WorldWideScience

Sample records for 31p-magnetic resonance spectroscopy

  1. Metabolism of perfused pig intercostal muscles evaluated by 31P-magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Brian Lindegaard; Arendrup, Henrik; Secher, Niels H;

    2006-01-01

    This study presents a perfused preparation for evaluation of metabolism in pig intercostal muscle in vitro. Preserved vessels and nerves to an intercostal segment including two adjacent ribs allowed for tissue perfusion and electrical stimulation with measurement of contraction force, oxygen...... consumption and 31P-magnetic resonance spectroscopy (31P-MRS). When perfused at rest with Krebs-Ringer buffer, the preparation maintained physiological levels of phosphocreatine (PCr), inorganic phosphate (Pi), ATP and pH at a stable oxygen consumption of 0.51 +/- 0.01 micromol min(-1) g(-1) for more than 2 h....... Tonic stimulation of the nerve caused anaerobic energy consumption as PCr and pH decreased, and both variables recovered after the contraction with half-time values of approximately 7 min. Force increased to 0.040 N g(-1) (range, 0.031-0.103 N g(-1)) and it gradually decreased by about 70% during...

  2. Early effects of radiotherapy in small cell lung cancer xenografts monitored by 31P magnetic resonance spectroscopy and biochemical analysis

    DEFF Research Database (Denmark)

    Kristjansen, P E; Pedersen, E J; Quistorff, B;

    1990-01-01

    31P magnetic resonance spectroscopy (31P MRS) and biochemical analysis of extracts were applied to study the metabolic response to X-irradiation of small cell lung cancer in nude mice. Two small cell lung cancer xenografts, CPH SCCL 54A and 54B, with different radiosensitivity, although derived...

  3. INVIVO 31P MAGNETIC-RESONANCE SPECTROSCOPY (MRS) OF TENDER POINTS IN PATIENTS WITH PRIMARY FIBROMYALGIA SYNDROME

    NARCIS (Netherlands)

    DEBLECOURT, AC; WOLF, RF; VANRIJSWIJK, MH; KAMMAN, RL; KNIPPING, AA; MOOYAART, EL

    1991-01-01

    31P Magnetic Resonance-Spectroscopy was performed at the site of tender points in the trapezius muscle of patients with primary fibromyalgia syndrome. Earlier, in vitro studies have reported changes in the high energy phosphate-metabolism in biopsies taken from tender points of fibromyalgia patients

  4. Fructose-induced aberration of metabolism in familial gout identified by sup 31 P magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Seegmiller, J.E. (John Radcliffe Hospital, Oxford (England) Univ. of California, San Diego (United States)); Dixon, R.M.; Kemp, G.J.; Rajagopalan, B.; Radda, G.K. (John Radcliffe Hospital, Oxford (England)); Angus, P.W. (John Radcliffe Hospital, Oxford (England) Austin Hospital, Heidelburg, Victoria (Australia)); McAlindon, T.E.; Dieppe, P. (Univ. of Bristol (England))

    1990-11-01

    The hyperuricemia responsible for the development of gouty arthritis results from a wide range of environmental factors and underlying genetically determined aberrations of metabolism. {sup 31}P magnetic resonance spectroscopy studies of children with hereditary fructose intolerance revealed a readily detectable rise in phosphomonoesters with a marked fall in inorganic phosphate in their liver in vivo and a rise in serum urate in response to very low doses of oral fructose. Parents and some family members heterozygous for this enzyme deficiency showed a similar pattern when given a substantially larger dose of fructose. Three of the nine heterozygotes thus identified also had clinical gout, suggesting the possibility of this defect being a fairly common cause of gout. In the present study this same noninvasive technology was used to identify the same spectral pattern in 2 of the 11 families studied with hereditary gout. In one family, the index patient's three brothers and his mother all showed the fructose-induced abnormality of metabolism, in agreement with the maternal inheritance of metabolism, in agreement with the maternal inheritance of the gout in this family group. The test dose of fructose used produced a significantly larger increment in the concentration of serum urate in the patients showing the changes in {sup 31}P magnetic resonance spectra than in the other patients with familial gout or in nonaffected members, thus suggesting a simpler method for initial screening for the defect.

  5. 31P magnetic resonance spectroscopy of skeletal muscle in patients with fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Jensen, K E; Thomsen, C;

    1992-01-01

    31Phosphorous nuclear magnetic resonance (31P NMR) spectroscopy of painful calf muscle was performed in 12 patients with fibromyalgia (FS) and 7 healthy subjects during rest, aerobic and anaerobic exercising conditions, and postexercise recovery. Ratios of inorganic phosphate and creatinine...

  6. Bioenergetic Measurements in Children with Bipolar Disorder: A Pilot 31P Magnetic Resonance Spectroscopy Study

    OpenAIRE

    Sikoglu, Elif M.; J. Eric Jensen; Gordana Vitaliano; Liso Navarro, Ana A; Renshaw, Perry F.; Jean A. Frazier; Moore, Constance M.

    2013-01-01

    Background: Research exploring Bipolar Disorder (BD) phenotypes and mitochondrial dysfunction, particularly in younger subjects, has been insufficient to date. Previous studies have found abnormal cerebral pH levels in adults with BD, which may be directly linked to abnormal mitochondrial activity. To date no such studies have been reported in children with BD. Methods: Phosphorus Magnetic Resonance Spectroscopy (\\(^{31}\\)P MRS) was used to determine pH, phopshocreatine (PCr) and inorganic ph...

  7. Cardiac metabolism during exercise in healthy volunteers measured by 31P magnetic resonance spectroscopy.

    Science.gov (United States)

    Conway, M A; Bristow, J D; Blackledge, M J; Rajagopalan, B; Radda, G K

    1991-01-01

    A technique was devised for individuals to exercise prone in a magnet during magnetic resonance spectroscopy of the heart and phosphorus-31 magnetic resonance spectra of the heart were obtained by the phase modulated rotating frame imaging technique in six healthy volunteers during steady state dynamic quadriceps exercise. During prone exercise heart rate, blood pressure, and total body oxygen consumption were measured at increasing loads and the results were compared with those during Bruce protocol treadmill exercise. During prone exercise with a 5 kg load the heart rate was similar and the systolic and diastolic blood pressures were higher than those during stage 1 of the Bruce protocol. The rate-pressure products were similar but the total body oxygen consumption was lower during prone exercise. There was no difference in the ratio of phosphocreatine to adenosine triphosphate during rest and exercise.Thus during exercise that produced a local cardiac stress equal to or greater than that during stage 1 of the Bruce protocol treadmill exercise, the energy requirements of the normal human myocardium were adequately supplied by oxidative phosphorylation. PMID:1993127

  8. {sup 1}H and {sup 31}P-magnetic resonance spectroscopy of cerebral infarction in rats

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, Manabu; Katayama, Yasuo; Igarashi, Hironaka; Terashi, Akiro [Nippon Medical School, Tokyo (Japan)

    1997-04-01

    Magnetic resonance spectroscopy (MRS) allows the noninvasive study of metabolism in vivo. In order to further understand the time course of biochemical changes during cerebral infarction, we performed the MRS study with pathological analysis. The left middle cerebral artery (MCA) was occluded in spontaneously hypertensive male rats (SHR) by the method of Tamura et al. The spectra were obtained from the infarcted hemisphere by placing the surface coils over the left side of the calvarium. {sup 31}P and {sup 1}H-MRS were performed at 3 hours, 24 hours and 7 days after MCA occlusion. Ischemic lesions caused by the left MCA occlusion extended into the parietal lobe and caudate putamen. After 3 hours of ischemia, vacuolated neurophils and shrunken neurons were observed. At 24 hours, these changes were severe. After 7 days, infiltration of monocytes and capillary hyperplasia were seen, and neurons had disappeared. At the acute stage of ischemia the phosphocreatine/inorganic phosphate (PCr/Pi) peak ratio decreased. After 7 days of ischemia, these changes became obscure. The intracellular pH (pHi) decreased after 3 hours of ischemia and recovered almost to the control level at 24 hours post ischemia. Alkalosis was apparent 7 days after ischemia. This alkalosis might be due to increased permeability of the deteriorated blood brain barrier. Although the lactate level was high 24 hours post ischemia, the pHi was almost normal. The N-acetyl-aspartate/creatine ratio decreased significantly from the acute stage of stroke. This decrease correlated with pathological changes. The correlation of the magnetic resonance spectra with the histological results may open aspects for monitoring stroke therapy and a new approach to tissue characterization. (author)

  9. Bioenergetic measurements in children with bipolar disorder: a pilot 31P magnetic resonance spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Elif M Sikoglu

    Full Text Available BACKGROUND: Research exploring Bipolar Disorder (BD phenotypes and mitochondrial dysfunction, particularly in younger subjects, has been insufficient to date. Previous studies have found abnormal cerebral pH levels in adults with BD, which may be directly linked to abnormal mitochondrial activity. To date no such studies have been reported in children with BD. METHODS: Phosphorus Magnetic Resonance Spectroscopy ((31P MRS was used to determine pH, phopshocreatine (PCr and inorganic phosphate (Pi levels in 8 subjects with BD and 8 healthy comparison subjects (HCS ages 11 to 20 years old. RESULTS: There was no significant difference in pH between the patients and HCS. However, frontal pH values for patients with BD increased with age, contrary to studies of HCS and the pH values in the frontal lobe correlated negatively with the YMRS values. Global Pi was significantly lower in subjects with BD compared with HCS. There were no significant differences in PCr between the groups. Global PCr-to-Pi ratio (PCr/Pi was significantly higher in subjects with BD compared with HCS. CONCLUSIONS: The change in Pi levels for the patients with BD coupled with the no difference in PCr levels, suggest an altered mitochondrial phosphorylation. However, our findings require further investigation of the underlying mechanisms with the notion that a mitochondrial dysfunction may manifest itself differently in children than that in adults. LIMITATIONS: Further investigations with larger patient populations are necessary to draw further conclusions.

  10. Advancement of 31P Magnetic Resonance Spectroscopy Using GRAPPA Reconstruction on a 3D Volume

    Science.gov (United States)

    Clevenger, Tony

    The overall objective of this research is to improve currently available metabolic imaging techniques for clinical use in monitoring and predicting treatment response to radiation therapy in liver cancer. Liver metabolism correlates with inflammatory and neoplastic liver diseases, which alter the intracellular concentration of phosphorus- 31 (31P) metabolites [1]. It is assumed that such metabolic changes occur prior to physical changes of the tissue. Therefore, information on regional changes of 31P metabolites in the liver, obtained by Magnetic Resonance Spectroscopic Imaging (MRSI) [1,2], can help in diagnosis and follow-up of various liver diseases. Specifically, there appears to be an immediate need of this technology for both the assessment of tumor response in patients with Hepatocellular Carcinoma (HCC) treated with Stereotactic Body Radiation Therapy (SBRT) [3--5], as well as assessment of radiation toxicity, which can result in worsening liver dysfunction [6]. Pilot data from our lab has shown that 31P MRSI has the potential to identify treatment response five months sooner than conventional methods [7], and to assess the biological response of liver tissue to radiation 24 hours post radiation therapy [8]. While this data is very promising, commonly occurring drawbacks for 31P MRSI are patient discomfort due to long scan times and prone positioning within the scanner, as well as reduced data quality due to patient motion and respiration. To further advance the full potential of 31P MRSI as a clinical diagnostic tool in the management of liver cancer, this PhD research project had the following aims: I) Reduce the long acquisition time of 3D 31P MRS by formulating and imple- menting an appropriate GRAPPA undersampling scheme and reconstruction on a clinical MRI scanner II) Testing and quantitative validation of GRAPPA reconstruction on 3D 31P MRSI on developmental phantoms and healthy volunteers At completion, this work should considerably advance 31P MRSI

  11. Exertional muscle pain in familial Mediterranean fever patients evaluated by MRI and 31P magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Aim: To evaluate the effect of physical activity on the structural, morphological, and metabolic characteristics of the gastrocnemius muscle in familial Mediterranean fever (FMF) patients, utilizing quantitative 31P magnetic resonance spectroscopy (MRS), in order to elucidate the mechanism of their exertional leg pain. Materials and methods: Eleven FMF patients suffering from exertional leg pain (eight male, three female; mean age 33 years) and six healthy individuals (three male, three female; mean age 39 years) constituted the control group. All of the participants underwent magnetic resonance imaging (MRI) and non-selective 31P MRS (3 T) of the leg muscles before and after graded exercise on a treadmill. Phosphocreatine (PCr):inorganic phosphate (Pi), PCr:adenosine triphosphate (ATP) ratios and the intracellular pH of the leg muscles were measured using 31P MRS. Results: For both groups, normal muscle mass with no signal alterations was observed on the MRI images after exercise. The normal range of pre- and post- exercise MRS muscle parameters was observed in both groups. However, the intracellular pH post-exercise, was significantly higher (less acidic) in the FMF group compared to the control group [pH (FMF) = 7.03 ± 0.02; pH (control) 7.00 ± 0.02; p < 0.0006]. Conclusions: The finding of a less prominent, post-exercise acidification of the gastrocnemius muscle in this FMF patient group suggests a forme fruste of glycogenosis. This preliminary observation should be further investigated in a future, larger-scale study

  12. Biochemical metabolic changes assessed by 31P magnetic resonance spectroscopy after radiation-induced hepatic injury in rabbits

    Institute of Scientific and Technical Information of China (English)

    Ri-Sheng Yu; Liang Hao; Fei Dong; Jian-Shan Mao; Jian-Zhong Sun; Ying Chen; Min Lin; Zhi-Kang Wang; Wen-Hong Ding

    2009-01-01

    AIM:To compare the features of biochemical metabolic changes detected by hepatic phosphorus-31 magnetic resonance spectroscopy (31P MRS) with the liver damage score (LDS) and pathologic changes in rabbits and to investigate the diagnostic value of 31P MRS in acute hepatic radiation injury.METHODS:A total of 30 rabbits received different radiation doses (ranging 5-20 Gy) to establish acute hepatic injury models.Blood biochemical tests,31P MRS and pathological examinations were carried out 24 h after irradiation.The degree of injury was evaluated according to LDS and pathology.Ten healthy rabbits served as controls.The MR examination was performed on a 1.5 T imager using a 1H/31P surface coil by the 2D chemical shift imaging technique.The relative quantities of phosphomonoesters (PME),phosphodiesters (PDE),inorganic phosphate (Pi) and adenosine triphosphate (ATP) were measured.The data were statistically analyzed.RESULTS:(1) Relative quantification of phosphorus metabolites:(a) ATP:there were significant differences (P<0.05) (LDS-groups:control group vs mild group vs moderate group vs severe group,1.83±0.33 vs 1.55±0.24 vs 1.27±0.09 vs 0.98±0.18;pathological groups:control group vs mild group vs moderate group vs severe group,1.83±0.33 vs 1.58±0.25 vs 1.32±0.07 vs 1.02 ± 0.18) of ATP relative quantification among control group,mild injured group,moderate injured group,and severe injured group according to both LDS grading and pathological grading,respectively,and it decreased progressively with the increased degree of injury (r=-0.723,P=0.000).(b) PME and Pi;the relative quantification of PME and Pi decreased significantly in the severe injured group,and the difference between the control group and severe injured group was significant (P<0.05) (PME:LDScontrol group vs LDS-severe group,0.86±0.23 vs 0.58±0.22,P=0.031;pathological control group vs pathological severe group,0.86±0.23 vs 0.60±0.21,P=0.037;Pi:LDS-control group vs LDS-severe group,0.74±0.18 vs

  13. Comparison of the clinical state and its changes in patients with Duchenne and Becker muscular dystrophy with results of in vivo 31P magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    A total of 14 boys with the Duchenne and Becker forms of muscular dystrophy (DMD, BMD) were examined using 31P magnetic resonance (MR) spectroscopy; 12 boys were examined repeatedly. The results were correlated with clinical findings (including those of genetic tests) and with data obtained from examinations of an age-matched control group. Evaluation of results using principal component analysis revealed maximum variability in the following ratios: phosphocreatine/inorganic phosphate (PCr/Pi), phosphocreatine/phosphodiesters (PCr/PDe) and phosphocreatine/phosphomonoesters (PCr/PMe). A decrease in PCr/Pi correlates with weakness of the hip girdle and of the lower part of the shoulder girdle in DMD/BMD patients. The values of all ratios in the group of patients with the DMD phenotype differ significantly from results obtained in the group with the BMD phenotype. Continuous follow-up of patients using 31P MR spectroscopy revealed a marked decrease in PCr/Pi in DMD/BMD patients at an age that could be expected in subjects with a typical clinical course of DMD/BMD. An attempt to manage a concomitant disease with prednisone and carnitene was followed by an increase in PCr/Pi in 3 cases. A rise in the PCr/Pi ratio signalled clinical improvement in the patients. A decrease in PCr/Pi was found after controlled physical training, a finding consistent with data obtained from clinical observations describing an adverse effect of physical stress on the dystrophic process. (orig.)

  14. Comparison of the clinical state and its changes in patients with Duchenne and Becker muscular dystrophy with results of in vivo {sup 31}P magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hajek, M. [MR Unit, Inst. for Clinical and Experimental Medicine, Prague (Czech Republic); Grosmanova, A. [Dept. of Neuropediatrics, Thomayer`s Hospital, Prague (Czech Republic); Horska, A. [MR Unit, Inst. for Clinical and Experimental Medicine, Prague (Czech Republic); Urban, P. [Dept. of Analytical Chemistry, Prague Inst. of Chemical Technology (Czech Republic)

    1993-12-01

    A total of 14 boys with the Duchenne and Becker forms of muscular dystrophy (DMD, BMD) were examined using {sup 31}P magnetic resonance (MR) spectroscopy; 12 boys were examined repeatedly. The results were correlated with clinical findings (including those of genetic tests) and with data obtained from examinations of an age-matched control group. Evaluation of results using principal component analysis revealed maximum variability in the following ratios: phosphocreatine/inorganic phosphate (PCr/Pi), phosphocreatine/phosphodiesters (PCr/PDe) and phosphocreatine/phosphomonoesters (PCr/PMe). A decrease in PCr/Pi correlates with weakness of the hip girdle and of the lower part of the shoulder girdle in DMD/BMD patients. The values of all ratios in the group of patients with the DMD phenotype differ significantly from results obtained in the group with the BMD phenotype. Continuous follow-up of patients using {sup 31}P MR spectroscopy revealed a marked decrease in PCr/Pi in DMD/BMD patients at an age that could be expected in subjects with a typical clinical course of DMD/BMD. An attempt to manage a concomitant disease with prednisone and carnitene was followed by an increase in PCr/Pi in 3 cases. A rise in the PCr/Pi ratio signalled clinical improvement in the patients. A decrease in PCr/Pi was found after controlled physical training, a finding consistent with data obtained from clinical observations describing an adverse effect of physical stress on the dystrophic process. (orig.)

  15. Metabolic Changes in Rats with Photochemically Induced Cerebral Infarction and the Effects of Batroxobin: A Study by Magnetic Resonance Imaging, 1H- and 31P- Magnetic Resonance Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    管兴志; 吴卫平; 匡培根; 匡培梓; 高杨; 管林初; 李丽云; 毛希安; 刘买利

    2001-01-01

    Metabolic changes in rats with photochemically induced cerebral infarction and the effects of batroxobin were investigated 1, 3, 5 and 7 days after infarction by means of magnetic resonance imaging (MRI), 1H- and 31P- magnetic resonance spectroscopy (MRS). A region of T2 hyperintensity was observed in left temporal neocortex in infarction group and batroxobin group 1, 3, 5 and 7 days after infarction. The volume of the region gradually decreased from 1 day to 7 days after infarction. The ratio of NAA/Cho+Cr in the region of T2 hyperintensity in the infarction group was significantly lower than that in the corresponding region in the sham-operated group 3, 5 and 7 days after infarction respectively (P<0.05). Lac appeared in the region of T2 hyperintensity in the infarction group 1, 3, 5 and 7 days after infarction, but it was not observed in the corresponding region in sham-operated group at all time points. Compared with the sham-operated group, the ratios of bATP/PME+PDE and PCr/PME+PDE of the whole brain in the infarction group were significantly lower 1, 3 and 5 days after infarction respectively (P<0.05), and the ratio of bATP/PCr also was significantly lower 1 day after infarction (P<0.05). Batroxobin significantly decreased the volume of the region of T2 hyperintensity 1 and 3 days after infarction (P<0.05), significantly increased the ratio of NAA/Cho+Cr in the region 5 and 7 days after infarction (P<0.05), significantly decreased the ratios of Lac/Cho+Cr and Lac/NAA in the region 5 and 7 days after infarction (P<0.05), and significantly increased the ratios of bATP/PME+PDE and bATP/PCr in the whole brain 1 day after infarction (P<0.05). The results indicated that the infracted region had severe edema, increased Lac and apparent neuronal dysfunction and death, and energy metabolism of the whole brain decreased after focal infarction, and that batroxobin effectively ameliorated the above-mentioned abnormal changes.

  16. Improved energy kinetics following high protein diet in McArdle's syndrome. A 31P magnetic resonance spectroscopy study

    DEFF Research Database (Denmark)

    Jensen, K E; Jakobsen, J; Thomsen, C;

    1990-01-01

    A patient with McArdle's syndrome was examined using bicycle ergometry and 31P NMR spectroscopy during exercise. The patients working capacity was approximately half the expected capacity of controls. Muscle energy kinetics improved significantly during intravenous glucose infusion and after 6...... weeks of high protein diet. During intravenous infusion of amino acids, no changes in working capacity could be detected. No decrease was seen in intracellular muscle pH during aerobic exercise. A significant decrease in muscle pH during aerobic exercise was detected in all controls....

  17. Different early effect of irradiation in brain and small cell lung cancer examined by in vivo 31P-magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Kristjansen, P E; Pedersen, A G; Quistorff, B;

    1992-01-01

    Early effects of irradiation were evaluated by non-invasive in vivo 31P-magnetic resonance spectroscopy (31P-MRS) of two small cell lung cancer (SCLC) tumor lines CPH SCCL 54A and 54B, in nude mice. The tumors were originally derived from the same patient and have similar morphology and growth...... characteristics, but a different radiosensitivity. The 54A tumors are twice as radiosensitive as the 54B's. In the present study the tumors were treated with 2.5, 10, and 40 Gy. For comparison, nude mice were given cranial irradiation at the same three doses, and the effect was evaluated by in vivo 31P-MRS. No...... effect was observed in brain at any dose level. In contrast, 40 Gy induced a statistically significant reduction in ATP/Pi ratio during the 12-h post-irradiation period. This effect was more pronounced in 54A than in 54B. Some reduction was observed following 10 Gy, whereas 2.5 Gy induced no changes in...

  18. Changes of liver metabolite concentrations in adults with disorders of fructose metabolism after intravenous fructose by 31P magnetic resonance spectroscopy.

    Science.gov (United States)

    Boesiger, P; Buchli, R; Meier, D; Steinmann, B; Gitzelmann, R

    1994-10-01

    A novel 31P magnetic resonance spectroscopy procedure allows the estimation of absolute concentrations of certain phosphorus-containing compounds in liver. We have validated this approach by measuring ATP, phosphomonesters, and inorganic phosphate (Pi) during fasting and after an i.v. fructose bolus in healthy adults and in three adults with disorders of fructose metabolism and by comparing results with known metabolic concentrations measured chemically. During fasting, the ATP concentration averaged 2.7 +/- 0.3 (SD, n = 9) mmol/L, which, after due correction for other nucleoside triphosphates, was 2.1 mmol/L and corresponded well with known concentrations. Fructose-1-phosphate (F-1-P) could not be measured during fasting; its concentration after fructose was calculated from the difference of the phosphomonester signals before (2.9 +/- 0.2 mmol/L) and after fructose. Pi was 1.4 +/- 0.3 mmol/L and represented the one fourth of Pi visible in magnetic resonance spectra. In the three healthy controls after fructose (200 mg/kg, 20% solution, 2.5 min), the fructokinase-mediated increase of F-1-P was rapid, reaching 4.9 mmol/L within 3 min, whereas the uncorrected ATP decreased from 2.7 to 1.8 mmol/L and the Pi from 1.4 to 0.3 mmol/L. The subsequent decrease of F-1-P, mediated by fructaldolase, was accompanied by an overshooting rise of Pi to 2.7 mmol/L. In the patient with essential fructosuria, the concentrations of F-1-P, ATP, and Pi remained unchanged, confirming that fructokinase was indeed inactive. In the patient with hereditary fructose intolerance, initial metabolic changes were the same as in the controls, but baseline concentrations were not yet reestablished after 7 h, indicating weak fructaldolase activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. The effect of gingko biloba extract on energy metabolic status in C3H mouse fibrosarcoma: evaluated by in vivo 31P magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Gingko biloba extract (GBE), a natural product extracted from Gingko leaves, is known to increase the radiosensitivity of tumors. This radiosensitization probably arises from the increase in the peripheral blood flow by decreasing the blood viscosity and relaxing the vasospasm. The influence of a GBE on the metabolic status in fibrosarcoma II (FSall) of a C3H mouse was investigated using 31P magnetic resonance spectroscopy (MRS). Eighteen C3H mice with fibrosarcoma II (from 100 mm3 to 130 mm3) were prepared for this experiment. The mice were divided into 2 groups; one (9 mice) without a priming dose, and the other (9 mice) with a priming dose of GBE. The GBE priming dose (100 mg/kg) was administered by an intraperitoneal (i.p.) injection 24 hours prior to the measurement. First 31P MRS spectra were measured in the mice from each group as a baseline and test dose of GBE (100 mg/kg) was then administered to each group. One hour later, the 31P MRS spectra were measured again to evaluate the change in the energy metabolic status. In the group without the priming dose, the mean pH, PCr/Pi, PME/ATP, Pi/ATP, PCr/(Pi + PME) values 1 hour after the test dose were not changed significantly compared to the values at the baseline. However, in the group with the priming dose, the mean PCr/Pi, Pi/ATP, PCr/(Pi + PME) values 1 hour after the test dose changed from the baseline values of 0.49, 0.77, 0.17 to 0.74, 0.57, 0.28 respectively. According to the paired t-test, the differences were statistically significant. The above findings suggest that the metabolic status is significantly improved after administering GBE if the priming dose is given 24 hours earlier. This shows that the radiosensitizing effect of GBE is based on the increase of tumor blood flow and the improvement in the metabolic status

  20. Analyzing Ph value, energy and phospholipid metabolism of various cerebral tumors and normal brain tissue with 31P magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Wei Tan; Guangyao Wu; Junmo Sun

    2006-01-01

    BACKGROUND: 31P magnetic resonance spectroscopy (31P MRS) can be used to non-injuredly and dynamicly detect various metabolites including phosphorus in organis and reflect changes of phospholipid metabolism and energy metabolism in tissue and pH value in cells.OBJECTIVE: To observe changes of pH value, phospholipid metabolism and energy metabolism of various cerebral tumors and normal brain tissue with 31P MRS.DESIGN: Semi-quantitative contrast observation.PARTICIPANTS: A total of 44 patients with cerebral tumor diagnosed with surgery operation were selected from the Department of Magnetic Resonance, Central South Hospital, Wuhan University from September 2004 to June 2006. All the subjects had complete 31P MRS data before steroid and operation. Among them,16 patients had glioma of grade Ⅱ-Ⅲ, 12 spongioblastoma and 16 meningioma. The mean age was (45±6)years. Another 36 subjects without focus on cerebral MRI were regarded as normal group, including 19 males and 18 females, and the mean age was (41±4) years. Included subjects were consent.METHODS: Eclipse1.5T MRS (Philips Company) was used to collect wave spectrum; jMRUI(1.3) was used to analyze experimental data and calculate pH value in voxel and ratios of phosphocreatine (PCr)/inorganic phosphate (Pi), PCr/phosphodiesterase (PDE) and phosphomonoesterase (PME)/β-adenosine triphosphate (β-ATP) of various metabolites. 31P MRS results were compared with t test between tumor patients and normal subjects.MAIN OUTCOME MEASURES: Changes of phospholipid metabolism (PME/PDE), energy metabolism (PCr/ATP) and pH value of various cerebral tumors and normal brain tissues.RESULTS: A total of 44 cases with cerebral tumor and 36 normal subjects were involved in the final analysis. pH value and semi-quantitative measurements of normal brain tissues and various cerebral tumors: ① pH value at top occipital region and temple occipital region of normal brain tissue was 7.04±0.02;PCt/β-ATP was 1.51 ±0.03; PCt/Pi was 2.85

  1. Changes in energy metabolism in the quadriceps femoris after a single bout of acute exhaustive swimming in rats: a 31p-magnetic resonance spectroscopy study

    Institute of Scientific and Technical Information of China (English)

    Sun Yingwei; Pan Shinong; Chen Zhian; Zhao Heng; Ma Ying; Zheng Liqiang; Li Qi

    2014-01-01

    Background Little is known about the value of 31P-magnetic resonance spectroscopy (31P-MRS) in in vivo assessment of exhaustive exercise-induced injury in skeletal muscle.We aimed to evaluate the value of a 31P-MRS study using the quadriceps femoris after a single bout of acute exhaustive swimming in rats,and the correlation between 31P-MRS and histological changes.Methods Sixty male Sprague-Dawley rats were randomly assigned to control,half-exhaustive,and exhaustive exercise groups.31P-MRS of the quadriceps femoris of the right lower limb was performed immediately after swimming exercise to detect Pi,PCr,and β-ATP.The Pi/PCr,Pi/β-ATP,PCr/β-ATP,and PCr/(PCr+Pi) were calculated and pH measured.Areas under the receiver operating characteristic curve (AUCs) were calculated to evaluate the diagnostic potential of 31P-MRS in identifying and distinguishing the three groups.HE staining,electron microscopy and desmin immunostaining after imaging of the muscle were used as a reference standard.The correlation between 31P-MRS and the mean absorbance (A value) of desmin staining were analyzed with the Pearson correlation test.Results Pi,PCr,Pi/PCr,and PCr/(PCr+Pi) showed statistically significant intergroup differences (P<0.05).AUCs of Pi,PCr,Pi/PCr,and PCr/(PCr+Pi) were 0.905,0.848,0.930,and 0.930 for the control and half-exhaustive groups,while sensitivity and specificity were 90%/85%,95%/55%,95%/80%,and 90%/85%,respectively.The AUCs of Pi,PCr,Pi/PCr and PCr/(PCr+Pi) were 0.995,0.980,1.000,and 1.000 for the control and exhaustive groups,while sensitivity and specificity were 95%/90%,100%/90%,100%/95%,and 100%/95%,respectively.The AUCs of Pi,PCr,Pi/PCr,and PCr/(PCr+Pi) were 0.735,0.865,0.903,and 0.903 for the half-exhaustive and exhaustive groups,while sensitivity and specificity were 80%/60%,90%/75%,95%/65%,and 95%/70%,respectively.In the half-exhaustive group,some muscle fibers exhibited edema in HE staining,and the

  2. Effects of hypo- und hyperthyroidism on skeletal muscle metabolism. A sup 31 P magnetic resonance spectroscopy study. Einfluss von Hyper- und Hypothyreose auf den Energiestoffwechsel der Skelettmuskulatur. Eine Untersuchung mit sup 31 P-Kernspinspektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Moka, D.; Theissen, P.; Linden, A.; Waters, W.; Schicha, H. (Koeln Univ. (Germany, F.R.). Klinik und Poliklinik fuer Nuklearmedizin)

    1991-06-01

    {sup 31}P magnetic resonance spectroscopy allows non-invasive evaluation of phosphorus metabolism in man. The purpose of the present study was to assess the influence of hyper- and hypothyroidism on the metabolism of resting human skeletal muscle. The present data show that quantitative measurement of phosphate metabolism by NMR is possible as also demonstrated by other studies. Using a quantitative evaluation method with an external standard, significant differences in the levels of phosphocreatine, adenosintriphosphate, and phosphodiesters were found. In hypothyroid patients a TSH-dependent increase in phosphodiesters and a decrease in adenosintriphosphate and phosphocreatine was observed. In hyperthyroidism a similar decrease in adenosintriphosphate but a considerably higher decrease in phosphocreatine occurred. In the light of the results of other studies of muscle matabolism, these changes appear to be non-specific so that further studies are required to assess the clinical value of such measurements. (orig.).

  3. Effect of estrogen withdrawal on energy-rich phosphates and prediction of estrogen dependence monitored by in vivo 31P magnetic resonance spectroscopy of four human breast cancer xenografts

    DEFF Research Database (Denmark)

    Kristensen, C A; Kristjansen, P E; Brünner, N;

    1995-01-01

    :Pi ratio in the two estrogen-dependent xenografts, whereas this ratio remained unchanged in the estrogen-independent tumors. In ZR75/LCC-3 tumors a slight decrease in nucleoside triphosphate:Pi was observed following onset of estrogen stimulation after initial growth without estrogen. Extracts of freeze......The effect of estrogen withdrawal on energy metabolism was studied in four human breast cancer xenografts: the estrogen-dependent MCF-7 and ZR75-1 and the estrogen-independent ZR75/LCC-3 and MDA-MB-231. The tumors were grown in ovariectomized nude mice with a s.c. implanted estrogen pellet. After...... Gompertzian growth was verified, the estrogen pellet was removed from half of the animals. In vivo 31P magnetic resonance spectroscopy of the tumors was performed 1 day before and on days 2, 6, and 14 after estrogen removal. Estrogen withdrawal induced a significant increase in the nucleoside triphosphate...

  4. Growth inhibition in response to estrogen withdrawal and tamoxifen therapy of human breast cancer xenografts evaluated by in vivo 31P magnetic resonance spectroscopy, creatine kinase activity, and apoptotic index

    DEFF Research Database (Denmark)

    Kristensen, C A; Kristjansen, P E; Brünner, N;

    1995-01-01

    Estrogen withdrawal versus tamoxifen (TAM) treatment was compared in two human breast cancer xenografts, the estrogen-dependent ZR75-1 and its estrogen-independent subline ZR75/LCC-3. The following parameters were determined: tumor growth, NTP:P(i) by 31P magnetic resonance spectroscopy, apoptotic...... index, and creatine kinase (CK) activity. Tumors of each line were grown in ovariectomized nude mice during stimulation from a s.c. 17 beta-estradiol pellet. At a tumor size of approximately 350 mm3, the pellet was removed from one-half of the animals. The remaining one-half served as controls....... In parallel experiments, injections of TAM were initiated instead of estrogen withdrawal. Estrogen withdrawal as well as TAM induced growth inhibition of ZR75-1 tumors, whereas ZR75/LCC-3 was resistant to both types of therapy. Growth inhibition of ZR75-1 by estrogen withdrawal, but not by TAM...

  5. Silencing of the glycerophosphocholine phosphodiesterase GDPD5 alters the phospholipid metabolite profile in a breast cancer model in vivo as monitored by 31P Magnetic Resonance Spectroscopy

    OpenAIRE

    Wijnen, J.P.; Jiang, L.; Greenwood, T.R.; Cheng, M; Döpkens, M.; Cao, M.D.; Bhujwalla, Z M; Krishnamachary, B; Klomp, D. W. J.; Glunde, K.

    2014-01-01

    Abnormal choline phospholipid metabolism is an emerging hallmark of cancer, which is implicated in carcinogenesis and tumor progression. The malignant metabolic phenotype is characterized by high levels of phosphocholine (PC) and relatively low levels of glycerophosphocholine (GPC) in aggressive breast cancer cells. Phosphorus Magnetic Resonance Spectroscopy (31P MRS) is able to noninvasively detect these water-soluble metabolites of choline as well as ethanolamine phospholipid metabolism. He...

  6. Effects of Coenzyme Q10 on Skeletal Muscle Oxidative Metabolism in Statin Users Assessed Using 31P Magnetic Resonance Spectroscopy: a Randomized Controlled Study

    Science.gov (United States)

    Buettner, Catherine; Greenman, Robert L.; Ngo, Long H.; Wu, Jim S.

    2016-01-01

    Objectives Statins partially block the production of coenzyme Q10 (CoQ10), an essential component for mitochondrial function. Reduced skeletal muscle mitochondrial oxidative capacity has been proposed to be a cause of statin myalgia and can be measured using 31phosphorus magnetic resonance spectroscopy (31P-MRS). The purpose of this study is to assess the effect of CoQ10 oral supplementation on mitochondrial function in statin users using 31P-MRS. Design/Setting In this randomized, double-blind, placebo-controlled pilot study, 21 adults aged 47–73 were randomized to statin+placebo (n=9) or statin+CoQ10 (n=12). Phosphocreatine (PCr) recovery kinetics of calf muscles were assessed at baseline (off statin and CoQ10) and 4 weeks after randomization to either statin+CoQ10 or statin+placebo. Results Baseline and post-treatment PCr recovery kinetics were assessed for 19 participants. After 4 weeks of statin+ CoQ10 or statin+placebo, the overall relative percentage change (100*(baseline−follow up)/baseline) in PCr recovery time was −15.1% compared with baseline among all participants, (p-value=0.258). Participants randomized to statin+placebo (n=9) had a relative percentage change in PCr recovery time of −18.9%, compared to −7.7% among participants (n=10) receiving statin+CoQ10 (p-value=0.448). Conclusions In this pilot study, there was no significant change in mitochondrial function in patients receiving 4 weeks of statin+CoQ10 oral therapy when compared to patients on statin+placebo.

  7. Value of dynamic 31p magnetic resonance spectroscopy technique in in vivo assessment of the skeletal muscle mitochondrial function in type 2 diabetes

    Institute of Scientific and Technical Information of China (English)

    WU Fei-yun; TU Hui-juan; QIN Bin; CHEN Ting; XU Hua-feng; QI Jing; WANG De-hang

    2012-01-01

    Background Phosphorous magnetic resonance spectroscopy (31p-MRS) has been successfully applied to study intracellular membrane compounds and high-energy phosphate metabolism.This study aimed to evaluate the capability of dynamic 31p-MRS for assessing energy metabolism and mitochondrial function in skeletal muscle from type 2 diabetic patients.Methods Dynamic 31p-MRS was performed on 22 patients with type 2 diabetes and 26 healthy volunteers.Spectra were acquired from quadriceps muscle while subjects were in a state of rest,at exercise and during recovery.The peak areas of inorganic phosphate (Pi),phosphocreatine (PCr),and adenosine triphosphate (ATP) were measured.The concentration of adenosine diphosphate (ADP) and the intracellular pH value were calculated from the biochemistry reaction equilibrium.The time constant and recovery rates of Pi,PCr,and ADP were analyzed using exponential curve fitting.Results As compared to healthy controls,type 2 diabetes patients had significantly lower skeletal muscle concentrations of Pi,PCr and β-ATP,and higher levels of ADP and Pi/PCr.During exercise,diabetics experienced a significant Pi peak increase and PCr peak decrease,and once the exercise was completed both Pi and PCr peaks returned to resting levels.Quantitatively,the mean recovery rates of Pi and PCr in diabetes patients were (10.74±1.26) mmol/s and (4.74±2.36) mmol/s,respectively,which was significantly higher than in controls.Conclusions Non-invasive quantitative 31P-MRS is able to detect energy metabolism inefficiency and mitochondrial function impairment in skeletal muscle of type 2 diabetics.

  8. 糖尿病大鼠脑能量代谢改变的核磁共振磷谱研究%Studies on Changes of Brain Energy Metabolism in Diabetic Rats by 31 P Magnetic Resonance Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    王娜; 郑涌泉; 许翠翠; 苏永超; 赵良才; 叶信健; 高红昌

    2014-01-01

    Considerable attention has been directed toward studying the impact of diabetes on the central nervous system. The current study investigates the biochemical changes in the brain tissue of streptozotocin (STZ)-induced diabetic rat using 31P magnetic resonance spectroscopy (31P MRS). The 31P NMR spectra of the whole brain show no significant changes of phosphomonoesters and phosphodiesters levels one week after STZ induction, suggesting no apparent structural changes in cell membranes. The results identifies the increased level of adenosine diphosphate, negligible changes of phosphocreatine ( PCr ) and adenosine triphosphate ( ATP) , but the decreased ratio of PCr/ATP, indicating that PCr plays a role of balancing the energy. Moreover, the decreased pH value indicates the changes of the intracellular environment in STZ-diabetic brains in rats. After 15 weeks of STZ injection, the metabolism of phospholipid membrane and brain energy metabolism has been obviously disturbed. Our study successfully shows that 31 P MRS can not only study phospholipid and energy metabolism non-invasively, but also measure intracellular pH and other important biochemical information. All of these spectroscopic characterizations contribute significantly to the understanding of pathogenesis and evolution of diabetes, and provide theoretical basis for early diagnosis and clinical treatment in diabetes.%应用链脲佐菌素( Streptozocin, STZ)制备糖尿病( Diabetes mellitus, DM)大鼠模型,采用离体的核磁共振磷谱(31 P Magnetic resonance spectroscopy, MRS)方法检测糖尿病大鼠脑组织的生化改变。全脑的31 P MRS谱图结果显示,STZ诱导1周后,磷酸单酯和磷酸二酯的含量无明显改变,表明糖尿病大鼠脑中并没有发生膜性结构的改变。二磷酸腺苷峰增高,磷酸肌酸( Phosphocreatine, PCr)和三磷酸腺苷( Adenosine triphosphate, ATP)含量无明显改变,但是PCr/ATP降低,说明PCr作为能量缓冲底

  9. In vivo 31P magnetic resonance spectroscopy and 1H magnetic resonance imaging of human bladder carcinoma on nude mice: effects of tumour growth and treatment with cis-dichloro-diamine platinum

    DEFF Research Database (Denmark)

    De Certaines, J D; Albrectsen, J; Larsen, V A;

    1992-01-01

    In vivo 31P NMR spectroscopy and 1H NMR imaging were used to examine the bladder T24B carcinoma in nude mice during untreated growth and in response to chemotherapy by Cis-dichloro-diammine-platinum (CDDP) at a dose of 8 mg/kg i.p. Untreated growth was associated with an increase of inorganic pho...

  10. The clinical value of 31p magnetic resonance spectroscopy in patients with lipid storage myopathy%脂质沉积性肌病骨骼肌磁共振31磷波谱的临床价值研究

    Institute of Scientific and Technical Information of China (English)

    李银; 赖鸿; 丁卫江

    2012-01-01

    目的 探讨脂质沉积性肌病(LSM)患者骨骼肌磁共振31磷波谱(31P-MRS)改变特征,以及在LSM辅助诊断和疗效评价方面的临床价值.方法 对12例LSM患者在治疗前后和11例对照者分别进行31P-MRS扫描,获取波谱图像,计算谱线中无机磷酸盐(Pi)、磷酸肌酸(PCr)及三磷酸腺苷(ATP)的峰下面积,记录Pi/ATP、PC r/ATP和Pi/PCr的比值,计算Pi、PCr、细胞内pH(pHim)、二磷酸腺苷(ADP)和磷酸化潜能(PP)的值,并比较LSM患者治疗前和对照组、LSM患者治疗前后上述31p-MRS指标的差异.结果 LSM患者治疗前的PCr、PCr/ATP和PP较对照组明显降低(P<0.05),Pi/PCr和ADP较对照组明显升高(P<0.05),Pi、Pi/ATP和pHint与对照组比较无明显差异(P>0.05);LSM患者治疗后的PCr、PCr/ATP和PP较治疗前明显升高(P<0.05),ADP较治疗前明显降低(P<0.05),Pi、Pi/ATP、Pi/PCr和pHint与治疗前比较无明显差异(P>0.05).结论 31P-MRS可无创性检测LSM患者肌肉组织的能量代谢变化,有利于LSM的辅助诊断,并可运用于LSM患者的疗效评价.%Objective To investigate the 31P magnetic resonance spectroscopy (31P-MRS) manifestations of skeletal muscle in patients with lipid storage myopathy( LSM)and evaluate its clinical value in auxiliary diagnosis and therapeutic effect. Methods 31 P-MRS scanning was performed in 12 patients prior to and after treatment and 11 collators. The areas under resonance of inorganic phosphate(Pi) ,phosphocreatine(PCr)and adenosine triphosphate( ATP)were calculated from the 31P-MRS images,then the ratios of Pi/ATP,PCr/ATP and Pi/PCr and the values of Pi,PCr,intracellular pH(pHint) .adenosine diphosphate( ABP)and phosphorylation potential(PP) were calculated at last. The above-mentioned variables were compared among LSM patients prior to treatment and the control group,and variables were also compared in LSM patients prior to and after treatment. Results Compared with the control group,LSM patients prior to

  11. Evaluation of mitochondrial function of skeletal muscle in type 2 diabetic patients offspring using dynamic 31p magnetic resonance spectroscopy%磁共振动态磷谱技术评估2型糖尿病患者子女的骨骼肌线粒体功能

    Institute of Scientific and Technical Information of China (English)

    涂慧娟; 吴飞云; 秦斌; 陈婷; 齐静

    2012-01-01

    目的:评价磁共振动态磷谱技术对评估2型糖尿病患者子女骨骼肌能量代谢和线粒体功能的价值.方法:对21名2型糖尿病患者子女和18名健康志愿者的股四头肌进行磁共振动态磷谱检查,获取静息、运动、恢复3个状态的波谱数据.对无机磷(Pi)、磷酸肌酸(PCr)、三磷酸腺苷(ATP)等化合物的峰下面积进行定量分析,通过生化反应平衡公式计算二磷酸腺苷(ADP)和细胞内pH值,并利用指数曲线拟合分析Pi、PCr和ADP的时间常数和恢复速率.结果:糖尿病患者子女组及正常对照组静息期Pi、PCr、ADP、β-ATP的含量及Pi/PCr无统计学差异.运动末期糖尿病患者子女组β-ATP低于正常对照组.恢复期糖尿病患者子女组多帧波谱PCr、β-ATP、pH均低于正常对照组,第3帧Pi/PCr比值比对照组高.恢复期糖尿病患者子女组PCr恢复速率明显低于正常对照组PCr恢复速率.结论:磁共振动态磷谱技术可以无创性检测2型糖尿病患者子女的能量代谢受损及线粒体功能状态.%Objective: To evaluate the energy metabolism and mitochondrial function of skeletal muscle in type 2 diabetic patients offspring using dynamic 31P magnetic resonance spectroscopy(31P-MRS). Methods; Dynamic 31P-MRS was performed on 21 type 2 diabetes patients offsprings and 18 healthy volunteers. Spectra were acquired from quadriceps muscle while subjects were at rest,exercise and recovery. The peak area of inorganic phosphate (Pi),phosphocreatine (PCr) and adenosine triphosphate (ATP) were measured. The concentration of adenosine diphosphate (ADP) and intracellular pH value were calculated from the biochemistry reaction equilibrium. The time constant and recovery rate of PCr,Pi and ADP were analyzed using exponential curve fit. Results; There were no significance differences of Pi,PCr,ADP,β-ATP and the ratio of Pi/PCr between the type 2 diabetes patients offsprings and the healthy volunteers at rest. The type 2

  12. Localized Semi-LASER Dynamic 31P Magnetic Resonance Spectroscopy of the Soleus During and Following Exercise at 7 T

    CERN Document Server

    Fiedler, Georg B; Schmid, Albrecht I; Goluch, Sigrun; Schewzow, Kiril; Laistler, Elmar; Mirzahosseini, Arash; Niess, Fabian; Unger, Ewald; Wolzt, Michael; Moser, Ewald

    2015-01-01

    Object This study demonstrates the applicability of semi-LASER localized dynamic $^{31}$P MRS to deeper lying areas of the exercising human soleus muscle (SOL). The effect of accurate localization and high temporal resolution on data specificity is investigated. Materials and Methods To achieve high signal-to-noise ratio (SNR) at a temporal resolution of 6 s, a custom-built calf coil array was used at 7T. The kinetics of phosphocreatine (PCr) and intracellular pH were quantified separately in SOL and gastrocnemius medialis (GM) muscle of 9 volunteers, during rest, plantar flexion exercise and recovery. Results The average SNR of PCr at rest was 64$\\pm$15 in SOL (83$\\pm$12 in GM). End exercise PCr depletion in SOL (19$\\pm$9%) was far lower than in GM (74$\\pm$14%). pH in SOL increased rapidly and, in contrast to GM, remained elevated until the end of exercise. Conclusion $^{31}$P MRS in single-shots every 6 s localized in the deeper lying SOL enabled quantification of PCr recovery times at low depletions and of...

