving enzyme inhibition and acceleration. PMID:19904994

  11. Changes in Enzyme Activities Involved in Starch Synthesis and Hormone Concentrations in Superior and Inferior Spikelets and Their Association with Grain Filling of Super Rice

    Institute of Scientific and Technical Information of China (English)

    FU Jing; XU Yun-ji; CHEN Lu; YUAN Li-min; WANG Zhi-qin; YANG Jian-chang

    2013-01-01

    The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain filling was analyzed.Four super rice cultivars,Liangyoupeijiu,Ilyou 084,Huaidao 9 and Wujing 15,and two high-yielding and elite check cultivars,Shanyou 63 and Yangfujing 8,were used.The activities of sucrose synthase (SuSase),adenosine diphosphoglucose pyrophosphorylase (AGPase),starch synthase (StSase) and starch branching enzyme (SBE),and the concentrations of zeatin + zeatin riboside (Z + ZR),indole-3-acetic acid (IAA) and abscisic acid (ABA) in superior and inferior spikelets were determined during the grain filling period and their relationships with grain filling rate were analyzed.Maximum grain filling rate,the time reaching the maximum grain-filling rate,mean grain filling rate and brown rice weight for superior spikelets showed a slight difference between the super and check rice cultivars,but were significantly lower in the super rice than in the check rice for inferior spikelets.Changes of enzyme activities and hormone concentrations in grains exhibited single peak curves during the grain filling period.The peak values and the mean activities of SuSase,AGPase,StSase and SBE were lower in inferior spikelets than in superior ones,as well as the peak values and the mean concentrations of Z + ZR and IAA.However,the peak value and the mean concentration of ABA were significantly higher in inferior spikelets than in superior ones and greater in the super rice than in the check rice.The grain filling rate was positively and significantly correlated with the activities of SuSase,AGPase and StSase and the concentrations of Z + ZR and IAA.The results suggested that the low activities of SuSase,AGPase and StSase and the low concentrations of Z + ZR and IAA might be important physiological reasons for the slow grain filling rate and light grain weight of

  12. CYP3A4 overexpression enhances the cytotoxicity of the antitumor triazoloacridinone derivative C-1305 in CHO cells

    Institute of Scientific and Technical Information of China (English)

    Ewa AUGUSTIN; Barbara BOROWA-MAZGAJ; Agnieszka KIKULSKA; Milena KORDALEWSKA; Monika PAW(L)OWS KA

    2013-01-01

    Aim:To examine how the higher expression level of CYP3A4 isoenzyme influenced the cytotoxicity of the antitumor triazoloacridinone derivative C-1305 in Chinese hamster ovary (CHO) cells.Methods:Three CHO cell lines were examined:wild-type CHO cells; CHO-HR cells with overexpression of human cytochrome P450 reductase (CPR); and CHO-HR-3A4 cells with coexpression of human CYP3A4 and CPR.Cellular responses caused by C-1305 were monitored using DAPI staining,cell cycle analysis,phosphatydilserine externalization analysis and SA-β-galactosidase expression analysis.Cell viability was assessed with simultaneous FDA and PI staining.Results:Treatment with C-1305 for 72 h exhibited different levels of cytotoxicity in the 3 cell lines,and the values of IC80 in CHO,CHO-HR and CHO-HR-3A4 cells were 0.087+0.005,0.032+0.0001,and 0.064+0.0095 μmol/L,respectively.The cell cycle analysis revealed that both CHO and CHO-HR cells underwent transient G2/M arrest,whereas CHO-HR-3A4 cells did not accumulate in this phase.Prolonged exposure up to 120 h caused time-dependent increase in the sub-G1 fraction in all the 3 cell lines.Treatment with C-1305 caused cell death through apoptosis and necrosis.However,these processes were more pronounced in the transfected CHO cells than in the wild-type cells.The cells surviving after C-1305 exposure underwent senescence.Conclusion:CYP3A4 overexpression potently enhances the cellular responses (apoptosis,necrosis and senescence) caused by C-1305 in CHO cells.

  13. Association of CYP3A4/5, ABCB1 and ABCC2 polymorphisms and clinical outcomes of Thai breast cancer patients treated with tamoxifen

    Directory of Open Access Journals (Sweden)

    Sensorn I

    2013-08-01

    Full Text Available Insee Sensorn,1 Ekaphop Sirachainan,2 Montri Chamnanphon,3 Ekawat Pasomsub,4 Narumol Trachu,5 Porntip Supavilai,1 Chonlaphat Sukasem,3 Darawan Pinthong11Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand; 2Division of Medical Oncology, Department of Medicine, 3Division for Pharmacogenomics and Personalized Medicine, 4Division for Virology, Department of Pathology, 5Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandBackground: Pharmacogenetic study of cytochrome P450 (CYP gene CYP2D6 and tamoxifen outcomes remain controversial. Apart from CYP2D6, other drug-metabolizing enzymes and transporters also play a role in tamoxifen metabolic pathways. The aim of this study is to investigate the impact of CYP3A4/5, ABCB1, and ABCC2 polymorphisms on the risk of recurrence in Thai patients who received tamoxifen adjuvant therapy.Methods: Patients with early-stage breast cancer who received tamoxifen adjuvant therapy were recruited in this study. All six single-nucleotide polymorphisms (SNPs, including CYP3A4*1B (-392 A>G/*18(878 T>C, CYP3A5*3(6986 G>A, ABCB1 3435 C>T, ABCC2*1C (-24 C>T, and ABCC2 68231 A>G, were genotyped using real-time polymerase chain reaction assays. The impacts of genetic variants on disease-free survival (DFS were analyzed using the Kaplan–Meier method and Cox regression analysis.Results: The ABCB1 3435 C>T was found to have the highest allele frequency among other variants; however, CYP3A4*1B/*18 could not be found in this study. Patients with heterozygous ABCB1 3435 CT genotype showed significantly shorter DFS than those with homozygous 3435 CC genotype (P = 0.041. In contrast, patients who carried homozygous 3435 TT genotype showed no difference in DFS from wild-type 3435 CC patients. Cox regression analysis showed that the relative risk of recurrence was increased by five times (P = 0.043; hazard ratio = 5.11; 95% confidence interval: 1.05–24

  14. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan; Liu, Qi; Sun, Hui-jun; Sun, Peng-yuan; Huo, Xiao-kui; Liu, Zhi-hao; Yao, Ji-hong; Liu, Ke-xin, E-mail: kexinliu@dlmedu.edu.cn

    2015-03-15

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved

  15. A comparative pharmacokinetic study in healthy volunteers of the effect of carbamazepine and oxcarbazepine on cyp3a4

    DEFF Research Database (Denmark)

    Andreasen, Astrid-Helene; Brøsen, Kim; Damkier, Per

    2007-01-01

    PURPOSE: Carbamazepine (CBZ) and oxcarbazepine (OXCZ) are well-known inducers of drug metabolism via CYP3A4. Indirect interaction studies and clinical experience suggest that CBZ has a stronger potential in this regard than OXCZ. However this has never been subject to a direct comparative study. ...

  16. Overexpression of CYP3A4 in a COLO 205 Colon Cancer Stem Cell Model in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Ulrike [Ludwig Boltzmann Cluster of Translational Oncology, c/o Balderichgasse 26/13, A-1170 Vienna (Austria); Liedauer, Richard [Department of Pathophysiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna (Austria); Ausch, Christoph [Department of Surgery, Danube Hospital, A-1220 Vienna (Austria); Thalhammer, Theresia [Department of Pathophysiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna (Austria); Hamilton, Gerhard, E-mail: gerhard.hamilton@toc.lbg.ac.at [Ludwig Boltzmann Cluster of Translational Oncology, c/o Balderichgasse 26/13, A-1170 Vienna (Austria)

    2011-03-22

    Cancer stem cells (CSCs) seem to constitute a subpopulation of tumor cells that escape from chemotherapy and cause recurrent disease. Low proliferation rates, protection in a stem cell niche and overexpression of drug resistance proteins are considered to confer chemoresistance. We established an in vitro colon CSC-like model using the COLO 205 cell line, which revealed transiently increased expression of CD133 when transferred to serum-free stem cell culture medium. Assessment of global gene expression of COLO 205 cells under these conditions identified a set of upregulated genes including cytochrome P450 3A4 (CYP3A4) and aldehyde dehydrogenase 1A1 (ALDH1A1), as confirmed by real-time qPCR. ALDH1A1 is a CSC marker for certain tumor entities and confers resistance to cyclophosphamide. CYP3A4 is expressed in liver and colon and its overexpression seems particularly relevant in colon cancer, since it inactivates irinotecan and other xenobiotics, such as taxols and vinca alkaloids. In conclusion, this COLO 205 model provides evidence for CD133 induction concomitant with overexpression of CYP3A4, which, together with ATP-binding cassette, subfamily G, member 2 (ABCG2) and others, may have a role in chemoresistant colon CSCs and a negative impact on disease-free survival in colon cancer patients.

  17. Dual-color fluorescence imaging to monitor CYP3A4 and CYP3A7 expression in human hepatic carcinoma HepG2 and HepaRG cells.

    Directory of Open Access Journals (Sweden)

    Saori Tsuji

    Full Text Available Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps.

  18. Geniposide protects pancreatic INS-1E β cells from hIAPP-induced cell damage: potential involvement of insulin degrading-enzyme.

    Science.gov (United States)

    Zhang, Yonglan; Yin, Fei; Liu, Jianhui; Wang, Yanwen

    2015-04-01

    Islet amyloid deposition is increasingly seen as a pathogenic feature of type 2 diabetes mellitus (T2DM), with the deposits containing the unique amyloidogenic peptide islet amyloid polypeptide (IAPP, also known as amylin). The fibril precursors of IAPP contribute to its cytotoxicity on pancreatic β cells and be important in causing β-cell dysfunction in T2DM. However, the development of effective this study, inhibitors against the toxicity of IAPP has been extremely challenging. We have found that pre-incubation with geniposide dose-dependently prevented human IAPP (hIAPP)-induced cell damage in INS-1E cells, and bacitracin, an inhibitor of IDE activity, prevented significantly the protective effects of geniposide in pancreatic INS-1E cells significantly. Geniposide induced the expression of insulin-degrading enzyme (IDE), a key degrading protein of hIAPP, but had no significant effect on the aggregation of hIAPP. These findings indicate that geniposide prevents hIAPP-induced cytotoxicity in INS-1E cells involving upregulation of IDE expression.

  19. Identification of Target Genes Involved in the Antiproliferative Effect of Enzyme-Modified Ginseng Extract in HepG2 Hepatocarcinoma Cell

    Directory of Open Access Journals (Sweden)

    Sung-Il Jang

    2013-01-01

    Full Text Available Ginsenosides are ginseng saponins, which are the major biologically active components of Panax ginseng, often metabolized by intestinal bacteria into more effective forms. In this study, we found that the antiproliferative activity of ginseng increased after enzymatic processing of ginseng saponin (50% inhibitory concentration [IC50], >30 μg/mL, which may be the result of the accumulation of minor saponins, such as Rh1, Rg3, compound K, and PPT constituents in ginseng saponin. Using the Agilent PrimeView Human Gene Expression Array, we found that the expression of several genes involved in apoptosis (caspase-4, Annexin A2, HSPA9, AIFM1, UQCRC2, and caspase-7 were increased in HepG2 human hepatocarcinoma cells after their treatment with enzyme-modified ginseng extract (EMGE. Furthermore, several genes implicated in cell cycle progression (CDCA3, CDCA8, CABLES2, CDC25B, CNNM3, and CCNK showed decreased expression in HepG2 cells treated with EMGE. Finally, from flow cytometric analysis, we found that EMGE-treated HepG2 cells showed increased apoptotic sub-G1 population (24%, compared with that observed in DMSO-treated control cells (1.6%. Taken together, our results suggest that EMGE induces anticancer activity through the induction of apoptosis-related genes and cell cycle arrest via decreased expression of cell cycle regulatory genes.

  20. 二甲亚砜对细胞色素P450酶3A4和2C9的影响%Effects of Dimethyl Sulfoxide on Cytochrome P450 3A4 and 2C9

    Institute of Scientific and Technical Information of China (English)

    王彧杰; 王媛媛; 王蓉; 原永芳

    2014-01-01

    Objective To investigate effects of 0.01%, 0.05%, 0.1% dimethyl sulfoxide (DMSO) on expression of CYP3A4 and CYP2C9 mRNA and protein. Methods Chang liver cells were divided into control group (dealed with RPMI-1640 singly), DMSO groups (dealed with 0.01%, 0.05%, 0.1%DMSO), testosterone groups (dealed with 1, 10, 100μmol/L testosterone), rifampicin groups (dealed with 1, 10, 100μmol/L Rifampicin), DMSO+testosterone groups (0.01%, 0.05%, 0.1%DMSO+10μmol/L testosterone) and DMSO+rifampicin groups (dealed with 0.01%, 0.05%, 0.1%DMSO+10μmol/L Rifampicin). The expression of CYP3A4 and CYP2C9 mRNA were detected by RT-qPCR, and the expression of CYP3A4 and CYP2C9 protein were detected by Western blot. Results Compared with control group, the expression of CYP3A4 mRNA and protein was increased by 0.1%DMSO (P0.05). Compared with control group, there was no statistically significant difference on the expression of CYP2C9 mRNA and protein in DMSO groups (P> 0.05). Compared with control group, there was no statistically significant difference on the expres-sion of CYP3A4 mRNA in DMSO+testosterone groups (P>0.05). Compared with testosterone group, the expression of CYP3A4 protein was induced in 0.01%, 0.05%, 0.1%DMSO + testosterone group. Compared with rifampicin group, the expression of CYP2C9 protein was increased in 0.01%, 0.05%, 0.1% DMSO+Rifampicin group, but no statistically sig-nificant difference on CYP2C9 mRNA (P > 0.05). Conclusion The efficiency of 0.01%, 0.05% and 0.1% DMSO is greater on CYP3A4 than CYP2C9 in vitro test. 0.01%, 0.05%, 0.1% DMSO can influence expression of CYP3A4, but have poor effect on expression of CYP2C9 in vitro. DMSO as solvent can influence results of experiment.%目的:研究0.01%、0.05%、0.1%二甲亚砜(DMSO)对细胞色素P450(CYP450)酶系中3A4、2C9两个亚型基因及蛋白表达水平的影响。方法 Chang肝脏细胞经处理后,分为空白对照组(仅含培养液)、DMSO组(分别采用0.01%、0.05%、0.1%DMSO

  1. Sulforaphane- and phenethyl isothiocyanate-induced inhibition of aflatoxin B1-mediated genotoxicity in human hepatocytes: role of GSTM1 genotype and CYP3A4 gene expression.

    Science.gov (United States)

    Gross-Steinmeyer, Kerstin; Stapleton, Patricia L; Tracy, Julia H; Bammler, Theo K; Strom, Stephen C; Eaton, David L

    2010-08-01

    Primary cultures of human hepatocytes were used to investigate whether the dietary isothiocyanates, sulforaphane (SFN), and phenethyl isothiocyanate (PEITC) can reduce DNA adduct formation of the hepatocarcinogen aflatoxin B(1) (AFB). Following 48 h of pretreatment, 10 and 50 microM SFN greatly decreased AFB-DNA adduct levels, whereas 25muM PEITC decreased AFB-DNA adducts in some but not all hepatocyte preparations. Microarray and quantitative reverse transcriptase (RT)-PCR analyses of gene expression in SFN and PEITC-treated hepatocytes demonstrated that SFN greatly decreased cytochrome P450 (CYP) 3A4 mRNA but did not induce the expression of either glutathione S-transferase (GST) M1 or GSTT1. The protective effects of SFN required pretreatment; cotreatment of hepatocytes with SFN and AFB in the absence of pretreatment had no effect on AFB-DNA adduct formation. When AFB-DNA adduct formation was evaluated by GST genotype, the presence of one or two functional alleles of GSTM1 was associated with a 75% reduction in AFB-DNA adducts, compared with GSTM1 null. In conclusion, these results demonstrate that the inhibition of AFB-DNA adduct formation by SFN is dependent on changes in gene expression rather than direct inhibition of catalytic activity. Transcriptional repression of genes involved in AFB bioactivation (CYP3A4 and CYP1A2), but not transcriptional activation of GSTs, may be responsible for the protective effects of SFN. Although GSTM1 expression was not induced by SFN, the presence of a functional GSTM1 allele can afford substantial protection against AFB-DNA damage in human liver. The downregulation of CYP3A4 by SFN may have important implications for drug interactions. PMID:20442190

  2. Association of polymorphisms in CYP19A1 and CYP3A4 genes with lower urinary tract symptoms, prostate volume, uroflow and PSA in a population-based sample

    NARCIS (Netherlands)

    R. Berges; A. Gsur; E. Feik; K. Höfner; T. Senge; L. Pientka; A. Baierl; M.C. Michel; A. Ponholzer; S. Madersbacher

    2011-01-01

    PURPOSE: The known importance of testosterone for the development of benign prostatic hyperplasia (BPH) prompted us to test the hypothesis whether polymorphisms of two genes (CYP19A1 and CYP3A4) involved in testosterone metabolism are associated with clinical BPH-parameters. METHODS: A random sample

  3. Distinct mechanism of activation of two transcription factors, AmyR and MalR, involved in amylolytic enzyme production in Aspergillus oryzae.

    Science.gov (United States)

    Suzuki, Kuta; Tanaka, Mizuki; Konno, Yui; Ichikawa, Takanori; Ichinose, Sakurako; Hasegawa-Shiro, Sachiko; Shintani, Takahiro; Gomi, Katsuya

    2015-02-01

    The production of amylolytic enzymes in Aspergillus oryzae is induced in the presence of starch or maltose, and two Zn2Cys6-type transcription factors, AmyR and MalR, are involved in this regulation. AmyR directly regulates the expression of amylase genes, and MalR controls the expression of maltose-utilizing (MAL) cluster genes. Deletion of malR gene resulted in poor growth on starch medium and reduction in α-amylase production level. To elucidate the activation mechanisms of these two transcription factors in amylase production, the expression profiles of amylases and MAL cluster genes under carbon catabolite derepression condition and subcellular localization of these transcription factors fused with a green fluorescent protein (GFP) were examined. Glucose, maltose, and isomaltose induced the expression of amylase genes, and GFP-AmyR was translocated from the cytoplasm to nucleus after the addition of these sugars. Rapid induction of amylase gene expression and nuclear localization of GFP-AmyR by isomaltose suggested that this sugar was the strongest inducer for AmyR activation. In contrast, GFP-MalR was constitutively localized in the nucleus and the expression of MAL cluster genes was induced by maltose, but not by glucose or isomaltose. In the presence of maltose, the expression of amylase genes was preceded by MAL cluster gene expression. Furthermore, deletion of the malR gene resulted in a significant decrease in the α-amylase activity induced by maltose, but had apparently no effect on the expression of α-amylase genes in the presence of isomaltose. These results suggested that activation of AmyR and MalR is regulated in a different manner, and the preceding activation of MalR is essential for the utilization of maltose as an inducer for AmyR activation.

  4. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats: Possible involvement of angiotensin-converting enzyme-2

    International Nuclear Information System (INIS)

    Chronic cigarette smoking induces pulmonary arterial hypertension (PAH) by largely unknown mechanisms. Renin-angiotensin system (RAS) is known to function in the development of PAH. Losartan, a specific angiotensin II receptor antagonist, is a well-known antihypertensive drug with a potential role in regulating angiotensin-converting enzyme-2 (ACE2), a recently found regulator of RAS. To determine the effect of losartan on smoke-induced PAH and its possible mechanism, rats were daily exposed to cigarette smoke for 6 months in the absence and in the presence of losartan. Elevated right ventricular systolic pressure (RVSP), thickened wall of pulmonary arteries with apparent medial hypertrophy along with increased angiotensin II (Ang II) and decreased ACE2 levels were observed in smoke-exposed-only rats. Losartan administration ameliorated pulmonary vascular remodeling, inhibited the smoke-induced RVSP and Ang II elevation and partially reversed the ACE2 decrease in rat lungs. In cultured primary pulmonary artery smooth muscle cells (PASMCs) from 3- and 6-month smoke-exposed rats, ACE2 levels were significantly lower than in those from the control rats. Moreover, PASMCs from 6-month exposed rats proliferated more rapidly than those from 3-month exposed or control rats, and cells grew even more rapidly in the presence of DX600, an ACE2 inhibitor. Consistent with the in vivo study, in vitro losartan pretreatment also inhibited cigarette smoke extract (CSE)-induced cell proliferation and ACE2 reduction in rat PASMCs. The results suggest that losartan may be therapeutically useful in the chronic smoking-induced pulmonary vascular remodeling and PAH and ACE2 may be involved as part of its mechanism. Our study might provide insight into the development of new therapeutic interventions for PAH smokers.

  5. Evaluation of a SUMO E2 conjugating enzyme involved in resistance to Clavibacter michiganensis subsp. michiganensis in Solanum peruvianum, through a tomato mottle virus VIGS assay

    Directory of Open Access Journals (Sweden)

    Mayra Janeth Esparza-Araiza

    2015-12-01

    Full Text Available Clavibacter michiganensis subsp. michiganensis (Cmm causes bacterial wilt and canker of tomato. Currently, no Solanum lycopersicum resistant varieties are commercially available, but some degree of Cmm resistance has been identified in Solanum peruvianum. Previous research showed up-regulation of a SUMO E2 conjugating enzyme (SCEI transcript in resistant S. peruvianum compared to susceptible S. lycopersicum following infection by Cmm. In order to test the role of SCEI in resistance to Cmm, a fragment of the gene from S. peruvianum was cloned into a novel virus-induced gene-silencing (VIGS vector based on the geminivirus Tomato Mottle Virus (ToMoV. Using biolistic inoculation, the ToMoV-based VIGS vector was shown to be effective in S. peruvianum by silencing the magnesium chelatase gene, which resulted in leaf bleaching. The ToMoV_SCEI construct resulted in approx. 61% silencing of SCEI in leaves of S. peruvianum as determined by quantitative RT-PCR. VIGS of SCEI in S. peruvianum resulted in unilateral wilting (15 dpi and subsequent death (20 dpi of the entire plant after Cmm inoculation, whereas empty vector-treated plants only showed wilting in the Cmm-inoculated leaf. SCEI-silenced plants also showed higher Cmm colonization with an average of 4.5 times more damaged tissue compared to the empty vector control plants. SCEI appears to play an important role in the innate immunity of S. peruvianum against Cmm, perhaps through the regulation of WRKY transcription factors, which may lead to expression of proteins involved in salicylic acid-dependent defense responses.

  6. Evaluation of a SUMO E2 Conjugating Enzyme Involved in Resistance to Clavibacter michiganensis Subsp. michiganensis in Solanum peruvianum, Through a Tomato Mottle Virus VIGS Assay.

    Science.gov (United States)

    Esparza-Araiza, Mayra J; Bañuelos-Hernández, Bernardo; Argüello-Astorga, Gerardo R; Lara-Ávila, José P; Goodwin, Paul H; Isordia-Jasso, María I; Castillo-Collazo, Rosalba; Rougon-Cardoso, Alejandra; Alpuche-Solís, Ángel G

    2015-01-01

    Clavibacter michiganensis subsp. michiganensis (Cmm) causes bacterial wilt and canker of tomato. Currently, no Solanum lycopersicum resistant varieties are commercially available, but some degree of Cmm resistance has been identified in Solanum peruvianum. Previous research showed up-regulation of a SUMO E2 conjugating enzyme (SCEI) transcript in S. peruvianum compared to S. lycopersicum following infection with Cmm. In order to test the role of SCEI in resistance to Cmm, a fragment of SCEI from S. peruvianum was cloned into a novel virus-induced gene-silencing (VIGS) vector based on the geminivirus, Tomato Mottle Virus (ToMoV). Using biolistic inoculation, the ToMoV-based VIGS vector was shown to be effective in S. peruvianum by silencing the magnesium chelatase gene, resulting in leaf bleaching. VIGS with the ToMoV_SCEI construct resulted in ~61% silencing of SCEI in leaves of S. peruvianum as determined by quantitative RT-PCR. The SCEI-silenced plants showed unilateral wilting (15 dpi) and subsequent death (20 dpi) of the entire plant after Cmm inoculation, whereas the empty vector-treated plants only showed wilting in the Cmm-inoculated leaf. The SCEI-silenced plants showed higher Cmm colonization and an average of 4.5 times more damaged tissue compared to the empty vector control plants. SCEI appears to play an important role in the innate immunity of S. peruvianum against Cmm, perhaps through the regulation of transcription factors, leading to expression of proteins involved in salicylic acid-dependent defense responses. PMID:26734014

  7. Evaluation of Ketoconazole and Its Alternative Clinical CYP3A4/5 Inhibitors as Inhibitors of Drug Transporters: The In Vitro Effects of Ketoconazole, Ritonavir, Clarithromycin, and Itraconazole on 13 Clinically-Relevant Drug Transporters.

    Science.gov (United States)

    Vermeer, Lydia M M; Isringhausen, Caleb D; Ogilvie, Brian W; Buckley, David B

    2016-03-01

    Ketoconazole is a potent CYP3A4/5 inhibitor and, until recently, recommended by the Food and Drug Administration (FDA) and the European Medicines Agency as a strong CYP3A4/5 inhibitor in clinical drug-drug interaction (DDI) studies. Ketoconazole sporadically causes liver injury or adrenal insufficiency. Because of this, the FDA and European Medicines Agency recommended suspension of ketoconazole use in DDI studies in 2013. The FDA specifically recommended use of clarithromycin or itraconazole as alternative strong CYP3A4/5 inhibitors in clinical DDI studies, but many investigators have also used ritonavir as an alternative. Although the effects of these clinical CYP3A4/5 inhibitors on other CYPs are largely established, reports on the effects on the broad range of drug transporter activities are sparse. In this study, the inhibitory effects of ketoconazole, clarithromycin, ritonavir, and itraconazole (and its CYP3A4-inhibitory metabolites, hydroxy-, keto-, and N-desalkyl itraconazole) toward 13 drug transporters (OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, MATE1, MATE2-K, P-gp, BCRP, MRP2, MRP3, and BSEP) were systematically assessed in transporter-expressing HEK-293 cell lines or membrane vesicles. In vitro findings were translated into clinical context with the basic static model approaches outlined by the FDA in its 2012 draft guidance on DDIs. The results indicate that, like ketoconazole, the alternative clinical CYP3A4/5 inhibitors ritonavir, clarithromycin, and itraconazole each have unique transporter inhibition profiles. None of the alternatives to ketoconazole provided a clean inhibition profile toward the 13 drug transporters evaluated. The results provide guidance for the selection of clinical CYP3A4/5 inhibitors when transporters are potentially involved in a victim drug's pharmacokinetics. PMID:26668209

  8. The CYP3A4 inhibitor intraconazole does not affect the pharmacokinetics of a new calcium-sensitizing drug levosimendan.

    Science.gov (United States)

    Antila, S; Honkanen, T; Lehtonen, L; Neuvonen, P J

    1998-08-01

    Itraconazole is a potent inhibitor of CYP3A4 isoenzyme and it can cause clinically significant interactions with some other drugs. Levosimendan is a new calcium-sensitizing drug intended for congestive heart failure. We aimed to study possible interactions of itraconazole with levosimendan in healthy volunteers. Twelve healthy male volunteers were included into a randomized, double-blind, two-phase crossover study. A wash-out period of 4 weeks was held between the phases. The subjects were given orally itraconazole 200 mg or placebo daily for 5 days. On the fifth day, they received a single oral dose of 2 mg of levosimendan. Levosimendan plasma concentrations were determined up to 12 hours and ECG, heart rate, and blood pressure followed-up to 8 hours after intake of levosimendan. Itraconazole had no significant effects on the pharmacokinetic parameters of levosimendan. Neither were there any differences in heart rate, PQ-, QTc- or QRS intervals between the placebo and itraconazole phases. The systolic blood pressure was decreased slightly more (p < 0.05) during the itraconazole phase than during the placebo phase. In conclusion, because the potent CYP3A4 inhibitor itraconazole had no significant pharmacokinetic interaction with levosimendan, interactions with CYP3A4 inhibitor, and oral levosimendan are unlikely.

  9. Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fluorometric substrates.

    Science.gov (United States)

    Stresser, D M; Blanchard, A P; Turner, S D; Erve, J C; Dandeneau, A A; Miller, V P; Crespi, C L

    2000-12-01

    Inhibition of cytochrome P450 catalytic activity is a principal mechanism for pharmacokinetic drug-drug interactions. Rapid, in vitro testing for cytochrome P450 inhibition potential is part of the current paradigm for identifying drug candidates likely to give such interactions. We have explored the extent that qualitative and quantitative inhibition parameters are dependent on the cytochrome P450 (CYP) 3A4 probe substrate. Inhibition potential (e.g., IC(50) values from 8-point inhibition curves) or activation potential for most compounds varied dramatically depending on the fluorometric probe substrates for CYP3A4 [benzyloxyresorufin (BzRes), 7-benzyloxy-4-trifluoromethylcoumarin (BFC), 7-benzyloxyquinoline (BQ), and dibenzylfluorescein (DBF)]. For 21 compounds that were primarily inhibitors, the range of IC(50) values for the four substrates varied from 2.1- to 195-fold with an average of 29-fold. While the rank order of sensitivity among the fluorometric substrates varied among the individual inhibitors, on average, BFC dealkylation was the most sensitive to inhibition, while BQ dealkylation was least sensitive. Partial inhibition was observed with BzRes and BQ but not for BFC and DBF. BzRes was more prone to activation, whereas dramatic changes in IC(50) values were observed when the BQ concentration was below the S(50). Three different correlation analyses indicated that IC(50) values with BFC, BQ, and DBF correlated well with each other, whereas the response with BzRes correlated more weakly with the other substrates. One of these correlation analyses was extended to the percent inhibition of 10 microM inhibitor with the standard CYP3A4 probe substrates testosterone, midazolam, and nifedipine. In this analysis the responses with BQ, BFC and DBF correlated well with testosterone and midazolam but more poorly with nifedipine. In the aggregate, BFC and DBF appear more suitable as an initial screen for CYP3A4 inhibition. However, the substrate-dependent effects

  10. Identification of the Metabolic Enzyme Involved Morusin Metabolism and Characterization of Its Metabolites by Ultraperformance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (UPLC/Q-TOF-MS/MS

    Directory of Open Access Journals (Sweden)

    Xianbao Shi

    2016-01-01

    Full Text Available Morusin, the important active component of a traditional Chinese medicine, Morus alba L., has been shown to exhibit many vital pharmacological activities. In this study, six recombinant CYP450 supersomes and liver microsomes were used to perform metabolic studies. Chemical inhibition studies and screening assays with recombinant human cytochrome P450s were also used to characterize the CYP450 isoforms involved in morusin metabolism. The morusin metabolites identified varied greatly among different species. Eight metabolites of morusin were detected in the liver microsomes from pigs (PLMs, rats (RLMs, and monkeys (MLMs by LC-MS/MS and six metabolites were detected in the liver microsomes from humans (HLMs, rabbits (RAMs, and dogs (DLMs. Four metabolites (M1, M2, M5, and M7 were found in all species and hydroxylation was the major metabolic transformation. CYP1A2, CYP2C9, CYP2D6, CYP2E1, CYP3A4, and CYP2C19 contributed differently to the metabolism of morusin. Compared to other CYP450 isoforms, CYP3A4 played the most significant role in the metabolism of morusin in human liver microsomes. These results are significant to better understand the metabolic behaviors of morusin among various species.

  11. Identification of the Metabolic Enzyme Involved Morusin Metabolism and Characterization of Its Metabolites by Ultraperformance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (UPLC/Q-TOF-MS/MS)

    Science.gov (United States)

    Shi, Xianbao; Mackie, Brianna; Zhang, Gang; Song, Yonggui; Su, Dan; Liu, Yali

    2016-01-01

    Morusin, the important active component of a traditional Chinese medicine, Morus alba L., has been shown to exhibit many vital pharmacological activities. In this study, six recombinant CYP450 supersomes and liver microsomes were used to perform metabolic studies. Chemical inhibition studies and screening assays with recombinant human cytochrome P450s were also used to characterize the CYP450 isoforms involved in morusin metabolism. The morusin metabolites identified varied greatly among different species. Eight metabolites of morusin were detected in the liver microsomes from pigs (PLMs), rats (RLMs), and monkeys (MLMs) by LC-MS/MS and six metabolites were detected in the liver microsomes from humans (HLMs), rabbits (RAMs), and dogs (DLMs). Four metabolites (M1, M2, M5, and M7) were found in all species and hydroxylation was the major metabolic transformation. CYP1A2, CYP2C9, CYP2D6, CYP2E1, CYP3A4, and CYP2C19 contributed differently to the metabolism of morusin. Compared to other CYP450 isoforms, CYP3A4 played the most significant role in the metabolism of morusin in human liver microsomes. These results are significant to better understand the metabolic behaviors of morusin among various species.

  12. Analysis of Mechanism-Based Inhibition of CYP 3A4 by a Series of Fluoroquinolone Antibacterial Agents.

    Science.gov (United States)

    Watanabe, Akiko; Takakusa, Hideo; Kimura, Takako; Inoue, Shin-Ichi; Kusuhara, Hiroyuki; Ando, Osamu

    2016-10-01

    A series of fluoroquinolone compounds (compounds 1-9), which contain a common quinolone scaffold, inactivated the metabolic activity of CYP3A. The purpose of this study was to identify mechanism-based inhibition (MBI) among these fluoroquinolone compounds by metabolite profiling to elucidate the association of the substructure and MBI potential. Reversibility of MBI after incubation with potassium ferricyanide differed among the test compounds. Representative quasi-irreversible inhibitors form a metabolite-intermediate (MI) complex with the heme of CYP3A4 according to absorption analysis. Metabolite profiling identified the cyclopropane ring-opened metabolites from representative irreversible inhibitors, suggesting irreversible binding of the carbon-centered radical species with CYP3A4. On the other hand, the oxime form of representative quasi-irreversible inhibitors was identified, suggesting generation of a nitroso intermediate that could form the MI complex. Metabolites of compound 10 with a methyl group at the carbon atom at the root of the amine moiety of compound 8 include the oxime form, but compound 10 did not show quasi-irreversible inhibition. The docking study with CYP3A4 suggested that a methyl moiety introduced at the carbon atom at the root of the primary amine disrupts formation of the MI complex between the heme and the nitroso intermediate because of steric hindrance. This study identified substructures of fluoroquinolone compounds associated with the MBI mechanism; introduction of substituted groups inducing steric hindrance with the heme of P450 can prevent formation of an MI complex. Our series of experiments may be broadly applicable to prevention of MBI at the drug discovery stage. PMID:27469000

  13. An enzyme activity in normal and ataxia telangiectasia cell lines which is involved in the repair of γ-irradiation-induced DNA damage

    International Nuclear Information System (INIS)

    An enzyme that enhances the activity of DNA polymerase I (EC 2.7.7.7) for γ-irradiated calf thymus DNA was demonstrated in cellular extracts of normal human fibroblasts and lymphoid-cell lines. This enzyme was found to be deficient in all cellular extracts of fibroblasts and lymphoid-cell lines examined from patients with the autosomal recessive disease ataxia telangiectasia. The activity in cellular extracts from normal fibroblasts was removed when heated to 1000C for 2 min or when the assay was performed at 40C. No significant deficiency in primer activating enzyme activity was observed in cell-free extracts of lymphoid lines from patients with xeroderma pigmentosum, Huntington's chorea or neurofibromatosis, or from an ataxia telangiectasia heterozygote. (author)

  14. Screening for and Identification of Novel Glucarpidase Producing Bacteria : Cloning and molecular characterisation of novel enzymes involved in ADEPT for cancer treatment

    NARCIS (Netherlands)

    Alqahtani, Alanood; Alyafei, Afrah; Abdallah, Fatma; Latiff, Aishah; Groves, Matthew; Dömling, Alex; Goda, Sayed

    2014-01-01

    Antibody Directed Enzyme Prodrug Therapy (ADEPT) is a novel therapy which has already been implemented in cancer therapy to solve the problem of drug resistance and lack of tumor selectivity. Repeated cycles of (ADEPT) and the use of glucarpidase in detoxification of cytotoxic methotrexate (MTX) are

  15. Evidence for a repair enzyme complex involving ERCC1, and the correcting activities of ERCC4, ERCC11 and the xeroderma pigmentosum group F.

    NARCIS (Netherlands)

    A.J. van Vuuren (Hanneke); E. Appeldoorn (Esther); H. Odijk (Hanny); A. Yasui (Akira); N.G.J. Jaspers (Nicolaas); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1993-01-01

    textabstractNucleotide excision repair (NER), one of the major cellular DNA repair systems, removes a wide range of lesions in a multi-enzyme reaction. In man, a NER defect due to a mutation in one of at least 11 distinct genes, can give rise to the inherited repair disorders xeroderma pigmentosum (

  16. Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice.

    Directory of Open Access Journals (Sweden)

    Jing-Dun Xie

    Full Text Available Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC. Aspartate transaminase (AST, alanine aminotransferase (ALT, and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl-3,5-diphenylformazan (MTT, and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2 of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided.

  17. Involvement of promoter methylation in the regulation of Pregnane X receptor in colon cancer cells

    Directory of Open Access Journals (Sweden)

    Otsuka Koki

    2011-02-01

    Full Text Available Abstract Background Pregnane X receptor (PXR is a key transcription factor that regulates drug metabolizing enzymes such as cytochrome P450 (CYP 3A4, and plays important roles in intestinal first-pass metabolism. Although there is a large inter-individual heterogeneity with intestinal CYP3A4 expression and activity, the mechanism driving these differences is not sufficiently explained by genetic variability of PXR or CYP3A4. We examined whether epigenetic mechanisms are involved in the regulation of PXR/CYP3A4 pathways in colon cancer cells. Methods mRNA levels of PXR, CYP3A4 and vitamin D receptor (VDR were evaluated by quantitative real-time PCR on 6 colon cancer cell lines (Caco-2, HT29, HCT116, SW48, LS180, and LoVo. DNA methylation status was also examined by bisulfite sequencing of the 6 cell lines and 18 colorectal cancer tissue samples. DNA methylation was reversed by the treatment of these cell lines with 5-aza-2'-deoxycytidine (5-aza-dC. Results The 6 colon cancer cell lines were classified into two groups (high or low expression cells based on the basal level of PXR/CYP3A4 mRNA. DNA methylation of the CpG-rich sequence of the PXR promoter was more densely detected in the low expression cells (Caco-2, HT29, HCT116, and SW48 than in the high expression cells (LS180 and LoVo. This methylation was reversed by treatment with 5-aza-dC, in association with re-expression of PXR and CYP3A4 mRNA, but not VDR mRNA. Therefore, PXR transcription was silenced by promoter methylation in the low expression cells, which most likely led to downregulation of CYP3A4 transactivation. Moreover, a lower level of PXR promoter methylation was observed in colorectal cancer tissues compared with adjacent normal mucosa, suggesting upregulation of the PXR/CYP3A4 mRNAs during carcinogenesis. Conclusions PXR promoter methylation is involved in the regulation of intestinal PXR and CYP3A4 mRNA expression and might be associated with the inter-individual variability

  18. Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Vavitsas, Konstantinos; Andersen-Ranberg, Johan;

    2015-01-01

    BACKGROUND: Plant terpenoids are known for their diversity, stereochemical complexity, and their commercial interest as pharmaceuticals, food additives, and cosmetics. Developing biotechnology approaches for the production of these compounds in heterologous hosts can increase their market......-expression resulted in 3-fold increase in the accumulation of both isopimaradiene and isopimaric acid detected using GC-MS and LC-MS methodology. We also showed that modifying or deleting the transmembrane helix of CYP720B4 does not alter the enzyme activity and led to successful accumulation of isopimaric acid...... in the infiltrated leaves. Furthermore, we demonstrated that a modified membrane anchor is a prerequisite for a functional CYP720B4 enzyme when the chloroplast targeting peptide is added. We report the accumulation of 45-55 μg/g plant dry weight of isopimaric acid four days after the infiltration with the modified...

  19. Completely enzymic synthesis of the mucin-type sialyl Lewis x epitope, involved in the interaction between PSGL-1 and P-selectin

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Zeng, S.; Gutiérrez Gallego, R.; Dinter, A.; Malissard, M.; Kamerling, J.P.; Berger, E.G.

    1999-01-01

    Sialyl Lewis x (sLex) is an established selectin ligand occurring on N- and O-linked glycans. Using a completely enzymic approach starting from p-nitrophenyl N-acetyl-alpha-D-galactosaminide (GalNAc(alpha1-pNp as core substrate, the sLex-oligosaccharide Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]Glc

  20. Removal of polycyclic aromatic hydrocarbons from aqueous media by the marine fungus NIOCC 312: Involvement of lignin-degrading enzymes and exopolysaccharides

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Shailaja, M.S.; Parameswaran, P.S.; Singh, S.K.

    organic molecules. Application of live cultures of marine fungi and their appropriate enzymes for bioremediation of such pollutants appear to hold great potential in pollution clean-up 29 . Acknowledgement Authors are thankful to the Director, NIO... for supporting this work through in-house funding. The first author wishes to thank Dr. R. Taranathan of CFTRI, Mysore, India for GC analysis. The senior author acknowledges the technical assistance of Ms Shilpa Kamat. This is NIO’s contribution No. 4208...

  1. Degradation of Granular Starch by the Bacterium Microbacterium aurum Strain B8.A Involves a Modular α-Amylase Enzyme System with FNIII and CBM25 Domains.

    Science.gov (United States)

    Valk, Vincent; Eeuwema, Wieger; Sarian, Fean D; van der Kaaij, Rachel M; Dijkhuizen, Lubbert

    2015-10-01

    The bacterium Microbacterium aurum strain B8.A, originally isolated from a potato plant wastewater facility, is able to degrade different types of starch granules. Here we report the characterization of an unusually large, multidomain M. aurum B8.A α-amylase enzyme (MaAmyA). MaAmyA is a 1,417-amino-acid (aa) protein with a predicted molecular mass of 148 kDa. Sequence analysis of MaAmyA showed that its catalytic core is a family GH13_32 α-amylase with the typical ABC domain structure, followed by a fibronectin (FNIII) domain, two carbohydrate binding modules (CBM25), and another three FNIII domains. Recombinant expression and purification yielded an enzyme with the ability to degrade wheat and potato starch granules by introducing pores. Characterization of various truncated mutants of MaAmyA revealed a direct relationship between the presence of CBM25 domains and the ability of MaAmyA to form pores in starch granules, while the FNIII domains most likely function as stable linkers. At the C terminus, MaAmyA carries a 300-aa domain which is uniquely associated with large multidomain amylases; its function remains to be elucidated. We concluded that M. aurum B8.A employs a multidomain enzyme system to initiate degradation of starch granules via pore formation. PMID:26187958

  2. Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice

    Directory of Open Access Journals (Sweden)

    Rongli Sun

    2016-10-01

    Full Text Available Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC, red blood cell (RBC, platelet (Pit counts, and hemoglobin (Hgb concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS, hydrogen peroxide (H2O2, and malondialdehyde (MDA levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity.

  3. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to copper

    International Nuclear Information System (INIS)

    Highlights: •Cu downregulates lipogenesis and reduces lipid deposition in liver and adipose tissue. •Mechanism of Cu affecting lipid metabolism is determined at the enzymatic and molecular levels. •Cu exposure differentially influences lipid metabolism between liver and adipose tissue. -- Abstract: The present study was conducted to determine the mechanism of waterborne Cu exposure influencing lipid metabolism in liver and visceral adipose tissue (VAT) of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to four waterborne copper (Cu) concentrations (2 (control), 24 (low), 71 (medium), 198 (high) μg Cu/l, respectively) for 6 weeks. Waterborne Cu exposure had a negative effect on growth and several condition indices (condition factor, viscerosomatic index, hepatosomatic index and visceral adipose index). In liver, lipid content, activities of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME), isocitrate dehydrogenase (ICDH), and fatty acid synthase (FAS)) as well as mRNA levels of 6PGD, G6PD, FAS and sterol-regulator element-binding protein-1 (SREBP-1) genes decreased with increasing Cu concentrations. However, activity and mRNA level of lipoprotein lipase (LPL) gene in liver increased. In VAT, G6PD, ME and LPL activities as well as the mRNA levels of FAS, LPL and PPARγ genes decreased in fish exposed to higher Cu concentrations. The differential Pearson correlations between transcription factors (SREBP-1 and peroxisome proliferators-activated receptor-γ (PPARγ)), and the activities and mRNA expression of lipogenic enzymes and their genes were observed between liver and VAT. Thus, our study indicated that reduced lipid contents in liver and VAT after Cu exposure were attributable to the reduced activities and mRNA expression of lipogenic enzymes and their genes in these tissues. Different response patterns of several tested enzymes and genes to waterborne Cu

  4. Differential induction of enzymes and genes involved in lipid metabolism in liver and visceral adipose tissue of juvenile yellow catfish Pelteobagrus fulvidraco exposed to copper

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi-Liang; Luo, Zhi, E-mail: luozhi99@yahoo.com.cn; Pan, Ya-Xiong; Zheng, Jia-Lang; Zhu, Qing-Ling; Sun, Lin-Dan; Zhuo, Mei-Qin; Hu, Wei

    2013-07-15

    Highlights: •Cu downregulates lipogenesis and reduces lipid deposition in liver and adipose tissue. •Mechanism of Cu affecting lipid metabolism is determined at the enzymatic and molecular levels. •Cu exposure differentially influences lipid metabolism between liver and adipose tissue. -- Abstract: The present study was conducted to determine the mechanism of waterborne Cu exposure influencing lipid metabolism in liver and visceral adipose tissue (VAT) of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to four waterborne copper (Cu) concentrations (2 (control), 24 (low), 71 (medium), 198 (high) μg Cu/l, respectively) for 6 weeks. Waterborne Cu exposure had a negative effect on growth and several condition indices (condition factor, viscerosomatic index, hepatosomatic index and visceral adipose index). In liver, lipid content, activities of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME), isocitrate dehydrogenase (ICDH), and fatty acid synthase (FAS)) as well as mRNA levels of 6PGD, G6PD, FAS and sterol-regulator element-binding protein-1 (SREBP-1) genes decreased with increasing Cu concentrations. However, activity and mRNA level of lipoprotein lipase (LPL) gene in liver increased. In VAT, G6PD, ME and LPL activities as well as the mRNA levels of FAS, LPL and PPARγ genes decreased in fish exposed to higher Cu concentrations. The differential Pearson correlations between transcription factors (SREBP-1 and peroxisome proliferators-activated receptor-γ (PPARγ)), and the activities and mRNA expression of lipogenic enzymes and their genes were observed between liver and VAT. Thus, our study indicated that reduced lipid contents in liver and VAT after Cu exposure were attributable to the reduced activities and mRNA expression of lipogenic enzymes and their genes in these tissues. Different response patterns of several tested enzymes and genes to waterborne Cu

  5. The CYP3A4*22 C>T single nucleotide polymorphism is associated with reduced midazolam and tacrolimus clearance in stable renal allograft recipients.

    Science.gov (United States)

    de Jonge, H; Elens, L; de Loor, H; van Schaik, R H; Kuypers, D R J

    2015-04-01

    Tacrolimus, a dual substrate of CYP3A4 and CYP3A5 has a narrow therapeutic index and is characterized by high between-subject variability in oral bioavailability. This study investigated the effects of the recently described CYP3A4*22 intron 6 C>T single nucleotide polymorphism on in vivo CYP3A4 activity as measured by midazolam (MDZ) clearance and tacrolimus pharmacokinetics in two cohorts of renal allograft recipients, taking into account the CYP3A5*1/*3 genotype and other determinants of drug disposition. In CYP3A5 non-expressers, the presence of one CYP3A4*22T-allele was associated with a 31.7-33.6% reduction in MDZ apparent oral clearance, reflecting reduced in vivo CYP3A4 activity. In addition, at ⩾12 months after transplantation, steady-state clearance of tacrolimus was 36.8% decreased compared with homozygous CYP3A4*22CC-wild type patients, leading to 50% lower dose requirements. Both concurrent observations in stable renal allograft recipients are consistent with a reduced in vivo CYP3A4 activity for the CYP3A4*22T-allele.

  6. The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1

    OpenAIRE

    Chang, Chung-Te; Bercovich, Natalia; Loh, Belinda; Jonas, Stefanie; Izaurralde, Elisa

    2014-01-01

    The removal of the 5′-cap structure by the decapping enzyme DCP2 and its coactivator DCP1 shuts down translation and exposes the mRNA to 5′-to-3′ exonucleolytic degradation by XRN1. Although yeast DCP1 and DCP2 directly interact, an additional factor, EDC4, promotes DCP1–DCP2 association in metazoan. Here, we elucidate how the human proteins interact to assemble an active decapping complex and how decapped mRNAs are handed over to XRN1. We show that EDC4 serves as a scaffold for complex assem...

  7. Substrate specificity of the adenylation enzyme SgcC1 involved in the biosynthesis of the enediyne antitumor antibiotic C-1027.

    Science.gov (United States)

    Van Lanen, Steven G; Lin, Shuangjun; Dorrestein, Pieter C; Kelleher, Neil L; Shen, Ben

    2006-10-01

    C-1027 is an enediyne antitumor antibiotic composed of a chromophore with four distinct chemical moieties, including an (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety that is derived from l-alpha-tyrosine. SgcC4, a novel aminomutase requiring no added co-factor that catalyzes the formation of the first intermediate (S)-beta-tyrosine and subsequently SgcC1 homologous to adenylation domains of nonribosomal peptide synthetases, was identified as specific for the SgcC4 product and did not recognize any alpha-amino acids. To definitively establish the substrate for SgcC1, a full kinetic characterization of the enzyme was performed using amino acid-dependent ATP-[(32)P]PP(i) exchange assay to monitor amino acid activation and electrospray ionization-Fourier transform mass spectroscopy to follow the loading of the activated beta-amino acid substrate to the peptidyl carrier protein SgcC2. The data establish (S)-beta-tyrosine as the preferred substrate, although SgcC1 shows promiscuous activity toward aromatic beta-amino acids such as beta-phenylalanine, 3-chloro-beta-tyrosine, and 3-hydroxy-beta-tyrosine, but all were <50-fold efficient. A putative active site mutant P571A adjacent to the invariant aspartic acid residue of all alpha-amino acid-specific adenylation domains known to date was prepared as a preliminary attempt to probe the substrate specificity of SgcC1; however the mutation resulted in a loss of activity with all substrates except (S)-beta-tyrosine, which was 142-fold less efficient relative to the wild-type enzyme. In total, SgcC1 is now confirmed to catalyze the second step in the biosynthesis of the (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety of C-1027, presenting downstream enzymes with an (S)-beta-tyrosyl-S-SgcC2 thioester substrate, and represents the first beta-amino acid-specific adenylation enzyme characterized biochemically. PMID:16887797

  8. Activities of the Enzymes Involved in Starch Synthesis and Starch Accumulation in the Grains of Wheat Cultivars, GC8901 and SN1391

    Institute of Scientific and Technical Information of China (English)

    LIU Xia; JIANG Chun-ming; ZHENG Ze-rong; ZHOU Zhu-nan; HE Ming-rong; WANG Zhen-lin

    2005-01-01

    Two wheat cultivars, GC8901 (hard winter wheat) and SN1391 (soft winter wheat), were used for investigating the changes of enzyme activities for sucrose metabolism and starch biosynthesis and the accumulation character of starch composition.The result showed that activities of sucrose (SS), sucrose-phosphate synthase (SPS), adenosine diphosphorate glucose pyrophrylase (AGPase) and soluble starch syntheses (SSS) of 1391, which have more starch, were significant higher than those of 8901, that with low starch content. But the changing of granule-bound starch synthase (GBSS) activity was consistent with the amylose content, which indicated that amylose contents in grain were determined by GBSS activity,especially the activity at later grain filling stages. Simulating with Richards equation showed that it was initiating time and accumulation rate, but not accumulation duration that determined the content of starch composition. Furthermore, changing of sucrose transport capacity was consistent with SSS and GBSS activities, starch accumulation rate was accordant to AGPase and SS/SPS ration, not SS, SPS, SSS or GBSS activities. The results suggested that there was no inevitable relation of starch accumulating rate and starch composition contents with the activity of single enzyme such as SS, SPS,SSS or GBSS, but closely related to AGPase activity and SS/SPS ratio, and it was SPS and AGPase that play a vital role in the biosynthetic pathway. Later polymerization reactions catalyzed by SSS and GBSS don't seem to control the rate of starch accumulation, but do affect starch structure.

  9. Content of CYP3A4 inhibitors, naringin, naringenin and bergapten in grapefruit and grapefruit juice products.

    Science.gov (United States)

    Ho, P C; Saville, D J; Coville, P F; Wanwimolruk, S

    2000-04-01

    The flavonoids, naringin and naringenin and the furanocoumarin, bergapten (5-methoxypsoralen), were detected in some fresh grapefruit and commercial grapefruit juices but were not detected in other fruit juices tested (orange; orange with apple base; dark grape; orange and mango with apple base; orange, peach, passion fruit juice). The contents of these three grapefruit constituents in commercial juice and fresh grapefruit varied from brand to brand and also from lot to lot. Juice was prepared from the fresh fruit via different methods (by hand, squeezer or blender). The naringin content, after hand-squeeze, ranged from 115 to 384 mg/l. With hand-squeeze juice production, bergapten was not detected (less than 0.5 mg/l) in two varieties of grapefruit, and naringenin was usually not in detectable levels (less than 2 mg/l) in three varieties. All three constituents were present in New Zealand grapefruit preparations (including juice by hand-squeeze) and different lots showed variation in content (1.5-, 2.3- and 4.7-fold for naringin, naringenin and bergapten, respectively). Differences in the concentrations of these three constituents, which have potential for drug interaction, may contribute to the variability in pharmacokinetics of CYP3A4 drugs and some contradictory results of drug interaction studies with grapefruit juice. PMID:10812937

  10. Prednisone has no effect on the pharmacokinetics of CYP3A4 metabolized drugs - midazolam and odanacatib.

    Science.gov (United States)

    Marcantonio, Eugene E; Ballard, Jeanine; Gibson, Christopher R; Kassahun, Kelem; Palamanda, Jairam; Tang, Cuyue; Evers, Raymond; Liu, Chengcheng; Zajic, Stefan; Mahon, Chantal; Mostoller, Kate; Hreniuk, David; Mehta, Anish; Morris, Denise; Wagner, John A; Stoch, S Aubrey

    2014-11-01

    We evaluated the effect of prednisone on midazolam and odanacatib pharmacokinetics. In this open-label, 2-period crossover study in healthy male subjects, midazolam 2 mg was administered (Day -1) followed by odanacatib 50 mg (Day 1) during Part 1. In Period 2, prednisone 10 mg once daily (qd) was administered on Days 1-28; odanacatib was co-administered on Day 14 and midazolam 2 mg was co-administered on Days 1 and 28. Subjects were administered midazolam 2 mg on Days 42 and 56. Safety and tolerability were assessed throughout the study. A physiologically-based pharmacokinetic (PBPK) model was also built. There were 15 subjects enrolled; mean age was 31 years. The odanacatib AUC(0- ∞) GMR (90% CI) [odanacatib + prednisone (Day 14, Period 2)/odanacatib alone (Day 1, Period 1] was 1.06 (0.96, 1.17). AUC(0-∞) GMR (90%CI) [midazolam + prednisone (Day 28, Period 2)/midazolam alone (Day -1, Period 1] was 1.08 (0.93,1.26). There were no serious AEs or AEs leading to discontinuation. PBPK modeling showed that prednisone does not cause significant effects on the exposure of sensitive CYP3A4 substrates in vivo at therapeutic doses. Co-administration of prednisone 10 mg qd had no effect on pharmacokinetics of either odanacatib 10 mg or midazolam 2 mg. PMID:24895078

  11. Effect of bifendate on the pharmacokinetics of cyclosporine in relation to the CYP3A4*18B genotype in healthy subjects

    Institute of Scientific and Technical Information of China (English)

    Yong ZENG; Yi-jing HE; Fu-yuan HE; Lan FAN; Hong-hao ZHOU

    2009-01-01

    Aim: To evaluate the potential drug-drug interactions between bifendate and cyclosporine, a substrate of CYP3A4, in relation to different CYP3A4*18B genotype groups.Methods: Eighteen unrelated healthy subjects (six CYP3A4*1*1 six CYP3A4*1/*18B, and six CYP3A4*18/*18B) were selected for this study. After repeated oral administration of a placebo or bifendate (three times daily for 14 d), the wholeblood level of cyclosporine was measured using high performance liquid chromatography-electrospray mass spectrometry (HPLC/ESI-MS). This study was carried out in a two-phase randomized crossover manner. Results: After the treatment with bifendate, the areas under the curve (AUC0-24 and AUC0-∞decreased significantly by 9.7%+-3.7% (P=0.01) and 19.2%+-16.8% (P=0.001) in CYP3A4*1/*1 subjects, 11.3%+-9.4% (P=0.03) and 10.5%+-9.6% (P=0.043) in CYP3A4*1/*18B subjects, and 40.2%+-14.7% (P=0.02) and 37.5%+-15.8% (P=0.003) in CYP3A4*18B/*18B subjects. Meanwhile, the decreases in the AUC0-24 and AUC0-∞ values in the three groups were significantly different (using one-way analysis of variance, P=0.001 and P=0.001), and the change in the CYP3A4*18B/*18B group was greater than that in the other two groups. The oral clearance of cyclosporine was altered in all the subjects, with substantial increases by 10.2%+-4.4% (P=0.004) in CYP3A4*1/*1 subjects, 14.0%+-12.0% (P=0.048) in CYP3A4*1/*18B subjects, and 32.4%+-21.7% (P=0.013) in CYP3A4*18B/*18B subjects.Conclusion: These results suggest that bifendate decreases the plasma concentration of cyclosporine in a CYP3A4 genotype- dependent manner.

  12. Expression, crystallization and preliminary X-ray analysis of McbB, a multifunctional enzyme involved in β-carboline skeleton biosynthesis.

    Science.gov (United States)

    Wang, Hua; Zhang, Huaidong; Mi, Yanling; Ju, Jianhua; Chen, Qi; Zhang, Houjin

    2014-10-01

    β-Carboline alkaloids (βCs), with tricyclic pyrido[3,4-b]indole rings, have important pharmacological and therapeutic value. In the biosynthesis of βCs, the Pictet-Spengler (PS) cyclization reaction is responsible for the formation of ring structures. McbB is one of a few enzymes that are known to catalyse PS cyclization. It can also catalyse decarboxylation and oxidation. Here, the expression, crystallization and preliminary data analysis of McbB are reported. The crystals diffracted to 2.10 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 66.06, b = 85.48, c = 106.19 Å, α = 90.00, β = 106.77, γ = 90.00°. These results provide a basis for solving the crystal structure and elucidating the catalytic mechanism for McbB. PMID:25286949

  13. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes.

    Science.gov (United States)

    Rosenblat, Mira; Rom, Oren; Volkova, Nina; Aviram, Michael

    2016-08-01

    Nitro-fatty acids possess anti-atherogenic properties, but their effects on macrophage oxidative status and lipid metabolism that play important roles in atherosclerosis development are unclear. This study compared the effects of nitro-oleic acid (OLA-NO2) with those of native oleic acid (OLA) on intracellular reactive oxygen species (ROS) generation, anti-oxidants and metabolism of triglycerides and cholesterol in J774A.1 macrophages. Upon incubating the cells with physiological concentrations of OLA-NO2 (0-1 µM) or with equivalent levels of OLA, ROS levels measured by 2, 7-dichlorofluorescein diacetate, decreased dose-dependently, but the anti-oxidative effects of OLA-NO2 were significantly augmented. Copper ion addition increased ROS generation in OLA treated macrophages without affecting OLA-NO2 treated cells. These effects could be attributed to elevated glutathione levels and to increased activity and expression of paraoxonase2 that were observed in OLA-NO2 vs OLA treated cells. Beneficial effects on triglyceride metabolism were noted in OLA-NO2 vs OLA treated macrophages in which cellular triglycerides were reduced due to attenuated biosynthesis and accelerated hydrolysis of triglycerides. Accordingly, OLA-NO2 treated cells demonstrated down-regulation of diacylglycerol acyltransferase1, the key enzyme in triglyceride biosynthesis, and increased expression of hormone-sensitive lipase and adipose triglyceride lipase that regulate triglyceride hydrolysis. Finally, OLA-NO2 vs OLA treatment resulted in modest but significant beneficial effects on macrophage cholesterol metabolism, reducing cholesterol biosynthesis rate and low density lipoprotein influx into the cells, while increasing high density lipoprotein-mediated cholesterol efflux from the macrophages. Collectively, compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride

  14. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes.

    Science.gov (United States)

    Rosenblat, Mira; Rom, Oren; Volkova, Nina; Aviram, Michael

    2016-08-01

    Nitro-fatty acids possess anti-atherogenic properties, but their effects on macrophage oxidative status and lipid metabolism that play important roles in atherosclerosis development are unclear. This study compared the effects of nitro-oleic acid (OLA-NO2) with those of native oleic acid (OLA) on intracellular reactive oxygen species (ROS) generation, anti-oxidants and metabolism of triglycerides and cholesterol in J774A.1 macrophages. Upon incubating the cells with physiological concentrations of OLA-NO2 (0-1 µM) or with equivalent levels of OLA, ROS levels measured by 2, 7-dichlorofluorescein diacetate, decreased dose-dependently, but the anti-oxidative effects of OLA-NO2 were significantly augmented. Copper ion addition increased ROS generation in OLA treated macrophages without affecting OLA-NO2 treated cells. These effects could be attributed to elevated glutathione levels and to increased activity and expression of paraoxonase2 that were observed in OLA-NO2 vs OLA treated cells. Beneficial effects on triglyceride metabolism were noted in OLA-NO2 vs OLA treated macrophages in which cellular triglycerides were reduced due to attenuated biosynthesis and accelerated hydrolysis of triglycerides. Accordingly, OLA-NO2 treated cells demonstrated down-regulation of diacylglycerol acyltransferase1, the key enzyme in triglyceride biosynthesis, and increased expression of hormone-sensitive lipase and adipose triglyceride lipase that regulate triglyceride hydrolysis. Finally, OLA-NO2 vs OLA treatment resulted in modest but significant beneficial effects on macrophage cholesterol metabolism, reducing cholesterol biosynthesis rate and low density lipoprotein influx into the cells, while increasing high density lipoprotein-mediated cholesterol efflux from the macrophages. Collectively, compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride

  15. MicroRNA-30c-1-3p is a silencer of the pregnane X receptor by targeting the 3'-untranslated region and alters the expression of its target gene cytochrome P450 3A4.

    Science.gov (United States)

    Vachirayonstien, Thaveechai; Yan, Bingfang

    2016-09-01

    The pregnane X receptor (PXR) is a master regulator of genes involved in drug elimination. Recently, activation of PXR has also been linked to the development of many disease conditions such as metabolic disorders and malignancies. MicroRNAs (miRs) emerge as important molecular species involved in these conditions. This study was undertaken to test a large number of miRs for their ability to regulate PXR expression. As many as 58 miRs were tested and miR-30c-1-3p was identified to suppress PXR expression. The suppression was achieved by targeting the 3'-untranslated region, 438 nucleotides from the stop codon. The suppression was detected in multiple cell lines from different organ origins. In addition, miR-30c-1-3p altered basal and induced expression of cytochrome P450 3A4 (CYP3A4), a prototypical target gene of PXR. The alteration varied depending on the time and amounts of miR-30c-1-3p. CYP3A4 is responsible for the metabolism of more than 50% medicines. The interconnection between miR-30c-1-3p and PXR signifies a role of miRs in drug-drug interactions and chemosensitivity. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:27085140

  16. NRC integrated program for the resolution of Unresolved Safety Issues A-3, A-4 and A-5 regarding steam generator tube integrity: Final report

    International Nuclear Information System (INIS)

    This report presents the results of the NRC integrated program for the resolution of Unresolved Safety Issues (USIs) A-3, A-4, and A-5 regarding steam generator tube integrity. A generic risk assessment is provided and indicates that risk from steam generator tube rupture (SGTR) events is not a significant contributor to total risk at a given site, nor to the total risk to which the general public is routinely exposed. This finding is considered to be indicative of the effectiveness of licensee programs and regulatory requirements for ensuring steam generator tube integrity in accordance with 10 CFR 50, Appendices A and B. This report also identifies a number of staff-recommended actions that the staff finds can further improve the effectiveness of licensee programs in ensuring the integrity of steam generator tubes and in mitigating the consequences of an SGTR. As part of the integrated program, the staff issued Generic Letter 85-02 encouraging licensees of pressurized water reactors (PWRs) to upgrade their programs, as necessary, to meet the intent of the staff-recommended actions; however, such actions do not constitute NRC requirements. In addition, this report describes a number of ongoing staff actions and studies involving steam generator issues which are being pursued to provide added assurance that risk from SGTR events will continue to be small. 146 refs., 5 figs., 11 tabs

  17. Transport and uptake of clausenamide enantiomers in CYP3A4-transfected Caco-2 cells: An insight into the efflux-metabolism alliance.

    Science.gov (United States)

    Hua, Fang; Shi, Mei-jun; Zhu, Xiao-lu; Li, Meng; Wang, Hong-xu; Yu, Xiao-ming; Li, Yan; Zhu, Chuan-jiang

    2015-11-01

    The present study developed a CYP3A4-expressed Caco-2 monolayer model at which effects of the efflux-metabolism alliance on the transport and uptake of clausenamide (CLA) enantiomers as CYP3A4 substrates were investigated. The apparent permeability coefficients (Papp) of (-) and (+)CLA were higher in the absorptive direction than those in the secretory direction with efflux ratios (ER) of 0.709±0.411 and 0.867±0.250 (×10(-6)cm/s), respectively. Their bidirectional transports were significantly reduced by 75.6-87.5% after treatment with verapamil (a P-glycoprotein inhibitor) that increased the rate of metabolism by CYP3A4, whereas the CYP3A4 inhibitor ketoconazole treatment markedly enhanced the basolateral to apical flux of (-) and (+)CLA with ERs being 2.934±1.432 and 1.877±0.148(×10(-6)cm/s) respectively. These changes could be blocked by the duel CYP3A4/P-glycoprotein inhibitor cyclosporine A, consequently, Papp values for CLA enantiomers in both directions were significantly greater than those obtained by using verapamil or ketoconazole, and their ERs were similar to those following (-) or (+)-isomer treatment alone. Furthermore, the uptake of (-)CLA was more than that of (+)CLA in the transfected cells. Incubation with ketoconazole decreased the intracellular concentrations of the two enantiomers. This effect disappeared in the presence of a CYP3A4 inducer dexamethasone. These results indicated that CYP3A4 could influence P-gp efflux, transport and uptake of CLA enantiomers as CYP3A4 substrates and that a duel inhibition to CYP3A4/ P-glycoprotein could enhance their absorption and bioavailability, which provides new insight into the efflux-metabolism alliance and will benefit the clinical pharmacology of (-)CLA as a candidate drug for treatment of Alzheimer's disease. PMID:26301745

  18. Different alterations of cytochrome P450 3A4 isoform and its gene expression in livers of patients with chronic liver diseases

    Institute of Scientific and Technical Information of China (English)

    Li-Qun Yang; Shen-Jing Li; Yun-Fei Cao; Xiao-Bo Man; Wei-Feng Yu; Hong-Yang Wang; Meng-Chao Wu

    2003-01-01

    AIM: To determine whether parenchymal cells or hepaticcytochrome P450 protein was changed in chronic liverdiseases, and to compare the difference of CYP3A4 enzymeand its gene expression between patients with hepaticcirrhosis and obstructive jaundice, and to investigate thepharmacologic significance behind this difference.METHODS: Liver samples were obtained from patientsundergoing hepatic surgery with hepatic cirrhosis (n=6) andobstructive jaundice (n=6) and hepatic angeioma (controls,n=6). CYP3A4 activity and protein were determined by Nashand western bloting using specific polychonal antibody,respectively. Total hepatic RNA was extracted andCYP3A4cDNA probe was prepared according the methodof random primer marking, and difference of cyp3a4expression was compared among those patients byNorthern blotting.RESULTS: Compared to control group, the CYP3A4 activityand protein in liver tissue among patients with cirrhosis wereevidently reduced. (P<0.01) Northern blot showed the samechange in its mRNA levels. In contrast, the isoenzyme andits gene expression were not changed among patients withobstructive jaundice.CONCLUSION: Hepatic levels of P450s and its CYP3A4isoform activity were selectively changed in different chronicliver diseases. CYP3A4 isoenzyme and its activity declinedamong patients with hepatic cirrhosis as expression of cyp3a4gene was significantly reduced. Liver's ability to eliminatemany clinical therateutic drug substrates would declineconsequently, These findings may have practical implicationsfor the use of drugs in patients with cirrhosis and emphasizethe need to understand the metabolic fate of therapeuticcompounds. Elucidation of the reasons for these differentchanges in hepatic CYP3A4 may provide insight into morefundamental aspects and mechanisms of imparied liverfunction.

  19. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Flueck, Christa E.; Mullis, Primus E. [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH 3004 Bern (Switzerland); Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH 3004 Bern (Switzerland)

    2010-10-08

    Research highlights: {yields} Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). {yields} Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. {yields} We are reporting that mutations in POR may reduce CYP3A4 activity. {yields} POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. {yields} Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  20. How Does the Reductase Help To Regulate the Catalytic Cycle of Cytochrome P450 3A4 Using the Conserved Water Channel?

    OpenAIRE

    Fishelovitch, Dan; Shaik, Sason; Wolfson, Haim J.; Nussinov, Ruth

    2010-01-01

    Water molecules play a major role in the P450 catalytic cycle. Here, we locate the preferred water pathways and their gating mechanisms for the human cytochrome P450 3A4 (CYP3A4) and elucidate the role of the cytochrome P450 reductase (CPR) in turning on and activating these water channels. We perform explicit solvent molecular dynamic simulations of CYP3A4, unbound and bound to two substrates, and with and without the flavin mononucleotide (FMN)-binding domain of CPR. We observe in/out passa...

  1. Salvianolic acid B modulates the expression of drug-metabolizing enzymes in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Qing-LanWang; QuocWu; Yan-Yan Tao; Cheng-Hai Liu; Hani El-Nezami

    2011-01-01

    BACKGROUND: Enzymes involved in drug and xenobiotic metabolism have been considered to exist in two groups: phase I and phase II enzymes. Cytochrome P450 isoenzymes (CYPs) are the most important phase I enzymes in the metabolism of xenobiotics. The products of phase I metabolism are then acted upon by phase II enzymes, including glutathione S-transferases (GSTs). Herbs that inhibit CYPs such as CYP3A4 or that induce GSTs may have the potential to protect against chemical carcinogenesis since the mutagenic effects of carcinogens are often mediated through an excess of CYP-generated reactive intermediates. This study was designed to investigate the effects of salvianolic acid B (Sal B), a pure compound extracted from Radix Salviae Miltiorrhizae, a Chinese herb, on cell proliferation and CYP1A2 and CYP3A4 mRNA expression in the presence or absence of rifampicin, a potent inducer of CYPs and GST protein expression in HepG2 cells. METHODS: HepG2 cells were incubated with different concentrations of Sal B. Cell proliferation was determined by SYTOX-Green nucleic acid staining. CYP3A4 and CYP1A2 mRNA expression was assayed by real-time PCR. GST protein expression was analyzed by Western blotting. RESULTS: Low concentrations of Sal B (0-20 μmol/L) had no significant effects on cell proliferation, while higher concentrations (100-250 μmol/L) significantly inhibited proliferation in a concentration-dependent manner. Tenμmol/L Sal B, but not 1 μmol/L, down-regulated CYP3A4 and CYP1A2 mRNA expression after 24 hours of incubation, whereas both 1 and 10 μmol/L Sal B down-regulated CYP3A4 mRNA expression after 96 hours of incubation; moreover, 1 and 10 μmol/L Sal B inhibited CYP3A4 mRNA expression induced by rifampicin. Both 1 μmol/L and 10 μmol/L Sal B increased GST expression. CONCLUSION: Sal B inhibits CYP3A4 and CYP1A2 mRNA expression and induces GST expression in HepG2 cells.

  2. A High-Throughput (HTS) Assay for Enzyme Reaction Phenotyping in Human Recombinant P450 Enzymes Using LC-MS/MS.

    Science.gov (United States)

    Li, Xiaofeng; Suhar, Tom; Glass, Lateca; Rajaraman, Ganesh

    2014-01-01

    Enzyme reaction phenotyping is employed extensively during the early stages of drug discovery to identify the enzymes responsible for the metabolism of new chemical entities (NCEs). Early identification of metabolic pathways facilitates prediction of potential drug-drug interactions associated with enzyme polymorphism, induction, or inhibition, and aids in the design of clinical trials. Incubation of NCEs with human recombinant enzymes is a popular method for such work because of the specificity, simplicity, and high-throughput nature of this approach for phenotyping studies. The availability of a relative abundance factor and calculated intersystem extrapolation factor for the expressed recombinant enzymes facilitates easy scaling of in vitro data, enabling in vitro-in vivo extrapolation. Described in this unit is a high-throughput screen for identifying enzymes involved in the metabolism of NCEs. Emphasis is placed on the analysis of the human recombinant enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2B6, and CYP3A4, including the calculation of the intrinsic clearance for each.

  3. Kunstige Enzymer

    DEFF Research Database (Denmark)

    Bols, Mikael; Bjerre, Jeannette; Marinescu, Lavinia

    2007-01-01

    Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin.......Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin....

  4. Possible Involvement of Anti-Oxidant Enzymes in the Cross-Tolerance of the Germination/Growth of Wheat Seeds to Salinity and Heat Stress

    Institute of Scientific and Technical Information of China (English)

    Yan-Bao LEI; Song-Quan SONG; Jia-Rui FU

    2005-01-01

    The germination/growth of wheat (Triticun aestivum L. cv. Zimai 1) seeds and changes in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT), as well as in the content of thiobarbituric acid-reactive substances (TBARS), in response to salt and heat stress, as well as cross-stress, were investigated in the present study. With increasing temperature and decreasing water potential caused by NaC1 solution, the germination percentage of seeds and the fresh weight of seedlings decreased markedly, SOD activity increased, activities of APX and CAT decreased distinctly, and the TBARS content increased gradually. Seeds pretreated at 33 ℃ for different times displayed increased tolerance to subsequent salt stress, enhanced SOD, APX, and CAT activities, and decreased TBARS content. Seeds pretreated at -0.8 MPa NaC1 for different times displayed increased tolerance to subsequent heat stress and marked increases in SOD, APX, and CAT activities, which were associated with decreased TBARS content. It is considered that the common component in the cross-tolerance of the germination and growth of wheat seeds to salinity and heat stress is the anti-oxidant enzyme system.

  5. Cardioprotective effects of the novel Na+/H+ exchanger-1 inhibitor KR-32560 in a perfused rat heart model of global ischemia and reperfusion: Involvement of the Akt-GSK-3beta cell survival pathway and antioxidant enzyme.

    Science.gov (United States)

    Jung, In-Sang; Lee, Sung-Hun; Yang, Min-Kyu; Park, Jung-Woo; Yi, Kyu-Yang; Yoo, Sung-Eun; Kwon, Suk-Hyung; Chung, Hun-Jong; Choi, Wahn-Soo; Shin, Hwa-Sup

    2010-08-01

    To investigate the cardioprotective effects and mechanism of action of KR-32560 {[5-(2-methoxy-5-fluorophenyl)furan-2-ylcarbonyl]guanidine}, a newly synthesized NHE-1 inhibitor, we evaluated the effects of KR-32560 on cardiac function in a rat model of ischemia/reperfusion (I/R)-induced heart injury as well as the role antioxidant enzymes and pro-survival proteins play these observed effects. In isolated rat hearts subjected to 25 min of global ischemia followed by 30 min of reperfusion, KR-32560 (3 and 10 microM) significantly reversed the I/Rinduced decrease in left ventricular developed pressure and increase in left ventricular enddiastolic pressure. In rat hearts reperfused for 30 min, KR-32560 (10 microM) significantly decreased the malondialdehyde content while increasing the activities of both glutathione peroxidase and catalase, two important antioxidant enzymes. Western blotting analysis of left ventricles subjected to I/R showed that KR-32560 significantly increased phosphorylation of both Akt and GSK-3beta in a dose-dependent manner, with no effect on the phosphorylation of eNOS. These results suggest that KR-32560 exerts potent cardioprotective effects against I/Rinduced rat heart injury and that its mechanism involves antioxidant enzymes and the Akt-GSK-3beta cell survival pathway.

  6. Racial Differences in CYP3A4 Genotype and Survival Among Men Treated on Radiation Therapy Oncology Group (RTOG) 9202: A Phase III Randomized Trial

    International Nuclear Information System (INIS)

    Purpose: Inherited genotypes may explain the inferior outcomes of African American (AA) men with prostate cancer. To understand how variation in CYP3A4 correlated with outcomes, a retrospective examination of the CYP3A4*1B genotype was performed on men treated with Radiation Therapy Oncology Group (RTOG) 92-02. Methods and Materials: From 1,514 cases, we evaluated 56 (28.4%) of 197 AA and 54 (4.3%) of 1,274 European American (EA) patients. All patients received goserelin and flutamide for 2 months before and during RT (STAD-RT) ± 24 months of goserelin (long-term androgen deprivation plus radiation [LTAD-RT]). Events studied included overall survival and biochemical progression using American Society for Therapeutic Radiology and Oncology consensus guidelines. Results: There were no differences in outcome in patients in with or without CYP3A4 data. There was an association between race and CYP3A4 polymorphisms with 75% of EAs having the Wild Type compared to only 25% of AA men (p <0.0001). There was no association between CYP3A4 classification or race and survival or progression. Conclusions: The samples analyzed support previously reported observations about the distribution of CYP3A4*1B genotype by race, but race was not associated with poorer outcome. However, patient numbers were limited, and selection bias cannot be completely ruled out

  7. Insights into transcriptional regulation of β-D-N-acetylhexosaminidase, an N-glycan-processing enzyme involved in ripening-associated fruit softening.

    Science.gov (United States)

    Irfan, Mohammad; Ghosh, Sumit; Kumar, Vinay; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2014-11-01

    Tomato (Solanum lycopersicum) fruit ripening-specific N-glycan processing enzyme, β-D-N-acetylhexosaminidase (β-Hex), plays an important role in the ripening-associated fruit-softening process. However, the regulation of fruit ripening-specific expression of β-Hex is not well understood. We have identified and functionally characterized the fruit ripening-specific promoter of β-Hex and provided insights into its transcriptional regulation during fruit ripening. Our results demonstrate that RIPENING INHIBITOR (RIN), a global fruit ripening regulator, and ABSCISIC ACID STRESS RIPENING 1 (SlASR1), a poorly characterized ripening-related protein, are the transcriptional regulators of β-Hex. Both RIN and SlASR1 directly bound to the β-Hex promoter fragments containing CArG and C₂₋₃(C/G)A cis-acting elements, the binding sites for RIN and SlASR1, respectively. Moreover, β-Hex expression/promoter activity in tomato fruits was downregulated once expression of either RIN or SlASR1 was suppressed; indicating that RIN and SlASR1 positively regulate the transcription of β-Hex during fruit ripening. Interestingly, RIN could also bind to the SlASR1 promoter, which contains several CArG cis-acting elements, and SlASR1 expression was suppressed in rin mutant fruits, indicating that RIN also acts as a positive regulator of SlASR1 expression during fruit ripening. Taken together, these results suggest that RIN, both directly and indirectly, through SlASR1, regulates the transcription of β-Hex during fruit ripening. The fruit ripening-specific promoter of β-Hex could be a useful tool in regulating gene expression during fruit ripening.

  8. An RNA-binding complex involved in ribosome biogenesis contains a protein with homology to tRNA CCA-adding enzyme.

    Directory of Open Access Journals (Sweden)

    Jinzhong Lin

    2013-10-01

    Full Text Available A multitude of proteins and small nucleolar RNAs transiently associate with eukaryotic ribosomal RNAs to direct their modification and processing and the assembly of ribosomal proteins. Utp22 and Rrp7, two interacting proteins with no recognizable domain, are components of the 90S preribosome or the small subunit processome that conducts early processing of 18S rRNA. Here, we determine the cocrystal structure of Utp22 and Rrp7 complex at 1.97 Å resolution and the NMR structure of a C-terminal fragment of Rrp7, which is not visible in the crystal structure. The structure reveals that Utp22 surprisingly resembles a dimeric class I tRNA CCA-adding enzyme yet with degenerate active sites, raising an interesting evolutionary connection between tRNA and rRNA processing machineries. Rrp7 binds extensively to Utp22 using a deviant RNA recognition motif and an extended linker. Functional sites on the two proteins were identified by structure-based mutagenesis in yeast. We show that Rrp7 contains a flexible RNA-binding C-terminal tail that is essential for association with preribosomes. RNA-protein crosslinking shows that Rrp7 binds at the central domain of 18S rRNA and shares a neighborhood with two processing H/ACA snoRNAs snR30 and snR10. Depletion of snR30 prevents the stable assembly of Rrp7 into preribosomes. Our results provide insight into the evolutionary origin and functional context of Utp22 and Rrp7.

  9. Inhibition of Vibrio harveyi bioluminescence by cerulenin: In vivo evidence for covalent modification of the reductase enzyme involved in aldehyde synthesis

    International Nuclear Information System (INIS)

    Bacterial bioluminescence is very sensitive to cerulenin, a fungal antibiotic which is known to inhibit fatty acid synthesis. When Vibrio harveyi cells pretreated with cerulenin were incubated with [3H]myristic acid in vivo, acylation of the 57-kilodalton reductase subunit of the luminescence-specific fatty acid reductase complex was specifically inhibited. Light emission of wild-type V. harveyi was 20-fold less sensitive to cerulenin at low concentrations (10μg/ml) than that of the dark mutant strain M17, which requires exogenous myristic acid for luminescence because of a defective transferase subunit. The sensitivity of myristic acid-stimulated luminescence in the mutant strain M17 exceeded that of phospholipid synthesis from [14C]acetate, whereas uptake and incorporation of exogenous [14C]myristic acid into phospholipids was increased by cerulenin. The reductase subunit could be labeled by incubating M17 cells with [3H]tetrahydrocerulenin; this labeling was prevented by preincubation with either unlabeled cerulenin or myristic acid. Labeling of the reductase subunit with [3H]tetrahydrocerulenin was also noted in an aldehyde-stimulated mutant (A16) but not in wild-type cells or in another aldehyde-stimulated mutant (M42) in which [3H]myristoyl turnover at the reductase subunit was found to be defective. These results indicate that (i) cerulenin specifically and covalently inhibits the reductase component of aldehyde synthesis, (ii) this enzyme is partially protected from cerulenin inhibition in the wild-type strain in vivo, and (iii) two dark mutants which exhibit similar luminescence phenotypes (mutants A16 and M42) are blocked at different stages of fatty acid reduction

  10. Involvement of insulin-degrading enzyme in the clearance of beta-amyloid at the blood-CSF barrier: Consequences of lead exposure

    Directory of Open Access Journals (Sweden)

    Zhang Yanshu

    2009-09-01

    Full Text Available Abstract Background Alzheimer's disease (AD is characterized by the deposition of beta-amyloid (Aβ peptides in the brain extracellular matrix, resulting in pathological changes and neurobehavioral deficits. Previous work from this laboratory demonstrated that the choroid plexus (CP possesses the capacity to remove Aβ from the cerebrospinal fluid (CSF, and exposure to lead (Pb compromises this function. Since metalloendopeptidase insulin-degrading enzyme (IDE, has been implicated in the metabolism of Aβ, we sought to investigate whether accumulation of Aβ following Pb exposure was due to the effect of Pb on IDE. Methods Rats were injected with a single dose of Pb acetate or an equivalent concentration of Na-acetate; CP tissues were processed to detect the location of IDE by immunohistochemistry. For in vitro studies, choroidal epithelial Z310 cells were treated with Pb for 24 h in the presence or absence of a known IDE inhibitor, N-ethylmaleimide (NEM to assess IDE enzymatic activity and subsequent metabolic clearance of Aβ. Additionally, the expression of IDE mRNA and protein were determined using real time PCR and western blots respectively. Results Immunohistochemistry and confocal imaging revealed the presence of IDE towards the apical surface of the CP tissue with no visible alteration in either its intensity or location following Pb exposure. There was no significant difference in the expressions of either IDE mRNA or protein following Pb exposure compared to controls either in CP tissues or in Z310 cells. However, our findings revealed a significant decrease in the IDE activity following Pb exposure; this inhibition was similar to that seen in the cells treated with NEM alone. Interestingly, treatment with Pb or NEM alone significantly increased the levels of intracellular Aβ, and a greater accumulation of Aβ was seen when the cells were exposed to a combination of both. Conclusion These data suggest that Pb exposure inhibits IDE

  11. SUMO and SUMO-Conjugating Enzyme E2 UBC9 Are Involved in White Spot Syndrome Virus Infection in Fenneropenaeus chinensis.