  13. Separation of advanced from mild fibrosis in diffuse liver disease using {sup 31}P magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Noren, Bengt [Department of Radiology, Linkoeping University, SE-581 85 Linkoeping (Sweden); Dahlqvist, Olof [Department of Radiation Physics, Linkoeping University, SE-581 85 Linkoeping (Sweden); Center for Medical Image Science and Visualization (CMIV), Linkoeping University, SE-581 85 Linkoeping (Sweden); Lundberg, Peter [Department of Radiology, Linkoeping University, SE-581 85 Linkoeping (Sweden); Department of Radiation Physics, Linkoeping University, SE-581 85 Linkoeping (Sweden); Center for Medical Image Science and Visualization (CMIV), Linkoeping University, SE-581 85 Linkoeping (Sweden)], E-mail: Peter.Lundberg@imv.liu.se; Almer, Sven [Department of Gastroenterology and Hepatology, Linkoeping University, SE-581 85 Linkoeping (Sweden); Kechagias, Stergios [Department of Internal Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Ekstedt, Mattias [Department of Gastroenterology and Hepatology, Linkoeping University, SE-581 85 Linkoeping (Sweden); Franzen, Lennart [Medilab, SE-183 53 Taeby Sweden (Sweden); Wirell, Staffan [Department of Radiology, Linkoeping University, SE-581 85 Linkoeping (Sweden); Smedby, Orjan [Department of Radiology, Linkoeping University, SE-581 85 Linkoeping (Sweden); Center for Medical Image Science and Visualization (CMIV), Linkoeping University, SE-581 85 Linkoeping (Sweden)

    2008-05-15

    {sup 31}P-MRS using DRESS was used to compare absolute liver metabolite concentrations (PME, Pi, PDE, {gamma}ATP, {alpha}ATP, {beta}ATP) in two distinct groups of patients with chronic diffuse liver disorders, one group with steatosis (NAFLD) and none to moderate inflammation (n = 13), and one group with severe fibrosis or cirrhosis (n = 16). All patients underwent liver biopsy and extensive biochemical evaluation. A control group (n = 13) was also included. Absolute concentrations and the anabolic charge, AC = {l_brace}PME{r_brace}/({l_brace}PME{r_brace} + {l_brace}PDE{r_brace}), were calculated. Comparing the control and cirrhosis groups, lower concentrations of PDE (p = 0.025) and a higher AC (p < 0.001) were found in the cirrhosis group. Also compared to the NAFLD group, the cirrhosis group had lower concentrations of PDE (p = 0.01) and a higher AC (p = 0.009). No significant differences were found between the control and NAFLD group. When the MRS findings were related to the fibrosis stage obtained at biopsy, there were significant differences in PDE between stage F0-1 and stage F4 and in AC between stage F0-1 and stage F2-3. Using a PDE concentration of 10.5 mM as a cut-off value to discriminate between mild, F0-2, and advanced, F3-4, fibrosis the sensitivity and specificity were 81% and 69%, respectively. An AC cut-off value of 0.27 showed a sensitivity of 93% and a specificity of 54%. In conclusion, the results suggest that PDE is a marker of liver fibrosis, and that AC is a potentially clinically useful parameter in discriminating mild fibrosis from advanced.

  14. Effects of oral D-tagatose, a stereoisomer of D-fructose, on liver metabolism in man as examined by 31P-magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Buemann, B; Gesmar, H; Astrup, A;

    2000-01-01

    equivalent to about 1 mmol/L was found in the spectrum within 30 minutes after D-tagatose was administered in all subjects. Concomitantly, ATP was reduced by about 12% (P ... concentration were found after D-fructose. These results suggest that a moderate intake of D-tagatose may affect liver metabolism by phosphate trapping despite the fact that the sugar may only be incompletely absorbed in the gut...

  15. Gluconeogenesis, liver energy metabolism and weight loss in lung cancer : dynamic studies using stable isotope tracers and 31P magnetic resonance spectroscopy

    NARCIS (Netherlands)

    S. Leij-Halfwerk (Susanne)

    1999-01-01

    textabstractWeight loss is a major problem in many types of cancer and is associated with reduced quality of life and a poor prognosis. Weight loss can also interfere with potentially curable treatment [41,561. Many uncertainties remain about the mechanisms underlying weight loss in patients with ca

  16. Evidence for a "metabolically inactive" inorganic phosphate pool in adenosine triphosphate synthase reaction using localized 31P saturation transfer magnetic resonance spectroscopy in the rat brain at 11.7 T.

    Science.gov (United States)

    Tiret, Brice; Brouillet, Emmanuel; Valette, Julien

    2016-09-01

    With the increased spectral resolution made possible at high fields, a second, smaller inorganic phosphate resonance can be resolved on (31)P magnetic resonance spectra in the rat brain. Saturation transfer was used to estimate de novo adenosine triphosphate synthesis reaction rate. While the main inorganic phosphate pool is used by adenosine triphosphate synthase, the second pool is inactive for this reaction. Accounting for this new pool may not only help us understand (31)P magnetic resonance spectroscopy metabolic profiles better but also better quantify adenosine triphosphate synthesis.

  17. Modulation gamma resonance spectroscopy

    International Nuclear Information System (INIS)

    Possibility to control dynamic processes in a matter through gamma-resonance modulation by high-frequency external variable fields in excess of inverse lifetimes of the Moessbauer nuclei excited states, that is, within the megahertz frequency range lies in the heart of the modulation gamma-resonance spectroscopy. Through the use of the gamma-resonance process theoretical analysis methods and of the equation solution method for the density matrix with the secondary quantization of gamma-radiation field one attacks the problems dealing with the effect of both variable fields and relaxation on gamma-resonance. One has studied the gamma-radiation ultrasound modulation stages. One points out a peculiar role of the gamma-magnetic resonance effect in modulation gamma resonance spectroscopy formation. One forecasts development of the modulation gamma-resonance spectroscopy into the nonlinear gamma-resonance spectroscopy

  18. Resonance ionization spectroscopy 1986

    International Nuclear Information System (INIS)

    The paper presents the proceedings of the Third International Symposium on Resonance Ionization Spectroscopy and its Applications, held at the University College of Swansea, Wales, 1986. The Symposium is divided into eight main sections entitled: photophysics and spectroscopy, noble gas atom counting, resonance ionization mass spectrometry, materials and surface analysis, small molecules, medical and environmental applications, resonance ionization and materials separation, and elementary particles and nuclear physics. Thirty papers were chosen for INIS and indexed separately. (U.K.)

  19. In vivo 31P magnetic resonance spectroscopy and 1H magnetic resonance imaging of human bladder carcinoma on nude mice: effects of tumour growth and treatment with cis-dichloro-diamine platinum

    DEFF Research Database (Denmark)

    De Certaines, J D; Albrectsen, J; Larsen, V A;

    1993-01-01

    phosphate and phosphomonoesters and a decrease of phosphocreatine. Fast growing tumours and early stage of regrowth after treatment presented a higher phosphocreatine/beta NTP ratio. Following CDDP treatment, 31P metabolite ratios and pH were significantly altered compared with age-matched controls, as...... early as 6 hours after treatment. Although necrotic area was clearly visible in MRI, no treatment effect could be detected on the images of treated tumours....

  20. Intracellular Phosphate Dynamics in Muscle Measured by Magnetic Resonance Spectroscopy during Hemodialysis.

    Science.gov (United States)

    Lemoine, Sandrine; Fournier, Thomas; Kocevar, Gabriel; Belloi, Amélie; Normand, Gabrielle; Ibarrola, Danielle; Sappey-Marinier, Dominique; Juillard, Laurent

    2016-07-01

    Of the 600-700 mg inorganic phosphate (Pi) removed during a 4-hour hemodialysis session, a maximum of 10% may be extracted from the extracellular space. The origin of the other 90% of removed phosphate is unknown. This study tested the hypothesis that the main source of phosphate removed during hemodialysis is the intracellular compartment. Six binephrectomized pigs each underwent one 3-hour hemodialysis session, during which the extracorporeal circulation blood flow was maintained between 100 and 150 ml/min. To determine in vivo phosphate metabolism, we performed phosphorous ((31)P) magnetic resonance spectroscopy using a 1.5-Tesla system and a surface coil placed over the gluteal muscle region. (31)P magnetic resonance spectra (repetition time =10 s; echo time =0.35 ms) were acquired every 160 seconds before, during, and after dialysis. During the dialysis sessions, plasma phosphate concentrations decreased rapidly (-30.4 %; P=0.003) and then, plateaued before increasing approximately 30 minutes before the end of the sessions; 16 mmol phosphate was removed in each session. When extracellular phosphate levels plateaued, intracellular Pi content increased significantly (11%; P<0.001). Moreover, βATP decreased significantly (P<0.001); however, calcium levels remained balanced. Results of this study show that intracellular Pi is the source of Pi removed during dialysis. The intracellular Pi increase may reflect cellular stress induced by hemodialysis and/or strong intracellular phosphate regulation. PMID:26561642

  1. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  2. Resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    The subject of resonance ionization spectroscopy (RIS) from its inception to the present is summarized. The uses of RIS are principally analytical, and these uses are classified in several different ways for this report. The classifications are: (1) basic ways of counting atoms; (2) RIS applications according to the type of particle detector; (3) applications according to source preparation; (4) applications in chemical physics and chemistry; and (5) applications involving daughter atom detection. Each classification is discussed in some detail, and examples of specific applications are mentioned under each classification. Some other potential applications not necessarily related to these classifications are also mentioned

  3. 31P saturation transfer spectroscopy predicts differential intracellular macromolecular association of ATP and ADP in skeletal muscle.

    NARCIS (Netherlands)

    Nabuurs, C.I.H.C.; Huijbregts, B.; Wieringa, B.; Hilbers, C.W.; Heerschap, A.

    2010-01-01

    The kinetics of phosphoryl exchange involving ATP and ADP have been investigated successfully by in vivo (31)P magnetic resonance spectroscopy using magnetization transfer. However, magnetization transfer effects seen on the signals of ATP also could arise from intramolecular cross-relaxation. This

  4. Recommendations concerning magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    In medicine the technique of nuclear magnetic resonance (NMR) is applied in the form of in vivo nuclear magnetic resonance spectroscopy (MRS). In vivo MRS can be carried out non-invasively. The committee of the Dutch Health Council briefly discusses the qualities and potentialities of the nuclei that will probably be used in future clinical spectroscopy: 31P, 13C, 1H (and possibly 19F and 23Na). The committee discusses several possibilities of combining imaging and spectroscopy. The imaging of nuclei other than protons is also possible with MRS. Potential applications are considered in oncology, cardiology, neurology and hepatology. (Auth.)

  5. Trends in resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    The author reviews the history of resonance ionization spectroscopy and then comments on the delineations of RIS with reference to many related laser processes. The substance of the paper deals with the trends in RIS and especially how the needs for sensitive analytical methods have overshadowed the orginal plan to study excited species. 9 refs., 1 fig

  6. Baryon Spectroscopy and Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Robert Edwards

    2011-12-01

    A short review of current efforts to determine the highly excited state spectrum of QCD, and in particular baryons, using lattice QCD techniques is presented. The determination of the highly excited spectrum of QCD is a major theoretical and experimental challenge. The experimental investigation of the excited baryon spectrum has been a long-standing element of the hadronic-physics program, an important component of which is the search for so-called 'missing resonances', baryonic states predicted by the quark model based on three constituent quarks but which have not yet been observed experimentally. Should such states not be found, it may indicate that the baryon spectrum can be modeled with fewer effective degrees of freedom, such as in quark-diquark models. In the past decade, there has been an extensive program to collect data on electromagnetic production of one and two mesons at Jefferson Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To analyze these data, and thereby refine our knowledge of the baryon spectrum, a variety of physics analysis models have been developed at Bonn, George Washington University, Jefferson Laboratory and Mainz. To provide a theoretical determination and interpretation of the spectrum, ab initio computations within lattice QCD have been used. Historically, the calculation of the masses of the lowest-lying states, for both baryons and mesons, has been a benchmark calculation of this discretized, finite-volume computational approach, where the aim is well-understood control over the various systematic errors that enter into a calculation; for a recent review. However, there is now increasing effort aimed at calculating the excited states of the theory, with several groups presenting investigations of the low-lying excited baryon spectrum, using a variety of discretizations, numbers of quark flavors, interpolating operators, and fitting methodologies. Some aspects of these calculations remain unresolved and are the subject of

  7. Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Dementias

    OpenAIRE

    Hsu, Yuan-Yu; Du, An-Tao; Schuff, Norbert; Weiner, Michael W.

    2001-01-01

    This article reviews recent studies of magnetic resonance imaging and magnetic resonance spectroscopy in dementia, including Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, idiopathic Parkinson's disease, Huntington's disease, and vascular dementia. Magnetic resonance imaging and magnetic resonance spectroscopy can detect structural alteration and biochemical abnormalities in the brain of demented subjects and may help in the differential diagnosis and early detection...

  8. Theory of resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Resonance Ionization Spectroscopy (RIS) can be defined as a state selective detection process in which pulsed tunable lasers are used to promote transitions from the selected state of the atoms or molecules in question to higher states, one of which will be ionized by the absorption of another photon. The ability to make saturated RIS measurements opens up a wide variety of applications to both basic and applied research. In reviews of RIS the subject was treated generally, including the underlying photophysics applications, the ability to use it to count single atoms, and its applications to measurements in atomic and molecular physics. They view resonance ionization spectroscopy as a specific type of multiphoton ionization in which the goal is to make quantitative measurements of quantum-selected populations in atomic or molecular systems. This goal attained by requiring that the selective excitation steps be resonant in nature and involve only one- or two-photon (only one-photon if at all possible) absorption processes, thereby allowing the entire process to be carried to saturation without loss of spectroscopic selectivity due to laser power induced shifts or broadening

  9. Theory of resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Resonance Ionization Spectroscopy (RIS) can be defined as a state selective detection process in which pulsed tunable lasers are used to promote transitions from the selected state of the atoms or molecules in question to higher states, one of which will be ionized by the absorption of another photon. At least one resonance step is used in the stepwise ionization process, and it has been shown that the ionization probability of the spectroscopically selected species can nearly always be made close to unity. Since measurements of the number of photoelectrons or ions can be made very precisely and even one electron (or under vacuum conditions, one ion) can be detected, the technique can be used to make quantitative measurements of very small populations of the state-selected species

  10. Resonant photothermal IR spectroscopy of picogram samples with microstring resonator

    DEFF Research Database (Denmark)

    Yamada, Shoko; Schmid, Silvan; Boisen, Anja

    2013-01-01

    an in-situ sampling method and the resonance frequency of the string is measured optically. Resonance frequency shifts, proportional to the absorbed heat, are recorded in real time as monochromatic infrared light is being scanned over the mid-infrared range. These resonant photothermal IR spectroscopy......Here, we report a demonstration of resonant photothermal IR spectroscopy using microstrings in mid-infrared region providing rapid identification of picogram samples. In our microelectromechanical resonant photothermal IR spectroscopy system, samples are deposited directly on microstrings using...... spectra, obtained from picogram samples, suggest promising future applications of this approach....

  11. The electronic paramagnetic resonance spectroscopy - Applications

    International Nuclear Information System (INIS)

    This collective book addresses the various applications of electronic paramagnetic resonance (EPR) spectroscopy. The addressed issues (and chapters) are: the dosimetry of ionizing radiation, the tracing of natural organic matter within drainage basins, the detection and characterisation of free radicals after spin trapping, copper complexation by peptides involved in neuro-degenerative diseases, crystal chemistry of clay minerals and alteration process and evolution of continental surfaces, structure and catalytic mechanism of redox enzymes, the primitive carbonated matter, use of paramagnetic probes to study structural transitions within proteins, organic radicals and molecular magnetism, EPR of transient magnetic species, characterization of contrast agents for magnetic resonance imaging, and fundamentals and applications of ferromagnetic resonance spectroscopy. Appendices present the principles of magnetic resonance (Bloch equations and pulse methods), the pulse EPR (ESEEM, HYSCORE and PELDOR experiments), the principle of continuous wave ENDOR (Electron-nuclear double resonance) spectroscopy, and the protein functions

  12. Resonance Raman spectroscopy and ultrafast chemical dynamics

    OpenAIRE

    Biswas, Nandita; Umapathy, Siva

    1998-01-01

    Resonance Raman (RR) spectroscopy is normally used to study the excited state structure and dynamics of various photochemical and photophysical processes. In this article. we briefly discuss the various applications of RR spectroscopy and show how experimental RR intensities along with time-dependent wavepacket dynamical calculations can be used to study the excited state structure and ultrafast dynamics (\\sim 10(- 15) secs).

  13. Nanometrology using localized surface plasmon resonance spectroscopy

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel N.; Laurberg, Asger V.;

    2013-01-01

    A novel optical characterization technique called localized surface plasmon resonance (LSPR) spectroscopy is presented. LSPR spectroscopy exploits light excited surface plasmons, which are collective coherent electron oscillations at a metal/dielectric interface. The LSPR can be observed in a tra...

  14. Triplet State Resonance Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn;

    1978-01-01

    Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied......Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied...

  15. Resonance ionisation spectroscopy of uranium

    International Nuclear Information System (INIS)

    Resonance ionization mass spectrometry has made tremendous strides in its potential and the diversity of applications. A particularly important application of interest is sensitive and selective detection/trace analysis of various long-lived radio-active isotopes. Investigations on three-color photoionization studies of uranium are reported here

  16. Advanced magnetic resonance spectroscopy techniques and applications

    OpenAIRE

    Cao, Peng; 曹鹏

    2013-01-01

    Magnetic resonance (MR) is a well-known non-invasive technique that provides spectra (by MR spectroscopy, MRS) and images (by magnetic resonance imaging, MRI) of the examined tissue with detailed metabolic, structural, and functional information. This doctoral work is focused on advanced methodologies and applications of MRS for probing cellular and molecular changes in vivo. A single-voxel diffusion-weighted (DW) MRS method was first developed for monitoring the size changes of intramyocellu...

  17. Resonance ionization spectroscopy for AVLIS

    International Nuclear Information System (INIS)

    A spectroscopic study of three-step resonance photoionization was carried out for atomic gadolinium and uranium. Over 60 high-lying odd-parity states and about 30 autoionizing states were revealed for gadolinium. J-values and radiative lifetimes were determined by the method based on the electric-dipole transition selection rules and by the delayed coincidence method, respectively. Photo-absorption cross-sections were measured by three different methods, and efficient photoionization schemes for AVLIS were determined. (author)

  18. Proton Resonance Spectroscopy -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, Jr, J F

    2009-07-27

    This report summarizes work supported by the DOE Grant DE-FG02-96ER40990 during its duration from June 1996 to May 2009. Topics studied include (1) statistical descriptions of nuclear levels and measurements of proton resonances relevant to such descriptions, including measurements toward a complete level scheme for 30P, (2) the development of methods to estimate the missing fraction of levels in a given measurement, and (3) measurements at HRIBF relevant to nuclear astrophysics.

  19. Imaging Intelligence with Proton Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Caprihan, Arvind; Barrow, Ranee; Yeo, Ronald A.

    2009-01-01

    Proton magnetic resonance spectroscopy ([to the first power]H-MRS) is a technique for the assay of brain neurochemistry "in vivo." N-acetylaspartate (NAA), the most prominent metabolite visible within the [to the first power]H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition…

  20. Progress in nuclear magnetic resonance spectroscopy

    CERN Document Server

    Emsley, J W; Sutcliffe, L H

    2013-01-01

    Progress in Nuclear Magnetic Resonance Spectroscopy, Part 1 is a two-chapter text that reviews significant developments in nuclear magnetic resonance (NMR) applications.The first chapter discusses NMR studies of molecules physisorbed on homogeneous surfaces. This chapter also describes the phase changes in the adsorbed layer detected by following the variation in the NMR parameters. The second chapter examines the process to obtain a plotted, data reduced Fourier transform NMR spectrum. This chapter highlights the pitfalls that can cause a decrease in information content in a NMR spectrum. The

  1. Sputter-initiated resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    A new technique, sputter-initiated resonance ionization spectroscopy (SIRIS), which provides an ultrasensitive analysis of solid samples for all elements except helium and neon is described in this paper. Sensitivities down to 1 part in 1012 should be available in routine SIRIS analysis, and greater sensitivities should be available for special cases. The basic concepts of this technology and early results in the development of the new SIRIS process and apparatus are presented. (Auth.)

  2. Materials characterization by resonant ultrasonic spectroscopy method

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong Moo; Jung, H.K.; Joo, Y.S.; Sim, C.M

    2001-01-01

    A high temperature resonant ultrasound spectroscopy(RUS) was developed. The dynamic elastic constant of RPV weld, which has various different microstructure was determined by RUS. It was confirmed the RUS method is very sensitive to the microstructures of the material. RUS can be used to monitor the degradation of nuclear materials including neutron irradiation embrittlement through the measurement of dynamic elastic constants, elastic anisotropy, high temperature elastic constant and Q-factor.

  3. Frequency shifts in gravitational resonance spectroscopy

    CERN Document Server

    Baeßler, S; Pignol, G; Protasov, K V; Rebreyend, D; Kupriyanova, E A; Voronin, A Yu

    2015-01-01

    Quantum states of ultracold neutrons in the gravitational field are to be characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts, which we call Stern-Gerlach shift, interference shift, and spectator state shift, appear in conceivable measurement schemes and have general importance. These shifts have to be taken into account in precision experiments.

  4. Materials characterization by resonant ultrasonic spectroscopy method

    International Nuclear Information System (INIS)

    A high temperature resonant ultrasound spectroscopy(RUS) was developed. The dynamic elastic constant of RPV weld, which has various different microstructure was determined by RUS. It was confirmed the RUS method is very sensitive to the microstructures of the material. RUS can be used to monitor the degradation of nuclear materials including neutron irradiation embrittlement through the measurement of dynamic elastic constants, elastic anisotropy, high temperature elastic constant and Q-factor

  5. Evaluation of nuclear magnetic resonance spectroscopy variability

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Felipe Rodrigues; Salmon, Carlos Ernesto Garrido, E-mail: garrido@ffclrp.usp.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filisofia, Ciencias e Letras; Otaduy, Maria Concepcion Garcia [Universidade de Sao Paulo (FAMUS/USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Departamento de Radiologia

    2014-11-01

    Introduction: the intrinsically high sensitivity of Magnetic Resonance Spectroscopy (MRS) causes considerable variability in metabolite quantification. In this study, we evaluated the variability of MRS in two research centers using the same model of magnetic resonance image scanner. Methods: two metabolic phantoms were created to simulate magnetic resonance spectra from in vivo hippocampus. The phantoms were filled with the same basic solution containing the following metabolites: N-acetyl-aspartate, creatine, choline, glutamate, glutamine and inositol. Spectra were acquired over 15 months on 26 acquisition dates, resulting in a total of 130 spectra per center. Results: the phantoms did not undergo any physical changes during the 15-month period. Temporal analysis from both centers showed mean metabolic variations of 3.7% in acquisitions on the same day and of 8.7% over the 15-month period. Conclusion: The low deviations demonstrated here, combined with the high specificity of Magnetic Resonance Spectroscopy, confirm that it is feasible to use this technique in multicenter studies in neuroscience research. (author)

  6. Evaluation of nuclear magnetic resonance spectroscopy variability

    International Nuclear Information System (INIS)

    Introduction: the intrinsically high sensitivity of Magnetic Resonance Spectroscopy (MRS) causes considerable variability in metabolite quantification. In this study, we evaluated the variability of MRS in two research centers using the same model of magnetic resonance image scanner. Methods: two metabolic phantoms were created to simulate magnetic resonance spectra from in vivo hippocampus. The phantoms were filled with the same basic solution containing the following metabolites: N-acetyl-aspartate, creatine, choline, glutamate, glutamine and inositol. Spectra were acquired over 15 months on 26 acquisition dates, resulting in a total of 130 spectra per center. Results: the phantoms did not undergo any physical changes during the 15-month period. Temporal analysis from both centers showed mean metabolic variations of 3.7% in acquisitions on the same day and of 8.7% over the 15-month period. Conclusion: The low deviations demonstrated here, combined with the high specificity of Magnetic Resonance Spectroscopy, confirm that it is feasible to use this technique in multicenter studies in neuroscience research. (author)

  7. Magnetic resonance spectroscopy: clinical application in neuroradiology

    International Nuclear Information System (INIS)

    Full text: Magnetic Resonance Spectroscopy (MRS) provides a non-invasive method of studying metabolism in vivo. Magnetic resonance spectroscopy (MRS) defines neuro chemistry on a regional basis by acquiring a radiofrequency signal with chemical shift from one or many voxels or volumes previously selected on MRI. The tissue's chemical environment determines the frequency of a metabolite peak in an MRS spectrum. Candidates for MRS include: 1H, 31P, 13C, 23Na, 7Li, 19F, 14N, 15N, 17O, 39K The most commonly studied nuclei are 1H and 31P. This lecture is focused on Proton (1H) Spectroscopy. Proton MRS can be added on to conventional MR imaging protocols. It can be used to serially monitor biochemical changes in tumors, stroke, epilepsy, metabolic disorders, infections, and neurodegenerative diseases.The MR spectra do not come labeled with diagnoses. They require interpretation and should always be correlated with the MR images before making a final diagnosis. As a general rule, the single voxel, short TE technique is used to make the initial diagnosis, because the signal-to-noise is high and all metabolites are represented. Multi-voxel, long TE techniques are used to further characterize different regions of a mass and to assess brain parenchyma around or adjacent to the mass. Multi-voxel, long TE techniques are also used to assess response to therapy and to search for tumor recurrence. Each metabolite appears at a specific ppm, and each one reflects specific cellular and biochemical processes

  8. Magnetic resonance spectroscopy studies in migraine

    Energy Technology Data Exchange (ETDEWEB)

    Montagna, P.; Cortelli, P.; Barbiroli, B. (Inst. of Medical Pathology, Univ. of Bologna (Italy))

    1994-06-01

    The authors describe the method of [sup 31]phosphorus magnetic resonance spectroscopy and review the results when it is applied to the study of brain and muscle energy metabolism in migraine subjects. Brain energy metabolism appears to be abnormal in all major subtypes of migraine when measured both during and between attacks. Impaired energy metabolism is also documented in skeletal muscle. It is suggested that migraine is associated with a generalized disorder of mitochondrial oxidative phosphorylation and that this may constitute a threshold for the triggering of migraine attacks. 47 refs., 10 figs., 3 tabs.

  9. Resonance ionization mass spectroscopy of uranium

    International Nuclear Information System (INIS)

    Resonance ionization mass spectroscopy (RIMS) has been used for the sensitive detection of uranium. The apparatus consists of a laser system with three dye lasers and two pulsed copper vapour lasers and a time-of-flight (TOF) mass spectrometer. The uranium atoms are ionized in a three step excitation with the third step leading to an autoionizing state. Several excitation schemes were investigated and for two schemes all three transitions could be saturated with the available laser power. The hyperfine structure splitting (HFS) of 235U, the isotopic shift (IS) between 235U and 238U as well as isotopic ratios in uranium samples were determined. (Author)

  10. Historical survey of resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    We have recently celebrated the 10th birthday of Resonance Ionization Spectroscopy (RIS), and this seems an appropriate time to review the history of its development. Basically, RIS is a photophysics process in which tunable light sources are used to remove a valence electron from an atom of selected atomic number, Z. If appropriate lasers are used as the light source, one electron can be removed from each atom of the selected Z in the laser pulse. This implies that RIS can be a very efficient, as well as selective, ionization process. In what we normally call RIS, laser schemes are employed which preserve both of these features. In contrast, multiphoton ionization (MPI) is more general, although not necessarily Z selective or very efficient because resonances are often not used. Early research completed in the USSR and described as selective two-step photoionization, employed resonances to ionize the rubidium atom and served to guide work on laser isotope separation. 29 references, 8 figures

  11. Historical survey of resonance ionization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G.S.

    1984-04-01

    We have recently celebrated the 10th birthday of Resonance Ionization Spectroscopy (RIS), and this seems an appropriate time to review the history of its development. Basically, RIS is a photophysics process in which tunable light sources are used to remove a valence electron from an atom of selected atomic number, Z. If appropriate lasers are used as the light source, one electron can be removed from each atom of the selected Z in the laser pulse. This implies that RIS can be a very efficient, as well as selective, ionization process. In what we normally call RIS, laser schemes are employed which preserve both of these features. In contrast, multiphoton ionization (MPI) is more general, although not necessarily Z selective or very efficient because resonances are often not used. Early research completed in the USSR and described as selective two-step photoionization, employed resonances to ionize the rubidium atom and served to guide work on laser isotope separation. 29 references, 8 figures.

  12. Resonant ultrasound spectroscopy and homogeneity in polycrystals.

    Science.gov (United States)

    Kaplan, Gunes; Darling, T W; McCall, K R

    2009-01-01

    Resonant ultrasound spectroscopy (RUS) is capable of determining the bulk elastic properties of a solid from its characteristic vibration frequencies, given the dimensions, density and shape of the sample. The model used for extracting values of the elastic constants assumes perfect homogeneity, which can be approximated by average-isotropic polycrystals. This approximation is excellent in the small grain regime assumed for most averaging procedures, but for real samples with indeterminate grain size distributions, it is not clear where the approximation breaks down. RUS measurements were made on pure copper samples where the grain size distribution was changed by progressive heat treatments in order to find a quantitative limit for the loss of homogeneity. It is found that when a measure of the largest grains is 15% of the sample's smallest dimension, the deviation in RUS fits indicates elastic inhomogeneity. PMID:18804831

  13. Conceptual basis of resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Resonance Ionization Spectroscopy (RIS) can b defined as a state-selective detection process in which tunable lasers are used to promote transitions from the selected state of the atoms or molecules in question to higher states, one of which will be ionized by the absorption of another photon. At least one resonance step is used in the stepwise ionization process, and it has been shown that the ionization probability of the spectroscopically selected species can nearly always be made close to unity. Since measurements of the number of photoelectrons or ions can be made very precisely and even one electron (or under vacuum conditions, one ion) can be detected, the technique can be used to make quantitative measurements of very small populations of the state-selected species. Counting of individual atoms has special meaning for detection of rare events. The ability to make saturated RIS measurements opens up a wide variety of applications to both basic and applied research. We view RIS as a specific type of multi-photon ionization in which the goal is to make quantitative measurements of quantum-selected populations in atomic or molecular systems. 16 references

  14. Magnetic resonance spectroscopy as a diagnostic modality for carcinoma thyroid

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Nikhil [Department of Surgery, Maulana Azad Medical College, Lok Nayak Hospital, New Delhi (India)], E-mail: nikhil_ms26@yahoo.co.in; Kakar, Arun K. [Department of Surgery, Maulana Azad Medical College, Lok Nayak Hospital, New Delhi (India); Chowdhury, Veena [Department of Radiodiagnosis, Maulana Azad Medical College, Lok Nayak Hospital, New Delhi (India); Gulati, Praveen [MR Centre, A-23 Green Park, New Delhi (India); Shankar, L. Ravi [Department of Radioiodine Uptake and Imaging, Institute of Nucler Medicine and Allied Sciences (INMAS), Timarpur, New Delhi (India); Vindal, Anubhav [Department of Surgery, Maulana Azad Medical College, Lok Nayak Hospital, New Delhi (India)

    2007-12-15

    Aim: The aim of this study was to observe the findings of magnetic resonance spectroscopy of solitary thyroid nodules and its correlation with histopathology. Materials and methods: In this study, magnetic resonance spectroscopy was carried out on 26 patients having solitary thyroid nodules. Magnetic resonance spectroscopy (MRS) was performed on a 1.5 T super conductive system with gradient strength of 33 mTs. Fine needle aspiration cytology was done after MRS. All 26 patients underwent surgery either because of cytopathologically proven malignancy or because of cosmetic reasons. Findings of magnetic resonance spectroscopy were compared with histopathology of thyroid specimens. Results and conclusion: It was seen that presence or absence of choline peak correlates very well with presence or absence of malignant foci with in the nodule (sensitivity = 100%; specificity = 88.88%). These results indicate that magnetic resonance spectroscopy may prove to be an useful diagnostic modality for carcinoma thyroid.

  15. Neutron resonance spectroscopy at n TOF at CERN

    OpenAIRE

    Calviño Tavares, Francisco; Cortés Rossell, Guillem Pere; Poch Parés, Agustí; Pretel Sánchez, Carme

    2007-01-01

    Neutron resonance spectroscopy plays an important role in the investigation of neutron induced reaction cross sections and nuclear structure in the MeV excitation range. Neutron time-of-flight facilities are the most used installations to explore neutron resonances. In this paper we describe the basic features of neutron resonance spectroscopy together with recent results from the time-of-flight facility n TOF at CERN.

  16. Neutron resonance spectroscopy at n-TOF at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapic, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K

    2008-07-01

    Neutron resonance spectroscopy plays an important role in the investigation of neutron induced reaction cross sections and nuclear structure in the MeV excitation range. Neutron time-of-flight facilities are the most used installations to explore neutron resonances. In this paper we describe the basic features of neutron resonance spectroscopy together with recent results from the time-of-flight facility n-TOF at CERN. (authors)

  17. Can magnetic resonance spectroscopy differentiate endometrial cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Cai, Shifeng; Han, Xue; Liu, Qingwei; Xin, Yinghui [Shandong University, Department of Radiology, Shandong Provincial Hospital, Jinan (China); Li, Changzhong; Yang, Chunrun [Shandong University, Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Jinan (China); Sun, Xichao; Zong, Yuanyuan [Shandong University, Department of Pathology, Shandong Provincial Hospital, Jinan (China); Fu, Caixia [Siemens Shenzhen Magnetic Resonance Ltd., Siemens MRI Center, Shenzhen (China)

    2014-10-15

    To investigate whether the choline-containing compounds (Cho) obtained from three-dimensional {sup 1}H magnetic resonance (MR) spectroscopy can differentiate endometrial cancer (ECa) from benign lesions in endometria or in submucosa (BLs-ESm) and is associated with the aggressiveness of ECa. Fifty-seven patients (ECa, 38; BLs-ESm, 19) underwent preoperative multi-voxel MR spectroscopy at 3.0 T. The ratio of the sum of the Cho peak integral to the sum of the unsuppressed water peak integral (Cho/water) and the coefficient of variation (CV) used to describe the variability of Cho/water in one lesion were calculated. Mean Cho/water (±standard deviation [SD]) was (3.02 ± 1.43) x 10{sup -3} for ECa and (1.68 ± 0.33) x 10{sup -3} for BLs-ESm (p < 0.001). Mean Cho/water was (4.42 ± 1.53) x 10{sup -3} for type II ECa and (2.65 ± 1.17) x 10{sup -3} for type I ECa (p = 0.001). There were no significant differences among different stages of ECa (p = 0.107) or different grades of ECa (p = 0.142). The Cho/water was positively correlated with tumour stage (r = 0.386, p = 0.017) and size (r = 0.333, p = 0.041). The CV was also positively correlated with tumour stage (r = 0.537, p = 0.001) and size (r = 0.34, p = 0.037). The Cho/water can differentiate ECa from BLs-ESm and differentiate type II from type I ECa, but cannot differentiate different stages of ECa or different grades of ECa. Cho/water increased with the increase of tumour stage and size. (orig.)

  18. Collinear resonance ionization spectroscopy of radium ions

    CERN Multimedia

    We propose to study the neutron-deficient radium isotopes with high-resolution collinear resonance ionization spectroscopy. Probing the hyperfine structure of the $7{s}\\,^2\\!{S}\\!_{1/2}\\,\\rightarrow\\,7{p}\\,^{2}\\!{P}\\!_{1/2}$ and $7{s}\\,^{2}\\!{S}\\!_{1/2}\\,\\rightarrow\\,7{p}\\,^{2}\\!{P}\\!_{3/2}$ transitions in Ra II will provide atomic-structure measurements that have not been achieved for $^{{A}<208}$Ra. Measurement of the $7{s}\\,^{2}\\!{S}\\!_{1/2}\\,\\rightarrow\\,7{p}\\,^{2}\\!{P}\\!_{3/2}$ transition in $^{{A}<214}$Ra will allow the spectroscopic quadrupole moments to be directly measured for the first time. In addition, the technique will allow tentative spin assignments to be confirmed and the magnetic dipole moments measured for $^{\\textit{A}<208}$Ra. Measurement of the hyperfine structure (in particular the isotope shifts) of the neutron-deficient radium will provide information to further constrain the nuclear models away from the N=126 shell closure.

  19. Spatial localization in nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Keevil, Stephen F [Department of Medical Physics, Guy' s and St Thomas' NHS Foundation Trust, Guy' s Hospital, London, SE1 9RT (United Kingdom); Division of Imaging Sciences, King' s College London, Guy' s Campus, London, SE1 9RT (United Kingdom)

    2006-08-21

    The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications. (topical review)

  20. Waveguide volume probe for magnetic resonance imaging and spectroscopy

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a probe for use within the field of nuclear magnetic resonance, such as magnetic resonance imaging (MRI), and magnetic resonance spectroscopy (MRS)). One embodiment relates to an RF probe for magnetic resonance imaging and/or spectroscopy comprising a conductive...... non-magnetic hollow waveguide having an internal volume and at least one open end, one or more capacitors and at least a first conductive non-magnetic wire, wherein said first conductive wire connects at least one of said one or more capacitors to opposite walls of one open end of the waveguide...

  1. Application of resonance ionization spectroscopy in particle physics

    International Nuclear Information System (INIS)

    The use of resonance ionization spectroscopy in the measurement of the solar neutrino flux, baryon conservation and double beta decay in the search for fractional charge, superheavy ions and magnetic monopoles is discussed. (U.K.)

  2. Magnetic resonance spectroscopy and imaging in cerebral ischemia

    International Nuclear Information System (INIS)

    In-vivo proton and phosphorus magnetic resonance spectroscopy was used to detect changes in cerebral metabolism during ischemia and other types of metabolic stress. Magnetic resonance imaging was performed in an animal model to observe morphological alterations during focal cerebral ischemia. Spectroscopy was performed in animal models with global ischemia, in volunteers during hyperventilation and pharmaco-logically altered cerebral perfusion, and in patients with acute and prolonged focal cerebral ischemia. (author). 396 refs.; 44 figs.; 14 tabs

  3. Fast Resonance Raman Spectroscopy of Short-Lived Radicals

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Wilbrandt, Robert Walter; Hansen, Karina Benthin;

    1976-01-01

    We report the first application of pulsed resonance Raman spectroscopy to the study of short-lived free radicals produced by pulse radiolysis. A single pulse from a flash-lamp pumped tunable dye laser is used to excite the resonance Raman spectrum of the p-terphenyl anion radical with an initial...

  4. Acoustic resonance spectroscopy for the advanced undergraduate laboratory

    CERN Document Server

    Franco-Villafañe, J A; Báez, G; Gandarilla-Carrillo, O; Méndez-Sánchez, R A

    2013-01-01

    We present a simple experiment that allows advanced undergraduates to learn the principles and applications of spectroscopy. The technique, known as acoustic resonance spectroscopy, is applied to study a vibrating rod. The setup includes electromagnetic-acoustic transducers, an audio amplifier and a vector network analyzer. Typical results of compressional, torsional and bending waves are analyzed and compared with analytical results.

  5. Neutron resonance spectroscopy for the characterisation of materials and objects

    OpenAIRE

    Schillebeeckx, Peter; BECKER BJÖRN; Harada, Hiroshi; Kopecky, Stefan

    2014-01-01

    The use of neutron resonance spectroscopy to investigate and study properties of materials and objects is the basis of neutron resonance transmission analysis (NRTA) and neutron resonance capture analysis (NRCA). NRTA and NRCA are non-destructive methods to determine the elemental and isotopic composition without the need of any sample preparation and resulting in a negligible residual activity. The basic principles of NRTA and NRCA are explained. The use of NRTA and NRCA to determine the ele...

  6. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  7. Resonance scattering spectroscopy of gold nanoparticle

    Institute of Scientific and Technical Information of China (English)

    JIANG; Zhiliang; FENG; Zhongwei; LI; Tingsheng; LI; Fang; ZHONG; Fuxin; XIE; Jiyun; YI; Xianghui

    2001-01-01

    The gold nanoparticles in diameter of 10-95 nm have been prepared by Frens procedure, all of which exhibit a resonance scattering peak at 580 nm. The mechanism of resonance scattering for gold nanoparticle has been considered according to the wave motion theory of nanoparticle in liquid. The principle of superamolecular interface energy band(SIEB) has been set up and utilized to explain the relationship between the diameter and colors for gold nanoparticle in liquid. A novel spectrophotometric ruler for the determination of the diameter has been proposed according to the relationship of the maximum absorption wavelength and diameter.

  8. Resonance Raman Spectroscopy of Free Radicals Produced by Ionizing Radiation

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter

    1984-01-01

    Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p-nitrobenzylchloride and......Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p......-nitrobenzylchloride and subsequent formation of the p-nitrobenzyl radical and the reaction of p-nitrotoluene with O– are studied by resonance Raman and optical absorption spectroscopy....

  9. Applications of resonance ionization spectroscopy to ultralow-level counting and mass spectroscopy

    International Nuclear Information System (INIS)

    The ability to directly detect a daughter atom, using resonance ionization spectroscopy, in delayed time coincidence with the decay of a parent species promises to drastically reduce the background in low-level counting experiments. Resonance ionization can also be used as an ion source for a mass spectrometer system that is capable of discriminating between isobars

  10. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    OpenAIRE

    Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.

    2014-01-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at fr...

  11. Implementation of Quantum Logic Gates by Nuclear Magnetic Resonance Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    DU Jiang-Feng; WU Ji-Hui; SHI Ming-Jun; HAN Liang; ZHOU Xian-Yi; YE Bang-Jiao; WENG Hui-Ming; HAN Rong-Dian

    2000-01-01

    Using nuclear magnetic resonance techniques with a solution of cytosine molecules, we show an implementation of certain quantum logic gates (including NOT gate, square-root of NOT gate and controlled-NOT gate), which have central importance in quantum computing. In addition, experimental results show that nuclear magnetic resonance spectroscopy can efficiently measure the result of quantum computing without attendant wave-function collapse.

  12. Clinical applications of nuclear magnetic resonance spectroscopy: a review

    International Nuclear Information System (INIS)

    The advantages and present limitations of the clinical applications of nuclear magnetic resonance spectroscopy are reviewed in outline, with passing references to skeletal muscular studies, in particular a group of children with advanced Duchenne dystrophy, and the applications to the study of cerebral metabolism of neonates, excised kidneys, biopsy studies of breast and axillary lymph node samples, and NMR spectroscopy performed during chemotherapy of a secondary rhabdomyosarcoma in the skin. (U.K.)

  13. Weak interaction studies using resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Important developments in laser sources for the vacuum ultraviolet (VUV) region of the spectrum are making it possible to carry out resonance ionization of some of the noble gases. It has already been shown that xenon can be ionized in a two-photon allowed excitation from the ground state. Recently a new method of generating radiation by four-wave mixing in mercury vapor enables excitation of xenon in a one-photon resonance process. With these new laser sources we expect to have effective ionization volumes of 10-3 to 10-2 cm3 for the cases of argon, krypton, and xenon. This has important consequences in weak interaction physics and environmental research

  14. Periodontitis diagnostics using resonance Raman spectroscopy on saliva

    Science.gov (United States)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Biryukova, T.; Tsvetkov, M.; Bagratashvily, V.

    2013-07-01

    In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm-1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva.

  15. Proton resonance spectroscopy in 40Ca

    International Nuclear Information System (INIS)

    The differential cross sections for the 39K(p,po)39K and 39K-(p,αo)36Ar reactions have been measured for Ep = 1.90 to 4.02 MeV at laboratory angles θ = 90 degree, 108 degree, 150 degree and 165 degree. Data were taken with the Triangle Universities Nuclear Laboratory (TUNL) KN Van de Graaff accelerator and the associated high resolution system. The targets consisted of 1-2 μg/cm2 of potassium carbonate (K2CO3), enriched to 99.97% 39K, evaporated onto gold coated carbon backings. Excitation functions were measured in proton energy steps varying from 100 to 400 3V. The energy region studied corresponds to an excitation energy range in the 40Ca nucleus of Ex = 10.2 to 12.3 MeV. A multi-level multi-channel R-matrix based computer code was used to fit the experimental excitation functions. Resonance parameters obtained include resonance energy, spin, parity, partial widths, and channel spin and orbital angular momentum mixing ratios. Of the 248 resonances observed in the proton channel, 148 were also observed in the alpha channel. A fit to the observed level density yielded a nuclear temperature of 1.5 MeV. The data were compared with predictions of statistical theories of energy levels for both level spacing and reduced width distributions. The alpha reduced widths agree with the Porter-Thomas distribution and suggest that only 5-10% of the states with alpha widths were not observed. The summed strength in each of the alpha channels represents a significant fraction of the Wigner limit for these channels. The proton channels, on the other hand, generally have much smaller fractions. The two proton s-wave strength functions are equal and thus show no evidence for spin-exchange forces in the nucleon-nucleus interaction

  16. Weak interaction studies using resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Important developments in laser sources for the vacuum ultraviolet (VUV) region of the spectrum are making it possible to carry out resonance ionization of some of the noble gases. It has already been shown that xenon can be ionized in a two-photon allowed excitation from the ground state. Recently a new method of generating radiation by four-wave mixing in mercury vapor enables excitation of xenon in a one-photon resonance process. With these new laser sources they expect to have effective ionization volumes of 10-3-10-2 cm3 for the cases of argon, krypton, and xenon. This has important consequences in weak interaction physics and environmental research. Widespread applications of noble gas detectors are due to the fact that small numbers of the chemically inert atoms can be recovered from very large targets of materials where they may be generated by rare events. In this lecture they show how lasers can be combined with mass spectrometers to detect a few noble gas atoms of one isotope in the presence of very large numbers of atoms of a neighboring isotope. This technique (which they have called Maxwell's demon because of the atom-sorting functions performed in the apparatus) is described and then followed with a brief discussion of two applications in weak interaction physics - double-beta decay and the solar neutrino problem

  17. Nonlinear spectroscopy of superconducting anharmonic resonators

    International Nuclear Information System (INIS)

    We formulate a model for the steady state response of a nonlinear quantum oscillator structure, such as those used in a variety of superconducting qubit experiments, when excited by a steady, but not necessarily small, ac tone. We show that this model can be derived directly from a circuit description of some recent qubit experiments in which the state of the qubit is read out directly, without a superconducting quantum interference device (SQUID) magnetometer. The excitation profile has a rich structure depending on the detuning of the tone from the small-signal resonant frequency, on the degree of damping and on the excitation amplitude. We explore two regions in detail. Firstly, at high damping there is a trough in the excitation response as a function of detuning, near where the classical Duffing bifurcation occurs. This trough has been understood as a classical interference between two metastable responses with opposite phase. We use Wigner function studies to show that while this picture is roughly correct, there are also more quantum mechanical aspects to this feature. Secondly, at low damping we study the emergence of sharp, discrete spectral features from a continuum response. We show that these the structures, associated with discrete transitions between different excited-state eigenstates of the oscillator, provide an interesting example of a quantum Fano resonance. The trough in the Fano response evolves continuously from the ‘classical’ trough at high damping. (paper)

  18. Resonant Dipole Nanoantenna Arrays for Enhanced Terahertz Spectroscopy

    KAUST Repository

    Toma, A.

    2015-08-04

    Our recent studies on dipole nanoantenna arrays resonating in the terahertz frequency range (0.1 – 10 THz) will be presented. The main near- and far-field properties of these nanostructures will be shown and their application in enhanced terahertz spectroscopy of tiny quantities of nanomaterials will be discussed.

  19. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    Science.gov (United States)

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  20. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    Science.gov (United States)

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  1. INVIVO PHOSPHORUS MAGNETIC-RESONANCE SPECTROSCOPY IN MULTIPLE-SCLEROSIS

    NARCIS (Netherlands)

    MINDERHOUD, JM; MOOYAART, EL; KAMMAN, RL; TEELKEN, AW; HOOGSTRATEN, MC; VENCKEN, LM; GRAVENMADE, EJ; VANDENBURG, W

    1992-01-01

    Localized phosphorus magnetic resonance spectroscopy at 1.5 T was performed in 39 patients with multiple sclerosis and in 15 healthy controls. The multiple sclerosis spectra showed increased creatine phosphate levels. This increase was correlated with the severity of the handicap and was greater in

  2. In vivo magnetic resonance spectroscopy: basic methodology and clinical applications.

    NARCIS (Netherlands)

    Graaf, M. van der

    2010-01-01

    The clinical use of in vivo magnetic resonance spectroscopy (MRS) has been limited for a long time, mainly due to its low sensitivity. However, with the advent of clinical MR systems with higher magnetic field strengths such as 3 Tesla, the development of better coils, and the design of optimized ra

  3. Photodissociation dynamics of dimethylnitrosamine studied by resonance Raman spectroscopy

    NARCIS (Netherlands)

    Lenderink, Egbert; Wiersma, Douwe A.

    1994-01-01

    The initial molecular dynamics in the dissociative S1 (n, pi*) state of dimethylnitrosamine (DMN) is investigated using resonance Raman spectroscopy. We find that photochemical N-N bond cleavage in DMN proceeds via a bent conformation around the amine N atom, which supports the outcome of ab initio

  4. Photon cooperative effect in resonance spectroscopy

    International Nuclear Information System (INIS)

    A systematic method is proposed for calculating the density matrix of subsystems interacting with their environment under conditions of thermodynamic equilibrium. The density matrix of photons resonantly interacting with a surrounding gas is calculated. It is shown that use of the Gibbs distribution allows one to completely eliminate inelastic processes from the calculations. A correct account of photon-photon correlators indicates the presence of new cooperative effects. A new branch of the polariton spectrum is predicted, which is due to the presence of excited atoms in the medium. With the help of the density matrix the mean filling numbers of the photon modes are calculated. In terms of wavelengths, we have obtained a generalization of the Planck formula which accounts for photon cooperative phenomena. The manifestation of these effects in kinetic processes is discussed

  5. Nonlinear spectroscopy of superconducting anharmonic resonators

    CERN Document Server

    DiVincenzo, David P

    2011-01-01

    We formulate a model for the steady state response of a nonlinear quantum oscillator structure, such as those used in a variety of superconducting qubit experiments, when excited by a steady, but not necessarily small, ac tone. We show that this model can be derived directly from a circuit description of some recent qubit experiments in which the state of the qubit is read out directly, without a SQUID magnetometer. The excitation profile has a rich structure depending on the detuning of the tone from the small-signal resonant frequency, on the degree of damping, and on the excitation amplitude. We explore two regions in detail: First, at high damping there is a trough in the excitation response as a function of detuning, near where the classical Duffing bifurcation occurs. This trough has been understood as a classical interference between two metastable responses with opposite phase. We use Wigner function studies to show that while this picture is roughly correct, there are also more quantum mechanical asp...