    Directory of Open Access Journals (Sweden)

    Xiaoqian Tang

    Full Text Available In previous work, small ubiquitin-like modifier (SUMO in hemocytes of Chinese shrimp Fenneropenaeus chinensis was found to be up-regulated post-white spot syndrome virus (WSSV infection using proteomic approach. However, the role of SUMO in viral infection is still unclear. In the present work, full length cDNAs of SUMO (FcSUMO and SUMO-conjugating enzyme E2 UBC9 (FcUBC9 were cloned from F. chinensis using rapid amplification of cDNA ends approach. The open reading frame (ORF of FcSUMO encoded a 93 amino acids peptide with the predicted molecular weight (M.W of 10.55 kDa, and the UBC9 ORF encoded a 160 amino acids peptide with the predicted M.W of 18.35 kDa. By quantitative real-time RT-PCR, higher mRNA transcription levels of FcSUMO and FcUBC9 were detected in hemocytes and ovary of F. chinensis, and the two genes were significantly up-regulated post WSSV infection. Subsequently, the recombinant proteins of FcSUMO and FcUBC9 were expressed in Escherichia coli BL21 (DE3, and employed as immunogens for the production of polyclonal antibody (PAb. Indirect immunofluorescence assay revealed that the FcSUMO and UBC9 proteins were mainly located in the hemocytes nuclei. By western blotting, a 13.5 kDa protein and a 18.7 kDa protein in hemocytes were recognized by the PAb against SUMO or UBC9 respectively. Furthermore, gene silencing of FcSUMO and FcUBC9 were performed using RNA interference, and the results showed that the number of WSSV copies and the viral gene expressions were inhibited by knockdown of either SUMO or UBC9, and the mortalities of shrimp were also reduced. These results indicated that FcSUMO and FcUBC9 played important roles in WSSV infection.

  12. 17 CFR 240.3a4-1 - Associated persons of an issuer deemed not to be brokers.

    Science.gov (United States)

    2010-04-01

    ... reclassification of securities of the issuer, a merger or consolidation or a similar plan of acquisition involving... investment company (or registered separate account); an insurance company; a bank; a savings and loan association; a trust company or similar institution supervised by a state or federal banking authority; or...

  13. The Effect of microRNAs in the Regulation of Human CYP3A4: a Systematic Study using a Mathematical Model

    Science.gov (United States)

    Wei, Zhiyun; Jiang, Songshan; Zhang, Yiting; Wang, Xiaofei; Peng, Xueling; Meng, Chunjie; Liu, Yichen; Wang, Honglian; Guo, Luo; Qin, Shengying; He, Lin; Shao, Fengmin; Zhang, Lirong; Xing, Qinghe

    2014-03-01

    CYP3A4 metabolizes more than 50% of the drugs on the market. The large inter-individual differences of CYP3A4 expression may contribute to the variability of human drug responses. Post-transcriptional regulation of CYP3A4 is poorly understood, whereas transcriptional regulation has been studied much more thoroughly. In this study, we used multiple software programs to predict miRNAs that might bind to CYP3A4 and identified 112 potentially functional miRNAs. Then a luciferase reporter system was used to assess the effect of the overexpression of each potentially functional miRNA in HEK 293T cells. Fourteen miRNAs that significantly decreased reporter activity were measured in human liver samples (N = 27) as candidate miRNAs. To establish a more effective way to analyze in vivo data for miRNA candidates, the relationship between functional miRNA and target mRNA was modeled mathematically. Taking advantage of this model, we found that hsa-miR-577, hsa-miR-1, hsa-miR-532-3p and hsa-miR-627 could significantly downregulate the translation efficiency of CYP3A4 mRNA in liver. This study used in silico, in vitro and in vivo methods to progressively screen functional miRNAs for CYP3A4 and to enhance our understanding of molecular events underlying the large inter-individual differences of CYP3A4 expression in human populations.

  14. Enzymes involved in apoptosis of medical protozoan%原虫凋亡中相关酶类研究进展

    Institute of Scientific and Technical Information of China (English)

    杨秋林(综述); 许丽芳(审校)

    2015-01-01

    近年鉴定到Metacaspase、组织蛋白酶B、组织蛋白酶D、核酸酶( Endo G、Tatd 、Fen-1)等分子参与了原虫的凋亡,但不清楚这些分子在凋亡信号途径中的位置及相互关系。实验结果显示,Metacaspase可能具有调节原虫凋亡与细胞周期等功能,但是Metacaspase与Caspase的活化方式及作用底物不同,提示原虫存在与多细胞动物不同的凋亡途径;在疟原虫及利什曼原虫中发现其线粒体及溶酶体参与了其凋亡,提示原虫可能具有类似哺乳动物的溶酶体-线粒体凋亡途径;在利什曼原虫和锥虫中发现存在通过核酸酶而不依赖Caspase的凋亡途径。阐明原虫的凋亡机制有助于通过设计新药物诱导原虫凋亡来达到治疗疾病的目的。%Recently, a number of molecules which are involved in the apoptosis in protozoa have been discovered, for ex-ample:metacaspase, cathepsin B and D, nuclease( Endo G, Tatd, Fen-1 et al) .So far the locations of these molecules in the signal pathway of protozoan apoptosis and the relationship associated to these molecules in the signal pathway have not been identified.The results of experiments showed that the activation mode is different between metacaspase and caspase. The substrates are also different for metacaspase and caspase.The results suggested that the apoptosis mechanism is different between protozoan and metazoan.Metacaspase has multifunction, for example: control of apoptosis, cell cycle and clear-ance of insoluble protein aggregates.The results of experiment showed that mitochondrial and lysosomal body are involved in the apoptosis in protozoan, possibly, there are mitochondrial-lysosomal body pathway and caspase-independent pathway which control the apoptosis in protozoan.Uncovering clearly the mechanism of apoptosis in protozoan is benefit for design of new drugs in prevention and treatment of diseases caused by the protozoa.

  15. The strawberry (Fragariaxananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae.

    Science.gov (United States)

    Molina-Hidalgo, Francisco J; Franco, Antonio R; Villatoro, Carmen; Medina-Puche, Laura; Mercado, José A; Hidalgo, Miguel A; Monfort, Amparo; Caballero, José Luis; Muñoz-Blanco, Juan; Blanco-Portales, Rosario

    2013-04-01

    Pectins are essential components of primary plant cell walls and middle lamellae, and are related to the consistency of the fruit and its textural changes during ripening. In fact, strawberries become soft as the middle lamellae of cortical parenchyma cells are extensively degraded during ripening, leading to the observed short post-harvest shelf life. Using a custom-made oligonucleotide-based strawberry microarray platform, a putative rhamnogalacturonate lyase gene (FaRGlyase1) was identified. Bioinformatic analysis of the FaRGlyase1 sequence allowed the identification of a conserved rhamnogalacturonate lyase domain, which was also present in other putative RGlyase sequences deposited in the databases. Expression of FaRGlyase1 occurred mainly in the receptacle, concurrently with ripening, and it was positively regulated by abscisic acid and negatively by auxins. FaRGLyase1 gene expression was transiently silenced by injecting live Agrobacterium cells harbouring RNA interference constructs into fruit receptacles. Light and electron microscopy analyses of these transiently silenced fruits revealed that this gene is involved in the degradation of pectins present in the middle lamella region between parenchymatic cells. In addition, genetic linkage association analyses in a strawberry-segregating population showed that FaRGLyase1 is linked to a quantitative trait loci linkage group related to fruit hardness and firmness. The results showed that FaRGlyase1 could play an important role in the fruit ripening-related softening process that reduces strawberry firmness and post-harvest life.

  16. The polysulphate binding domain of human proacrosin/acrosin is involved in both the enzyme activation and spermatozoa-zona pellucida interaction.

    Science.gov (United States)

    Moreno, R D; Sepúlveda, M S; de Ioannes, A; Barros, C

    1998-02-01

    Mammalian acrosin is a protease present as a zymogen in the acrosome of a non-reacted mammalian sperm, and in vitro is able to carry out limited hydrolysis of homologous and heterologous zonae pellucidae. On the other hand, sulphated polymers and zona pellucida glycoproteins bind to acrosin on a domain different from the active site, named the polysulphate binding domain (PSBD). Thus it is believed that acrosome-reacted spermatozoa bind to glycan chains of the zona pellucida through PSBD participating as secondary binding receptor. The aim of the present work was to study the role of PSBD during both human gamete interaction and acrosin activation. In this work we present evidence that the anti-human acrosin monoclonal antibody C5F10 is directed to an epitope located on or near the PSBD on human proacrosin/acrosin. Moreover, we show that this antibody is able to inhibit both proacrosin activation induced by fucoidan and the sperm binding to the zona pellucida. Our results suggest that the same PSBD is involved in both sperm secondary binding, during zona pellucida penetration, and proacrosin activation. PMID:9652074

  17. Involvement of a new enzyme, glyoxal oxidase, in extracellular H/sub 2/O/sub 2/ production by Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, P.J.; Kirk, K.

    1987-05-01

    The importance of extracellular H/sub 2/O/sub 2/ in lignin degradation has become increasingly apparent with the recent discovery of H/sub 2/O/sub 2/-requiring ligninases produced by white-rot fungi. Here the authors describe a new H/sub 2/O/sub 2/-producing activity of Phanerochaete chrysosporium that involves extracellular oxidases able to use simple aldehyde, ..cap alpha..-hydroxycarbonyl, or..cap alpha..-dicarbonyl compounds as substrates. The activity is expressed during secondary metabolism, when the ligninases are also expressed. Analytical isoelectric focusing of the extracellular proteins, followed by activity staining, indicated that minor proteins with broad substrate specificities are responsible for the oxidase activity. Two of the oxidase substrates, glyoxal and methylglyoxal, were also identified, as their quinoxaline derivatives, in the culture fluid as secondary metabolites. The significance of these findings is discussed with respect to lignin degradation and other proposed systems for H/sub 2/O/sub 2/ production in P. chrysosporium.

  18. The Effect of CYP2B6, CYP2D6, and CYP3A4 Alleles on Methadone Binding: A Molecular Docking Study

    Directory of Open Access Journals (Sweden)

    Nik Nur Syazana Bt Nik Mohamed Kamal

    2013-01-01

    Full Text Available Current methadone maintenance therapy (MMT is yet to ensure 100% successful treatment as the optimum dosage has yet to be determined. Overdose leads to death while lower dose causes the opioid withdrawal effect. Single-nucleotide polymorphisms (SNP in cytochrome P450s (CYPs, the methadone metabolizers, have been showen to be the main factor for the interindividual variability of methadone clinical effects. In this study, we investigated the effect of SNPs in three major methadone metabolizers (CYP2B6, CYP2D6, and CYP3A4 on methadone binding affinity. Results showed that CYP2B6*11, CYP2B6*12, CYP2B6*18, and CYP3A4*12 have significantly higher binding affinity to R-methadone compared to wild type. S-methadone has higher binding affinity in CYP3A4*3, CYP3A4*11, and CYP3A4*12 compared to wild type. R-methadone was shown to be the active form of methadone; thus individuals with CYP alleles that binds better to R-methadone will have higher methadone metabolism rate. Therefore, a higher dosage of methadone is necessary to obtain the opiate effect compared to a normal individual and vice versa. These results provide an initial prediction on methadone metabolism rate for individuals with mutant type CYP which enables prescription of optimum methadone dosage for individuals with CYP alleles.

  19. N-Terminal Region of GbIspH1, Ginkgo biloba IspH Type 1, May Be Involved in the pH-Dependent Regulation of Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Bok-Kyu Shin

    2015-01-01

    Full Text Available GbIspH1, IspH type 1 in Ginkgo biloba chloroplast, is the Fe/S enzyme catalyzing the reductive dehydroxylation of HMBPP to isopentenyl diphosphate (IPP and dimethylallyl diphosphate (DMAPP at the final step of methylerythritol phosphate pathway in chloroplast. Compared to the bacterial IspH, plant IspH, including GbIspH1, has an additional polypeptide chain at the N-terminus. Here, biochemical function of the N-terminal region of GbIspH1 was investigated with the N-terminal truncated GbIspH1 (GbIspH1-truncated. Both wild type GbIspH1 (GbIspH1-full and GbIspH1-truncated were catalytically active and produced IPP and DMAPP in a ratio of 15 : 1. Kinetic parameters of KM (17.3 ± 1.9 and 14.9 ± 2.3 µM and kcat (369 ± 10 and 347 ± 12 min−1 at pH 8.0 were obtained for GbIspH1-full and GbIspH1-truncated, respectively. Interestingly, GbIspH1-full and GbIspH1-truncated showed significantly different pH-dependent activities, and the maximum enzyme activities were obtained at pH 8.0 and 7.5, respectively. However, catalytic activation energies (Ea of GbIspH1-full and GbIspH1-truncated were almost the same with 36.5 ± 1.6 and 35.0 ± 1.9 kJ/mol, respectively. It was suggested that the N-terminal region of GbIspH1 is involved in the pH-dependent regulation of enzyme activity during photosynthesis.

  20. Protein Phosphatase 2Cβl Regulates Human Pregnane X Receptor-Mediated CYP3A4 Gene Expression in HepG2 Liver Carcinoma Cells

    OpenAIRE

    Pondugula, Satyanarayana R.; Tong, Alexander A.; Wu, Jing; Cui, Jimmy; Chen, Taosheng

    2010-01-01

    The human pregnane X receptor (hPXR) regulates the expression of CYP3A4, which plays a vital role in hepatic drug metabolism and has considerably reduced expression levels in proliferating hepatocytes. We have recently shown that cyclin-dependent kinase 2 (CDK2) negatively regulates hPXR-mediated CYP3A4 gene expression. CDK2 can be dephosphorylated and inactivated by protein phosphatase type 2C beta isoform long (PP2Cβl), a unique phosphatase that was originally cloned from human liver. In th...

  1. A Comprehensive in vitro and in silico Analysis of Antibiotics that Activate PXR and Induce CYP3A4 in Liver and Intestine

    OpenAIRE

    Yasuda, Kazuto; Ranade, Aarati; Venkataramanan, Raman; Strom, Stephen; Chupka, Jonathan; Ekins, Sean; Schuetz, Erin; Bachmann, Kenneth

    2008-01-01

    We have investigated several in silico and in vitro methods in order to improve our ability to predict potential drug interactions of antibiotics. Our focus was to identify those antibiotics that activate PXR and induce CYP3A4 in human hepatocytes and intestinal cells. Human PXR activation was screened using reporter assays in HepG2 cells, kinetic measurements of PXR activation were made in DPX-2 cells, and induction of CYP3A4 expression and activity was verified by quantitative PCR, immunobl...

  2. TRANSFECTED MDCK CELL LINE WITH ENHANCED EXPRESSION OF CYP3A4 AND P-GLYCOPROTEIN AS A MODEL TO STUDY THEIR ROLE IN DRUG TRANSPORT AND METABOLISM

    OpenAIRE

    Kwatra, Deep; Budda, Balasubramanyam; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Ashim K. Mitra

    2012-01-01

    The aim of this study was to characterize and utilize MDCK cell line expressing CYP3A4 and P-glycoprotein as an in vitro model for evaluating drug-herb and drug-drugs of abuse interactions. MDCK cell line simultaneously expressing P-gp and CYP3A4 (MMC) was developed and characterized by using expression and activity studies. Cellular transport study of 200 μM cortisol was performed to determine their combined activity. The study was carried across MDCK-WT, MDCK-MDR1 and MMC cell lines. Simila...

  3. Bacterial enzymes involved in lignin degradation

    NARCIS (Netherlands)

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-01-01

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the (bio)p

  4. Trial of the correlation between cytochrome oxidase CYP3A4 with the susceptibility of paclitaxel-based regimen for advanced gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Jianwei Yang; Yan Meng; Ying Su; Zeng Chen; Wei Gao; Jinyuan Lin; Jing Jia; Huamei Lin

    2014-01-01

    Objective: The aim of the study was to investigate the relationship between susceptibility of paclitaxel-based regimen and gene polymorphisms of cytochrome oxidase CYP3A4 for advanced gastric cancer.Methods: Peripheral venous blood sample of 53 advanced gastric cancer patients were enroled to test the mutation of CYP3A4 gene by denaturing high performance liquid chromatography (DHPLC) and DNA sequencing. The relation between the eficacy of paclitaxel-based regimen and CYP3A4 gene polymorphisms was further analyzed.Results: DHPLC indicated that among the 53 patients, 21 cases showed biomodal type (mutation) and 32 cases were of unimodal type (wild-type). Sequencing results showed that the deletion mutation was found at the 27th basic group of C in exon 10 of CYP3A4 gene. The response rate (RR) and disease control rate (DCR) of wild-type group were 40.6% and 84.4%, while in mutation group they were 33.3% and 85.7%, respective-ly, with no significances between the two groups (P > 0.05). Of al 53 cases, the median progression-free survival (PFS) was 6.5 months (95% CI: 3.576-9.424 months), and the median overal survival (OS) was 11.0 months (95% CI: 6.955-15.045 months). The median PFS and OS in wild-type group had no diferences compared with those in mutation group (7.0 months vs. 7.0 months,P > 0.05; 10.0 months vs. 14.0 months,P > 0.05). Between wild-type and mutation groups, the median PFS of patients applied with oxaliplatin containing regimen and the median OS in patients applied with/without oxaliplatin had no significant diferences (P > 0.05), while the median PFS in patients received non-oxaliplatin regime had statistical diferences (P = 0.024). The median PFS and OS in patients receiving 3-drug or 2-drug regimes had no correlation with CYP3A4 gene polymorphisms. The adverse efects in the two groups were mild, mainly in grades 1-2. The common adverse efects were anorexia, nausea/vomiting and leucopenia.Conclusion: Deletion mutation was located in the 27th

  5. Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population

    Directory of Open Access Journals (Sweden)

    Jun Hyun Han

    2015-04-01

    Full Text Available In this study, we evaluated genetic variants of the androgen metabolism genes CYP17A1, CYP3A4, and CYP3A43 to determine whether they play a role in the development of prostate cancer (PCa in Korean men. The study population included 240 pathologically diagnosed cases of PCa and 223 age-matched controls. Among the 789 single-nucleotide polymorphism (SNP database variants detected, 129 were reported in two Asian groups (Han Chinese and Japanese in the HapMap database. Only 21 polymorphisms of CYP17A1, CYP3A4, and CYP3A43 were selected based on linkage disequilibrium in Asians (r2 = 1, locations (SNPs in exons were preferred, and amino acid changes and were assessed. In addition, we performed haplotype analysis for the 21 SNPs in CYP17A1, CYP3A4, and CYP3A43 genes. To determine the association between genotype and haplotype distributions of patients and controls, logistic analyses were carried out, controlling for age. Twelve sequence variants and five major haplotypes were identified in CYP17A1. Five sequence variants and two major haplotypes were identified in CYP3A4. Four sequence variants and four major haplotypes were observed in CYP3A43. CYP17A1 haplotype-2 (Ht-2 (odds ratio [OR], 1.51; 95% confidence interval [CI], 1.04-2.18 was associated with PCa susceptibility. CYP3A4 Ht-2 (OR: 1.87; 95% CI: 1.02-3.43 was associated with PCa metastatic potential according to tumor stage. rs17115149 (OR: 1.96; 95% CI: 1.04-3.68 and CYP17A1 Ht-4 (OR: 2.01; 95% CI: 1.07-4.11 showed a significant association with histologic aggressiveness according to Gleason score. Genetic variants of CYP17A1 and CYP3A4 may play a role in the development of PCa in Korean men.

  6. Expression and Clinical Significance of P-gp and CYP3A4 in Diffuse Large B-cell Lymphoma%P-gp和CYP3A4在弥漫性大B细胞淋巴瘤中的表达及临床意义

    Institute of Scientific and Technical Information of China (English)

    张发良; 王子安; 陶言言; 毕国斌

    2012-01-01

    Objective:To study the expression of P - glycoprotein ( P-gp) and cytochromeP4503A4 (CYP3A4) in diffuse large B - cell lymphoma ( DLBCL) : to explore the role of the two proteins in multidrug resistance and the clinical significance in DLBCL. Methods: 60 cases of DLBCL paraffin wax samples were selected. Immunohistochemistry was used to examine the expression of P-gp, CYP3A4 respectively. The relationship between P-gp, CYP3A4 and clinicopathological parameters, chemosensitivity and prognosis of DLBCL cases were analyzed. Results: 1. The positive expression rate of P-gp in DLBCL tissues was 33.3% and the positive expression rate of CYP3A4 was 58.3%. 2. Significant positive correlation was found between the expressions of P-gp and CYP3A4 in DLBCL tissues(rs =0.392,P<0.05). 3. The chemotherapy ORR was significantly lower in P-gp +/CYP3A4 + team than that in P-gp -/CYP3A4 - team ( P <0.05) , but the refractory rate was significantly higher in P-gp +/CYP3A4 + team than that in P-gp -/CYP3A4 - team ( P <0.05). 4. The overall survival of P-gp - team, CYP3A4 - team were longer than that of P-gp + team, CYP3A4 + team. The diversity between the two teams had statistical significance ( P < 0.05 ). Conclusions: 1. There is a higher expression of P-gp, CYP3A4 in DLBCL tissues, and the two proteins may be useful markers of prognosis in DLBCL 2. P-gp and CYP3A4 are important indicators to estimate Chemo - sensitivity in DLBCL, and there is a synergistic effect between P-gp and CYP3A4 on multidrug resistance in DLBCL. So detecting aggregated expression of the two proteins may have an important sense to select effective drug and set individualized chemotherapy regimens.%目的:研究P-糖蛋白(P-gp)和细胞色素P450 3A4( CYP3A4)在弥漫性大B细胞淋巴瘤( DLBCL)中的表达情况,并探讨二者在DLBCL多药耐药中的作用.方法:收集60例DLBCL石蜡标本,采用免疫组织化学方法检测其P-gp、CYP3A4的表达情况,并分析二者的相关性及其与DLBCL国

  7. Biotransformations of 6',7'-dihydroxybergamottin and 6',7'-epoxybergamottin by the citrus-pathogenic fungi diminish cytochrome P450 3A4 inhibitory activity.

    Science.gov (United States)

    Myung, Kyung; Manthey, John A; Narciso, Jan A

    2012-03-15

    Penicillium digitatum, as well as five other citrus pathogenic species, (Penicillium ulaiense Link, Geotrichum citri Link, Botrytis cinerea P. Micheli ex Pers., Lasiodiplodia theobromae (Pat.) Griffon & Maubl., and Phomopsis citri (teleomorph Diaporthe citri)) were observed to convert 6',7'-epoxybergamottin (1) into 6',7'-dihydroxybergamottin (2), bergaptol (3), and an opened lactone ring metabolite 6,7-furano-5-(6',7'-dihydroxy geranyloxy)-2-hydroxy-hydrocoumaric acid (4). Metabolism of 2 by these fungi also proceeded to 4. The structure of 4 was established by high resolution mass spectrometry and (1)H and (13)C NMR techniques. The inhibitory activity of 4 towards human intestinal cytochrome P450 3A4 (CYP3A4) was greatly decreased (IC(50) >172.0 μM) compared to 2 (IC(50)=0.81 μM). PMID:22342630

  8. Effect of ketoconazole-mediated CYP3A4 inhibition on clinical pharmacokinetics of panobinostat (LBH589), an orally active histone deacetylase inhibitor

    OpenAIRE

    Hamberg, Paul; Woo, Margaret M.; Chen, Lin-Chi; Verweij, Jaap; Porro, M.G.; Zhao, Ling; Li, Weili; van der Biessen, Diane; Sharma, Hari; Hengelage, Thomas; Jonge, Maja

    2011-01-01

    Abstract Purpose Panobinostat is partly metabolized by CYP3A4 in vitro. This study evaluated the effect of a potent CYP3A inhibitor, ketoconazole, on the pharmacokinetics and safety of panobinostat. Methods Patients received a single panobinostat oral dose on day 1, followed by 4 days wash-out period. On days 5?9, ketoconazole was administered. On day 8, a single panobinostat dose was co-administered with ...

  9. Two surfaces of cytochrome b5 with major and minor contributions to CYP3A4-catalyzed steroid and nifedipine oxygenation chemistries.

    Science.gov (United States)

    Peng, Hwei-Ming; Auchus, Richard J

    2014-01-01

    Conserved human cytochrome b5 (b5) residues D58 and D65 are critical for interactions with CYP2E1 and CYP2C19, whereas E48 and E49 are essential for stimulating the 17,20-lyase activity of CYP17A1. Here, we show that b5 mutations E48G, E49G, D58G, and D65G have reduced capacity to stimulate CYP3A4-catalyzed progesterone and testosterone 6β-hydroxylation or nifedipine oxidation. The b5 double mutation D58G/D65G fails to stimulate these reactions, similar to CYP2E1 and CYP2C19, whereas mutation E48G/E49G retains 23-42% of wild-type stimulation. Neither mutation impairs the activity stimulation of wild-type b5, nor does mutation D58G/D65G impair the partial stimulation of mutations E48G or E48G/E49G. For assays reconstituted with a single phospholipid, phosphatidyl serine afforded the highest testosterone 6β-hydroxylase activity with wild-type b5 but the poorest activity with b5 mutation E48G/E49G, and the activity stimulation of mutation E48G/E49G was lost at [NaCl]>50mM. Cross-linking of CYP3A4 and b5 decreased in the order wild-type>E48G/E49G>D58G/D65G and varied with phospholipid. We conclude that two b5 acidic surfaces, primarily the domain including residues D58-D65, participate in the stimulation of CYP3A4 activities. Our data suggest that a minor population of CYP3A4 molecules remains sensitive to b5 mutation E48G/E49G, consistent with phospholipid-dependent conformational heterogeneity of CYP3A4. PMID:24256945

  10. Molecular cloning and characterization of Vigna mungo processing enzyme 1 (VmPE-1), an asparaginyl endopeptidase possibly involved in post-translational processing of a vacuolar cysteine endopeptidase (SH-EP).

    Science.gov (United States)

    Okamoto, T; Minamikawa, T

    1999-01-01

    Asparaginyl endopeptidase is a cysteine endopeptidase that has strict substrate specificity toward the carboxy side of asparagine residues. Vigna mungo processing enzyme 1, termed VmPE-1, occurs in the cotyledons of germinated seeds of V. mungo, and is possibly involved in the post-translational processing of a vacuolar cysteine endopeptidase, designated SH-EP, which degrades seed storage protein. VmPE-1 also showed a substrate specificity to asparagine residues, and its enzymatic activity was inhibited by NEM but not E-64. In addition, purified VmPE-1 had a potential to process the recombinant SH-EP precursor to its intermediate in vitro. cDNA clones for VmPE-1 and its homologue, named VmPE-1A, were identified and sequenced, and their expressions in the cotyledons of V. mungo seedlings and other organs were investigated. VmPE-1 mRNA and SH-EP mRNA were expressed in germinated seeds at the same stage of germination although the enzymatic activity of VmPE-1 rose prior to that of SH-EP. The level of VmPE-1A mRNA continued increasing as germination proceeded. In roots, stems and leaves of fully grown plants, and in hypocotyls, VmPE-1 and VmPE-1A were little expressed. We discuss possible functions of VmPE-1 and VmPE-1A in the cotyledons of germinated seeds.

  11. Red cell enzymes.

    Science.gov (United States)

    Paniker, N V

    1975-03-01

    As compared to other cells of the body, the mammalian red cell has one of the simplest structural organizations. As a result, this cell has been extensively used in studies involving the structure, function, and integrity of cell membranes as well as cytoplasmic events. Additionally, the metabolic activities of the red blood cell are also relatively simple. During the past quarter century or so, an ocean of knowledge has been gathered on various aspects of red cell metabolism and function. The fields of enzymes, hemoglobin, membrane, and metabolic products comprise the major portion of this knowledge. These advances have made valuable contributions to biochemistry and medicine. Despite these favorable aspects of this simple, anucleated cell, it must be conceded that our knowledge about the red cell is far from complete. We are still in the dark concerning the mechanism involved in several aspects of its membrane, hemoglobin, enzymes, and a large number of other constituents. For example, a large number of enzymes with known catalytic activity but with unknown function have eluded investigators despite active pursuit. This review will be a consolidation of our present knowledge of human red cell enzymes, with particular reference to their usefulness in the diagnosis and therapy of disease. Owing to the multitude of publications by prominent investigators on each of the approximately 50 enzymes discussed in this review, it was impossible to cite a majority of them.

  12. Metabolism of novel anti-HIV agent 3-cyanomethyl-4-methyl-DCK by human liver microsomes and recombinant CYP enzymes

    Institute of Scientific and Technical Information of China (English)

    Xiao-mei ZHUANG; Jing-ting DENG; Hua LI; Wei-li KONG; Jin-xiu RUAN; Lan XIE

    2011-01-01

    Aim:To investigate the metabolism of 3-cyanomethyl-4-methyl-DCK (CMDCK),a novel anti-HIV agent,by human liver microsomes (HLMs) and recombinant cytochrome P450 enzymes (CYPs).Methods:CMDCK was incubated with HLMs or a panel of recombinant cytochrome P450 enzymes including CYP1A2,2B6,2C8,2C9,2C19,2D6,3A4,and 3A5.LC-ion trap mass spectrometry was used to separate and identify CMDCK metabolites.In the experiments with recombinant cytochrome P450 enzymes,specific chemical inhibitors combined with CYP antibodies were used to identify the CYP isoforms involved in CMDCK metabolism.Results:CMDCK was rapidly and extensively metabolized by HLMs.Its intrinsic hepatic clearance estimated from the in vitro data was 19.4 mL.min-1·kg-1,which was comparable to the mean human hepatic blood flow rate (20.7 mL·min-1·kg-1).The major metabolic pathway of CMDCK was oxidation,and a total of 14 metabolites were detected.CYP3A4 and 3A5 were found to be the principal CYP enzymes responsible for CMDCK metabolism.Conclusion:CMDCK was metabolized rapidly and extensively in human hepatic microsomes to form a number of oxidative metabolites.CYP3A4 and 3A5 were the predominant enzymes responsible for the oxidation of CMDCK.

  13. 26种中药提取物对CYP3A4和CYP2D6代谢的抑制作用

    Institute of Scientific and Technical Information of China (English)

    Iwata; H; 郑晓燕(摘译); 阴赪宏(校)

    2005-01-01

    研究认为,细胞色素P450(CYP)酶与药物相互作用。本次在NADPH-生成体系存在的情况下,以单味中药甲醇提取物对人肝细胞微粒体进行预培养,检测26种中药对CYP3A4和CYP2D6的抑制作用。

  14. Catabolism of methyl ter-butyl ether (MTBE): characterization of the enzymes of Mycobacterium austroafricanum IFP 2012 involved in MTBE degradation; Catabolisme du methyl tert-butyl ether (MTBE): caracterisation des enzymes impliquees dans la degradation du MTBE chez Mycobacterium austroafricanum IFP 2012

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Ferreira, N.

    2005-11-15

    Methyl tert-butyl ether (MTBE) is added to gasoline to meet the octane index requirement. its solubility in water and its poor biodegradability made the use of MTBE a great environmental concern, particularly regarding aquifers. We previously isolated M austroafricanum IFP 2012 able to use MTBE as a sole source of carbon and energy and the MTBE pathway was partially characterized. In the present study, which aimed at isolating the genes involved in MTBE biodegradation in order to use them for estimation of MTBE biodegradation capacities in contaminated environment, we isolated a new M. austroafricanum strain, IFP 2015. A new degradation intermediate, the 2-methyl 1,2-propane-diol (2-M1,2-PD), the product of tert-butanol (TBA) oxidation, was identified. We also determined the enzymes induced during growth of M. austroafricanum IFP 2012 on MTBF. Then, using the tools of protein analysis and of molecular biology, we isolated and cloned the mpd genes cluster in the plasmid pCL4D. Heterologous expression of the recombinant plasmid in M smegmatis tmc2 155, showed the involvement of an 2-M1,2-PD dehydrogenase (MpdB) and a hydroxy-iso-butyr-aldehyde dehydrogenase (MpdC), encoded by mpdB and mpdC, respectively. Both enzymes were responsible for the conversion of 2-M 1,2-PD to hydroxy-isobutyric acid (HIBA). A further survey of different M austroafricanum strains, including IFP 2012, IFP 2015 and JOBS (ex-M vaccae) showed the link between the ability to grow on C{sub 2} to C{sub 16} n-alkanes and the MTBE and TBA degradation capacities. The alkB gene was partially sequenced in all these strains. Expression of alkB was demonstrated in M. austroafricanum IFP 2012 after growth on propane, hexane, hexadecane and TBA. Finally, we identified 2-propanol as the intermediate of HIBA degradation. The gene encoding the 2-propanol:p-N,N'-dimethyl-4-nitroso-aniline (NDMA) oxidoreductase was detected M austroafricanum IFP 2012. (author)

  15. Food Enzymes

    Science.gov (United States)

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  16. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M

    1985-01-01

    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  17. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity.

    Science.gov (United States)

    Mazzari, Andre L D A; Milton, Flora; Frangos, Samantha; Carvalho, Ana C B; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  18. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity

    Science.gov (United States)

    Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p Solanum paniculatum (-44%, p Solanum paniculatum.

  19. Purification and preliminary characterization of (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid synthase, an enzyme involved in biosynthesis of the antitumor agent sparsomycin.

    Science.gov (United States)

    Parry, R J; Hoyt, J C

    1997-02-01

    Sparsomycin is an antitumor antibiotic produced by Streptomyces sparsogenes. Biosynthetic experiments have previously demonstrated that one component of sparsomycin is derived from L-tryptophan via the intermediacy of (E)-3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid and (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid. An enzyme which catalyzes the conversion of (E)-3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid to (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid has been purified 740-fold to homogeneity from S. sparsogenes. The molecular mass of the native and denatured enzyme was 87 kDa, indicating that the native enzyme is monomeric. The enzyme required NAD+ for activity but lacked rigid substrate specificity, since analogs of both NAD+ and 3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid could serve as substrates. The enzyme was very weakly inhibited by mycophenolic acid. Monovalent cations were required for activity, with potassium ions being the most effective. The enzyme exhibited sensitivity toward diethylpyrocarbonate and some thiol-directed reagents, and it was irreversibly inhibited by 6-chloropurine. The properties of the enzyme suggest it is mechanistically related to inosine-5'-monophosphate dehydrogenase. PMID:9023226

  20. Alkylating enzymes.

    Science.gov (United States)

    Wessjohann, Ludger A; Keim, Jeanette; Weigel, Benjamin; Dippe, Martin

    2013-04-01

    Chemospecific and regiospecific modifications of natural products by methyl, prenyl, or C-glycosyl moieties are a challenging and cumbersome task in organic synthesis. Because of the availability of an increasing number of stable and selective transferases and cofactor regeneration processes, enzyme-assisted strategies turn out to be promising alternatives to classical synthesis. Two categories of alkylating enzymes become increasingly relevant for applications: firstly prenyltransferases and terpene synthases (including terpene cyclases), which are used in the production of terpenoids such as artemisinin, or meroterpenoids like alkylated phenolics and indoles, and secondly methyltransferases, which modify flavonoids and alkaloids to yield products with a specific methylation pattern such as 7-O-methylaromadendrin and scopolamine.

  1. Spectroscopic studies and molecular docking on the interaction of organotin antitumor compound bis[2,4-difluoro-N-(hydroxy-⟨κ⟩O)benzamidato-⟨κ⟩O]diphenyltin(IV) with human cytochrome P450 3A4 protease

    Science.gov (United States)

    Wei, Ying; Niu, Lin; Liu, Xinxin; Zhou, Hongyan; Dong, Hongzhou; Kong, Depeng; Li, Yunlan; Li, Qingshan

    2016-06-01

    A novel organotin DFDPT was synthesized and characterized by elemental analysis, IR, 1H, 13C, 119Sn, NMR techniques,etc. In order to investigate profoundly the relationship between DFDPT with human CYP3A4 proteaset and anticancer molecular mechanism of DFDPT, the intercalative mode of binding of DFDPT with CYP3A4 under physiological conditions were comprehensively evaluated using steady state, synchronous, three-dimensional fluorescence spectroscopy,circular dichroism and molecular docking. Fluorescence emission data showed that CYP3A4 fluorescence affected by DFDPT was a static quenching procedure, which implied that DFDPT-CYP3A4 complex had been formed. Apparent binding constants Kb of CYP3A4 with compound at 298 and 310 K were 2.51 × 107 and 3.09 × 105, respectively. The binding sites number n was 1.64 and 1.22, respectively. The thermodynamic parameters ΔH and ΔS of the DFDPT-CYP3A4 complex were negative, which indicated that their interaction was driven mainly by hydrogen bonding and van der Waals force. The binding of DFDPT-CYP3A4 was spontaneous process in which ΔG was negative. The synchronous results showed DFDPT induced conformational changes of CYP3A4 protein. Three-dimensional fluorescence and circular dichroism spectra results also revealed conformation of CYP3A4 protein had been possible changed in the presence of DFDPT. Molecular docking was used to study the interaction orientation between DFDPT and CYP3A4 protease. The results indicated that DFDPT interacted with a panel of amino acids in the active sites of CYP3A4 protein mainly through formation of hydrogen bond. Furthermore, the predicted binding mode of DFDPT into CYP3A4 appeared to adopt an orientation with interactions among Arg105, Ser119 and Thr309.

  2. Engineering enzymes

    OpenAIRE

    Dutton, P. Leslie; Moser, Christopher C.

    2011-01-01

    Fundamental research into bioinorganic catalysis of the kind presented at this Faraday Discussion has the potential to turn inspiration drawn from impressive natural energy and chemical transformations into artificial catalyst constructions useful to mankind. Creating bio-inspired artificial constructions requires a level of understanding well beyond simple description of structures and mechanisms of natural enzymes. To be useful, such description must be augmented by a practical sense of str...

  3. 定量5-羟奥美拉唑和奥美拉唑砜以探测中国人肝微粒体中CYP2C19和CYP3A4的活性%Probing CYP2C19 and CYP3A4 activities in Chinese liver microsomes by quantification of 5-hydroxyomeprazole and omeprazole suiphone

    Institute of Scientific and Technical Information of China (English)

    舒焱; 王连生; 肖卫民; 王伟; 黄松林; 周宏灏

    2000-01-01

    AIM: To develop an analytical method for simultaneous quantification of 5-hydroxyomeprazole (5-OH-OP) and omeprazole suffone (OPS), and explore whether omeprazole (OP) is an appropriate phenotypic probe for CYP2C19 and CYP3A4 in Chinese liver microsomes.METHODS: OP metabolism in vitro was conducted in Chinese liver microsomes, and the major metabolites 5-OH-OP and OPS were determined using high pressure liquid chromatography (HPLC). Monoclonal antibodies anti-CYP2C8/9/19 and anti-CYP3A4 were employed to conduct inhibition experiments. The protein contents of CYP2C19 and CYP3A4 were quantified using Western blot analysis and densitometric scanning. RESULTS:5-OH-OP and OPS gave a baseline resolution in the HPLC analysis. The detection limits for both compounds were 0.01 nmol and the recovery (98 % -102 %) had good precision with relative standard deviation of 87 % ). At a substrate concentration of 2 μmol/L OP, good correlations were found between OP 5-hydroxylation and S-mephenytoin 4'-hydroxylation activities ( r = 0.72, P 87%);在底物浓度为2 μmol/L OP时,中国人肝微粒体中OP的5-羟化与美芬妥英的4'-羟化活性之间(r=0.72,P<0.01)、OP的5-羟化活性与CYP2C19含量之间(r=0.82,P<0.01)以及OP的硫代氧化活性与CYP3A4含量之间(r=0.78,P<0.01)均有很好的相关性.结论:中国人肝微粒体中OP的代谢主要由CYP2C19和CYP3A4介导;采用本研究建立的HPLC方法,在适当的底物浓度下,OP能用于体外探测中国人肝微粒体中CYP2C19及CYP3A4的活性.

  4. In vitro effects of four native Brazilian medicinal plants in CYP3A4 mRNA gene expression, glutathione levels and P-glycoprotein activity.

    Directory of Open Access Journals (Sweden)

    Andre Luis Dias Araujo Mazzari

    2016-08-01

    Full Text Available Erythrina mulungu Benth. (Fabaceae, Cordia verbenacea A. DC. (Boraginaceae, Solanum paniculatum L. (Solanaceae and Lippia sidoides Cham. (Verbenaceae are medicinal plants species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI. In this work we assess non-toxic concentrations (100μg/mL of their infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp activity in vincristine-resistant Caco-2 cells (Caco-2 VCR. Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (two-fold decrease, p<0.05, this being correlated with an antagonist effect upon hPXR (EC50 = 0.38mg/mL. Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p<0.001, Lippia sidoides (-12%, p<0.05 and Cordia verbenacea (-47%, p<0.001. The later plant extract was able to decrease GGT activity (-48%, p<0.01. In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum.

  5. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity

    Science.gov (United States)

    Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  6. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi;

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  7. 淫羊藿总黄酮对大鼠肝微粒体CYP1A2、CYP3A4和CYP2E1活性的影响%Effect of total flavonoids of epimedium on liver microsomal CYP1A2, CYP3A4 and CYP2E1 activities in rats

    Institute of Scientific and Technical Information of China (English)

    胡道德; 姚慧娟; 顾磊; 王松坡; 刘皋林

    2008-01-01

    To assess the potential effect of total flavonoids of epimedium (TFE) on cytochrome P450 and activity of its main isoforms in rat liver microsomes. TFE (300 mg/kg) was administered once daily to male Sprague-Dowley rats by gavage for fifteen days. The total cytochrome P450 content and its main isoforms CYP1A2, CYP3A4 and CYP2E1 activities in rat liver microsomes were detected. The activity of CYP1A2 was measured by fluorometry and the activities of CYP3A4 and CYP2E1 were determined by measuring the amount of methanal and p-aminophenol formed using UV/Vis spectrophotometer, respec- tively. Administration of TFE significantly increased the total CYP450 content and activities of CYP 1A2, CYP3A4 and CYP2E1 in rat liver microsomes, compared with the control group. Partieularly, the activities of CYP1A2 and CYP2E1 were enhanced significantly (P<0.01). TFE induced the increase in total CYP450 content and its main isoforms CYP1A2, CYP3A4 and CYP2EI activities in rat liver microsomes.%评估淫羊藿总黄酮对大鼠肝细胞色素P450及其主要亚型活性的潜在影响.淫羊藿总黄酮以300 mg/kg/d的剂量对SD大鼠进行连续灌胃处理15天,测定肝微粒体中CYP450含量与CYP1A2、CYP3A4和CYP2E1亚型活性,观察淫羊藿总黄酮的效应.CYP1A2的活性用荧光比色法进行测定,CYP3A4和CYP2E1的活性用紫外可见分光光度法测定.淫羊藿总黄酮处理后的大鼠肝脏CYP450含量及CYP1A2、CYP3A4和LICYP2E1亚型活性均明显增高,其中CYP1A2和CYP2E1活性升高显著(P<0.01).淫羊藿总黄酮对大鼠肝脏CYP450及主要亚型CYP1A2、CYP3A4和CYP2E1活性均有诱导效应.

  8. Lignolytic Enzymes Production from Selected Mushrooms

    Directory of Open Access Journals (Sweden)

    H.M. Shantaveera Swamy

    2015-06-01

    Full Text Available In this paper, ligninase enzymes produced by selected mushrooms have been reported. We collected mushrooms from Western Ghats, most of them were edible food. Thirty samples isolated were tested using a plate assay through direct agar plate assay by using ABTS, decolourisation containing the fifteen isolates were able to decolourise the dye, indicating a lignin-degrading ability. Spectrophotometric enzyme assays from all selected isolates were carried out to examine the production of Ligninolytic enzymes (Laccase, lignin peroxidase and manganese peroxidase. Ten selected isolates produced all three kinds of enzymes tested. Lignolytic enzymes are groups of enzymes these are actively involved in bioremediation.

  9. Herbal medicine Yin Zhi Huang induces CYP3A4-mediated sulfoxidation and CYP2C19-dependent hydroxylation of omeprazole

    Institute of Scientific and Technical Information of China (English)

    Lan FAN; Hong-hao ZHOU; Guo WANG; Lian-sheng WANG; Yao CHEN; Wei ZHANG; Yuan-fei HUANG; Rui-xue HUANG; Dong-li HU; Dan WANG

    2007-01-01

    Aim: To explore the potential interactions between Yin Zhi Huang (YZH) and omeprazole, a substrate of CYP3A4 and CYP2C19. Methods: Eighteen healthy volunteers, including 6 CYP2C19* 1/*1, 6 CYP2C19*1/*2 or *3 and 6 CYP2C19*2/ *2 were enrolled in a 2-phase, randomized, crossover clinical trial. In each phase,the volunteers received either placebo or 10 mL YZH oral liquid, 3 times daily for 14 d. Then all the patients took a 20 mg omeprazole capsule orally. Blood samples were collected up to 12 h after omeprazole administration. Plasma concentrations of omeprazole and its metabolites were quantified by HPLC with UV detection.Results: After 14 d of treatment of YZH, plasma omeprazole significantly decreased and those of omeprazole sulfone and 5-hydroxyomeprazole signifi-cantly increased. The ratios of the area under the plasma concentration-time curves from time 0 to infinity (AUC(0-∞) of omeprazole to 5-hydroxyomprazole and those of omeprazole to omeprazole sulfone decreased by 64.80%±12.51% (P=0.001 ) and 63.31%±18.45 % (P=0.004) in CYP2C 19* 1/* 1,57.98%±14. 80% (P=0.002)and 54.87%±18.42% (P=0.003) in CYP2C19*1/*2 or *3, and 37.74%±16.07% (P=0.004) and 45.16%± 15.54% (P=0.003) in CYP2C19*2/*2, respectively. The decrease of the AUC(0-∞) ratio of omeprazole to 5-hydroxyomprazole in CYP2C19*1/*1 and CYP2C19*1/*2 or *3 was greater than those in CYP2C19*2/*2 (P=0.047 and P=0.009). Conclusion: YZH induces both CYP3A4-catalyzed sulfoxidation and CYP2C19-dependent hydroxylation of omeprazole leading to decreases in plasma omeprazole concentrations.

  10. Haplotypes in the APOA1-C3-A4-A5 gene cluster affect plasma lipids in both humans and baboons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian-fei; Liu, Xin; O' Connell, Jeff; Peng, Ze; Krauss, Ronald M.; Rainwater, David L.; VandeBerg, John L.; Rubin, Edward M.; Cheng, Jan-Fang; Pennacchio, Len A.

    2003-09-15

    Genetic studies in non-human primates serve as a potential strategy for identifying genomic intervals where polymorphisms impact upon human disease-related phenotypes. It remains unclear, however, whether independently arising polymorphisms in orthologous regions of non-human primates leads to similar variation in a quantitative trait found in both species. To explore this paradigm, we studied a baboon apolipoprotein gene cluster (APOA1/C3/A4/A5) for which the human gene orthologs have well established roles in influencing plasma HDL-cholesterol and triglyceride concentrations. Our extensive polymorphism analysis of this 68 kb gene cluster in 96 pedigreed baboons identified several haplotype blocks each with limited diversity, consistent with haplotype findings in humans. To determine whether baboons, like humans, also have particular haplotypes associated with lipid phenotypes, we genotyped 634 well characterized baboons using 16 haplotype tagging SNPs. Genetic analysis of single SNPs, as well as haplotypes, revealed an association of APOA5 and APOC3 variants with HDL cholesterol and triglyceride concentrations, respectively. Thus, independent variation in orthologous genomic intervals does associate with similar quantitative lipid traits in both species, supporting the possibility of uncovering human QTL genes in a highly controlled non-human primate model.

  11. Process for preparing multilayer enzyme coating on a fiber

    Science.gov (United States)

    Kim, Jungbae; Kwak, Ja Hun; Grate, Jay W.

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  12. Efeitos da incorporação de peneiras moleculares 3A, 4A, 5A e 13X em membranas compósitas de quitosana/poli(vinil álcool Effect of molecular sieves 3A, 4A, 5A and 13X incorporation on the chitosan/poly(vinyl alcohol composites membranes

    Directory of Open Access Journals (Sweden)

    Denice Schulz Vicentini

    2010-01-01

    Full Text Available The composite membranes prepared via incorporation of 12.5% of molecular sieves 3A, 4A, 5A and 13X into chitosan/poly(vinyl alcohol (1:1. The composite membranes were immersed in the cross-linker sulfuric acid in order to acquire high proton conductivity for applications in electrolytes in PEMCF and DMF. The influence of the molecular sieves on the structural, optical, thermal, mechanical, morphologic and protonic conductivity properties and water/methanol swelling degree of membranes were investigated.

  13. In silico analysis of the fucosylation-associated genome of the human blood fluke Schistosoma mansoni: cloning and characterization of the enzymes involved in GDP-L-fucose synthesis and Golgi import

    OpenAIRE

    Peterson, Nathan A; Tavis K Anderson; Wu, Xiao-Jun; Yoshino, Timothy P.

    2013-01-01

    Background Carbohydrate structures of surface-expressed and secreted/excreted glycoconjugates of the human blood fluke Schistosoma mansoni are key determinants that mediate host-parasite interactions in both snail and mammalian hosts. Fucose is a major constituent of these immunologically important glycans, and recent studies have sought to characterize fucosylation-associated enzymes, including the Golgi-localized fucosyltransferases that catalyze the transfer of L-fucose from a GDP-L-fucose...

  14. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst.

    Science.gov (United States)

    Pearce, Robin E; Cohen-Wolkowiez, Michael; Sampson, Mario R; Kearns, Gregory L

    2013-09-01

    Despite metronidazole's widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catalyzed 2-hydroxymetronidazole formation at a supratherapeutic concentration of metronidazole (2000 μM), at a "therapeutic concentration" of 100 μM only CYPs 2A6, 3A4, 3A5, and 3A7 catalyzed metronidazole 2-hydroxylation at rates substantially greater than control vector, and CYP2A6 catalyzed 2-hydroxymetronidazole formation at rates 6-fold higher than the next most active enzyme. Kinetic studies with these recombinant enzymes revealed that CYP2A6 has a Km = 289 μM which is comparable to the Km for the high-affinity (low-Km) enzyme in human liver microsomes, whereas the Km values for the CYP3A enzymes corresponded with the low-affinity (high-Km) component. The sample-to-sample variation in 2-hydroxymetronidazole formation correlated significantly with CYP2A6 activity (r ≥ 0.970, P concentrations of 100 and 300 μM. Selective chemical inhibitors of CYP2A6 inhibited metronidazole 2-hydroxylation in a concentration-dependent manner and inhibitory antibodies against CYP2A6 virtually eliminated metronidazole 2-hydroxylation (>99%). Chemical and antibody inhibitors of other P450 enzymes had little or no effect on metronidazole 2-hydroxylation. These results suggest that CYP2A6 is the primary catalyst responsible for the 2-hydroxylation of metronidazole, a reaction that may function as a marker of CYP2A6 activity both in vitro and in vivo.

  15. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome.

    Science.gov (United States)

    Meseguer, Salvador; Martínez-Zamora, Ana; García-Arumí, Elena; Andreu, Antonio L; Armengod, M-Eugenia

    2015-01-01

    Mitochondrial dysfunction activates mitochondria-to-nucleus signaling pathways whose components are mostly unknown. Identification of these components is important to understand the molecular mechanisms underlying mitochondrial diseases and to discover putative therapeutic targets. MELAS syndrome is a rare neurodegenerative disease caused by mutations in mitochondrial (mt) DNA affecting mt-tRNA(Leu(UUR)). Patient and cybrid cells exhibit elevated oxidative stress. Moreover, mutant mt-tRNAs(Leu(UUR)) lack the taurine-containing modification normally present at the wobble uridine (U34) of wild-type mt-tRNA(Leu(UUR)), which is considered an etiology of MELAS. However, the molecular mechanism is still unclear. We found that MELAS cybrids exhibit a significant decrease in the steady-state levels of several mt-tRNA-modification enzymes, which is not due to transcriptional regulation. We demonstrated that oxidative stress mediates an NFkB-dependent induction of microRNA-9/9*, which acts as a post-transcriptional negative regulator of the mt-tRNA-modification enzymes GTPBP3, MTO1 and TRMU. Down-regulation of these enzymes by microRNA-9/9* affects the U34 modification status of non-mutant tRNAs and contributes to the MELAS phenotype. Anti-microRNA-9 treatments of MELAS cybrids reverse the phenotype, whereas miR-9 transfection of wild-type cells mimics the effects of siRNA-mediated down-regulation of GTPBP3, MTO1 and TRMU. Our data represent the first evidence that an mt-DNA disease can directly affect microRNA expression. Moreover, we demonstrate that the modification status of mt-tRNAs is dynamic and that cells respond to stress by modulating the expression of mt-tRNA-modifying enzymes. microRNA-9/9* is a crucial player in mitochondria-to-nucleus signaling as it regulates expression of nuclear genes in response to changes in the functional state of mitochondria.

  16. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  17. Progress on Key Enzymes Involved in Crop Starch Synthesis and Their Gene Expression%作物淀粉合成关键酶及其基因表达的研究进展

    Institute of Scientific and Technical Information of China (English)

    谭彩霞; 封超年; 陈静; 郭静; 郭文善; 朱新开; 李春燕; 彭永欣

    2008-01-01

    ADP-葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase polypetide,AGPase)、颗粒结合淀粉合成酶(Granule-bound starch synthase,GBSS)、可溶性淀粉合成酶(Soluble starch synthase,SSS)、淀粉分支酶(Starch branching enzyme,SBE)、淀粉去分支酶(Starch debranching enzyme,DBE)等是淀粉合成过程中的关键酶.本文主要介绍了前人关于这五种酶各同工型的结构、功能、各同工酶基因在不同组织和不同生育时期的表达特异性,及它们的基因表达与淀粉合成的关系等方面的研究进展,旨在为相关研究提供参考.

  18. Hemolytic Effects of Melittin Involve Activity Change of Two Types of Enzymes on RBC Membrane%蜂毒肽的溶血作用与红细胞膜上两种酶活性变化的关系

    Institute of Scientific and Technical Information of China (English)

    赵亚华; 李日清; 张微; 钟杨生; 梁祖承; 林健荣

    2008-01-01

    从蜂毒肽作用于红细胞膜上的Na+-K+-ATPase和葡萄糖-6-磷酸脱氢酶(G-6-PD)活性变化的角度,利用分光光度法测定酶活性,研究蜂毒肽与红细胞及膜作用过程中可能的靶点,讨论了蜂毒肽溶血过程与RBC膜上2种酶活性的变化.结果发现,蜂毒肽抑制RBC膜上酶活性的主要模式为附着/插入质膜与游离态并存模式,附着/插入质膜中的作用大于游离态的作用.Na+-K+-ATPase的K+结合位点是蜂毒肽的1个作用靶点.蜂毒肽插膜过程与其对此酶的作用随时间延长同步发生.蜂毒肽通过作用于葡萄糖-6-磷酸和NADP使G-6-PD的催化受到缓慢抑制,蜂毒肽形成四聚体的程度与酶活性密切相关.EDTA抑制蜂毒肽聚集,干扰蜂毒肽作用于G-6-P,蜂毒肽作用于底物G-6-P及辅酶NADP的生化机理相似,蜂毒肽抑制作用与G-6-PD的结构无关.%The effects of melittin on the activities of Na+-K+-ATPase and glucose-6-phosphate dehydrogenase (G-6-PD) which are on the membrane of red blood cell (RBC) are chosen as the index of this study. The possible target sites of these effects through enzyme activity determination by spectrophotometry are investigated, and the hemolytic process and the activity change of these two types of enzymes on the RBC membrane are discussed. The results show that the main mode of melittin inhibition to the activity of enzymes on the RBC membrane is the coexistence of adhesion/insertion form and free-state form, and the effect of the former is more stronger than the latter. The K+ binding site of Na+-K+-ATPase is one of the target sites of melittin. The membrane-insertion process of melittin synchronizes with the action of melittin on this enzyme. Melittin slowly inhibits the catalysis of G-6-PD through the action on G-6-P and NADP, and the extent in which melittin forms tetramers isclosely related to the enzyme activity. EDTA inhibits the aggregation of melittin, and interferes with its action on G-6-P. The

  19. Significant inhibitory impact of dibenzyl trisulfide and extracts of Petiveria alliacea on the activities of major drug-metabolizing enzymes in vitro: An assessment of the potential for medicinal plant-drug interactions.

    Science.gov (United States)

    Murray, J; Picking, D; Lamm, A; McKenzie, J; Hartley, S; Watson, C; Williams, L; Lowe, H; Delgoda, R

    2016-06-01

    Dibenzyl trisulfide (DTS) is the major active ingredient expressed in Petiveria alliacea L., a shrub widely used for a range of conditions, such as, arthritis, asthma and cancer. Given its use alone and concomitantly with prescription medicines, we undertook to investigate its impact on the activities of important drug metabolizing enzymes, the cytochromes P450 (CYP), a key family of enzymes involved in many adverse drug reactions. DTS and seven standardized extracts from the plant were assessed for their impact on the activities of CYPs 1A2, 2C19, 2C9, 2D6 and 3A4 on a fluorometric assay. DTS revealed significant impact against the activities of CYPs 1A2, 2C19 and 3A4 with IC50 values of 1.9, 4.0 and 3.2μM, respectively, which are equivalent to known standard inhibitors of these enzymes (furafylline, and tranylcypromine), and the most potent interaction with CYP1A2 displayed irreversible enzyme kinetics. The root extract, drawn with 96% ethanol (containing 2.4% DTS), displayed IC50 values of 5.6, 3.9 and 4.2μg/mL respectively, against the same isoforms, CYPs 1A2, 2C19 and 3A4. These investigations identify DTS as a valuable CYP inhibitor and P. alliacea as a candidate plant worthy of clinical trials to confirm the conclusions that extracts yielding high DTS may lead to clinically relevant drug interactions, whilst extracts yielding low levels of DTS, such as aqueous extracts, are unlikely to cause adverse herb-drug interactions. PMID:27105957

  20. Analysis of SNP genetic polymorphism in CYP3A4 and CYP2D6 in Chinese Han population%中国汉族人群CYP2D6、CYP3A4 SNP位点基因多态性分析

    Institute of Scientific and Technical Information of China (English)

    杨栋; 万立华; 涂政; 石屹; 胡兰

    2014-01-01

    目的:通过对药物代谢酶CYP2D6和CYP3A4的相关单核苷酸多态性(single nucleotide polymorphism,SNP)筛选检测,获得其在中国汉族人群中遗传多态性分布的相关数据.方法:筛选11个关于CYP2D6、CYP3A4基因的SNP位点,取192份中国汉族无关个体健康自愿者的血液样本获得基因组DNA,根据单碱基延伸技术通过GenomeLabTM SNPstream(R)基因分型系统进行SNP分型.结果:本次检测的11个SNP位点在研究人群中全部具有多态性(最小等位基因频率>0.01),其中7个SNP(RS28624811、RS28670611、RS9623531、RS5758589、RS3735451、RS2246709、RS2404955、RS4646440)位点的等位基因频率在此人群与白种人相比差异具有统计学意义(P<0.01).结论:汉族人群可能有继承特定的遗传信息,导致与其他人群具有不同药物代谢率.

  1. Slow-binding and competitive inhibition of 8-amino-7-oxopelargonate synthase, a pyridoxal-5'-phosphate-dependent enzyme involved in biotin biosynthesis, by substrate and intermediate analogs. Kinetic and binding studies.

    Science.gov (United States)

    Ploux, O; Breyne, O; Carillon, S; Marquet, A

    1999-01-01

    8-Amino-7-oxopelargonate synthase catalyzes the first committed step of biotin biosynthesis in micro-organisms and plants. Because inhibitors of this pathway might lead to antibacterials or herbicides, we have undertaken an inhibition study on 8-amino-7-oxopelargonate synthase using six different compounds. d-Alanine, the enantiomer of the substrate of this pyridoxal-5'-phosphate-dependent enzyme was found to be a competitive inhibitor with respect to l-alanine with a Ki of 0.59 mm. The fact that this inhibition constant was four times lower than the Km for l-alanine was interpreted as the consequence of the inversion-retention stereochemistry of the catalyzed reaction. Schiff base formation between l or d-alanine and pyridoxal-5'-phosphate, in the active site of the enzyme, was studied using ultraviolet/visible spectroscopy. It was found that l and d-alanine form an external aldimine with equilibrium constants K = 4.1 mm and K = 37.8 mm, respectively. However, the equilibrium constant for d-alanine aldimine formation dramatically decreased to 1.3 mm in the presence of saturating concentration of pimeloyl-CoA, the second substrate. This result strongly suggests that the binding of pimeloyl-CoA induces a conformational change in the active site, and we propose that this new topology is complementary to d-alanine and to the putative reaction intermediate since they both have the same configuration. (+/-)-8-Amino-7-oxo-8-phosphonononaoic acid (1), the phosphonate derivative of the intermediate formed during the reaction, was our most potent inhibitor with a Ki of 7 microm. This compound behaved as a reversible slow-binding inhibitor, competitive with respect to l-alanine. Kinetic investigation showed that this slow process was best described by a one-step mechanism (mechanism A) with the following rate constants: k1 = 0.27 x 103 m-1.s-1, k2 = 1.8 s-1 and half-life for dissociation t1/2 = 6.3 min. The binding of compound 1 to the enzyme was also studied using

  2. The enzymes associated with denitrification

    Science.gov (United States)

    Hochstein, L. I.; Tomlinson, G. A.

    1988-01-01

    The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.

  3. Chemical and functional characterization of seed, pulp and skin powder from chilto (Solanum betaceum), an Argentine native fruit. Phenolic fractions affect key enzymes involved in metabolic syndrome and oxidative stress.

    Science.gov (United States)

    Orqueda, María Eugenia; Rivas, Marisa; Zampini, Iris Catiana; Alberto, María Rosa; Torres, Sebastian; Cuello, Soledad; Sayago, Jorge; Thomas-Valdes, Samanta; Jiménez-Aspee, Felipe; Schmeda-Hirschmann, Guillermo; Isla, María Inés

    2017-02-01

    The aim of this work was to assess the nutritional and functional components of powder obtained by lyophilization of whole fruits, seeds, pulp and skin from chilto (Solanum betaceum Cav) cultivated in the ecoregion of Yungas, Argentina. The powders have low carbohydrate and sodium content and are a source of vitamin C, carotenoid, phenolics, potassium and fiber. The HPLC-ESI-MS/MS analysis of the fractions enriched in phenolics allowed the identification of 12 caffeic acid derivatives and related phenolics, 10 rosmarinic acid derivatives and 7 flavonoids. The polyphenols enriched extracts before and after simulated gastroduodenal digestion inhibited enzymes associated with metabolic syndrome, including α-glucosidase, amylase and lipase and exhibited antioxidant activity by different mechanisms. None of the analyzed fruit powders showed acute toxicity or genotoxicity. The powders from the three parts of S. betaceum fruit may be a potential functional food and the polyphenol enriched extract of seed and skin may have nutraceutical properties. PMID:27596394

  4. EXTRACCIÓN DE ENZIMAS PÉCTICAS DEL EPICARPIO DE LULO (Solanum quitoense Lam INVOLUCRADAS EN EL PROCESO DE ABLANDAMIENTO Exytraction of Pectic Enzymes from of Lulo(Solanum quitoense Lam Involved in Softening

    Directory of Open Access Journals (Sweden)

    JEIMMY MARCELA RODRÍGUEZ NIETO

    2011-08-01

    Full Text Available Durante el periodo de poscosecha el principal problema de deterioro del lulo (Solanum quitoense Lam es el ablandamiento que es generado principalmente por actividad de enzimas pécticas que atacan la red estructural de la pared celular. Esta investigación se basó en la búsqueda de las mejores condiciones de extracción y medida de actividad de las enzimas pectinesterasa, poligalacturonasa y pectato liasa; herramientas necesarias para estudiar posteriormente el rol de estas enzimas en el deterioro por ablandamiento sufrido por el fruto debido a diversos cambios metabólicos. Se encontró que las dos primeras enzimas pueden ser extraídas simultáneamente con buffer fosfatos 20 mM pH 7,0 + NaCl 0,06 M y 60 min de extracción, relación 1:2 (material vegetal: buffer de extracción, a su vez, pectato liasa se extrajo con buffer fosfatos 20 mM pH 7,0 + cisteína 20 mM y 30 min de extracción, relación 1:3. Para la cuantificación de la actividad pectinesterasa es necesario incubar 15 min a 42 °C 2.500 µL de extracto enzimático crudo (EE en buffer fosfatos 20 mM pH 7,0 + NaCl 0,15 M y 1,6% de pectina cítrica como sustrato, con valores de Km aparente de 3,78% de PC y Vmax 17,95 µmolH+/min*mg prot. Para la cuantificación de la actividad poligalacturonasa es necesario incubar 15 min a 37 °C 30 µL (EE en buffer acetatos 200 mM pH 4,5 + NaCl 0,25 M y 1,0% de APG como sustrato, con valores de Km aparente 0,141% de APG y Vmax 28,46 nKat/s*mg prot. Para la cuantificación de la actividad pectato liasa es necesario incubar 2 min a 17 °C 100 µL (EE en buffer TRIS:HCl 50 Mm pH 8,5 + CaCl2 4 mM y 0,1% de APG como sustrato, con valores de Km aparente 0,0865% de APG y Vmax 82,75 µg/s*mg prot.The main problem of post-harvest deterioration of lulo (Solanum quitoense Lam is the softening is the main problem of post-harvest deteriorarion of Lulo, that is generated mainly by the activity of pectic enzymes, which attack the structural network of the cell

  5. Starch-related Enzymes during Potato Tuber Dormancy and Sprouting

    NARCIS (Netherlands)

    Sergeeva, L.I.; Claassens, M.M.J.; Jamar, D.C.L.; Plas, van der L.H.W.; Vreugdenhil, D.

    2012-01-01

    Activities of enzymes presumably involved in starch biosynthesis (ADP-glucose pyrophosphorylase, AGPase) and/or breakdown (starch phosphorylase, STP; amylases) were determined during potato (Solanum tuberosum L.) tuber dormancy and sprouting. Overall activities of all these enzymes decreased during

  6. Thalidomide increases human hepatic cytochrome P450 3A enzymes by direct activation of the pregnane X receptor.

    Science.gov (United States)

    Murayama, Norie; van Beuningen, Rinie; Suemizu, Hiroshi; Guguen-Guillouzo, Christiane; Shibata, Norio; Yajima, Kanako; Utoh, Masahiro; Shimizu, Makiko; Chesné, Christophe; Nakamura, Masato; Guengerich, F Peter; Houtman, René; Yamazaki, Hiroshi

    2014-02-17

    Heterotropic cooperativity of human cytochrome P450 (P450) 3A4/3A5 by the teratogen thalidomide was recently demonstrated by H. Yamazaki et al. ( ( 2013 ) Chem. Res. Toxicol. 26 , 486 - 489 ) using the model substrate midazolam in various in vitro and in vivo models. Chimeric mice with humanized liver also displayed enhanced midazolam clearance upon pretreatment with orally administered thalidomide, presumably because of human P450 3A induction. In the current study, we further investigated the regulation of human hepatic drug metabolizing enzymes. Thalidomide enhanced levels of P450 3A4 and 2B6 mRNA, protein expression, and/or oxidation activity in human hepatocytes, indirectly suggesting the activation of upstream transcription factors involved in detoxication, e.g., the nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR). A key event after ligand binding is an alteration of nuclear receptor conformation and recruitment of coregulator proteins that alter chromatin accessibility of target genes. To investigate direct engagement and functional alteration of PXR and CAR by thalidomide, we utilized a peptide microarray with 154 coregulator-derived nuclear receptor-interaction motifs and coregulator and nuclear receptor boxes, which serves as a sensor for nuclear receptor conformation and activity status as a function of ligand. Thalidomide and its human proximate metabolite 5-hydroxythalidomide displayed significant modulation of coregulator interaction with PXR and CAR ligand-binding domains, similar to established agonists for these receptors. These results collectively suggest that thalidomide acts as a ligand for PXR and CAR and causes enzyme induction leading to increased P450 enzyme activity. The possibilities of drug interactions during thalidomide therapy in humans require further evaluation.

  7. Immobilization to prevent enzyme incompatibility with proteases

    NARCIS (Netherlands)

    Vossenberg, P.; Beeftink, H.H.; Cohen Stuart, M.A.; Tramper, J.

    2011-01-01

    Enzyme incompatibility is a problem in multi-enzyme processes that involve a non-specific protease, such as Alcalase. An example is the one-pot enzymatic synthesis of peptides catalyzed by a lipase and a protease. The incompatibility between lipase B from Candida antarctica (CalB) and Alcalase was s

  8. Cytochrome P450 enzyme systems in fungi

    NARCIS (Netherlands)

    Brink, H.M. van den; Gorcom, R.F.M. van; Hondel, C.A.M.J.J. van den; Punt, P.J.

    1998-01-01

    The involvement of cytochrome P450 enzymes in many complex fungal bioconversion processes has been characterized in recent years. Accordingly, there is now considerable scientific interest in fungal cytochrome P450 enzyme systems. In contrast to S. cerevisiae, where surprisingly few P450 genes have

  9. Differential inhibition of cytochromes P450 3A4 and 3A5 by the newly synthesized coumarin derivatives 7-coumarin propargyl ether and 7-(4-trifluoromethyl)coumarin propargyl ether.

    Science.gov (United States)

    Sridar, Chitra; Kent, Ute M; Noon, Kate; McCall, Alecia; Alworth, Bill; Foroozesh, Maryam; Hollenberg, Paul F

    2008-11-01

    The abilities of 7-coumarin propargyl ether (CPE) and 7-(4-trifluoromethyl)coumarin propargyl ether (TFCPE) to act as mechanism-based inactivators of P450 3A4 and 3A5 in the reconstituted system have been investigated using 7-benzyloxy-4-(trifluoromethyl)coumarin (BFC) and testosterone as probes. CPE inhibited the BFC O-debenzylation activity of P450 3A4 in a time-, concentration-, and NADPH-dependent manner characteristic of a mechanism-based inactivator with a half-maximal inactivation (K(I)) of 112 microM, a maximal rate of inactivation (k(inact)) of 0.05 min(-1), and a t(1/2) of 13.9 min. Similarly, TFCPE inhibited the BFC O-debenzylation activity of P450 3A4 in a time-, concentration-, and NADPH-dependent manner with a K(I) of 14 microM, a k(inact) of 0.04 min(-1), and a t(1/2) of 16.5 min. Parallel losses of P450 3A4 enzymatic activity and heme were observed with both compounds as measured by high-performance liquid chromatography and reduced CO spectra. Interestingly, neither compound inhibited the BFC O-debenzylation activity of P450 3A5. Reactive intermediates of CPE and TFCPE formed by P450 3A4 were trapped with glutathione, and the resulting adducts were identified using tandem mass spectral analysis. Metabolism studies using TFCPE resulted in the identification of a single metabolite that is formed by P450 3A4 but not by P450 3A5 and that may play a role in the mechanism-based inactivation.

  10. Lemon Polyphenols Suppress Diet-induced Obesity by Up-Regulation of mRNA Levels of the Enzymes Involved in β-Oxidation in Mouse White Adipose Tissue

    OpenAIRE

    Fukuchi, Yoshiko; Hiramitsu, Masanori; Okada, Miki; Hayashi, Sanae; Nabeno, Yuka; Osawa, Toshihiko; Naito, Michitaka

    2008-01-01

    The aim of this study was to investigate the effect of dietary lemon polyphenols on high-fat diet-induced obesity in mice, and on the regulation of the expression of the genes involved in lipid metabolism to elucidate the mechanisms. Mice were divided into three groups and fed either a low fat diet (LF) or a high fat diet (HF) or a high fat diet supplemented with 0.5% w/w lemon polyphenols (LP) extracted from lemon peel for 12 weeks. Body weight gain, fat pad accumulation, the development of ...

  11. Hypnotic activity of melatonin: involvement of semicarbazide hydrochloride, blocker of synthetic enzyme for GABA%GABA合成酶抑制剂盐酸氨基脲对褪黑激素催眠作用的影响

    Institute of Scientific and Technical Information of China (English)

    王芳; 李经才; 吴春福; 杨静玉; 徐峰; 彭飞

    2002-01-01

    目的:观察GABA合成酶抑制剂盐酸氨基脲对褪黑激素催眠作用的影响.方法:采用小鼠协同戊巴比妥钠睡眠法和大鼠脑电图描记法测定盐酸氨基脲对睡眠和褪黑激素催眠作用的影响.结果:褪黑激素对小鼠和大鼠均具有明显的催眠作用.盐酸氨基脲单独使用对小鼠和大鼠的睡眠无影响,但能明显阻断褪黑激素对戊巴比妥钠引起的小鼠睡眠时间的延长,并且明显抑制褪黑激素引起的大鼠总睡眠时间,慢波睡眠时间,快波睡眠时间的增加和觉醒时间的减少.结论:盐酸氨基脲能明显拮抗褪黑激素的催眠作用,提示褪黑素的催眠作用由GABA能系统介导.%AIM: To assess the effect of semicarbazide hydrochloride (SCZ), the blocker of synthetic enzyme for GABA, onthe hypnotic activity of melatonin. METHODS: Righting reflex method in mice and electroencephalography (EEG)in rats were used to determine effects of SCZ on sleep and hypnotic activity of melatonin. RESULTS: Melatonindisplayed a marked hypnotic activity both in righting reflex experiment and EEG recording. SCZ had no influenceon sleep parameters in mice and rats when it was used alone. However, it blocked the sleep-potentiation effect ofmelatonin in mice. SCZ also inhibited melatonin-induced increase in total sleep time, slow wave sleep time, andparadoxical sleep time, and prevented melatonin-induced decrease in awake time in rats. CONCLUSION: SCZantagonized the hypnotic activity of melatonin. It is thought that the hypnotic activity of melatonin is mediated byGABAergic system.

  12. cis- and trans-2,3,3a,4,5,9b-Hexahydro-1H-benz[e]indoles: synthesis and evaluation of dopamine D2, and D3 receptor binding affinity

    DEFF Research Database (Denmark)

    Song, Xiaodong; Crider, Michael A.; Cruse, Sharon F.;

    1999-01-01

    cis- and trans-2,3,3a,4,5,9b-hexahydro-1H-benz [e]indoles were synthesized as conformationally rigid analogues of 3-phenylpyrrolidine and evaluated for dopamine (DA) D2S and D3 receptor binding affinity. The tricyclic benz[e]indole nucleus was constructed by a previously reported reductive aminat...

  13. 1, 3-Dipolar cycloaddition reactions: Synthesis of 5-benzyl-1-(2',4'-dibromophenyl)-3-(4"-substituted phenyl)-3a,4,6,6a-tetrahydro-1, 5-pyrrolo[3,4-]pyrazole-4,6-dione derivatives

    Indian Academy of Sciences (India)

    Manpreet Kaur; Baldev Singh; Baljit Singh

    2013-11-01

    1,3-Dipolar cycloaddition of nitrilimines 3 with -benzyl maleimide 4 has provided 5-benzyl-1-(2',4'-dibromophenyl)-3-(4"-substituted phenyl)-3a,4,6,6a-tetrahydro-1,5-pyrrolo[3,4-]pyrazole-4,6-dione derivatives 5 in excellent yield as the only isomer through a concerted pathway.

  14. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus;

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  15. Parent Involvement.

    Science.gov (United States)

    LaCrosse, Ed

    The paper discusses the rationale and guidelines for parent involvement in HCEEP (Handicapped Children's Early Education Program) projects. Ways of assessing parents' needs are reviewed, as are four types of services to meet the identified needs: parent education, direct participation, parent counseling, and parent provided programs. Materials and…

  16. Protein engineering of enzymes for process applications

    DEFF Research Database (Denmark)

    Woodley, John M

    2013-01-01

    Scientific progress in the field of enzyme modification today enables the opportunity to tune a given biocatalyst for a specific industrial application. Much work has been focused on extending the substrate repertoire and altering selectivity. Nevertheless, it is clear that many new forthcoming...... opportunities will be targeted on modification to enable process application. This article discusses the challenges involved in enzyme modification focused on process requirements, such as the need to fulfill reaction thermodynamics, specific activity under the required conditions, kinetics at required...

  17. Enzymes for improved biomass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  18. Modeling amperometric biosensors based on allosteric enzymes

    Directory of Open Access Journals (Sweden)

    Liutauras Ričkus

    2013-09-01

    Full Text Available Computational modeling of a biosensor with allosteric enzyme layer was investigated in this study. The operation of the biosensor is modeled using non-stationary reaction-diffusion equations. The model involves three regions: the allosteric enzyme layer where the allosteric enzyme reactions as well as then mass transport by diffusion take place, the diffusion region where the mass transport by diffusion and non-enzymatic reactions take place and the convective region in which the analyte concentration is maintained constant. The biosensor response on dependency substrate concentration, cooperativity coefficient and the diffusion layer thickness on the same parameters have been studied.

  19. Enzymes involved in epoxide degradation in Xanthobacter Py2.

    NARCIS (Netherlands)

    Swaving, J.

    1998-01-01

    Due to the differences in biological activity of the enantiomers of racemic compounds, the use of enantiomerically pure drugs and agrochemicals is very much encouraged. The availability of optically pure synthons for the production of drugs is, therefor, of the utmost importance for the pharmaceutic

  20. Molecular characterization and optimization of enzymes involved in glycosaminoglycan biosynthesis

    NARCIS (Netherlands)

    Raedts, J.G.J.

    2011-01-01

    Glycosaminoglycans are biological active polysaccharides composed of repeating disaccharides composed of a hexuronic acid and a hexosamine. They have various pharmaceutical applications and traditionally this type of molecule is isolated from animal tissue. Since extraction from animal derivatives h

  1. Characterization of Carbohydrate Active Enzymes Involved in Arabinogalactan Protein Metabolism

    DEFF Research Database (Denmark)

    Knoch, Eva

    accounting for up to 90% of the total mass. The glycan contains mostly galactose and arabinose, but glucoronic acid and other less-abundant sugars like rhamnose, xylose and fucose are also found. Although AGPs are important for normal plant growth and are found throughout the plant in virtually all organs...

  2. Engineering cytochrome p450 enzymes.

    Science.gov (United States)

    Gillam, Elizabeth M J

    2008-01-01

    The last 20 years have seen the widespread and routine application of methods in molecular biology such as molecular cloning, recombinant protein expression, and the polymerase chain reaction. This has had implications not only for the study of toxicological mechanisms but also for the exploitation of enzymes involved in xenobiotic clearance. The engineering of P450s has been performed with several purposes. The first and most fundamental has been to enable successful recombinant expression in host systems such as bacteria. This in turn has led to efforts to solubilize the proteins as a prerequisite to crystallization and structure determination. Lagging behind has been the engineering of enzyme activity, hampered in part by our still-meager comprehension of fundamental structure-function relationships in P450s. However, the emerging technique of directed evolution holds promise in delivering both engineered enzymes for use in biocatalysis and incidental improvements in our understanding of sequence-structure and sequence-function relationships, provided that data mining can extract the fundamental correlations underpinning the data. From the very first studies on recombinant P450s, efforts were directed toward constructing fusions between P450s and redox partners in the hope of generating more efficient enzymes. While this aim has been allowed to lie fallow for some time, this area merits further investigation as does the development of surface-displayed P450 systems for biocatalytic and biosensor applications. The final application of engineered P450s will require other aspects of their biology to be addressed, such as tolerance to heat, solvents, and high substrate and product concentrations. The most important application of these enzymes in toxicology in the near future is likely to be the biocatalytic generation of drug metabolites for the pharmaceutical industry. Further tailoring will be necessary for specific toxicological applications, such as in

  3. Orphan enzymes in ether lipid metabolism.

    Science.gov (United States)

    Watschinger, Katrin; Werner, Ernst R

    2013-01-01

    Ether lipids are an emerging class of lipids which have so far not been investigated and understood in every detail. They have important roles as membrane components of e.g. lens, brain and testis, and as mediators such as platelet-activating factor. The metabolic enzymes for biosynthesis and degradation have been investigated to some extent. As most involved enzymes are integral membrane proteins they are tricky to handle in biochemical protocols. The sequence of some ether lipid metabolising enzymes has only recently been reported and other sequences still remain obscure. Defined enzymes without assigned sequence are known as orphan enzymes. One of these enzymes with uncharacterised sequence is plasmanylethanolamine desaturase, a key enzyme for the biosynthesis of one of the most abundant phospholipids in our body, the plasmalogens. This review aims to briefly summarise known functions of ether lipids, give an overview on their metabolism including the most prominent members, platelet-activating factor and the plasmalogens. A special focus is set on the description of orphan enzymes in ether lipid metabolism and on the successful strategies how four previous orphans have recently been assigned a sequence. Only one of these four was characterised by classical protein purification and sequencing, whereas the other three required alternative strategies such as bioinformatic candidate gene selection and recombinant expression or development of an inhibitor and multidimensional metabolic profiling.

  4. Design, Synthesis and Antifungal Activity of 6-Fiuoro-3,3a,4,5-tetrahydro-2H-pyrazolo[4,3-c]-quinoline-2-carboxamide Derivatives

    Institute of Scientific and Technical Information of China (English)

    YUAN Jing; SU Xin; ZHANG Xin; CONG Lin; GUO Chun

    2011-01-01

    A series of 6-fluoro-3,3a,4,5-tetrahydro-2H-pyrazolo[4,3-c]quinoline-2-carboxamide derivatives was designed based on the bioisosterism and combination principle in drug design.The target compounds were synthesized from substituted aniline through Michael addition,eyclization,Mannich reaction and condensation with 4-substituted semicarbazides,and the structures were confirmed by mass spectrometry(MS)and 1H NMR.The antifungal assay was carried out in vitro by two-fold dilution.The result shows that all the compounds are of antifungal activities against the tested fungi at different levels.

  5. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  6. Magnetically responsive enzyme powders

    International Nuclear Information System (INIS)

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction

  7. HYDRATION AND ENZYME ACTIVITY

    OpenAIRE

    Poole, P.

    1984-01-01

    Hydration induced conformation and dynamic changes are followed using a variety of experimental techniques applied to hen egg white lysozyme. These changes are completed just before the onset of enzyme activity, which occurs before all polar groups are hydrated, and before monolayer coverage is attained. We suggest that these hydration induced changes are necessary for the return of enzyme activity.

  8. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M;

    2008-01-01

    "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...... as chemzymes that catalyze conjugate additions, cycloadditions, and self-replicating processes. The focus will be mainly on cyclodextrin-based chemzymes since they have shown to be good candidate structures to base an enzyme model skeleton on. In addition hereto, other molecules that encompass binding......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...