  6. Resonance ionization spectroscopy using ultraviolet laser

    CERN Document Server

    Han, J M; Ko, D K; Park, H M; Rhee, Y J

    2002-01-01

    In this study, Ti:sapphire laser which is pumped by the enhanced Nd:YAG laser using laser diode, was designed and manufactured. The AO Q-switched CW Nd:YAG laser was converted into a high repetition plus-type laser using the AO Q-switch, and two heads were installed inside the cavity in order to improve the laser beam quality. The Nd:YAG laser enhancement was completed by optimization using a simulation for the cavity length, structure and thermal lens effect that greatly effected the laser beam output and quality. As the result of the enhancement, a 30W laser at 532nm and at 5k-Hz was successfully made. Also, the Ti:sapphire laser that will be used for atomic spectroscopy which is pumped by the Nd:YAG laser, was completely designed. As a basic experiment for laser oscillation. We measured the tunability of the laser, and it turned out that the wave tunability range was 730 850 nm. A self-seeding type tunable laser using grating for narrow line width, is planned to be designed due to the fact that the Ti:sapp...

  7. Detection of single atoms by resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Rutherford's idea for counting individual atoms can, in principle, be implemented for nearly any type of atom, whether stable or radioactive, by using methods of resonance ionization. With the technique of resonance ionization spectroscopy (RIS), a laser is tuned to a wavelength that will promote a valence electron in a Z-selected atom to an excited level. Additional resonance or non-resonance photoabsorption steps are used to achieve nearly 100% ionization efficiencies. Hence, the RIS process can be saturated for the Z-selected atoms: and because detectors are available for counting either single electrons or positive ions, one-atom detection is possible. Some examples of one-atom detection are given, including that of the noble gases, to show complementarity with accelerator mass spectrometry AMS methods. For instance, the detection of 81Kr by using RIS has interesting applications for solar-neutrino research, ice-cap dating, and groundwater dating. (author)

  8. Applications of resonance ionization spectroscopy to ultralow-level counting and mass spectroscopy

    International Nuclear Information System (INIS)

    In this paper it is shown that the ability to directly detect a daughter atom, using resonance ionization spectroscopy, in delayed time coincidence with the decay of a parent species promises to drastically reduce the background in low-level counting experiments. In addition, resonance ionization can also be used as an ion source for a mass spectrometer system that is capable of discriminating between isobars

  9. Magnetic Resonance Spectroscopy of siRNA-Based Cancer Therapy

    Science.gov (United States)

    Penet, Marie-France; Chen, Zhihang; Mori, Noriko; Krishnamachary, Balaji; Bhujwalla, Zaver M.

    2016-01-01

    Small interfering RNA (siRNA) is routinely used as a biological tool to silence specific genes, and is under active investigation in cancer treatment strategies. Noninvasive magnetic resonance spectroscopy (MRS) provides the ability to assess the functional effects of siRNA-mediated gene silencing in cultured cancer cells, and following nanoparticle-based delivery in tumors in vivo. Here we describe the use of siRNA to downregulate choline kinase, a critical enzyme in choline phospholipid metabolism of cancer cells and tumors, and the use of 1H MRS of cells and 1H magnetic resonance spectroscopic imaging (MRSI) of tumors to assess the efficacy of the downregulation. PMID:26530913

  10. Experiments on statistical mechanics using resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Five different fluctuation phenomena at the atomic and molecular levels have been studied by resonance ionization spectroscopy techniques with one-atom detection sensitivity. The Poisson distribution described the observed frequency distributions suggesting random behavior. In addition, a gedanken experiment suggested by Einstein and Furth on the diffusion of atoms was performed in order to test the equality between time and ensemble averages. The obtained results confirmed the ergodicity of the studied system

  11. Gravity Resonance Spectroscopy and Einstein-Cartan Gravity

    OpenAIRE

    Abele, Hartmut; Ivanov, Andrei; Jenke, Tobias; Pitschmann, Mario; Geltenbort, Peter

    2015-01-01

    The qBounce experiment offers a new way of looking at gravitation based on quantum interference. An ultracold neutron is reflected in well-defined quantum states in the gravity potential of the Earth by a mirror, which allows to apply the concept of gravity resonance spectroscopy (GRS). This experiment with neutrons gives access to all gravity parameters as the dependences on distance, mass, curvature, energy-momentum as well as on torsion. Here, we concentrate on torsion.

  12. What are we measuring with GABA magnetic resonance spectroscopy?

    OpenAIRE

    Stagg, Charlotte J.; Bachtiar, Velicia; Johansen-Berg, Heidi

    2011-01-01

    A number of recent papers1–3 have demonstrated a relationship between in vivo concentration of GABA, as assessed using Magnetic Resonance Spectroscopy (MRS), and an individual's task performance, giving a unique insight into the relationship between physiology and behavior. However, interpretation of the functional significance of the MRS GABA measure is not straightforward. Here we discuss some of the outstanding questions as to how total concentration of GABA within a cortical region relate...

  13. Electron-nuclear double resonance spectroscopy (and electron spin-echo envelope modulation spectroscopy) in bioinorganic chemistry

    OpenAIRE

    Hoffman, Brian M.

    2003-01-01

    This perspective discusses the ways that advanced paramagnetic resonance techniques, namely electron-nuclear double resonance (ENDOR) and electron spin-echo envelope modulation (ESEEM) spectroscopies, can help us understand how metal ions function in biological systems.

  14. Resonance ionization mass spectroscopy with neptunium and plutonium

    International Nuclear Information System (INIS)

    The resonance ionization mass spectroscopy was one of the methods used for detection of the actinides. The principles of the method are: atoms of the elements to be measured are excited step by step through resonant irradiation with laser light, and are thus ionized. The ions are accelerated by electrical fields and can then be detected. The equipment for this process comprised a pulsed laser system consisting of two copper vapor lasers and three dye lasers, and a linear time-of-flight mass spectrometer with a mass resolution M/ΔM of approx. 1500. Due to a two-step resonant excitation of atomic energy levels and subsequent population of an autoionized state, the three-step ionization method is particularly element-selective. Use of powerful lasers with a high pulse repetition rate yield a high sensitivity and thus allow low detection limits. (orig./BBR)

  15. Magnetic resonance spectroscopy and imaging for the study of fossils.

    Science.gov (United States)

    Giovannetti, Giulio; Guerrini, Andrea; Salvadori, Piero A

    2016-07-01

    Computed tomography (CT) has long been used for investigating palaeontological specimens, as it is a nondestructive technique which avoids the need to dissolve or ionize the fossil sample. However, magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) have recently gained ground as analytical tools for examination of palaeontological samples, by nondestructively providing information about the structure and composition of fossils. While MRI techniques are able to reveal the three-dimensional geometry of the trace fossil, MRS can provide information on the chemical composition of the samples. The multidimensional nature of MR (magnetic resonance) signals has potential to provide rich three-dimensional data on the palaeontological specimens and also to help in elucidating paleopathological and paleoecological questions. In this work the verified applications and the emerging uses of MRI and MRS in paleontology are reviewed, with particular attention to fossil spores, fossil plants, ambers, fossil invertebrates, and fossil vertebrate studies. PMID:26979538

  16. High resolution spectroscopy in solids by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -1200 C to +1600 C, and is fully controlled by a Macintosh IIci microcomputer. (author)

  17. Ultrasonic Resonance Spectroscopy of Composite Rings for Flywheel Rotors

    Science.gov (United States)

    Harmon, Laura M.; Baaklini, George Y.

    2001-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The system employs a swept frequency approach and performs a fast Fourier transform on the frequency spectrum of the response signal. In addition. the system allows for equalization of the frequency spectrum, providing all frequencies with equal amounts of energy to excite higher order resonant harmonics. Interpretation of the second fast Fourier transform, along with equalization of the frequency spectrum, offers greater assurance in acquiring and analyzing the fundamental frequency, or spectrum resonance spacing. The range of frequencies swept in a pitch-catch mode was varied up to 8 MHz, depending on the material and geometry of the component. Single and multilayered material samples, with and without known defects, were evaluated to determine how the constituents of a composite material system affect the resonant frequency. Amplitude and frequency changes in the spectrum and spectrum resonance spacing domains were examined from ultrasonic responses of a flat composite coupon, thin composite rings, and thick composite rings. Also, the ultrasonic spectroscopy responses from areas with an intentional delamination and a foreign material insert, similar to defects that may occur during manufacturing malfunctions, were compared with those from defect-free areas in thin composite rings. A thick composite ring with varying thickness was tested to investigate the full-thickness resonant frequency and any possible bulk interfacial bond issues. Finally, the effect on the frequency response of naturally occurring single and clustered voids in a composite ring was established.

  18. Scanning micro-resonator direct-comb absolute spectroscopy

    CERN Document Server

    Gambetta, Alessio; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca

    2016-01-01

    Direct optical frequency Comb Spectroscopy (DCS) is proving to be a fundamental tool in many areas of science and technology thanks to its unique performance in terms of ultra-broadband, high-speed detection and frequency accuracy, allowing for high-fidelity mapping of atomic and molecular energy structure. Here we present a novel DCS approach based on a scanning Fabry-Perot micro-cavity resonator (SMART) providing a simple, compact and accurate method to resolve the mode structure of an optical frequency comb. The SMART approach, while drastically reducing system complexity, allows for a straightforward absolute calibration of the optical-frequency axis with an ultimate resolution limited by the micro-resonator resonance linewidth and can be used in any spectral region from XUV to THz. An application to high-precision spectroscopy of acetylene at 1.54 um is presented, demonstrating frequency resolution as low as 20 MHz with a single-scan optical bandwidth up to 1 THz in 20-ms measurement time and a noise-equ...

  19. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Mett, Richard R. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin 53202 (United States); Swarts, Steven G. [Department of Radiation Oncology, University of Florida, Gainesville, Florida, 32610 (United States); Swartz, Harold M. [Department of Radiology, Geisel Medical School at Dartmouth, Hanover, New Hampshire 03755 (United States)

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  20. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    Science.gov (United States)

    Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg2+ doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  1. Resonance Raman spectroscopy in one-dimensional carbon materials

    Directory of Open Access Journals (Sweden)

    Dresselhaus Mildred S.

    2006-01-01

    Full Text Available Brazil has played an important role in the development and use of resonance Raman spectroscopy as a powerful characterization tool for materials science. Here we present a short history of Raman scattering research in Brazil, highlighting the important contributions to the field coming from Brazilian researchers in the past. Next we discuss recent and important contributions where Brazil has become a worldwide leader, that is on the physics of quasi-one dimensional carbon nanotubes. We conclude this article by presenting results from a very recent resonance Raman study of exciting new materials, that are strictly one-dimensional carbon chains formed by the heat treatment of very pure double-wall carbon nanotube samples.

  2. Application of neutron resonance spectroscopy for explosive material accuracy detection

    International Nuclear Information System (INIS)

    To determine the chemical composition of materials in baggage or cargo at bus stations, ports or airports is conventionally using the X-ray technique, which is base on the density-specific transmission probability, but not a very good probe to detect explosive materials. However, Neutron Resonance Spectroscopy (NRS) as the element-specific transmission case, can be used to detect the accuracy chemical contentment of the materials. Carbon, Hydrogen, Nitrogen and Oxygen as the main components of the explosive material, appear prominent neutron resonance features during 0.5-7.5 MeV energy section of the injected neutrons. By solving the equation involving the differences of neutron current strength between prior to and behind the sample, the accuracy chemical contentment of these isotopes, consequently, the material are determined finally. Such explosive material detection can be used in military, anti-terrorist and civil security. (authors)

  3. Magnetic resonance spectroscopy in the study of esophageal cancer

    International Nuclear Information System (INIS)

    Esophageal cancer is one of the most common reasons of human death, the prognosis is closely related to the diagnosed stages. Early esophageal cancer usually has a better prognosis, while the middle -advanced stage has a poor five-year survival rate. The early diagnosis of esophageal cancer is important. In the recent years, magnetic resonance technology develops very fast the magnetic resonance spectroscopy (MRS) can be used to study the biochemistry and physiology of tumors or tissue in vivo by detecting several trace metabolites, energy metabolism and quantitatively analysing the compounds changes. Most studies focused on specimens or secretions in vivo or m vitro experiments in the literatures. We summarized the MRS studies on esophageal cancer in this article. (authors)

  4. Active plasma resonance spectroscopy: eigenfunction solutions in spherical geometry

    Science.gov (United States)

    Oberrath, J.; Brinkmann, R. P.

    2014-12-01

    The term active plasma resonance spectroscopy denotes a class of related techniques which utilize, for diagnostic purposes, the natural ability of plasmas to resonate on or near the electron plasma frequency ωpe: a radio frequent signal (in the GHz range) is coupled into the plasma via an antenna or probe, the spectral response is recorded, and a mathematical model is used to determine plasma parameters like the electron density. The mathematical model of an arbitrarily shaped probe-plasma system can be written in an abstract but very compact equation. It contains an appropriate operator, which describes the dynamical behavior and can be split into a conservative and a dissipative part. Based on the cold plasma model, this manuscript provides a solution strategy to determine the electrical admittance of a specific probe-plasma system derived from the abstract dynamical equation. Focusing on probes with a spherical-shaped probe tip the general admittance can be derived analytically. Therefore, the matrix representation of the resolvent of the dynamical operator is determined. This matrix representation is derived by means of the eigenfunctions and eigenvalues of the conservative operator. It can be shown that these eigenvalues represent the resonance frequencies of the probe-plasma system which are simply connected to the electron density. As an example, the result is applied to established probe designs: the spherical impedance probe and the multipole resonance probe.

  5. Active plasma resonance spectroscopy: eigenfunction solutions in spherical geometry

    International Nuclear Information System (INIS)

    The term active plasma resonance spectroscopy denotes a class of related techniques which utilize, for diagnostic purposes, the natural ability of plasmas to resonate on or near the electron plasma frequency ωpe: a radio frequent signal (in the GHz range) is coupled into the plasma via an antenna or probe, the spectral response is recorded, and a mathematical model is used to determine plasma parameters like the electron density. The mathematical model of an arbitrarily shaped probe–plasma system can be written in an abstract but very compact equation. It contains an appropriate operator, which describes the dynamical behavior and can be split into a conservative and a dissipative part. Based on the cold plasma model, this manuscript provides a solution strategy to determine the electrical admittance of a specific probe–plasma system derived from the abstract dynamical equation. Focusing on probes with a spherical-shaped probe tip the general admittance can be derived analytically. Therefore, the matrix representation of the resolvent of the dynamical operator is determined. This matrix representation is derived by means of the eigenfunctions and eigenvalues of the conservative operator. It can be shown that these eigenvalues represent the resonance frequencies of the probe–plasma system which are simply connected to the electron density. As an example, the result is applied to established probe designs: the spherical impedance probe and the multipole resonance probe. (paper)

  6. Nuclear magnetic resonance spectroscopy of single subnanoliter ova

    CERN Document Server

    Grisi, Marco; Guidetti, Roberto; Harris, Nicola; Boero, Giovanni

    2015-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is, in principle, a promising candidate to study the intracellular chemistry of single microscopic living entities. However, due to sensitivity limitations, NMR experiments were reported only on very few and relatively large single cells down to a minimum volume of 10 nl. Here we show NMR spectroscopy of single ova at volume scales (0.1 and 0.5 nl) where life development begins for a broad variety of animals, humans included. We demonstrate that the sensitivity achieved by miniaturized inductive NMR probes (few pmol of 1H nuclei in some hours at 7 T) is sufficient to observe chemical heterogeneities among subnanoliter ova of tardigrades. Such sensitivities should allow to non-invasively monitor variations of concentrated intracellular compounds, such as glutathione, in single mammalian zygotes.

  7. Resonance ionization mass spectroscopy for trace analysis of plutonium

    International Nuclear Information System (INIS)

    Trace amounts of plutonium are determined by means of resonance ionization mass spectroscopy (RIMS). Plutonium atoms evaporated from a heated filament are ionized via a three-step excitation leading to an autoionizing state. The ions are mass-selectively detected with a time-of-flight (TOF) mass spectrometer. Several types of filaments have been tested with respect to atomic yield after evaporation and reproducibility. The best results have been obtained using tantalum as backing and titanium as covering. An overall detection efficiency of 1·10-5 could be determined with such filaments yielding a detection limit of 2·106 atoms of 239Pu

  8. Resonance ionization mass spectroscopy for trace analysis of plutonium

    Science.gov (United States)

    Erdmann, N.; Albus, F.; Deiβenberger, R.; Eberhardt, K.; Funk, H.; Hasse, H.-U.; Herrmann, G.; Huber, G.; Kluge, H.-J.; Köhler, S.; Nunnemann, M.; Passler, G.; Trautmann, N.; Urban, F.-J.

    1995-04-01

    Trace amounts of plutonium are determined by means of resonance ionization mass spectroscopy (RIMS). Plutonium atoms evaporated from a heated filament are ionized via a three-step exciation leading to an autoionizing state. The ions are mass-selectively detected with a time-of-flight (TOF) mass spectrometer. Several types of filaments have been tested with respect to atomic yield after evaporation and reproducibility. The best results have been obtained using tantalum as backing and titanium as covering. An overall detection efficiency of 1ṡ10-5 could be determined with such filaments yielding a detection limit of 2ṡ106 atoms of 239Pu.

  9. Applications of nuclear magnetic resonance spectroscopy to certifiable food colors

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance spectroscopy was found suitable for the identification of individual colours, for distinguishing individual colours from colour mixtures, for the identification and semi-quantitative determination of the individual colours in mixtures and for proofs of the adulteration of certified colours adding noncertified colours. The method is well suited for observing the purity of colours and may also be used as the control method in the manufacture of colours and in assessing their stability and their resistance to increased temperature and light. (M.K.)

  10. Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators

    DEFF Research Database (Denmark)

    Yamada, Shoko; Schmid, Silvan; Larsen, Tom;

    2013-01-01

    -scale airborne samples. Airborne sample material is directly collected on the microstring with an efficient nondiffusion limited sampling method based on inertial impaction. Resonance frequency shifts, proportional to the absorbed heat in the microstring, are recorded as monochromatic IR light is scanned over...... the mid-infrared range. As a proof-of-concept, we sample and analyze polyvinylpyrrolidone (PVP) and the IR spectrum measured by photothermal spectroscopy matches the reference IR spectrum measured by an FTIR spectrometer. We further identify the organic surface coating of airborne TiO2 nanoparticles...

  11. Resonantly enhanced Bragg-scattering spectroscopy of an atomic transition

    Science.gov (United States)

    Yang, Xudong; Qiao, Cuifang; Li, Chuanliang; Chen, Fenghua

    2016-07-01

    A novel resonantly enhanced Bragg-scattering (REBS) spectroscopy from a population difference grating (PDG) is reported. The PDG is formed by a standing-wave (SW) pump field, which periodically modulates the space population distributions of two levels in the 87Rb D1 line. Then, a probe beam, having identical frequency and orthogonal polarization with the SW pump field, is Bragg-scattered by the PDG. The research achievement shows that the Bragg-scattered light is strongest at an atomic transition, and forms an REBS spectrum with a high signal-to-noise ratio and sub-natural linewidth. The observed REBS can be applied in precise frequency measurements.

  12. Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes

    CERN Document Server

    Flanagan, K T; Ruiz, R F Garcia; Budincevic, I; Procter, T J; Fedosseev, V N; Lynch, K M; Cocolios, T E; Marsh, B A; Neyens, G; Strashnov, I; Stroke, H H; Rossel, R E; Heylen, H; Billowes, J; Rothe, S; Bissell, M L; Wendt, K D A; de Groote, R P; De Schepper, S

    2013-01-01

    The magnetic moments and isotope shifts of the neutron-deficient francium isotopes Fr202-205 were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1\\% was measured for Fr-202. The background from nonresonant and collisional ionization was maintained below one ion in 10(5) beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to Fr-205, with a departure observed in Fr-203 (N = 116).

  13. Elastic properties of gamma-Pu by resonant ultrasound spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Migliori, Albert [Los Alamos National Laboratory; Betts, J [Los Alamos National Laboratory; Trugman, A [Los Alamos National Laboratory; Mielke, C H [Los Alamos National Laboratory; Mitchell, J N [Los Alamos National Laboratory; Ramos, M [Los Alamos National Laboratory; Stroe, I [WORXESTER, MA

    2009-01-01

    Despite intense experimental and theoretical work on Pu, there is still little understanding of the strange properties of this metal. We used resonant ultrasound spectroscopy method to investigate the elastic properties of pure polycrystalline Pu at high temperatures. Shear and longitudinal elastic moduli of the {gamma}-phase of Pu were determined simultaneously and the bulk modulus was computed from them. A smooth linear and large decrease of all elastic moduli with increasing temperature was observed. We calculated the Poisson ratio and found that it increases from 0.242 at 519K to 0.252 at 571K.

  14. Double-Resonance g Factor Measurements by Quantum Jump Spectroscopy

    OpenAIRE

    Quint, W; Nikoobakht, B.; Jentschura, U. D.

    2007-01-01

    With the advent of high-precision frequency combs that can bridge large frequency intervals, new possibilities have opened up for the laser spectroscopy of atomic transitions. Here, we show that laser spectroscopic techniques can also be used to determine the ground-state g factor of a bound electron: Our proposal is based on a double-resonance experiment, where the spin state of a ground-state electron is constantly being read out by laser excitation to the atomic L shell, while the spin fli...

  15. Magnetic resonance imaging and spectroscopy at ultra high fields

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Thomas

    2009-06-23

    The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were

  16. Magnetic resonance imaging and spectroscopy at ultra high fields

    International Nuclear Information System (INIS)

    The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were

  17. Simultaneous Surface Plasmon Resonance and X-ray Absorption Spectroscopy

    CERN Document Server

    Serrano, A; Collado, V; Rubio-Zuazo, J; Monton, C; Castro, G; García, M A

    2012-01-01

    We present here an experimental set-up to perform simultaneously measurements of surface plasmon resonance (SPR) and X-ray absorption spectroscopy (XAS) in a synchrotron beamline. The system allows measuring in situ and in real time the effect of X-ray irradiation on the SPR curves to explore the interaction of X-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to detect the changes in the electronic configuration of thin films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be carried out. The relative variations in the SPR and XAS spectra that can be detected with this set-up ranges from 10-3 to 10-5, depending on the particular experiment.

  18. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, A. [Instituto de Ceramica y Vidrio (ICV-CSIC), Cantoblanco, 28049 Madrid (Spain); Departamento de Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Rodriguez de la Fuente, O. [Departamento de Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Collado, V.; Rubio-Zuazo, J.; Castro, G. R. [SpLine, Spanish CRG Beamline at the ESRF, F-38043 Grenoble, Cedex 09, France and Instituto de Ciencia de Materiales de Madrid, (ICMM-CSIC), Cantoblanco, 28049 Madrid (Spain); Monton, C. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, California 92093 (United States); Garcia, M. A. [Instituto de Ceramica y Vidrio (ICV-CSIC), Cantoblanco, 28049 Madrid (Spain); IMDEA Nanociencia, Cantoblanco, 28049 Madrid (Spain)

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  19. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    Science.gov (United States)

    Serrano, A.; Rodríguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Monton, C.; Castro, G. R.; García, M. A.

    2012-08-01

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10-3 to 10-5, depending on the particular experiment.

  20. Identification of irradiated chicken meat using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Studies were carried out on detection of irradiation treatment in chicken using electron spin resonance (ESR) spectroscopy. The effect of gamma- irradiation treatment on radiation induced signal in different types of chicken namely, broiler, deshi and layers was studied. Irradiation treatment induced a characteristic ESR signal that was not detected in non-irradiated samples. The shape of the signal was not affected by type of the bone. The intensity of radiation induced ESR signal was affected by factors such as absorbed radiation dose, bone type irradiation temperature, post-irradiation storage, post-irradiation cooking and age of the bird. Deep-frying resulted in the formation of a symmetric signal that had a different shape and was weaker than the radiation induced signal. This technique can be effectively used to detect irradiation treatment in bone-in chicken meat even if stored and/or subjected to various traditional cooking procedures. (author)

  1. Authentication of Medicines Using Nuclear Quadrupole Resonance Spectroscopy.

    Science.gov (United States)

    Chen, Cheng; Zhang, Fengchao; Barras, Jamie; Althoefer, Kaspar; Bhunia, Swarup; Mandal, Soumyajit

    2016-01-01

    The production and sale of counterfeit and substandard pharmaceutical products, such as essential medicines, is an important global public health problem. We describe a chemometric passport-based approach to improve the security of the pharmaceutical supply chain. Our method is based on applying nuclear quadrupole resonance (NQR) spectroscopy to authenticate the contents of medicine packets. NQR is a non-invasive, non-destructive, and quantitative radio frequency (RF) spectroscopic technique. It is sensitive to subtle features of the solid-state chemical environment and thus generates unique chemical fingerprints that are intrinsically difficult to replicate. We describe several advanced NQR techniques, including two-dimensional measurements, polarization enhancement, and spin density imaging, that further improve the security of our authentication approach. We also present experimental results that confirm the specificity and sensitivity of NQR and its ability to detect counterfeit medicines.

  2. Review: Magnetic Resonance Spectroscopy Studies of Pediatric Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Douglas G. Kondo

    2011-01-01

    Full Text Available Introduction. This paper focuses on the application of Magnetic Resonance Spectroscopy (MRS to the study of Major Depressive Disorder (MDD in children and adolescents. Method. A literature search using the National Institutes of Health's PubMed database was conducted to identify indexed peer-reviewed MRS studies in pediatric patients with MDD. Results. The literature search yielded 18 articles reporting original MRS data in pediatric MDD. Neurochemical alterations in Choline, Glutamate, and N-Acetyl Aspartate are associated with pediatric MDD, suggesting pathophysiologic continuity with adult MDD. Conclusions. The MRS literature in pediatric MDD is modest but growing. In studies that are methodologically comparable, the results have been consistent. Because it offers a noninvasive and repeatable measurement of relevant in vivo brain chemistry, MRS has the potential to provide insights into the pathophysiology of MDD as well as the mediators and moderators of treatment response.

  3. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M. Iqbal; Rahman, Atta-ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using 1H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  4. Resonant and Time-Resolved Spin Noise Spectroscopy

    Science.gov (United States)

    Song, Xinlin; Pursley, Brennan; Sih, Vanessa

    Spin noise spectroscopy is a technique which can probe the system while it remains in equilibrium. It was first demonstrated in atomic gases and then in solid state systems. Most existing spin noise measurement setups digitize the spin fluctuation signal and then analyze the power spectrum. Recently, pulsed lasers have been used to expand the bandwidth of accessible dynamics and allow direct time-domain correlation measurements. Here we develop and test a model for ultrafast pulsed laser spin noise measurements as well as a scheme to measure spin lifetimes longer than the laser repetition period. For the resonant spin noise technique, analog electronics are used to capture correlations from the extended pulse train, and the signal at a fixed time delay is measured as a function of applied magnetic field.

  5. Ultrasonic Resonance Spectroscopy of Composite Rims for Flywheel Rotors

    Science.gov (United States)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform (FFT) on the frequency response spectrum. In addition, the system is capable of equalizing the amount of energy at each frequency. Equalization of the frequency spectrum, along with interpretation of the second FFT, aids in the evaluation of the fundamental frequency. The frequency responses from multilayered material samples, with and without known defects, were analyzed to assess the capabilities and limitations of this nondestructive evaluation technique for material characterization and defect detection. Amplitude and frequency changes were studied from ultrasonic responses of thick composite rings and a multiring composite rim. A composite ring varying in thickness was evaluated to investigate the full thickness resonance. The frequency response characteristics from naturally occurring voids in a composite ring were investigated. Ultrasonic responses were compared from regions with and without machined voids in a composite ring and a multiring composite rim. Finally, ultrasonic responses from the multiring composite rim were compared before and after proof spin testing to 63,000 rpm.

  6. In vivo magnetic resonance spectroscopy; In vivo magnetisk resonansspektroskopi

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Inger Johanne; Skjetne, Tore; Gribbestad, Ingrid S.; Kvistad, Kjell Arne

    2002-07-01

    Magnetic resonance tomography (MR) has become a highly useful tool for diagnostic imaging. The technology is in a process of rapid development with new and better methods emerging for the imaging of anatomic and pathologic aspects. With some additional equipment, the MR instrument may also be used for in vivo magnetic resonance spectroscopy (MRS). In vivo MRS provides biochemical information about metabolites in a given tissue volume. This type of biochemical information can be extracted from volumes the size of a sugar lump within a recording period of about five minutes. New technologies also allow extracting such information from several volumes during one recording in which the information is processed as metabolic pictures. The method has found clinical applications in several fields, including the evaluation of brain tumours and epilepsy. The use of in vivo MRS will probably increase in the years ahead, especially, perhaps, for the follow-up of various therapeutic regimens. All suppliers of MR equipment now provide in vivo MRS sets and routines for recording and data analysis have become very user-friendly. (author)

  7. Active plasma resonance spectroscopy: A functional analytic description

    CERN Document Server

    Lapke, Martin; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2012-01-01

    The term "Active Plasma Resonance Spectroscopy" refers to a class of diagnostic methods which employ the ability of plasmas to resonate on or near the plasma frequency. The basic idea dates back to the early days of discharge physics: An signal in the GHz range is coupled to the plasma via an electrical probe; the spectral response is recorded, and then evaluated with a mathematical model to obtain information on the electron density and other plasma parameters. In recent years, the concept has found renewed interest as a basis of industry compatible plasma diagnostics. This paper analyzes the diagnostics technique in terms of a general description based on functional analytic (or Hilbert Space) methods which hold for arbitrary probe geometries. It is shown that the response function of the plasma-probe system can be expressed as a matrix element of the resolvent of an appropriately defined dynamical operator. A specialization of the formalism for a symmetric probe desing is given, as well as an interpreation...

  8. Frequency-selective analysis of multichannel magnetic resonance spectroscopy data.

    Science.gov (United States)

    Sandgren, Niclas; Stoica, Petre

    2005-01-01

    In several practical magnetic resonance spectroscopy (MRS) applications the user is interested only in the spectral content of a specific frequency band of the spectrum. A frequency-selective (or sub-band) method estimates only the parameters of those spectroscopic components that lie in a pre-selected frequency band of the spectrum in a computationally efficient manner. Multichannel MRS is a technique that employs phased-array receive coils to increase the signal-to-noise ratio (SNR) in the spectra by combining several simultaneous measurements of the magnetic resonance (MR) relaxation of an excited sample. In this paper we suggest a frequency-selective multichannel parameter estimation approach that combines the appealing features (high speed and improved SNR) of the two techniques above. The presented method shows parameter estimation accuracies comparable to those of existing fullband multichannel techniques in the high SNR case, but at a considerably lower computational complexity, and significantly better parameter estimation accuracies in low SNR scenarios. PMID:17282712

  9. Clinical magnetic resonance spectroscopy of the central nervous system.

    Science.gov (United States)

    Ratai, Eva-Maria; Gilberto González, R

    2016-01-01

    Proton magnetic resonance spectroscopy (1H MRS) is a noninvasive imaging technique that can easily be added to the conventional magnetic resonance (MR) imaging sequences. Using MRS one can directly compare spectra from pathologic or abnormal tissue and normal tissue. Metabolic changes arising from pathology that can be visualized by MRS may not be apparent from anatomy that can be visualized by conventional MR imaging. In addition, metabolic changes may precede anatomic changes. Thus, MRS is used for diagnostics, to observe disease progression, monitor therapeutic treatments, and to understand the pathogenesis of diseases. MRS may have an important impact on patient management. The purpose of this chapter is to provide practical guidance in the clinical application of MRS of the brain. This chapter provides an overview of MRS-detectable metabolites and their significance. In addition some specific current clinical applications of MRS will be discussed, including brain tumors, inborn errors of metabolism, leukodystrophies, ischemia, epilepsy, and neurodegenerative diseases. The chapter concludes with technical considerations and challenges of clinical MRS. PMID:27432661

  10. Phosphorus magnetic resonance spectroscopy in malformations of cortical development

    Directory of Open Access Journals (Sweden)

    Celi Santos Andrade

    2013-07-01

    Full Text Available Introduction Malformations of cortical development (MCD result from disruptions in the dynamic process of cerebral corticogenesis and are important causes of epilepsy, motor deficits and cognitive impairment. Objectives The aim of this study was to evaluate phospholipids metabolism in vivo in a series of patients with epilepsy and MCD. Methods Thirty-seven patients with MCD and 31 control subjects were studied using three-dimensional phosphorus magnetic resonance spectroscopy (31P-MRS at a 3.0 T scanner. Quantification methods were applied to the following resonances: phosphoethanolamine (PE, phosphocholine (PC, glycerophosphoethanolamine (GPE, glycerophosphocholine (GPC, inorganic phosphate (Pi, phosphocreatine (PCr, and a-, b-, and g-adenosine triphosphate (ATP. The magnesium (Mg2+ levels and pH were calculated based on PCr, Pi and b-ATP chemical shifts. Results Compared to controls, the MCD lesions exhibited lower pH values and higher Mg2+ levels (p<0.05. The lesions also presented significant reduction of GPC and PDE, and an increased PME/PDE ratio. The otherwise normal appearing parenchyma also demonstrated lower pH values in the frontoparietal cortex and bilateral centrum semiovale. Conclusions Our data support the idea that metabolic impairments occur in the lesions of MCD, with propagation to remote normal appearing parenchyma. The results also suggest that there are membrane turnover disturbances in MCD lesions.

  11. Recent advances and future trends in neutron resonance spectroscopy

    International Nuclear Information System (INIS)

    Neutron resonance spectroscopy contributes primarily to two areas of nuclear physics: 1.) in medium weight and heavy nuclei with a high level density it tests their statistical properties, and 2.) in nuclei with a sufficiently low level density, i.e. light nuclei (A ≤ 50) and nuclei around /sup 208/Pb, it investigates nuclear structure at several MeV excitation energy. In the first field, recent years have seen growing knowledge and understanding of nuclear level densities and their spin and parity dependence. Several questions basic to the statistical properties of nuclei, although extensively studied in the past, are still open: the statistical distribution of partial widths; possible narrow energy variations of the average partial widths; and correlations between partial widths for different reaction channels. The major progress has occurred and will continue to take place in the field of light nuclei: improved resolution of neutron time-of-flight spectrometers yields detailed resonance data over an extended energy range, and model calculations become possible which will allow detailed comparison to experimental data. The main subjects of interest are the distributions of neutron, as well as radiative strengths and their interpretation in terms of nuclear structure

  12. Recent advances and future trends in neutron resonance spectroscopy

    International Nuclear Information System (INIS)

    Neutron resonance spectroscopy contributes primarily to two areas of nuclear physics: In medium weight and heavy nuclei with a high level density it tests their statistical properties; in nuclei with a sufficiently low level density, i.e. light nuclei (A 208Pb, it investigates nuclear structure at several MeV excitation energy. In the first field, recent years have seen growing knowledge and understanding of nuclear level densities and their spin and parity dependence. Several questions basic to the statistical properties of nuclei, although extensively studied in the past, are still open: the statistical distribution of partial widths; possible narrow energy variations of the average partial widths; and correlations between partial widths for different reaction channels. The major progress has occured and will continue to take place in the field of light nuclei: Improved resolution of neutron time-of-flight spectrometers yields detailed resonance data over an extended energy range, and model calculations become possible which will allow detailed comparison to experimental data. The main subjects of interest are the distributions of neutron- as well as radiative strengths and their interpretation in terms of nuclear structure. (author)

  13. Collinear resonant ionization laser spectroscopy of rare francium isotopes

    CERN Multimedia

    Neyens, G; Flanagan, K; Rajabali, M M; Le blanc, F M; Ware, T; Procter, T J

    2008-01-01

    We propose a programme of collinear resonant ionization spectroscopy (CRIS) of the francium isotopes up to and including $^{201}$Fr and $^{218,219}$Fr. This work aims at answering questions on the ordering of quantum states, and effect of the ($\\pi s_{1/2}^{-1}$)1/2$^{+}$ intruder state, which is currently believed to be the ground state of $^{199}$Fr. This work will also study the edge of the region of reflection asymmetry through measurement of the moments and radii of $^{218,219}$Fr. This proposal forms the first part of a series of experiments that will study nuclei in this region of the nuclear chart. Based on the success of this initial proposal it is the intention of the collaboration to perform high resolution measurements on the isotopes of radium and radon that surround $^{201}$Fr and $^{218}$Fr and thus providing a comprehensive description of the ground state properties of this region of the nuclear chart. Recent in-source spectroscopy measurements of lead, bismuth and polonium have demonstrated a...

  14. In vivo magnetic resonance spectroscopy of liver tumors and metastases

    Institute of Scientific and Technical Information of China (English)

    EGW ter Voert; L Heijmen; HWM van Laarhoven; A Heerschap

    2011-01-01

    Primary liver cancer is the fifth most common malignancy in men and the eighth in women worldwide. The liver is also the second most common site for metastatic spread of cancer. To assist in the diagnosis of these liver lesions non-invasive advanced imaging techniques are desirable. Magnetic resonance (MR) is commonly used to identify anatomical lesions, but it is a very versatile technique and also can provide specific information on tumor pathophysiology and metabolism,in particular with the application of MR spectroscopy (MRS). This may include data on the type, grade and stage of tumors, and thus assist in further management of the disease. The purpose of this review is to summarize and discuss the available literature on proton, phosphorus and carbon-13-MRS as performed on primary liver tumors and metastases, with human applications as the main perspective. Upcoming MRS approaches with potential applications to liver tumors are also included. Since knowledge of some technical background is indispensable to understand the results, a basic introduction of MRS and some technical issues of MRS as applied to tumors and metastases in the liver are described as well. In vivo MR spectroscopy of tumors in a metabolically active organ such as the liver has been demonstrated to provide important information on tumor metabolism, but it also is challenging as compared to applications on some other tissues, in particular in humans, mostly because of its abdominal location where movement may be a disturbing factor.

  15. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique

  16. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-07-01

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.

  17. Characterization of human breast disease using phosphorus magnetic resonance spectroscopy and proton magnetic resonance imaging

    International Nuclear Information System (INIS)

    This thesis provides the fundamental characterization and differentiation of breast tissues using in vivo and ex vivo MR techniques in the hope that these techniques and experimental findings will be used on a larger scale and in a predictive manner in order to improve the specificity of diagnosis and treatment of breast cancer. In this dissertation, clinical studies were performed using proton magnetic resonance imaging and phosphorus magnetic resonance spectro-scopy (31P MRS) to characterize and differentiate malignant breast tumors, benign breast tumors and normal breast tissues in vivo. These studies were carried out following the methodical characterization of chemical extracts of malignant breast tumor, benign breast tumor and normal breast parenchymal surgical tissue specimens using high resolution 31P MRS. Alterations in breast tissue metabolism, as a result of pathological processes, were postulated to be responsible for measurable differences between malignant breast tumors, benign breast tumors and normal breast tissues using magnetic resonance techniques. (author). 365 refs.; 37 figs.; 25 tabs

  18. 1H magnetic resonance spectroscopy of the prostate

    International Nuclear Information System (INIS)

    To provide a brief summary of important technical and biochemical aspects and current clinical applications of magnetic resonance spectroscopy (MRS) of the prostate.Material and methods Pertinent radiological and biochemical literature was searched and retrieved via electronic media (medline trademark, pubmed trademark). Basic concepts of MRS of the prostate and its clinical applications were extracted to provide an overview. The prostate lends itself to MRS due to its unique production, storage, and secretion of citrate. While healthy prostate tissue demonstrates high levels of citrate and low levels of choline that marks cell wall turnover, prostate cancer (PCA) utilizes citrate for energy metabolism and shows high levels of choline. The ratio of (choline + creatine)/citrate differentiates healthy prostate tissue and PCA. The combination of magnetic resonance imaging (MRI) and 3-dimensional MRS (3D-MRSI or 3D-CSI) of the prostate localizes PCA to a sextant of the peripheral zone of the prostate with sensitivity/specificity of up to 80/80%. Combined MRI and 3D-MRSI exceed the sensitivity and specificity of sextant biopsy of the prostate. When MRS and MRI agree on PCA presence, the positive predictive value is about 90%. In principle, combined MRI and 3D-MRSI recognize and localize remnant or recurrent cancer after hormone therapy, radiation therapy and cryo-surgery. Since it is non-invasive and radiation-free, combined MRI and 3D-MRSI lends itself to the planning of prostate biopsy and therapy as well as to post-therapeutic follow-up. For broad clinical application, it will be necessary to facilitate MRS examinations and their evaluation and make MRS available to a wider range of institutions. (orig.)

  19. Magnetic resonance spectroscopy imaging characteristics of cerebral Blastomycosis

    Directory of Open Access Journals (Sweden)

    Jay A Vachhani

    2014-01-01

    Full Text Available Background: Blastomycosis is a dimorphic fungus that is endemic to the midwest and southwestern United States. Involvement of the central nervous system (CNS is thought to only represent 5-10% of cases of disseminated Blastomycosis. Case Description: A 54-year-old Caucasian female presented to the Neurosurgery service with a 1-day history of progressive right sided hemiparesis. Magnetic resonance imaging (MRI demonstrated a 2 × 4 cm heterogeneous intracranial mass lesion involving the left motor cortex and extending into the ipsilateral parietal lobe. Single-voxel magnetic resonance spectroscopy (MRS over the enhancing area demonstrated diminished N-acetyl aspartate (NAA to creatine ratio (1.10, normal choline to NAA ratio (0.82, normal choline to creatine ratio (0.9, and a diminished myoinositol to creatine ratio (0.39. There appeared to be peaks between 3.6 and 3.8 ppm over the enhancing area that were not present in the contralateral normal brain and thought to represent a "trehalose" peak. Due to worsening symptoms and uncertain preoperative diagnosis, the patient underwent a left fronto-parietal craniotomy for open surgical biopsy with possible resection approximately one month after presentation. Pathological analysis confirmed the diagnosis of Blastomycosis. Conclusion: We present the second documented case of intracranial Blastomycosis with MRS imaging. There appears to be a characteristic peak between 3.6 and 3.8 ppm that is thought to represent a "trehalose" peak. This peak is rather specific to fungi and can be helpful in differentiating fungal abscesses from pyogenic abscesses and malignant neoplasms.

  20. Resolution Improvement in Multidimensional Nuclear Magnetic Resonance Spectroscopy of Proteins

    International Nuclear Information System (INIS)

    The work presented in this thesis is concerned with both liquid-state and solid-state nuclear magnetic resonance (NMR) spectroscopy. Most of this work is devoted to the investigation by solid-state NMR of C13-enriched compounds with the principal aim of presenting techniques devised for further improving the spectral resolution in multidimensional NMR of microcrystalline proteins. In fully C13-labelled compounds, the J-coupling induces a broadening of the carbon lineshapes. We show that spin-state-selective technique called IPAP can be successfully combined with standard polarisation transfer schemes in order to remove the J-broadening in multidimensional solid-state NMR correlation experiments of fully C13-enriched proteins. We present subsequently two techniques tailored for liquid-state NMR spectroscopy. The carbon directly detected techniques provide chemical shift information for all backbone hetero-nuclei. They are very attracting for the study of large bio-molecular systems or for the investigation of paramagnetic proteins. In the last part of this thesis, we study the spin-echo J-modulation for homonuclear two-spin 1/2 systems. Under magic-angle spinning, the theory of J-induced spin-echo modulation allows to derive a set of modulation regimes which give a spin-echo modulation exactly equal to the J-coupling. We show that the chemical-shift anisotropy and the dipolar interaction tend to stabilize the spin-echo J-modulation. The theoretical conclusions are supported by numerical simulations and experimental results obtained for three representative samples containing C13 spin pairs. (author)

  1. RIS [Resonance Ionization Spectroscopy] applications to particle physics

    International Nuclear Information System (INIS)

    Resonance Ionization Spectroscopy, RIS, is a process in which valence electrons can be removed from a laser wavelength selected atom with nearly unit efficiency. The selectivity-sensitivity of RIS is an important joint property, making possible a range of new analytical capabilities. Thus, RIS has been combined with mass spectrometers for the Z-selective and A-selective counting of individual noble gas atoms or atoms ejected from solids by ion or laser sputtering. This presentation will concentrate on the noble gas analysis and describe the capability at Atom Sciences for counting Kr atoms with isotopic selectivity. An update will be given on the feasibility of a proposed solar neutrino experiment, in which 81Kr is produced by interaction with 81Br. Double beta-decay can product 82Kr from the decay of 82Se, and this experiment may also be feasible. Finally, 81Kr is useful for dating old groundwater, since the half-life is 200,000 years

  2. Tetrachloridocuprates(II—Synthesis and Electron Paramagnetic Resonance (EPR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Peter Strauch

    2012-02-01

    Full Text Available Ionic liquids (ILs on the basis of metal containing anions and/or cations are of interest for a variety of technical applications e.g., synthesis of particles, magnetic or thermochromic materials. We present the synthesis and the results of electron paramagnetic resonance (EPR spectroscopic analyses of a series of some new potential ionic liquids based on tetrachloridocuprates(II, [CuCl4]2−, with different sterically demanding cations: hexadecyltrimethylammonium 1, tetradecyltrimethylammonium 2, tetrabutylammonium 3 and benzyltriethylammonium 4. The cations in the new compounds were used to achieve a reasonable separation of the paramagnetic Cu(II ions for EPR spectroscopy. The EPR hyperfine structure was not resolved. This is due to the exchange broadening, resulting from still incomplete separation of the paramagnetic Cu(II centers. Nevertheless, the principal values of the electron Zeemann tensor (g║ and g┴ of the complexes could be determined. Even though the solid substances show slightly different colors, the UV/Vis spectra are nearly identical, indicating structural changes of the tetrachloridocuprate moieties between solid state and solution. The complexes have a promising potential e.g., as high temperature ionic liquids, as precursors for the formation of copper chloride particles or as catalytic paramagnetic ionic liquids.

  3. Batch-specific discrimination using nuclear quadrupole resonance spectroscopy.

    Science.gov (United States)

    Kyriakidou, Georgia; Jakobsson, Andreas; Althoefer, Kaspar; Barras, Jamie

    2015-04-01

    In this paper, we report on the identification of batches of analgesic paracetamol (acetaminophen) tablets using nitrogen-14 nuclear quadrupole resonance spectroscopy ((14)N NQR). The high sensitivity of NQR to the electron charge distribution surrounding the quadrupolar nucleus enables the unique characterization of the crystal structure of the material. Two hypothesis were tested on batches of the same brand: the within the same batch variability and the difference between batches that varied in terms of their batch number and expiry date. The multivariate analysis of variance (MANOVA) did not provide any within-batches variations, indicating the natural deviation of a medicine manufactured under the same conditions. Alternatively, the statistical analysis revealed a significant discrimination between the different batches of paracetamol tablets. Therefore, the NQR signal is an indicator of factors that influence the physical and chemical integrity of the material. Those factors might be the aging of the medicine, the manufacturing, or storage conditions. The results of this study illustrate the potential of NQR as promising technique in applications such as detection and authentication of counterfeit medicines.

  4. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  5. Acoustic Resonance Spectroscopy (ARS) Munition Classification System enhancements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vela, O.A.; Huggard, J.C.

    1997-09-18

    Acoustic Resonance Spectroscopy (ARS) is a non-destructive evaluation technology developed at the Los Alamos National Laboratory (LANL). This technology has resulted in three generations of instrumentation, funded by the Defense Special Weapons Agency (DSWA), specifically designed for field identification of chemical weapon (CW) munitions. Each generation of ARS instrumentation was developed with a specific user in mind. The ARS1OO was built for use by the U.N. Inspection Teams going into Iraq immediately after the Persian Gulf War. The ARS200 was built for use in the US-Russia Bilateral Chemical Weapons Treaty (the primary users for this system are the US Onsite Inspection Agency (OSIA) and their Russian counterparts). The ARS300 was built with the requirements of the Organization for the Prohibition of Chemical Weapons (OPCW) in mind. Each successive system is an improved version of the previous system based on learning the weaknesses of each and, coincidentally, on the fact that more time was available to do a requirements analysis and the necessary engineering development. The ARS300 is at a level of development that warrants transferring the technology to a commercial vendor. Since LANL will supply the computer software to the selected vendor, it is possible for LANL to continue to improve the decision algorithms, add features where necessary, and adjust the user interface before the final transfer occurs. This paper describes the current system, ARS system enhancements, and software enhancements. Appendices contain the Operations Manual (software Version 3.01), and two earlier reports on enhancements.

  6. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery.

  7. Krypton isotope analysis using near-resonant stimulated Raman spectroscopy

    International Nuclear Information System (INIS)

    A method for measuring low relative abundances of 85Kr in one liter or less samples of air has been under development here at Pacific Northwest Laboratory. The goal of the Krypton Isotope Laser Analysis (KILA) method is to measure ratios of 10-10 or less of 85Kr to more abundant stable krypton. Mass spectrometry and beta counting are the main competing technologies used in rare-gas trace analysis and are limited in application by such factors as sample size, counting times, and selectivity. The use of high-resolution lasers to probe hyperfine levels to determine isotopic abundance has received much attention recently. In this study, we report our progress on identifying and implementing techniques for trace 85Kr analysis on small gas samples in a static cell as well as limitations on sensitivity and selectivity for the technique. High-resolution pulsed and cw lasers are employed in a laser-induced fluorescence technique that preserves the original sample. This technique, is based on resonant isotopic depletion spectroscopy (RIDS) in which one isotope is optically depleted while preserving the population of a less abundant isotope. The KILA method consists of three steps. In the first step, the 1s5 metastable level of krypton is populated via radiative cascade following two-photon excitation of the 2p6 energy level. Next, using RBDS, the stable krypton isotopes are optically depleted to the ground state through the 1s4 level with the bulk of the 85Kr population being preserved. Finally, the remaining metastable population is probed to determine 85Kr concentration. The experimental requirements for each of these steps are outlined below

  8. Proton magnetic resonance spectroscopy in 22q11 deletion syndrome.

    Directory of Open Access Journals (Sweden)

    Fabiana da Silva Alves

    Full Text Available OBJECTIVE: People with velo-cardio-facial syndrome or 22q11 deletion syndrome (22q11DS have behavioral, cognitive and psychiatric problems. Approximately 30% of affected individuals develop schizophrenia-like psychosis. Glutamate dysfunction is thought to play a crucial role in schizophrenia. However, it is unknown if and how the glutamate system is altered in 22q11DS. People with 22q11DS are vulnerable for haploinsufficiency of PRODH, a gene that codes for an enzyme converting proline into glutamate. Therefore, it can be hypothesized that glutamatergic abnormalities may be present in 22q11DS. METHOD: We employed proton magnetic resonance spectroscopy ((1H-MRS to quantify glutamate and other neurometabolites in the dorsolateral prefrontal cortex (DLPFC and hippocampus of 22 adults with 22q11DS (22q11DS SCZ+ and without (22q11DS SCZ- schizophrenia and 23 age-matched healthy controls. Also, plasma proline levels were determined in the 22q11DS group. RESULTS: We found significantly increased concentrations of glutamate and myo-inositol in the hippocampal region of 22q11DS SCZ+ compared to 22q11DS SCZ-. There were no significant differences in levels of plasma proline between 22q11DS SCZ+ and 22q11DS SCZ-. There was no relationship between plasma proline and cerebral glutamate in 22q11DS. CONCLUSION: This is the first in vivo(1H-MRS study in 22q11DS. Our results suggest vulnerability of the hippocampus in the psychopathology of 22q11DS SCZ+. Altered hippocampal glutamate and myo-inositol metabolism may partially explain the psychotic symptoms and cognitive impairments seen in this group of patients.

  9. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery. PMID:27294925

  10. 1H magnetic resonance spectroscopy of the brain in paediatrics: The diagnosis of creatine deficiencies

    NARCIS (Netherlands)

    Sijens, P.E.; Oudkerk, M.

    2005-01-01

    The diagnosis of creatine deficiencies, a paediatric application of magnetic resonance spectroscopy that has already become a diagnostic tool in clinical practice, is reviewed and illustrated with results from recent examinations

  11. Magnetic resonance spectroscopy in mild cognitive impairment : Systematic review and meta-analysis

    NARCIS (Netherlands)

    Tumati, Shankar; Martens, Sander; Aleman, Andreas

    2013-01-01

    Research using proton magnetic resonance spectroscopy (MRS) can potentially elucidate metabolite changes representing early degeneration in Mild Cognitive Impairment (MCI), an early stage of dementia. We integrated the published literature using meta-analysis to identify patterns of metabolite chang

  12. On-Resonance Fluorescence, Resonance Rayleigh Scattering, and Ratiometric Resonance Synchronous Spectroscopy of Molecular- and Quantum Dot-Fluorophores.

    Science.gov (United States)

    Siriwardana, Kumudu; Nettles, Charles B; Vithanage, Buddhini C N; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao

    2016-09-20

    Existing studies on molecular fluorescence have almost exclusively been focused on Stokes-shifted fluorescence spectroscopy (SSF) in which the emitted photon is detected at the wavelengths longer than that for the excitation photons. Information on fluorophore on-resonance fluorescence (ORF) and resonance Rayleigh scattering (RRS) is limited and often problematic due to the complex interplay of the fluorophore photon absorption, ORF emission, RRS, and solvent Rayleigh scattering. Reported herein is a relatively large-scale systematic study on fluorophore ORF and RRS using the conventional UV-vis extinction and SSF measurements in combination with the recently reported ratiometric resonance synchronous spectroscopic (R2S2, pronounced as "R-Two-S-Two") method. A series of fundamental parameters including fluorophore ORF cross sections and quantum yields have been quantified for the first time for a total of 12 molecular and 6 semiconductor quantum dot (QD) fluorophores. All fluorophore spectra comprise a well-defined Gaussian peak with a full width at half-maximum ranging from 4 to 30 nm. However, the RRS features of fluorophores differ drastically. The effect of fluorophore aggregation on its RRS, UV-vis, R2S2, and SSF spectra was also discussed. This work highlights the critical importance of the combined UV-vis extinction, SSF, and R2S2 spectroscopic measurements for material characterizations. The method and insights described in this work can be directly used for improving the reliability of RRS spectroscopic methods in chemical analysis. In addition, it should pave the way for developing novel R2S2-based analytical applications.

  13. High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

    Science.gov (United States)

    Cocolios, T. E.; de Groote, R. P.; Billowes, J.; Bissell, M. L.; Budinčević, I.; Day Goodacre, T.; Farooq-Smith, G. J.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Heylen, H.; Kron, T.; Li, R.; Lynch, K. M.; Marsh, B. A.; Neyens, G.; Rossel, R. E.; Rothe, S.; Smith, A. J.; Stroke, H. H.; Wendt, K. D. A.; Wilkins, S. G.; Yang, X.

    2016-06-01

    The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219,221 Fr, and has measured isotopes as short lived as 5 ms with 214 Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of single-isotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems.

  14. MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY IN A MOUSE MODEL OF SCHIZOPHRENIA

    OpenAIRE

    Torres, German; Hallas, Brian H.; Gross, Kenneth W.; Spernyak, Joseph A.; Horowitz, Judith M.

    2007-01-01

    Metabolic brain abnormalities, as demonstrated by 1H-magnetic resonance spectroscopy techniques, are common occurrences in adult schizophrenia. As mice share important biochemical and genomic similarities with humans, we tested whether brain metabolic abnormalities also occur in a transgenic mouse model of schizophrenia. In vivo 1H-magnetic resonance spectroscopy at 4.7 T of the chakragati mouse brain revealed abnormalities in relative levels of choline 3.20 ppm and N-acetylaspartate 2.01 ppm...

  15. Human cerebral osmolytes during chronic hyponatremia. A proton magnetic resonance spectroscopy study.

    OpenAIRE

    Videen, J S; Michaelis, T.; Pinto, P; Ross, B. D.

    1995-01-01

    The pathogenesis of morbidity associated with hyponatremia is postulated to be determined by the state of intracellular cerebral osmolytes. Previously inaccessible, these metabolites can now be quantitated by proton magnetic resonance spectroscopy. An in vivo quantitative assay of osmolytes was performed in 12 chronic hyponatremic patients (mean serum sodium 120 meq/liter) and 10 normal controls. Short echo time proton magnetic resonance spectroscopy of occipital gray and parietal white matte...

  16. In-source resonance ionization spectroscopy of high lying energy levels in atomic uranium

    International Nuclear Information System (INIS)

    In-source resonance ionization spectroscopy of uranium has been carried out as preparation for the analysis of low contaminations of nuclear material in environmental samples via laser mass spectrometry. Using three-step resonance ionization spectroscopy, 86 levels of odd parity in the energy range from 37,200-38,650 cm-1 were studied, 51 of these levels were previously unknown. Suitable excitation schemes for analytic applications are discussed.

  17. In-source resonance ionization spectroscopy of high lying energy levels in atomic uranium

    Science.gov (United States)

    Raeder, Sebastian; Fies, Silke; Gottwald, Tina; Mattolat, Christoph; Rothe, Sebastian; Wendt, Klaus

    2010-02-01

    In-source resonance ionization spectroscopy of uranium has been carried out as preparation for the analysis of low contaminations of nuclear material in environmental samples via laser mass spectrometry. Using three-step resonance ionization spectroscopy, 86 levels of odd parity in the energy range from 37,200-38,650 cm - 1 were studied, 51 of these levels were previously unknown. Suitable excitation schemes for analytic applications are discussed.

  18. In-source resonance ionization spectroscopy of high lying energy levels in atomic uranium

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Sebastian, E-mail: raeder@uni-mainz.de; Fies, Silke; Gottwald, Tina; Mattolat, Christoph [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany); Rothe, Sebastian [CERN, Engineering Department (Switzerland); Wendt, Klaus [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany)

    2010-02-15

    In-source resonance ionization spectroscopy of uranium has been carried out as preparation for the analysis of low contaminations of nuclear material in environmental samples via laser mass spectrometry. Using three-step resonance ionization spectroscopy, 86 levels of odd parity in the energy range from 37,200-38,650 cm{sup -1} were studied, 51 of these levels were previously unknown. Suitable excitation schemes for analytic applications are discussed.

  19. Dysembryoplastic neuroepithelial tumors: magnetic resonance imaging and magnetic resonance spectroscopy evaluation

    Institute of Scientific and Technical Information of China (English)

    YU Ai-hong; CHEN Li; LI Yong-jie; ZHANG Guo-jun; LI Kun-cheng; WANG Yu-ping

    2009-01-01

    Background Dysembryoplastic neuroepithelial tumor (DNT) is a rare benign neoplasm of the central nervous system affecting young people. A correct preoperative diagnosis is helpful for planning surgical strategies and improving prognosis. The purpose of this study was to characterize DNTs using magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) and to analyze the value of these two techniques in the diagnosis of DNTs.Methods MR images of 13 patients with DNTs were reviewed retrospectively; and five of the patients also underwent MRS. Tumors were confirmed by surgery. The distribution, extension and signal features of the lesions were assessed,and the MRS results were analyzed.Results All tumors were supratentorial. The cortex was the main area involved, with nine tumors located in the temporal lobe, three in the frontal lobe, and one on the boundary between the temporal and occipital lobes. All cases had decreased signal intensity on T1-weighted MR images and increased signal intensity on T2-weighted images. On fluid attenuated inversion recovery weighted images, the hyperintense "ring sign" and internal septation of the lesion were seen in 9 cases. Eight tumors had well-demarcated borders. Peritumoral edema or mass effect was absent in all cases. A contrast enhancement examination was performed in 9 cases. Contrast enhancement was absent in five cases, and four cases showed significant enhancement. The MRS showed a low N-acetylaspartate peak and a lack of elevated choline-containing component (Cho) or Cho-Cr ratio (Cho/Cr) in five patients.Conclusions The MRI findings of DNTs were stereotypical. The combination of MRI and MRS techniques were helpful in making a correct presurgical diagnosis.

  20. Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy

    DEFF Research Database (Denmark)

    Miroshnichenko, A. E.; Flach, S.; Fistul, M.;

    2001-01-01

    We present a theoretical study of the resonant interaction between dynamical localized states (discrete breathers) and linear electromagnetic excitations (EE's) in Josephson junction ladders. By making use of direct numerical simulations we find that such an interaction manifests itself by resonant...

  1. Detection of irradiated lamb meat by electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Present paper describes the potential of ESR spectroscopy for identification of radical ions in irradiated lamb meat containing bone. Irradiation induced a characteristic ESR signal due to CO2- in the bone tissue which was not detected in the non-irradiated samples. Intensity of ESR signal was proportional to irradiation dose up to 5 kGy. These results have shown that ESR spectroscopy can be effectively used to detect irradiated lamb meat containing bone tissue. (author). 2 refs., 2 figs

  2. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Inst. de Radiologia]. E-mail: mvmfonte@uol.com.br; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Radiologia; Reed, Umbertina Conti [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Neurologia; Rosemberg, Sergio [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Dept. de Patologia

    2008-11-15

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  3. Quantification of liver fat using magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Thomsen, C; Becker, Povl Ulrik; Winkler, K;

    1994-01-01

    Localized proton MR spectroscopy using stimulated echoes was used to quantify the liver fat concentration in patients with various degrees of fatty liver due to alcohol abuse. Ten patients underwent a liver biopsy followed by chemical triglyceride estimation of the fatty content. A statistically...... significant correlation was found between the fat concentration measured in the liver biopsies, and the concentration calculated from the spectroscopic experiments (r = 0.9, p < .001). Quantitative assessment of liver fat concentrations using localized spectroscopy is superior to methods based on differences...

  4. Methylmercury chloride damage to the adult rat hippocampus cannot be detected by proton magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Zhiyan Lu; Jinwei Wu; Guangyuan Cheng; Jianying Tian; Zeqing Lu; Yongyi Bi

    2014-01-01

    Previous studies have found that methylmercury can damage hippocampal neurons and accord-ingly cause cognitive dysfunction. However, a non-invasive, safe and accurate detection method for detecting hippocampal injury has yet to be developed. This study aimed to detect methylmer-cury-induced damage on hippocampal tissue using proton magnetic resonance spectroscopy. Rats were given a subcutaneous injection of 4 and 2 mg/kg methylmercury into the neck for 50 consecutive days. Water maze and pathology tests confirmed that cognitive function had been impaired and that the ultrastructure of hippocampal tissue was altered after injection. The results of proton magnetic resonance spectroscopy revealed that the nitrogen-acetyl aspartate/creatine, choline complex/creatine and myoinositol/creatine ratio in rat hippocampal tissue were unchanged. Therefore, proton magnetic resonance spectroscopy can not be used to determine structural damage in the adult rat hippocampus caused by methylmercury chloride.

  5. UV-resonance Raman spectroscopy of amino acids

    Science.gov (United States)

    Höhl, Martin; Meinhardt-Wollweber, Merve; Schmitt, Heike; Lenarz, Thomas; Morgner, Uwe

    2016-03-01

    Resonant enhancement of Raman signals is a useful method to increase sensitivity in samples with low concentration such as biological tissue. The investigation of resonance profiles shows the optimal excitation wavelength and yields valuable information about the molecules themselves. However careful characterization and calibration of all experimental parameters affecting quantum yield is required in order to achieve comparability of the single spectra recorded. We present an experimental technique for measuring the resonance profiles of different amino acids. The absorption lines of these molecules are located in the ultraviolet (UV) wavelength range. One limitation for broadband measurement of resonance profiles is the limited availability of Raman filters in certain regions of the UV for blocking the Rayleigh scattered light. Here, a wavelength range from 244.8 nm to 266.0 nm was chosen. The profiles reveal the optimal wavelength for recording the Raman spectra of amino acids in aqueous solutions in this range. This study provides the basis for measurements on more complex molecules such as proteins in the human perilymph. The composition of this liquid in the inner ear is essential for hearing and cannot be analyzed non-invasively so far. The long term aim is to implement this technique as a fiber based endoscope for non-invasive measurements during surgeries (e. g. cochlear implants) making it available as a diagnostic tool for physicians. This project is embedded in the interdisciplinary cluster of excellence "Hearing for all" (H4A).

  6. Fast Resonance Raman Spectroscopy of a Free Radical

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Pagsberg, Palle Bjørn; Hansen, K. B.;

    1975-01-01

    The resonance Raman spectrum of a 10−3 molar solution of the stable diphenyl-pikryl-hydrazyl radical in benzene was obtained using a single laser pulse of 10 mJ energy and 600 ns duration from a flashlamp pumped tunable dye laser. Spectra were recorded using an image intensifier coupled to a TV...

  7. New method for tissue indentification: resonance fluorescence spectroscopy

    Science.gov (United States)

    Neu, Walter

    1991-11-01

    The method proposed in this paper is based on the detection of resonantly enhanced fluorescence emission induced by a tunable dye laser. First test on anorganic samples exposed to air and to saline solution demonstrate the potential of this technique. A XeCl excimer-laser ((lambda) equals308 nm) pulse, guided by quartz fibers, causes an efficient ablation of the irradiated samples. The specific species to be detected in the ablation plume determines the wavelength of the narrow-band dye-laser radiation. Preferably, it is set to a strong transition of the selected ablation product. Taking into account the formation of the plume, the dye-laser pulse is applied with a certain delay in order to excite resonantly the chosen species in the plume. The resulting resonance fluorescence is then guided by optical fibers to an OMA system. Compared to the broad-band excimer-laser-indiced fluorescence during the ablation process, the resonance fluorescence signal shows a distinct and easily detectable sharp peak. The signal-to-background ratio is improved by one order of magnitude. The achieved increase in sensitivity as well as selectivity is for the benefit of a reliable identification of ablated tissue.

  8. Diagnosis of atherosclerotic tissue by resonance fluorescence spectroscopy

    Science.gov (United States)

    Neu, Walter; Haase, Karl K.; Tischler, Christian; Nyga, Ralf; Karsch, Karl R.

    1991-05-01

    Resonantly enhanced fluorescence emission induced by a tunable dye laser can be used for the identification of ablated atherosclerotic tissue. This method has been tested with anorganic samples exposed to air and to saline solution. A XeCl excimer laser pulse ((lambda) = 308 nm), delivered by a fused silica optical fiber, causes an efficient ablation of the irradiated samples. The wavelength of the narrow-band dye laser radiation is set to a strong transition of a specific species to be detected in the ablation plume. Taking into account the formation of the plume, the dye laser pulse is applied with a certain delay in order to excite resonantly the selected species in the plume. The resulting resonance fluorescence then is guided by optical fibers to an optical multi-channel analyzer system. Compared to the broad-band fluorescence during excimer laser ablation the resonance fluorescence signal shows a distinct and easily detectable sharp peak. The signal-to-background ratio is improved by one order of magnitude.

  9. Hitchhiker's Guide to Voxel Segmentation for Partial Volume Correction of In Vivo Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Quadrelli, Scott; Mountford, Carolyn; Ramadan, Saadallah

    2016-01-01

    Partial volume effects have the potential to cause inaccuracies when quantifying metabolites using proton magnetic resonance spectroscopy (MRS). In order to correct for cerebrospinal fluid content, a spectroscopic voxel needs to be segmented according to different tissue contents. This article aims to detail how automated partial volume segmentation can be undertaken and provides a software framework for researchers to develop their own tools. While many studies have detailed the impact of partial volume correction on proton magnetic resonance spectroscopy quantification, there is a paucity of literature explaining how voxel segmentation can be achieved using freely available neuroimaging packages. PMID:27147822

  10. Investigation of Fat Metabolism during Antiobesity Interventions by Magnetic Resonance Imaging and Spectroscopy

    OpenAIRE

    Arunima Pola; Suresh An; Sadananthan; Venkatesh Gopalan; Min-Li Sandra Tan; Terry Yew Keong; Zhihong Zhou; Seigo Ishino; Yoshihide Nakano; Masanori Watanabe; Takashi Horiguchi; Tomoyuki Nishimoto; Bin Zhu; S. Sendhil Velan

    2014-01-01

    The focus of current treatments for obesity is to reduce the body weight or visceral fat, which requires longer duration to show effect. In this study, we investigated the short-term changes in fat metabolism in liver, abdomen, and skeletal muscle during antiobesity interventions including Sibutra mine treatment and diet restriction in obese rats using magnetic resonance imaging, magnetic resonance spectroscopy, and blood chemistry. Sibutramine is an antiobesity drug that results in weight lo...

  11. Accessing molecule-metal and hetero-molecular interfaces with direct and resonant photoelectron spectroscopy

    OpenAIRE

    Sauer, Christoph

    2015-01-01

    This thesis consists of two parts of original experimental work, its evaluation, and in- terpretation. Its final goal is to investigate dynamical charge transfer (CT) at a hetero- molecular interface with resonant photoelectron spectroscopy (RPES). In order to achieve this goal preliminary studies have been necessary. First two hetero-molecular inter- faces that exhibit adequate structural properties as well as an appropriate photoelec- tron spectroscopy (PES) spectrum of the valence regime h...

  12. Detection of single atoms by resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Rutherford's idea for counting individual atoms can, in principle, be implemented for nearly any type of atom, whether stable or radioactive, by using methods of resonance ionization. With the RIS technique, a laser is tuned to a wavelength which will promote a valence electron in a Z-selected atom to an excited level. Additional resonance or nonresonance photoabsorption steps are used to achieve nearly 100% ionization efficiencies. Hence, the RIS process can be saturated for the Z-selected atoms; and since detectors are available for counting either single electrons or positive ions, one-atom detection is possible. Some examples are given of one-atom detection, including that of the noble gases, in order to show complementarity with AMS methods. For instance, the detection of 81Kr using RIS has interesting applications for solar neutrino research, ice-cap dating, and groundwater dating. 39 refs., 7 figs., 2 tabs

  13. Magnetic resonance spectroscopy of normal appearing white matter in early relapsing-remitting multiple sclerosis: correlations between disability and spectroscopy

    Directory of Open Access Journals (Sweden)

    Foronda Jesus

    2004-06-01

    Full Text Available Abstract Background What currently appears to be irreversible axonal loss in normal appearing white matter, measured by proton magnetic resonance spectroscopy is of great interest in the study of Multiple Sclerosis. Our aim is to determine the axonal damage in normal appearing white matter measured by magnetic resonance spectroscopy and to correlate this with the functional disability measured by Multiple Sclerosis Functional Composite scale, Neurological Rating Scale, Ambulation Index scale, and Expanded Disability Scale Score. Methods Thirty one patients (9 male and 22 female with relapsing remitting Multiple Sclerosis and a Kurtzke Expanded Disability Scale Score of 0–5.5 were recruited from four hospitals in Andalusia, Spain and included in the study. Magnetic resonance spectroscopy scans and neurological disability assessments were performed the same day. Results A statistically significant correlation was found (r = -0.38 p Conclusions There is correlation between disability (measured by Expanded Disability Scale Score and the NAA/Cr ratio in normal appearing white matter. The lack of correlation between the NAA/Cr ratio and the Multiple Sclerosis Functional Composite score indicates that the Multiple Sclerosis Functional Composite is not able to measure irreversible disability and would be more useful as a marker in stages where axonal damage is not a predominant factor.

  14. Active plasma resonance spectroscopy: a functional analytic description

    Science.gov (United States)

    Lapke, M.; Oberrath, J.; Mussenbrock, T.; Brinkmann, R. P.

    2013-04-01

    The term ‘active plasma resonance spectroscopy’ denotes a class of diagnostic methods which employ the ability of plasmas to resonate on or near the plasma frequency. The basic idea dates back to the early days of discharge physics: a signal in the GHz range is coupled to the plasma via an electrical probe; the spectral response is recorded, and then evaluated with a mathematical model to obtain information on the electron density and other plasma parameters. In recent years, the concept has found renewed interest as a basis of industry compatible plasma diagnostics. This paper analyzes the diagnostic technique in terms of a general description based on functional analytic (or Hilbert Space) methods which hold for arbitrary probe geometries. It is shown that the response function of the plasma-probe system can be expressed as a matrix element of the resolvent of an appropriately defined dynamical operator. A specialization of the formalism to a symmetric probe design is given, as well as an interpretation in terms of a lumped circuit model consisting of series resonance circuits. We present ideas for an optimized probe design based on geometric and electrical symmetry.

  15. Visualization of subsurface nanoparticles in a polymer matrix using resonance tracking atomic force acoustic microscopy and contact resonance spectroscopy

    Science.gov (United States)

    Kimura, Kuniko; Kobayashi, Kei; Yao, Atsushi; Yamada, Hirofumi

    2016-10-01

    A visualization technique of subsurface features with a nanometer-scale spatial resolution is strongly demanded. Some research groups have demonstrated the visualization of subsurface features using various techniques based on atomic force microscopy. However, the imaging mechanisms have not yet been fully understood. In this study, we demonstrated the visualization of subsurface Au nanoparticles buried in a polymer matrix 900 nm from the surface using two techniques; i.e., resonance tracking atomic force acoustic microscopy and contact resonance spectroscopy. It was clarified that the subsurface features were visualized by the two techniques as the area with a higher contact resonance frequency and a higher Q-factor than those in the surrounding area, which suggests that the visualization is realized by the variation of the contact stiffness and damping of the polymer matrix due to the existence of the buried nanoparticles.

  16. Corrections in clinical Magnetic Resonance Spectroscopy and SPECT

    DEFF Research Database (Denmark)

    de Nijs, Robin

    performed best in the sense that it recovered most of the lost peak height in the spectra. The ICA motion correction algorithm described in paper I and in this thesis was applied to a quantitative analysis of the Single Voxel Spectroscopy data from the cohort study of preterm infants. This analysis revealed...... infants. In Iodine-123 SPECT the problem of downscatter was addressed. This thesis is based on two papers. Paper I deals with the problem of motion in Single Voxel Spectroscopy. Two novel methods for the identification of outliers in the set of repeated measurements were implemented and compared...... to the known mean and median filtering. The data comes from non-anesthetized preterm infants, where motion during scanning is a common problem. Both the novel outlier identification and the independent component analysis (ICA) perform satisfactory and better than the common mean and median filtering. ICA...

  17. Noise spectroscopy of non-linear magneto optical resonances in Rb vapor

    OpenAIRE

    Martinelli, M; P. Valente; Failache, H; Felinto, D.; Cruz, L. S.; Nussenzveig, P.; Lezama, A.

    2003-01-01

    Nonlinear magneto-optical (NMO) resonances occurring for near-zero magnetic field are studied in Rb vapor using light-noise spectroscopy. With a balanced detection polarimeter, we observe high contrast variations of the noise power (at fixed analysis frequency) carried by diode laser light resonant with the 5S$_{1/2}(F=2) \\to 5$P$_{1/2}(F=1) $ transition of $^{87}$Rb and transmitted through a rubidium vapor cell, as a function of magnetic field $B$. A symmetric resonance doublet of anti-corre...

  18. Observation of Strong Resonant Behavior in the Inverse Photoelectron Spectroscopy of Ce Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J G; Yu, S W; Chung, B W; Waddill, G D; Damian, E; Duda, L; Nordgren, J

    2009-12-15

    X-ray Emission Spectroscopy (XES) and Resonant Inverse Photoelectron Spectroscopy (RIPES) have been used to investigate the photon emission associated with the Ce3d5/2 and Ce3d3/2 thresholds. Strong resonant behavior has been observed in the RIPES of Ce Oxide near the 5/2 and 3/2 edges. Inverse Photoelectron Spectroscopy (IPES) and its high energy variant, Bremstrahlung Isochromat Spectroscopy (BIS), are powerful techniques that permit a direct interrogation of the low-lying unoccupied electronic structure of a variety of materials. Despite being handicapped by counting rates that are approximately four orders of magnitude less that the corresponding electron spectroscopies (Photoelectron Spectroscopy, PES, and X-ray Photoelectron Spectroscopy, XPS) both IPES and BIS have a long history of important contributions. Over time, an additional variant of this technique has appeared, where the kinetic energy (KE) of the incoming electron and photon energy (hv) of the emitted electron are roughly the same magnitude as the binding energy of a core level of the material in question. Under these circumstances and in analogy to Resonant Photoelectron Spectroscopy, a cross section resonance can occur, giving rise to Resonant Inverse Photoelectron Spectroscopy or RIPES. Here, we report the observation of RIPES in an f electron system, specifically the at the 3d{sub 5/2} and 3d{sub 3/2} thresholds of Ce Oxide. The resonant behavior of the Ce4f structure at the 3d thresholds has been addressed before, including studies of the utilization of the technique as a probe of electron correlation in a variety of Ce compounds. Interestingly, the first RIPES work on rare earths dates back to 1974, although under conditions which left the state of the surface and near surface regions undefined. Although they did not use the more modern terminology of 'RIPES,' it is clear that RIPES was actually first performed in 1974 by Liefeld, Burr and Chamberlain on both La and Ce based

  19. Temperature dependency of elastic properties of RPV steel using resonant ultrasound spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong Moo; Jung, Hyun Kyu; Kim, Joo Hag; Hong, Jun Hwa [Nuclear Materials Technology Team, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2001-05-15

    The temperature dependency of dynamic elastic constants of the SA 508 Class 3 RPV (reactor pressure vessel) steel were investigated by using the RUS (resonant ultrasound spectroscopy). The resonant frequencies of rectangular parallelepiped samples were measured using a couple of Alumina wave-guides and wide-band ultrasonic transducers into a small furnace. Also the resonance frequencies were calculated from the initial estimates of elastic stiffness, c{sub 11}, c{sub 12} and c{sub 44} with an assumption of isotropic property, dimension and density. Through the comparison of calculated resonant frequencies with the measured resonant frequencies by RUS, very accurate elastic constants of SA 508 Class steel were determined by iteration and convergence processes. The Young's modulus and shear modulus decreases linearly as the temperature increases from room temperature to 400 degrees C. The similar trends were observed for the longitudinal wave velocity as well as shear wave velocity.

  20. Temperature dependency of elastic properties of RPV steel using resonant ultrasound spectroscopy

    International Nuclear Information System (INIS)

    The temperature dependency of dynamic elastic constants of the SA 508 Class 3 RPV (reactor pressure vessel) steel were investigated by using the RUS (resonant ultrasound spectroscopy). The resonant frequencies of rectangular parallelepiped samples were measured using a couple of Alumina wave-guides and wide-band ultrasonic transducers into a small furnace. Also the resonance frequencies were calculated from the initial estimates of elastic stiffness, c11, c12 and c44 with an assumption of isotropic property, dimension and density. Through the comparison of calculated resonant frequencies with the measured resonant frequencies by RUS, very accurate elastic constants of SA 508 Class steel were determined by iteration and convergence processes. The Young's modulus and shear modulus decreases linearly as the temperature increases from room temperature to 400 degrees C. The similar trends were observed for the longitudinal wave velocity as well as shear wave velocity.

  1. Frequency-scanning marginal oscillator for ion cyclotron resonance spectroscopy

    Science.gov (United States)

    Kemper, Paul R.; Bowers, Michael T.

    1982-07-01

    A number of ion cyclotron resonance applications have arisen in the past few years which require a frequency-scanned detection system. Since the traditional marginal oscillator detector has always been a fixed-frequency detector, alternative detection techniques such as bridge circuit detectors have become widely used. In this paper we present an alternative to the bridge detector, namely, a frequency-scanning marginal oscillator. Requirements and modifications necessary to convert a marginal oscillator to frequency scanning operation are discussed in detail and the necessary circuit diagrams presented. Finally, a theoretical comparison is made between bridge circuit and marginal oscillator sensitivities.

  2. Signal processing in magnetic resonance spectroscopy with biomedical applications

    CERN Document Server

    Belkic, Dzevad

    2010-01-01

    ""a useful addition to the fields of both magnetic resonance (MR) as well as signal processing. … immensely useful as a practical resource handbook to dip into from time to time and to find specific advice on issues faced during the course of work in MR techniques for cancer research. … the best feature of this book is how it positions the very practical area of digital signal processing in the contextual framework of a much more esoteric and fundamental field-that of quantum mechanics. The direct link between quantum-mechanical spectral analysis and rational response functions and the gene

  3. Quantitative Analysis of Nail Polish Remover Using Nuclear Magnetic Resonance Spectroscopy Revisited

    Science.gov (United States)

    Hoffmann, Markus M.; Caccamis, Joshua T.; Heitz, Mark P.; Schlecht, Kenneth D.

    2008-01-01

    Substantial modifications are presented for a previously described experiment using nuclear magnetic resonance (NMR) spectroscopy to quantitatively determine analytes in commercial nail polish remover. The revised experiment is intended for a second- or third-year laboratory course in analytical chemistry and can be conducted for larger laboratory…

  4. Reproducibility of 3.0 Tesla magnetic resonance spectroscopy for measuring hepatic fat content

    NARCIS (Netherlands)

    J.R. van Werven; J.M. Hoogduin; A.J. Nederveen; A.A. van Vliet; E. Wajs; P. Vandenberk; E.S.G. Stroes; J. Stoker

    2009-01-01

    PURPOSE: To investigate reproducibility of proton magnetic resonance spectroscopy ((1)H-MRS) to measure hepatic triglyceride content (HTGC). MATERIALS AND METHODS: In 24 subjects, HTGC was evaluated using (1)H-MRS at 3.0 Tesla. We studied "between-weeks" reproducibility and reproducibility of (1)H-M

  5. MRI and P-31 Magnetic Resonance Spectroscopy Hardware for Axillary Lymph Node Investigation at 7T

    NARCIS (Netherlands)

    Rivera, Debra S.; Wijnen, Jannie P.; van der Kemp, Wybe J. M.; Raaijmakers, Alexander J.; Luijten, Peter R.; Klomp, DWJ

    2015-01-01

    PurposeNeoadjuvant treatment response in lymph nodes predicts patient outcome, but existing methods do not track response during therapy accurately. In this study, specialized hardware was used to adapt high-field (7T) P-31 magnetic resonance spectroscopy (MRS), which has been shown to track treatme

  6. Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Gredal, O; Rosenbaum, S; Topp, S;

    1997-01-01

    We performed proton magnetic resonance spectroscopy (1H-MRS) in patients with motor neuron disease (MND) to determine the absolute in vivo concentrations in the brain of the metabolites N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr/PCr). We examined the spectra acquired from a 20 x 20 x...

  7. Reproducibility of 3.0 Tesla Magnetic Resonance Spectroscopy for Measuring Hepatic Fat Content

    NARCIS (Netherlands)

    van Werven, Jochem R.; Hoogduin, Johannes M.; Nederveen, Aart J.; van Vliet, Andre A.; Wajs, Ewa; Vandenberk, Petra; Stroes, Erik S. G.; Stoker, Jaap

    2009-01-01

    Purpose: To investigate reproducibility of proton magnetic resonance spectroscopy (H-1-MRS) to measure hepatic triglyceride content (HTGC). Materials and Methods: In 24 subjects, HTGC was evaluated using H-1-MRS at 3.0 Tesla. We studied "between-weeks" reproducibility and reproducibility of H-1-MRS

  8. 2p3d Resonant X-ray emission spectroscopy of cobalt compounds

    NARCIS (Netherlands)

    van Schooneveld, M.M.

    2013-01-01

    This manuscript demonstrates that 2p3d resonant X-ray emission spectroscopy (RXES) yields unique information on the chemically relevant valence electrons of transition metal atoms or ions. Experimental data on cobalt compounds and several theories were used hand-in-hand. In chapter 1 2p3d RXES was s

  9. Glutamatergic Effects of Divalproex in Adolescents with Mania: A Proton Magnetic Resonance Spectroscopy Study

    Science.gov (United States)

    Strawn, Jeffrey R.; Patel, Nick C.; Chu, Wen-Jang; Lee, Jing-Huei; Adler, Caleb M.; Kim, Mi Jung; Bryan, Holly S.; Alfieri, David C.; Welge, Jeffrey A.; Blom, Thomas J.; Nandagopal, Jayasree J.; Strakowski, Stephen M.; DelBello, Melissa P.

    2012-01-01

    Objectives: This study used proton magnetic resonance spectroscopy ([superscript 1]H MRS) to evaluate the in vivo effects of extended-release divalproex sodium on the glutamatergic system in adolescents with bipolar disorder, and to identify baseline neurochemical predictors of clinical remission. Method: Adolescents with bipolar disorder who were…

  10. Resonance Light-Scattering Spectroscopy Study on Interaction between Gold Colloid and Thiol Containing Pharmaceutical

    Institute of Scientific and Technical Information of China (English)

    Liu; Xiao-ling; Cai; Ru-xiu; 等

    2003-01-01

    In this paper, we used resonance light-scattering (RLS) spectroscopy to study the interaction betwwen thiolcontaining pharmaceutical and gold colloid. And for the first time, we proposed that this highly sensitive, gold colloidbased assay using RLS technique may have potential application in detecting thoil-containing substances.

  11. Resonance Light-Scattering Spectroscopy Study on Interaction between Gold Colloid and Thiol Containing Pharmaceutical

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao-ling; Cai Ru-xiu; Yuan Hong

    2003-01-01

    In this paper, we used resonance light-scattering (RLS) spectroscopy to study the interaction between thiol-containing pharmaceutical and gold colloid. And for the first time, we proposed that this highly sensitive, gold colloid-based assay using RLS technique may have potential application in detecting thiol-containing substances.

  12. Development of resonance ionization spectroscopy system for fusion material surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Satoh, Yasushi; Nakazawa, Masaharu

    1996-10-01

    A Resonance Ionization Spectroscopy (RIS) system is now under development aiming at in-situ observation and analysis neutral particles emitted from fusion material surfaces under irradiation of charged particles and neutrons. The basic performance of the RIS system was checked through a preliminary experiment on Xe atom detection. (author)

  13. Nuclear magnetic resonance spectroscopy, analytical chemistry by open learning

    International Nuclear Information System (INIS)

    This elementary text on NMR spectroscopy is designed for self-study, primarily by those studying to be chemical technicians. The style is informal and direct. The basic elements of chemical shifts, spin-spin coupling, integrated intensities, and relaxation times are discussed briefly, with examples, but the emphasis is much more on this is the way it is than on providing a satisfying rationale. Quick introduction to sample preparation, NMR instrumentation, and signal enhancement techniques are included, but these are very sketchy. Only four pages are devoted to the Fourier Transform technique, hardly enough to give anyone a reasonable basis for understanding the technique and its power. About a third of the main part of the text is devoted to practical applications of 1H and 13C NMR spectroscopy, including structural assignments of peaks in the spectra of simple molecules and quantitative measurements of simple mixtures. The author provides a variety of questions and problems throughout the book, some of the simple memory-retention type but some more thought-provoking. The last 90 pages of the book are devoted to answering the questions and problems posed in the five chapters

  14. Double resonance rotational spectroscopy of CH2D+

    Science.gov (United States)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  15. Structure Determination of Natural Products by Nuclear Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Li, Du.

    High-field NMR experiments were used to determine the full structures of six new natural products extracted from plants. These are: four saponins (PT-2, P1, P2 and P3) from the plant Alphitonia zizyphoides found in Samoa; one sesquiterpene (DF-4) from Douglas fir and one diterpene derivative (E-2) from a Chinese medicinal herb. By concerted use of various 1D and 2D NMR techniques, the structures of the above compounds were established and complete resonance assignments were achieved. The 2D INADEQUATE technique coupled with a computerized spectral analysis was extensively used. When carried out on concentrations as low as 60 mg of sample, this technique provided absolute confirmation of the assignments for 35 of the possible 53 C-C bonds for PT-2. On 30 mg of sample of E-21, it revealed 22 of 28 possible C-C bonds.

  16. Resonant three-photon ionization spectroscopy of atomic Fe

    Science.gov (United States)

    Liu, Y.; Gottwald, T.; Havener, C. C.; Mattolat, C.; Vane, C. R.; Wendt, K.

    2013-12-01

    Laser spectroscopic investigations on high-lying states around the ionization potential (IP) in the atomic spectrum of Fe have been carried out for the development of a practical three-step resonance ionization scheme accessible by Ti: sapphire lasers. A hot cavity laser ion source, typically used at on-line radioactive ion beam production facilities, was employed in this work. Ionization schemes employing high-lying Rydberg and autoionizing states populated by three-photon excitations were established. Five new Rydberg and autoionizing Rydberg series converging to the ground and to the first four excited states of Fe II are reported. Analyses of the Rydberg series yield the value 63 737.686 ± 0.068 cm-1 for the ionization potential of iron.

  17. Resonant three-photon ionization spectroscopy of atomic Fe

    International Nuclear Information System (INIS)

    Laser spectroscopic investigations on high-lying states around the ionization potential (IP) in the atomic spectrum of Fe have been carried out for the development of a practical three-step resonance ionization scheme accessible by Ti: sapphire lasers. A hot cavity laser ion source, typically used at on-line radioactive ion beam production facilities, was employed in this work. Ionization schemes employing high-lying Rydberg and autoionizing states populated by three-photon excitations were established. Five new Rydberg and autoionizing Rydberg series converging to the ground and to the first four excited states of Fe II are reported. Analyses of the Rydberg series yield the value 63 737.686 ± 0.068 cm−1 for the ionization potential of iron. (paper)

  18. Resonant three-Photon Ionization Spectroscopy of Atomic Fe

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan [ORNL; Gottwald, T. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Havener, Charles C [ORNL; Mattolat, C. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Vane, C Randy [ORNL; Wendt, K. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany

    2013-01-01

    Laser spectroscopic investigations on high-lying states around the ionization potential in the atomic spectrum of Fe have been carried out for development of a practical three-step resonance ionization scheme accessible by Ti:Sapphire lasers. A hot cavity laser ion source typically used at on-line radioactive ion beam production facilities was employed in this work. Ionization schemes employing high-lying Rydberg and autoionizing states populated by three-photon excitations were established. Five new Rydberg and autoionizing Rydberg series converging to the ground and to the first four excited states of Fe II are reported. Analyses of the Rydberg series yield the value 63737.686 0.068 cm-1 for the ionization potential of iron.

  19. Single molecule spin resonance spectroscopy and imaging by diamond-sensor

    Science.gov (United States)

    Du, Jiangfeng

    Single-molecule magnetic resonance spectroscopy and imaging is one of the ultimate goals in magnetic resonance and will has great applications in a broad range of scientific areas, from life science to physics and chemistry. The spin of a single nitrogen vacancy (NV) center in diamond is a highly sensitive magnetic-field sensor, which has been proposed for detection of single molecules or nanoscale targets. We and co-workers have successfully obtained the first single-protein spin resonance spectroscopy under ambient conditions, high-resolution vector microwave imaging, and realized atomic-scale structure analysis of single nuclear-spin clusters in diamond. Moreover, we have tried to improve the quantum control technique and succeed to achieve fault-tolerant universal quantum gates. As the last part, I will briefly introduce our most recently work on single protein imaging in situ in cell.

  20. Human brain cancer studied by resonance Raman spectroscopy

    Science.gov (United States)

    Zhou, Yan; Liu, Cheng-Hui; Sun, Yi; Pu, Yang; Boydston-White, Susie; Liu, Yulong; Alfano, Robert R.

    2012-11-01

    The resonance Raman (RR) spectra of six types of human brain tissues are examined using a confocal micro-Raman system with 532-nm excitation in vitro. Forty-three RR spectra from seven subjects are investigated. The spectral peaks from malignant meningioma, stage III (cancer), benign meningioma (benign), normal meningeal tissues (normal), glioblastoma multiforme grade IV (cancer), acoustic neuroma (benign), and pituitary adenoma (benign) are analyzed. Using a 532-nm excitation, the resonance-enhanced peak at 1548 cm-1 (amide II) is observed in all of the tissue specimens, but is not observed in the spectra collected using the nonresonance Raman system. An increase in the intensity ratio of 1587 to 1605 cm-1 is observed in the RR spectra collected from meningeal cancer tissue as compared with the spectra collected from the benign and normal meningeal tissue. The peak around 1732 cm-1 attributed to fatty acids (lipids) are diminished in the spectra collected from the meningeal cancer tumors as compared with the spectra from normal and benign tissues. The characteristic band of spectral peaks observed between 2800 and 3100 cm-1 are attributed to the vibrations of methyl (-CH3) and methylene (-CH2-) groups. The ratio of the intensities of the spectral peaks of 2935 to 2880 cm-1 from the meningeal cancer tissues is found to be lower in comparison with that of the spectral peaks from normal, and benign tissues, which may be used as a distinct marker for distinguishing cancerous tissues from normal meningeal tissues. The statistical methods of principal component analysis and the support vector machine are used to analyze the RR spectral data collected from meningeal tissues, yielding a diagnostic sensitivity of 90.9% and specificity of 100% when two principal components are used.

  1. Negotiated identities of chemical instrumentation: the case of nuclear magnetic resonance spectroscopy, 1956-1969.

    Science.gov (United States)

    Roberts, Jody A

    2003-05-01

    What is an NMR spectrometer? Beginning with this seemingly simple question, I will explore the development of nuclear magnetic resonance spectroscopy between the years 1956 and 1969 from two vantage points: the organic chemists who used the new instrument, and Varian Associates-the makers of the first NMR spectrometers-. Through an examination of the articles and advertisements published in the Journal of Organic Chemistry, I will draw two conclusions. First, organic chemists and Varian Associates (along with other actors) are co-responsible for the development of nuclear magnetic resonance spectroscopy (i.e., NMR spectroscopy was not created by a single actor). Second, by changing the way NMR spectrometers are used, organic chemists attempted to change to the identity of the instrument. Similarly, when Varian Associates advertised their NMR spectrometers in a different way, they, too, attempted to change the identity of the instrument.

  2. Automated microwave double resonance spectroscopy: A tool to identify and characterize chemical compounds.

    Science.gov (United States)

    Martin-Drumel, Marie-Aline; McCarthy, Michael C; Patterson, David; McGuire, Brett A; Crabtree, Kyle N

    2016-03-28

    Owing to its unparalleled structural specificity, rotational spectroscopy is a powerful technique to unambiguously identify and characterize volatile, polar molecules. We present here a new experimental approach, automated microwave double resonance (AMDOR) spectroscopy, to rapidly determine the rotational constants of these compounds without a priori knowledge of elemental composition or molecular structure. This task is achieved by rapidly acquiring the classical (frequency vs. intensity) broadband spectrum of a molecule using chirped-pulse Fourier transform microwave (FTMW) spectroscopy and subsequently analyzing it in near real-time using complementary cavity FTMW detection and double resonance. AMDOR measurements provide a unique "barcode" for each compound from which rotational constants can be extracted. To illustrate the power of this approach, AMDOR spectra of three aroma compounds - trans-cinnamaldehyde, α-, and β-ionone - have been recorded and analyzed. The prospects to extend this approach to mixture characterization and purity assessment are described. PMID:27036441

  3. Waveguide-type optical passive ring resonator gyro using frequency modulation spectroscopy technique

    Science.gov (United States)

    Liang, Ning; Lijun, Guo; Mei, Kong; Tuoyuan, Chen

    2014-12-01

    This paper reports the experimental results of silica on a silicon ring resonator in a resonator micro optic gyroscope based on the frequency modulation spectroscopy technique by our research group. The ring resonator is composed of a 4 cm diameter silica waveguide. By testing at λ = 1550 nm, the FSR, FWHM and the depth of resonance are 3122 MHz, 103.07 MHz and 0.8 respectively. By using a polarization controller, the resonance curve under the TM mode can be inhibited. The depth of resonance increased from 0.8 to 0.8913, namely the finesse increase from 30.33 to 33.05. In the experiments, there is an acoustic-optical frequency shifter (AOFS) in each light loop. We lock the lasing frequency at the resonance frequency of the silica waveguide ring resonator for the counterclockwise lightwave; the frequency difference between the driving frequencies of the two AOFS is equivalent to the Sagnac frequency difference caused by gyro rotation. Thus, the gyro output is observed. The slope of the linear fit is about 0.330 mV/(°/s) based on the -900 to 900 kHz equivalent frequency and the gyro dynamic range is ±2.0 × 103 rad/s.