  9. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR methods depends on their influence on fluid/rock interactions related to wettability and fluid/fluid interactions reflected in IFT. If the method has the potential to change the interactions favorably, it may be considered for further investigation, i.e. core flooding experiment, pilot and reservoir implementation. Enzyme-proteins can be introduced as an enhanced oil recovery method to improve waterflood performance by affecting interactions at the oil-water-rock interfaces. An important part of this thesis was to investigate how selected enzymes may influence wettability and capillary forces in a crude oil-brine-rock system, and thus possibly contribute to enhanced oil recovery. To investigate further by which mechanisms selected enzyme-proteins may contribute to enhance oil recovery, groups of enzymes with different properties and catalytic functions, known to be interfacially active, were chosen to cover a wide range of possible effects. These groups include (1) Greenzyme (GZ) which is a commercial EOR enzyme and consists of enzymes and stabilizers (surfactants), (2) The Zonase group consists of two types of pure enzyme, Zonase1 and Zonase2 which are protease enzymes and whose catalytic functions are to hydrolyze (breakdown) peptide bonds, (3) The Novozyme (NZ) group consists of three types of pure enzyme, NZ2, NZ3 and NZ6 which are esterase enzymes and whose catalytic functions are to hydrolyze ester bonds, and (4) Alpha-Lactalbumin ( -La) which is an important whey protein. The effect of

  10. Assay Methods for H2S Biogenesis and Catabolism Enzymes

    Science.gov (United States)

    Banerjee, Ruma; Chiku, Taurai; Kabil, Omer; Libiad, Marouane; Motl, Nicole; Yadav, Pramod K.

    2015-01-01

    H2S is produced from sulfur-containing amino acids, cysteine and homocysteine, or a catabolite, 3-mercaptopyruvate, by three known enzymes: cystathionine β-synthase, γ-cystathionase, and 3-mercaptopyruvate sulfurtransferase. Of these, the first two enzymes reside in the cytoplasm and comprise the transsulfuration pathway, while the third enzyme is found both in the cytoplasm and in the mitochondrion. The following mitochondrial enzymes oxidize H2S: sulfide quinone oxidoreductase, sulfur dioxygenase, rhodanese, and sulfite oxidase. The products of the sulfide oxidation pathway are thiosulfate and sulfate. Assays for enzymes involved in the production and oxidative clearance of sulfide to thiosulfate are described in this chapter. PMID:25725523

  11. INFLUENCE OF THE CYP3A4 ISOENZYME METABOLIC ACTIVITY AND CYP2C19 GENE POLYMORPHISMS ON CLOPIDOGREL ANTIPLATELET EFFECT IN PATIENTS WITH ACUTE CORONARY SYNDROME UNDERGOING PERCUTANEOUS CORONARY INTERVENTION

    Directory of Open Access Journals (Sweden)

    K. B. Mirzaev

    2015-09-01

    Full Text Available Aim. Carriership of CYP2C19*2 allelic variant and reduced CYP3A4 activity can affect the formation of clopidogrel’s active metabolite and, respectively, its antiplatelet effect. We sought to determine the impact of CYP3A4 isoenzyme activity and CYP2C19 polymorphisms on platelet aggregation.Material and methods. The study included 81 patients with acute coronary syndrome (ACS and subsequent percutaneous coronary intervention (PCI: 64 males and 17 females, mean age 63.9±10.9 years. CYP2C19 allelic variants were detected by the method of real-time polymerase chain reaction. CYP3A4 isoenzyme activity was estimated by urinary 6-β-hydroxycortisol/free cortisol ratio (6-OHC/FC using the method of high-performance liquid chromatography. Platelet functional activity was evaluated by a portative aggregometer - the VerifyNow P2Y12 assay.Results. Logistic regression analysis has demonstrated significantly increased risk of clopidogrel resistance in patients-carriers of the CYP2C19*2 polymorphism (p=0.022. CYP2C19*2 non-carriers had significantly higher mean platelet inhibition percentage as compared with the carriers of this allele: 30.7±20.1 in the CYP2C19*1/*1 group vs 18.2±16.4 in the CYP2C19*1/*2 one (р=0.03. Clopidogrel laboratory resistance (P2Y12 Reaction Units (PRU>208 was found out to be higher in the CYP2C19*2-carriers as compared with non-carriers: 53.8% in the patients with the CYP2C19*1/*2 genotype and 16.2% in subjects with the CYP2C19*1/*1 genotype (odds ratio [OR]=1.8; 95% confidence interval [95% CI]: 1.0–3.2; р=0.0067. Linear regression analysis has revealed that smaller mean diameter of stent slightly reduces the risk of clopidogrel resistance development. No significant distinctions in urinary 6-OHC/FC ratios (the marker of CYP3A4 activity were observed: 3.4±2.8 in the PRU>208 group and 3.2±3.0 in the PRU<208 group (p=0.8. Besides, no significant correlation between platelet activity and the 6-OHC/FC ratio was found (р=0

  12. Expression of two drug-metabolizing cytochrome P450-enzymes in human salivary glands

    DEFF Research Database (Denmark)

    Kragelund, C; Hansen, C; Torpet, L A;

    2008-01-01

    and seromucous / serous acinar cells in all gland types although to a varying degree and intensity. Mucous acinar cells were positive to a lesser extent. CONCLUSION: The results indicate a xenobiotic metabolizing capability of salivary glands. This may have implications for development of oral mucosal disease......OBJECTIVE: The oral cavity is constantly lubricated by saliva and even small amounts of xenobiotics and / or their metabolites in the saliva may affect the oral mucosa. Our aim was therefore to clarify if xenobiotic metabolizing enzymes CYP1A2 and CYP3A4 are expressed in salivary glands. METHODS......: Formalin-fixed paraffin-embedded specimens from parotid (10), submandibular (7) and labial (10) salivary glands were examined immunohistochemically and by in situ hybridization for expression of CYP1A2 and CYP3A4 protein and mRNA. RESULTS: CYP1A2 and CYP3A4 protein and mRNA were detected in ductal...

  13. 菜用大豆籽粒发育过程中蔗糖积累及相关酶活性的研究%Study on sucrose accumulation and enzyme activities involved in sucrose metabolism in developing seeds of vegetable soybean

    Institute of Scientific and Technical Information of China (English)

    张古文; 胡齐赞; 徐盛春; 龚亚明

    2012-01-01

    选用蔗糖含量差异显著的菜用大豆品种——‘浙农6号'(蔗糖含量高)、‘辽鲜1号’(蔗糖含量中等)和‘夏丰2008’(蔗糖含量低),对三者籽粒发育过程中蔗糖、可溶性总糖含量以及蔗糖合成酶(SS)、酸性转化酶(AI)、中性转化酶(NI)、蔗糖磷酸合成酶(SPS)等蔗糖代谢相关酶活性进行了比较,并对蔗糖积累与酶活性的关系进行了分析.结果表明,菜用大豆籽粒干、鲜重积累均呈单“S”型曲线,三个品种的蔗糖代谢规律基本相似,整个菜用大豆籽粒发育过程中,蔗糖是可溶性总糖的主要成分,约占其总含量的70%.蔗糖代谢相关酶的净活性是影响蔗糖积累的主要因子,在籽粒发育早期,蔗糖代谢相关酶的净活性为负值,蔗糖以分解为主,此时蔗糖合成酶和酸性转化酶是催化其分解的关键酶;籽粒发育中期,蔗糖代谢相关酶的净活性转为正值,蔗糖代谢转为合成为主,蔗糖合成酶和蔗糖磷酸合成酶是催化其合成的关键酶;进入籽粒发育后期,蔗糖代谢相关酶的净活性仍为正值,但接近于零,表明蔗糖的合成与分解速率基本相当,此时蔗糖合成酶、酸性转化酶、中性转化酶和蔗糖磷酸合成酶在蔗糖代谢中起主导作用.%Three cultivars, Zhenong No. 6 (high sucrose content) , Liaoxian No. 1 (middle sucrose content) and Xiafeng2008 (low sucrose content) were used to investigate the sucrose accumulation and enzyme activities involved in its metabolism in developing seeds of vegetable soybean. The results showed that the growth curves of vegetable soybean seeds showed single sigmoid pattern. The change trends of sucrose metabolism among three cultivars were similar. During the whole periods of vegetable soybean seeds development, sucrose was the major component of soluble sugar, taking about 70% of total soluble sugar contents. The net activities of sucrose-metabolizing enzymes were the major factor affecting

  14. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  15. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    . In this thesis, separations using crossflow elecro-membrane filtration (EMF) of amino acids, bovine serum albumin (BSA) and industrial enzymes from Novozymes were performed. The main objective of this study was to investigate the technological feasibility of EMF in the application of industrial enzyme...... fractionation, such as removal of a side activity from the main enzyme activity. As a proof-of-concept, amino acids were used as model solution to test the feasibility of EMF in the application of amphoteric molecule separation. A single amino acid was used to illustrate the effect of an electric field...... on the separation performance were very small in the investigated range. The mass transport of each enzyme can be well explained by the Extended-Nernst-Planck equation. Better separation was observed at lower feed concentration, higher solution pH in the investigated range and with a polysulfone (PS) MF membrane...

  16. Overproduction of ligninolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  17. Enzyme with rhamnogalacturonase activity.

    OpenAIRE

    Kofod, L.V.; Andersen, L N; Dalboge, H; Kauppinen, M.S.; Christgau, S; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A. G. J.; Schols, H.A.

    1998-01-01

    An enzyme exhibiting rhamnogalacturonase activity, capable of cleaving a rhamnogalacturonan backbone in such a manner that galacturonic acids are left as the non-reducing ends, and which exhibits activity on hairy regions from a soy bean material and/or on saponified hairy regions from a sugar beet material. The enzyme has the amino acid sequence of SEQ ID NO:2 and is encoded by the DNA sequence of SEQ ID NO:1

  18. RNA-modifying enzymes.

    Science.gov (United States)

    Ferré-D'Amaré, Adrian R

    2003-02-01

    A bewildering number of post-transcriptional modifications are introduced into cellular RNAs by enzymes that are often conserved among archaea, bacteria and eukaryotes. The modifications range from those with well-understood functions, such as tRNA aminoacylation, to widespread but more mysterious ones, such as pseudouridylation. Recent structure determinations have included two types of RNA nucleobase modifying enzyme: pseudouridine synthases and tRNA guanine transglycosylases.

  19. Genetic variation in the 3'-UTR of CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2 and UGT2B7: potential effect on regulation by microRNA and pharmacogenomics relevance

    Directory of Open Access Journals (Sweden)

    Marelize eSwart

    2014-06-01

    Full Text Available Introduction: Pharmacogenomics research has concentrated on variation in genes coding for drug metabolising enzymes, transporters and nuclear receptors. However, variation affecting microRNA could also play a role in drug response. This project set out to investigate potential microRNA target sites in 11 genes and the extent of variation in the 3'-UTR of six selected genes; CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2 and UGT2B7. Methods: Fifteen microRNA target prediction algorithms were used to identify microRNAs predicted to regulate 11 genes. The 3'-UTR of the 6 genes which topped the list of potential microRNA targets was sequenced in 30 black South Africans. In addition, genetic variants within these genes were investigated for interference with mRNA-microRNA interactions. Potential effects of observed variants were determined using in silico prediction tools. Results: The 11 genes coding for DMEs, transporters and nuclear receptors were predicted to be targets of microRNAs with CYP2B6, NR1I2 (PXR, CYP3A4 and CYP1A2, interacting with the most microRNAs. The majority of identified genetic variants were predicted to interfere with microRNA regulation. For example, the variant, rs1054190C in NR1I2 was predicted to result in the presence of a binding site for the microRNA miR-1250-5p, while the variant rs1054191G was predicted to result in the absence of a recognition site for miR-371b-3p, miR-4258 and miR-4707-3p. Fifteen of the seventeen, novel variants occurred within microRNA target sequences.Conclusion: The 3'-UTR harbours variation that is likely to influence regulation of specific genes by microRNA. In silico prediction followed by functional validation could aid in decoding the contribution of variation in the 3'-UTR, to some unexplained heritability that affects drug response. Understanding the specific role of each microRNA may lead to identification of markers for targeted therapy and therefore improve personalized drug treatment.

  20. Measuring Solution Viscosity and its Effect on Enzyme Activity

    OpenAIRE

    Uribe Salvador; Sampedro José G.

    2003-01-01

    In proteins, some processes require conformational changes involving structural domain diffusion. Among these processes are protein folding, unfolding and enzyme catalysis. During catalysis some enzymes undergo large conformational changes as they progress through the catalytic cycle. According to Kramers theory, solvent viscosity results in friction against proteins in solution, and this should result in decreased motion, inhibiting catalysis in motile enzymes. Solution viscosity was increas...

  1. Charge-transport-mediated recruitment of DNA repair enzymes

    OpenAIRE

    Fok, Pak-Wing; Guo, Chin-Lin; Chou, Tom

    2008-01-01

    Damaged or mismatched bases in DNA can be repaired by base excision repair enzymes (BER) that replace the defective base. Although the detailed molecular structures of many BER enzymes are known, how they colocalize to lesions remains unclear. One hypothesis involves charge transport (CT) along DNA [Yavin et al., Proc. Natl. Acad. Sci. U.S.A. 102, 3546 (2005)]. In this CT mechanism, electrons are released by recently adsorbed BER enzymes and travel along the DNA. The electrons can scatter (by...

  2. On the Structural Context and Identification of Enzyme Catalytic Residues

    OpenAIRE

    Yu-Tung Chien; Shao-Wei Huang

    2013-01-01

    Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The...

  3. [Cytochrome P450 enzymes and microbial drug development - A review].

    Science.gov (United States)

    Li, Zhong; Zhang, Wei; Li, Shengying

    2016-03-01

    Cytochrome P450 enzymes broadly exist in animals, plants and microorganisms. This superfamily of monooxygenases holds the greatest diversity of substrate structures and catalytic reaction types among all enzymes. P450 enzymes play important roles in natural product biosynthesis. In particular, P450 enzymes are capable of catalyzing the regio- and stereospecific oxidation of non-activated C-H bonds in complex organic compounds under mild conditions, which overrides many chemical catalysts. This advantage thus warrants their great potential in microbial drug development. In this review, we introduce a variety of P450 enzymes involved in natural product biosynthesis; provide a brief overview on protein engineering, biotransformation and practical application of P450 enzymes; and discuss the limits, challenges and prospects of industrial application of P450 enzymes. PMID:27382792

  4. [Cytochrome P450 enzymes and microbial drug development - A review].

    Science.gov (United States)

    Li, Zhong; Zhang, Wei; Li, Shengying

    2016-03-01

    Cytochrome P450 enzymes broadly exist in animals, plants and microorganisms. This superfamily of monooxygenases holds the greatest diversity of substrate structures and catalytic reaction types among all enzymes. P450 enzymes play important roles in natural product biosynthesis. In particular, P450 enzymes are capable of catalyzing the regio- and stereospecific oxidation of non-activated C-H bonds in complex organic compounds under mild conditions, which overrides many chemical catalysts. This advantage thus warrants their great potential in microbial drug development. In this review, we introduce a variety of P450 enzymes involved in natural product biosynthesis; provide a brief overview on protein engineering, biotransformation and practical application of P450 enzymes; and discuss the limits, challenges and prospects of industrial application of P450 enzymes.

  5. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  6. Random-walk enzymes.

    Science.gov (United States)

    Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  7. 夜间亚低温对番茄果实糖含量和糖代谢酶活性的影响%Effects of Sub-low Night Temperature on Sugar Content in Tomato(L.esculentum Mill.)Fruits and Activities of Enzymes Involved in Carbohydrate Metabolism

    Institute of Scientific and Technical Information of China (English)

    王丽娟; 李天来

    2011-01-01

    [Objective] The aim was to study the effects of sub-low night temperature on contents of several sugars in tomato fruits and activities of enzymes involved in carbohydrate metabolism. [ Method] The effects of sub-low night temperature at 9 ℃ (15 ℃ as control) on contents of fructose,glucose and sucrose in tomato fruits,and activities of acid invertase (AI) .neutral invertase (NI), sucrose synthase (SS) and sucrose phosphate synthase(SPS). Then the relationship between sugar contents and activities of enzymes involved in carbohydrate metabolism were analyzed. [Result] The results indicated that contents of fructose, glucose, sucrose and activities of AI and NI were lower than control under sub-low night temperature, while SS and SPS activities had no obvious laws. The changes of AI and NI activities in tomato fruits were small relatively during young fruit period,while that was increased rapidly during fruit maturity period. SS activity gradually decreased with fruit development, and was very low during fruit maturity period. SPS activity was always low during test. There were most significant positive correlations among activities of AI, NI and contents of fructose, glucose in tomato fruits, and the correlation of SS activity with sucrose content was also most significant positive. [ Conclusion] The main factors of leading to the contents of sugar in tomato fruits decrease was the activities of invertase under sub-low night temperature.%[目的]研究夜间亚低温对番茄(Lycopersicon esculentum Mill.)果实几种糖含量及糖代谢酶活性的影响.[方法]以15℃夜温为对照,研究了9℃夜间亚低温处理对番茄果实果糖、葡萄糖和蔗糖含量及酸性转化酶(AI)、中性转化酶(NI)、蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)活性的影响,并分析了糖含量与糖代谢酶活性的相关性.[结果]经过夜间亚低温处理后,番茄果实中果糖、葡萄糖和蔗糖含量均小于对照.与对照相比,夜间亚低

  8. Angiotensin-converting enzyme

    DEFF Research Database (Denmark)

    Sørensen, P G; Rømer, F K; Cortes, D

    1984-01-01

    In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical or radiolog......In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical...

  9. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.;

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...

  10. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    ? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe......One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function...

  11. ISFET based enzyme sensors

    NARCIS (Netherlands)

    Schoot, van der Bart H.; Bergveld, Piet

    1987-01-01

    This paper reviews the results that have been reported on ISFET based enzyme sensors. The most important improvement that results from the application of ISFETs instead of glass membrane electrodes is in the method of fabrication. Problems with regard to the pH dependence of the response and the dyn

  12. Computational enzyme design

    Science.gov (United States)

    Bolon, Daniel N.

    2002-08-01

    The long-term objective of computational enzyme design is the ability to generate efficient protein catalysts for any chemical reaction. This thesis develops and experimentally validates a general computational approach for the design of enzymes with novel function. In order to include catalytic mechanism in protein design, a high-energy state (HES) rotamer (side chain representation) was constructed. In this rotamer, substrate atoms are in a HES. In addition, at least one amino acid side chain is positioned to interact favorably with substrate atoms in their HES and facilitate the reaction. Including an amino acid side chain in the HES rotamer automatically positions substrate relative to a protein scaffold and allows protein design algorithms to search for sequences capable of interacting favorably with the substrate. Because chemical similarity exists between the transition state and the high-energy state, optimizing the protein sequence to interact favorably with the HES rotamer should lead to transition state stabilization. In addition, the HES rotamer model focuses the subsequent computational active site design on a relevant phase space where an amino acid is capable of interacting in a catalytically active geometry with substrate. Using a HES rotamer model of the histidine mediated nucleophilic hydrolysis of p-nitrophenyl acetate, the catalytically inert 108 residue E. coli thioredoxin as a scaffold, and the ORBIT protein design software to compute sequences, an active site scan identified two promising active site designs. Experimentally, both candidate ?protozymes? demonstrated catalytic activity significantly above background. In addition, the rate enhancement of one of these ?protozymes? was the same order of magnitude as the first catalytic antibodies. Because polar groups are frequently buried at enzyme-substrate interfaces, improved modeling of buried polar interactions may benefit enzyme design. By studying native protein structures, rules have been

  13. Recent advances in rational approaches for enzyme engineering

    Directory of Open Access Journals (Sweden)

    Kerstin Steiner

    2012-09-01

    Full Text Available Enzymes are an attractive alternative in the asymmetric syntheses of chiral building blocks. To meet the requirements of industrial biotechnology and to introduce new functionalities, the enzymes need to be optimized by protein engineering. This article specifically reviews rational approaches for enzyme engineering and de novo enzyme design involving structure-based approaches developed in recent years for improvement of the enzymes’ performance, broadened substrate range, and creation of novel functionalities to obtain products with high added value for industrial applications.

  14. The Moderately Efficient Enzyme: Futile Encounters and Enzyme Floppiness.

    Science.gov (United States)

    Bar-Even, Arren; Milo, Ron; Noor, Elad; Tawfik, Dan S

    2015-08-18

    The pioneering model of Henri, Michaelis, and Menten was based on the fast equilibrium assumption: the substrate binds its enzyme reversibly, and substrate dissociation is much faster than product formation. Here, we examine this assumption from a somewhat different point of view, asking what fraction of enzyme-substrate complexes are futile, i.e., result in dissociation rather than product formation. In Knowles' notion of a "perfect" enzyme, all encounters of the enzyme with its substrate result in conversion to product. Thus, the perfect enzyme's catalytic efficiency, kcat/KM, is constrained by only the diffusion on-rate, and the fraction of futile encounters (defined as φ) approaches zero. The available data on >1000 different enzymes suggest that for ≥90% of enzymes φ > 0.99 and for the "average enzyme" φ ≥ 0.9999; namely, <1 of 10(4) encounters is productive. Thus, the "fast equilibrium" assumption holds for the vast majority of enzymes. We discuss possible molecular origins for the dominance of futile encounters, including the coexistence of multiple sub-states of an enzyme's active site (enzyme floppiness) and/or its substrate. Floppiness relates to the inherent flexibility of proteins, but also to conflicting demands, or trade-offs, between rate acceleration (the rate-determining chemical step) and catalytic turnover, or between turnover rate and accuracy. The study of futile encounters and active-site floppiness may contribute to a better understanding of enzyme catalysis, enzyme evolution, and improved enzyme design.

  15. Synthesis and Crystal Structure of(3S,4R,Z)-3,6-dimethyl-2-(3-methylbut-2-enylidene)-2,3,3a,4,7,7a-hexahydrobenzofuran-3,4-diol

    Institute of Scientific and Technical Information of China (English)

    CHEN Lei; FANG Hu-Biao; HUANG Nian-Yu; WANG Jun-Zhi; ZOU Kun

    2011-01-01

    The title compound of(3S,4R,Z)-3,6-dimethyl-2-(3-methylbut-2-enylidene)-2,3,3a,4,7,7a-hexahydrobenzofuran-3,4-diol,C15H22O3,as a potential gastric cytoprotective agent has been synthesized by the reduction of bisabolangelone in methanol with sodium borohydride.The title compound was characterized by IR and NMR spectra.Meanwhile,the crystal was obtained and determined by X-ray single-crystal diffraction.Crystal data:monoclinic system,space group P21 with a = 6.0692(12),b = 8.9954(18),c = 13.182(3) ,β = 92.59(3)°,V = 718.9(2) 3,Z = 2,F(000) = 272,Dc = 1.156 g/cm3,μ = 0.633 mm-1,R = 0.0362 and wR = 0.1051 for 9490 independent reflections(Rint = 0.0172) and 2461 observed reflections(I 2σ(I)).Intermolecular O-H…O interactions link the molecules into one-dimensional infinite chains running along the b axis,which contributes to the stability of the crystal structure.

  16. Synthesis, crystal structure analysis, spectral characterization, quantum chemical calculations, antioxidant and antimicrobial activity of 3-(4-chlorophenyl)-3a,4,7,7a-tetrahydro-4,7-methanobenzo[d]isoxazole

    Science.gov (United States)

    Eryılmaz, Serpil; Gül, Melek; İnkaya, Ersin; İdil, Önder; Özdemir, Namık

    2016-10-01

    In this paper, 3-(4-chlorophenyl)-3a,4,7,7a-tetrahydro-4,7-methanobenzo[d]isoxazole was synthesized via 1,3 dipolar cycloaddition, characterized by spectroscopic analysis such as FT-IR, 1H NMR, 13C NMR, UV-Vis, LC-MS/MS, Elemental Analysis, and X-ray Single Crystal diffraction technique. The Density Functional Theory (DFT/B3LYP) method with 6-311G(d,p) basis set in the ground state was applied for quantum chemical calculations and molecular geometric parameters of the compound were compared with the X-ray analysis results. FT-IR, NMR and UV-Vis spectral analysis were analysed to determine the compliance with the vibrational frequencies, 1H NMR and 13C NMR chemical shifts and absorption wavelength values. The frontier molecular orbitals (FMOs), some global reactivity descriptors, molecular electrostatic potential (MEP), thermodynamic properties, non-linear optical (NLO) behaviour of the compound were examined with the same method in gas phase, theoretically. Moreover, antioxidant activity was determined with three different methods - DPPH radical scavenging, reducing and metal chelating, antimicrobial activity were carried out with Gram positive, Gram negative and Eukaryote for the title compound.

  17. Enzyme-based multiplexer and demultiplexer.

    Science.gov (United States)

    Arugula, Mary A; Bocharova, Vera; Halámek, Jan; Pita, Marcos; Katz, Evgeny

    2010-04-22

    A digital 2-to-1 multiplexer and a 1-to-2 demultiplexer were mimicked by biocatalytic reactions involving concerted operation of several enzymes. Using glucose oxidase (GOx) and laccase (Lac) as the data input signals and variable pH as the addressing signal, ferrocyanide oxidation in the output channel was selectively activated by one from two inputs, thus mimicking the multiplexer operation. A demultiplexer based on the enzyme system composed of GOx, glucose dehydrogenase (GDH) and horseradish peroxidase (HRP) allowed selective activation of different output channels (oxidation of ferrocyanide or reduction of NAD(+)) by the glucose input. The selection of the output channel was controlled by the addressing input of NAD(+). The designed systems represent important novel components of future branched enzyme networks processing biochemical signals for biosensing and bioactuating.

  18. New protein involved in the replacement of cell molecules

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave

    2011-01-01

    In collaboration with colleagues from La Trobe University, Australia, scientists at Aarhus University have discovered and defined a novel enzyme involved in the replacement and renewal of cell molecules. The enzyme exerts its function within the so-called mitochondria - small “enclosed” compartme......In collaboration with colleagues from La Trobe University, Australia, scientists at Aarhus University have discovered and defined a novel enzyme involved in the replacement and renewal of cell molecules. The enzyme exerts its function within the so-called mitochondria - small “enclosed...

  19. Perspectives of Solid State Fermentation for Production of Food Enzymes

    Directory of Open Access Journals (Sweden)

    Cristobal Noe Aguilar

    2008-01-01

    Full Text Available Food industry represents one of the economic sectors where microbial metabolites have found a wide variety of applications. This is the case of some enzymes, such as amylases, cellulases, pectinases and proteases which have played a very important role as food additives. Most of these enzymes have been produced by submerged cultures at industrial level. Many works in the literature present detailed aspects involved with those enzymes and their importance in the food industry. However, the production and application studies of those enzymes produced by solid state fermentations are scarce in comparison with submerged fermentation. This review involves production aspects of the seven enzymes: tannases, pectinases, caffeinases, mannanases, phytases, xylanases and proteases, which can be produced by solid state fermentation showing attractive advantages. Additionally, process characteristics of solid state fermentation are considered.

  20. Non-homologous isofunctional enzymes: A systematic analysis of alternative solutions in enzyme evolution

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2010-04-01

    Full Text Available Abstract Background Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (nonhomologous relationships between proteins. Results We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. Conclusions These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity. Reviewers This article was reviewed by Andrei

  1. The Effects of H2S on the Activities of CYP2B6, CYP2D6, CYP3A4, CYP2C19 and CYP2C9 in Vivo in Rat

    Directory of Open Access Journals (Sweden)

    Xianqin Wang

    2013-12-01

    Full Text Available Hydrogen sulfide (H2S is a colorless, flammable, extremely hazardous gas with a “rotten egg” smell. The human body produces small amounts of H2S and uses it as a signaling molecule. The cocktail method was used to evaluate the influence of H2S on the activities of CYP450 in rats, which were reflected by the changes of pharmacokinetic parameters of five specific probe drugs: bupropion, metroprolol, midazolam, omeprazole and tolbutamide, respectively. The rats were randomly divided into two groups, control group and H2S group. The H2S group rats were given 5 mg/kg NaHS by oral administration once a day for seven days. The mixture of five probes was given to rats through oral administration and the blood samples were obtained at a series of time-points through the caudal vein. The concentrations of probe drugs in rat plasma were measured by LC-MS. In comparing the H2S group with the control group, there was a statistically pharmacokinetics difference for midazolam and tolbutamide; the area under the plasma concentration-time curve (AUC was decreased for midazolam (p < 0.05 and increased for tolbutamide (p < 0.05; while there was no statistical pharmacokinetics difference for bupropion, metroprolol and omeprazole. H2S could not influence the activities of CYP2B6, CYP2D6 and CYP2C19 in rats, while H2S could induce the activity of CYP3A4 and inhibit the activity of CYP2C9 in rats.

  2. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    Science.gov (United States)

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-11-25

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups. 19 figs.

  3. Liver involvement in Langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Adelaine; Ortiz-Neira, Clara L.; Abou Reslan, Walid; Kaura, Deepak [Alberta Children' s Hospital, Department of Diagnostic Imaging, Calgary, Alberta (Canada); Sharon, Raphael; Anderson, Ronald [Alberta Children' s Hospital, Department of Oncology, Calgary, AB (Canada); Pinto-Rojas, Alfredo [Alberta Children' s Hospital, Department of Pathology, Calgary, AB (Canada)

    2006-10-15

    Liver involvement in Langerhans cell histiocytosis (LCH) typically presents with hepatomegaly and other signs of liver dysfunction. We present an 11-month-old child having only minimally elevated liver enzymes as an indication of liver involvement. Using sonography as the initial diagnostic tool followed by MRI, LCH of the liver was revealed. A review of sonographic, CT, MRI and MR cholangiopancreatography findings in liver LCH is presented. We recommend that physicians consider sonography and MRI screening for liver involvement in patients with newly diagnosed LCH, as periportal involvement may be present with little or no liver function abnormality present, as in this patient. (orig.)

  4. Liver involvement in Langerhans cell histiocytosis

    International Nuclear Information System (INIS)

    Liver involvement in Langerhans cell histiocytosis (LCH) typically presents with hepatomegaly and other signs of liver dysfunction. We present an 11-month-old child having only minimally elevated liver enzymes as an indication of liver involvement. Using sonography as the initial diagnostic tool followed by MRI, LCH of the liver was revealed. A review of sonographic, CT, MRI and MR cholangiopancreatography findings in liver LCH is presented. We recommend that physicians consider sonography and MRI screening for liver involvement in patients with newly diagnosed LCH, as periportal involvement may be present with little or no liver function abnormality present, as in this patient. (orig.)

  5. Heme-containing dioxygenases involved in tryptophan oxidation.

    Science.gov (United States)

    Millett, Elizabeth S; Efimov, Igor; Basran, Jaswir; Handa, Sandeep; Mowat, Christopher G; Raven, Emma Lloyd

    2012-04-01

    Heme iron is often used in biology for activation of oxygen. The mechanisms of oxygen activation by heme-containing monooxygenases (the cytochrome P450s) are well known, and involve formation of a Compound I species, but information on the heme-containing dioxygenase enzymes involved in tryptophan oxidation lags far behind. In this review, we gather together information emerging recently from structural, mechanistic, spectroscopic, and computational approaches on the heme dioxygenase enzymes involved in tryptophan oxidation. We explore the subtleties that differentiate various heme enzymes from each other, and use this to piece together a developing picture for oxygen activation in this particular class of heme-containing dioxygenases.

  6. Treating Wastewater With Immobilized Enzymes

    Science.gov (United States)

    Jolly, Clifford D.

    1991-01-01

    Experiments show enzymes are immobilized on supporting materials to make biocatalyst beds for treatment of wastewater. With suitable combination of enzymes, concentrations of various inorganic and organic contaminants, including ammonia and urea, reduced significantly.

  7. The Catalytic Function of Enzymes.

    Science.gov (United States)

    Splittgerber, Allan G.

    1985-01-01

    Discusses: structure of the enzyme molecule; active site; reaction mechanism; transition state; factors affecting enzyme reaction rates, concentration of enzyme; concentration of substrate; product concentration; temperature effects and pH effects; factors causing a lowering of activation energy; proximity and orientation effects; substrate strain…

  8. Selective inhibition of human cytochrome P450 3A4 by N-[2(R)-hydroxy-1(S)-indanyl]-5-[2(S)-(1, 1-dimethylethylaminocarbonyl)-4-[(furo[2, 3-b]pyridin-5-yl)methyl]piperazin-1-yl]-4(S)-hydroxy-2(R)-phenylmethy lpentanamide and P-glycoprotein by valspodar in gene transfectant systems.

    Science.gov (United States)

    Kawahara, I; Kato, Y; Suzuki, H; Achira, M; Ito, K; Crespi, C L; Sugiyama, Y

    2000-10-01

    Our previous report showed that L754.394 and valspodar (PSC833) are potent inhibitors of midazolam hydroxylation in human jejunum microsomes and vectorial transport of vinblastine in Caco-2 cells, respectively. In the present study, to directly examine the interactions of these compounds as well as other substrates with CYP3A4 and P-glycoprotein (P-gp), we performed in vitro inhibition studies using recombinant CYP3A4-expressed microsomes and an MDR1-transfected cell line, LLC-MDR1, respectively. In CYP3A4-expressed microsomes, both L754.394 and ketoconazole, at a concentration less than 0.5 microM, are the most potent inhibitors of the formation of 1'-hydroxymidazolam, a major metabolite of midazolam formed by CYP3A4. The greatest inhibitory effect on the transcellular transport of digoxin in LLC-MDR1 cells was observed in the presence of valspodar (<0.1 microM), followed by verapamil. From a comparison of the IC(50) values, it was shown that L754.394 and valspodar exhibited the highest selectivity for CYP3A4 and P-gp, respectively. To demonstrate such specificity, both midazolam hydroxylation and digoxin transport were observed in CYP3A4 transfected Caco-2 cells, which coexpress both P-gp and CYP3A4, in the presence or absence of L754.394 (0.5 microM) and valspodar (1.0 microM). L754.394 almost completely inhibited midazolam hydroxylation, but not digoxin transport, whereas almost complete inhibition of digoxin transport was observed in the presence of valspodar, but inhibition of the hydroxylation was minimal. Thus, the present study has demonstrated that L754.394 has a specific inhibitory effect on CYP3A4, whereas valspodar is specific for P-gp. PMID:10997946

  9. Frequency of anti-glycoprotein Ia/IIa (anti-HPA-5b,-5a and anti-glycoprotein IIb/IIIa (anti-HPA-1a,-3a,-4a alloantibodies in multiparous women of African descent

    Directory of Open Access Journals (Sweden)

    Zaccheaus A Jeremiah

    2010-05-01

    Full Text Available Zaccheaus A Jeremiah1, Justina E Oburu2, Osaro Erhabor1, Fiekumo I Buseri1, Teddy C Adias31Haematology and Blood Transfusion Science Unit, Department of Medical Laboratory Sciences, College of Health Sciences, Niger Delta University, Wilberforce Island, Nigeria; 2Department of Haematology and Blood Transfusion, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria; 3Rivers State University of Science and Technology, Port Harcourt, NigeriaBackground: Human platelet antibodies are often implicated in some disease conditions, such as neonatal alloimmune thrombocytopenia (NAIT, idiopathic thrombocytopenic purpura (ITP and platelet refractoriness. The frequencies of these alloantibodies have not been reported in Nigeria and West Africa.Methods: Screening for allontibodies to human platelet antigens (HPA was undertaken using the GTI PakPlus® qualitative solid phase ELISA reagent. Platelet count was done using the ICSH approved procedure using 1% ammonium oxalate reagent.Study design: A cross-section of apparently healthy adult Nigerian multiparous non-pregnant women, who were staff of a tertiary health facility in the Niger Delta, Nigeria, were screened for alloantibodies to human platelet antigens.Results: Of the one hundred (100 women screened, the prevalence of anti-glycoprotein IIb/IIIa (anti-HPA-Ia,-3a,-4a was zero percent (0%, anti-glycoprotein Ia/IIa (anti-HPA-5b accounted for 30% of results, while anti-glycoprotein Ia/IIa (anti-HPA-5a was 18%. Parity was found to exert significant influence on the development to HPA antibodies (Fisher’s Exact Test = 11.683, P < 0.05; 13.577, P < 0.01. The platelet count of the women did not appear to exert any influence on the development of the antibodies (P > 0.05.Conclusion: This study has observed a high prevalence of anti-HPA-5b in our sample population. The prevalence of alloantibodies to HPA antigens was found to associate strongly with parity. These results indicate that there is a

  10. Enzyme kinetic study of a new cardioprotective agent, KR-32570 using human liver microsomes and recombinant CYP isoforms.

    Science.gov (United States)

    Kim, Hyojin; Seo, Kyung-Ah; Kim, Hyunmi; Lee, Hye Suk; Lee, Choong-Hwan; Shin, Jae-Gook; Liu, Kwang-Hyeon

    2007-04-01

    KR-32570 (5-(2-Methoxy-5-chlorophenyl)furan-2-ylcarbonyl)guanidine) is a new cardioprotective agent for preventing ischemia-reperfusion injury. Human liver microsomal incubation of KR-32570 in the presence of NADPH resulted in the formation of two metabolites, hydroxy-KR-32570 and O-desmethyl-KR-32570. In this study, a kinetic analysis of the metabolism of two metabolites from KR-32570 was performed in human liver microsomes, and recombinant CYP1A2, and CYP3A4. The metabolism for hydroxy- and O-desmethyl-KR-32570 formation from KR-32570 by human liver microsomes was best described by a Michaelis-Menten equation and a Hill equation, respectively. The Cl(int) values of hydroxy- and O-desmethyl-KR-32570 formation were similar to each other (0.03 vs 0.04 microL/min/pmol CYP, respectively). CYP3A4 mediated the formation of hydroxy-KR-32570 from KR-32570 with Cl(int) = 0.24 microL/min/pmol CYP3A4. The intrinsic clearance for O-desmethyl-KR-32570 formation by CYP1A2 was 0.83 AL/min/pmol CYP1A2. These findings suggest that CYP3A4 and CYP1A2 enzymes are major enzymes contributing to the metabolism of KR-32570.

  11. Beyond Vmax and Km: How details of enzyme function influence geochemical cycles

    Science.gov (United States)

    Steen, A. D.

    2015-12-01

    Enzymes catalyze the vast majority of chemical reactions relevant to geomicrobiology. Studies of the activities of enzymes in environmental systems often report Vmax (the maximum possible rate of reaction; often proportional to the concentration of enzymes in the system) and sometimes Km (a measure of the affinity between enzymes and their substrates). However, enzyme studies - particularly those related to enzymes involved in organic carbon oxidation - are often limited to only those parameters, and a relatively limited and mixed set of enzymes. Here I will discuss some novel methods to assay and characterize the specific sets of enzymes that may be important to the carbon cycle in aquatic environments. First, kinetic experiments revealed the collective properties of the complex mixtures of extracellular peptidases that occur where microbial communities are diverse. Crystal structures combined with biochemical characterization of specific enzymes can yield more detailed information about key steps in organic carbon transformations. These new techniques have the potential to provide mechanistic grounding to geomicrobiological models.

  12. Enzyme hydration, activity and flexibility : A neutron scattering approach

    Energy Technology Data Exchange (ETDEWEB)

    Kurkal-Siebert, V [University of Heidelberg; Finney, J.L. [University College, London; Daniel, R. M. [University of Waikato, New Zealand; Smith, Jeremy C [ORNL

    2006-01-01

    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. The question of whether the hydration-induced enzyme flexibility is important for activity is addressed by performing picosecond dynamic neutron scattering experiments on pig liver esterase powders at various temperatures as well as solutions. At all temperatures and hydrations investigated here, significant quasielastic scattering intensity is found in the protein, indicating the presence of anharmonic, diffusive motion. As the hydration increases a temperature-dependent dynamical transition appears and strengthens involving additional diffusive motion. At low temperature, increasing hydration resulted in lower flexibility of the enzyme. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The implication of these results is that, although the additional hydration-induced diffusive motion and flexibility at high temperatures in the enzyme detected here may be related to increased activity, they are not required for the enzyme to function.

  13. 2,6-Bis(2-hydroxyethyl-8b,8c-diphenylperhydro-2,3a,4a,6,7a,8a-hexaazacyclopenta[def]fluorene-4,8-dithione

    Directory of Open Access Journals (Sweden)

    Zihua Wang

    2009-06-01

    Full Text Available In the title molecule, C24H28N6O2S2, the dihedral angle between the aromatic ring planes is 42.2 (1°. In the crystal structure, the hydroxy groups are involved in O—H...S hydrogen bonding, which links the molecules into corrugated layers propagating parallel to the bc plane.

  14. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  15. Phlorotannins from Alaskan Seaweed Inhibit Carbolytic Enzyme Activity

    OpenAIRE

    Joshua Kellogg; Grace, Mary H.; Mary Ann Lila

    2014-01-01

    Global incidence of type 2 diabetes has escalated over the past few decades, necessitating a continued search for natural sources of enzyme inhibitors to offset postprandial hyperglycemia. The objective of this study was to evaluate coastal Alaskan seaweed inhibition of α-glucosidase and α-amylase, two carbolytic enzymes involved in serum glucose regulation. Of the six species initially screened, the brown seaweeds Fucus distichus and Alaria marginata possessed the strongest inhibitory effec...

  16. Perspectives in developing industrial enzymes by using technological intelligence

    OpenAIRE

    Óscar Fernando Castellanos Domínguez; Diana Cristina Ramírez Martínez; Víctor Mauricio Montañez

    2010-01-01

    Developing emergent technologies implies an ongoing challenge involving using new technological management tools. Enzyme engineering and its respective technology (within the context of biotechnology) is one of the areas of knowledge from which great expectations are constantly arising, such as providing competitive advantage in emergent economies like that of Colombia. However, several decades of research in this field have still not led to important results in terms of enzyme production an...