  4. New Approaches to Quantum Computing using Nuclear Magnetic Resonance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, M; Krishnan, V V

    2003-02-07

    The power of a quantum computer (QC) relies on the fundamental concept of the superposition in quantum mechanics and thus allowing an inherent large-scale parallelization of computation. In a QC, binary information embodied in a quantum system, such as spin degrees of freedom of a spin-1/2 particle forms the qubits (quantum mechanical bits), over which appropriate logical gates perform the computation. In classical computers, the basic unit of information is the bit, which can take a value of either 0 or 1. Bits are connected together by logic gates to form logic circuits to implement complex logical operations. The expansion of modern computers has been driven by the developments of faster, smaller and cheaper logic gates. As the size of the logic gates become smaller toward the level of atomic dimensions, the performance of such a system is no longer considered classical but is rather governed by quantum mechanics. Quantum computers offer the potentially superior prospect of solving computational problems that are intractable to classical computers such as efficient database searches and cryptography. A variety of algorithms have been developed recently, most notably Shor's algorithm for factorizing long numbers into prime factors in polynomial time and Grover's quantum search algorithm. The algorithms that were of only theoretical interest as recently, until several methods were proposed to build an experimental QC. These methods include, trapped ions, cavity-QED, coupled quantum dots, Josephson junctions, spin resonance transistors, linear optics and nuclear magnetic resonance. Nuclear magnetic resonance (NMR) is uniquely capable of constructing small QCs and several algorithms have been implemented successfully. NMR-QC differs from other implementations in one important way that it is not a single QC, but a statistical ensemble of them. Thus, quantum computing based on NMR is considered as ensemble quantum computing. In NMR quantum computing, the

  5. New Approaches to Quantum Computing using Nuclear Magnetic Resonance Spectroscopy

    International Nuclear Information System (INIS)

    The power of a quantum computer (QC) relies on the fundamental concept of the superposition in quantum mechanics and thus allowing an inherent large-scale parallelization of computation. In a QC, binary information embodied in a quantum system, such as spin degrees of freedom of a spin-1/2 particle forms the qubits (quantum mechanical bits), over which appropriate logical gates perform the computation. In classical computers, the basic unit of information is the bit, which can take a value of either 0 or 1. Bits are connected together by logic gates to form logic circuits to implement complex logical operations. The expansion of modern computers has been driven by the developments of faster, smaller and cheaper logic gates. As the size of the logic gates become smaller toward the level of atomic dimensions, the performance of such a system is no longer considered classical but is rather governed by quantum mechanics. Quantum computers offer the potentially superior prospect of solving computational problems that are intractable to classical computers such as efficient database searches and cryptography. A variety of algorithms have been developed recently, most notably Shor's algorithm for factorizing long numbers into prime factors in polynomial time and Grover's quantum search algorithm. The algorithms that were of only theoretical interest as recently, until several methods were proposed to build an experimental QC. These methods include, trapped ions, cavity-QED, coupled quantum dots, Josephson junctions, spin resonance transistors, linear optics and nuclear magnetic resonance. Nuclear magnetic resonance (NMR) is uniquely capable of constructing small QCs and several algorithms have been implemented successfully. NMR-QC differs from other implementations in one important way that it is not a single QC, but a statistical ensemble of them. Thus, quantum computing based on NMR is considered as ensemble quantum computing. In NMR quantum computing, the spins with

  6. Identification of irradiated cashew nut by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Sanyal, Bhaskar; Sajilata, M G; Chatterjee, Suchandra; Singhal, Rekha S; Variyar, Prasad S; Kamat, M Y; Sharma, Arun

    2008-10-01

    Cashew nut samples were irradiated at gamma-radiation doses of 0.25, 0.5, 0.75, and 1 kGy, the permissible dose range for insect disinfestation of food commodities. A weak and short-lived triplet (g = 2.004 and hfcc = 30 G) along with an anisotropic signal (g perpendicular = 2.0069 and g parallel = 2.000) were produced immediately after irradiation. These signals were assigned to that of cellulose and CO 2 (-) radicals. However, the irradiated samples showed a dose-dependent increase of the central line (g = 2.0045 +/- 0.0002). The nature of the free radicals formed during conventional processing such as thermal treatment was investigated and showed an increase in intensity of the central line (g = 2.0045) similar to that of irradiation. Characteristics of the free radicals were studied by their relaxation and thermal behaviors. The present work explores the possibility to identify irradiated cashew nuts from nonirradiated ones by the thermal behaviors of the radicals beyond the period, when the characteristic electron paramagnetic resonance spectral lines of the cellulose free radicals have essentially disappeared. In addition, this study for the first time reports that relaxation behavior of the radicals could be a useful tool to distinguish between roasted and irradiated cashew nuts.

  7. Magnetic resonance spectroscopy in patients with Fabry and Gaucher disease

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, S., E-mail: stephan@nmr.at [Department of Radiology, MR-Centre of Excellence, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Bogner, W. [Department of Radiology, MR-Centre of Excellence, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Stadlbauer, A. [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten (Austria); Krssak, M. [Department of Radiology, MR-Centre of Excellence, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Bodamer, O. [Department of Pediatrics, Medical University of Vienna (Austria)

    2011-08-15

    Objective: Fabry and Gaucher diseases are rare progressive inherited disorders of glycosphingolipid metabolism that affect multiple organ systems. The aim of this study was to investigate evidence for metabolic changes in the central nervous system involvement using proton magnetic resonance spectroscopic imaging. Methods: Seven Fabry and eight Gaucher patients were included into this study. A two-dimensional, spectroscopic imaging method with an ultra-short echo-time of 11 ms was used at a 3 T whole body magnet. Absolute metabolic values were retrieved using internal water scaling. Results were compared, with sex- and age-matched controls. Results: In contrast to previous findings, absolute and relative metabolite values of N-acetyl-aspartate (NAA) or NAA/Creatine (Cr), Cr, Choline (Cho) or Cho/Cr and myo-Inositol (mI) or mI/Cr revealed no, differences between Fabry and Gaucher Type 1 (GD1) patients and controls. Average values were, 10.22, 6.32, 2.15 and 5.39 mMol/kg wet weight for NAA, Cr, Cho and mI, respectively. In this study, we found significantly decreasing NAA/Cho with increasing age in all three groups (Fabry, GD1, patients and healthy controls) (between 5 and 8% per decade). Conclusions: There were no changes of the quantified metabolites detected by MRS in normal appearing white matter. This study shows the importance of sex- and age-matched controls.

  8. In-vivo proton magnetic resonance spectroscopy in adnexal lesions

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong Whi; Cho, Soon Gu; Kim, Hyung Jin; Lim, Myung Kwan; Suh, Chang Hae; Suh, Chang Hae [Inha University College of Medicine, Incheon (Korea, Republic of); Lee, Jun Hee [Asan Institute for Life Sciences, Seoul (Korea, Republic of)

    2002-06-01

    To explore the in-vivo {sup 1}H- MR spectral features of adnexal lesions and to characterize the spectral patterns of various pathologic entities. Thirty-one patients with surgically and histopathologically confirmed adnexal lesions underwent short echo-time STEAM (stimulated echo acquisition method) {sup 1}H- MR spectroscopy, and the results obtained were analysed. The methylene present in fatty acid chains gave rise to a lipid peak of 1.3 ppm in the {sup 1}H- MR spectra of most malignant tumors and benign teratomas. This same peak was not observed, however, in the spectra of benign ovarian epithelial tumors: in a number of these, a peak of 5.2 ppm, due to the presence of the olefine group (-CH=CH-) was noted. The ratios of lipid peak at 1.3 ppm to water peak (lipid/water ratios) varied between disease groups, and in some benign teratomas was characteristically high. An intense lipid peak at 1.3 ppm is observed in malignant ovarian tumors but not in benign epithelial tumors. {sup 1}H- MRS may therefore be helpful in the differential diagnosis of adnexal lesions.

  9. Characterization of different cassava samples by nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Cassava root (Manihot esculenta Crantz) is grown in all Brazilian states, being an important product in the diet of Brazilians. For many families of the North and Northeast states, it may represent the main energy source. The cassava root flour has high levels of starch, in addition to containing fiber, lipids and some minerals. There is, however, great genetic variability, which results in differentiation in its chemical composition and structural aspect. Motivated by the economic, nutritional and pharmacological importance of this product, this work is aimed at characterizing six cassava flour samples by NMR spectroscopy. The spectra revealed the main chemical groups. Furthermore, the results confirmed differences on chemical and structural aspect of the samples. For instance, the F1 sample is richer in carbohydrates, while the F4 sample has higher proportion of glycolipids, the F2 sample has higher amylose content and the F6 sample exhibits a greater diversity of glycolipid types. Regarding the molecular structure, the NMR spectra indicated that the F1 sample is more organized at the molecular level, while the F3 and F5 samples are similar in amorphicity and in the molecular packing. (author)

  10. Acoustic resonance spectroscopy (ARS): ARS300 operations manual, software version 2.01

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-25

    Acoustic Resonance Spectroscopy (ARS) is a nondestructive evaluation technology developed at the Los Alamos National Laboratory. The ARS technique is a fast, safe, and nonintrusive technique that is particularly useful when a large number of objects need to be tested. Any physical object, whether solid, hollow, or fluid filled, has many modes of vibration. These modes of vibration, commonly referred to as the natural resonant modes or resonant frequencies, are determined by the object`s shape, size, and physical properties, such as elastic moduli, speed of sound, and density. If the object is mechanically excited at frequencies corresponding to its characteristic natural vibrational modes, a resonance effect can be observed when small excitation energies produce large amplitude vibrations in the object. At other excitation frequencies, i.e., vibrational response of the object is minimal.

  11. Noncontact nonlinear resonant ultrasound spectroscopy to evaluate creep damage in an austenitic stainless steel

    Science.gov (United States)

    Ohtani, T.; Kusanagi, Y.; Ishii, Y.

    2013-01-01

    In this paper, we described an evaluating technique of creep damage in an austenitic stainless steel by the combination with an electromagnetic acoustic transducer (EMAT) and the nonlinear resonant ultrasound spectroscopy (NRUS), which was a resonance-based technique exploiting the significant nonlinear behavior of damaged materials. In NRUS, the resonant frequency of an object is studied as a function of the excitation level. As the excitation level increases, the elastic nonlinearity was manifest by a shift in the resonance frequency. The nonlinearity with NRUS showed a peak at 50 % and a minimum at 70 % of the total creep life. This nonlinearity measurement has a potential to assess creep damage advance and predict the creep remaining life of metals.

  12. Neuroimaging in Parkinsonism: a study with magnetic resonance and spectroscopy as tools in the differential diagnosis

    International Nuclear Information System (INIS)

    The differential diagnosis of Parkinsonism based on clinical features, sometimes may be difficult. Diagnostic tests in these cases might be useful, especially magnetic resonance imaging, a noninvasive exam, not as expensive as positron emission tomography, and provides a good basis for anatomical analysis. The magnetic resonance spectroscopy analyzes cerebral metabolism, yielding inconsistent results in parkinsonian disorders. We selected 40 individuals for magnetic resonance imaging and spectroscopy analysis, 12 with Parkinson's disease, 11 with progressive supranuclear palsy, 7 with multiple system atrophy (parkinsonian type), and 10 individuals without any psychiatric or neurological disorders (controls). Clinical scales included Hoenh and Yahr, unified Parkinson's disease rating scale and mini mental status examination. The results showed that patients with Parkinson's disease and controls presented the same aspects on neuroimaging, with few or absence of abnormalities, and supranuclear progressive palsy and multiple system atrophy showed abnormalities, some of which statistically significant. Thus, magnetic resonance imaging and spectroscopy could be useful as a tool in differential diagnosis of Parkinsonism. (author)

  13. Neuroimaging in Parkinsonism: a study with magnetic resonance and spectroscopy as tools in the differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Luiz Felipe Rocha [1Hospital dos Servidores do Estado, Rio de Janeiro RJ (Brazil)], e-mail: luizneurol@terra.com.br; Novis, Sergio A. Pereira; Rosso, Ana Lucia Z. [Hospital Universitario Clementino Fraga Filho (HUCFF), Rio de Janeiro, RJ (Brazil); Moreira, Denise Madeira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Neurologia Deolindo Couto; Leite, Ana Claudia C.B. [Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil)

    2009-03-15

    The differential diagnosis of Parkinsonism based on clinical features, sometimes may be difficult. Diagnostic tests in these cases might be useful, especially magnetic resonance imaging, a noninvasive exam, not as expensive as positron emission tomography, and provides a good basis for anatomical analysis. The magnetic resonance spectroscopy analyzes cerebral metabolism, yielding inconsistent results in parkinsonian disorders. We selected 40 individuals for magnetic resonance imaging and spectroscopy analysis, 12 with Parkinson's disease, 11 with progressive supranuclear palsy, 7 with multiple system atrophy (parkinsonian type), and 10 individuals without any psychiatric or neurological disorders (controls). Clinical scales included Hoenh and Yahr, unified Parkinson's disease rating scale and mini mental status examination. The results showed that patients with Parkinson's disease and controls presented the same aspects on neuroimaging, with few or absence of abnormalities, and supranuclear progressive palsy and multiple system atrophy showed abnormalities, some of which statistically significant. Thus, magnetic resonance imaging and spectroscopy could be useful as a tool in differential diagnosis of Parkinsonism. (author)

  14. Experimental studies on perturbed acoustic resonant spectroscopy by a small rock sample in a cylindrical cavity

    Institute of Scientific and Technical Information of China (English)

    CHEN; Dehua; WANG; Xiuming; CONG; Jiansheng; XU; Delong; SONG; Yanjie; MA; Shuilong

    2006-01-01

    A measurement system for acoustic resonant spectroscopy (ARS) is established,and the effects of resonant cavity geometry,inner perturbation samples and environmental temperature on the ARS are investigated.The ARSs of the small samples with various sizes and acoustic properties are measured.The results show that at the normal pressure,the resonant frequency decreases gradually with the increase of liquid temperature in the cylindrical cavity,while the resonant amplitude increases.At certain pressure and temperature,both the resonant frequency and the amplitude decrease greatly when there exist air bubbles inside the cavity fluid.The ARS is apparently affected by the sample porosity and the sample location in the resonant cavity.At the middle of the cavity,the resonant frequencies reach their maximum values for all of the measurement samples.The resonant frequencies of the porous rock samples are smaller than those of the compacted samples if other acoustic parameters are the same.As the sample is moved from the top to the middle of the cavity along its axis,the resonant amplitude increases gradually for the compacted rocks while decreases for the unconsolidated rocks.Furthermore,the resonant amplitude increases firstly and then decreases if the porosity of the rock sample is relatively small.In addition,through the comparisons between the experimental and theoretical results,it is found that the effects of the acoustic parameters and sizes of the samples and the size of the cylindrical cavity on the laboratory results agree well with the theoretical ones qualitatively.These results may provide basic reference for the experiment study of rock acoustic properties in a low frequency using ARS.

  15. Hypothalamic metabolic compartmentation during appetite regulation as revealed by magnetic resonance imaging and spectroscopy methods

    Directory of Open Access Journals (Sweden)

    Blanca eLizarbe

    2013-06-01

    Full Text Available We review the role of neuroglial compartmentation and transcellular neurotransmitter cycling during hypothalamic appetite regulation as detected by Magnetic Resonance Imaging (MRI and Spectroscopy (MRS methods. We address first the neurochemical basis of neuroendocrine regulation in the hypothalamus and the orexigenic and anorexigenic feed-back loops that control appetite. Then we examine the main Magnetic Resonance Imaging and Spectroscopy strategies that have been used to investigate appetite regulation. Manganese enhanced magnetic resonance imaging (MEMRI, Blood oxygenation level dependent contrast (BOLD and Diffusion weighted magnetic resonance imaging (DWI have revealed Mn2+accumulations, augmented oxygen consumptions and astrocytic swelling in the hypothalamus under fasting conditions, respectively. High field 1H magnetic resonance in vivo, showed increased hypothalamic myo-inositol concentrations as compared to other cerebral structures. 1H and 13C high resolution magic angle spinning (HRMAS revealed increased neuroglial oxidative and glycolytic metabolism, as well as increased hypothalamic glutamatergic and GABAergic neurotransmissions under orexigenic stimulation. We propose here an integrative interpretation of all these findings suggesting that the neuroendocrine regulation of appetite is supported by important ionic and metabolic transcellular fluxes which begin at the tripartite orexigenic clefts and become extended spatially in the hypothalamus through astrocytic networks, becoming eventually MRI and MRS detectable.

  16. Hybrid Electron Spin Resonance and Whispering Gallery Mode Resonance Spectroscopy of Fe3+ in Sapphire

    OpenAIRE

    Benmessai, Karim; Farr, Warrick G.; Creedon, Daniel L.; Reshitnyk, Yarema; Floch, Jean-Michel Le; Duty, Timothy; Tobar, Michael E.

    2013-01-01

    The development of a new era of quantum devices requires an understanding of how paramagnetic dopants or impurity spins behave in crystal hosts. Here, we describe a new spectroscopic technique which uses traditional Electron Spin Resonance (ESR) combined with the measurement of a large population of electromagnetic Whispering Gallery (WG) modes. This allows the characterization of the physical parameters of paramagnetic impurity ions in the crystal at low temperatures. We present measurements...

  17. Determination of Ionization Potential of Calcium by High-Resolution Resonance Ionization Spectroscopy

    Science.gov (United States)

    Miyabe, Masabumi; Geppert, Christopher; Kato, Masaaki; Oba, Masaki; Wakaida, Ikuo; Watanabe, Kazuo; Wendt, Klaus D. A.

    2006-03-01

    High-resolution resonance ionization spectroscopy has been utilized to determine a precise ionization potential of Ca. Three-step resonance excitation with single-mode extended-cavity diode lasers populates long and unperturbed Rydberg series of 4snp (1P1) and 4snf (1F3) states in the range of n=20--150. Using an extended Ritz formula for quantum defects, the series convergence limit has been determined to be 49305.9240(20) cm-1 with the accuracy improved one order of magnitude higher than previously reported ones.

  18. Determination of ionization potential of calcium by high-resolution resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    High-resolution resonance ionization spectroscopy has been utilized to determine a precise ionization potential of Ca. Three-step resonance with single-mode extended-cavity diode lasers populates long and unperturbed Rydberg series of 4snp (1P1) and 4snf (1F3) states in the range of n=20-150. Using an extended Ritz formula for quantum defects, the series convergence limit has been determined to be 49305.9240(20)cm-1 with the accuracy improved one order of magnitude higher than previously reported ones. (author)

  19. First on-line results from the CRIS (Collinear Resonant Ionisation Spectroscopy) beam line at ISOLDE

    International Nuclear Information System (INIS)

    The CRIS (Collinear Resonant Ionisation Spectroscopy) experiment at the on-line isotope separator facility, ISOLDE, CERN, has been constructed for high-sensitivity laser spectroscopy measurements on radioactive isotopes. The technique determines the magnetic dipole and electric quadrupole moments, nuclear spin and changes in mean-square charge radii of exotic nuclei via measurement of their hyperfine structures and isotope shifts. In November 2011 the first on-line run was performed using the CRIS beam line, when the hyperfine structure of 207Fr was successfully measured. This paper will describe the technique and experimental setup of CRIS and present the results from the first on-line experiment.

  20. 13C nuclear magnetic resonance spectroscopy in the studies of biosynthetic routes of natural products

    International Nuclear Information System (INIS)

    During the last five decades, as a result of an interaction between natural product chemistry, synthetic organic chemistry, molecular biology and spectroscopy, scientists reached an extraordinary level of comprehension about the natural processes by which living organisms build up complex molecules. In this context, 13C nuclear magnetic resonance spectroscopy, allied with isotopic labeling, played a determinant role. Nowadays, the widespread use of modern NMR techniques allows an even more detailed picture of the biochemical steps by accurate manipulation of the atomic nuclei. This article focuses on the development of such techniques and their impact on biosynthetic studies. (author)

  1. Neurochemical metabolites in the medial prefrontal cortex in bipolar disorder A proton magnetic resonance spectroscopy study

    Institute of Scientific and Technical Information of China (English)

    Osman (O)zdel; Demet Kalayci; Gülfizar S(o)zeri-Varma; Yilmaz Kiro(g)lu; Selim Tümkaya; Tu(g)(c)e Toker-U(g)urlu

    2012-01-01

    The aim of this study was to investigate proton magnetic resonance spectroscopy metabolite values in the medial prefrontal cortex of individuals with euthymic bipolar disorder. The subjects consisted of 15 patients with euthymic bipolar disorder type I and 15 healthy controls. We performed proton magnetic resonance spectroscopy of the bilateral medial prefrontal cortex and measured levels of N-acetyl aspartate, choline and creatine. Levels of these three metabolites in the medial prefrontal cortex were found to be lower in patients with bipolar disorder compared with healthy controls. A positive correlation was found between illness duration and choline levels in the right medial prefrontal cortex. Our study suggests that during the euthymic period, there are abnormalities in cellular energy and membrane phospholipid metabolism in the medial prefrontal cortex, and that this may impair neuronal activity and integrity.

  2. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic

    Science.gov (United States)

    Lovchinsky, I.; Sushkov, A. O.; Urbach, E.; de Leon, N. P.; Choi, S.; De Greve, K.; Evans, R.; Gertner, R.; Bersin, E.; Müller, C.; McGuinness, L.; Jelezko, F.; Walsworth, R. L.; Park, H.; Lukin, M. D.

    2016-02-01

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  3. Billion-fold enhancement in sensitivity of nuclear magnetic resonance spectroscopy for magnesium ions in solution.

    Science.gov (United States)

    Gottberg, Alexander; Stachura, Monika; Kowalska, Magdalena; Bissell, Mark L; Arcisauskaite, Vaida; Blaum, Klaus; Helmke, Alexander; Johnston, Karl; Kreim, Kim; Larsen, Flemming H; Neugart, Rainer; Neyens, Gerda; Garcia Ruiz, Ronald F; Szunyogh, Daniel; Thulstrup, Peter W; Yordanov, Deyan T; Hemmingsen, Lars

    2014-12-15

    β-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, β-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. (31)Mg β-NMR spectra are measured for as few as 10(7) magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β-NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry. PMID:25303164

  4. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    Science.gov (United States)

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  5. Billion-Fold Enhancement in Sensitivity of Nuclear Magnetic Resonance Spectroscopy for Magnesium Ions in Solution

    CERN Document Server

    Gottberg, Alexander; Kowalska, Magdalena; Bissell, Mark L; Arcisauskaite, Vaida; Blaum, Klaus; Helmke, Alexander; Johnston, Karl; Kreim, Kim; Larsen, Flemming H; Neugart, Rainer; Neyens, Gerda; Garcia Ruiz, Ronald F; Szunyogh, Daniel; Thulstrup, Peter W; Yordanov, Deyan T; Hemmingsen, Lars

    2014-01-01

    β-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, β-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. 31Mg β-NMR spectra are measured for as few as 107 magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β-NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry.

  6. Application of 1H magnetic resonance spectroscopy in diagnosis and differential diagnosis of cerebral infection

    International Nuclear Information System (INIS)

    Objective: To study the application of single voxel proton magnetic resonance spectroscopy in diagnosis and differential diagnosis of cerebral infection according to manifestations of the 8 patients with cerebritis and 13 patients with gliomas. Methods: The patients including 8 cerebral abscess and 13 gliomas were examined with MRS. And the quantity of the NAA, Cho, Cr, Lip, Lac, AA were measured and compared. Results: There were differences between cerebral abscess and tumors on MRS. NAA/Cr and Cho/Cr of abscess were 4.114±3.637 and 3.084±0.933. NAA/Cr and Cho/Cr of tumors were 1.064±0.823 and 5.987±4.380. There was amino acids (AA) could be seen in some of cerebral abscess. Conclusion: 1H magnetic resonance spectroscopy can supply important information in diagnosis cerebral infection and differentiate information with tumor. (authors)

  7. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped

    OpenAIRE

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Acar, SelÇuk; Kokal, İlkin; Haessler, Wolfgang; Weber, Stefan

    2015-01-01

    Undoped and carbon-doped magnesium diboride (MgB2) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp(3)-hybridized carbon r...

  8. Magnetic resonance spectroscopy to study hepatic metabolism in diffuse liver diseases, diabetes and cancer

    Institute of Scientific and Technical Information of China (English)

    Pieter; C; Dagnelie; Susanne; Leij-Halfwerk

    2010-01-01

    This review provides an overview of the current state of the art of magnetic resonance spectroscopy (MRS) in in vivo investigations of diffuse liver disease. So far, MRS of the human liver in vivo has mainly been used as a research tool rather than a clinical tool. The liver is particularly suitable for static and dynamic metabolic studies due to its high metabolic activity. Furthermore, its relatively superfi cial position allows excellent MRS localization, while its large volume allows detection of signal...

  9. Isotopically selective counting of noble gas atoms, using resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    The technique of Resonance Ionization Spectroscopy (RIS) is being extended to develop a means for counting individual atoms of a selected isotope of a noble gas. In this method, lasers are used for RIS to obtain atomic species (Z) selectivity and a small quadrupole mass spectrometer provides isotopic (A) selectivity. A progress report on the objective of counting each atom of a particular isotope of a noble gas is given. (author)

  10. An application of resonant ionisation spectroscopy to accelerator based high energy physics

    International Nuclear Information System (INIS)

    The simulation of charged particle tracks by pulsed UV lasers is now used extensively in the calibration of multiwire drift chambers. The identity of the trace quantities of low ionisation potential impurities responsible for the laser induced ionisation in conventional chamber gases has caused much discussion. Using two photon resonant ionisation spectroscopy two of the major sources of ionisation in proportional counters have been identified as phenol and toluene. (author)

  11. Isotopically selective counting of noble gas atoms, using resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    The technique of Resonance Ionization Spectroscopy (RIS) is being extended to develop a means for counting individual atoms of a selected isotope of a noble gas. In this method, lasers are used for RIS to obtain atomic species (Z) selectivity and a small quadrupole mass spectrometer provides isotopic (A) selectivity. A progress report on the objective of counting each atom of a particular isotope of a noble gas is given. 10 references, 4 figures

  12. 1H and 31P nuclear magnetic resonance spectroscopy of erythrocyte extracts in myotonic muscular dystrophy

    International Nuclear Information System (INIS)

    Extracts freshly prepared from erythrocytes of patients with myotonic muscular dystrophy, their unaffected siblings, and normal control subjects were examined with both 1H and 31P nuclear magnetic resonance spectroscopy. A moderate variability was found in the relative amounts of various nonphosphorylated compounds among patients and control subjects; however, no significant differences were found between the groups. As for the phosphorylated compounds, the sum of ADP+ATP was found significantly elevated in the myotonic muscular dystrophy patients

  13. Using Electron Paramagnetic Resonance Spectroscopy To Facilitate Problem Solving in Pharmaceutical Research and Development.

    Science.gov (United States)

    Mangion, Ian; Liu, Yizhou; Reibarkh, Mikhail; Williamson, R Thomas; Welch, Christopher J

    2016-08-19

    As new chemical methodologies driven by single-electron chemistry emerge, process and analytical chemists must develop approaches to rapidly solve problems in this nontraditional arena. Electron paramagnetic resonance spectroscopy has been long known as a preferred technique for the study of paramagnetic species. However, it is only recently finding application in contemporary pharmaceutical development, both to study reactions and to track the presence of undesired impurities. Several case studies are presented here to illustrate its utility in modern pharmaceutical development efforts.

  14. Quantum Computation Based on Magic-Angle-Spinning Solid State Nuclear Magnetic Resonance Spectroscopy

    OpenAIRE

    Ding, Shangwu; McDowell, Charles A.; Ye, Chaohui; Zhan, Mingsheng; Zhu, Xiwen; Gao, Kelin; Sun, Xianping; Mao, Xi-An; Liu, Maili

    2001-01-01

    Magic-angle spinning (MAS) solid state nuclear magnetic resonance (NMR) spectroscopy is shown to be a promising technique for implementing quantum computing. The theory underlying the principles of quantum computing with nuclear spin systems undergoing MAS is formulated in the framework of formalized quantum Floquet theory. The procedures for realizing state labeling, state transformation and coherence selection in Floquet space are given. It suggests that by this method, the largest number o...

  15. Instruments and Domains of Knowledge: The Case of Nuclear Magnetic Resonance Spectroscopy, 1956-1969

    OpenAIRE

    Roberts, Jody Alan

    2002-01-01

    In this thesis, I traced the development of Nuclear Magnetic Resonance (NMR) Spectroscopy through the pages of the Journal of Organic Chemistry (JOC) from the year 1956 to 1969 to understand how organic chemists and Varian Associates?the makers of the first commercial NMR spectrometers?negotiated the identity of the NMR spectrometer. The work of the organic chemists was examined through their publications in the JOC. Examining the abstracts from the JOC between the years 1956 and 1969 devel...

  16. Role of Magnetic Resonance Spectroscopy and Susceptibility Weighted Imaging in Cerebral Alveolar Echinococcosis

    OpenAIRE

    Guocai Yang; Qingxin Zhang; Guibo Tang; Hui Xu; Zhen Yang; Jianzhong Guo; Lin Liang; Yonghong Qi

    2015-01-01

    Background: To analyze the characteristic performance of magnetic resonance spectroscopy (MRS) and susceptibility weighted imaging (SWI) in cerebral alveolar echinococcosis (CAE). Methods: We retrospectively analyzed 10 clinical-identified CAE cases MR performance, and summarized the MRS and SWI performance of CAE. Results: The 10 cases of CAE all had the history of primary HAE, among who 6 cases had single lesion (60%), while the rest 4 cases had multiple lesions (40%); and 4 cases were conc...

  17. A magnetic resonance spectroscopy driven initialization scheme for active shape model based prostate segmentation

    OpenAIRE

    Toth, Robert; Tiwari, Pallavi; Rosen, Mark; Reed, Galen; Kurhanewicz, John; Kalyanpur, Arjun; Pungavkar, Sona; Madabhushi, Anant

    2010-01-01

    Segmentation of the prostate boundary on clinical images is useful in a large number of applications including calculation of prostate volume pre- and post-treatment, to detect extra-capsular spread, and for creating patient-specific anatomical models. Manual segmentation of the prostate boundary is, however, time consuming and subject to inter- and intra-reader variability. T2-weighted (T2-w) magnetic resonance (MR) structural imaging (MRI) and MR spectroscopy (MRS) have recently emerged as ...

  18. Multiclass imbalance learning:Improving classification of pediatric brain tumors from magnetic resonance spectroscopy

    OpenAIRE

    Zarinabad, Niloufar; Wilson, Martin P; Gill, Simrandip K.; Manias, Karen A; Davies, Nigel P; Peet, Andrew C

    2016-01-01

    PURPOSE: Classification of pediatric brain tumors from (1) H-magnetic resonance spectroscopy (MRS) can aid diagnosis and management of brain tumors. However, varied incidence of the different tumor types leads to imbalanced class sizes and introduces difficulties in classifying rare tumor groups. This study assessed different imbalanced multiclass learning techniques and compared the use of complete spectra and quantified metabolite profiles for classification of three main childhood brain tu...

  19. Comparison among T1-Weighted Magnetic Resonance Imaging, Modified Dixon Method, and Magnetic Resonance Spectroscopy in Measuring Bone Marrow Fat

    Directory of Open Access Journals (Sweden)

    Wei Shen

    2013-01-01

    Full Text Available Introduction. An increasing number of studies are utilizing different magnetic resonance (MR methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI, modified Dixon method (also called fat fraction MRI (FFMRI, and magnetic resonance spectroscopy (MRS. Methods. Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI. Bone marrow adipose tissue (BMAT of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Results. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 in femoral necks. Conclusion. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.

  20. Elastic constants of α Ti-7Al measured using resonant ultrasound spectroscopy

    Science.gov (United States)

    Adebisi, R. A.; Sathish, S.; Pilchak, A. L.; Shade, P. A.

    2016-02-01

    The five independent elastic constants of a single-phase (α, HCP crystal structure) titanium alloy, Ti-7Al, have been measured for the first time using resonant ultrasound spectroscopy (RUS). RUS is a nondestructive evaluation method that mea-sures the mechanical resonance of solids and uses the resonance frequencies to extract a complete set of elastic constants of the solid material. The elastic constants of titanium alloys vary substantially depending on manufacturing history and composition. In addition, available data on the elastic constants of titanium alloys is limited. The elastic constants data for Ti-7Al are presented in this paper and the results are compared to the available data for other titanium alloys that are similar in composition.

  1. Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Liang; Lu, Ping; Chen, Li;

    2012-01-01

    A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fiber...... of the fiber ring resonator can be measured with the transmission spectrum. A good linearity is obtained between displacement and the inverse of wavelength spacing with an R2 of 0.9989, and high sensitivities better than 40  pm/με within the range of 0 to 10  με are achieved. The sensitivity can...... be proportionally improved by increasing the length of the optical fiber ring resonator....

  2. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    Science.gov (United States)

    Haverkort, Maurits W.

    2016-05-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty, a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org.

  3. Nuclear magnetic resonance spectroscopy for determining the functional content of organic aerosols: A review

    International Nuclear Information System (INIS)

    The knowledge deficit of organic aerosol (OA) composition has been identified as the most important factor limiting our understanding of the atmospheric fate and implications of aerosol. The efforts to chemically characterize OA include the increasing utilization of nuclear magnetic resonance spectroscopy (NMR). Since 1998, the functional composition of different types, sizes and fractions of OA has been studied with one-dimensional, two-dimensional and solid state proton and carbon-13 NMR. This led to the use of functional group ratios to reconcile the most important sources of OA, including secondary organic aerosol and initial source apportionment using positive matrix factorization. Future research efforts may be directed towards the optimization of experimental parameters, detailed NMR experiments and analysis by pattern recognition methods to identify the chemical components, determination of the NMR fingerprints of OA sources and solid state NMR to study the content of OA as a whole. - Highlights: • Organic aerosol composition by 1H- and 13C-NMR spectroscopy. • NMR fingerprints of specific sources, types and sizes of organic aerosol. • Source reconciliation and apportionment using NMR spectroscopy. • Research priorities towards understanding organic aerosol composition and origin. - This review presents the recent advances on the characterization of organic aerosol composition using nuclear magnetic resonance spectroscopy

  4. Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy: Spin-Trapping with Iron-Dithiocarbamates.

    Science.gov (United States)

    Maia, Luisa B; Moura, José J G

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is the ideal methodology to identify radicals (detection and characterization of molecular structure) and to study their kinetics, in both simple and complex biological systems. The very low concentration and short life-time of NO and of many other radicals do not favor its direct detection and spin-traps are needed to produce a new and persistent radical that can be subsequently detected by EPR spectroscopy.In this chapter, we present the basic concepts of EPR spectroscopy and of some spin-trapping methodologies to study NO. The "strengths and weaknesses" of iron-dithiocarbamates utilization, the NO traps of choice for the authors, are thoroughly discussed and a detailed description of the method to quantify the NO formation by molybdoenzymes is provided. PMID:27094413

  5. Determination of molecular spectroscopic parameters and energy-transfer rates by double-resonance spectroscopy

    Science.gov (United States)

    Steinfeld, J. I.; Foy, B.; Hetzler, J.; Flannery, C.; Klaassen, J.; Mizugai, Y.; Coy, S.

    1990-01-01

    The spectroscopy of small to medium-size polyatomic molecules can be extremely complex, especially in higher-lying overtone and combination vibrational levels. The high density of levels also complicates the understanding of inelastic collision processes, which is required to model energy transfer and collision broadening of spectral lines. Both of these problems can be addressed by double-resonance spectroscopy, i.e., time-resolved pump-probe measurements using microwave, infrared, near-infrared, and visible-wavelength sources. Information on excited-state spectroscopy, transition moments, inelastic energy transfer rates and propensity rules, and pressure-broadening parameters may be obtained from such experiments. Examples are given for several species of importance in planetary atmospheres, including ozone, silane, ethane, and ammonia.

  6. Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy Characterize a Rodent Model of Covert Stroke

    Science.gov (United States)

    Herrera, Sheryl Lyn

    Covert stroke (CS) comprises lesions in the brain often associated by risk factors such as a diet high in fat, salt, cholesterol and sugar (HFSCS). Developing a rodent model for CS incorporating these characteristics is useful for developing and testing interventions. The purpose of this thesis was to determine if magnetic resonance (MR) can detect brain abnormalities to confirm this model will have the desired anatomical effects. Ex vivo MR showed brain abnormalities for rats with the induced lesions and fed the HFSCS diet. Spectra acquired on the fixed livers had an average percent area under the fat peak relative to the water peak of (20+/-4)% for HFSCS and (2+/-2)% for control. In vivo MR images had significant differences between surgeries to induce the lesions (p=0.04). These results show that applying MR identified abnormalities in the rat model and therefore is important in the development of this CS rodent model.

  7. The in-gas-jet laser ion source: resonance ionization spectroscopy of radioactive atoms in supersonic gas jets

    OpenAIRE

    Kudryavtsev, Yu; Ferrer, R; Huyse, M.; Van den Bergh, P.; Van Duppen, P.(KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, Leuven, 3001, Belgium)

    2012-01-01

    New approaches to perform efficient and selective step-wise Resonance Ionization Spectroscopy (RIS) of radioactive atoms in different types of supersonic gas jets are proposed. This novel application results in a major expansion of the In-Gas Laser Ionization and Spectroscopy (IGLIS) method developed at KU Leuven. Implementation of resonance ionization in the supersonic gas jet allows to increase the spectral resolution by one order of magnitude in comparison with the currently performed in-g...

  8. Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry

    Science.gov (United States)

    Remillieux, Marcel C.; Ulrich, T. J.; Payan, Cédric; Rivière, Jacques; Lake, Colton R.; Le Bas, Pierre-Yves

    2015-07-01

    Resonant ultrasound spectroscopy (RUS) is a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample with free boundary conditions. An inversion technique is then used to retrieve the elastic tensor from the measured resonance frequencies. As originally developed, RUS has been mostly applicable to (i) materials with small damping such that the resonances of the sample are well separated and (ii) samples with simple geometries for which analytical solutions exist. In this paper, these limitations are addressed with a new RUS approach adapted to materials with high damping and samples of arbitrary geometry. Resonances are extracted by fitting a sum of exponentially damped sinusoids to the measured frequency spectrum. The inversion of the elastic tensor is achieved with a genetic algorithm, which allows searching for a global minimum within a discrete and relatively wide solution space. First, the accuracy of the proposed approach is evaluated against numerical data simulated for samples with isotropic symmetry and transversely isotropic symmetry. Subsequently, the applicability of the approach is demonstrated using experimental data collected on a composite structure consisting of a cylindrical sample of Berea sandstone glued to a large piezoelectric disk. In the proposed experiments, RUS is further enhanced by the use of a 3-D laser vibrometer allowing the visualization of most of the modes in the frequency band studied.

  9. Nuclear magnetic resonance spectroscopy is highly sensitive for lipid-soluble metabolites***

    Institute of Scientific and Technical Information of China (English)

    Haiyang Dai; Bikai Hong; Zhifeng Xu; Lian Ma; Yaowen Chen; Yeyu Xiao; Renhua Wu

    2013-01-01

    Although the water-soluble metabolite profile of human mesenchymal stem cel s is known, the lipid profile stil needs further investigation. In this study, methanol-chloroform was used to extract pid-soluble metabolites and perchloric acid was used to extract water-soluble metabolites. Fur-thermore, a dual phase extraction method using methanol-chloroform and water was used to obtain both water and lipid fractions simultaneously. Al metabolite extractions were analyzed on a 9.4T high-resolution nuclear magnetic resonance spectrometer. Metabolite resonance peaks were as-signed in the acquired spectra according to the chemical shift, and the extraction efficiency of ferent methods was compared. Results showed that in the spectra of water-soluble extracts, major metabolites comprised low molecular weight metabolites, including lactate, acetic acid, fatty acids, threonine, glutamic acid, creatine, choline and its derivatives, while in the spectra of lipid-soluble extracts, most metabolites were assigned to fatty acids. Among the different extraction procedures, perchloric acid was more efficient in extracting water-soluble metabolites and methanol-chloroform was efficient in extracting organic components compared with the dual phase extraction method. Nuclear magnetic resonance spectroscopy showed that as low as 0.7 mg organic yield was enough to obtain clear resonance peaks, while about 6.0 mg water-soluble yield was needed to obtain rela-tively favorable spectral lines. These results show that the efficiency of extracting water and lipid fractions is higher using perchloric acid and methanol-chloroform compared with dual phase ex-traction and that nuclear magnetic resonance spectroscopy is highly sensitive for analyzing li-pid-soluble extracts.

  10. Dynamics of Rhodobacter capsulatus [2Fe-2S] Ferredoxin VI and Aquifex aeolicus Ferredoxin 5 Via Nuclear Resonance Vibrational Spectroscopy (NRVS) and Resonance Raman Spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yuming; Tan, Ming-Liang; Ichiye, Toshiko; Wang, Hongxin; Guo, Yisong; Smith, Matt C.; Meyer, Jacques; Sturhahn, Wolfgang; Alp, E. E.; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P.

    2008-06-24

    We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the Fe(2)S(2)(Cys)(4) sites in oxidized and reduced [2Fe-2S] ferredoxins from Rhodobacter capsulatus (Rc FdVI) and Aquifex aeolicus (Aa Fd5). In the oxidized forms, nearly identical NRVS patterns are observed, with strong bands from Fe-S stretching modes peaking around 335 cm(-1), and additional features observed as high as the B(2u) mode at approximately 421 cm(-1). Both forms of Rc FdVI have also been investigated by resonance Raman (RR) spectroscopy. There is good correspondence between NRVS and Raman frequencies, but because of different selection rules, intensities vary dramatically between the two kinds of spectra. For example, the B(3u) mode at approximately 288 cm(-1), attributed to an asymmetric combination of the two FeS(4) breathing modes, is often the strongest resonance Raman feature. In contrast, it is nearly invisible in the NRVS, as there is almost no Fe motion in such FeS(4) breathing. NRVS and RR analysis of isotope shifts with (36)S-substituted into bridging S(2-) ions in Rc FdVI allowed quantitation of S(2-) motion in different normal modes. We observed the symmetric Fe-Fe stretching mode at approximately 190 cm(-1) in both NRVS and RR spectra. At still lower energies, the NRVS presents a complex envelope of bending, torsion, and protein modes, with a maximum at 78 cm(-1). The (57)Fe partial vibrational densities of states (PVDOS) were interpreted by normal-mode analysis with optimization of Urey-Bradley force fields. Progressively more complex D(2h) Fe(2)S(2)S'(4), C(2h) Fe(2)S(2)(SCC)(4), and C(1) Fe(2)S(2)(Cys)(4) models were optimized by comparison with the experimental spectra. After modification of the CHARMM22 all-atom force field by the addition of refined Fe-S force constants, a simulation employing the complete protein structure was used to reproduce the PVDOS, with better results in the low frequency protein mode region. This process was then repeated

  11. [Possibilities in the differential diagnosis of brain neoplasms using the long and short time sequences of proton magnetic resonance spectroscopy

    NARCIS (Netherlands)

    Gajewicz, W.; Goraj, B.M.

    2004-01-01

    Currently to perform proton magnetic resonance spectroscopy (1H MRS) with single voxel spectroscopy (SVS) technique long and/or short echo time sequences are used in order to provide complementary information. PURPOSE: The aim of the study was to compare the usefulness of STEAM (time echo, TE, 20 ms

  12. In vivo magnetic resonance imaging and 31P spectroscopy of large human brain tumours at 1.5 tesla

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Achten, E;

    1988-01-01

    31P MR spectroscopy of human brain tumours is one feature of magnetic resonance imaging. Eight patients with large superficial brain tumours and eight healthy volunteers were examined with 31P spectroscopy using an 8 cm surface coil for volume selection. Seven frequencies were resolved in our spe...

  13. Investigation of radiosterilization of Benzydamine Hydrochloride by electron spin resonance spectroscopy

    Science.gov (United States)

    Çolak, Şeyda

    2016-10-01

    The use of ionizing radiation for sterilization of pharmaceuticals is an attractive and growing technology. In the present work, the spectroscopic and kinetic features of the radicals induced in gamma irradiated solid Benzydamine Hydrochloride (BH) sample is investigated in the dose range of 3-34 kGy at different temperatures using Electron Spin Resonance (ESR) spectroscopy. Gamma irradiated BH indicated eight resonance peaks centered at g=2.0029 originating from two different radical species. Decay activation energy of the radical mostly responsible from central intense resonance line was calculated to be 25.6±1.5 kJ/mol by using the signal intensity decay data derived from annealing studies performed at high temperatures. A linear function of the applied dose was found to describe best the experimental dose-response data. However, the discrimination of irradiated BH from unirradiated one was possible even 3 months after storage at normal conditions. Basing on these findings it was concluded that BH and BH containing drugs could be safely sterilized by gamma radiation and that ESR spectroscopy could be successfully used as a potential technique for monitoring their radiosterilizations.

  14. Resonance-Enhanced Raman Spectroscopy on Explosives Vapor at Standoff Distances

    Directory of Open Access Journals (Sweden)

    Anneli Ehlerding

    2012-01-01

    Full Text Available Resonance-enhanced Raman spectroscopy has been used to perform standoff measurements on nitromethane (NM, 2,4-DNT, and 2,4,6-TNT in vapor phase. The Raman cross sections for NM, DNT, and TNT in vapor phase have been measured in the wavelength range 210–300 nm under laboratory conditions, in order to estimate how large resonance enhancement factors can be achieved for these explosives. The results show that the signal is enhanced up to 250,000 times for 2,4-DNT and up to 60,000 times for 2,4,6-TNT compared to the nonresonant signal at 532 nm. Realistic outdoor measurements on NM in vapor phase at 13 m distance were also performed, which indicate a potential for resonance Raman spectroscopy as a standoff technique for detection of vapor phase explosives. In addition, the Raman spectra of acetone, ethanol, and methanol were measured at the same wavelengths, and their influence on the spectrum from NM was investigated.

  15. The neurochemical basis of human cortical auditory processing: combining proton magnetic resonance spectroscopy and magnetoencephalography

    Directory of Open Access Journals (Sweden)

    Tollkötter Melanie

    2006-08-01

    Full Text Available Abstract Background A combination of magnetoencephalography and proton magnetic resonance spectroscopy was used to correlate the electrophysiology of rapid auditory processing and the neurochemistry of the auditory cortex in 15 healthy adults. To assess rapid auditory processing in the left auditory cortex, the amplitude and decrement of the N1m peak, the major component of the late auditory evoked response, were measured during rapidly successive presentation of acoustic stimuli. We tested the hypothesis that: (i the amplitude of the N1m response and (ii its decrement during rapid stimulation are associated with the cortical neurochemistry as determined by proton magnetic resonance spectroscopy. Results Our results demonstrated a significant association between the concentrations of N-acetylaspartate, a marker of neuronal integrity, and the amplitudes of individual N1m responses. In addition, the concentrations of choline-containing compounds, representing the functional integrity of membranes, were significantly associated with N1m amplitudes. No significant association was found between the concentrations of the glutamate/glutamine pool and the amplitudes of the first N1m. No significant associations were seen between the decrement of the N1m (the relative amplitude of the second N1m peak and the concentrations of N-acetylaspartate, choline-containing compounds, or the glutamate/glutamine pool. However, there was a trend for higher glutamate/glutamine concentrations in individuals with higher relative N1m amplitude. Conclusion These results suggest that neuronal and membrane functions are important for rapid auditory processing. This investigation provides a first link between the electrophysiology, as recorded by magnetoencephalography, and the neurochemistry, as assessed by proton magnetic resonance spectroscopy, of the auditory cortex.

  16. Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Murphy, P. S.; Viviers, L; Abson, C;

    2004-01-01

    Assessment of low-grade glioma treatment response remains as much of a challenge as the treatment itself. Proton magnetic resonance spectroscopy ((1)H-MRS) and imaging were incorporated into a study of patients receiving temozolomide therapy for low-grade glioma in order to evaluate and monitor...... tumour metabolite and volume changes during treatment. Patients (n=12) received oral temozolomide (200 mg m(-2) day(-1)) over 5 days on a 28-day cycle for 12 cycles. Response assessment included baseline and three-monthly magnetic resonance imaging studies (pretreatment, 3, 6, 9 and 12 months) assessing...... months, a significant reduction in the mean choline signal was observed compared with the pretreatment (P=0.035) and 3-month scan (P=0.021). The reduction in the tumour choline/water signal paralleled tumour volume change and may reflect the therapeutic effect of temozolomide...

  17. Coherent anti-Stokes Raman spectroscopy in the presence of strong resonant signal from background molecules

    CERN Document Server

    Bitter, Martin

    2012-01-01

    Optical spectroscopy with broadband femtosecond laser pulses often involves simultaneous excitation of multiple molecular species with close resonance frequencies. Interpreting the collective optical response from molecular mixtures typically requires Fourier analysis of the detected time-resolved signal. We propose an alternative method of separating coherent optical responses from two molecular species with neighboring excitation resonances (here, vibrational modes of oxygen and carbon dioxide). We utilize ro-vibrational coupling as a mechanism of suppressing the strong vibrational response from the dominating molecular species (O$_{2}$). Coherent ro-vibrational dynamics lead to long "silence windows" of zero signal from oxygen molecules. In these silence windows, the detected signal stems solely from the minority species (CO$_{2}$) enabling background-free detection and characterization of the O$_2$/CO$_2$ mixing ratio. In comparison to a Fourier analysis, our technique does not require femtosecond time re...

  18. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    International Nuclear Information System (INIS)

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms

  19. Noninvasive detection of temozolomide in brain tumor xenografts by magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Kato, Y.; Holm, David Alberg; Okollie, B.;

    2010-01-01

    MG human brain cancer. Dynamic magnetic resonance imaging (MRI) with the low-molecular-weight contrast agent, gadolinium diethylenetriaminepentaacetic acid (GdDTPA), was used to evaluate tumor vascular parameters. Carbon-13-labeled TMZ ([C-13]TMZ, 99%) was intraperitoneally administered at a dose...... experiments demonstrated slower recovery of MRI signal following an intravenous bolus injection of GdDTPA, higher vascular flow and volume obtained by T-2*-weighted MRI, as well as enhanced uptake of the contrast agent in the brain tumor compared with normal brain detected by T-1-weighted MRI. These data...... detection of drug directly in the tumor can be critically important for accessing, predicting, and eventually improving effectiveness of therapy. In this study, in vivo magnetic resonance spectroscopy (MRS) was used to detect an anticancer agent, temozolomide (TMZ), in vivo in murine xenotransplants of U87...

  20. Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays.

    Science.gov (United States)

    Zhang, Diming; Lu, Yanli; Jiang, Jing; Zhang, Qian; Yao, Yao; Wang, Ping; Chen, Bilian; Cheng, Qiaoyuan; Liu, Gang Logan; Liu, Qingjun

    2015-05-15

    The nanoscale Lycurgus cup arrays were hybrid structures of nanocups and nanoparticles with ultrasensitivity to refractive index change. In this study, an electrochemical localized surface plasmon resonance (LSPR) sensor was developed by coupling electrochemistry to LSPR spectroscopy measurement on the nanoscale cup arrays (nanoCA). Based on the combination of electrochemistry and LSPR measurement, the electrochemical LSPR on nanoCA was observed with significant resonance wavelength shifts in electrochemical modulation. The synchronous implementation of cyclic voltammetry and optical transmission spectrum can be used to obtain multiply sensing information and investigate the enhancement for LSPR from electrochemical scanning. The electrochemical enhanced LSPR was utilized as biosensor to detect biomolecules. The electrochemical LSPR biosensor with synchronous electrochemical and optical implement showed higher sensitivity than that of conventional optical LSPR measurement. Detecting with multi-transducer parameters and high sensitivity, the electrochemical LSPR provided a promising approach for chemical and biological detection. PMID:25172029

  1. Carbon-deuterium rotational-echo double-resonance NMR spectroscopy of lyophilized aspartame formulations.

    Science.gov (United States)

    Luthra, Suman A; Utz, Marcel; Gorman, Eric M; Pikal, Michael J; Munson, Eric J; Lubach, Joseph W

    2012-01-01

    In this study, changes in the local conformation of aspartame were observed in annealed lyophilized glasses by monitoring changes in the distance between two labeled sites using C-(2)H rotational-echo double-resonance (REDOR) nuclear magnetic resonance (NMR) spectroscopy. Confirmation that the REDOR experiments were producing accurate distance measurement was ensured by measuring the (13)C-(15)N distance in glycine. The experiment was further verified by measuring the REDOR dephasing curve on (13)C-(2)H methionine. (13)C-(2)H REDOR dephasing curves were then measured on lyophilized aspartame-disaccharide formulations. In aspartame-sucrose formulation, the internuclear distances increased upon annealing, which correlated with decreased chemical reactivity. By contrast, annealing had only a minimal effect on the dephasing curve in aspartame-trehalose formulation. The results show that stability is a function of both mobility and local structure (conformation), even in a small molecule system such as lyophilized aspartame-sucrose.

  2. The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE

    CERN Document Server

    Cocolios, T E; Procter, T J; Rothe, S; Garcia Ruiz, R F; Stroke, H H; Rossel, R E; Heylen, H; Franchoo, S; Marsh, B A; Verney, D; Papuga, J; Strashnov, I; Billowes, J; de Groote, R P; Le Blanc, F; Simpson, G S; Fedosseev, V N; Lynch, K M; Wood, R T; Budincevic, I; Mason, P J R; Wendt, K D A; Flanagan, K T; De Schepper, S; Rajabali, M M; Al Suradi, H H; Walker, P M; Smith, A J

    2013-01-01

    The CRIS setup at CERN-ISOLDE is a laser spectroscopy experiment dedicated to the high-resolution study of the spin, hyperfine structure and isotope shift of radioactive nuclei with low production rates (a few per second). It combines the Doppler-free resolution of the in-flight collinear geometry with the high detection efficiency of resonant ionisation. A recent commissioning campaign has demonstrated a 1\\% experimental efficiency, and as low as a 0.001\\% non-resonant ionisation. The current status of the experiment and its recent achievements with beams of francium isotopes are reported. The first identified systematic effects are discussed. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Observation of Kondo resonance in rare-earth hexaborides using high resolution photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Kalobaran; Patil, Swapnil; Adhikary, Ganesh [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Balakrishnan, Geetha, E-mail: kbmaiti@tifr.res.in [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom)

    2011-01-01

    We studied the electronic structure of rare earth hexaborides, CeB{sub 6}, PrB{sub 6} and NdB{sub 6} using state-of-the-art high resolution photoemission spectroscopy. CeB{sub 6} is a dense Kondo system. PrB{sub 6} and NdB{sub 6} are antiferromagnetic (Neel temperature {approx}7 K), known to be stable moment systems and do not exhibit Kondo effect. Photoemission spectra exhibit distinct signature of surface and bulk electronic structures of these compounds. The energy position of the surface feature is not influenced by the 4f density of states. High resolution spectra of CeB{sub 6} reveal multiple Kondo resonance features in the bulk spectra due to various photoemission final states. Interestingly, high resolution photoemission spectra of antiferromagnetic PrB{sub 6} also exhibit a sharp feature at the Fermi level that shows temperature dependence similar to the Kondo resonance features.

  4. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    CERN Document Server

    Karhu, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-01-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, $\

  5. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chang-Hwan Kim

    2003-12-12

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  6. Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application

    Science.gov (United States)

    Liu, Xiaoling; Yuan, Hong; Pang, Daiwen; Cai, Ruxiu

    2004-01-01

    In this paper, we used resonance light scattering (RLS) spectroscopy to study the interaction between thiol-containing pharmaceutical-thiamazole and gold colloid. At pH 5.2, the resonance light scattering spectrum of gold nanoparticles has a maximum peak at 555 nm and the RLS intensity is enhanced by trace amount of thiamazole due to the interaction between thiamazole and gold colloid. The binding of colloidal gold to thiamazole results in ligand-induced aggregation of colloidal gold, which was characterized by RLS spectrum, ultraviolet-visible (UV-Vis) spectrum, and transmission electron microscopy (TEM). Based upon the study, we proposed a highly sensitive, gold colloid-based assay using RLS spectrum to detect pharmaceuticals for the first time. The mechanism of binding interaction between Au colloid and thiamazole was also discussed.

  7. Temperature dependency of ultrasonic velocity of SA 106 Gr. B material using resonant ultrasound spectroscopy

    International Nuclear Information System (INIS)

    The dynamic elastic constants of the feeder pipe materials were determined by a high temperature resonant ultrasound spectroscopy (RUS). The resonance frequencies were measured using a couple of Alumina wave guides and wide-band ultrasonic transducers into a small furnace. The resonance frequencies of rectangular parallelepiped specimen were calculated from the initial estimates of elastic stiffiness c11, c12 and c44 with an assumption of isotropic property, dimension and density. Through the comparison of calculated resonance frequencies with the measured frequencies by RUS, very accurate elastic constants of SA 106 Gr. B material were determined by iteration and convergence processes. As the temperature increases, the Young's modulus and shear modulus decreases linearly. The ultrasonic velocities also decreases as increasing temperature in the range of room temperature ∼ 300 .deg. C. The temperature dependency of longitudinal wave velocity and transverse wave velocity were calculated accurately. The difference of 3.1% of longitudinal wave velocity between room temperature and 300 .deg. C should be calibrated when measuring the thickness of the feeder pipe at 300 .deg. C

  8. Excitation and Imaging of Resonant Optical Modes of Au Triangular Nano-Antennas Using Cathodoluminescence Spectroscopy

    CERN Document Server

    Kumar, Anil; Mabon, James C; Chow, Edmond; Fang, Nicholas X

    2010-01-01

    Cathodoluminescence (CL) imaging spectroscopy is an important technique to understand resonant behavior of optical nanoantennas. We report high-resolution CL spectroscopy of triangular gold nanoantennas designed with near-vacuum effective index and very small metal-substrate interface. This design helped in addressing issues related to background luminescence and shifting of dipole modes beyond visible spectrum. Spatial and spectral investigations of various plasmonic modes are reported. Out-of-plane dipole modes excited with vertically illuminated electron beam showed high-contrast tip illumination in panchromatic imaging. By tilting the nanostructures during fabrication, in-plane dipole modes of antennas were excited. Finite-difference time-domain simulations for electron and optical excitations of different modes showed excellent agreement with experimental results. Our approach of efficiently exciting antenna modes by using low index substrates is confirmed both with experiments and numerical simulations....

  9. Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Weiwei He

    2014-03-01

    Full Text Available Many of the biological applications and effects of nanomaterials are attributed to their ability to facilitate the generation of reactive oxygen species (ROS. Electron spin resonance (ESR spectroscopy is a direct and reliable method to identify and quantify free radicals in both chemical and biological environments. In this review, we discuss the use of ESR spectroscopy to study ROS generation mediated by nanomaterials, which have various applications in biological, chemical, and materials science. In addition to introducing the theory of ESR, we present some modifications of the method such as spin trapping and spin labeling, which ultimately aid in the detection of short-lived free radicals. The capability of metal nanoparticles in mediating ROS generation and the related mechanisms are also presented.

  10. Application of electron paramagnetic resonance (EPR) spectroscopy and imaging in drug delivery research - chances and challenges.

    Science.gov (United States)

    Kempe, Sabine; Metz, Hendrik; Mäder, Karsten

    2010-01-01

    Electron Paramagnetic Resonance (EPR) spectroscopy is a powerful technique to study chemical species with unpaired electrons. Since its discovery in 1944, it has been widely used in a number of research fields such as physics, chemistry, biology and material and food science. This review is focused on its application in drug delivery research. EPR permits the direct measurement of microviscosity and micropolarity inside drug delivery systems (DDS), the detection of microacidity, phase transitions and the characterization of colloidal drug carriers. Additional information about the spatial distribution can be obtained by EPR imaging. The chances and also the challenges of in vitro and in vivo EPR spectroscopy and imaging in the field of drug delivery are discussed.

  11. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yisong [University of California, Department of Applied Science (United States); Brecht, Eric [Montana State University, Department of Chemistry and Biochemistry (United States); Aznavour, Kristen [University of Southern California, Department of Chemistry (United States); Nix, Jay C. [Lawrence Berkeley National Laboratory, Physical Biosciences Division (United States); Xiao, Yuming; Wang, Hongxin [University of California, Department of Applied Science (United States); George, Simon J. [Lawrence Berkeley National Laboratory, Physical Biosciences Division (United States); Bau, Robert [University of Southern California, Department of Chemistry (United States); Keable, Stephen; Peters, John W. [Montana State University, Department of Chemistry and Biochemistry (United States); Adams, Michael W. W. [University of Georgia, Department of Biochemistry and Molecular Biology (United States); Jenney, Francis E. Jr. [Georgia Campus, Philadelphia College of Osteopathic Medicine (United States); Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong [Argonne National Laboratory, Advanced Photon Source (United States); Yoda, Yoshitaka [JASRI (Japan); Cramer, Stephen P., E-mail: spcramer@lbl.gov [University of California, Department of Applied Science (United States)

    2013-12-15

    We have applied {sup 57}Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Iron-sulfur protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the crystal structure.

  12. Nuclear magnetic resonance spectroscopy and chemometrics to identify pine nuts that cause taste disturbance.

    Science.gov (United States)

    Kobler, Helmut; Monakhova, Yulia B; Kuballa, Thomas; Tschiersch, Christopher; Vancutsem, Jeroen; Thielert, Gerhard; Mohring, Arne; Lachenmeier, Dirk W

    2011-07-13

    Nontargeted 400 MHz (13)C and (1)H nuclear magnetic resonance (NMR) spectroscopy was used in the context of food surveillance to reveal Pinus species whose nuts cause taste disturbance following their consumption, the so-called pine nut syndrome (PNS). Using principal component analysis, three groups of pine nuts were distinguished. PNS-causing products were found in only one of the groups, which however also included some normal products. Sensory analysis was still required to confirm PNS, but NMR allowed the sorting of 53% of 57 samples, which belong to the two groups not containing PNS species. Furthermore, soft independent modeling of class analogy was able to classify the samples between the three groups. NMR spectroscopy was judged as suitable for the screening of pine nuts for PNS. This process may be advantageous as a means of importation control that will allow the identification of samples suitable for direct clearance and those that require further sensory analysis.

  13. Selective excitation of molecular mode in a mixture by femtosecond resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy

    Institute of Scientific and Technical Information of China (English)

    He Ping; Li Si-Ning; Fan Rong-Wei; Li Xiao-Hui; Xia Yuan-Qin; Yu Xin; Chen De-Ying

    2012-01-01

    Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics.Due to the spectrally broad laser pulses,usually poorly resolved spectra result from this broad spectroscopy.However,it can be demonstrated that by the electronic resonance enhancement optimization control a selective excitation of specific vibrational mode is possible.Using an electronically resonance-enhanced effect,iodine molecule specific CARS spectroscopy can be obtained from a mixture of iodine-air at room temperature and a pressure of 1 atm (corresponding to a saturation iodine vapour as low as about 35 Pa).The dynamics on either the electronically excited state or the ground state of iodine molecules obtained is consistent with previous studies (vacuum,heated and pure iodine) in the femtosecond time resolved CARS spectroscopy,showing that an effective method of suppressing the non-resonant CARS background and other interferences is demonstrated.

  14. A search for new elementary particles using sputter-initiated resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Sputter-Initiated Resonance Ionization Spectroscopy is being used to search for new elementary particles which may exist at very low concentrations in stable matter, perhaps as relics of the Big Bang. Details of developments which have reduced backgrounds in the method to the parts-per-trillion level are discussed in detail. The latest results in the search for heavy fractional- and integer-charged species are reported. Preliminary concentration limits of 2 x 10-11 and 5 x 10-?12, respectively, have been obtained. (author)

  15. Stability of succinylcholine solutions stored at room temperature studied by nuclear magnetic resonance spectroscopy

    OpenAIRE

    Adnet, Frederic; Moyec, Laurence Le; Smith, Charles E.; Galinski, Michel; Jabre, Patricia; Lapostolle, Frederic

    2007-01-01

    The effect of storage temperature on the stability of two succinylcholine chloride solutions (20 and 50 mg/ml) was evaluated. Molecular composition was analysed using nuclear magnetic resonance spectroscopy. At room temperature, the degradation rate constant was 1.2%/month for the 20 mg/ml solution and 2.1%/month for the 50 mg/ml solution. The corresponding monthly degradation rates for the two solutions were 0.18% and 0.30% when stored at 4°C, and 5.4% and 8.1% when stored at 37°C. If a 10% ...

  16. Monitoring LED-induced carotenoid increase in grapes by Transmission Resonance Raman spectroscopy

    Science.gov (United States)

    Gonzálvez, Alicia G.; Martínez, Nerea L.; Telle, Helmut H.; Ureña, Ángel González

    2013-02-01

    Transmission Resonance Raman (TRR) spectroscopy combines increased signal-to-noise ratio with enhanced analytical sensibility. TRR was applied to directly monitor, without any sample preparation, the enhancement of β-carotene content in table grapes when they are irradiated by low power UV-LEDs. It was shown that, with respect to control samples, the carotenoid content in the grapes increased about five-fold, using UV-LED irradiation doses being two orders of magnitude lower than the maximum limit allowed by United States Food and Drug Administration. These promising results may pave the way for the development of easy, non-invasive techniques to improve food quality.

  17. Gamma-irradiated ExtraVit M nutritive supplement studied by electron paramagnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Petrisor, Dina [Faculty of Physics, Babes-Bolyai University, 1A Kogalniceanu Street, 400084 Cluj-Napoca (Romania)], E-mail: dinapetrisor@yahoo.co.uk; Damian, Grigore; Simon, Simion [Faculty of Physics, Babes-Bolyai University, 1A Kogalniceanu Street, 400084 Cluj-Napoca (Romania)

    2008-04-15

    An unirradiated and {gamma}-irradiated nutritive supplement named ExtraVit M was studied by electron paramagnetic resonance (EPR) spectroscopy in order to detect stable paramagnetic species following improvement of hygienic quality by {gamma}-radiation. Free radicals were induced by {gamma}-radiation in the studied samples from low absorbed doses, showing a certain sensibility of these samples to the radiation treatment. The EPR spectrum of irradiated ExtraVit M is typical for drugs or nutritive supplements containing high levels of sugars, vitamin C and cellulose.

  18. Correlation spectroscopy in cold atoms: light sidebands resonances in electromagnetically induced transparency condition

    CERN Document Server

    Florez, H M; Theophilo, K; Nussenzveig, P; Martinelli, M

    2015-01-01

    The correlation spectroscopy has been successfully employed in the measurement of the intrinsic linewidth of electromagnetically induced transparency (EIT) in time and frequency domain. We study the role of the sidebands of the intense fields in the measured spectra, analyzing the information that can be recovered working with different analysis frequencies. In this case, the non-zero one-photon detuning appears as a necessary condition for spectrally resolving the sideband resonances in the correlation coefficient. Our experimental findings are supported by the perturbative model defined in the frequency domain.

  19. [Laser resonance ionization spectroscopy of even-parity autoionization states of cerium atom].

    Science.gov (United States)

    Li, Zhi-ming; Zhu, Feng-rong; Zhang, Zi-bin; Ren, Xiang-jun; Deng, Hu; Zhai, Li-hua; Zhang, Li-xing

    2004-12-01

    This paper describes the investigation of even-parity autoionization states of cerium atoms by three-step three-color resonance ionization spectroscopy (RIS). Twenty-seven odd-parity highly excited levels, whose transition probability is high, were used in this research. One hundred and forty-one autoionization states were found by these channels with the third-step laser scanning in the wavelength range of 634-670 nm. The ionization probabilities of different channels, which had higher cross sections, were compared. On the basis of this, eight optimal photoionization schemes of cerium atom have been given. PMID:15828309

  20. Progress of magnetic resonance spectroscopy in chronic renal failure patients with vertebral bone change

    International Nuclear Information System (INIS)

    Bone changes caused by kidney diseases affect the quality of life in the patients with chronic renal failure. How to improve evaluation of the bone change, and consequently start early intervention and treatment is an important topic. Magnetic resonance spectroscopy (MRS) has been successfully used in the evaluations of central nervous system, breast and prostate, etc. Evaluation of bone changes with MRS is under studied. This article reviewed the MRS in evaluation of vertebral body bone changes in patients with chronic renal failure. (authors)

  1. A survey on quantitative analysis of organic compounds by nuclear magnetic resonance (NMR) spectroscopy

    International Nuclear Information System (INIS)

    Nuclear Magnetic Resonance (NMR) spectroscopy is known as a powerful analytical technique, which is used to determine the structure of small and macro organic compounds. In recent years, 1H NMR is being recognized more and more as a quantitative analytical method, which is based on the principle where the area under a 1H NMR signal peak in solution state is proportional to the number of nuclei contributing to the peak. In this report, the basic concepts, developmental history and current state of the quantitative 1H NMR (qNMR) method are described. Furthermore, future prospect of the qNMR method is presented. (author)

  2. Case control study: magnetic resonance spectroscopy of brain in HIV infected patients

    OpenAIRE

    Bairwa, Devender; Kumar, Virendra; Vyas, Surabhi; Das, Bimal Kumar; Srivastava, Achal Kumar; Pandey, Ravinder M.; Sharma, Surendra K; Jagannathan, Naranamangalam R.; Sinha, Sanjeev

    2016-01-01

    Background In vivo proton magnetic resonance spectroscopy (1H-MRS) studies on brain in HIV infected patients have shown significant alteration in neuro-biochemicals. Methods In this study, we measured the neuro-biochemical metabolites from the left frontal white matter (FWM) and left basal ganglia (BG) caudate head nucleus in 71 subjects that include 30 healthy controls, 20 asymptomatic HIV and 21 HIV patients with CNS lesion. Proton MR spectra were acquired at 3 T MRI system and the concentr...

  3. Magnetic resonance spectroscopy-guided transperineal prostate biopsy and brachytherapy for recurrent prostate cancer.

    Science.gov (United States)

    Barnes, Agnieszka Szot; Haker, Steven J; Mulkern, Robert V; So, Minna; D'Amico, Anthony V; Tempany, Clare M

    2005-12-01

    Brachytherapy targeted to the peripheral zone with magnetic resonance imaging (MRI) guidance is a prostate cancer treatment option with potentially fewer complications than other treatments. Follow-up MRI when failure is suspected is, however, difficult because of radiation-induced changes. Furthermore, MR spectroscopy (MRS) is compromised by susceptibility artifacts from radioactive seeds in the peripheral zone. We report a case in which combined MRI/MRS was useful for the detection of prostate cancer in the transitional zone in patients previously treated with MR-guided brachytherapy. We propose that MRI/MRS can help detect recurrent prostate cancer, guide prostate biopsy, and help manage salvage treatment decisions. PMID:16360468

  4. Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    Science.gov (United States)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Weber, Stefan; Somer, Mehmet

    2016-05-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  5. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    OpenAIRE

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-01-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labeled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F (DvMF) [NiFe]-hydrogenase. A unique ‘wagging’ mode involving H− motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy (NRVS) and density fu...

  6. Lorentzian sparsity based spectroscopic reconstruction for fast high-dimensional magnetic resonance spectroscopy.

    Science.gov (United States)

    Jiang, Boyu; Hu, Xiaoping; Gao, Hao

    2016-01-01

    Two-dimensional magnetic resonance spectroscopy (2D MRS) is challenging, even with state-of-art compressive sensing methods, such as L1-sparsity method. In this work, using the prior that the 2D MRS can be regarded as a series of Lorentzian functions, we aim to develop a robust Lorentzian-sparsity based spectroscopy reconstruction method for high-dimensional MRS. The proposed method sparsifies 2D MRS in Lorentzian functions. Instead of thousands of pixel-wise variables, this Lorentzian-sparsity method significantly reduces the number of unknowns to several geometric variables, such as the center, magnitude and shape parameters for each Lorentzian function. The spectroscopy reconstruction is formulated as a nonlinear and nonconvex optimization problem, and the simulated annealing algorithm is developed to solve the problem. The proposed method was compared with inverse FFT method and L1-sparsity method, under various undersampling factors. While FFT and L1 results contained severe artifacts, the Lorentzian-sparsity results provided significantly improved spectroscopy. A new 2D MRS reconstruction method is proposed using the Lorentzian sparsity, with significantly improved MRS reconstruction quality, in comparison with standard inverse FFT method or state-of-art L1-sparsity method. PMID:26630321

  7. Two-dimensional resonance Raman spectroscopy of oxygen- and water-ligated myoglobins

    Science.gov (United States)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-07-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has recently been developed as a tool for studies of structural heterogeneity and photochemical dynamics in condensed phases. In this paper, 2DRR spectroscopy is used to investigate line broadening mechanisms of both oxygen- and water-ligated myoglobins. General signatures of anharmonicity and inhomogeneous line broadening are first established with model calculations to facilitate signal interpretation. It is shown that the present quasi-degenerate version of 2DRR spectroscopy is insensitive to anharmonicity, because signal generation is allowed for harmonic modes. Rather, the key information to be gained from 2DRR spectroscopy pertains to the line broadening mechanisms, which are fairly obvious by inspection of the data. 2DRR signals acquired for both heme protein systems reveal significant heterogeneity in the vibrational modes local to the heme's propionic acid side chains. These side chains are known to interact with solvent, because they protrude from the hydrophobic pocket that encloses the heme. Molecular dynamics simulations suggest that the heterogeneity detected in our 2DRR experiments reflects fluctuations in the geometries of the side chains. Knowledge of such thermal motions will be useful for understanding protein function (e.g., ligand binding) because the side chains are an effective "gateway" for the exchange of thermal energy between the heme and solvent.

  8. Studying Kittel-like modes in a 3D YIG disk using Torque-mixing Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Fani Sani, Fatemeh; Losby, Joseph; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark

    We report a study of ferrimagnetic resonance in a mesoscopic, single-crystalline YIG disk using torque-mixing magnetic resonance spectroscopy (TMRS). The Kittel model for magnetic resonance is a touchstone in measuring fundamental magnetic properties for magnetic films, which does not significantly depend on the film size. In 3D structures, ladders of confined resonance modes are observed, and these can exhibit the non-monotonic evolution of frequency with field familiar from Kittel modes. TMRS is a tool uniquely suited for observing this physics in individual 3D structures, on account of its combination of high sensitivity and broadband capability coupled with fine frequency resolution.

  9. Characterization of the pigment xanthomonadin in the bacterial genus Xanthomonas using micro- and resonance Raman spectroscopy

    Science.gov (United States)

    Paret, Mathews L.; Sharma, Shiv K.; Misra, Anupam K.; Acosta, Tayro; deSilva, Asoka S.; Vowell, Tomie; Alvarez, Anne M.

    2012-06-01

    We used micro- and resonance Raman spectroscopy with 785 nm and 514.5 nm laser excitation, respectively, to characterize a plant pathogenic bacteria, Xanthomonas axonopodis pv. dieffenbachiae D150. The bacterial genus Xathomonas is closely related to bacterial genus Stenotrophomonas that causes an infection in humans. This study has identified for the first time the unique Raman spectra of the carotenoid-like pigment xanthomonadin of the Xanthomonas strain. Xanthomonadin is a brominated aryl-polyene pigment molecule similar to carotenoids. Further studies were conducted using resonance Raman spectroscopy with 514.5 nm laser excitation on several strains of the bacterial genus Xanthomonas isolated from numerous plants from various geographical locations. The current study revealed that the Raman bands representing the vibrations (v1, v2, v3) of the polyene chain of xanthomonadin are 1003-1005 (v3), 1135-1138 (v2), and 1530 (v1). Overtone bands representing xanthomonadin were identified as 2264-2275 (2v2), and combinational bands at 2653-2662 (v1+ v2). The findings from this study validate our previous finding that the Raman fingerprints of xanthomonadin are unique for the genus Xanthomonas. This facilitates rapid identification (~5 minutes) of Xanthomonas spp. from bacterial culture plates. The xanthomonadin marker is different from Raman markers of many other bacterial genus including Agrobacterium, Bacillus, Clavibacter, Enterobacter, Erwinia, Microbacterium, Paenibacillus, and Ralstonia. This study also identified Xanthomonas spp. from bacterial strains isolated from a diseased wheat sample on a culture plate.

  10. Pade-Froissart exact signal-noise separation in nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Belkic, Dzevad; Belkic, Karen, E-mail: Dzevad.Belkic@ki.se [Karolinska Institute, PO Box 260, S-171 76 Stockholm (Sweden)

    2011-06-28

    Nuclear magnetic resonance spectroscopy is one of the key methods for studying the structure of matter on different levels (sub-nuclear, nuclear, atomic, molecular, cellular, etc). Its overall success critically depends upon reliable mathematical analysis and interpretation of the studied data. This is especially aided by parametric signal processing with the ensuing data quantification, which can yield the abundance or concentrations of the constituents in the examined matter. The sought reliability of signal processing rests upon the possibility of an accurate solution of the quantification problem alongside the unambiguous separation of true from false information in the spectrally analysed data. We presently demonstrate that the fast Pade transform (FPT), as the unique ratio of two polynomials for a given Maclaurin series, can yield exact signal-noise separation for a synthesized free induction decay curve built from 25 molecules. This is achieved by using the concept of Froissart doublets or pole-zero cancellations. Unphysical/spurious (noise or noise-like) resonances have coincident or near-coincident poles and zeros. They possess either zero- or near-zero-valued amplitudes. Such spectral structures never converge due to their instability against even the smallest perturbations. By contrast, upon convergence of the FPT, physical/genuine resonances are identified by their persistent stability against external perturbations, such as signal truncation or addition of random noise, etc. In practice, the computation is carried out by gradually and systematically increasing the common degree of the Pade numerator and denominator polynomials in the diagonal FPT. As this degree changes, the reconstructed parameters and spectra fluctuate until stabilization occurs. The polynomial degree at which this full stabilization is achieved represents the sought exact number of resonances. An illustrative set of results is reported in this work to show the exact separation of

  11. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method.

    Science.gov (United States)

    Kaniber, M; Schraml, K; Regler, A; Bartl, J; Glashagen, G; Flassig, F; Wierzbowski, J; Finley, J J

    2016-03-23

    We report on the structural and optical properties of individual bowtie nanoantennas both on glass and semiconducting GaAs substrates. The antennas on glass (GaAs) are shown to be of excellent quality and high uniformity reflected by narrow size distributions with standard deviations for the triangle and gap size of = 4.5 nm = 2.6 nm and = 5.4 nm = 3.8 nm, respectively. The corresponding optical properties of individual nanoantennas studied by differential reflection spectroscopy show a strong reduction of the localised surface plasmon polariton resonance linewidth from 0.21 eV to 0.07 eV upon reducing the antenna size from 150 nm to 100 nm. This is attributed to the absence of inhomogeneous broadening as compared to optical measurements on nanoantenna ensembles. The inter-particle coupling of an individual bowtie nanoantenna, which gives rise to strongly localised and enhanced electromagnetic hotspots, is demonstrated using polarization-resolved spectroscopy, yielding a large degree of linear polarization of ρmax ~ 80%. The combination of highly reproducible nanofabrication and fast, non-destructive and non-contaminating optical spectroscopy paves the route towards future semiconductor-based nano-plasmonic circuits, consisting of multiple photonic and plasmonic entities.

  12. Magnetic resonance spectroscopy: novel non-invasive technique for diagnosing brain tumors

    International Nuclear Information System (INIS)

    To determine the accuracy of MR Spectroscopy (MRS) in diagnosing brain tumors. Study Design: Analytical study. Place and Duration of Study:Neurosurgery Department, Jinnah Postgraduate Medical Centre, Karachi, from November 2010 to April 2011. Methodology: Fifty cases with brain tumors, who presented to Neurosurgery Department of Jinnah Postgraduate Medical Centre, Karachi, during the study period, were included in the study. All patients underwent MRS and later brain. Those with recurrent disease were excluded. Data was collected with the help of proforma. Data was analyzed using SPSS version 16. Comparison of MRS findings and biopsy diagnosis was done. Sensitivity, specificity, negative and positive predictive values (NPV and PPV) were determined keeping histopathology as the gold standard. Results: Out of the 50 patients, there were 20 (40%) females and 30 (60%) males with mean age of 37 13.24 years. The commonest presenting complaint was headache (76%) followed by weakness (62%) and seizures (30%). MRI had diagnosed 27 (51%) as neoplastic lesion. Spectroscopy reported 44 (88%) as neoplasms, while on histopathology, 42 (84%) were confirmed to have neoplasm. The accuracy of MRS was 94%, with 97.6% sensitivity, 71.42% specificity, 95.45% PPV and 83.3% NPV. Conclusion: Magnetic resonance spectroscopy can readily help in differentiating neoplasm from non-neoplastic brain tumors, thus an invasive brain biopsy procedure can be avoided. (author)

  13. Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP

    Science.gov (United States)

    Lautenschläger, F.; Chhetri, P.; Ackermann, D.; Backe, H.; Block, M.; Cheal, B.; Clark, A.; Droese, C.; Ferrer, R.; Giacoppo, F.; Götz, S.; Heßberger, F. P.; Kaleja, O.; Khuyagbaatar, J.; Kunz, P.; Mistry, A. K.; Laatiaoui, M.; Lauth, W.; Raeder, S.; Walther, Th.; Wraith, C.

    2016-09-01

    The experimental determination of atomic levels and the first ionization potential of the heaviest elements (Z ⩾ 100) is key to challenge theoretical predictions and to reveal changes in the atomic shell structure. These elements are only artificially produced in complete-fusion evaporation reactions at on-line facilities such as the GSI in Darmstadt at a rate of, at most, a few atoms per second. Hence, highly sensitive spectroscopic methods are required. Laser spectroscopy is one of the most powerful and valuable tools to investigate atomic properties. In combination with a buffer-gas filled stopping cell, the Radiation Detected Resonance Ionization Spectroscopy (RADRIS) technique provides the highest sensitivity for laser spectroscopy on the heaviest elements. The RADRIS setup, as well as the measurement procedure, have been optimized and characterized using the α -emitter 155 Yb in on-line conditions, resulting in an overall efficiency well above 1%. This paves the way for a successful search of excited atomic levels in nobelium and heavier elements.

  14. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy

    Science.gov (United States)

    Yin, Hanjun; Zhao, Jianguo; Tang, Genyang; Ma, Xiaoyi; Wang, Shangxu

    2016-06-01

    Differential acoustic resonance spectroscopy (DARS) has been developed to determine the elastic properties of saturated rocks within the kHz frequency range. This laboratory technique is based on considerations from perturbation theory, wherein the resonance frequencies of the resonant cavity with and without a perturbation sample are used to estimate the acoustic properties of the test sample. In order to better understand the operating mechanism of DARS and therefore optimize the procedure, it is important to develop an accurate and efficient numerical model. Accordingly, this study presents a new multiphysics model by coupling together considerations from acoustics, solid mechanics, and electrostatics. The numerical results reveal that the newly developed model can successfully simulate the acoustic pressure field at different resonance modes, and that it can accurately reflect the measurement process. Based on the understanding of the DARS system afforded by the numerical simulation, we refine the system configuration by utilizing cavities of different lengths and appropriate radii to broaden the frequency bandwidth and ensure testing accuracy. Four synthetic samples are measured to test the performance of the optimized DARS system, in conjunction with ultrasonic and static measurements. For nonporous samples, the estimated bulk moduli are shown to be independent of the different measurement methods (i.e. DARS or ultrasonic techniques). In contrast, for sealed porous samples, the differences in bulk moduli between the low- and high-frequency techniques can be clearly observed; this discrepancy is attributed to frequency dispersion. In summary, the optimized DARS system with an extended frequency range of 500-2000 Hz demonstrates considerable utility in investigating the frequency dependence of the acoustic properties of reservoir rocks.

  15. Hitchhiker’s Guide to Voxel Segmentation for Partial Volume Correction of In Vivo Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Quadrelli, Scott; Mountford, Carolyn; Ramadan, Saadallah

    2016-01-01

    Partial volume effects have the potential to cause inaccuracies when quantifying metabolites using proton magnetic resonance spectroscopy (MRS). In order to correct for cerebrospinal fluid content, a spectroscopic voxel needs to be segmented according to different tissue contents. This article aims to detail how automated partial volume segmentation can be undertaken and provides a software framework for researchers to develop their own tools. While many studies have detailed the impact of partial volume correction on proton magnetic resonance spectroscopy quantification, there is a paucity of literature explaining how voxel segmentation can be achieved using freely available neuroimaging packages. PMID:27147822

  16. Resonance-enhanced multiphoton ionization photoelectron spectroscopy of Rydberg states of N2O below the X ionization limit

    OpenAIRE

    Scheper, C.R.; Kuijt, J.; Buma, W.J.; Lange

    1998-01-01

    A three-photon resonance-enhanced multiphoton ionization spectroscopic study on N2O is carried out in the spectral range from 80 000 cm - 1 up to the lowest ionization limit at 103 963 cm - 1. High-resolution photoelectron spectroscopy is used to identify and characterize the observed excited states. Eighteen origins are reported which have either not been assigned before or are reassigned now. Moreover, the photoelectron spectra taken at higher-lying resonances often show extensive vibronic ...

  17. Operando electron paramagnetic resonance spectroscopy – formation of mossy lithium on lithium anodes during charge–discharge cycling

    OpenAIRE

    Wandt, Johannes; Marino, Cyril; Gasteiger, Hubert A.; Jakes, Peter; Eichel, Rüdiger-A.; Granwehr, Josef

    2015-01-01

    The formation of mossy lithium and lithium dendrites so far prevents the use of lithium metal anodes in lithium ion batteries. To develop solutions for this problem (e.g., electrolyte additives), operando measurement techniques are required to monitor mossy lithium and dendrite formation during electrochemical cycling. Here we present a novel battery cell design that enables operando electron paramagnetic resonance (EPR) spectroscopy. It is shown that time-resolved operando EPR spectroscopy d...

  18. Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the "map" approach

    OpenAIRE

    Weinhardt, L.

    2010-01-01

    Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and c...

  19. Arsenic speciation by X-ray spectroscopy using resonant Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, H.J.; Leani, J.J. [Universidad Nacional de Cordoba, Cba (Argentina); Perez, C.A. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: The toxicity of arsenic species is widely known. A realistic evaluation of the risk posed by As depends on accurate determination of As speciation, because its toxicity and mobility varies with oxidation state and chemical environment. The most toxic species are inorganic As (III) and As (V) called respectively arsenite or trivalent arsenic, and arsenate or pentavalent arsenic. Recently, x-ray Resonant Raman Scattering spectroscopy has been successfully employed to determine the oxidation state of metals. In this work we use RRS spectroscopy to perform arsenic speciation. The measurements were carried out in XRF station of the D09B-XRF beamline at the Brazilian synchrotron facility (LNLS, Campinas). Mineral samples of As in different oxidation states (As(III) and AS(V)), and two biological forms of arsenic (monomethylarsonic acid (MMA(V) and dimethylarsinic acid DMA(V)) were analysed. The samples were diluted, deposited on silicon wafers and allowed to dry. The amount of liquid deposited on the reflector before evaporation was 20 microliters for all the specimens. These samples were irradiated with monochromatic photons of 11816 eV, i.e., below the K-edge of arsenic in order to inspect the Raman emissions. The measuring lifetime was 3600 sec for each sample. Spectra were analysed with specific programs for spectrum analysis using non-conventional functions for data fitting, i.e., modified Voight functions (for Compton peaks), Gaussian functions for fluorescent and for low intensity peaks (such as escape peaks and other contributions), and polynomial functions for the background. Raman peaks were fitted using specific functions. In this work we have shown that resonant Raman scattering spectroscopy can be used to analyse arsenic species. The method is very simple and reliable. The most important feature of this method relies in the possibility of using the same spectrometer of XRF analysis or TXRF analysis. In this way, practically in the same experiment

  20. Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy.

    Science.gov (United States)

    Schroeder, Marie A; Atherton, Helen J; Ball, Daniel R; Cole, Mark A; Heather, Lisa C; Griffin, Julian L; Clarke, Kieran; Radda, George K; Tyler, Damian J

    2009-08-01

    The Krebs cycle plays a fundamental role in cardiac energy production and is often implicated in the energetic imbalance characteristic of heart disease. In this study, we measured Krebs cycle flux in real time in perfused rat hearts using hyperpolarized magnetic resonance spectroscopy (MRS). [2-(13)C]Pyruvate was hyperpolarized and infused into isolated perfused hearts in both healthy and postischemic metabolic states. We followed the enzymatic conversion of pyruvate to lactate, acetylcarnitine, citrate, and glutamate with 1 s temporal resolution. The appearance of (13)C-labeled glutamate was delayed compared with that of other metabolites, indicating that Krebs cycle flux can be measured directly. The production of (13)C-labeled citrate and glutamate was decreased postischemia, as opposed to lactate, which was significantly elevated. These results showed that the control and fluxes of the Krebs cycle in heart disease can be studied using hyperpolarized [2-(13)C]pyruvate.

  1. Long-term follow-up of cerebral infarction patients with proton magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Gideon, P; Sperling, B; Arlien-Søborg, P;

    1994-01-01

    serially from the acute stage to the chronic stage of infarction. Regional cerebral blood flow was also measured within the affected areas. These factors were compared with the clinical outcome. METHODS: Six patients with ischemic stroke were examined serially from the acute stage (< or = 2 days) to the...... chronic stage (> 6 months) with proton magnetic resonance spectroscopy. Cerebral blood flow was measured with single-photon emission-computed tomography with 99mTc-labeled d,l-hexamethylenepropyleneamine oxime as flow tracer. RESULTS: Lactate was found in all patients in the acute stage of stroke. Lactate...... in the acute and chronic stage, whereas hyperemia was found in 4 patients in the subacute stage. CONCLUSIONS: In this preliminary study no clear correlation was found between the level of N-acetylaspartate or lactate in the acute stage of stroke and the clinical outcome; however, there does appear to...

  2. Stability of succinylcholine solutions stored at room temperature studied by nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Adnet, Frederic; Le Moyec, Laurence; Smith, Charles E; Galinski, Michel; Jabre, Patricia; Lapostolle, Frederic

    2007-03-01

    The effect of storage temperature on the stability of two succinylcholine chloride solutions (20 and 50 mg/ml) was evaluated. Molecular composition was analysed using nuclear magnetic resonance spectroscopy. At room temperature, the degradation rate constant was 1.2%/month for the 20 mg/ml solution and 2.1%/month for the 50 mg/ml solution. The corresponding monthly degradation rates for the two solutions were 0.18% and 0.30% when stored at 4 degrees C, and 5.4% and 8.1% when stored at 37 degrees C. If a 10% loss of potency is considered acceptable, then the 20 and 50 mg/ml succinylcholine solutions can be stored in emergency resuscitation carts at room temperature for 8.3 and 4.8 months, respectively. PMID:17351219

  3. Proton Magnetic Resonance Spectroscopy: Relevance of Glutamate and GABA to Neuropsychology.

    Science.gov (United States)

    Ende, Gabriele

    2015-09-01

    Proton Magnetic Resonance Spectroscopy (MRS) has been widely used to study the healthy and diseased brain in vivo. The availability of whole body MR scanners with a field strength of 3 Tesla and above permit the quantification of many metabolites including the neurotransmitters glutamate (Glu) and γ-aminobutyric acid (GABA). The potential link between neurometabolites identified by MRS and cognition and behavior has been explored in numerous studies both in healthy subjects and in patient populations. Preliminary findings suggest direct or opposite associations between GABA or Glu with impulsivity, anxiety, and dexterity. This chapter is intended to provide an overview of basic principles of MRS and the literature reporting correlations between GABA or Glu and results of neuropsychological assessments.

  4. Molecularly imprinted polymers for highly sensitive detection of morphine using surface plasmon resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Hong Xia Hao; Hong Zhou; Jing Chang; Jun Zhu; Tian Xin Wei

    2011-01-01

    Molecular imprinting technology is applied in surface plasmon resonance spectroscopy for highly sensitive and selective detection of morphine (MO). As SPR-based sensor of MO, the preparation of molecular imprinted polymer is as follows: methacrylic acids (MAA), ethylene glycol dimethacrylate (EGDMA), azodiisobutyronitrile (AIBN) were used as functional monomer, cross-linker and initiator, respectively. The experiment results showed that morphine imprinted polymer had the performance of high sensitivity and specificity, i.e. the relative signal of SPR response was proportional to the concentration of morphine in acetonitrile in the range of 10-9 mol/L to 10-6mol/L (1 ppb-1 ppm) with LOD of 10-10mol/L, and MO was distinguished from its analogs, such as codeine.

  5. Nature versus nurture: functional assessment of restoration effects on wetland services using Nuclear Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Sundareshwar, P.V.; Richardson, C.J.; Gleason, R.A.; Pellechia, P.J.; Honomichl, S.

    2009-01-01

    Land-use change has altered the ability of wetlands to provide vital services such as nutrient retention. While compensatory practices attempt to restore degraded wetlands and their functions, it is difficult to evaluate the recovery of soil biogeochemical functions that are critical for restoration of ecosystem services. Using solution 31P Nuclear Magnetic Resonance Spectroscopy, we examined the chemical forms of phosphorus (P) in soils from wetlands located across a land-use gradient. We report that soil P diversity, a functional attribute, was lowest in farmland, and greatest in native wetlands. Soil P diversity increased with age of restoration, indicating restoration of biogeochemical function. The trend in soil P diversity was similar to documented trends in soil bacterial taxonomic composition but opposite that of soil bacterial diversity at our study sites. These findings provide insights into links between ecosystem structure and function and provide a tool for evaluating the success of ecosystem restoration efforts. Copyright 2009 by the American Geophysical Union.

  6. In vivo proton magnetic resonance spectroscopy in a known case of intracranial hydatid cyst

    Directory of Open Access Journals (Sweden)

    Chand K

    2005-01-01

    Full Text Available We are presenting magnetic resonance spectroscopy (MRS findings of a known case of hydatid cyst operated twice in the past. A 22-years-old male patient had presented with recurrent symptoms of generalized seizures and raised intracranial tension. MRI with MRS of the lesion was performed that showed a recurrent loculated cystic lesion in right parieto-occipital lobe. MRS through the lesion was performed using repetition time (TR of 1500 ms and time to echo (TE of 135 ms using 2 x 2 x 2 cm voxel, from the margin of the lesion. MRS showed mildly elevated choline (Cho, depressed creatine (Cr and N-acetyl aspartate (NAA, a large peak of lactate, pyruvate and acetate peaks.

  7. Quantum Computation Based on Magic-Angle-Spinning Solid State Nuclear Magnetic Resonance Spectroscopy

    CERN Document Server

    Ding, S; Ye, C; Zhan, M S; Zhu, X; Gao, K; Sun, X; Mao, X A; Liu, M; Ding, Shangwu; Dowell, Charles A. Mc; Ye, Chaohui; Zhan, Mingsheng; Zhu, Xiwen; Gao, Kelin; Sun, Xianping; Mao, Xi-An; Liu, Maili

    2001-01-01

    Magic-angle spinning (MAS) solid state nuclear magnetic resonance (NMR) spectroscopy is shown to be a promising technique for implementing quantum computing. The theory underlying the principles of quantum computing with nuclear spin systems undergoing MAS is formulated in the framework of formalized quantum Floquet theory. The procedures for realizing state labeling, state transformation and coherence selection in Floquet space are given. It suggests that by this method, the largest number of qubits can easily surpass that achievable with other techniques. Unlike other modalities proposed for quantum computing, this method enables one to adjust the dimension of the working state space, meaning the number of qubits can be readily varied. The universality of quantum computing in Floquet space with solid state NMR is discussed and a demonstrative experimental implementation of Grover's search is given.

  8. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    Science.gov (United States)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  9. Operational electrochemical stability of thiophene-thiazole copolymers probed by resonant Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wade, Jessica; Wood, Sebastian; Kim, Ji-Seon, E-mail: ji-seon.kim@imperial.ac.uk [Department of Physics and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ (United Kingdom); Beatrup, Daniel; Hurhangee, Michael; McCulloch, Iain; Durrant, James R. [Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AY (United Kingdom); Bronstein, Hugo [Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AY (United Kingdom); Department of Chemistry, University College London, London WC1H 0AJ (United Kingdom)

    2015-06-28

    We report on the electrochemical stability of hole polarons in three conjugated polymers probed by resonant Raman spectroscopy. The materials considered are all isostructural to poly(3-hexyl)thiophene, where thiazole units have been included to systematically deepen the energy level of the highest occupied molecular orbital (HOMO). We demonstrate that increasing the thiazole content planarizes the main conjugated backbone of the polymer and improves the electrochemical stability in the ground state. However, these more planar thiazole containing polymers are increasingly susceptible to electrochemical degradation in the polaronic excited state. We identify the degradation mechanism, which targets the C=N bond in the thiazole units and results in disruption of the main polymer backbone conjugation. The introduction of thiazole units to deepen the HOMO energy level and increase the conjugated backbone planarity can be beneficial for the performance of certain optoelectronic devices, but the reduced electrochemical stability of the hole polaron may compromise their operational stability.

  10. Nanostructured lipid carriers as nitroxide depot system measured by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Haag, S F; Chen, M; Peters, D; Keck, C M; Taskoparan, B; Fahr, A; Teutloff, C; Bittl, R; Lademann, J; Schäfer-Korting, M; Meinke, M C

    2011-12-15

    Various nanometer scaled transport systems are used in pharmaceutics and cosmetics to increase penetration or storage of actives. Nanostructured lipid carriers (NLCs) are efficient drug delivery systems for dermatological applications. Electron paramagnetic resonance (EPR) spectroscopy was used for the determination of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) distribution within the carrier and to investigate the dynamics of skin penetration. Results of ex vivo penetration of porcine skin and in vivo data - forearm of human volunteers - are compared and discussed to previously obtained results with invasomes under comparable conditions. W-band measurements show 35% of TEMPO associated with the lipid compartments of the NLC. Application of TEMPO loaded NLC to skin ex vivo increases the observation time by 12min showing a stabilisation of the nitroxide radical. Moreover, stabilisation is also seen with data generated in vivo. Thus, same as invasomes NLCs are a suitable slow release depot system. PMID:22001533

  11. Determination of the first ionization potential of actinides by resonance ionization mass spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, S. [Institut fuer Kernchemie Universitaet Mainz, Mainz (Germany); Albus, F. [Institu fuer Physik, Universitaet Mainz, Mainz (Germany); Dibenberger, R.; Erdmann, N.; Funk, H. [Institut fuer Kernchemiess Universitaet Mainz, Mainz (Germany); Hasse, H. [Institut fuer Physik, Universitaet Mainz, Mainz (Germany); Herrmann, G. [Institut fuer Kernchemiess Universitaet Mainz, Mainz (Germany); Huber, G.; Kluge, H.; Nunnemann, M.; Passler, G. [Institut fuer Physik, Universitaet Mainz, Mainz (Germany); Rao, P.M. [Bhabha Atomic Research Centre Bombay (India); Riegel, J.; Trautmann, N. [Institut fuer Kernchemie Universitaet Mainz, Mainz (Germany); Urban, F. [Institut fuer Physik, Universitaet Mainz, Mainz (Germany)

    1995-04-01

    Resonance ionization mass spectroscopy (RIMS) is used for the precise determination of the first ionization potential of transuranium elements. The first ionization potentials (IP) of americium and curium have been measured for the first time to IP{sub {ital Am}}=5.9738(2) and IP{sub {ital Cm}}=5.9913(8) eV, respectively, using only 10{sup 12} atoms of {sup 243}Am and {sup 248}Cm. The same technique was applied to thorium, neptunium, and plutonium yielding IP{sub T{sub H}}=6.3067(2), IP{sub N{sub P}}=6.2655(2), and IP{sub {ital Pu}}=6.0257(8) eV. The good agreement of our results with the literature data proves the precision of the method which was additionally confirmed by the analysis of Rydberg seris of americium measured by RIMS. {copyright}American Institute of Physics 1995

  12. Proton magnetic resonance spectroscopy of a patient with Gerstmann-Straussler-Scheinker disease

    Energy Technology Data Exchange (ETDEWEB)

    Konaka, K.; Kaido, M.; Okuda, Y.; Aoike, F.; Abe, K.; Yanagihara, T. [Osaka Univ. Graduate School of Medicine (Japan). Dept. of Neurology; Kitamoto, T. [Tohoku Univ. Graduate School of Medicine (Japan). Dept. of Neurological Science

    2000-09-01

    A 23-year-old woman with Gerstmann-Straussler-Scheinker disease (GSS) was investigated by {sup 1}H-magnetic resonance spectroscopy ({sup 1}H-MRS). She developed gait ataxic at 22 years. The diagnosis was confirmed by DNA analysis showing a proline-to-leucine point mutation at codon 102 of the prion protein. On {sup 1}H-MRS, she showed a remarkable reduction of the N-acetylaspartate/creatine ratio in the frontal lobe, cerebellar hemisphere and vermis and putamen. MRI revealed mild atrophy of the cerebellar hemispheres and vermis and cerebral cortex, but single-photon emission computed tomography (SPECT) with {sup 99m}HMPAO showed normal perfusion in the cerebellum. The imaging studies suggest that MRS might be superior to MRI or SPECT for detection of early neuronal degeneration. (orig.)