  17. Diced electrophoresis gel assay for screening enzymes with specified activities.

    Science.gov (United States)

    Komatsu, Toru; Hanaoka, Kenjiro; Adibekian, Alexander; Yoshioka, Kentaro; Terai, Takuya; Ueno, Tasuku; Kawaguchi, Mitsuyasu; Cravatt, Benjamin F; Nagano, Tetsuo

    2013-04-24

    We have established the diced electrophoresis gel (DEG) assay as a proteome-wide screening tool to identify enzymes with activities of interest using turnover-based fluorescent substrates. The method utilizes the combination of native polyacrylamide gel electrophoresis (PAGE) with a multiwell-plate-based fluorometric assay to find protein spots with the specified activity. By developing fluorescent substrates that mimic the structure of neutrophil chemoattractants, we could identify enzymes involved in metabolic inactivation of the chemoattractants.

  18. Innovative enzymes for bioethanol production from lignocellulosic materials

    OpenAIRE

    Marcolongo, Loredana

    2015-01-01

    The general aim of this work was to add new knowledge on novel hemicellulolytic enzymes involved in the hydrolysis of lignocellulosic materials, considered as a key process for the bioethanol production. Therefore, it is not only focused on (hemi)cellulolytic enzymes from mesophilic fungi and bacteria but also on newly isolated and characterized xylanase and β-xylosidase from the thermophilic bacteria Geobacillus thermodenitrificans A333 and Anoxybacillus sp. 3M, respectively. The cove...

  19. El juego con materiales manipulativos para mejorar el aprendizaje de las matemáticas en Educación Infantil: Una propuesta para niños y niñas de 3 a 4 años

    Directory of Open Access Journals (Sweden)

    Marta Berga Espona

    2013-12-01

    Full Text Available Elaboración de una propuesta para niños de 3 a 4 años de edad, llevada a la práctica, y orientada al aprendizaje de las matemáticas, en la que se da importancia al juego y a la manipulación de objetos, a partir del juego de construcciones con cuerpos geométricos. La propuesta consta de nueve actividades. Partiendo de unos objetivos adecuados para estas edades, proponemos actividades de juego libre, otras más dirigidas, y otras que implican representaciones mentales más avanzadas. Se tiene en cuenta el alumnado, sus características, sus habilidades y su ritmo de desarrollo. Los niños y niñas tienen un papel activo y son protagonistas de su propio aprendizaje, para tratar de conseguir un aprendizaje significativo. Play with manipulatives to improve the learning of mathematics in the early childhood: A proposal for children from 3 to 4 years. This work project involves the development of a proposal for children from 3 to 4 years old, taking it to practice for a mathematical learning and giving importance to manipulate objects from block play. This proposal is based in play, and is composed by nine activities, with are developmentally appropriate for these ages. There will be free play activities, others will be more directed and others must make mental representations. The activities proposed take into account the students, their characteristics, their skills and their pace of development. All the students will have an active role and will be responsible for their own learning, trying to achieve a meaningful learning. Keywords: Childhood Education, meaningful learning, mathematics, manipulatives, play, creativity.

  20. Potentials for Soil Enzyme as Indicators of Ecological Management

    Science.gov (United States)

    Senwo, Z. N.; Manu, A.; Coleman, T. L.

    1997-01-01

    Activity measurements of selected soil enzymes (cellulase, glucosidase, amidohydrolase, phosphatase, arylsulfatase) involved in carbon, nitrogen, phosphorus, and sulfur cycling in the biosphere, hold potential as early and sensitive indicators of soil ecological stress and restoration, These measurements are advantageous because the procedures are simple, rapid, and reproducible over time. Enzyme activities are sensitive to short-term changes in soil and kind-use management. Enzyme activities have also been observed to be closely related to soil organic matter proposed as an index of soil quality.

  1. Methyl 1-methyl-3-p-tolyl-1,2,3,3a,4,11c-hexahydrobenzo[f]chromeno[4,3-b]pyrrole-3a-carboxylate

    Directory of Open Access Journals (Sweden)

    S. Nirmala

    2009-08-01

    Full Text Available In the title compound, C25H25NO3, the dihydropyran ring adopts a half-chair conformation, whereas the pyrrolidine ring is in a twist conformation. The tolyl group is oriented at an angle of 82.92 (7° with respect to the napthalene ring system. In the crystal structure, molecules are linked into centrosymmetric dimers by C—H...π interactions involving the benzene ring of the tolyl group.

  2. Enzyme polymorphisms in Canarium

    Science.gov (United States)

    Fifty-two accessions of Canarium involving seven species, C. ovatum, C. album, C. megalanthum, C. harveyi, C. indicum, C. mehenbethene, and C. odontophyllum were studied for isozyme polymorphisms. Starch gel electrophoresis with a histidine-citrate buffer system (pH 6.5) was employed to assay six en...

  3. Negative cooperativity in regulatory enzymes.

    Science.gov (United States)

    Levitzki, A; Koshland, D E

    1969-04-01

    Negative cooperativity has been observed in CTP synthetase, an allosteric enzyme which contains a regulatory site. Thus, the same enzyme exhibits negative cooperativity for GTP (an effector) and glutamine (a substrate) and positive cooperativity for ATP and UTP (both substrates). In the process of the delineation of these phenomena, diagnostic procedures for negative cooperativity were developed. Application of these procedures to other enzymes indicates that negative cooperativity is a characteristic of many of them. These findings add strong support for the sequential model of subunit interactions which postulates that ligand-induced conformational changes are responsible for regulatory and cooperative phenomena in enzymes. PMID:5256410

  4. Enzyme therapeutics for systemic detoxification.

    Science.gov (United States)

    Liu, Yang; Li, Jie; Lu, Yunfeng

    2015-08-01

    Life relies on numerous biochemical processes working synergistically and correctly. Certain substances disrupt these processes, inducing living organism into an abnormal state termed intoxication. Managing intoxication usually requires interventions, which is referred as detoxification. Decades of development on detoxification reveals the potential of enzymes as ideal therapeutics and antidotes, because their high substrate specificity and catalytic efficiency are essential for clearing intoxicating substances without adverse effects. However, intrinsic shortcomings of enzymes including low stability and high immunogenicity are major hurdles, which could be overcome by delivering enzymes with specially designed nanocarriers. Extensive investigations on protein delivery indicate three types of enzyme-nanocarrier architectures that show more promise than others for systemic detoxification, including liposome-wrapped enzymes, polymer-enzyme conjugates, and polymer-encapsulated enzymes. This review highlights recent advances in these nano-architectures and discusses their applications in systemic detoxifications. Therapeutic potential of various enzymes as well as associated challenges in achieving effective delivery of therapeutic enzymes will also be discussed.

  5. Inhibitory effect of mitragynine on human cytochrome P450 enzyme activities

    Directory of Open Access Journals (Sweden)

    N A Hanapi

    2013-01-01

    Full Text Available Context: To date, many findings reveal that most of the modern drugs have the ability to interact with herbal drugs. Aims: This study was conducted to determine the inhibitory effects of mitragynine on cytochrome P450 2C9, 2D6 and 3A4 activities. Methods and Material: The in vitro study was conducted using a high-throughput luminescence assay. Statistical Analysis: Statistical analysis was conducted using one-way ANOVA and Dunnett′s test with P < 0.05 vs. control. The IC 50 values were calculated using the GraphPad Prism® 5 (Version 5.01, GraphPad Software, Inc., USA. Results: Assessment using recombinant enzymes showed that mitragynine gave the strongest inhibitory effect on CYP2D6 with an IC 50 value of 0.45±0.33 mM, followed by CYP2C9 and CYP3A4 with IC 50 values of 9.70±4.80 and 41.32±6.74 mM respectively. Positive inhibitors appropriate for CYP2C9, CYP2D6, and CYP3A4 which are sulfaphenazole, quinidine and ketoconazole were used respectively. V max values of CYP2C9, CYP2D6 and CYP3A4 were 0.0005, 0.01155 and 0.0137 mM luciferin formed/pmol/min respectively. K m values of CYP2C9, CYP2D6, and CYP3A4 were 32.65, 56.01, and 103.30 mM respectively. Mitragynine noncompetitively inhibits CYP2C9 and CYP2D6 activities with the K i values of 61.48 and 12.86 mM respectively. On the other hand, mitragynine inhibits CYP3A4 competitively with a K i value of 379.18 mM. Conclusions: The findings of this study reveal that mitragynine might inhibit cytochrome P450 enzyme activities, specifically CYP2D6. Therefore, administration of mitragynine together with herbal or modern drugs which follow the same metabolic pathway may contribute to herb-drug interactions.

  6. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes

    Directory of Open Access Journals (Sweden)

    José Maria Rodrigues da Luz

    2012-12-01

    Full Text Available The mushroom Pleurotus ostreatus has nutritional and medicinal characteristics that depend on the growth substrate. In nature, this fungus grows on dead wood, but it can be artificially cultivated on agricultural wastes (coffee husks, eucalyptus sawdust, corncobs and sugar cane bagasse. The degradation of agricultural wastes involves some enzyme complexes made up of oxidative (laccase, manganese peroxidase and lignin peroxidase and hydrolytic enzymes (cellulases, xylanases and tanases. Understanding how these enzymes work will help to improve the productivity of mushroom cultures and decrease the potential pollution that can be caused by inadequate discharge of the agroindustrial residues. The objective of this work was to assess the activity of the lignocellulolytic enzymes produced by two P. ostreatus strains (PLO 2 and PLO 6. These strains were used to inoculate samples of coffee husks, eucalyptus sawdust or eucalyptus bark add with or without 20 % rice bran. Every five days after substrate inoculation, the enzyme activity and soluble protein concentration were evaluated. The maximum activity of oxidative enzymes was observed at day 10 after inoculation, and the activity of the hydrolytic enzymes increased during the entire period of the experiment. The results show that substrate composition and colonization time influenced the activity of the lignocellulolytic enzymes.

  7. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward.

  8. In Vitro Effects of Concomitant Use of Herbal Preparations on Cytochrome P450s Involved in Clozapine Metabolism.

    Science.gov (United States)

    Wang, Wei; Tian, Dan-Dan; Zhang, Zhang-Jin

    2016-01-01

    Herbal supplements are increasingly used in psychiatric practice. Our epidemiological study has identified several herbal preparations associated with adverse outcomes of antipsychotic therapy. In this study, we evaluated the in vitro effects of four herbal preparations-Radix Rehmanniae (RR), Fructus Schisandrae (FS), Radix Bupleuri (RB) and Fructus Gardeniae (FG)-on cytochrome P450s (CYPs) involved in the metabolism of clozapine in human liver microsomes (HLMs) and recombinant human cytochrome P450 enzymes (rCYPs). N-desmethylclozapine and clozapine N-oxide, two major metabolites of clozapine, were measured using high-performance liquid chromatography (HPLC). FG, RR and RB showed negligible inhibitory effects in both in vitro systems, with estimated half-maximal inhibitory concentrations (IC50) and apparent inhibitory constant values (Ki) greater than 1 mg/mL (raw material), suggesting that minimal metabolic interaction occurs when these preparations are used concomitantly with clozapine. The FS extract affected CYP activity with varying potency; its effect on CYP 3A4-catalyzed clozapine oxidation was relatively strong (Ki: 0.11 mg/mL). Overall, the weak-to-moderate inhibitory effect of FS on in vitro clozapine metabolism indicated its potential role in herb-drug interaction in practice. PMID:27164071

  9. Enzyme immunoassay for human ferritin

    International Nuclear Information System (INIS)

    We described an enzyme immunoassay with use of β-D-galactosidase for quantitation of ferritin in human serum. The minimum detectable ferritin concentration is 0.25 μg/L of serum, which is comparable to results obtained by radioimmunoassay. The correlation coefficient between values determined by enzyme immunoassay and radioimmunoassay was 0.95

  10. Phage lytic enzymes: a history

    Institute of Scientific and Technical Information of China (English)

    David; Trudil

    2015-01-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of ‘bacteria-eaters’ or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well(Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specifi c disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay(Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes–from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  11. Enzyme immobilization on graft copolymers

    NARCIS (Netherlands)

    Mohy Eldin, M.S.

    1999-01-01

    Immobilised enzymes can be reused, easily separated from the reaction medium, and are more stable in most of the cases. Despite of these advantages, there are still some problems facing the usage of the immobilised enzyme in industry. One of those problems is diffusion-limitation of both the reactan

  12. Human bone marrow niche chemoprotection mediated by cytochrome P450 enzymes.

    Science.gov (United States)

    Alonso, Salvador; Su, Meng; Jones, Jace W; Ganguly, Sudipto; Kane, Maureen A; Jones, Richard J; Ghiaur, Gabriel

    2015-06-20

    Substantial evidence now demonstrates that interactions between the tumor microenvironment and malignant cells are a critical component of clinical drug resistance. However, the mechanisms responsible for microenvironment-mediated chemoprotection remain unclear. We showed that bone marrow (BM) stromal cytochrome P450 (CYP)26 enzymes protect normal hematopoietic stem cells (HSCs) from the pro-differentiation effects of retinoic acid. Here, we investigated if stromal expression of CYPs is a general mechanism of chemoprotection. We found that similar to human hepatocytes, human BM-derived stromal cells expressed a variety of drug-metabolizing enzymes. CYP3A4, the liver's major drug-metabolizing enzyme, was at least partially responsible for BM stroma's ability to protect multiple myeloma (MM) and leukemia cells from bortezomib and etoposide, respectively, both in vitro and in vivo. Moreover, clarithromycin overcame stromal-mediated MM resistance to dexamethasone, suggesting that CYP3A4 inhibition plays a role in its ability to augment the activity of lenalidomide and dexamethasone as part of the BiRd regimen. We uncovered a novel mechanism of microenvironment-mediated drug resistance, whereby the BM niche creates a sanctuary site from drugs. Targeting these sanctuaries holds promise for eliminating minimal residual tumor and improving cancer outcomes. PMID:25915157

  13. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  14. Moonlighting enzymes in parasitic protozoa.

    Science.gov (United States)

    Collingridge, Peter W; Brown, Robert W B; Ginger, Michael L

    2010-08-01

    Enzymes moonlight in a non-enzymatic capacity in a diverse variety of cellular processes. The discovery of these non-enzymatic functions is generally unexpected, and moonlighting enzymes are known in both prokaryotes and eukaryotes. Importantly, this unexpected multi-functionality indicates that caution might be needed on some occasions in interpreting phenotypes that result from the deletion or gene-silencing of some enzymes, including some of the best known enzymes from classic intermediary metabolism. Here, we provide an overview of enzyme moonlighting in parasitic protists. Unequivocal and putative examples of moonlighting are discussed, together with the possibility that the unusual biological characteristics of some parasites either limit opportunities for moonlighting to arise or perhaps contribute to the evolution of novel proteins with clear metabolic ancestry.

  15. HIV-1 Alters Intestinal Expression of Drug Transporters and Metabolic Enzymes: Implications for Antiretroviral Drug Disposition.

    Science.gov (United States)

    Kis, Olena; Sankaran-Walters, Sumathi; Hoque, M Tozammel; Walmsley, Sharon L; Dandekar, Satya; Bendayan, Reina

    2016-05-01

    This study investigated the effects of HIV-1 infection and antiretroviral therapy (ART) on the expression of intestinal drug efflux transporters, i.e., P-glycoprotein (Pgp), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP), and metabolic enzymes, such as cytochrome P450s (CYPs), in the human upper intestinal tract. Intestinal biopsy specimens were obtained from HIV-negative healthy volunteers, ART-naive HIV-positive (HIV(+)) subjects, and HIV(+) subjects receiving ART (10 in each group). Intestinal tissue expression of drug transporters and metabolic enzymes was examined by microarray, real-time quantitative reverse transcription-PCR (qPCR), and immunohistochemistry analyses. Microarray analysis demonstrated significantly lower expression of CYP3A4 and ABCC2/MRP2 in the HIV(+) ART-naive group than in uninfected subjects. qPCR analysis confirmed significantly lower expression of ABCC2/MRP2 in ART-naive subjects than in the control group, while CYP3A4 and ABCG2/BCRP showed a trend toward decreased expression. Protein expression of MRP2 and BCRP was also significantly lower in the HIV(+) naive group than in the control group and was partially restored to baseline levels in HIV(+) subjects receiving ART. In contrast, gene and protein expression of ABCB1/Pgp was significantly increased in HIV(+) subjects on ART relative to HIV(+) ART-naive subjects. These data demonstrate that the expression of drug-metabolizing enzymes and efflux transporters is significantly altered in therapy-naive HIV(+) subjects and in those receiving ART. Since CYP3A4, Pgp, MRPs, and BCRP metabolize or transport many antiretroviral drugs, their altered expression with HIV infection may negatively impact drug pharmacokinetics in HIV(+) subjects. This has clinical implications when using data from healthy volunteers to guide ART. PMID:26902756

  16. Database of ligand-induced domain movements in enzymes

    Directory of Open Access Journals (Sweden)

    Hayward Steven

    2009-03-01

    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do

  17. Hfq stimulates the activity of the CCA-adding enzyme

    Directory of Open Access Journals (Sweden)

    Betat Heike

    2007-10-01

    Full Text Available Abstract Background The bacterial Sm-like protein Hfq is known as an important regulator involved in many reactions of RNA metabolism. A prominent function of Hfq is the stimulation of RNA polyadenylation catalyzed by E. coli poly(A polymerase I (PAP. As a member of the nucleotidyltransferase superfamily, this enzyme shares a high sequence similarity with an other representative of this family, the tRNA nucleotidyltransferase that synthesizes the 3'-terminal sequence C-C-A to all tRNAs (CCA-adding enzyme. Therefore, it was assumed that Hfq might not only influence the poly(A polymerase in its specific activity, but also other, similar enzymes like the CCA-adding enzyme. Results Based on the close evolutionary relation of these two nucleotidyltransferases, it was tested whether Hfq is a specific modulator acting exclusively on PAP or whether it also influences the activity of the CCA-adding enzyme. The obtained data indicate that the reaction catalyzed by this enzyme is substantially accelerated in the presence of Hfq. Furthermore, Hfq binds specifically to tRNA transcripts, which seems to be the prerequisite for the observed effect on CCA-addition. Conclusion The increase of the CCA-addition in the presence of Hfq suggests that this protein acts as a stimulating factor not only for PAP, but also for the CCA-adding enzyme. In both cases, Hfq interacts with RNA substrates, while a direct binding to the corresponding enzymes was not demonstrated up to now (although experimental data indicate a possible interaction of PAP and Hfq. So far, the basic principle of these stimulatory effects is not clear yet. In case of the CCA-adding enzyme, however, the presented data indicate that the complex between Hfq and tRNA substrate might enhance the product release from the enzyme.

  18. Applications of Nanomaterials in Electrochemical Enzyme Biosensors

    Directory of Open Access Journals (Sweden)

    Xiaodi Yang

    2009-10-01

    Full Text Available A biosensor is defined as a kind of analytical device incorporating a biological material, a biologically derived material or a biomimic intimately associated with or integrated within a physicochemical transducer or transducing microsystem. Electrochemical biosensors incorporating enzymes with nanomaterials, which combine the recognition and catalytic properties of enzymes with the electronic properties of various nanomaterials, are new materials with synergistic properties originating from the components of the hybrid composites. Therefore, these systems have excellent prospects for interfacing biological recognition events through electronic signal transduction so as to design a new generation of bioelectronic devices with high sensitivity and stability. In this review, we describe approaches that involve nanomaterials in direct electrochemistry of redox proteins, especially our work on biosensor design immobilizing glucose oxidase (GOD, horseradish peroxidase (HRP, cytochrome P450 (CYP2B6, hemoglobin (Hb, glutamate dehydrogenase (GDH and lactate dehydrogenase (LDH. The topics of the present review are the different functions of nanomaterials based on modification of electrode materials, as well as applications of electrochemical enzyme biosensors.

  19. Linking Hydrolysis Performance to Trichoderma reesei Cellulolytic Enzyme Profile

    DEFF Research Database (Denmark)

    Lehmann, Linda Olkjær; Petersen, Nanna; I. Jørgensen, Christian;

    2016-01-01

    Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, e.g. by spiking with single enzymes and monitoring hydrolysis performance. In this study a multivariate...... approach, partial least squares regression, was used to see if it could help explain the correlation between enzyme profile and hydrolysis performance. Diverse enzyme mixtures were produced by Trichoderma reesei Rut-C30 by exploiting various fermentation conditions and used for hydrolysis of washed...

  20. A microarray-based system for the simultaneous analysis of single nucleotide polymorphisms in human genes involved in the metabolism of anti-malarial drugs

    Directory of Open Access Journals (Sweden)

    Qi Weihong

    2009-12-01

    Full Text Available Abstract Background In order to provide a cost-effective tool to analyse pharmacogenetic markers in malaria treatment, DNA microarray technology was compared with sequencing of polymerase chain reaction (PCR fragments to detect single nucleotide polymorphisms (SNPs in a larger number of samples. Methods The microarray was developed to affordably generate SNP data of genes encoding the human cytochrome P450 enzyme family (CYP and N-acetyltransferase-2 (NAT2 involved in anti-malarial drug metabolisms and with known polymorphisms, i.e. CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, and NAT2. Results For some SNPs, i.e. CYP2A6*2, CYP2B6*5, CYP2C8*3, CYP2C9*3/*5, CYP2C19*3, CYP2D6*4 and NAT2*6/*7/*14, agreement between both techniques ranged from substantial to almost perfect (kappa index between 0.61 and 1.00, whilst for other SNPs a large variability from slight to substantial agreement (kappa index between 0.39 and 1.00 was found, e.g. CYP2D6*17 (2850C>T, CYP3A4*1B and CYP3A5*3. Conclusion The major limit of the microarray technology for this purpose was lack of robustness and with a large number of missing data or with incorrect specificity.

  1. Detoxification of azo dyes by bacterial oxidoreductase enzymes.

    Science.gov (United States)

    Mahmood, Shahid; Khalid, Azeem; Arshad, Muhammad; Mahmood, Tariq; Crowley, David E

    2016-08-01

    Azo dyes and their intermediate degradation products are common contaminants of soil and groundwater in developing countries where textile and leather dye products are produced. The toxicity of azo dyes is primarily associated with their molecular structure, substitution groups and reactivity. To avoid contamination of natural resources and to minimize risk to human health, this wastewater requires treatment in an environmentally safe manner. This manuscript critically reviews biological treatment systems and the role of bacterial reductive and oxidative enzymes/processes in the bioremediation of dye-polluted wastewaters. Many studies have shown that a variety of culturable bacteria have efficient enzymatic systems that can carry out complete mineralization of dye chemicals and their metabolites (aromatic compounds) over a wide range of environmental conditions. Complete mineralization of azo dyes generally involves a two-step process requiring initial anaerobic treatment for decolorization, followed by an oxidative process that results in degradation of the toxic intermediates that are formed during the first step. Molecular studies have revealed that the first reductive process can be carried out by two classes of enzymes involving flavin-dependent and flavin-free azoreductases under anaerobic or low oxygen conditions. The second step that is carried out by oxidative enzymes that primarily involves broad specificity peroxidases, laccases and tyrosinases. This review focuses, in particular, on the characterization of these enzymes with respect to their enzyme kinetics and the environmental conditions that are necessary for bioreactor systems to treat azo dyes contained in wastewater.

  2. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  3. Emerging roles of deubiquitinating enzymes in human cancer1

    Institute of Scientific and Technical Information of China (English)

    Jin-ming YANG

    2007-01-01

    Protein modifications by the covalent linkage of ubiquitin have significant in-volvement in many cellular processes, including stress response, oncogenesis,viral infection, transcription, protein turnover, organelle biogenesis, DNA repair,cellular differentiation, and cell cycle control. Protein ubiquitination and subse-quent degradation by the proteasome require the participation of both ubiquitinating enzymes and deubiquitinating enzymes. Although deubiquitinatingenzymes constitute a large family in the ubiquitin system, the study of this class of proteins is still in its infant stage. Recent studies have revealed a variety of molecular and biological functions of deubiquitinating enzymes and their associa-tion with human diseases. In this review we will discuss the possible roles that deubiquitinating enzymes may play in cancers.

  4. Amperometric ATP biosensor based on polymer entrapped enzymes.

    Science.gov (United States)

    Kueng, Angelika; Kranz, Christine; Mizaikoff, Boris

    2004-05-15

    A dual enzyme electrode for the detection of adenosine-5'-triphosphate (ATP) at physiologically relevant pH levels was developed by co-immobilization of the enzymes glucose oxidase (GOD) and hexokinase (HEX) using pH-shift induced deposition of enzyme containing polymer films. Application of a simple electrochemical procedure for the co-immobilization of the enzymes at electrode surfaces exhibits a major improvement of sensitivity, response time, reproducibility, and ease of fabrication of ATP biosensors. Competition between glucose oxidase and hexokinase for the substrate glucose involving ATP as a co-substrate allows the determination of ATP concentrations. Notable control on the immobilization process enables fabrication of micro biosensors with a diameter of 25 microm. The presented concept provides the technological basis for a new generation of fast responding, sensitive, and robust biosensors for the detection of ATP at physiological pH values with a detection limit of 10 nmol l(-1). PMID:15046763

  5. Printable enzyme-embedded materials for methane to methanol conversion.

    Science.gov (United States)

    Blanchette, Craig D; Knipe, Jennifer M; Stolaroff, Joshuah K; DeOtte, Joshua R; Oakdale, James S; Maiti, Amitesh; Lenhardt, Jeremy M; Sirajuddin, Sarah; Rosenzweig, Amy C; Baker, Sarah E

    2016-01-01

    An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scale structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas-liquid reactions. PMID:27301270

  6. Metabolic Enzymes Enjoying New Partnerships as RNA-Binding Proteins.

    Science.gov (United States)

    Castello, Alfredo; Hentze, Matthias W; Preiss, Thomas

    2015-12-01

    In the past century, few areas of biology advanced as much as our understanding of the pathways of intermediary metabolism. Initially considered unimportant in terms of gene regulation, crucial cellular fate changes, cell differentiation, or malignant transformation are now known to involve 'metabolic remodeling' with profound changes in the expression of many metabolic enzyme genes. This review focuses on the recent identification of RNA-binding activity of numerous metabolic enzymes. We discuss possible roles of this unexpected second activity in feedback gene regulation ('moonlighting') and/or in the control of enzymatic function. We also consider how metabolism-driven post-translational modifications could regulate enzyme-RNA interactions. Thus, RNA emerges as a new partner of metabolic enzymes with far-reaching possible consequences to be unraveled in the future.

  7. Measuring Solution Viscosity and its Effect on Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Uribe Salvador

    2003-01-01

    Full Text Available In proteins, some processes require conformational changes involving structural domain diffusion. Among these processes are protein folding, unfolding and enzyme catalysis. During catalysis some enzymes undergo large conformational changes as they progress through the catalytic cycle. According to Kramers theory, solvent viscosity results in friction against proteins in solution, and this should result in decreased motion, inhibiting catalysis in motile enzymes. Solution viscosity was increased by adding increasing concentrations of glycerol, sucrose and trehalose, resulting in a decrease in the reaction rate of the H+-ATPase from the plasma membrane of Kluyveromyces lactis. A direct correlation was found between viscosity (&eegr; and the inhibition of the maximum rate of catalysis (V max. The protocol used to measure viscosity by means of a falling ball type viscometer is described, together with the determination of enzyme kinetics and the application of Kramers’ equation to evaluate the effect of viscosity on the rate of ATP hydrolysis by the H+-ATPase.

  8. An enzyme with rhamnogalacturonase activity.

    OpenAIRE

    Kovod, L.V.; Dalboge, H; Andersen, L N; Kauppinen, M.; Christgan, S.; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A. G. J.; Schols, H.A.

    1994-01-01

    An enzyme exhibiting rhamnogalacturonase activity, which enzyme: a) is encoded by the DNA sequence shown in SEQ ID No. 1 or a sequence homologous thereto encoding a polypeptide with RGase activity, b) has the amino acid sequence shown in SEQ ID No. 2 or an analogue thereof, c) is reactive with an antibody raised against the enzyme encoded by the DNA sequence shown in SEQ ID No. 1, d) has a pH optimum above pH 5, and/or e) has a relative activity of at least 30t a pH in the range of 5.5-6.5. T...

  9. Troglitazone thiol adduct formation in human liver microsomes: enzyme kinetics and reaction phenotyping.

    Science.gov (United States)

    Gan, Jinping; Qu, Qinling; He, Bing; Shyu, Wen C; Rodrigues, A David; He, Kan

    2008-08-01

    Troglitazone (TGZ) induced hepatotoxicity has been linked to cytochrome P450 (CYP)-catalyzed reactive metabolite formation. Therefore, the kinetics and CYP specificity of reactive metabolite formation were studied using dansyl glutathione (dGSH) as a trapping agent after incubation of TGZ with human liver microsomes (HLM) and recombinant human CYP proteins. CYP2C8 exhibited the highest rate of TGZ adduct (TGZ-dGS) formation, followed by CYP3A4, CYP3A5, and CYP2C19. The involvement of CYP2C8 and CYP3A4 was confirmed with CYP form-selective chemical inhibitors. The impact of TGZ concentration on the rate of TGZ-dGS formation was also evaluated. In this instance, two distinctly different profiles were observed with recombinant CYP3A4 and CYP2C8. It is concluded that both CYP3A4/5 and CYP2C8 play a major role in the formation of TGZ adduct in HLM. However, the contribution of these CYPs varies depending on their relative expression and the concentration of TGZ. PMID:19356091

  10. 褪黑素对大鼠肝微粒体细胞色素P450酶亚型CYP2C9、CYP2D6、CYP3A4活性的影响

    Institute of Scientific and Technical Information of China (English)

    刘明远; 杨光远; 王跃新; 张春斌; 白雪; 张建华

    2011-01-01

    目的 观察褪黑素对大鼠肝微粒体内细胞色素P450 (CYP450) 酶亚型CYP2C9、CYP2D6、CYP3A4活性的影响.方法 以生理盐水为对照,大鼠灌胃0.54 mg·kg-1·d-1的褪黑素,连续7 d,然后测定其肝微体中CYP2C9、CYP2D6、CYP3A4活性.结果 与对照组比较,褪黑素组CYP2C9、CYP2D6、CYP3A4的活性无变化(P>0.05).结论 褪黑素对CYP450酶 CYP2C9、CYP2D6、CYP3A4活性无影响.

  11. Starch Accumulation and Activities of Key Enzymes Involved in Starch Synthesis in the Grains of Maize Inbred Lines with Different Starch Contents%淀粉含量不同的玉米自交系籽粒淀粉积累及其关键酶活性

    Institute of Scientific and Technical Information of China (English)

    张军杰; 胡育峰; 周会; 黄玉碧

    2007-01-01

    以2个高淀粉和2个低淀粉玉米自交系为材料,分析了玉米籽粒淀粉的动态积累规律,同时对高低淀粉玉米籽粒灌浆过程中淀粉生物合成关键酶活性的动态变化及其与淀粉积累动态的相关性进行讨论分析.研究结果表明:灌浆过程中4个自交系淀粉含量变化趋势均呈sigmoid型曲线.灌浆过程中ADPG-PPase(腺苷二磷酸葡萄糖焦磷酸化酶)、SSS(可溶性淀粉合成酶)、GBSS(颗粒结合淀粉合成酶)活性均呈单峰曲线变化,峰值都出现在20~30 DAP(授粉后天数).2个高淀粉自交系的Q酶(淀粉分支酶)活性也呈单峰曲线变化,峰值也出现在20DAP,而2个低淀粉自交系的Q酶活性则呈双峰曲线变化,2个峰值分别出现在15~20 DAP和30~35DAP.4个自交系籽粒淀粉的积累速率与各自交系ADPG-PPase、SSS和GBSS的活性变化呈极显著正相关.各自交系关键酶活性之间,ADPG-PPase、SSS和GBSS三者间活性变化呈极显著正相关,这3种酶活性变化与Q酶活性变化也呈不同程度的正相关.%Amylose,amylopectin and starch dynamic accumulation and key enzymes activities in the grains of 4 maize inbred lines (two high-starch ones and two lowstarch ones)were studied.The amounts of amylose.amylopectin and starch in the grains of 4 maize inbred lines increased as sigmoid curves during grain filling period.The changes in amylose,amylopectin and starch accumulation rates followed single-peaked curves,and reached theif peaks in the 25-30 days after pollination (DAP).Changes in activities of adenosine diphosphoglucose pyrophosphorylase(ADPG-PPase,EC 2.7.7.27),soluble starch synthase(sss,EC 2.4.1.21)and starch granule-bound synthase(GBSS,EC 2.4.1.21)in the grains of 4 inbred lines appeared single-peaked curves with the peaks appearing 20-30 DAP.Changes in activities of starch-branching enzyme(Q-enzyme,EC 2.4.1.18) in the grains of high-starch inbred lines appeared single-peaked curves with the peak values at 20 DAP

  12. Effects of individual polychlorinated naphthalene (PCN) components of Halowax 1051 and two defined, artificial PCN mixtures on AHR and CYP1A1 protein expression, steroid secretion and expression of enzymes involved in steroidogenesis (CYP17, 17β-HSD and CYP19) in porcine ovarian follicles.

    Science.gov (United States)

    Barć, Justyna; Gregoraszczuk, Ewa Łucja

    2014-08-01

    In this study we tried to answer a question which component of Halowax 1051 is responsible for, observed in previously published study, androgenic effects of the mixture, and whether it is possible to draw conclusions about the action of mixtures by examining the effect of an indicator congener. Ovarian follicles were incubated with individual congeners of an artificial mixture for 6-24h. At the end of the incubation period, media were collected for determination of progesterone (P4), androstenedione (A4), testosterone (T) and estradiol (E2) levels by enzyme immunoassay, and follicles were retained for an examination of aryl hydrocarbon receptor (AHR), cytochrome p450 enzymes (CYP1A1, CYP17, CYP19), and 17β-hydroxysteroid dehydrogenase (17β-HSD) protein expression by Western blotting. CN73 in dose 50pg/ml after 6h had no effect and decreased AHR expression after 24h, while at dose 400pg/ml increased AHR protein expression after 6h of exposure which remained elevated after 24h. CN74 and CN75 at both concentrations tested (25 and 50pg/ml) stimulated AHR protein expression after 6h and decreased it after 24h of exposure. Individual congeners induced a rapid increase in CYP1A1 protein expression, with a rank order of efficacy of CN73>CN74=CN75. All congeners increased P4/A4 and T/E2 secretion ratios in association with a decrease in the A4/T ratio, pointing to androgenic and anti-estrogenic properties of PCNs in ovarian follicles. The most potent congener in this context was CN73. The effects of mixtures were comparable to those of CN74 and CN75, and were not as strong as those observed for CN73. Collectively, these data suggest antagonistic actions of single congeners in a mixture, indicating that the actions of a mixture cannot be predicted based on the actions of individual congeners.

  13. Enzyme Teaching by a Virtual Laboratory

    Directory of Open Access Journals (Sweden)

    J.K. Sugai

    2010-05-01

    Full Text Available Biochemistry learning demands skills to obtaining and interpreting the experimental data. In a classical model of teaching involve student’s hands-on participation. However this model is expensive, not safe and should be carried out in a short and limited time course. With utilization of educational software these disadvantages are overcome, since the virtual activity could be realized at free full access, and is a tool for individual study. The aim of the present work is to present educational software focused on a virtual for undergraduate student of biochemistry courses. The software development was performed with the help of concept maps, ISIS Draw, ADOBE Photoshop and FLASH MX Program applied on the subject salivary amylase. It was possible to present the basic methodologies for study of the kinetic of enzyme. The substrate (starch consumption was determinate by iodine reaction, while the products (reducing sugars formation was evaluated by cupper-alkaline reaction. The protocols of the virtual experiments are present verbally as well as a subtitle. A set of exercises are disposable, which allowed an auto evaluation and a review of the subject. The experimental treatment involved the presentation of this hypermedia for Nutrition and Dentistry/UFSC undergraduate students as a tool for better comprehension of the theme and promoted the understanding of the kinetic of enzyme.

  14. ORGANOPHOSPHATE DEGRADING ENZYMES - PHASE I

    Science.gov (United States)

    Agave BioSystems in collaboration with Carl A. Batt proposes to develop decon-nanoparticles, which will leverage ongoing opportunities in enzyme engineering and the fabrication of functionalized magnetic nanoparticles. Enhanced performance will be engineered into the system t...

  15. Controlled enzyme catalyzed heteropolysaccharide degradation

    DEFF Research Database (Denmark)

    Rasmussen, Louise Enggaard

    The work presented in this PhD thesis has provided a better understanding of the enzyme kinetics and quantitative phenomena of the hydrolysis of xylan substrates by selected pure enzyme preparations. Furthermore, the options for producing specific substituted xylooligosaccharides from selected...... substrates by specific xylanase treatment have been examined. The kinetics of the enzymatic degradation of water-extractable wheat arabinoxylan (WE-AX) during designed treatments with selected monocomponent enzymes was investigated by monitoring the release of xylose and arabinose. The results of different...... between -xylosidase and the α-L-arabinofuranosidases on the xylose release were low as compared to the effect of xylanase addition with β-xylosidase, which increased the xylose release by ~25 times in 30 minutes. At equimolar addition levels of the four enzymes, the xylanase activity was thus rate...

  16. Enzymes: principles and biotechnological applications.

    Science.gov (United States)

    Robinson, Peter K

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed.

  17. Enzyme Assay: An Investigative Approach to Enhance Science Process Skills

    Science.gov (United States)

    Vartak, Rekha; Ronad, Anupama; Ghanekar, Vikrant

    2013-01-01

    Scientific investigations play a vital role in teaching and learning the process of science. An investigative task that was developed for pre-university students is described here. The task involves extraction of an enzyme from a vegetable source and its detection by biochemical method. At the beginning of the experiment, a hypothesis is presented…

  18. Release and uptake of lysosomal enzymes : studied in cultured cells

    NARCIS (Netherlands)

    D.J.J. Halley (Dicky)

    1980-01-01

    textabstractThe purpose of the experimental work described in this thesiswas to investigate some aspects of the release and uptake of lysosomal enzymes. The experiments involved the use of normal human and animal fibroblasts and some other cell types such as hepatocytes and hepatoma cells as sources

  19. Characterization of three amidinotransferases involved in the biosynthesis of ketomemicins.

    Science.gov (United States)

    Ogasawara, Yasushi; Fujimori, Michiko; Kawata, Junpei; Dairi, Tohru

    2016-08-01

    We recently reported a novel class of amide bond forming enzymes (peptide ligases) involved in the biosynthesis of pheganomycins, resorcinomycins and ketomemicins. This class of enzymes exclusively utilizes Nα-amidino amino acids as the N-terminal substrate. In this Letter, we characterized three new amidinotransferases involved in the biosynthesis of ketomemicins and showed that l-arginine was the amidino-acceptor of amidinotransferases in both the Micromonospora sp. and Streptomyces mobaraensis clusters, while the Salinispora tropica enzyme recognized l-valine. Unexpectedly, the S. tropica enzyme accepted several different amino acids as amidino acceptors in addition to l-valine. Accordingly, we re-investigated the specific metabolites governed by the gene cluster of S. tropica and identified several minor congeners of ketomemicin C with different N-terminal amidino-amino acids. These results indicate that the amidinotransferase of S. tropica is promiscuous and could be useful to generate new ketomemicin-type natural products. PMID:27289319

  20. Insights on Cytochrome P450 Enzymes and Inhibitors Obtained Through QSAR Studies

    Directory of Open Access Journals (Sweden)

    Maryam Foroozesh

    2012-08-01

    Full Text Available The cytochrome P450 (CYP superfamily of heme enzymes play an important role in the metabolism of a large number of endogenous and exogenous compounds, including most of the drugs currently on the market. Inhibitors of CYP enzymes have important roles in the treatment of several disease conditions such as numerous cancers and fungal infections in addition to their critical role in drug-drug interactions. Structure activity relationships (SAR, and three-dimensional quantitative structure activity relationships (3D-QSAR represent important tools in understanding the interactions of the inhibitors with the active sites of the CYP enzymes. A comprehensive account of the QSAR studies on the major human CYPs 1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4 and a few other CYPs are detailed in this review which will provide us with an insight into the individual/common characteristics of the active sites of these enzymes and the enzyme-inhibitor interactions.

  1. The synthesis of starch from carbon dioxide using isolubilized stabilized enzymes

    Science.gov (United States)

    Bassham, J. A.; Bearden, L.; Wilke, C.; Carroad, P.; Mitra, G.; Ige, R.

    1972-01-01

    Systems for artificial manufacture of starch and for delineation of technological areas, and the rationale for studying them are considered. A discussion of the enzyme-catalyzed routes of synthesis available and a choice as to the most promising route are presented. A discussion of the enzymes involved, of enzyme insolubilization technology, and of possible engineering approaches, with examples in the form of model calculations for both reactors and separators, are also presented.

  2. Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials.

    OpenAIRE

    Bronnenmeier, K; Kern, A.; Liebl, W.; Staudenbauer, W L

    1995-01-01

    A separation procedure for the analysis of the enzyme components of the hyperthermophilic bacterium Thermotoga maritima involved in cellulose and xylan degradation was developed. Resolution of the enzymes was achieved by a combination of fast protein liquid chromatography anion exchange and hydrophobic interaction chromatography. Enzyme fractions were assayed for hydrolysis of Avicel, carboxymethylcellulose (CMC), beta-glucan, laminarin, xylan, p-nitrophenyl-beta-D-glucoside, p-nitrophenyl-be...

  3. 25. Steenbock symposium -- Biosynthesis and function of metal clusters for enzymes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This symposium was held June 10--14, 1997 in Madison, Wisconsin. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on biochemistry of enzymes that have an affinity for metal clusters. Attention is focused on the following: metal clusters involved in energy conservation and remediation; tungsten, molybdenum, and cobalt-containing enzymes; Fe proteins, and Mo-binding proteins; nickel enzymes; and nitrogenase.