  13. Operational electrochemical stability of thiophene-thiazole copolymers probed by resonant Raman spectroscopy

    International Nuclear Information System (INIS)

    We report on the electrochemical stability of hole polarons in three conjugated polymers probed by resonant Raman spectroscopy. The materials considered are all isostructural to poly(3-hexyl)thiophene, where thiazole units have been included to systematically deepen the energy level of the highest occupied molecular orbital (HOMO). We demonstrate that increasing the thiazole content planarizes the main conjugated backbone of the polymer and improves the electrochemical stability in the ground state. However, these more planar thiazole containing polymers are increasingly susceptible to electrochemical degradation in the polaronic excited state. We identify the degradation mechanism, which targets the C=N bond in the thiazole units and results in disruption of the main polymer backbone conjugation. The introduction of thiazole units to deepen the HOMO energy level and increase the conjugated backbone planarity can be beneficial for the performance of certain optoelectronic devices, but the reduced electrochemical stability of the hole polaron may compromise their operational stability

  14. Adults with attention-deficit/hyperactivity disorder – a brain magnetic resonance spectroscopy study

    Directory of Open Access Journals (Sweden)

    Margaretha eDramsdahl

    2011-11-01

    Full Text Available BackgroundImpaired cognitive control in individuals with Attention-Deficit/Hyperactivity Disorder (ADHD may be related to a prefrontal cortical glutamatergic deficit. We assessed the glutamate level in the left and the right midfrontal region including the anterior cingulate cortex (ACC in adults with ADHD and healthy controls. MethodsTwenty-nine adults with ADHD and 38 healthy controls were included. We used Proton Magnetic Resonance Imaging with single-voxel point-resolved spectroscopy to measure the ratio of glutamate to creatine (Glu/Cre in the left and the right midfrontal region in the two groups. ResultsThe ADHD group showed a significant reduction of Glu/Cre in the left midfrontal region compared to the controls. ConclusionsThe reduction of Glu/Cre in the left midfrontal region in the ADHD group may reflect a glutamatergic deficit in prefrontal neuronal circuitry in adults with ADHD, resulting in problems with cognitive control.

  15. Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator

    CERN Document Server

    Yang, Yong; Kasumie, Sho; Ward, Jonathan M; Chormaic, Síle Nic

    2016-01-01

    In whispering gallery mode resonator sensing applications, the conventional way to detect a change in the parameter to be measured is by observing the steady state transmission spectrum through the coupling waveguide. Alternatively, cavity ring-up spectroscopy (CRUS) sensing can be achieved transiently. In this work, we investigate CRUS using coupled mode equations and find analytical solutions with a large spectral broadening approximation of the input pulse. The relationships between the frequency detuning, coupling gap and ring-up peak height are determined and experimentally verified using an ultrahigh \\textit{Q}-factor silica microsphere. This work shows that distinctive dispersive and dissipative transient sensing can be realised by simply measuring the peak height of the CRUS signal, which might improve the data collection rate.

  16. Adults with attention-deficit/hyperactivity disorder - a brain magnetic resonance spectroscopy study

    DEFF Research Database (Denmark)

    Dramsdahl, Margaretha; Ersland, Lars; Plessen, Kerstin J;

    2011-01-01

    Background: Impaired cognitive control in individuals with attention-deficit/hyperactivity disorder (ADHD) may be related to a prefrontal cortical glutamatergic deficit. We assessed the glutamate level in the left and the right midfrontal region including the anterior cingulate cortex in adults...... with ADHD and healthy controls. Methods: Twenty-nine adults with ADHD and 38 healthy controls were included. We used Proton Magnetic Resonance Imaging with single voxel point-resolved spectroscopy to measure the ratio of glutamate to creatine (Glu/Cre) in the left and the right midfrontal region in the two...... groups. Results: The ADHD group showed a significant reduction of Glu/Cre in the left midfrontal region compared to the controls. Conclusion: The reduction of Glu/Cre in the left midfrontal region in the ADHD group may reflect a glutamatergic deficit in prefrontal neuronal circuitry in adults with ADHD...

  17. Resonant two-photon ionization spectroscopy of Al atoms and dimers solvated in helium nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Krasnokutski, Serge A.; Huisken, Friedrich [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany)

    2015-02-28

    Resonant two-photon ionization (R2PI) spectroscopy has been applied to investigate the solvation of Al atoms in helium droplets. The R2PI spectra reveal vibrational progressions that can be attributed to Al–He{sub n} vibrations. It is found that small helium droplets have very little chance to pick up an aluminum atom after collision. However, the pick-up probability increases with the size of the helium droplets. The absorption band that is measured by monitoring the ions on the mass of the Al dimer is found to be very little shifted with respect to the Al monomer band (∼400 cm{sup −1}). However, using the same laser wavelength, we were unable to detect any Al{sub n} photoion with n larger than two.

  18. In vivo assessment of cold adaptation in insect larvae by magnetic resonance imaging and magnetic resonance spectroscopy.

    Directory of Open Access Journals (Sweden)

    Daniel Mietchen

    Full Text Available BACKGROUND: Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems. METHODOLOGY: Given that non-destructive techniques like (1H Magnetic Resonance (MR imaging and spectroscopy have proven useful for in vivo investigations of a wide range of biological systems, we aimed at evaluating their potential to observe cold adaptations in living insect larvae. Specifically, we chose two cold-hardy insect species that frequently serve as cryobiological model systems--the freeze-avoiding gall moth Epiblema scudderiana and the freeze-tolerant gall fly Eurosta solidaginis. RESULTS: In vivo MR images were acquired from autumn-collected larvae at temperatures between 0 degrees C and about -70 degrees C and at spatial resolutions down to 27 microm. These images revealed three-dimensional (3D larval anatomy at a level of detail currently not in reach of other in vivo techniques. Furthermore, they allowed visualization of the 3D distribution of the remaining liquid water and of the endogenous cryoprotectants at subzero temperatures, and temperature-weighted images of these distributions could be derived. Finally, individual fat body cells and their nuclei could be identified in intact frozen Eurosta larvae. CONCLUSIONS: These findings suggest that high resolution MR techniques provide for interesting methodological options in comparative cryobiological investigations, especially in vivo.

  19. Structural characterization of titania by X-ray diffraction, photoacoustic, Raman spectroscopy and electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Kadam, R M; Rajeswari, B; Sengupta, Arijit; Achary, S N; Kshirsagar, R J; Natarajan, V

    2015-02-25

    A titania mineral (obtained from East coast, Orissa, India) was investigated by X-ray diffraction (XRD), photoacoustic spectroscopy (PAS), Raman and Electron Paramagnetic Resonance (EPR) studies. XRD studies indicated the presence of rutile (91%) and anatase (9%) phases in the mineral. Raman investigation supported this information. Both rutile and anatase phases have tetragonal structure (rutile: space group P4(2)/mnm, a=4.5946(1) Å, c=2.9597(1) Å, V=62.48(1) (Å)(3), Z=2; anatase: space group I4(1)/amd, 3.7848(2) Å, 9.5098(11) Å, V=136.22(2) (Å)(3), Z=4). The deconvoluted PAS spectrum showed nine peaks around 335, 370, 415,485, 555, 605, 659, 690,730 and 785 nm and according to the ligand field theory, these peaks were attributed to the presence of V(4+), Cr(3+), Mn(4+) and Fe(3+) species. EPR studies revealed the presence of transition metal ions V(4+)(d(1)), Cr(3+)(d(3)), Mn(4+)(d(3)) and Fe(3+)(d(5)) at Ti(4+) sites. The EPR spectra are characterized by very large crystal filed splitting (D term) and orthorhombic distortion term (E term) for multiple electron system (s>1) suggesting that the transition metal ions substitute the Ti(4+) in the lattice which is situated in distorted octahedral coordination of oxygen. The possible reasons for observation of unusually large D and E term in the EPR spectra of transition metal ions (S=3/2 and 5/2) are discussed.

  20. High Frequency Coils for Clinical Nuclear Magnetic Resonance Imaging and Spectroscopy.

    Science.gov (United States)

    Vaughan, John Thomas, Jr.

    To extend the inherent signal-to-noise (S/N) advantage of high field (4T+) NMR to clinical imaging and spectroscopy, a new approach to designing RF surface and volume coils is required. As coils approach wavelength dimensions, the performance of conventional lumped element (L,C) designs succumbs to: (1) non uniform current distributions resulting in decreased homogeneity, fill factor, and increased electric field losses, (2) decreased conductor skin depths resulting in increased ohmic losses, and (3) high inductance resulting in self resonance near or below the desired frequency of operation. At lower frequencies the phase change due to finite propagation velocity of transmit and receive signals on coil conductors is negligible. Therefore, the conventional design approach considers a DC (Biot-Savart) field only, for an unloaded (free-space) RF coil. This study recognizes and solves the problems of high field, clinical coil design. At higher radiofrequencies, the distributed nature of the coil and patient structure is considered in both circuit design and theory. Lumped elements are replaced by transmission line and cavity elements. Lumped element circuit theory is replaced by transmission line or transverse electromagnetic (TEM) theory. DC field analysis is replaced with fully time-dependent AC analysis for the coil and the human load. AC field losses and resultant heating in living tissues are investigated with regard to safety assurance for high frequency clinical coil design and application. By designing high frequency coils with the high frequency methods presented herein, desired B1 field characteristics are optimized, coil and patient losses are minimized, and self resonance is maximized. Clinical results obtained with these coils have verified for the first time the clear advantages of human NMR imaging and spectroscopy at 4 Tesla and above.

  1. Magnetic resonance spectroscopy detectable metabolomic fingerprint of response to antineoplastic treatment.

    Directory of Open Access Journals (Sweden)

    Alessia Lodi

    Full Text Available Targeted therapeutic approaches are increasingly being implemented in the clinic, but early detection of response frequently presents a challenge as many new therapies lead to inhibition of tumor growth rather than tumor shrinkage. Development of novel non-invasive methods to monitor response to treatment is therefore needed. Magnetic resonance spectroscopy (MRS and magnetic resonance spectroscopic imaging are non-invasive imaging methods that can be employed to monitor metabolism, and previous studies indicate that these methods can be useful for monitoring the metabolic consequences of treatment that are associated with early drug target modulation. However, single-metabolite biomarkers are often not specific to a particular therapy. Here we used an unbiased 1H MRS-based metabolomics approach to investigate the overall metabolic consequences of treatment with the phosphoinositide 3-kinase inhibitor LY294002 and the heat shock protein 90 inhibitor 17AAG in prostate and breast cancer cell lines. LY294002 treatment resulted in decreased intracellular lactate, alanine fumarate, phosphocholine and glutathione. Following 17AAG treatment, decreased intracellular lactate, alanine, fumarate and glutamine were also observed but phosphocholine accumulated in every case. Furthermore, citrate, which is typically observed in normal prostate tissue but not in tumors, increased following 17AAG treatment in prostate cells. This approach is likely to provide further information about the complex interactions between signaling and metabolic pathways. It also highlights the potential of MRS-based metabolomics to identify metabolic signatures that can specifically inform on molecular drug action.

  2. Current and future applications of magnetic resonance imaging and spectroscopy of the brain in hepatic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    VP Bob Grover; M Alex Dresner; Daniel M Forton; Serena Counsell; David J Larkman; Nayna Patel; Howard C Thomas; Simon D Taylor-Robinson

    2006-01-01

    Hepatic encephalopathy (HE) is a common neuropsychiatric abnormality, which complicates the course of patients with liver disease and results from hepatocellular failure and/or portosystemic shunting.The manifestations of HE are widely variable and involve a spectrum from mild subclinical disturbance to deep coma. Research interest has focused on the role of circulating gut-derived toxins, particularly ammonia, the development of brain swelling and changes in cerebral neurotransmitter systems that lead to global CNS depression and disordered function. Until recently the direct investigation of cerebral function has been difficult in man. However, new magnetic resonance imaging (MRI) techniques provide a non-invasive means of assessment of changes in brain volume (coregistered MRI) and impaired brain function (fMRI), while proton magnetic resonance spectroscopy (1H MRS) detects changes in brain biochemistry, including direct measurement of cerebral osmolytes, such as myoinositol, glutamate and glutamine which govern processes intrinsic to cellular homeostasis, including the accumulation of intracellular water. The concentrations of these intracellular osmolytes alter with hyperammonaemia. MRS-detected metabolite abnormalities correlate with the severity of neuropsychiatric impairment and since MR spectra return towards normal after treatment, the technique may be of use in objective patient monitoring and in assessing the effectiveness of various treatment regimens.

  3. Spectroscopy. A new magnetic resonance technique for the diagnosis of epilepsy?

    International Nuclear Information System (INIS)

    The technique of magnetic resonance spectroscopy fuses spectroscopic methods with the two-dimensional illustration of the metabolite concentrations by parallel acquisition of multiple single voxels from small tissue compartments. Therefore it is not necessary to define a voxel of interest before data acquisition. The interpretation of metabolite images is much easier than the analysis of single spectra, and metabolite concentrations on the right and left sides can be compared. The method has already proved reliable for brain tumors. The application of the procedure to patients suffering from epilepsy is described here in for the firt time. Even in the temporal region, where most epileptogenic foci have their origin, one can obtain metabolite images of diagnostic quality without susceptibility artifacts. The epileptogenic focus is lateralized correctly, in accordance with electrophysical and surgical evaluation, even in those cases where standard magnetic resonance imaging is normal. According to our preliminary findings the epileptogenic focus is characterized by a signal loss of N-acetyl-aspartate and creatine. (orig.)

  4. Magnetostatic spin wave modes in trilayer nanowire arrays probed using ferromagnetic resonance spectroscopy

    Science.gov (United States)

    Zhou, X.; Adeyeye, A. O.

    2016-08-01

    We investigate the spin wave modes in asymmetric trilayer [N i80F e20(10 nm ) /Cu (tCu) /N i80F e20(30 nm ) ] nanowire structures as a function of the Cu thickness (tCu) in the range from 0 to 20 nm using perpendicular ferromagnetic resonance (pFMR) spectroscopy. For tCu=0 nm , corresponding to the 40 nm thick single layer N i80F e20 nanowires, both the fundamental and first order modes are observed in the saturation region. However, for the trilayer structures, two additional modes, which are the fundamental and first order optical modes, are observed. We also found that the resonance fields of these modes are markedly sensitive to the Cu thickness due to the competing effects of interlayer exchange coupling and magnetostatic dipolar coupling. When the tCu≥10 nm , the fundamental optical mode is more pronounced. Our experimental results are in quantitative agreement with the dynamic micromagnetic simulations.

  5. Fano resonance and the hidden order in URu2 Si 2 probed by quasiparticle scattering spectroscopy*

    Science.gov (United States)

    Park, W. K.; Greene, L. H.; Bauer, E. D.; Tobash, P. H.; Ronning, F.; Lu, X.; Sarrao, J. L.; Thompson, J. D.

    2011-03-01

    The nature of the hidden order transition occurring at 17.5 K in URu 2 Si 2 remains puzzling despite intensive investigations over the past two and half decades. Recent experimental and theoretical developments render it a timely subject to probe the hidden order state using quasiparticle tunneling and scattering techniques. We report on the Fano resonance in pure and Rh-doped URu 2 Si 2 single crystals using point-contact spectroscopy. The conductance spectra reproducibly reveal asymmetric double peak structures slightly off-centered around zero bias with the two peaks merging well above the hidden order transition temperature. An analysis using the Fano resonance model in a Kondo lattice [1] shows that the conductance peaks arise from the hybridization gap opening. Our estimated gap size agrees well with those reported from other measurements. We will present experimental results over a wide parameter space including temperature and doping dependences and discuss their underlying physics. M. Maltseva, M. Dzero, and P. Coleman, Phys. Rev. Lett. 103, 206402 (2009). * The work at UIUC is supported by the U.S. DOE under Award Nos. DE-FG02-07ER46453 and DE-AC02-98CH10886, and the work at LANL is carried out under the auspices of the U.S. DOE, Office of Science.

  6. Magnetic field enriched surface enhanced resonance Raman spectroscopy for early malaria diagnosis

    Science.gov (United States)

    Yuen, Clement; Liu, Quan

    2012-01-01

    Hemozoin is a by-product of malaria infection in erythrocytes, which has been explored as a biomarker for early malaria diagnosis. We report magnetic field-enriched surface-enhanced resonance Raman spectroscopy (SERRS) of β--hematin crystals, which are the equivalent of hemozoin biocrystals in spectroscopic features, by using magnetic nanoparticles with iron oxide core and silver shell (Fe3O4@Ag). The external magnetic field enriches β--hematin crystals and enhances the binding between β--hematin crystals and magnetic nanoparticles, which provides further improvement in SERRS signals. The magnetic field-enriched SERRS signal of β--hematin crystals shows approximately five orders of magnitude enhancement in the resonance Raman signal, in comparison to about three orders of magnitude improvement in the SERRS signal without the influence of magnetic field. The improvement has led to a β--hematin detection limit at a concentration of 5 nM (roughly equivalent to 30 parasites/μl at the early stages of malaria infection), which demonstrates the potential of magnetic field-enriched SERRS technique in early malaria diagnosis.

  7. A new resonance-frequency based electrical impedance spectroscopy and its application in biomedical engineering

    Science.gov (United States)

    Dhurjaty, Sreeram; Qiu, Yuchen; Tan, Maxine; Zheng, Bin

    2014-03-01

    Electrical Impedance Spectroscopy (EIS) has shown promising results for differentiating between malignant and benign tumors, which exhibit different dielectric properties. However, the performance of current EIS systems has been inadequate and unacceptable in clinical practice. In the last several years, we have been developing and testing a new EIS approach using resonance frequencies for detection and classification of suspicious tumors. From this experience, we identified several limitations of current technologies and designed a new EIS system with a number of new characteristics that include (1) an increased A/D (analog-to-digital) sampling frequency, 24 bits, and a frequency resolution of 100 Hz, to increase detection sensitivity (2) automated calibration to monitor and correct variations in electronic components within the system, (3) temperature sensing and compensation algorithms to minimize impact of environmental change during testing, and (4) multiple inductor-switching to select optimum resonance frequencies. We performed a theoretical simulation to analyze the impact of adding these new functions for improving performance of the system. This system was also tested using phantoms filled with variety of liquids. The theoretical and experimental test results are consistent with each other. The experimental results demonstrated that this new EIS device possesses the improved sensitivity and/or signal detection resolution for detecting small impedance or capacitance variations. This provides the potential of applying this new EIS technology to different cancer detection and diagnosis tasks in the future.

  8. Multiprocessing DSP imaging system and instrumentation design for magnetic resonance spectroscopy/imaging

    Science.gov (United States)

    Bukhari, S. M. H.

    1998-09-01

    The architectural design of an image processing system and its instrumentation is elucidated here in this presentation, based upon the multiprocessing TMS320C82 DSP processors, working under a specially-defined MAEVRISC-DSP (Multidimensional Application-Embedded Vector RISC-DSP) architecture, that blends high-precision and high- performance (120 MFLOPS digital and 100 MSPS analog) data acquisition with efficient signal processing architecture design and prevalent Tagged MRI pulse sequence algorithms, specifically optimized for the medical imaging applications of Magnetic Resonance Spectroscopy and Imaging (MRI) tomography, while at the same time giving a low-cost alternative to extremely-expensive MRI systems. Alongside the system definition, the design of a new magneto-optical instrumentation is also presented, named SQUID and LPDA- based Field Equalization and Susceptibility Detection sensing, which works upon the recently-defined Tunneling Photon Resonance effect, mainly devised with non-ionizing human brain tumor diagnosis and localization in perspective, whose brief account is highlighted here.

  9. Resonance Ionization Spectroscopy of Europium: The First Application of the PISA at ISOLDE-RILIS

    CERN Document Server

    AUTHOR|(CDS)2099873; Marsh, Bruce Alan

    The following work has been carried out at the radioactive ion beam facility ISOLDE at CERN. A compact atomic beam unit named PISA (Photo Ionization Spectroscopy Apparatus) has been implemented as a recent addition to the laboratory of the Resonance Ionization Laser Ion Source (RILIS). The scope of this thesis work was to demonstrate different applications of the PISA, using the existing and highly developed laser setup of the RILIS installation. In a demonstration of the suitability of PISA for ionization scheme development, a new ionization scheme for Europium has been developed. This resulted in the observation of several new autoionizing states and Rydberg series. Through the analysis of the observed Rydberg resonances a refined value of $45734.33(3)(3)$ cm$^{-1}$ for the ionization potential of the europium atom has been determined. In addition this thesis reports on the feasibility of the use of the PISA as a RILIS performance monitoring device during laser ion source operations. Finally the present wor...

  10. Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Spur, Eva-Margarete [Massachusetts General Hospital, Harvard Medical School, Department of Pathology, Boston, MA (United States); Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States); Charite Universitaetsmedizin, Berlin (Germany); Decelle, Emily A.; Cheng, Leo L. [Massachusetts General Hospital, Harvard Medical School, Department of Pathology, Boston, MA (United States); Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2013-07-15

    Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized noninvasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth in patients with asymptomatic PCa newly diagnosed by biopsy. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, PCa metabolomics is mainly studied by magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates has demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies has uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness noninvasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be applied not only to PCa, but also to different tissues and organs to evaluate other human malignancies and metabolic diseases. (orig.)

  11. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy.

    Science.gov (United States)

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2016-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia.

  12. The fate of free radicals in a cellulose based hydrogel: detection by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Basumallick, Lipika; Ji, J Andrea; Naber, Nariman; Wang, Y John

    2009-07-01

    Cellulose derivatives are commonly used as gelling agents in topical and ophthalmic drug formulations. During the course of manufacturing, cellulose derivatives are believed to generate free radicals. These free radicals may degrade the gelling agent, leading to lower viscosity. Free radicals also may react with the active ingredient in the product. The formation of radicals in a 3% hydrogel of hypromellose (hydroxypropyl methylcellulose) was monitored by electron paramagnetic resonance (EPR) spectroscopy and spin trapping techniques. Radicals were trapped with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and quantitated by comparing the EPR intensity with 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL), a stable free radical. Typically, the hydrogels showed an initial increase in the radical concentration within 2 days after autoclaving, followed by a drop in radical concentration in 7 days. EDTA prevented the formation of free radicals in the hypromellose (HPMC) hydrogel, suggesting the involvement of metal ions in the generation of free radicals. The oxidizing potential of the hydrogel was estimated by measuring the rate at which methionine (a model for the protein active pharmaceutical ingredient) was degraded, and was consistent with the amount of radicals present in the gel. This study is the first report investigating the application of EPR spectroscopy in detecting and estimating free radical concentration in cellulose based hydrogels. PMID:19090570

  13. Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2006-04-04

    Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.

  14. Distinguishing Unfolding and Functional Conformational Transitions of Calmodulin Using Ultraviolet Resonance Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Eric M.; Balakrishnan, G.; Squier, Thomas C.; Spiro, Thomas

    2014-06-14

    Calmodulin (CaM) is a ubiquitous moderator protein for calcium signaling in all eukaryotic cells. This small calcium-binding protein exhibits a broad range of structural transitions, including domain opening and folding-unfolding, that allow it to recognize a wide variety of binding partners in vivo. While the static structures of CaM associated with its various binding activities are fairly well known, it has been challenging to examine the dynamics of transition between these structures in real-time, due to a lack of suitable spectroscopic probes of CaM structure. In this paper, we examine the potential of ultraviolet resonance Raman (UVRR) spectroscopy for clarifying the nature of structural transitions in CaM. We find that the UVRR spectral change (with 229 nm excitation) due to thermal unfolding of CaM is qualitatively different from that associated with opening of the C-terminal domain in response to Ca2+ binding. This spectral difference is entirely due to differences in teritary contacts at the inter-domain tyrosine residue Tyr138, toward which other spectroscopic methods are not sensitive. We conclude that UVRR is ideally suited to identifying the different types of structural transitions in CaM and other proteins with conformation-sensitive tyrosine residues, opening a path to time-resolved studies of CaM dynamics using Raman spectroscopy.

  15. Dynamics of asymmetric binary glass formers. II. Results from nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bock, D.; Kahlau, R.; Pötzschner, B.; Körber, T.; Wagner, E.; Rössler, E. A., E-mail: ernst.roessler@uni-bayreuth.de [Experimentalphysik II, Universität Bayreuth, 95440 Bayreuth (Germany)

    2014-03-07

    Various {sup 2}H and {sup 31}P nuclear magnetic resonance (NMR) spectroscopy techniques are applied to probe the component dynamics of the binary glass former tripropyl phosphate (TPP)/polystyrene-d{sub 3} (PS) over the full concentration range. The results are quantitatively compared to those of a dielectric spectroscopy (DS) study on the same system previously published [R. Kahlau, D. Bock, B. Schmidtke, and E. A. Rössler, J. Chem. Phys. 140, 044509 (2014)]. While the PS dynamics does not significantly change in the mixtures compared to that of neat PS, two fractions of TPP molecules are identified, one joining the glass transition of PS in the mixture (α{sub 1}-process), the second reorienting isotropically (α{sub 2}-process) even in the rigid matrix of PS, although at low concentration resembling a secondary process regarding its manifestation in the DS spectra. Pronounced dynamical heterogeneities are found for the TPP α{sub 2}-process, showing up in extremely stretched, quasi-logarithmic stimulated echo decays. While the time window of NMR is insufficient for recording the full correlation functions, DS results, covering a larger dynamical range, provide a satisfactory interpolation of the NMR data. Two-dimensional {sup 31}P NMR spectra prove exchange within the broadly distributed α{sub 2}-process. As demonstrated by {sup 2}H NMR, the PS matrix reflects the faster α{sub 2}-process of TPP by performing a spatially highly hindered motion on the same timescale.

  16. Double resonance spectroscopy of different conformers of the neurotransmitter amphetamine and its clusters with water

    Science.gov (United States)

    Brause, R.; Fricke, H.; Gerhards, M.; Weinkauf, R.; Kleinermanns, K.

    2006-08-01

    In this paper the conformational landscape of amphetamine in the neutral ground state is examined by both spectroscopy and theory. Several spectroscopic methods are used: laser-induced fluorescence (LIF), resonance-enhanced two-photon ionization (R2PI), dispersed fluorescence and IR/R2PI hole burning spectroscopy. The latter two methods provide for the first time vibrationally resolved spectra of the neutral ground state of dl-amphetamine and the amphetamine-(H 2O) 1,2 complexes. Nine stable conformers of the monomer were found by DFT (B3LYP/6-311++G(d,p)) and ab initio (MP2/6-311++G(d,p)) calculations. For conformer analysis the vibrations observed in the IR/R2PI hole burning and dispersed fluorescence spectra obtained from single vibronic levels (SVLF) of a selected conformer were compared with the results of an ab initio normal mode analysis. By this procedure three S 0 → S 1 transitions in the R2PI spectrum were assigned to three different conformer structures. Another weak transition earlier attributed to another conformer could be assigned to a vibronic band of one of the three conformers. Furthermore spectra of amphetamine-(H 2O) 1,2 are tentatively assigned.

  17. Cross-section scanning tunneling spectroscopy on a resonant-tunneling diode structure

    Energy Technology Data Exchange (ETDEWEB)

    Teichmann, Karen; Wenderoth, Martin; Burbach, Sergej; Ulbrich, Rainer G. [IV. Physikalisches Institut, Georg-August Universitaet Goettingen (Germany); Pierz, Klaus; Schumacher, Hans W. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2010-07-01

    We investigated a resonant-tunneling diode structure by cross-sectional scanning tunneling microscopy (STM) and spectroscopy. The diode structure was grown by molecular-beam epitaxy on a n{sup +}-doped GaAs (100) substrate and consists of self-assembled InAs quantum dots embedded in AlAs barriers (both 4 nm) each followed by undoped GaAs prelayers (15 nm). We use a low temperature STM working under UHV conditions at 5 K. The samples are cleaved in UHV to obtain a clean and atomically flat surface perpendicular to the diode-structure. Atomically resolved constant current topography images taken simultaneously at different bias voltages, (both positive and negative voltage) show the high quality of the heterostructure. Local I(V)-spectroscopy resolves the band edge alignment across the heterostructure. On negative bias voltage several peaks in the differential conductivity are observed. The voltage position of these peaks varies with distance from the interface. We attribute the origin of the enhanced differential conductivity peak to an interaction between the potential induced by the tip and the quantum dot layer.

  18. [Characterization of biochar by X-ray photoelectron spectroscopy and 13C nuclear magnetic resonance].

    Science.gov (United States)

    Xu, Dong-yu; Jin, Jie; Yan, Yu; Han, Lan-fang; Kang, Ming-jie; Wang, Zi-ying; Zhao, Ye; Sun, Ke

    2014-12-01

    The wood (willow branch) and grass (rice straw) materials were pyrolyzed at different temperatures (300, 450 and 600 °C) to obtain the biochars used in the present study. The biochars were characterized using elementary analysis, X-ray photoelectron spectroscopy (XPS) and solid state 13C cross-polarization and magic angle spinning nuclear magnetic resonance spectroscopy (13C NMR) to illuminate the structure and composition of the biochars which were derived from the different thermal temperatures and biomass. The results showed that the H/C, O/C and (O+N)/C ratios of the biochars decreased with the increase in the pyrolysis temperatures. The surface polarity and ash content of the grass-derived biochars were higher than those of the wood-derived biochars. The minerals of the wood-derived biochars were mainly covered by the organic matter; in contrast, parts of the mineral surfaces of the grass-derived biochars were not covered by organic matter? The 13C NMR of the low temperature-derived biochars revealed a large contribution of aromatic carbon, aliphatic carbon, carboxyl and carbonyl carbon, while the high temperature-derived biochars contained a large amount of aromatic carbon. Moreover, the wood-derived biochars produced at low heat treatment temperatures contained more lignin residues than grass-derived ones, probably due to the existence of high lignin content in the feedstock soures of wood-derived biochars. The results of the study would be useful for environmental application of biochars.

  19. Cell and membrane lipid analysis by proton magnetic resonance spectroscopy in five breast cancer cell lines.

    Science.gov (United States)

    Le Moyec, L; Tatoud, R; Eugène, M; Gauvillé, C; Primot, I; Charlemagne, D; Calvo, F

    1992-10-01

    The lipid composition of five human breast cancer cell lines (MCF-7, T47D, ZR-75-1, SKBR3 and MDA-MB231) was assessed by proton magnetic resonance spectroscopy (MRS) in whole cells and membrane-enriched fractions. The proportions of the three main lipid resonances in 1D spectra were different for each cell line. These resonances included mobile methyl and methylene functions from fatty acids of triglycerides and phospholipids and N-trimethyl from choline of phospholipids. T47D and ZR-75-1 cells presented a high methylene/methyl ratio (6.02 +/- 0.35 and 6.28 +/- 0.90). This ratio was significantly lower for SKBR3, MCF-7 and MDA-MB231 cells (2.76 +/- 0.22, 2.27 +/- 0.57 and 1.39 +/- 0.39). The N-trimethyl/methyl ratio was high for MDA-MB231 and SKBR3 cells (1.38 +/- 0.54 and 0.86 +/- 0.32), but lower for MCF-7, T47D and ZR-75-1 cells (0.49 +/- 0.11, 0.16 +/- 0.07 and 0.07 +/- 0.03). 2D COSY spectra confirmed these different proportions in mobile lipids. From 1D spectra obtained on membrane preparations, T47D and ZR-75-1 were the only cell lines to retain a signal from mobile methylene functions. These differences might be related to the heterogeneity found for several parameters of these cells (tumorigenicity, growth rate, hormone receptors); an extended number of cases from fresh samples might enable clinical correlations. PMID:1329906

  20. Single voxel 1 H magnetic resonance spectroscopy in the diagnosis of musculoskeletal mass lesions

    Directory of Open Access Journals (Sweden)

    Shalini Agarwal

    2014-01-01

    Full Text Available Introduction: In vivo magnetic resonance spectroscopy (MRS is an established technique for evaluation of malignant tumors in brain, breast, prostate, etc., However, its efficacy in the diagnosis of musculoskeletal (MSK mass lesions is yet to be established. We present our experience with MRS of these lesions. Materials and Methods: Magnetic resonance imaging (MRI, dynamic contrast-enhanced MRI and single-voxel 1 H MRS was performed in 30 consecutive patients with histologically proven benign and malignant MSK tumors/mass lesions each, on a 1.5-T magnetic resonance scanner. MRS was performed with echo times (TE of 40, 135 and 270 ms. A clearly identifiable peak at 3.2 ppm in at least two of the three spectra acquired at the three TE was taken as positive for choline. MRS imaging and enhancement patterns were compared in these two groups and were analyzed by a Radiologist blinded to the histopathological findings. Results: Ages of patients in the malignant age group ranged from 2 to 65 years (M: F - 19:11 while that of patients in the benign group ranged from 7 months to 56 years (M: F - 17:13. There were two patients with Type I curve, 18 with Type II curve and 10 with Type III curve on dynamic contrast enhanced images in the malignant group while there were no patients with Type I curve, 5 with Type II curve and 25 with Type III curve in the benign group. The sensitivity of MRS for predicting malignancy was 60%, specificity was 93.33%, positive predictive value was 90%, negative predictive value was 70% and accuracy was 76.66%. Conclusion: MRS is a promising technique for evaluation of MSK mass lesions. The accuracy at present remains low. We recommend that it be used as an adjunct to routine MRI.

  1. A feasibility study on determination of hydrogen concentration in zirconium alloy by resonant ultrasound spectroscopy

    International Nuclear Information System (INIS)

    Resonant ultrasound spectroscopy (RUS) is used to determine the elastic stiffness for various shapes of samples, i.e. spherical, cylindrical, or rectangular parallelepiped. Theoretically a maximum of 21 tensor elements of elastic stiffness for a triclinic crystal (the lowest-symmetry crystal) can be determined with one specimen. However, for such a low-symmetry crystal, it is difficult to assimilate properties relating to stress waves and elasticity. Practically, RUS can determine 9 tensor elements for orthorhombic symmetry as well as higher-symmetry, such as isotropic, cubic, hexagonal, and tetragonal symmetry. One of the key elements in RUS is to determine the symmetry and the initial estimate of elastic stiffness in advance. The initial estimate should be close to the true value and can be obtained from the literature, experience, other measurements, etc. The test sample should be machined accurately. The calculated resonance frequencies and modes should be matched to the measured values by RUS and the elastic stiffness can be converged by comparison and iteration. The Zr-2.5Nb alloy for the pressure tubes in CANDU (CANadian Deuterium Uranium) reactors have developed a strong texture due to the limited slip system during the extrusion process, leading to anisotropic properties. The material properties strongly depend on the orientation distributions of grains, which result in a directional anisotropy of elastic stiffness, thermal expansion coefficients, etc. To characterize the degree of anisotropy, it is necessary to correctly determine the anisotropic elastic moduli depending on the direction of the tube samples. The anisotropic elastic constant of the Zr-2.5Nb alloy was determined using initial approximated elastic stiffness which had been estimated by the orientation distribution function (ODF) from x-ray pole figure data and the elastic stiffness of single crystal zirconium. In this paper, the temperature dependence of mechanical damping and resonance

  2. Application of resonance Raman spectroscopy as a nuclear proliferation detection technology

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, A.J. III; Chen, C.L.; Dougherty, D.R.

    1993-01-01

    Resonance Raman spectroscopy (RRS) potentially possesses many of the characteristics of an ideal verification technology. Some of these ideal traits are: very high selectivity and specificity to allow the deconvolution of a mixture of the chemicals of interest, high sensitivity in order to measure a species at trace levels, high reliability and long-term durability, applicability to a wide range of chemicals capability for sensing in a variety of environmental conditions, independence of the physical state of the chemical capability for quantitative analysis, and finally, but no less important capability for full signal development within seconds. In this presentation, the potential of RRS as a detection/identification technology for chemicals pertinent to nuclear materials production and processing will be assessed. A review of the basic principles behind this technique, both theoretical and experimental, will be discussed along with some recent results obtained in this laboratory. Raman scattering is a coherent, inelastic, two-photon scattering process where an exciting photon of energy hv promotes a molecule to a virtual level and the subsequently emitted photon is shifted in frequency in accordance with the rotational-vibrational structure of the irradiated species, therefore providing a unique fingerprint of the molecule. The enhancement of a Raman signal occurs when the excitation frequency is isoenergetic with an allowed electronic transition. Under resonance conditions, scattering cross-sections have been enhanced up to 6 orders of magnitude, thereby allowing the measurement of resonance Raman spectra from concentrations as dilute as 20 ppb for PAHs (with the potential of pptr). In detection/verification programs, this condition translates to increased sensitivity (ppm/ppb) and increased probing distance (m/km).

  3. Application of resonance Raman spectroscopy as a nuclear proliferation detection technology

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, A.J. III; Chen, C.L.; Dougherty, D.R.

    1993-03-01

    Resonance Raman spectroscopy (RRS) potentially possesses many of the characteristics of an ideal verification technology. Some of these ideal traits are: very high selectivity and specificity to allow the deconvolution of a mixture of the chemicals of interest, high sensitivity in order to measure a species at trace levels, high reliability and long-term durability, applicability to a wide range of chemicals capability for sensing in a variety of environmental conditions, independence of the physical state of the chemical capability for quantitative analysis, and finally, but no less important capability for full signal development within seconds. In this presentation, the potential of RRS as a detection/identification technology for chemicals pertinent to nuclear materials production and processing will be assessed. A review of the basic principles behind this technique, both theoretical and experimental, will be discussed along with some recent results obtained in this laboratory. Raman scattering is a coherent, inelastic, two-photon scattering process where an exciting photon of energy hv promotes a molecule to a virtual level and the subsequently emitted photon is shifted in frequency in accordance with the rotational-vibrational structure of the irradiated species, therefore providing a unique fingerprint of the molecule. The enhancement of a Raman signal occurs when the excitation frequency is isoenergetic with an allowed electronic transition. Under resonance conditions, scattering cross-sections have been enhanced up to 6 orders of magnitude, thereby allowing the measurement of resonance Raman spectra from concentrations as dilute as 20 ppb for PAHs (with the potential of pptr). In detection/verification programs, this condition translates to increased sensitivity (ppm/ppb) and increased probing distance (m/km).

  4. Resonant inelastic scattering in dilute magnetic semiconductors by x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lawniczak-Jablonska, K. [Lawrence Berkeley National Lab., CA (United States)]|[Institute of Physics, Warsaw (Poland); Jia, J.J.; Underwood, J.H. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    As modern, technologically important materials have become more complex, element specific techniques have become invaluable in studying the electronic structure of individual components from the system. Soft x-ray fluorescence (SXF) and absorption (SXA) spectroscopies provide a unique means of measuring element and angular momentum density of electron states, respectively, for the valence and conducting bands in complex materials. X-ray absorption and the decay through x-ray emission are generally assumed to be two independent one-photon processes. Recent studies, however have demonstrated that SXF excited near the absorption threshold generate an array of spectral features that depend on nature of materials, particularly on the localization of excited states in s and d-band solids and that these two processes can no be longer treated as independent. Resonant SXF offers thus the new way to study the dynamics of the distribution of electronic valence states in the presence of a hole which is bound to the electron low lying in the conduction band. This process can simulate the interaction between hole-electron pair in wide gap semiconductors. Therefore such studies can help in understanding of transport and optics phenomena in the wide gap semiconductors. The authors report the result of Mn and S L-resonant emission in Zn{sub 1{minus}x}Mn{sub x}S (with x=0.2 and 0.3) and MnS as the energy of exciting radiation is tuned across the Mn and S L{sub 3,2} absorption edge, along with the resonant excited spectra from elemental Mn as a reference.

  5. Dynamics of asymmetric binary glass formers. I. A dielectric and nuclear magnetic resonance spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Kahlau, R.; Bock, D.; Schmidtke, B.; Rössler, E. A., E-mail: ernst.roessler@uni-bayreuth.de [Experimentalphysik II, Universität Bayreuth, 95440 Bayreuth (Germany)

    2014-01-28

    Dielectric spectroscopy as well as {sup 2}H and {sup 31}P nuclear magnetic resonance spectroscopy (NMR) are applied to probe the component dynamics of the binary glass former tripropyl phosphate (TPP)/polystyrene (PS/PS-d{sub 3}) in the full concentration (c{sub TPP}) range. In addition, depolarized light scattering and differential scanning calorimetry experiments are performed. Two glass transition temperatures are found: T{sub g1}(c{sub TPP}) reflects PS dynamics and shows a monotonic plasticizer effect, while the lower T{sub g2}(c{sub TPP}) exhibits a maximum and is attributed to (faster) TPP dynamics, occurring in a slowly moving or immobilized PS matrix. Dielectric spectroscopy probing solely TPP identifies two different time scales, which are attributed to two sub-ensembles. One of them, again, shows fast TPP dynamics (α{sub 2}-process), the other (α{sub 1}-process) displays time constants identical with those of the slow PS matrix. Upon heating the α{sub 1}-fraction of TPP decreases until above some temperature T{sub c} only a single α{sub 2}-population exists. Inversely, below T{sub c} a fraction of the TPP molecules is trapped by the PS matrix. At low c{sub TPP} the α{sub 2}-relaxation does not follow frequency-temperature superposition (FTS), instead it is governed by a temperature independent distribution of activation energies leading to correlation times which follow Arrhenius laws, i.e., the α{sub 2}-relaxation resembles a secondary process. Yet, {sup 31}P NMR demonstrates that it involves isotropic reorientations of TPP molecules within a slowly moving or rigid matrix of PS. At high c{sub TPP} the super-Arrhenius temperature dependence of τ{sub 2}(T), as well as FTS are recovered, known as typical of the glass transition in neat systems.

  6. In situ monitoring of polymer redox states by resonance µRaman spectroscopy and its applications in polymer modified microfluidic channels

    NARCIS (Netherlands)

    Logtenberg, Hella; Jellema, Laurens-Jan C.; Lopez-Martinez, Maria J.; Areephong, Jetsuda; Verpoorte, Elisabeth; Feringa, Ben L.; Browne, Wesley R.

    2012-01-01

    We report the application of multi-wavelength resonance Raman (rR) spectroscopy for the characterisation of vinyl-bridged polysexithiophene films formed by electropolymerisation on gold electrodes. Resonance Raman spectroscopy of the neutral, polaronic and bipolaronic states of the polymer were dete

  7. Cerebellar Volume and Proton Magnetic Resonance Spectroscopy at Term, and Neurodevelopment at 2 Years of Age in Preterm Infants

    Science.gov (United States)

    van Kooij, Britt J. M.; Benders, Manon J. N. L.; Anbeek, Petronella; van Haastert, Ingrid C.; de Vries, Linda S.; Groenendaal, Floris

    2012-01-01

    Aim: To assess the relation between cerebellar volume and spectroscopy at term equivalent age, and neurodevelopment at 24 months corrected age in preterm infants. Methods: Magnetic resonance imaging of the brain was performed around term equivalent age in 112 preterm infants (mean gestational age 28wks 3d [SD 1wk 5d]; birthweight 1129g [SD 324g]).…

  8. Cerebral Magnetic Resonance Spectroscopy Demonstrates Long-Term Effect of Bone Marrow Transplantation in α-Mannosidosis

    DEFF Research Database (Denmark)

    Danielsen, Else R; Lund, Allan M; Thomsen, Carsten

    2013-01-01

    α-Mannosidosis, OMIM #248500, is an autosomal recessive lysosomal storage disease caused by acidic α-mannosidase deficiency. Treatment options include bone marrow transplantation (BMT) and, possibly in the future, enzyme replacement therapy. Brain magnetic resonance spectroscopy (MRS) enables non...

  9. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    Science.gov (United States)

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  10. Use of spin labels to study membrane proteins by high-frequency electron nuclear double resonance spectroscopy

    NARCIS (Netherlands)

    Orlinkskii, S.B.; Borovykh, I.V.; Zielke, V.; Steinhoff, H.J.

    2007-01-01

    The applicability of spin labels to study membrane proteins by high-frequency electron nuclear double resonance spectroscopy is demonstrated. With the use of bacteriorhodopsin embedded in a lipid membrane as an example, the spectra of protons of neighboring amino acids are recorded, electric field g

  11. Electronic structure of Mo1‑x Re x alloys studied through resonant photoemission spectroscopy

    Science.gov (United States)

    Sundar, Shyam; Banik, Soma; Sharath Chandra, L. S.; Chattopadhyay, M. K.; Ganguli, Tapas; Lodha, G. S.; Pandey, Sudhir K.; Phase, D. M.; Roy, S. B.

    2016-08-01

    We studied the electronic structure of Mo-rich Mo1‑x Re x alloys (0≤slant x≤slant 0.4 ) using valence band photoemission spectroscopy in the photon energy range 23–70 eV and density of states calculations. Comparison of the photoemission spectra with the density of states calculations suggests that, with respect to the Fermi level E F, the d states lie mostly in the binding energy range 0 to  ‑6 eV, whereas s states lie in the binding energy range  ‑4 to  ‑10 eV. We observed two resonances in the photoemission spectra of each sample, one at about 35 eV photon energy and the other at about 45 eV photon energy. Our analysis suggests that the resonance at 35 eV photon energy is related to the Mo 4p–5s transition and the resonance at 45 eV photon energy is related to the contribution from both the Mo 4p–4d transition (threshold: 42 eV) and the Re 5p–5d transition (threshold: 46 eV). In the constant initial state plot, the resonance at 35 eV incident photon energy for binding energy features in the range E F (BE  =  0) to  ‑5 eV becomes progressively less prominent with increasing Re concentration x and vanishes for x  >  0.2. The difference plots obtained by subtracting the valence band photoemission spectrum of Mo from that of Mo1‑x Re x alloys, measured at 47 eV photon energy, reveal that the Re d-like states appear near E F when Re is alloyed with Mo. These results indicate that interband s–d interaction, which is weak in Mo, increases with increasing x and influences the nature of the superconductivity in alloys with higher x.

  12. Electronic structure of Mo1-x Re x alloys studied through resonant photoemission spectroscopy.

    Science.gov (United States)

    Sundar, Shyam; Banik, Soma; Sharath Chandra, L S; Chattopadhyay, M K; Ganguli, Tapas; Lodha, G S; Pandey, Sudhir K; Phase, D M; Roy, S B

    2016-08-10

    We studied the electronic structure of Mo-rich Mo1-x Re x alloys ([Formula: see text]) using valence band photoemission spectroscopy in the photon energy range 23-70 eV and density of states calculations. Comparison of the photoemission spectra with the density of states calculations suggests that, with respect to the Fermi level E F, the d states lie mostly in the binding energy range 0 to  -6 eV, whereas s states lie in the binding energy range  -4 to  -10 eV. We observed two resonances in the photoemission spectra of each sample, one at about 35 eV photon energy and the other at about 45 eV photon energy. Our analysis suggests that the resonance at 35 eV photon energy is related to the Mo 4p-5s transition and the resonance at 45 eV photon energy is related to the contribution from both the Mo 4p-4d transition (threshold: 42 eV) and the Re 5p-5d transition (threshold: 46 eV). In the constant initial state plot, the resonance at 35 eV incident photon energy for binding energy features in the range E F (BE  =  0) to  -5 eV becomes progressively less prominent with increasing Re concentration x and vanishes for x  >  0.2. The difference plots obtained by subtracting the valence band photoemission spectrum of Mo from that of Mo1-x Re x alloys, measured at 47 eV photon energy, reveal that the Re d-like states appear near E F when Re is alloyed with Mo. These results indicate that interband s-d interaction, which is weak in Mo, increases with increasing x and influences the nature of the superconductivity in alloys with higher x. PMID:27301550

  13. Magnetic resonance spectroscopy in schizophrenia. Possibilities and limitations; Magnetresonanzspektroskopie bei Schizophrenie. Moeglichkeiten und Grenzen

    Energy Technology Data Exchange (ETDEWEB)

    Wobrock, T. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Psychiatrie und Psychotherapie; Universitaetsklinikum des Saarlandes, Klinik fuer Psychiatrie und Psychotherapie, Homburg/Saar (Germany); Scherk, H.; Falkai, P. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Psychiatrie und Psychotherapie

    2005-02-01

    Magnetic resonance spectroscopy is a noninvasive investigative technique for in vivo detection of biochemical changes in neuropsychiatric disorders for which especially proton ({sup 1}H-MRS) and phosphorus ({sup 31}P-MRS) magnetic resonance spectroscopy have been used. In this review we explain the principles of MRS and summarize the studies in schizophrenia. A systematic literature review was carried out for {sup 1}H-MRS studies investigating schizophrenic patients compared to controls. The inconsistent results in the cited studies may be due to different study population, specific neuroimaging technique, and selected brain regions. Frequent findings are decreased PME and increased PDE concentrations ({sup 31}P-MRS) linked to altered metabolism of membrane phospholipids and decreased N-acetylaspartate (NAA) or NAA/choline ratio ({sup 1}H-MRS) linked to neuronal damage in frontal (DLPFC) or temporal regions in patients with schizophrenia. These results contribute to the disturbed frontotemporal-thalamic network assumed in schizophrenia and are supported by additional functional neuroimaging, MRI morphometry, and neuropsychological evaluation. The combination of the described investigative techniques with MRS in follow-up studies may provide more specific clues for understanding the pathogenesis and disease course in schizophrenia. (orig.) [German] Die Magnetresonanzspektroskopie (MRS) stellt ein nichtinvasives Verfahren dar, mit dem in vivo biochemische Veraenderungen spezifischer Hirnregionen bei verschiedenen psychiatrischen Erkrankungen untersucht werden koennen. Dabei werden insbesondere die Protonenmagnetresonanzspektroskopie ({sup 1}H-MRS) sowie die Phosphormagnetresonanzspektroskopie ({sup 31}P-MRS) verwendet. In der vorliegenden Uebersichtsarbeit werden die methodischen Grundlagen erlaeutert sowie die Befundlage bei der Schizophrenie referiert. Fuer die Darstellung der Studien zur {sup 1}H-MRS bei schizophrenen Patienten im Vergleich zu einer Kontrollgruppe

  14. FTIR difference and resonance Raman spectroscopy of rhodopsins with applications to optogenetics

    Science.gov (United States)

    Saint Clair, Erica C.