  4. Construction of chimeric enzymes out of maize endosperm branching enzymes I and II: activity and properties.

    Science.gov (United States)

    Kuriki, T; Stewart, D C; Preiss, J

    1997-11-14

    Branching enzyme I and II isoforms from maize endosperm (mBE I and mBE II, respectively) have quite different properties, and to elucidate the domain(s) that determines the differences, chimeric genes consisting of part mBE I and part mBE II were constructed. When expressed under the control of the T7 promoter in Escherichia coli, several of the chimeric enzymes were inactive. The only fully active chimeric enzyme was mBE II-I BspHI, in which the carboxyl-terminal part of mBE II was exchanged for that of mBE I at a BspHI restriction site and was purified to homogeneity and characterized. Another chimeric enzyme, mBE I-II HindIII, in which the amino-terminal end of mBE II was replaced with that of mBE I, had very little activity and was only partially characterized. The purified mBE II-I BspHI exhibited higher activity than wild-type mBE I and mBE II when assayed by the phosphorylase a stimulation assay. mBE II-I BspHI had substrate specificity (preference for amylose rather than amylopectin) and catalytic capacity similar to mBE I, despite the fact that only the carboxyl terminus was from mBE I, suggesting that the carboxyl terminus may be involved in determining substrate specificity and catalytic capacity. In chain transfer experiments, mBE II-I BspHI transferred more short chains (with a degree of polymerization of around 6) in a fashion similar to mBE II. In contrast, mBE I-II HindIII transferred more long chains (with a degree of polymerization of around 11-12), similar to mBE I, suggesting that the amino terminus of mBEs may play a role in the size of oligosaccharide chain transferred. This study challenges the notion that the catalytic centers for branching enzymes are exclusively located in the central portion of the enzyme; it suggests instead that the amino and carboxyl termini may also be involved in determining substrate preference, catalytic capacity, and chain length transfer.

  5. Reversible inhibition of three important human liver cytochrome p450 enzymes by tiliroside.

    Science.gov (United States)

    Sun, Dong-Xue; Lu, Jin-Cai; Fang, Zhong-Ze; Zhang, Yan-Yan; Cao, Yun-Feng; Mao, Yu-Xi; Zhu, Liang-Liang; Yin, Jun; Yang, Ling

    2010-11-01

    Tiliroside, an active flavonoid extensively found in many medicinal plants including Helichrysum italicum, Geranium mexicanum and Helianthemum glomeratum, has been demonstrated to exert multiple biological effects including antiinflammatory, antimicrobial, antioxidant and antitumor activities. Cytochrome P450 (CYP) enzymes play an important role in the Phase I oxidation metabolism of a wide range of xenobiotics and inhibition of CYP isoforms might influence the elimination of drugs and induce serious adverse drug response. The inhibition of seven CYP isoforms (CYP3A4, CYP1A2, CYP2A6, CYP2D6, CYP2C9, CYP2C8 and CYP2E1) by tiliroside was investigated using in vitro human liver microsomal incubation assays. The results showed that tiliroside strongly inhibited the activity of CYP3A4 (IC(50) = 9.0 ± 1.7 μm), CYP2C8 (IC(50) = 12.1 ± 0.9 μm) and CYP2C9 (IC(50) = 10.2 ± 0.9 μm) with other CYP isoforms negligibly influenced. Further kinetic analysis showed that inhibition of these three CYP isoforms by tiliroside is best fit to a competitive way. The K(i) value was calculated to be 5.5 μm, 3.3 μm, 9.4 μm for CYP3A4, CYP2C9 and CYP2C8, respectively. The relatively low K(i) values suggested that tiliroside might induce drug-drug interactions with many clinically used drugs which are mainly metabolized by these three CYP isoforms. Therefore, attention should be given to the probable drug-drug interaction between tiliroside-containing herbs and substrates of CYP3A4, CYP2C9 and CYP2C8.

  6. Effects of genetic polymorphism of cytochrome P450 enzymes on the pharmacokinetics of benzodiazepines.

    Science.gov (United States)

    Fukasawa, T; Suzuki, A; Otani, K

    2007-08-01

    Pharmacogenetic studies have shown that several cytochrome P450 (CYP) enzymes exhibit genetic polymorphisms. Several benzodiazepines (BZPs) are metabolized predominantly or partly by polymorphic CYP2C19 and CYP3A4/5. The pharmacokinetics of diazepam, etizolam, quazepam and desmethylclobazam have been shown to be affected by CYP2C19 polymorphism. The CYP3A5 polymorphism has been reported to affect the pharmacokinetics of alprazolam, but its effect on midazolam kinetics has been inconclusive. For etizolam and desmethylclobazam, some data suggest that CYP2C19 deficiency leads to side-effects or toxicity. For the remaining BZPs the clinical significance of the observed pharmacokinetic changes remains unclear. Further studies on the effects of genetic polymorphisms of CYP enzymes on the pharmacokinetics and pharmacodynamics of BZPs are necessary to guide treatment individualization and optimization. PMID:17635335

  7. Relationship of Activities of Key Enzymes Involved in Nitrogen Metabolism with Nitrogen Utilization in Rice under Water-Nitrogen Interaction%水氮互作下水稻氮代谢关键酶活性与氮素利用的关系

    Institute of Scientific and Technical Information of China (English)

    孙永健; 孙园园; 李旭毅; 郭翔; 马均

    2009-01-01

    Hybrid rice Gangyou 527 was used to investigate the effects of three irrigation regimes (submerged irrigation, W_1; dry cultivation, W_3; and damp irrigation before booting stage plus shallow irrigation at booting stage plus wetting-drying alternation irrigation from heading stage to mature stage, W_2) and different amounts of N application on activities of N metabolism enzymes and N absorption and utilization in rice, and the correlation of the N metabolism enzymes activities in functional leaves with N absorption and utilization and yield at different growth stages. The results showed that there was an obvious interaction between irrigation regime and amounts of N application. Compared with other irrigation treatments, the treatment W_2 promoted the N up-take from tillering to heading, N dry matter production efficiency (NMPE) and N production efficiency (NPE). W_2 and suitable Napplication amount (180 kg ha~(-1)) enhanced activities of N metabolism enzymes, yield, and nitrogen use efficiency, being the best model in this paper referred as the water-nitrogen coupling management model. Applying nitrogen 270 kg ha~(-1) resulted in nega-tive effect of water-nitrogen interaction, slowing down the increase of activities of nitrate reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT), decreasing N agronomy efficiency (NAE), N recovery efficiency (NRE), and yield. Correlation analysis indicated that there existed significantly or highly significantly positive correlations of activities of N me-tabolism enzymes with indices of N uptake and utilization and yield, with different correlation coefficients of different growth stages. According to the conditions above, GS activity in function leaves might be a candidate indicator for N uptake and accu-mulation at different growth stages, and activities ofNR, GS, GOGAT, and endopeptidase (EP) in flag leaves at heading stage for rice yield and NMPE, NPE, NAE, NRE.%以杂交稻因优527

  8. Eye Involvement in TSC

    Science.gov (United States)

    ... of the eyes) should prompt inquiries into the family history and TSC involvement. Also, ophthalmologists should remember that mental handicap is ... or depigmented area and should inquire about the family’s history and any possible involvement in TSC. **This publication from the Tuberous Sclerosis ...

  9. Building Parent Involvement

    Science.gov (United States)

    Nelson, Richard C.; Bloom, John W.

    1973-01-01

    Discussed is the rationale behind parent involvement in guidance and educational activities, together with specific suggestions for involving parents with other adults (parent advisory committees, informal coffees, Transactional analysis (groups etc.), with children (story hours, trips, demonstrations, counseling booths, testing, interviewing,…

  10. Doctors' involvement in torture

    DEFF Research Database (Denmark)

    Sonntag, Jesper

    2008-01-01

    Doctors from both non-democratic and democratic countries are involved in torture. The majority of doctors involved in torture are doctors at risk. Doctors at risk might compromise their ethical duty towards patients for the following possible reasons: individual factors (such as career, economic...

  11. Immunochemical detection of cytochrome P450 enzymes in liver microsomes of 27 cynomolgus monkeys.

    Science.gov (United States)

    Uehara, Shotaro; Murayama, Norie; Nakanishi, Yasuharu; Zeldin, Darryl C; Yamazaki, Hiroshi; Uno, Yasuhiro

    2011-11-01

    The cynomolgus monkey is widely used as a primate model in preclinical studies because of its evolutionary closeness to humans. Despite their importance in drug metabolism, the content of each cytochrome P450 (P450) enzyme has not been systematically determined in cynomolgus monkey livers. In this study, liver microsomes of 27 cynomolgus monkeys were analyzed by immunoblotting using selective P450 antibodies. The specificity of each antibody was confirmed by analyzing the cross-reactivity against 19 CYP1-3 subfamily enzymes using recombinant proteins. CYP2A, CYP2B6, CYP2C9/19, CYP2C76, CYP2D, CYP2E, CYP3A4, and CYP3A5 were detected in all 27 animals. In contrast, CYP1A, CYP1D, and CYP2J were below detectable levels in all liver samples. The average content of each P450 showed that among the P450s analyzed CYP3A (3A4 and 3A5) was the most abundant (40% of total immunoquantified P450), followed by CYP2A (25%), CYP2C (14%), CYP2B6 (13%), CYP2E1 (11%), and CYP2D (3%). No apparent sex differences were found for any P450. Interanimal variations ranged from 2.6-fold (CYP3A) to 11-fold (CYP2C9/19), and most P450s (CYP2A, CYP2D, CYP2E, CYP3A4, and CYP3A5) varied 3- to 4-fold. To examine the correlations of P450 content with enzyme activities, metabolic assays were performed in 27 cynomolgus monkey livers using 7-ethoxyresorufin, coumarin, pentoxyresorufin, flurbiprofen, bufuralol, dextromethorphan, and midazolam. CYP2D and CYP3A4 contents were significantly correlated with typical reactions of human CYP2D (bufuralol 1'-hydroxylation and dextromethorphan O-deethylation) and CYP3A (midazolam 1'-hydroxylation and 4-hydroxylation). The results presented in this study provide useful information for drug metabolism studies using cynomolgus monkeys.

  12. Tyrosine metabolic enzymes from insects and mammals: a comparative perspective.

    Science.gov (United States)

    Vavricka, Christopher John; Han, Qian; Mehere, Prajwalini; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2014-02-01

    Differences in the metabolism of tyrosine between insects and mammals present an interesting example of molecular evolution. Both insects and mammals possess fine-tuned systems of enzymes to meet their specific demands for tyrosine metabolites; however, more homologous enzymes involved in tyrosine metabolism have emerged in many insect species. Without knowledge of modern genomics, one might suppose that mammals, which are generally more complex than insects and require tyrosine as a precursor for important catecholamine neurotransmitters and for melanin, should possess more enzymes to control tyrosine metabolism. Therefore, the question of why insects actually possess more tyrosine metabolic enzymes is quite interesting. It has long been known that insects rely heavily on tyrosine metabolism for cuticle hardening and for innate immune responses, and these evolutionary constraints are likely the key answers to this question. In terms of melanogenesis, mammals also possess a high level of regulation; yet mammalian systems possess more mechanisms for detoxification whereas insects accelerate pathways like melanogenesis and therefore must bear increased oxidative pressure. Our research group has had the opportunity to characterize the structure and function of many key proteins involved in tyrosine metabolism from both insects and mammals. In this mini review we will give a brief overview of our research on tyrosine metabolic enzymes in the scope of an evolutionary perspective of mammals in comparison to insects.

  13. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    Science.gov (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory.

  14. Enzyme histochemical studies of membrane proteases in rat subfornical organ.

    Science.gov (United States)

    De Bault, L E; Mitro, A

    1994-12-01

    Localization of membrane proteases glutamyl aminopeptidase (EAP), microsomal alanyl aminopeptidase (mAAP), dipeptidyl peptidase IV (DPP IV) and gamma-glutamyl transpeptidase (gamma-GTP) were studied in vessels of the rat subfornical organ (SFO), ependyma which cover the surface of the SFO, and adjacent brain structures. Results of enzyme histochemical reactions showed strong activity for EAP, mAAP, and gamma-GTP, but absence of DPP IV in microvessels of SFO. The ependyma which cover the SFO was positive for gamma-GTP, but negative for other studied proteases. Our results showed that the spectrum of enzymes in the majority of the vessels of SFO is similar to that of the microvessels of the adjacent brain tissue which were positive for EAP, mAAP, and gamma-GTP, but negative for DPP IV. The relative intensity of the enzyme reactions in vessels varied from central to lateral locations in the SFO and the adjacent brain tissue. There was also a difference in the relative reaction intensity from one enzyme to the other. The presence and heterogeneous distribution of the enzymes are consistent with the hypothesis that membrane proteases of the microvascular endothelium constitute an enzyme-barrier between blood and parenchyma of the SFO and between blood and brain tissue, and may be involved in metabolism or modulation of various peptides when they contact the plasma membrane of the endothelial cells of the vessels.

  15. Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine; Shahpiri, Azar; Finnie, Christine;

    2010-01-01

    Enzymes involved in redox control are important during seed germination and seedling growth. Ascorbate-glutathione cycle enzymes in barley embryo extracts were monitored both by 2D-gel electrophoresis and activity measurements from 4 to 144 h post imbibition (PI). Strikingly different activity...

  16. Proteinaceous inhibitors of carbohydrate-active enzymes in cereals: implication in agriculture, cereal processing and nutrition

    DEFF Research Database (Denmark)

    Juge, N.; Svensson, Birte

    2006-01-01

    Enzymes that degrade, modify, or create glycosidic bonds are involved in carbohydrate biosynthesis and remodelling. Microbial carbohydrate-active enzymes form the basis of current green technology in the food, feed, starch, paper and pulp industries and the revolution in genomics may offer long...

  17. Human cytochrome p450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Punt, A.; Boersma, M.G.; Bogaards, J.J.P.; Fiamegos, Y.C.; Schilter, B.; Bladeren, van P.J.; Cnubben, N.H.P.; Rietjens, I.M.C.M.

    2007-01-01

    Human cytochrome P450 enzymes involved in the bioactivation of estragole to its proximate carcinogen 1 '-hydroxyestragole were identified and compared to the enzymes of importance for 1'-hydroxylation of the related alkenylbenzenes methyleugenol and safrole. Incubations with Supersomes revealed that

  18. Human cytochrome P450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Punt, A.; Boersma, M.G.; Bogaards, J.J.P.; Fiamegos, Y.C.; Schilter, B.; Bladeren, P.J. van; Cnubben, N.H.P.; Rietjens, I.M.C.M.

    2007-01-01

    Human cytochrome P450 enzymes involved in the bioactivation of estragole to its proximate carcinogen 1′-hydroxyestragole were identified and compared to the enzymes of importance for 1′-hydroxylation of the related alkenylbenzenes methyleugenol and safrole. Incubations with Supersomes revealed that

  19. Measuring Intracellular Enzyme Concentrations: Assessing the Effect of Oxidative Stress on the Amount of Glyoxalase I

    Science.gov (United States)

    Miranda, Hugo Vicente; Ferreira, Antonio E. N.; Quintas, Alexandre; Cordeiro, Carlos; Freire, Ana Ponces

    2008-01-01

    Enzymology is one of the fundamental areas of biochemistry and involves the study of the structure, kinetics, and regulation of enzyme activity. Research in this area is often conducted with purified enzymes and extrapolated to "in vivo" conditions. The specificity constant, k[subscript S], is the ratio between k[subscript cat] (the catalytic…

  20. Kinetic characteristics of polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Science.gov (United States)

    Polygalacturonase enzymes hydrolyze the polygalacturonic acid chains found in pectin. Interest in polygalacturonase enzymes continues as they are useful in a number of industrial processes and conversely, detrimental, as they are involved in maceration of economically important crops. While a good...

  1. Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger

    NARCIS (Netherlands)

    Yuan, X.L.; Goosen, C.; Kools, H.J.; Maarel, van der M.J.; Hondel, van den C.A.M.J.J.; Dijkhuizen, L.; Ram, A.F.

    2006-01-01

    As a soil fungus, Aspergillus niger can metabolize a wide variety of carbon sources, employing sets of enzymes able to degrade plant-derived polysaccharides. In this study the genome sequence of A. niger strain CBS 513.88 was surveyed, to analyse the gene/enzyme network involved in utilization of th

  2. Inhibition of human cytochrome P450 enzymes by Bacopa monnieri standardized extract and constituents.

    Science.gov (United States)

    Ramasamy, Seetha; Kiew, Lik Voon; Chung, Lip Yong

    2014-02-24

    Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP) enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL), CYP2C9 (36.49/12.5 µg/mL), CYP1A2 (52.20/25.1 µg/mL); competitive inhibition of CYP3A4 (83.95/14.5 µg/mL) and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL). However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day), B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%). These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.

  3. Inhibition of Human Cytochrome P450 Enzymes by Bacopa monnieri Standardized Extract and Constituents

    Directory of Open Access Journals (Sweden)

    Seetha Ramasamy

    2014-02-01

    Full Text Available Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL, CYP2C9 (36.49/12.5 µg/mL, CYP1A2 (52.20/25.1 µg/mL; competitive inhibition of CYP3A4 (83.95/14.5 µg/mL and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL. However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day, B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%. These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.

  4. Micromotors Powered by Enzyme Catalysis.

    Science.gov (United States)

    Dey, Krishna K; Zhao, Xi; Tansi, Benjamin M; Méndez-Ortiz, Wilfredo J; Córdova-Figueroa, Ubaldo M; Golestanian, Ramin; Sen, Ayusman

    2015-12-01

    Active biocompatible systems are of great current interest for their possible applications in drug or antidote delivery at specific locations. Herein, we report the synthesis and study of self-propelled microparticles powered by enzymatic reactions and their directed movement in substrate concentration gradient. Polystyrene microparticles were functionalized with the enzymes urease and catalase using a biotin-streptavidin linkage procedure. The motion of the enzyme-coated particles was studied in the presence of the respective substrates, using optical microscopy and dynamic light scattering analysis. The diffusion of the particles was found to increase in a substrate concentration dependent manner. The directed chemotactic movement of these enzyme-powered motors up the substrate gradient was studied using three-inlet microfluidic channel architecture. PMID:26587897

  5. Subcellular localization of pituitary enzymes

    Science.gov (United States)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  6. Involved Node Radiation Therapy

    DEFF Research Database (Denmark)

    Maraldo, Maja V; Aznar, Marianne C; Vogelius, Ivan R;

    2012-01-01

    PURPOSE: The involved node radiation therapy (INRT) strategy was introduced for patients with Hodgkin lymphoma (HL) to reduce the risk of late effects. With INRT, only the originally involved lymph nodes are irradiated. We present treatment outcome in a retrospective analysis using this strategy...... in a cohort of 97 clinical stage I-II HL patients. METHODS AND MATERIALS: Patients were staged with positron emission tomography/computed tomography scans, treated with adriamycin, bleomycin, vinblastine, and dacarbazine chemotherapy, and given INRT (prechemotherapy involved nodes to 30 Gy, residual masses...

  7. A DNA enzyme with N-glycosylase activity

    OpenAIRE

    Sheppard, Terry L.; Ordoukhanian, Phillip; Joyce, Gerald F.

    2000-01-01

    In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 106-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of...

  8. The pharmacogenetics of cytochrome P450 enzymes in personalized medicine

    Directory of Open Access Journals (Sweden)

    Majid Moridani

    2007-06-01

    Full Text Available Personalized medicine is partially enabled by in vitro diagnostics including pharmacogenomic, proteomic and other functional testing such as therapeutic drug management and toxicological testing. This paper will introduce the conceptual aspects of developing personalized treatment using pharmacogenetics information. The initial discussion will give an overview of the application of pharmacogenetics in personalized medicine, followed by specific examples involving cytochrome P450s drug metabolizing enzymes (CYP enzymes. The paper also discusses the influence of racial and ethnic characteristics of a population on the variation in drug effectiveness and toxicity. The need for implementation of pharmacogenetics in medical education is highlighted.

  9. Enzyme and biochemical producing fungi

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Lübeck, Mette; Nilsson, Lena;

    2010-01-01

    We are developing a biorefinery concept for biological production of chemicals, drugs, feed and fuels using plant biomass as raw material in well-defined cell-factories. Among the important goals is the discovery of new biocatalysts for production of enzymes, biochemicals and fuels and already our...... screening of a large collection of fungal strains isolated from natural habitats have resulted in identification of strains with high production of hydrolytic enzymes and excretion of organic acids. Our research focuses on creating a fungal platform based on synthetic biology for developing new cell...

  10. [Angiotensin converting enzyme and Alzheimer's disease].

    Science.gov (United States)

    Kugaevskaia, E V

    2013-01-01

    Alzheimer's disease (AD) is an incurable degenerative disease of the central nervous system, leading to dementia. The basis of AD is neurodegenerative process that leads to death of neurons in the cerebral cortex. This neurodegenerative process is associated with the formation of neurofibrillary tangles in the brain and the deposition of senile plaques, the main component of which is a beta-amyloid peptide (Abeta). Risk factors for AD are age, as well as hypertension, atherosclerosis, diabetes and hypercholesterolemia in the pathogenesis of which involved angiotensin converting enzyme (ACE)--key enzyme of the renin-angiotensin (RAS) and kallikrein-kinin (KKS) systems. Recently it was discovered that ACE, along with other metallopeptidases, participates in the metabolism of Abeta, cleaving the bonds at the N-terminal and C-terminal region of the molecule Abeta. The role of the ACE in the degradation processes of Abeta takes an interest. It is associated with the fact that the using of ACE inhibitors is the main therapeutic approach used in the treatment of various forms of hypertension and other cardiovascular diseases. However, until now not been resolved, can be used antihypertensive drugs that inhibit RAS for the treatment or prevention of AD. Currently, there are numerous studies on finding the relationship between RAS and AD. PMID:23650720

  11. Enzyme catalytic nitration of aromatic compounds.

    Science.gov (United States)

    Kong, Mingming; Wang, Kun; Dong, Runan; Gao, Haijun

    2015-06-01

    Nitroaromatic compounds are important intermediates in organic synthesis. The classic method used to synthesize them is chemical nitration, which involves the use of nitric acid diluted in water or acetic acid, both harmful to the environment. With the development of green chemistry, environmental friendly enzyme catalysis is increasingly employed in chemical processes. In this work, we adopted a non-aqueous horseradish peroxidase (HRP)/NaNO2/H2O2 reaction system to study the structural characteristics of aromatic compounds potentially nitrated by enzyme catalysis, as well as the relationship between the charges on carbon atoms in benzene ring and the nitro product distribution. Investigation of various reaction parameters showed that mild reaction conditions (ambient temperature and neutral pH), plus appropriate use of H2O2 and NaNO2 could prevent inactivation of HRP and polymerization of the substrates. Compared to aqueous-organic co-solvent reaction media, the aqueous-organic two-liquid phase system had great advantages in increasing the dissolved concentration of substrate and alleviating substrate inhibition. Analysis of the aromatic compounds' structural characteristics indicated that substrates containing substituents of NH2 or OH were readily catalyzed. Furthermore, analysis of the relationship between natural bond orbital (NBO) charges on carbon atoms in benzene ring, as calculated by the density functional method, and the nitro product distribution characteristics, demonstrated that the favored nitration sites were the ortho and para positions of substituents in benzene ring, similar to the selectivity of chemical nitration.

  12. Recombinant Enzyme Replacement Therapy in Hypophosphatasia.

    Science.gov (United States)

    Hofmann, Christine; Jakob, Franz; Seefried, Lothar; Mentrup, Birgit; Graser, Stephanie; Plotkin, Horacio; Girschick, Hermann J; Liese, Johannes

    2015-01-01

    Hypophosphatasia (HPP) is a rare monogenetic and multisystemic disease with involvement of different organs, including bone, muscle, kidney, lung, gastrointestinal tract and the nervous system. The exact metabolic mechanisms of the effects of TNAP deficiency in different tissues are not understood in detail. There is no approved specific treatment for HPP; therefore symptomatic treatment in order to improve the clinical features is of major interest. Enzyme replacement therapy (ERT) is a relatively new type of treatment based on the principle of administering a medical treatment replacing a defective or absent enzyme. Recently ERT with a bone targeted recombinant human TNAP molecule has been reported to be efficient in ten severely affected patients and improved survival of life threatening forms. These results are very promising especially with regard to the skeletal phenotype but it is unclear whether ERT also has beneficial effects for craniosynostosis and in other affected tissues in HPP such as brain and kidney. Long-term data are not yet available and further systematic clinical trials are needed. It is also necessary to establish therapeutic approaches to help patients who are affected by less severe forms of HPP but also suffer from a significant reduction in quality of life. Further basic research on TNAP function and role in different tissues and on its physiological substrates is critical to gain a better insight in the pathogenesis in HPP. This and further experiences in new therapeutic strategies may improve the prognosis and quality of life of patients with all forms of HPP.

  13. Modifying enzyme activity and selectivity by immobilization

    OpenAIRE

    Rodrigues, Rafael C.; Ortiz, Claudia; Berenguer Murcia, Ángel; Torres, Rodrigo; Fernández Lafuente, Roberto

    2013-01-01

    Immobilization of enzymes may produce alterations in their observed activity, specificity or selectivity. Although in many cases an impoverishment of the enzyme properties is observed upon immobilization (caused by the distortion of the enzyme due to the interaction with the support) in some instances such properties may be enhanced by this immobilization. These alterations in enzyme properties are sometimes associated with changes in the enzyme structure. Occasionally, these variations will ...

  14. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  15. 罗格列酮调节IDE和GSK-3β的活性改善阿尔茨海默病动物认知能力%Rosiglitazone rescues memory impairment in Alzheimer'rats : mechanisms involving regulation of insulin-degrading enzyme and glycogen synthase kinese-3β

    Institute of Scientific and Technical Information of China (English)

    杨文青; 马晶; 宋晓征; 余华荣

    2013-01-01

    Objective:To investigate the effects of peroxisome proliferator-activated receptor γ(PPARγ) agonist-rosiglitazone(RTZ) on the.cognition,amyloid β-peptide(Aβ) and Tau in the Alzheimer's disease(AD) rats and to explore its potential mechanisms of attenuating learning and memory deficits.Methods:Dementia model was established by treating rats with intracerebroventricular streptozotocin injection.RTZ was administered to rats in dementia model.On the 21st d from the 1st STZ injection,spatial learning and memory of rats were tested in Morris water maze.Expressions of insulin-degrading enzyme (IDE),glycogen synthase kinase-3β (GSK-3β),phospho-GSK-3β(pGSK-3β),Tau and phospho-Tau(pTau) were measured by Western blot.Aβ40 and Aβ42 levels in the brain of AD rats were tested by immunohistochemistry.Results:AD rats administrating RTZ exhibited better spatial learning and memory abilities(P<0.001) and had lower Aβ levels than untreated AD rats.Western blot demonstrated that RTZ decreased IDE expression (P=0.028),GSK-3β activity (P--0.0 1 2) and pTau level (P=0.001).Immunohistochemical results demonstrated that RTZ reduced Aβ40 and Aβ42 levels in the cerebral cortex.Conclusions:RTZ-mediated cognitive improvement of AD rats does correlate with the expression of IDE and GSK-3β.%目的:研究作为胰岛素增敏剂的过氧化物酶体增殖因子活化受体γ(peroxisome proliferator-activated receptorsγ,PPARγ)激动剂-罗格列酮对阿尔茨海默病(Alzheimer's disease,AD)动物模型的认知水平、β淀粉样蛋白(amyloid β-peptide,Aβ)和Tau的影响,并探讨其改善AD模型认知能力的可能机制.方法:通过侧脑室注射链脲佐菌素建立AD动物模型,并用罗格列酮处理动物,第1次手术后21 d用Morris水迷宫检测动物的学习和记忆水平;采用Western blot检测胰岛素降解酶(insulin-degrading enzyme,IDE)、糖原合成酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)、磷酸化糖原合成酶激酶-3β(pGSK-3

  16. 1型糖尿病骨缺失中维生素D代谢酶表达的改变和肾脏钙转运蛋白的变化%Alteration of Vitamin D Metabolic Enzyme Expression and Calcium Transporter Abundance in Kidney Involved in Type 1 Diabetes-Induced Bone Loss

    Institute of Scientific and Technical Information of China (English)

    张鹏; 浦春

    2011-01-01

    目的 调查实验引起的糖尿病小鼠维生素D代谢酶表达的改变以及肾脏中分子间钙转运蛋白的变化.方法 雄性DBA/2J小鼠被连续5天注射链脲霉素(实验组)和空载体(对照组),Zhang.Y等使用边缘定量CT测量骨密度,用番红O染色观察骨组织形态学变化,通过实时定量PCR和Western blotting来研究目的 基因及蛋白表达的变化情况.结果 与对照组相比,实验组1型糖尿病可导致泌尿系大量钙的排泄和胫骨干骺端近端及股骨远端骨小梁的丢失.显微结构也显示骨质丢失与骨小梁恶化有关,定量PCR显示糖尿病小鼠肾脏内mRNA水平的表达为10周后25-羟化维生素D-24-羟化酶下调,20周后25-羟化维生素D-1α-羟化酶上调.另外,实验组小鼠体内肾脏瞬时感受器电位V6、质膜Ca-ATP酶(PMCA1b)、维生素D受体(VDR)基因mRNA表达水平均下降.Western blotting分析表明实验组小鼠肾脏内PMCA1b和VDR蛋白表达显著下降.结论 该实验局限性在于缺乏血清中维生素D、甲状旁腺激素和磷水平的研究,然而现有的研究支持1型糖尿病引起骨丢失的潜在机制可能是维生素D代谢酶的改变和肾脏转运蛋白表达的下降.%Objective To introduction the purpose of this study was to investigate the changes of the expression of vitamin D metabolic enzymes and transcellular calcium-transporting proteins in kidneys from mice with experimentally induced diabetes. Methods Male DBA/2J mice were injected with either vehicle (control) or streptozotocin (STZ) daily for five consecutive days by Zhang. Y et al. Bone mineral density was measured by peripheral quantitative computerized tomography, and bone histomorphology was analysed by Safranin O staining. Real-time PCR and Western blotting were applied to determine the expression of target genes and proteins. Results Type 1 diabetes produced high urinary calcium excretion and loss of trabecular bone measured at the proximal metaphysis of

  17. Enzyme recovery using reversed micelles.

    NARCIS (Netherlands)

    Dekker, M.

    1990-01-01

    The objective of this study was to develop a liquid-liquid extraction process for the recovery of extracellular enzymes. The potentials of reaching this goal by using reversed micelles in an organic solvent have been investigated.Reversed micelles are aggregates of surfactant molecules containing an

  18. Insolubilized enzymes for food synthesis

    Science.gov (United States)

    Marshall, D. L.

    1972-01-01

    Cellulose matrix with numerous enzyme-coated silica particles of colloidal size permanently bound at various sites within matrix was produced that has high activity and possesses requisite physical characteristics for filtration or column operations. Product also allows coupling step in synthesis of edible food to proceed under mild conditions.

  19. Kathepsine C : Een allosterisch enzyme

    NARCIS (Netherlands)

    Gorter, Jeannette

    1969-01-01

    In chapter I an introduction into allosteric systems is given. In chapter II is a detailed method is described for the applica of Gly-Phe--p. nitroanilide (GPNA) as a substrate for the activity assay of the lysosomal enzyme cathepsin C. It is an allosteric which is activated by Cl-, Br-, 1-, CNS-, N

  20. Udfordringer ved undervisning i enzymer

    DEFF Research Database (Denmark)

    Skriver, Karen; Dandanell, Gert; von Stemann, Jakob Hjorth;

    2015-01-01

    Enzymer er et centralt emne i biokemiundervisning. Det forudsætter og anvender grundlæggende viden inden for og kompetencer i kemi og matematik. Artiklen undersøger hvilke forståelsesvanskeligheder og udfordringer der er knyttet til dette område, såvel som virtuelle øvelsers potentiale i denne...

  1. Pancreatic Involvement in Melioidosis

    Directory of Open Access Journals (Sweden)

    Vui Heng Chong

    2010-07-01

    Full Text Available Context Melioidosis is endemic to tropical regions and, despite the common occurrence of intra-abdominal abscesses, pancreatic involvement in melioidosis has not previously been reported. Objective We report our experience with pancreatic melioidosis. Patients All 65 patients treated for melioidosis who had computed tomography (CT scans were identified from prospective databases and were retrospectively reviewed. Main outcome measures A detailed review of cases with pancreas involvement was carried out. Results There were four cases (three males and one female; median age 29.5 years, range: 25-48 years with pancreatic melioidosis, giving a prevalence of 6.2%. All had predisposing conditions (two had poorly controlled diabetes mellitus and two had thalassemia for melioidosis. Fever (100%, anorexia (100%, weight loss (100%, rigor (75% and abdominal pain (75% were the most common symptoms at presentation and the median duration of symptoms before presentation was six weeks (range: 2-8 weeks. All pancreatic abscesses were detected on CT scan. Multiple foci involvement was common (3 to 6 sites: blood (4 patients, liver (3 patients, psoas muscle (2 patients, spleen (2 patients, infected ascites (2 patients and lung (1 patient. Pancreatic involvement ranged from multi-focal micro-abscesses to focal large abscesses and involved all parts of the pancreas (body 100%, head 75% and tail 50%. Associated pancreatic findings included splenic vein thrombosis, peripancreatic inflammation and peripancreatic fat streaking. All the pancreatic abscesses were resolved with antibiotics without requiring pancreatic abscess drainage (including one patient who died from disseminated melioidosis. Conclusion Pancreatic involvement typically occurs as part of multi-organ involvement and commonly manifests as multifoci micro-abscesses. Associated pancreatic abnormalities were also common. All responded to treatment without requiring drainage

  2. Isolation of cDNA for an NADP-malic enzyme from Aloe arborescens.

    Science.gov (United States)

    Honda, H; Shimada, H; Akagi, H

    1997-12-31

    NADP-malic enzyme catalyzes the reaction of decarboxylation from malate. In CAM plants, functions of this enzyme diverged to include both photosynthetic and non-photosynthetic roles. A full length cDNA for an NADP-malic enzyme was isolated from an 'obligate' CAM plant aloe (Aloe arborescens). The cDNA contains an ORF encoding 592 amino acid residues, whose sequence is highly homologous to the known plant NADP-malic enzymes. This gene is constitutively expressed in all organs in a low level. The amount of the transcript exhibited no diurnal variation, suggesting that this gene is not involved in photosynthetic functions. PMID:9501996

  3. [Pulmonary involvements of sarcoidosis].

    Science.gov (United States)

    Ohmichi, M; Hiraga, Y; Hirasawa, M

    1990-01-01

    We reported about intrathoracic changes and prognosis of 686 patients with sarcoidosis diagnosed in our hospital between 1963 and 1988. We evaluated CT findings in 135 patients with sarcoidosis and found pulmonary involvements in 81. We analyzed CT findings according to the classification by Tuengerthal which classified radiographic findings combining ILO classification of pneumoconiosis and characteristic findings of bronchovascular sheath with sarcoidosis. The CT findings were as follows: small opacities (44 out of 81 cases, 54.3%), large opacities (37 cases, 46.7%). Additional findings were as follows: peribronchial marking (42 cases, 51.9%), contraction (17 cases, 21.0%), pleural involvement (9 cases, 11.1%), bulla (5 cases, 6.2%). The characteristic CT findings of serious sarcoidosis were extasis of bronchus, thickening of the bronchial wall, unclearness of vascular shadow, atelectasis and thickening of pleura. Concerning the prognosis of pulmonary involvement, according to age, patients younger than 30 years old at initial diagnosis were better than those of 30 years and over in terms of disappearance of pulmonary involvements. According to stage, patients of stage I and stage II were better than those of stage III. Among the patients we were able to observe chest X-ray findings during five years according to the character of shadow, ill-defined shadow of small opacities and rounded shadows of large opacities had a higher disappearance rate of pulmonary involvements than irregular shadows of large opacities, atelectasis and contraction.

  4. Enzyme-assisted aqueous extraction of lipid from microalgae.

    Science.gov (United States)

    Liang, Kehong; Zhang, Qinghua; Cong, Wei

    2012-11-28

    An improved lipid extraction process has been established for microalgal using enzyme-assisted aqueous extraction processing (EAEP), which mainly involved in sonication and enzyme treatment. As compared to cellulase, neutral protease and alkaline protease, significantly higher lipid recovery was achieved by snailase and trypsin. The highest lipid recovery of 49.82% was obtained by a combined sonication-enzyme treatment at pH 4. The enhancement mechanism of the EAEP was analyzed in terms of the particle size of cream and zeta potential. In addition, microalgal lipid recovery was also affected by lipid class composition and the type of algae. The present study demonstrates a promising alternative to conventional lipid extraction of microalgae and the quantitative information on EAEP of oleaginous alga can provide valuable data for process design at pilot and industrial scale.

  5. Crystallography captures catalytic steps in human methionine adenosyltransferase enzymes.

    Science.gov (United States)

    Murray, Ben; Antonyuk, Svetlana V; Marina, Alberto; Lu, Shelly C; Mato, Jose M; Hasnain, S Samar; Rojas, Adriana L

    2016-02-23

    The principal methyl donor of the cell, S-adenosylmethionine (SAMe), is produced by the highly conserved family of methionine adenosyltranferases (MATs) via an ATP-driven process. These enzymes play an important role in the preservation of life, and their dysregulation has been tightly linked to liver and colon cancers. We present crystal structures of human MATα2 containing various bound ligands, providing a "structural movie" of the catalytic steps. High- to atomic-resolution structures reveal the structural elements of the enzyme involved in utilization of the substrates methionine and adenosine and in formation of the product SAMe. MAT enzymes are also able to produce S-adenosylethionine (SAE) from substrate ethionine. Ethionine, an S-ethyl analog of the amino acid methionine, is known to induce steatosis and pancreatitis. We show that SAE occupies the active site in a manner similar to SAMe, confirming that ethionine also uses the same catalytic site to form the product SAE.

  6. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be...

  7. Bedaquiline Metabolism: Enzymes and Novel Metabolites

    OpenAIRE

    Liu, Ke; Li, Feng; Lu, Jie; Liu, Shinlan; Dorko, Kenneth; Xie, Wen; Ma, Xiaochao

    2014-01-01

    Bedaquiline is a recently approved drug for the treatment of multidrug-resistant tuberculosis. Adverse cardiac and hepatic drug reactions to bedaquiline have been noted in clinical practice. The current study investigated bedaquiline metabolism in human hepatocytes using a metabolomic approach. Bedaquiline N-demethylation via CYP3A4 was confirmed as the major pathway in bedaquiline metabolism. In addition to CYP3A4, we found that both CYP2C8 and CYP2C19 contributed to bedaquiline N-demethylat...

  8. Involvement, Tate and me

    OpenAIRE

    Slater, Alix; Armstrong, Kate

    2010-01-01

    The involvement construct has been explored in relation to products, services and leisure but not in an art museum context. The purpose of this paper is to address this theoretical gap by drawing on the marketing and leisure literature to understand members’ consumption of Tate using the involvement construct. Tate, a portfolio of four art museums in the UK has more than 90,000 members that receive a benefits package in return for a membership fee. Data were collected using an interpretive, q...

  9. Extracellular Enzyme Activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    Extracellular Enzyme Activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soil enzymes originate from a variety of organisms, notably fungi and bacteria...... and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity reflects the functional diversity and activity of the microorganisms involved in decomposition processes which are essential processes for soil functioning...... and soil ecosystem services. The soil enzyme activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysaccharides as cellulose, hemicellulose and chitin, while degradation of proteins has been...

  10. Screening of Drug Metabolizing Enzymes for the Ginsenoside Compound K In Vitro: An Efficient Anti-Cancer Substance Originating from Panax Ginseng.

    Directory of Open Access Journals (Sweden)

    Jian Xiao

    Full Text Available Ginsenoside compound K (CK, a rare ginsenoside originating from Panax Ginseng, has been found to possess unique pharmacological activities specifically as anti-cancers. However, the role of cytochrome P450s (CYPs in the metabolism of CK is unclear. In this study, we screened the CYPs for the metabolism of CK in vitro using human liver microsomes (HLMs or human recombinant CYPs. The results showed that CK inhibited the enzyme activities of CYP2C9 and CYP3A4 in the HLMs. The Km and Vmax values of CK were 84.20±21.92 μM and 0.28±0.04 nmol/mg protein/min, respectively, for the HLMs; 34.63±10.48 μM and 0.45±0.05 nmol/nmol P450/min, respectively, for CYP2C9; and 27.03±5.04 μM and 0.68±0.04 nmol/nmol P450/min, respectively, for CYP3A4. The IC50 values were 16.00 μM and 9.83 μM, and Ki values were 14.92 μM and 11.42μM for CYP2C9 and CYP3A4, respectively. Other human CYP isoforms, including CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP2C19, showed minimal or no effect on CK metabolism. The results suggested that CK was a substrate and also inhibitors for both CYP2C9 and CYP3A4. Patients using CK in combination with therapeutic drugs that are substrates of CYP2C9 and CYP3A4 for different reasons should be careful, although the inhibiting potency of CK is much poorer than that of enzyme-specific inhibitors.

  11. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  12. Unprovability results involving braids

    CERN Document Server

    Carlucci, Lorenzo; Weiermann, Andreas

    2007-01-01

    We construct long sequences of braids that are descending with respect to the standard order of braids (``Dehornoy order''), and we deduce that, contrary to all usual algebraic properties of braids, certain simple combinatorial statements involving the braid order are true, but not provable in the subsystems ISigma1 or ISigma2 of the standard Peano system.

  13. Perspectives in developing industrial enzymes by using technological intelligence

    Directory of Open Access Journals (Sweden)

    Óscar Fernando Castellanos Domínguez

    2010-04-01

    Full Text Available Developing emergent technologies implies an ongoing challenge involving using new technological management tools. Enzyme engineering and its respective technology (within the context of biotechnology is one of the areas of knowledge from which great expectations are constantly arising, such as providing competitive advantage in emergent economies like that of Colombia. However, several decades of research in this field have still not led to important results in terms of enzyme production and their application in industrial processes. This article proposes applying the components of a technological intelligence system to developing enzyme technology. Initial emphasis is placed on scientometrics, using exercises for mapping patents, technological monitoring and evaluating Colombian prolects forming part of Colciencias’ ScienTI network, carried out for the enzymes being used in both the food industry for obtaining hydrolysed products and in the textile industry. An example of Delphi study is documented within the context of industrial enzymes’ future within biotechnology in general. The learning which can arise from analysing a sector leader is stressed by using organisational benchmarking. The basis of a technological intelligence system is then discussed in terms of how it can provide productive and competitive strategies aimed at applying industrial enzymes.

  14. SKPDB: a structural database of shikimate pathway enzymes

    Directory of Open Access Journals (Sweden)

    de Azevedo Walter F

    2010-01-01

    Full Text Available Abstract Background The functional and structural characterisation of enzymes that belong to microbial metabolic pathways is very important for structure-based drug design. The main interest in studying shikimate pathway enzymes involves the fact that they are essential for bacteria but do not occur in humans, making them selective targets for design of drugs that do not directly impact humans. Description The ShiKimate Pathway DataBase (SKPDB is a relational database applied to the study of shikimate pathway enzymes in microorganisms and plants. The current database is updated regularly with the addition of new data; there are currently 8902 enzymes of the shikimate pathway from different sources. The database contains extensive information on each enzyme, including detailed descriptions about sequence, references, and structural and functional studies. All files (primary sequence, atomic coordinates and quality scores are available for downloading. The modeled structures can be viewed using the Jmol program. Conclusions The SKPDB provides a large number of structural models to be used in docking simulations, virtual screening initiatives and drug design. It is freely accessible at http://lsbzix.rc.unesp.br/skpdb/.

  15. Consumer attitudes to enzymes in food production

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Grunert, Klaus G.; Scholderer, Joachim

    2005-01-01

    The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in three...... European countries. Results show that consumers are most positive towards non-GM enzyme production methods. The enzyme production method is by far the most important factor for the formation of buying intentions compared to price and benefits. Results also show that environmental concern and attitudes...... to technological progress are the socio-political attitudes that have the highest predictive value regarding attitudes to enzyme production methods....

  16. Effect of honokiol on the induction of drug-metabolizing enzymes in human hepatocytes.

    Science.gov (United States)

    Cho, Yong-Yeon; Jeong, Hyeon-Uk; Kim, Jeong-Han; Lee, Hye Suk

    2014-01-01

    Honokiol, 2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol, an active component of Magnolia officinalis and Magnolia grandiflora, exerts various pharmacological activities such as antitumorigenic, antioxidative, anti-inflammatory, neurotrophic, and antithrombotic effects. To investigate whether honokiol acts as a perpetrator in drug interactions, messenger ribonucleic acid (mRNA) levels of phase I and II drug-metabolizing enzymes, including cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase 2A1 (SULT2A1), were analyzed by real-time reverse transcription polymerase chain reaction following 48-hour honokiol exposure in three independent cryopreserved human hepatocyte cultures. Honokiol treatment at the highest concentration tested (50 μM) increased the CYP2B6 mRNA level and CYP2B6-catalyzed bupropion hydroxylase activity more than two-fold in three different hepatocyte cultures, indicating that honokiol induces CYP2B6 at higher concentrations. However, honokiol treatment (0.5-50 μM) did not significantly alter the mRNA levels of phase I enzymes (CYP1A2, CYP3A4, CYP2C8, CYP2C9, and CYP2C19) or phase II enzymes (UGT1A1, UGT1A4, UGT1A9, UGT2B7, and SULT2A1) in cryopreserved human hepatocyte cultures. CYP1A2-catalyzed phenacetin O-deethylase and CYP3A4-catalyzed midazolam 1'-hydroxylase activities were not affected by 48-hour honokiol treatment in cryopreserved human hepatocytes. These results indicate that honokiol is a weak CYP2B6 inducer and is unlikely to increase the metabolism of concomitant CYP2B6 substrates and cause pharmacokinetic-based drug interactions in humans.

  17. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  18. Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism.

    Science.gov (United States)

    Pavelka, S

    2014-01-01

    We newly elaborated and adapted several radiometric enzyme assays for the determination of activities of the key enzymes engaged in the biosynthesis (thyroid peroxidase, TPO) and metabolic transformations (conjugating enzymes and iodothyronine deiodinases, IDs) of thyroid hormones (THs) in the thyroid gland and in peripheral tissues, especially in white adipose tissue (WAT). We also elaborated novel, reliable radiometric methods for extremely sensitive determination of enzyme activities of IDs of types 1, 2 and 3 in microsomal fractions of different rat and human tissues, as well as in homogenates of cultured mammalian cells. The use of optimized TLC separation of radioactive products from the unconsumed substrates and film-less autoradiography of radiochromatograms, taking advantage of storage phosphor screens, enabled us to determine IDs enzyme activities as low as 10(-18) katals. In studies of the interaction of fluoxetine (Fluox) with the metabolism of THs, we applied adapted radiometric enzyme assays for iodothyronine sulfotransferases (ST) and uridine 5'-diphospho-glucuronyltransferase (UDP-GT). Fluox is the most frequently used representative of a new group of non-tricyclic antidepressant drugs--selective serotonin re-uptake inhibitors. We used the elaborated assays for quantification the effects of Fluox and for the assessment of the degree of potential induction of rat liver ST and/or UDP-GT enzyme activities by Fluox alone or in combination with T(3). Furthermore, we studied possible changes in IDs activities in murine adipose tissue under the conditions that promoted either tissue hypertrophy (obesogenic treatment) or involution (caloric restriction), and in response to leptin, using our newly developed radiometric enzyme assays for IDs. Our results suggest that deiodinase D1 has a functional role in WAT, with D1 possibly being involved in the control of adipose tissue metabolism and/or accumulation of the tissue. Significant positive correlation between

  19. Phytochelatins: peptides involved in heavy metal detoxification.

    Science.gov (United States)

    Pal, Rama; Rai, J P N

    2010-03-01

    Phytochelatins (PCs) are enzymatically synthesized peptides known to involve in heavy metal detoxification and accumulation, which have been measured in plants grown at high heavy metal concentrations, but few studies have examined the response of plants even at lower environmentally relevant metal concentrations. Recently, genes encoding the enzyme PC synthase have been identified in plants and other species enabling molecular biological studies to untangle the mechanisms underlying PC synthesis and its regulation. The present paper embodies review on recent advances in structure of PCs, their biosynthetic regulation, roles in heavy metal detoxification and/or accumulation, and PC synthase gene expression for better understanding of mechanism involved and to improve phytoremediation efficiency of plants for wider application.

  20. Determination of plasma gluthatione reductase enzyme activity in osteoporotic women

    OpenAIRE

    Sadeghi N; Oveisi M.R.; Jannat B.; Hajimahmoodi M; Jamshidi A.R; Sajadian Z.

    2008-01-01

    Background: Osteoporosis is a disease of high prevalence with increased bone loss. Free radicals have been proved to be involved in bone resorption. Glutathione reductase (GR) plays an essential role in cell defense against reactive oxygen metabolites by sustaining the reduced status of an important antioxidant, glutathione. In the present study GR activity of plasma as an antioxidant enzyme in relation to Bone Mineral Density (BMD) was investigated.Material and Method: GR activity was measur...

  1. El juego con materiales manipulativos para mejorar el aprendizaje de las matemáticas en Educación Infantil: Una propuesta para niños y niñas de 3 a 4 años

    OpenAIRE

    Marta Berga Espona

    2013-01-01

    Elaboración de una propuesta para niños de 3 a 4 años de edad, llevada a la práctica, y orientada al aprendizaje de las matemáticas, en la que se da importancia al juego y a la manipulación de objetos, a partir del juego de construcciones con cuerpos geométricos. La propuesta consta de nueve actividades. Partiendo de unos objetivos adecuados para estas edades, proponemos actividades de juego libre, otras más dirigidas, y otras que implican representaciones mentales más avanzadas. Se tiene en ...

  2. 环境光照改变马铃薯苯丙烷代谢途径相关酶和转录因子基因对低温胁迫的应答模式%Ambient Light Alters Gene Expression Pattern of Enzymes and Transcription Factors Involved in Phenylpropanoid Metabolic Pathway in Potato under Chilling Stress

    Institute of Scientific and Technical Information of China (English)

    秦玉芝; George Tai; 谢开云; 何长征; 熊兴耀

    2014-01-01

    Objective] Expressions of key enzymatic genes involved in phenyl-propanoid metabolic pathway in potato and StR2R3-MYB and StTGA transcripters were investigated in the present study. [Method] The primitive cultivar Yan was the materials for replicated trials and total RNA extracted from tissues of seedlings. Re-al-time florescent quantification PCR, multiple intervals of air temperature, light-il umi-nation and time-duration were factors of treatments in the experiment. Data on gene expressions were obtained and proceed to asses and compare effects based on statistical analysis. [Result] The results showed negative correlations between tem-perature degrees and expressions of StPAL, StDFR and StR2R3-MYB genes but not StTGA. Positive correlations, however, were derived between those of StCHS, StDFR and StR2R3-MYB and light-intensity. Significant interactive effects between expressions of StPAL and StDFR and treatments, light intensity and temperature degree, along the phenylpropanoid pathway were observed. Transcription regulator of StR2R3-MYB showed significant positive effect on the expression of StCHS of potato. StTGA transcription factor, on the other hand, gave significant negative ef-fects on the expression of StDFR. [Conclusion] Results from present study reveal the role of environmental factors and complicate interactions between such condi-tions as temperature-light il umination and mRNA function of target genes.%[目的]通过实时荧光定量 PCR分析不同环境温度和光照强度处理下,马铃薯苯丙烷类代谢途径关键酶基因,转录调节因子StR2R3-MYB和TGA基因表达情况。[方法]运用多因子及其互作逐步回归法建立光照强度、温度和处理时间影响基因表达的模式,逐步回归分析法研究 StR2R3-MYB和 TGA转录因子对苯丙烷类代谢途径关键酶基因的影响力。[结果]环境温度与 StPAL、StDFR和 StR2R3-MYB基因的表达量负相关,StTGA表达与温度正

  3. Involvement of G proteins and cAMP in the production of chitinolytic enzymes by Trichoderma harzianum Envolvimento de proteínas G e cAMP na produção de enzimas quitinolíticas por Trichoderma harzianum

    Directory of Open Access Journals (Sweden)

    Alexandre A.P. Firmino

    2002-06-01

    Full Text Available The effect of G protein modulators and cyclic AMP (cAMP on N-acetylglucosaminidase (NAGase production was investigated during 84 h of growth of a Trichoderma harzianum strain in chitin-containing medium. Caffeine (5 mM, N6--2'-O-dibutyryladenosine 3'5'-cyclic monophosphate sodium salt (dBcAMP (1 mM and 3-isobutyl-1-methylxanthine (IBMX (2 mM decreased extracellular NAGase activity by 80%, 77% and 37%, respectively. AlCl3/KF (100 µM/10 mM and 200 µM/ 20 mM decreased the activity by 85% and 95%, respectively. Cholera (10 µ/mL and pertussis (20 µ/mL toxins also affected NAGase activity, causing a decrease of approximately 75%. Upon all treatments, protein bands of approximately 73 kDa, 68 kDa and 45 kDa had their signals diminished whilst a 50 kDa band was enhanced only by treatment with cholera and pertussis toxins. N-terminal sequencing analysis identified the 73 kDa and 68 kDa proteins as being T. harzianum NAGase in two different truncated forms whereas the 45 kDa band comprised a T. harzianum endochitinase. The 50 kDa protein showed sequence similarity to Coriolus vesicolor cellobiohydrolase. The above results suggest that a signaling pathway comprising G-proteins, adenylate cyclase and cAMP may be involved in the synthesis of T. harzianum chitinases.O efeito de cAMP e de moduladores de proteínas G sobre a produção de N-acetilglicosaminidase (NAGase foi investigado durante o crescimento de Trichoderma harzianum em meio contendo quitina. Cafeína (5 mM, dBcAMP (1mM e IBMX (2 mM provocaram diminuições na atividade extracelular de NAGase em 80%, 77% e 37%, respectivamente. Por outro lado, a presença de AlCl3/KF nas concentrações de 100 µM/10 mM e 200 µM/ 20 mM causou decréscimo na atividade em 85% e 95%, respectivamente. A toxina do cólera (10 µ/mL e a toxina pertussis (20 µ/mL também afetaram a atividade de NAGase, causando um decréscimo de aproximadamente 75%. Análises eletroforéticas mostraram que todos os tratamentos

  4. A DNA tweezer-actuated enzyme nanoreactor.

    Science.gov (United States)

    Liu, Minghui; Fu, Jinglin; Hejesen, Christian; Yang, Yuhe; Woodbury, Neal W; Gothelf, Kurt; Liu, Yan; Yan, Hao

    2013-01-01

    The functions of regulatory enzymes are essential to modulating cellular pathways. Here we report a tweezer-like DNA nanodevice to actuate the activity of an enzyme/cofactor pair. A dehydrogenase and NAD(+) cofactor are attached to different arms of the DNA tweezer structure and actuation of enzymatic function is achieved by switching the tweezers between open and closed states. The enzyme/cofactor pair is spatially separated in the open state with inhibited enzyme function, whereas in the closed state, enzyme is activated by the close proximity of the two molecules. The conformational state of the DNA tweezer is controlled by the addition of specific oligonucleotides that serve as the thermodynamic driver (fuel) to trigger the change. Using this approach, several cycles of externally controlled enzyme inhibition and activation are successfully demonstrated. This principle of responsive enzyme nanodevices may be used to regulate other types of enzymes and to introduce feedback or feed-forward control loops.

  5. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...

  6. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  7. Novel insights into the fungal oxidation of monoaromatic and biarylic environmental pollutants by characterization of two new ring cleavage enzymes.

    Science.gov (United States)

    Schlüter, Rabea; Lippmann, Ramona; Hammer, Elke; Gesell Salazar, Manuela; Schauer, Frieder

    2013-06-01

    The phenol-degrading yeast Trichosporon mucoides can oxidize and detoxify biarylic environmental pollutants such as dibenzofuran, diphenyl ether and biphenyl by ring cleavage. The degradation pathways are well investigated, but the enzymes involved are not. The high similarity of hydroxylated biphenyl derivatives and phenol raised the question if the enzymes of the phenol degradation are involved in ring cleavage or whether specific enzymes are necessary. Purification of enzymes from T. mucoides with catechol cleavage activity demonstrated the existence of three different enzymes: a classical catechol-1,2-dioxygenase (CDO), not able to cleave the aromatic ring system of 3,4-dihydroxybiphenyl, and two novel enzymes with a high affinity towards 3,4-dihydroxybiphenyl. The comparison of the biochemical characteristics and mass spectrometric sequence data of these three enzymes demonstrated that they have different substrate specificities. CDO catalyzes the ortho-cleavage of dihydroxylated monoaromatic compounds, while the two novel enzymes carry out a similar reaction on biphenyl derivatives. The ring fission of 3,4-dihydroxybiphenyl by the purified enzymes results in the formation of (5-oxo-3-phenyl-2,5-dihydrofuran-2-yl)acetic acid. These results suggest that the ring cleavage enzymes catalyzing phenol degradation are not involved in the ring cleavage of biarylic compounds by this yeast, although some intermediates of the phenol metabolism may function as inducers.

  8. The Application of Enzyme and Yeast

    OpenAIRE

    Zhao, Qing

    2012-01-01

    This bachelor’s thesis concerns the application of enzymes and yeasts for bio-industry. The purpose of this work is to understand the basic knowledge about enzyme and yeast, and meanwhile, to find out their different applications. Through comprehensive study, the knowledge was accumulated which brought a clear understanding for the enzyme structure and yeast microorganism, together with their working principles for the bioprocess. For wood-based industry, the different enzymes used in bi...

  9. Determining Enzyme Activity by Radial Diffusion

    Science.gov (United States)

    Davis, Bill D.

    1977-01-01

    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  10. Rhamnogalacturonan I modifying enzymes: an update

    DEFF Research Database (Denmark)

    Silva, Ines R.; Jers, Carsten; Meyer, Anne S.;

    2016-01-01

    Rhamnogalacturonan I (RGI) modifying enzymes catalyse the degradation of the RGI backbone and encompass enzymes specific for either the α1,2-bond linking galacturonic acid to rhamnose or the α1,4-bond linking rhamnose to galacturonic acid in the RGI backbone. The first microbial enzyme found...

  11. 21 CFR 864.4400 - Enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme preparations. 864.4400 Section 864.4400...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4400 Enzyme preparations. (a) Identification. Enzyme preparations are products that are used in the...

  12. Promoting vital involvement.

    Science.gov (United States)

    Kivnick, Helen Q; Stoffel, Sharon A

    2002-09-01

    Health care for the elderly generally focuses on health problems. This approach ignores the strengths and resources that maximize a person's autonomy, integrity, and ability to make contributions to society; and it exacerbates poor health. Vital involvement practice (VIP) is an approach to caring for the elderly that emphasizes an individual's capabilities by exploring factors both internal and external to the individual. VIP is identified as a model for health care providers that will improve the health and quality of life of elderly patients. PMID:12387120

  13. Structural and functional insights into enzymes of the vitamin K cycle.

    Science.gov (United States)

    Tie, J-K; Stafford, D W

    2016-02-01

    Vitamin K-dependent proteins require carboxylation of certain glutamates for their biological functions. The enzymes involved in the vitamin K-dependent carboxylation include: gamma-glutamyl carboxylase (GGCX), vitamin K epoxide reductase (VKOR) and an as-yet-unidentified vitamin K reductase (VKR). Due to the hydrophobicity of vitamin K, these enzymes are likely to be integral membrane proteins that reside in the endoplasmic reticulum. Therefore, structure-function studies on these enzymes have been challenging, and some of the results are notably controversial. Patients with naturally occurring mutations in these enzymes, who mainly exhibit bleeding disorders or are resistant to oral anticoagulant treatment, provide valuable information for the functional study of the vitamin K cycle enzymes. In this review, we discuss: (i) the discovery of the enzymatic activities and gene identifications of the vitamin K cycle enzymes; (ii) the identification of their functionally important regions and their active site residues; (iii) the membrane topology studies of GGCX and VKOR; and (iv) the controversial issues regarding the structure and function studies of these enzymes, particularly, the membrane topology, the role of the conserved cysteines and the mechanism of active site regeneration of VKOR. We also discuss the possibility that a paralogous protein of VKOR, VKOR-like 1 (VKORL1), is involved in the vitamin K cycle, and the importance of and possible approaches for identifying the unknown VKR. Overall, we describe the accomplishments and the remaining questions in regard to the structure and function studies of the enzymes in the vitamin K cycle.

  14. Curious cases of the enzymes

    OpenAIRE

    Ulusu, Nuriye Nuray

    2015-01-01

    Life as we know it heavily relies on biological catalysis, in fact, in a very nonromantic version of it, life could be considered as a series of chemical reactions, regulated by the guarding principles of thermodynamics. In ancient times, a beating heart was a good sign of vitality, however, to me, it is actually the presence of active enzymes that counts. Though we do not usually pay attention, the history of enzymology is as old as humanity itself, and dates back to the ancient times. This ...

  15. Curious cases of the enzymes

    OpenAIRE

    Ulusu Nuriye Nuray

    2015-01-01

    J Med Biochem 2015; 34 (3) DOI: 10.2478/jomb-2014-0045 UDK 577. 1 : 61 ISSN 1452-8258 J Med Biochem 34: 271–281, 2015 Review article Pregledni ~lanak CURIOUS CASES OF THE ENZYMES NEOBI^NA ISTORIJA ENZIMA Nuriye Nuray Ulusu Koç University, School of Medicine, Sariyer-Istanbul, Turkey Address for correspondence: N. Nuray Ulusu, PhD Koç University School of Medicine Professor of Biochemistry Rumelifeneri Yolu Sarıyer-Istanbul – Turkey Phone: +90 (212)...

  16. Involvement in Physical Activity

    Directory of Open Access Journals (Sweden)

    James Gavin

    2013-04-01

    Full Text Available A total of 1,096 adolescents participated in 123 focus groups regarding the perceived outcomes of their involvement in sports and physical activity (PA. The groups, segmented by grade level, sex, and school types, were conducted in both public and private high schools in Montreal, Quebec. We sought to understand, through the participants’ own words, their perception of the outcome matrix of involvement in sports and PA. Focus group questions emphasized changes that adolescents associated with such engagement. In particular, participants were asked how sports and PA might influence behaviors, emotional states, personal characteristics, and other outcomes. Twelve themes were identified in the responses: Positive Health and Physical Changes (18.5%, Activity-Related Positive Emotions (15.6%, and Personal Learning (11.3% were most prevalent in the discussions. A cluster of deeper personal changes thematically described as Self-Identity, Autonomy, and Positive Character Development accounted for another 16.5% of the responses. Relatively few commentaries emphasized negative effects (7.1%. Converting the proportions of qualitative data into a quantitative index allowed us to analyze potential differences in emphasis according to sex, age, and school type. Though a few significant findings emerged, the larger pattern was of a uniform perceptual map across the variables for this adolescent sample. Implications drawn from this investigation highlight the need to clearly articulate concrete pathways to positive nonphysical changes (e.g., mood states, autonomy, positive character development from engagements in sports and PA.

  17. Enzyme Analysis to Determine Glucose Content

    Science.gov (United States)

    Carpenter, Charles; Ward, Robert E.

    Enzyme analysis is used for many purposes in food science and technology. Enzyme activity is used to indicate adequate processing, to assess enzyme preparations, and to measure constituents of foods that are enzyme substrates. In this experiment, the glucose content of corn syrup solids is determined using the enzymes, glucose oxidase and peroxidase. Glucose oxidase catalyzes the oxidation of glucose to form hydrogen peroxide (H2O2), which then reacts with a dye in the presence of peroxidase to give a stable colored product.

  18. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities.

  19. Structure-activity relationship and substrate-dependent phenomena in effects of ginsenosides on activities of drug-metabolizing P450 enzymes.

    Directory of Open Access Journals (Sweden)

    Miao Hao

    Full Text Available Ginseng, a traditional herbal medicine, may interact with several co-administered drugs in clinical settings, and ginsenosides, the major active components of ginseng, may be responsible for these ginseng-drug interactions (GDIs. Results from previous studies on ginsenosides' effects on human drug-metabolizing P450 enzymes are inconsistent and confusing. Herein, we first evaluated the inhibitory effects of fifteen ginsenosides and sapogenins on human CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 enzymes by using commercially available fluorescent probes. The structure-activity relationship of their effects on the P450s was also explored and a pharmacophore model was established for CYP3A4. Moreover, substrate-dependent phenomena were found in ginsenosides' effects on CYP3A4 when another fluorescent probe was used, and were further confirmed in tests with conventional drug probes and human liver microsomes. These substrate-dependent effects of the ginsenosides may provide an explanation for the inconsistent results obtained in previous GDI reports.

  20. Identification of biotransformation enzymes in the antennae of codling moth Cydia pomonella.

    Science.gov (United States)

    Huang, Xinglong; Liu, Lu; Su, Xiaoji; Feng, Jinian

    2016-04-10

    Biotransformation enzymes are found in insect antennae and play a critical role in degrading xenobiotics and odorants. In Cydia pomonella, we identified 26 biotransformation enzymes. Among these enzymes, twelve carboxylesterases (CXEs), two aldehyde oxidases (AOXs) and six alcohol dehydrogenases (ADs) were predominantly expressed in antennae. Each of the CpomCXEs presents a conserved catalytic triad "Ser-His-Glu", which is the structural characteristic of known insect CXEs. CpomAOXs present two redox centers, a FAD-binding domain and a molybdenum cofactor/substrate-binding domain. The antennal CpomADs are from two protein families, short-chain dehydrogenases/reducetases (SDRs) and medium-chain dehydrogenases/reducetases (MDRs). Putative catalytic active domain and cofactor binding domain were found in these CpomADs. Potential functions of these enzymes were determined by phylogenetic analysis. The results showed that these enzymes share close relationship with odorant degrading enzymes (ODEs) and resistance-associated enzymes of other insect species. Because of commonly observed roles of insect antennal biotransformation enzymes, we suggest antennal biotransformation enzymes presented here are candidate that involved in degradation of odorants and xenobiotics within antennae of C. pomonella.

  1. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  2. Enzyme extraction by ultrasound from sludge flocs

    Institute of Scientific and Technical Information of China (English)

    YU Guanghui; HE Pinjing; SHAO Liming; ZHU Yishu

    2009-01-01

    Enzymes play essential roles in the biological processes of sludge treatment. In this article, the ultrasound method to extract enzymes from sludge flocs was presented. Results showed that using ultrasound method at 20 kHz could extract more types of enzymes than that ultrasound at 40 kHz and ethylenediamine tetraacetic acid (EDTA) methods. The optimum parameters of ultrasound extraction at 20 kHz were duration of 10 min and power of 480 W. Under the condition, ultrasound could break the cells and extract both the extracellular and intercellular enzymes. Ultrasound power was apparently more susceptive to enzyme extraction than duration, suggesting that the control of power during ultrasound extraction was more important than that of duration. The Pearson correlation analysis between enzyme activities and cation contents revealed that the different types of enzymes had distinct cation binding characteristics.

  3. Involvement Without Participation?

    DEFF Research Database (Denmark)

    Olsén, Peter

    2012-01-01

    environment did not improve; on the contrary, it deteriorated. The article highlights cultural and structural obstacles to the process, including an inadequate understanding of organisational learning and a narrow focus on market and competition. The endeavours did not consistently increase delegation......The article presents a case study of a knowledge-intensive company that launched a 2-year project to improve their psychosocial working environment. All parties agreed on the project, and the methods used aimed to promote the involvement of the employees. Surprisingly, the psychosocial working...... and participation. In order to develop a more sustainable and viable psychosocial working environment, a broader and more democratic notion of organisational learning and managing is proposed....

  4. Emergency preparedness involves cooperation

    International Nuclear Information System (INIS)

    The measures of the Finnish authorities in radiation emergency situations are summarised in the article. The emphasis of emergency measures has sifted to peace-time accident preparedness. The potential radiation risk sources include nuclear power plant accidents, passing nuclear-driven ships, radioactive wastes etc. In Finland the Ministry of the Interior is the highest authority in matters of radiation control and preparedness. For analysing radiation situations and ensuring compliance with recommended actions, the Ministry relies on the Finnish Centre for Radiation and Nuclear Safety and the Finnish Meteorological Institute as its main expert bodies. Other authorities, such as Defence Forces and fire departments, also play an important role in situations involving a radiation hazard

  5. Effectiveness of citizen involvement

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, L. [Prince William Sound Regional Citizen' s Advisory Council, Anchorage, AK (United States)

    2006-07-01

    This paper reviewed the rise of citizen involvement in industry that affects their community. Following the Exxon Valdez oil spill (EVOS) in 1989, the Oil Pollution Act of 1990 provided funding by industry for a citizens group to provide oversite of the Alyeska Pipeline Service Agency terminal and associated tankers. That role is currently filled by the Prince William Sound Regional Citizen's Advisory Council, a volunteer organization that represents communities that were affected by the EVOS. The history of the Prince William Sound Regional Citizen's Advisory Council was discussed along with its structure, funding and overview of projects and research into safer transportation of oil, better oil spill response capabilities and improved environmental protection practices. Some of the successes involving citizen input include the requirement that all tankers going into Prince William Sound be double hull by 2015; a world-class system of tugs escorting tankers in Prince William Sound; installation of an ice-detection radar on a small island near the site of the EVOS; a guidebook for communities affected by man-made disasters; identification of nearshore locations that should be the first to be protected in the case of another spill; and, the installation of a system to capture crude oil vapors when tankers take on cargo. Other projects underway include the study of invasive species that can be transported in the ballast water of tankers, efficacy of dispersants, soil contamination at the tanker loading site, emissions of hazardous air pollutants from ballast water treatment processes, and continual review of emergency response plans. In the 17 years since the formation of the Prince William Sound Regional Citizen's Advisory Council, it has been shown that communication and transparency are the keys to solving complacency, which is believed to have been a contributing factor to the EVOS. 3 refs.

  6. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes

    International Nuclear Information System (INIS)

    We have measured cytochrome P450 (CYP) activity in nearly 150 samples of human liver microsomes and 64 samples of cryopreserved human hepatocytes, and we have performed induction studies in over 90 preparations of cultured human hepatocytes. We have analyzed these data to examine whether the expression of CYP enzyme activity in liver microsomes and isolated hepatocytes or the inducibility of CYP enzymes in cultured hepatocytes is influenced by the gender, age, or ethnicity of the donor (the latter being limited to Caucasians, African Americans, and Hispanics due to a paucity of livers from Asian donors). In human liver microsomes, there were no statistically significant differences (P > 0.05) in CYP activity as a function of age, gender, or ethnicity with one exception. 7-Ethoxyresorufin O-dealkylase (CYP1A2) activity was greater in males than females, which is consistent with clinical observation. Liver microsomal testosterone 6β-hydroxylase (CYP3A4) activity was slightly greater in females than males, but the difference was not significant. However, in cryopreserved human hepatocytes, the gender difference in CYP3A4 activity (females = twice males) did reach statistical significance, which supports the clinical observation that females metabolize certain CYP3A4 substrates faster than do males. Compared with those from Caucasians and African Americans, liver microsomes from Hispanics had about twice the average activity of CYP2A6, CYP2B6, and CYP2C8 and half the activity of CYP1A2, although this apparent ethnic difference may be a consequence of the relatively low number of Hispanic donors. Primary cultures of hepatocytes were treated with β-naphthoflavone, an inducer of CYP1A2, phenobarbital or rifampin, both of which induce CYP2B6, CYP2C9, CYP2C19, and CYP3A4, albeit it to different extents. Induction of these CYP enzymes in freshly cultured hepatocytes did not appear to be influenced by the gender or age of the donor. Furthermore, CYP3A4 induction in

  7. Enzyme phylogenies as markers for the oxidation state of the environment: The case of respiratory arsenate reductase and related enzymes

    Directory of Open Access Journals (Sweden)

    Schoepp-Cothenet Barbara

    2008-07-01

    Full Text Available Abstract Background Phylogenies of certain bioenergetic enzymes have proved to be useful tools for deducing evolutionary ancestry of bioenergetic pathways and their relationship to geochemical parameters of the environment. Our previous phylogenetic analysis of arsenite oxidase, the molybdopterin enzyme responsible for the biological oxidation of arsenite to arsenate, indicated its probable emergence prior to the Archaea/Bacteria split more than 3 billion years ago, in line with the geochemical fact that arsenite was present in biological habitats on the early Earth. Respiratory arsenate reductase (Arr, another molybdopterin enzyme involved in microbial arsenic metabolism, serves as terminal oxidase, and is thus situated at the opposite end of bioenergetic electron transfer chains as compared to arsenite oxidase. The evolutionary history of the Arr-enzyme has not been studied in detail so far. Results We performed a genomic search of genes related to arrA coding for the molybdopterin subunit. The multiple alignment of the retrieved sequences served to reconstruct a neighbor-joining phylogeny of Arr and closely related enzymes. Our analysis confirmed the previously proposed proximity of Arr to the cluster of polysulfide/thiosulfate reductases but also unravels a hitherto unrecognized clade even more closely related to Arr. The obtained phylogeny strongly suggests that Arr originated after the Bacteria/Archaea divergence in the domain Bacteria, and was subsequently laterally distributed within this domain. It further more indicates that, as a result of accumulation of arsenate in the environment, an enzyme related to polysulfide reductase and not to arsenite oxidase has evolved into Arr. Conclusion These findings are paleogeochemically rationalized by the fact that the accumulation of arsenate over arsenite required the increase in oxidation state of the environment brought about by oxygenic photosynthesis.

  8. Evaluation of the Effects of Mitragyna speciosa Alkaloid Extract on Cytochrome P450 Enzymes Using a High Throughput Assay

    Directory of Open Access Journals (Sweden)

    Raja Elina Raja Aziddin

    2011-08-01

    Full Text Available The extract from Mitragyna speciosa has been widely used as an opium substitute, mainly due to its morphine-like pharmacological effects. This study investigated the effects of M. speciosa alkaloid extract (MSE on human recombinant cytochrome P450 (CYP enzyme activities using a modified Crespi method. As compared with the liquid chromatography-mass spectrometry method, this method has shown to be a fast and cost-effective way to perform CYP inhibition studies. The results indicated that MSE has the most potent inhibitory effect on CYP3A4 and CYP2D6, with apparent half-maximal inhibitory concentration (IC50 values of 0.78 µg/mL and 0.636 µg/mL, respectively. In addition, moderate inhibition was observed for CYP1A2, with an IC50 of 39 µg/mL, and weak inhibition was detected for CYP2C19. The IC50 of CYP2C19 could not be determined, however, because inhibition was < 50%. Competitive inhibition was found for the MSE-treated CYP2D6 inhibition assay, whereas non-competitive inhibition was shown in inhibition assays using CYP3A4, CYP1A2 and CYP2C19. Quinidine (CYP2D6, ketoconazole (CYP3A4, tranylcypromine (CYP2C19 and furafylline (CYP1A2 were used as positive controls throughout the experiments. This study shows that MSE may contribute to an herb-drug interaction if administered concomitantly with drugs that are substrates for CYP3A4, CYP2D6 and CYP1A2.

  9. Inhibition of human cytochrome P450 enzymes by the natural hepatotoxin safrole.

    Science.gov (United States)

    Ueng, Yune-Fang; Hsieh, Chih-Hang; Don, Ming-Jaw

    2005-05-01

    The hepatotoxin, safrole is a methylenedioxy phenyl compound, found in sassafras oil and certain other essential oils. Recombinant cytochrome P450 (CYP, P450) and human liver microsomes were studied to investigate the selective inhibitory effects of safrole on human P450 enzymes and the mechanisms of action. Using Escherichia coli-expressed human P450, our results demonstrated that safrole was a non-selective inhibitor of CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP3A4 in the IC(50) order CYP2E1 Safrole strongly inhibited CYP1A2, CYP2A6, and CYP2E1 activities with IC(50) values less than 20 microM. Safrole caused competitive, non-competitive, and non-competitive inhibition of CYP1A2, CYP2A6 and CYP2E1 activities, respectively. The inhibitor constants were in the order CYP1A2 safrole strongly inhibited 7-ethoxyresorufin O-deethylation, coumarin hydroxylation, and chlorzoxazone hydroxylation activities. These results revealed that safrole was a potent inhibitor of human CYP1A2, CYP2A6, and CYP2E1. With relatively less potency, CYP2D6 and CYP3A4 were also inhibited.

  10. Use of Human Plasma Samples to Identify Circulating Drug Metabolites that Inhibit Cytochrome P450 Enzymes.

    Science.gov (United States)

    Eng, Heather; Obach, R Scott

    2016-08-01

    Drug interactions elicited through inhibition of cytochrome P450 (P450) enzymes are important in pharmacotherapy. Recently, greater attention has been focused on not only parent drugs inhibiting P450 enzymes but also on possible inhibition of these enzymes by circulating metabolites. In this report, an ex vivo method whereby the potential for circulating metabolites to be inhibitors of P450 enzymes is described. To test this method, seven drugs and their known plasma metabolites were added to control human plasma at concentrations previously reported to occur in humans after administration of the parent drug. A volume of plasma for each drug based on the known inhibitory potency and time-averaged concentration of the parent drug was extracted and fractionated by high-pressure liquid chromatography-mass spectrometry, and the fractions were tested for inhibition of six human P450 enzyme activities (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). Observation of inhibition in fractions that correspond to the retention times of metabolites indicates that the metabolite has the potential to contribute to P450 inhibition in vivo. Using this approach, norfluoxetine, hydroxyitraconazole, desmethyldiltiazem, desacetyldiltiazem, desethylamiodarone, hydroxybupropion, erythro-dihydrobupropion, and threo-dihydrobupropion were identified as circulating metabolites that inhibit P450 activities at a similar or greater extent as the parent drug. A decision tree is presented outlining how this method can be used to determine when a deeper investigation of the P450 inhibition properties of a drug metabolite is warranted. PMID:27271369

  11. Inhibitors of Testosterone Biosynthetic and Metabolic Activation Enzymes

    Directory of Open Access Journals (Sweden)

    Leping Ye

    2011-12-01

    Full Text Available The Leydig cells of the testis have the capacity to biosynthesize testosterone from cholesterol. Testosterone and its metabolically activated product dihydrotestosterone are critical for the development of male reproductive system and spermatogenesis. At least four steroidogenic enzymes are involved in testosterone biosynthesis: Cholesterol side chain cleavage enzyme (CYP11A1 for the conversion of cholesterol into pregnenolone within the mitochondria, 3β-hydroxysteroid dehydrogenase (HSD3B, for the conversion of pregnenolone into progesterone, 17α-hydroxylase/17,20-lyase (CYP17A1 for the conversion of progesterone into androstenedione and 17β-hydroxysteroid dehydrogenase (HSD17B3 for the formation of testosterone from androstenedione. Testosterone is also metabolically activated into more potent androgen dihydrotestosterone by two isoforms 5α-reductase 1 (SRD5A1 and 2 (SRD5A2 in Leydig cells and peripheral tissues. Many endocrine disruptors act as antiandrogens via directly inhibiting one or more enzymes for testosterone biosynthesis and metabolic activation. These chemicals include industrial materials (perfluoroalkyl compounds, phthalates, bisphenol A and benzophenone and pesticides/biocides (methoxychlor, organotins, 1,2-dibromo-3-chloropropane and prochloraz and plant constituents (genistein and gossypol. This paper reviews these endocrine disruptors targeting steroidogenic enzymes.

  12. Psychrophilic Enzymes: From Folding to Function and Biotechnology

    Directory of Open Access Journals (Sweden)

    Georges Feller

    2013-01-01

    Full Text Available Psychrophiles thriving permanently at near-zero temperatures synthesize cold-active enzymes to sustain their cell cycle. Genome sequences, proteomic, and transcriptomic studies suggest various adaptive features to maintain adequate translation and proper protein folding under cold conditions. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Several open questions in the field are also highlighted.

  13. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  14. Optimization to Low Temperature Activity in Psychrophilic Enzymes

    Directory of Open Access Journals (Sweden)

    Caroline Struvay

    2012-09-01

    Full Text Available Psychrophiles, i.e., organisms thriving permanently at near-zero temperatures, synthesize cold-active enzymes to sustain their cell cycle. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. Considering the subtle structural adjustments required for low temperature activity, directed evolution appears to be the most suitable methodology to engineer cold activity in biological catalysts.

  15. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism

    OpenAIRE

    Hassaninasab, Azam; Hashimoto, Yoshiteru; Tomita-Yokotani, Kaori; Kobayashi, Michihiko

    2011-01-01

    Polyphenol curcumin, a yellow pigment, derived from the rhizomes of a plant (Curcuma longa Linn) is a natural antioxidant exhibiting a variety of pharmacological activities and therapeutic properties. It has long been used as a traditional medicine and as a preservative and coloring agent in foods. Here, curcumin-converting microorganisms were isolated from human feces, the one exhibiting the highest activity being identified as Escherichia coli. We are thus unique in discovering that E. coli...

  16. Bioethanol production from leafy biomass of mango (Mangifera indica) involving naturally isolated and recombinant enzymes.

    Science.gov (United States)

    Das, Saprativ P; Ravindran, Rajeev; Deka, Deepmoni; Jawed, Mohammad; Das, Debasish; Goyal, Arun

    2013-01-01

    The present study describes the usage of dried leafy biomass of mango (Mangifera indica) containing 26.3% (w/w) cellulose, 54.4% (w/w) hemicellulose, and 16.9% (w/w) lignin, as a substrate for bioethanol production from Zymomonas mobilis and Candida shehatae. The substrate was subjected to two different pretreatment strategies, namely, wet oxidation and an organosolv process. An ethanol concentration (1.21 g/L) was obtained with Z. mobilis in a shake-flask simultaneous saccharification and fermentation (SSF) trial using 1% (w/v) wet oxidation pretreated mango leaves along with mixed enzymatic consortium of Bacillus subtilis cellulase and recombinant hemicellulase (GH43), whereas C. shehatae gave a slightly higher (8%) ethanol titer of 1.31 g/L. Employing 1% (w/v) organosolv pretreated mango leaves and using Z. mobilis and C. shehatae separately in the SSF, the ethanol titers of 1.33 g/L and 1.52 g/L, respectively, were obtained. The SSF experiments performed with 5% (w/v) organosolv-pretreated substrate along with C. shehatae as fermentative organism gave a significantly enhanced ethanol titer value of 8.11 g/L using the shake flask and 12.33 g/L at the bioreactor level. From the bioreactor, 94.4% (v/v) ethanol was recovered by rotary evaporator with 21% purification efficiency. PMID:23768115

  17. INVOLVEMENT OF OXIDATIVE STRESS IN THE PATHOGENESIS OF SCHIZOPHRENIA:FOCUS ON NOX ENZYMES

    OpenAIRE

    Schiavone, Stefania

    2011-01-01

    The imbalance between the production of reactive oxygen species (ROS) and the cellular antioxidant defence, determines a situation called “oxidative stress”. ROS react and oxidize cellular components, such as proteins or DNA, leading to cell death and severe tissue damage. The central nervous system (CNS) is particularly sensitive to oxidative stress because of high oxygen consumption, low antioxidant defense and abundance of lipids, which are prone to oxidation. For this reaso...

  18. Erectogenic and Aphrodisiac Property of Moringa oleifera: Involvement of Soluble Epoxide Hydrolase Enzyme.

    Science.gov (United States)

    Goswami, Sumanta Kumar; Inamdar, Mohammed Naseeruddin; Dethe, Shekhar M; Gururaj, Giligar M; Jamwal, Rohitash; Bhaskar, Anirban; Mundkinajeddu, Deepak; Agarwal, Amit

    2016-07-01

    Soluble epoxide hydrolase (sEH) inhibitors have been reported to improve penile erection; therefore, sEH could be useful for management of erectile dysfunction. Methanolic and aqueous extracts of 30 Indian medicinal plants were screened for their sEH inhibition potential. Fifteen extracts showed >50% inhibition when screened at 50 µg/mL in