    The major aim of this thesis is to investigate the molecular basis for the function of several types of rhodopsins with special emphasis on their application to the new field of optogenetics. Rhodopsins are transmembrane biophotonic proteins with 7 alpha-helices and a retinal chromophore. Studies included Archaerhodopsin 3 (AR3), a light driven proton pump similar to the extensively studied bacteriorhodopsin (BR); channelrhodopsins 1 and 2, light-activated ion channels; sensory rhodopsin II (SRII), a light-sensing protein that modulates phototaxis used in archaebacteria; and squid rhodopsins (sRho), the major photopigment in squid vision and a model for human melanopsin, which controls circadian rhythms. The primary techniques used in these studies were FTIR difference spectroscopy and resonance Raman spectroscopy. These techniques, in combination with site directed mutagenesis and other biochemical methodologies produced new knowledge regarding the structural changes of the retinal chromophore, the location and function of internal water molecules as well as specific amino acids and peptide backbone. Specialized techniques were developed that allowed rhodopsins to be studied in intact membrane environments and in some cases in vivo measurements were made on rhodopsin heterologously expressed in E. coli thus allowing the effects of interacting proteins and membrane potential to be investigated. Evidence was found that the local environment of one or more internal water molecules in SRII is altered by interaction with its cognate transducer, HtrII, and is also affected by the local lipid environment. In the case of AR3, many of the broad IR continuum absorption changes below 3000 cm -1, assigned to networks of water molecules involved in proton transport through cytoplasmic and extracellular portions in BR, were found to be very similar to BR. Bands assigned to water molecules near the Schiff base postulated to be involved in proton transport were, however, shifted

  15. Identification of brain metabolites by magnetic resonance spectroscopy in MND/ALS.

    Science.gov (United States)

    Knight, J M; Jones, A P; Redmond, J P; Shaw, I C

    1996-08-01

    Magnetic resonance spectroscopy (MRS) has provided a novel means of studying the brain biochemistry of motor neurone disease/amyotrophic lateral sclerosis (MND/ALS) patients in vivo in situ. Previous studies have demonstrated changes in the ratios of areas under specific spectral peaks in MND/ALS patients (Jones et al., 1995). However, the significance of such findings cannot be fully elucidated without first ascertaining the biochemical identity of each peak. Each peak in a MRS spectrum corresponds to the resonance of specific protons in a particular chemical environment. Many biochemicals contain similar protons in similar environments so it is possible that a single spectral peak could represent protons from more than one biochemical. In this study of major brain MRS peaks we have demonstrated that peaks are potentially composed of a number of protons from different chemicals. For example, the peak at chemical shift 2.01 ppm, conventionally recognised as the neurotransmitter N-acetyl aspartate, may actually be a result of the protons of the N-acetyl moiety (Frahm et al., 1991). We have consequently shown that other N-acetylated compounds such as N-acetyl glutamate are also capable of producing a peak here, whereas their non-acetylated derivatives are not. We have also shown GABA is capable of producing a peak at chemical shift 3.00 ppm, a peak which is generally assigned to creatine/phosphocreatine. These findings have important implications in the identification of spectral peaks in MRS studies and in the interpretation of spectral differences between MND patients and controls. PMID:8899668

  16. Novel aspects of brain metabolism as revealed by magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Full text: The techniques of Magnetic Resonance Spectroscopy (MRS) and Imaging (MRI) are outlined, and compared with Positron Emission Tomography (PET). Invasive PET techniques using 19F-fluorodeoxyglucose (FDG) and 18O2 form the main basis of brain activation studies, and with 19F-fluoroDOPA, make major contributions to studies on neurological disorders such as stroke, Alzheimer's disease and Parkinson's disease. However the technique has no chemical specificity so can provide no knowledge of intermediary metabolism. Non-invasive MRI is also being applied to brain activation studies but also has no chemical specificity. On the other hand MRS has superb chemical specificity, although it suffers from low sensitivity. A most interesting example of this is the use of 13C-MRS. If glucose is labelled on the no. 1 or no. 2 positions with 13C, the passage of the label through different neuronal and glial metabolic pathways can be followed. If acetate is similarly labelled, metabolic routes through specifically glial pathways can be monitored, since acetate is taken up only by glia. These studies contributed to knowledge on metabolic trafficking, in that glia produce alanine, citrate and lactate in addition to the previously characterised production of glutamine. Studies on the hypoxic brain revealed increased production of alanine, lactate and glycerol 3-phosphate, providing further understanding of the role of the NADH redox state. 'Isotopomer analysis' of 13C resonances provides more information on metabolic pathways, because the chemical shift of a 13C atom is specifically affected by a neighbouring 13C within the same molecule. This approach was used to demonstrate that neurotransmitter γ-aminobutyrate (GABA) is partly derived from glial glutamine. Analogous 13C MRS studies are now providing novel information on metabolic flux rates within the human brain, and the most exciting developments are to follow changes in these rates on brain activation which can be

  17. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    Science.gov (United States)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsälä, M.; Hoekstra, S.; Halonen, L.

    2016-06-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν 1 + ν 2 + ν 3 + ν4 1 + ν5 - 1 in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm-1, the rotational parameter B was 1.162 222(37) cm-1, and the quartic centrifugal distortion parameter D was 3.998(62) × 10-6 cm-1, where the numbers in the parenthesis are one-standard errors in the least significant digits.

  18. Classification of thyroid nodules using a resonance-frequency-based electrical impedance spectroscopy: progress assessment

    Science.gov (United States)

    Zheng, Bin; Tublin, Mitchell E.; Lederman, Dror; Klym, Amy H.; Brown, Erica D.; Gur, David

    2012-02-01

    The incidence of thyroid cancer is rising faster than other malignancies and has nearly doubled in the United States (U.S.) in the last 30 years. However, classifying between malignant and benign thyroid nodules is often difficult. Although ultrasound guided Fine Needle Aspiration Biopsy (FNAB) is considered an excellent tool for triaging patients, up to 25% of FNABs are inconclusive. As a result, definitive diagnosis requires an exploratory surgery and a large number of these are performed in the U.S. annually. It would be extremely beneficial to develop a non-invasive tool or procedure that could assist in assessing the likelihood of malignancy of otherwise indeterminate thyroid nodules, thereby reducing the number of exploratory thyroidectomies that are performed under general anesthesia. In this preliminary study we demonstrate a unique hand-held Resonance-frequency based Electrical Impedance Spectroscopy (REIS) device with six pairs of detection probes to detect and classify thyroid nodules using multi-channel EIS output signal sweeps. Under an Institutional Review Board (IRB)-approved case collection protocol, this REIS device is being tested in our clinical facility and we have been collecting an initial patient data set since March of this year. Between March and August of 2011, 65 EIS tests were conducted on 65 patients. Among these cases, six depicted pathology-verified malignant cells. Our initial assessment indicates the feasibility of easily applying this REIS device and measurement approach in a very busy clinical setting. The measured resonance frequency differences between malignant and benign nodules could potentially make it possible to accurately classify indeterminate thyroid nodules.

  19. Resonant Raman spectroscopy study of swift heavy ion irradiated MoS2

    Science.gov (United States)

    Guo, Hang; Sun, Youmei; Zhai, Pengfei; Zeng, Jian; Zhang, Shengxia; Hu, Peipei; Yao, Huijun; Duan, Jinglai; Hou, Mingdong; Liu, Jie

    2016-08-01

    Molybdenum disulphide (MoS2) crystal samples were irradiated by swift heavy ions (209Bi and 56Fe). Hillock-like latent tracks were observed on the surface of irradiated MoS2 by atomic force microscopy. The modifications of properties of irradiated MoS2 were investigated by resonant Raman spectroscopy and ultraviolet-visible spectroscopy (UV-Vis). A new peak (E1u2, ∼385.7 cm-1) occurs near the in-plane E2g1 peak (∼383.7 cm-1) after irradiation. The two peaks shift towards lower frequency and broaden due to structural defects and stress with increasing fluence. When irradiated with high fluence, two other new peaks appear at ∼ 190 and ∼ 230 cm-1. The peak at ∼230 cm-1 is disorder-induced LA(M) mode. The presence of this mode indicates defects induced by irradiation. The feature at ∼460 cm-1 is composed of 2LA(M) (∼458 cm-1) and A2u (∼466 cm-1) mode. With increasing fluence, the integrated intensity ratio between 2LA(M) and A2u increases. The relative enhancement of 2LA(M) mode is in agreement with the appearance of LA(M) mode, which both demonstrate structural disorder in irradiated MoS2. The ∼423-cm-1 peak shifts toward lower frequency due to the decrease in exciton energy of MoS2, and this was demonstrated by the results of UV-Vis spectra. The decrease in exciton energy could be due to introduction of defect levels into band gap.

  20. Localised proton magnetic resonance spectroscopy of the brain after perinatal hypoxia: a preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Chateil, J.F. [Service de Radiologie A, Hopital Pellegrin, Bordeaux (France)]|[Unite de Radiopediatrie, Hopital Pellegrin, Bordeaux (France); Quesson, B.; Thiaudiere, E.; Delalande, C.; Canioni, P. [Resonance Magnetique des Systemes Biologiques, CNRS, Bordeaux (France); Brun, M.; Diard, F. [Service de Radiologie A, Hopital Pellegrin, Bordeaux (France); Sarlangue, J.; Billeaud, C. [Service de Neonatalogie, Hopital Pellegrin, Bordeaux (France)

    1999-03-01

    Objectives. Perinatal hypoxic ischaemic injury is a significant cause of neurodevelopmental impairment. The aim of this study was to evaluate localised proton magnetic resonance spectroscopy ({sup 1}H-MRS) after birth asphyxia. Materials and methods. Thirty newborn infants suspected of having perinatal asphyxia (Apgar score < 3) were studied. The mean gestational age was 37 weeks, mean age at the MR examination was 18 days and mean weight was 2.9 kg. A 1.5-T unit was used for imaging and spectroscopy. None of the babies had mechanically assisted ventilation. No sedation was used. Axial T1-weighted and T2-weighted images were obtained. {sup 1}H-MRS was recorded in a single voxel, localised in white matter, using a STEAM sequence. Results. Image quality was good in 25 of 30 babies. {sup 1}H-MRS was performed in 19 of 30 subjects, with adequate quality in 16. Choline, creatine/phosphocreatine and N-acetylaspartate peaks and peak-area ratios were analysed. Lactate was detected in four infants. The N-acetylaspartate/choline ratio was lower in infants with an impaired neurological outcome, but the difference was not statistically significant. Conclusions. This study suggests that {sup 1}H-MRS may be useful for assessing cerebral metabolism in the neonate. A raised lactate level and decreased N-acetylaspartate/choline ratio may be predictive of a poor outcome. However, in our experience this method is limited by the difficulty in performing the examination during the first hours after birth in critically ill babies, the problems related to use of a monovoxel sequence, the dispersion of the ratios and the lack of determination of the absolute concentration of the metabolites. (orig.) With 3 figs., 2 tabs., 20 refs.

  1. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types.

    Science.gov (United States)

    Urenjak, J; Williams, S R; Gadian, D G; Noble, M

    1993-03-01

    Proton nuclear magnetic resonance (1H NMR) spectroscopy is a noninvasive technique that can provide information on a wide range of metabolites. Marked abnormalities of 1H NMR brain spectra have been reported in patients with neurological disorders, but their neurochemical implications may be difficult to appreciate because NMR data are obtained from heterogeneous tissue regions composed of several cell populations. The purpose of this study was to examine the 1H NMR profile of major neural cell types. This information may be helpful in understanding the metabolic abnormalities detected by 1H NMR spectroscopy. Extracts of cultured cerebellar granule neurons, cortical astrocytes, oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells, oligodendrocytes, and meningeal cells were analyzed. The purity of the cultured cells was > 95% with all the cell lineages, except for neurons (approximately 90%). Although several constituents (creatine, choline-containing compounds, lactate, acetate, succinate, alanine, glutamate) were ubiquitously detectable with 1H NMR, each cell type had distinctive qualitative and/or quantitative features. Our most unexpected finding was a large amount of N-acetyl-aspartate (NAA) in O-2A progenitors. This compound, consistently detected by 1H NMR in vivo, was previously thought to ne present only in neurons. The finding that meningeal cells have an alanine:creatine ratio three to four times higher than astrocytes, neurons, or oligodendrocytes is in agreement with observations that meningiomas express a higher alanine:creatine ratio than gliomas. The data suggest that each individual cell type has a characteristic metabolic pattern that can be discriminated by 1H NMR, even by looking at only a few metabolites (e.g., NAA, glycine, beta-hydroxybutyrate).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8441018

  2. Interleaved localized 1H/31P nuclear magnetic resonance spectroscopy of skeletal muscle

    International Nuclear Information System (INIS)

    Nuclear magnetic resonance (NMR) has been used as a spectroscopic method in physics and chemistry before it was developed to become a diagnostic imaging tool in medicine. When NMR spectroscopy is applied to human tissue, metabolism can be studied in normal physiological and pathological states in vivo. Metabolite concentrations and rates can be monitored dynamically and with localization of a defined region of interest. The 'window' which is opened for observation, i.e. which quantities are measured, depends on the nucleus used for RF excitation. Mechanisms of adenosine tri-phosphate (ATP) resynthesis, as a direct source of energy for muscle contraction, are phosphocreatine (PCr) splitting, glycolysis, beta-oxidation and, finally, oxidative phosphorylation. Whilst the dependency of these processes' fractional contribution to muscular energy supply on exercise type and duration is well known, quantitative models of the regulating mechanisms involved are still subject of current research. A large fraction of the established knowledge about metabolism is based on biochemical analysis of tissue acquired invasively (e.g. microdialysis and open-flow microperfusion) or representing averaged metabolic concentrations for the whole body (via serum metabolites or gas exchange analysis). Localized NMR spectroscopy, however, is capable of non-invasively acquiring time-resolved data from a defined volume of interest, in vivo. In contrast to the vast majority of MRS studies investigating metabolism, where spectra of a single nucleus (commonly 1H, 31P or 13C) were acquired or several MR spectra with different nuclei were measured in separate experiments, this work opens an additional 'window' on muscle metabolism by interleaved localized acquisition of 1H and 31P NMR spectra from human calf muscle in vivo, during rest, exercise and recovery, in a single experiment. Using this technique, the time courses of the concentrations of phosphocreatine, inorganic phosphate (Pi), ATP, total

  3. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state

  4. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Butorin, S.M.; Guo, J.; Magnuson, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  5. Study of bioenergetics of mouse pregnant uterine muscle by magnetic resonance spectroscopy (MRS)

    Energy Technology Data Exchange (ETDEWEB)

    Negami, Akira; Tominaga, Toshiro

    1989-06-01

    To investigate the bioenergetics of uterine muscles in vivo, we examined the energy state of mouse preterm uterus by means of magnetic resonance spectroscopy. Full-term mouse uterus contained ATP, PCr, phospho-di and mono ester (PDE and PME) and inorganic phosphate (Pi). The oxytocin-induced uterine muscle contraction peaks level and positions changed. Multiple peak analysis indicated a muscle contraction induced increase in the Pi concentration and decrease in the PCr concentration. The peak position of Pi was shifted in the contractive state also, indicating that the intracellular pH was lower than in the non-contractive state and this low pH level was recovered within several minutes. There was no change in the AMP peak neight in the contractive and non-contractive states. These data indicated that the energetics of mouse uterine muscle was maintained by the ATP-PCr system and acidosis of muscle was recovered within several minutes at rest. The constant AMP peak levels may indicate that phosphorylase is not regulated by AMP, but the phosphorylated phosphorylase kinase and pH levels in the contractive and non-contractive states also may indicate that phosphorylase kinase is not regulated by proteolysis or by the intracellular pH level but by the elevated intracellular calcium ion and calmodulin system. (author).

  6. Absolute quantification of carnosine in human calf muscle by proton magnetic resonance spectroscopy

    Science.gov (United States)

    Özdemir, Mahir S.; Reyngoudt, Harmen; DeDeene, Yves; Sazak, Hakan S.; Fieremans, Els; Delputte, Steven; D'Asseler, Yves; Derave, Wim; Lemahieu, Ignace; Achten, Eric

    2007-12-01

    Carnosine has been shown to be present in the skeletal muscle and in the brain of a variety of animals and humans. Despite the various physiological functions assigned to this metabolite, its exact role remains unclear. It has been suggested that carnosine plays a role in buffering in the intracellular physiological pHi range in skeletal muscle as a result of accepting hydrogen ions released in the development of fatigue during intensive exercise. It is thus postulated that the concentration of carnosine is an indicator for the extent of the buffering capacity. However, the determination of the concentration of this metabolite has only been performed by means of muscle biopsy, which is an invasive procedure. In this paper, we utilized proton magnetic resonance spectroscopy (1H MRS) in order to perform absolute quantification of carnosine in vivo non-invasively. The method was verified by phantom experiments and in vivo measurements in the calf muscles of athletes and untrained volunteers. The measured mean concentrations in the soleus and the gastrocnemius muscles were found to be 2.81 ± 0.57/4.8 ± 1.59 mM (mean ± SD) for athletes and 2.58 ± 0.65/3.3 ± 0.32 mM for untrained volunteers, respectively. These values are in agreement with previously reported biopsy-based results. Our results suggest that 1H MRS can provide an alternative method for non-invasively determining carnosine concentration in human calf muscle in vivo.

  7. Resonance ionization spectroscopy measurement of the vapor pressure of several molecular species

    International Nuclear Information System (INIS)

    In recent years resonance ionization spectroscopy (RIS) has found increasing application to various problems involving detection of low levels of atomic, and more recently molecular, species. This work demonstrates the usefulness of RIS in measuring vapor pressure curves of molecular species at very low pressures. Specifically, the vapor pressures versus temperature relationship for rubidium iodide (RbI) and potassium iodide (KI) was measured by applying RIS to atomic Rb and K, using a two-laser system. A pulsed molecular nitrogen laser first dissociated the RbI to produce ground-state Rb atoms in the experimental cell. A flashlamp-pumped dye laser then ionized the Rb in a process wherein two photons of the same wavelength are absorbed, the first exciting Rb via an allowed transition to an upper state (52S/sub 1/2/ → 62/sub 1/2 or 3/2/) lying in energy slightly more than half the distance to the ionization limit, and the second photon ionizing the excited Rb. In the case of KI, an excimer-laser-pumped dye laser was used in a similar way. An applied dc electric field swept the photoelectrons to a proportional counter for subsequent amplification and detection. The photoelectron signal was then related back to RbI and KI concentrations

  8. Low skin carotenoid concentration measured by resonance Raman spectroscopy is associated with metabolic syndrome in adults.

    Science.gov (United States)

    Holt, Edward W; Wei, Esther K; Bennett, Nancy; Zhang, Laura M

    2014-10-01

    Oxidative stress is increased in patients with metabolic syndrome (MS). Antioxidants, including carotenoids, are decreased in MS. We hypothesized that a low skin carotenoid score (SCS), calculated using resonance Raman spectroscopy, would correlate with the presence of MS. We retrospectively reviewed consecutive patients referred for dietary assessment between 2010 and 2012. For each patient, a nutrition history, medical history, and SCS were recorded. χ(2) and Student t test were used to determine factors associated with MS. Multivariate logistic regression was used to identify factors associated with MS. One hundred fifty-five patients were included. The mean age was 54.1 ± 13.1 years, and the mean body mass index was 28.3 ± 6.1 kg/m(2). Metabolic syndrome was present in 43.9% of patients. The mean SCS was 28 084 ± 14 006 Raman counts (RC), including 23 058 ± 9812 RC for patients with MS and 32 011 ± 15 514 RC for patients without MS (P = .0001). In a multivariate analysis, SCS less than 25 000 RC (odds ratio, 3.71; 95% confidence interval, 1.36-10.7; P = .01) was independently associated with MS. A higher number of MS components was associated with a progressively lower SCS (P = .004). In a consecutive sample of patients referred for dietary assessment, a noninvasively measured SCS was lower among patients with MS.

  9. Molecular dynamics in rod-like liquid crystals probed by muon spin resonance spectroscopy.

    Science.gov (United States)

    McKenzie, Iain; Scheuermann, Robert; Sedlak, Kamil; Stoykov, Alexey

    2011-08-01

    Muoniated spin probes were produced by the addition of muonium (Mu) to two rod-like liquid crystals: N-(4-methoxybenzylidene)-4'-n-butylaniline (MBBA) and cholesteryl nonanoate (CN). Avoided level crossing muon spin resonance spectroscopy was used to characterize the muoniated spin probes and to probe dynamics at the molecular level. In MBBA Mu adds predominantly to the carbon of the bridging imine group and the muon and methylene proton hyperfine coupling constants (hfccs) of the resulting radical shift in the nematic phase due to the dipolar hyperfine coupling, the ordering of the molecules along the applied magnetic field and fluctuations about the local director. The amplitude of these fluctuations in in the nematic phase of MBBA is determined from the temperature dependence of the methylene proton hfcc. Mu adds to the double bond of the steroidal ring system of CN and the temperature dependence of the Δ(1) line width provides information about the amplitude of the fluctuations about the local director in the chiral nematic phase and the slow isotropic reorientation in the isotropic phase.

  10. Current Role and Future Perspectives of Magnetic Resonance Spectroscopy in Radiation Oncology for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Aleksandra Zapotoczna

    2007-06-01

    Full Text Available Prostatic neoplasms are not uniformly distributed within the prostate volume. With recent developments in three-dimensional intensity-modulated and imageguided radiation therapy, it is possible to treat different volumes within the prostate to different thresholds of doses. This approach has the potential to adapt the dose to the biologic aggressiveness of various clusters of tumor cells within the gland. The definition of tumor burden volume in prostate cancer can be facilitated by the use of magnetic resonance spectroscopy (MRS. The increasing sensitivity and specificity of MRS to the prostate is causing new interest in its potential role in the definition of target subvolumes at higher risk of failure following radical radiotherapy. Prostate MRS might also play a role as a noninvasive predictive factor for tumor response and treatment outcome. We review the use of MRS in radiation therapy for prostate cancer by evaluating its accuracy in the classification of aggressive cancer regions and target definition; its current role in the radiotherapy planning process, with special interest in technical issues behind the successful inclusion of MRS in clinical use; and available early experiences as a prognostic tool.

  11. Nuclear magnetic resonance spectroscopy in the structure elucidation and biosynthesis of natural products

    International Nuclear Information System (INIS)

    Examination of a chloroform extract of Dracaena loureiri Gagnep (Agavaceae), a Thia medicinal plant possessing antibacterial activity, has led to the isolation of fifteen flavenoids. The biogenic relationships among these flavenoids isolated were briefly discussed. Definition of the skeleton and the unambiguous assignment of all of the protons of the isolates was achieved through extensive 2D-homonuclear chemical shift correlation, nuclear Overhauser effect (NOE) difference spectroscopy and 2D-NOE experiments. The 1H and 13C NMR spectra of staurosporine, a potent biologically active agent from Streptomyces staurosporeus, were unambiguously assigned by using 2D homonuclear chemical shift correlation, NOE, 1H-detected heteronuclear multiple-quantum coherence via direct coupling and via multiple-bond coupling for resonance assignments of protonated and nonprotonated carbons, respectively. S. Staurosporeus was found to utilize endogenous and exogenous D- and L-isomers of trytophan in the production of staurosporine. The biosynthesis of staurosporine was examined by employing carbon-14, tritium, and carbon-13 labeled precursors

  12. Uncertainty quantification in modeling and measuring components with resonant ultrasound spectroscopy

    Science.gov (United States)

    Biedermann, Eric; Jauriqui, Leanne; Aldrin, John C.; Mayes, Alexander; Williams, Tom; Mazdiyasni, Siamack

    2016-02-01

    Resonant Ultrasound Spectroscopy (RUS) is a nondestructive evaluation (NDE) method which can be used for material characterization, defect detection, process control and life monitoring for critical components in gas turbine engines, aircraft and other systems. Accurate forward and inverse modeling for RUS requires a proper accounting of the propagation of uncertainty due to the model and measurement sources. A process for quantifying the propagation of uncertainty to RUS frequency results for models and measurements was developed. Epistemic and aleatory sources of uncertainty were identified for forward model parameters, forward model material property and geometry inputs, inverse model parameters, and physical RUS measurements. RUS model parametric studies were then conducted for simple geometric samples to determine the sensitivity of RUS frequencies and model inversion results to the various sources of uncertainty. The results of these parametric studies were used to calculate uncertainty bounds associated with each source. Uncertainty bounds were then compared to assess the relative impact of the various sources of uncertainty, and mitigations were identified. The elastic material property inputs for forward models, such as Young's Modulus, were found to be the most significant source of uncertainty in these studies. The end result of this work was the development of an uncertainty quantification process that can be adapted to a broad range of components and materials.

  13. Blend uniformity analysis of pharmaceutical products by Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS).

    Science.gov (United States)

    Fitzpatrick, Dara; Scanlon, Eoin; Krüse, Jacob; Vos, Bastiaan; Evans-Hurson, Rachel; Fitzpatrick, Eileen; McSweeney, Seán

    2012-11-15

    Blend uniformity analysis (BUA) is a routine and highly regulated aspect of pharmaceutical production. In most instances, it involves quantitative determination of individual components of a blend in order to ascertain the mixture ratio. This approach often entails the use of costly and sophisticated instrumentation and complex statistical methods. In this study, a new and simple qualitative blend confirmatory test is introduced based on a well known acoustic phenomenon. Several over the counter (OTC) product powder blends are analysed and it is shown that each product has a unique and highly reproducible acoustic signature. The acoustic frequency responses generated during the dissolution of the product are measured and recorded in real time. It is shown that intra-batch and inter-batch variation for each product is either insignificant or non-existent when measured in triplicate. This study demonstrates that Broadband Acoustic Resonance Dissolution Spectroscopy or BARDS can be used successfully to determine inter-batch variability, stability and uniformity of powder blends. This is just one application of a wide range of BARDS applications which are more cost effective and time efficient than current methods.

  14. Nuclear magnetic resonance spectroscopy in the structure elucidation and biosynthesis of natural products

    Energy Technology Data Exchange (ETDEWEB)

    Meksuriyen, D.

    1988-01-01

    Examination of a chloroform extract of Dracaena loureiri Gagnep (Agavaceae), a Thia medicinal plant possessing antibacterial activity, has led to the isolation of fifteen flavenoids. The biogenic relationships among these flavenoids isolated were briefly discussed. Definition of the skeleton and the unambiguous assignment of all of the protons of the isolates was achieved through extensive 2D-homonuclear chemical shift correlation, nuclear Overhauser effect (NOE) difference spectroscopy and 2D-NOE experiments. The {sup 1}H and {sup 13}C NMR spectra of staurosporine, a potent biologically active agent from Streptomyces staurosporeus, were unambiguously assigned by using 2D homonuclear chemical shift correlation, NOE, {sup 1}H-detected heteronuclear multiple-quantum coherence via direct coupling and via multiple-bond coupling for resonance assignments of protonated and nonprotonated carbons, respectively. S. Staurosporeus was found to utilize endogenous and exogenous D- and L-isomers of trytophan in the production of staurosporine. The biosynthesis of staurosporine was examined by employing carbon-14, tritium, and carbon-13 labeled precursors.

  15. Medical applications of stable isotopes: mass spectroscopy and nuclear magnetic resonance

    International Nuclear Information System (INIS)

    This report summarizes the content of the Symposium entitled Medical Applications of Stable Isotopes, co-sponsored by the American College of Nuclear Physicians and the U.S. Department of Energy and held on January 25, 1982, in Tucson, Arizon. Within the overall framework of clinical biochemistry and clinical pharmacokinetics, the two technologies of mass spectroscopy and nuclear magnetic resonance were reviewed and analyzed in terms of their potential in the area of medical applications of stable isotopes. It was observed that nuclear medicine could perhaps be more accurately redefined as diagnostic imaging and functional measurement, utilizing both the traditional unstable (radioactive) isotopes and stable isotopes. This seems appropriate and perhaps necessary because nuclear medicine scientists and physicians have crossed traditional professional lines, promptly adapted to new technologies, stimulated the clinical application of computer techniques, justified and utilized complex and expensive instrumentation, and are quite experienced in the physical and mathematical basis of isotope (stable and unstable) preparation, handling, and use in in vivo clinical applications

  16. Study of fluorine in silicate glass with 19F nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Duncan, T. M.; Douglass, D. C.; Csencsits, R.; Walker, K. L.

    1986-07-01

    We report an application of nuclear magnetic resonance (NMR) spectroscopy to the study of fluorine-doped silicate glass prepared by the modified chemical vapor deposition process, prior to drawing the rod into fibers. The silica contains 1.03-wt. % fluorine, as determined by the calibrated intensity of the 19F NMR spectrum. The isotropic chemical shift of the 19F spectrum shows that fluorine bonds only to silicon; there is no evidence of oxyfluorides. Analysis of the distribution of nuclear dipolar couplings between fluorine nuclei reveals that the relative populations of silicon monofluoride sites [Si(O-)3F] and species having near-neighbor fluorines, such as silicon difluoride sites [Si(O-)2F2], are nearly statistically random. That is, to a good approximation, the fluorine substitutes randomly into the oxygen sites of the silica network. There is no evidence of local clusters of fluorine sites, silicon trifluoride sites [Si(O-)F3], or silicon tetrafluoride (SiF4).

  17. Tetrachloridocuprates(II)—Synthesis and Electron Paramagnetic Resonance (EPR) Spectroscopy

    Science.gov (United States)

    Winter, Alette; Zabel, André; Strauch, Peter

    2012-01-01

    Ionic liquids (ILs) on the basis of metal containing anions and/or cations are of interest for a variety of technical applications e.g., synthesis of particles, magnetic or thermochromic materials. We present the synthesis and the results of electron paramagnetic resonance (EPR) spectroscopic analyses of a series of some new potential ionic liquids based on tetrachloridocuprates(II), [CuCl4]2−, with different sterically demanding cations: hexadecyltrimethylammonium 1, tetradecyltrimethylammonium 2, tetrabutylammonium 3 and benzyltriethylammonium 4. The cations in the new compounds were used to achieve a reasonable separation of the paramagnetic Cu(II) ions for EPR spectroscopy. The EPR hyperfine structure was not resolved. This is due to the exchange broadening, resulting from still incomplete separation of the paramagnetic Cu(II) centers. Nevertheless, the principal values of the electron Zeemann tensor (g║ and g┴) of the complexes could be determined. Even though the solid substances show slightly different colors, the UV/Vis spectra are nearly identical, indicating structural changes of the tetrachloridocuprate moieties between solid state and solution. The complexes have a promising potential e.g., as high temperature ionic liquids, as precursors for the formation of copper chloride particles or as catalytic paramagnetic ionic liquids. PMID:22408411

  18. Absolute quantification of carnosine in human calf muscle by proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oezdemir, Mahir S [Department of Electronics and Information Systems, MEDISIP, Ghent University-IBBT-IBiTech, De Pintelaan 185 block B, B-9000 Ghent (Belgium); Reyngoudt, Harmen [Department of Radiology, Ghent University Hospital, De Pintelaan 185, Ghent (Belgium); Deene, Yves de [Department of Radiotherapy, Ghent University Hospital, De Pintelaan 185, Ghent (Belgium); Sazak, Hakan S [Department of Statistics, Ege University, 35100 Bornova, Izmir (Turkey); Fieremans, Els [Department of Electronics and Information Systems, MEDISIP, Ghent University-IBBT-IBiTech, De Pintelaan 185 block B, B-9000 Ghent (Belgium); Delputte, Steven [Department of Electronics and Information Systems, MEDISIP, Ghent University-IBBT-IBiTech, De Pintelaan 185 block B, B-9000 Ghent (Belgium); D' Asseler, Yves [Department of Electronics and Information Systems, MEDISIP, Ghent University-IBBT-IBiTech, De Pintelaan 185 block B, B-9000 Ghent (Belgium); Derave, Wim [Department of Movement and Sports Science, Ghent University, Watersportlaan 2, Ghent (Belgium); Lemahieu, Ignace [Department of Electronics and Information Systems, MEDISIP, Ghent University-IBBT-IBiTech, De Pintelaan 185 block B, B-9000 Ghent (Belgium); Achten, Eric [Department of Radiology, Ghent University Hospital, De Pintelaan 185, Ghent (Belgium)

    2007-12-07

    Carnosine has been shown to be present in the skeletal muscle and in the brain of a variety of animals and humans. Despite the various physiological functions assigned to this metabolite, its exact role remains unclear. It has been suggested that carnosine plays a role in buffering in the intracellular physiological pH{sub i} range in skeletal muscle as a result of accepting hydrogen ions released in the development of fatigue during intensive exercise. It is thus postulated that the concentration of carnosine is an indicator for the extent of the buffering capacity. However, the determination of the concentration of this metabolite has only been performed by means of muscle biopsy, which is an invasive procedure. In this paper, we utilized proton magnetic resonance spectroscopy ({sup 1}H MRS) in order to perform absolute quantification of carnosine in vivo non-invasively. The method was verified by phantom experiments and in vivo measurements in the calf muscles of athletes and untrained volunteers. The measured mean concentrations in the soleus and the gastrocnemius muscles were found to be 2.81 {+-} 0.57/4.8 {+-} 1.59 mM (mean {+-} SD) for athletes and 2.58 {+-} 0.65/3.3 {+-} 0.32 mM for untrained volunteers, respectively. These values are in agreement with previously reported biopsy-based results. Our results suggest that {sup 1}H MRS can provide an alternative method for non-invasively determining carnosine concentration in human calf muscle in vivo.

  19. Fragile X syndrome: a pilot proton magnetic resonance spectroscopy study in premutation carriers

    LENUS (Irish Health Repository)

    Hallahan, Brian P

    2012-08-30

    AbstractPurposeThere is increasing evidence that neurodevelopmental differences in people with Fragile X syndrome (FraX) may be explained by differences in glutamatergic metabolism. Premutation carriers of FraX were originally considered to be unaffected although several recent reports demonstrate neuroanatomical, cognitive, and emotional differences from controls. However there are few studies on brain metabolism in premutation carriers of FraX.MethodsWe used proton magnetic resonance spectroscopy to compare neuronal integrity of a number of brain metabolites including N-Acetyl Aspartate, Creatine + Phosphocreatinine, Choline, myoInositol, and Glutamate containing substances (Glx) in 17 male premutation carriers of FraX and 16 male healthy control individuals.ResultsThere was no significant between-group difference in the concentration of any measured brain metabolites. However there was a differential increase in N-acetyl aspartate with aging in premutation FraX individuals compared to controls.ConclusionsThis is the first 1 H-MRS study to examine premutation FraX individuals. Although we demonstrated no difference in the concentration of any of the metabolites examined between the groups, this may be due to the large age ranges included in the two samples. The differential increase in NAA levels with aging may reflect an abnormal synaptic pruning process.

  20. Proton magnetic resonance spectroscopy of periventricular white matter and hippocampus in obstructive sleep apnea patients

    International Nuclear Information System (INIS)

    The purpose of this study was to diagnose the hypoxic impairment by Magnetic resonance spectroscopy (MRS), an advanced MR imaging technique, which could not be visualised by routine imaging methods in patients with obstructive sleep apnea (OSA). 20 OSA patients and 5 controls were included in this prospective research. MRS was performed on these 25 subjects to examine cerebral hypoxemia in specific regions (periventricular white matter and both hippocampi). Polysomnography was assumed as the gold standard. Statistical analysis was assessed by Mann-Whitney U test and Receiver operating characteristics (ROC) curve for NAA/Cho, NAA/Cr and Cho/Cr ratios. In the periventricular white matter, NAA/Cho ratio in OSA patients was significantly lower than in the control group (p<0.05). There were no statistical differences between the OSA and the control group for NAA/Cho, NAA/Cr and Cho/Cr ratios for both hippocampal regions. Additionally, Cho/Cr ratio in the periventricular white matter region of OSA group was higher than in the control group (p<0.05). Hypoxic impairment induced by repeated episodes of apnea leads to significant neuronal damage in OSA patients. MRS provides valuable information in the assessment of hypoxic ischemic impairment by revealing important metabolite ratios for the specific areas of the brain

  1. Oxidative stress and depressive symptoms in older adults: A magnetic resonance spectroscopy study.

    Science.gov (United States)

    Duffy, Shantel L; Lagopoulos, Jim; Cockayne, Nicole; Hermens, Daniel F; Hickie, Ian B; Naismith, Sharon L

    2015-07-15

    Major depression is common in older adults and associated with greater health care utilisation and increased risk of poor health outcomes. Oxidative stress may be implicated in the pathophysiology of depression and can be measured via the neurometabolite glutathione using proton magnetic resonance spectroscopy ((1)H-MRS). This study aimed to examine the relationship between glutathione concentration and depressive symptom severity in older adults 'at-risk' of depression. In total, fifty-eight older adults considered 'at-risk' of depression (DEP) and 12 controls underwent (1)H-MRS, medical and neuropsychological assessments. Glutathione was measured in the anterior cingulate cortex (ACC), and calculated as a ratio to creatine. Depressive and anxiety symptoms were assessed using the Hospital Anxiety and Depression Scale (HADS). Compared to controls, DEP patients had increased glutathione/creatine ratios in the ACC (t=2.7, p=0.012). In turn, these increased ratios were associated with greater depressive symptoms (r=0.28, p=0.038), and poorer performance on a verbal learning task (r=-0.28, p=0.040). In conclusion, depressive symptoms in older people are associated with increased glutathione in the ACC. Oxidative stress may be pathophysiologically linked to illness development and may represent an early compensatory response. Further research examining the utility of glutathione as a marker for depressive symptoms and cognitive decline is now required.

  2. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    Science.gov (United States)

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Wind, Robert A.

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  3. Quantitative detection of astaxanthin and cantaxanthin in Atlantic salmon by resonance Raman spectroscopy

    Science.gov (United States)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2006-02-01

    Two major carotenoids species found in salmonids muscle tissues are astaxanthin and cantaxanthin. They are taken up from fish food and are responsible for the attractive red-orange color of salmon filet. Since carotenoids are powerful antioxidants and biomarkers of nutrient consumption, they are thought to indicate fish health and resistance to diseases in fish farm environments. Therefore, a rapid, accurate, quantitative optical technique for measuring carotenoid content in salmon tissues is of economic interest. We demonstrate the possibility of using fast, selective, quantitative detection of astaxanthin and cantaxanthin in salmon muscle tissues, employing resonance Raman spectroscopy. Analyzing strong Raman signals originating from the carbon-carbon double bond stretch vibrations of the carotenoid molecules under blue laser excitation, we are able to characterize quantitatively the concentrations of carotenoids in salmon muscle tissue. To validate the technique, we compared Raman data with absorption measurements of carotenoid extracts in acetone. A close correspondence was observed in absorption spectra for tissue extract in acetone and a pure astaxanthin solution. Raman results show a linear dependence between Raman and absorption data. The proposed technique holds promise as a method of rapid screening of carotenoid levels in fish muscle tissues and may be attractive for the fish farm industry to assess the dietary status of salmon, risk for infective diseases, and product quality control.

  4. Soil humic-like organic compounds in prescribed fire emissions using nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Here we present the chemical characterization of the water-soluble organic carbon fraction of atmospheric aerosol collected during a prescribed fire burn in relation to soil organic matter and biomass combustion. Using nuclear magnetic resonance spectroscopy, we observed that humic-like substances in fire emissions have been associated with soil organic matter rather than biomass. Using a chemical mass balance model, we estimated that soil organic matter may contribute up to 41% of organic hydrogen and up to 27% of water-soluble organic carbon in fire emissions. Dust particles, when mixed with fresh combustion emissions, substantially enhances the atmospheric oxidative capacity, particle formation and microphysical properties of clouds influencing the climatic responses of atmospheric aeroso. Owing to the large emissions of combustion aerosol during fires, the release of dust particles from soil surfaces that are subjected to intense heating and shear stress has, so far, been lacking. -- Highlights: •We characterized the water-soluble organic carbon (WSOC) of fire emissions by NMR. •Distinct patterns were observed for soil dust and vegetation combustion emissions. •Soil organic matter accounted for most of WSOC in early prescribed burn emissions. -- Humic-like soil organic matter may be an important component of particulate emissions in the early stages of wildfires

  5. MDM2-MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance.

    Science.gov (United States)

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2016-01-01

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2-MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2-MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD ) in the micromolar range for the MDM2-MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2-MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2-MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation. PMID:27621617

  6. Electron paramagnetic resonance (EPR) spectroscopy characterization of wheat grains from plants of different water stress tolerance.

    Science.gov (United States)

    Łabanowska, Maria; Filek, Maria; Kurdziel, Magdalena; Bednarska, Elżbieta; Dłubacz, Aleksandra; Hartikainen, Helina

    2012-09-01

    Grains of five genotypes of wheat (four Polish and one Finnish), differing in their tolerance to drought stress were chosen for this investigation. Electron paramagnetic resonance spectroscopy allowed observation of transition metal ions (Mn, Fe, Cu) and different types of stable radicals, including semiquinone centers, present in seed coats, as well as several types of carbohydrate radicals found mainly in the inner parts of grains. The content of paramagnetic metal centers was higher in sensitive genotypes (Radunia, Raweta) than in tolerant ones (Parabola, Nawra), whereas the Finnish genotype (Manu) exhibited intermediate amounts. Similarly, the concentrations of both types of radicals, carbohydrates and semiquinone were significantly higher in the grains originating from more sensitive wheat genotypes. The nature of carbohydrate radicals and their concentrations were confronted with the kinds and amounts of sugars found by the biochemical analyses and microscopy observations. It is suggested that some long lived radicals (semiquinone and starch radicals) occurring in grains could be indicators of stress resistance of wheat plants.

  7. Serum Metabolomic Profiling of Sulphur Mustard-Exposed Individuals Using (1)H Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Zamani, Zahra; Ghanei, Mostafa; Panahi, Yunus; Arjmand, Mohammad; Sadeghi, Sedigheh; Mirkhani, Fatemeh; Parvin, Shahram; Salehi, Maryam; Sahebkar, Amirhossein; Vahabi, Farideh

    2016-01-01

    Sulphur mustard is an alkylating agent that reacts with different cellular components, causing acute and delayed complications that may remain for decades after exposure. This study aimed to identify differentially expressed metabolites between mustard-exposed individuals suffering from chronic complications compared with unexposed individuals as the control group. Serum samples were obtained from 15 mustard-exposed individuals and 15 apparently healthy unexposed individuals. Metabolomic profiling was performed using (1)H nuclear magnetic resonance spectroscopy, and analyses were carried out using Chenomex and MATLAB softwares. Metabolites were identified using Human Metabolome Database, and the main metabolic pathways were identified using MetaboAnalyst software. Chemometric analysis of serum samples identified 11 differentially expressed metabolites between mustard-exposed and unexposed groups. The main pathways that were influenced by sulphur mustard exposure were related to vitamin B6 (down-regulation), bile acid (up-regulation) and tryptophan (down-regulation) metabolism. Metabolism of vitamin B6, bile acids and tryptophan are the most severely impaired pathways in individuals suffering from chronic mustard-induced complications. These findings may find implications in the monitoring of exposed patients and identification of new therapeutic approaches.

  8. Proton magnetic resonance spectroscopy in children with fetal alcohol spectrum disorders

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Rita de Cassia Ferreira; Vasconcelos, Marcio Moacyr; Faleiros, Leticia Oliveira; Brito, Adriana Rocha; Werner Junior, Jairo; Herdy, Gesmar Volga Haddad [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Faculdade de Medicina], e-mail: rcgonc@hotmail.com; Cruz Junior, Luiz Celso Hygino da; Domingues, Romeu Cortes [Multi-Imagem, Rio de Janeiro, RJ (Brazil)

    2009-06-15

    To analyze the metabolic constitution of brain areas through proton magnetic resonance spectroscopy in children affected with fetal alcohol spectrum disorder compared with normal children. Method: The sample of this case-control study included eight boys with epidemiologic history of in utero exposure to alcohol (median age 13.6{+-}3.8 years) who were diagnosed with fetal alcohol spectrum disorder, and eight controls (median age 12.1{+-}3,4 years). An 8 cm{sup 3} single voxel approach was used, with echo time 30 ms, repetition time 1500 ms, and 128 acquisitions in a 1.5T scanner, and four brain areas were analyzed: anterior cingulate, left frontal lobe, left striatum, and left cerebellar hemisphere. Peaks and ratios of metabolites N-acetylaspartate, choline, creatine, and myo-inositol were measured. Results: Children with fetal alcohol spectrum disorder showed a decrease in choline/creatine ratio (p=0.020) in left striatum and an increase in myo-inositol/creatine ratio (p=0.048) in left cerebellum compared with controls. There was no statistically significant difference in all peaks and ratios from the anterior cingulate and frontal lobe between the two groups. Conclusion: This study found evidence that the left striatum and left cerebellum are affected by intrauterine exposure to alcohol. Additional studies with larger samples are necessary to expand our knowledge of the effects of fetal exposure to alcohol. (author)

  9. Metabolic profile of dystrophic mdx mouse muscles analyzed with in vitro magnetic resonance spectroscopy (MRS).

    Science.gov (United States)

    Martins-Bach, Aurea B; Bloise, Antonio C; Vainzof, Mariz; Rahnamaye Rabbani, Said

    2012-10-01

    Duchenne muscular dystrophy (DMD) is a recessive X-linked form of muscular dystrophy characterized by progressive and irreversible degeneration of the muscles. The mdx mouse is the classical animal model for DMD, showing similar molecular and protein defects. The mdx mouse, however, does not show significant muscle weakness, and the diaphragm muscle is significantly more degenerated than skeletal muscles. In this work, (1)H magnetic resonance spectroscopy (MRS) was used to study the metabolic profile of quadriceps and diaphragm muscles from mdx and control mice. Using principal components analysis (PCA), the animals were separated into groups according to age and lineages. The classification was compared to histopathological analysis. Among the 24 metabolites identified from the nuclear MR spectra, only 19 were used by the PCA program for classification purposes. These can be important key biomarkers associated with the progression of degeneration in mdx muscles and with natural aging in control mice. Glutamate, glutamine, succinate, isoleucine, acetate, alanine and glycerol were increased in mdx samples as compared to control mice, in contrast to carnosine, taurine, glycine, methionine and creatine that were decreased. These results suggest that MRS associated with pattern recognition analysis can be a reliable tool to assess the degree of pathological and metabolic alterations in the dystrophic tissue, thereby affording the possibility of evaluation of beneficial effects of putative therapies. PMID:22673895

  10. Preclinical Magnetic Resonance Imaging and Spectroscopy Studies of Memory, Aging, and Cognitive Decline

    Science.gov (United States)

    Febo, Marcelo; Foster, Thomas C.

    2016-01-01

    Neuroimaging provides for non-invasive evaluation of brain structure and activity and has been employed to suggest possible mechanisms for cognitive aging in humans. However, these imaging procedures have limits in terms of defining cellular and molecular mechanisms. In contrast, investigations of cognitive aging in animal models have mostly utilized techniques that have offered insight on synaptic, cellular, genetic, and epigenetic mechanisms affecting memory. Studies employing magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) in animal models have emerged as an integrative set of techniques bridging localized cellular/molecular phenomenon and broader in vivo neural network alterations. MRI methods are remarkably suited to longitudinal tracking of cognitive function over extended periods permitting examination of the trajectory of structural or activity related changes. Combined with molecular and electrophysiological tools to selectively drive activity within specific brain regions, recent studies have begun to unlock the meaning of fMRI signals in terms of the role of neural plasticity and types of neural activity that generate the signals. The techniques provide a unique opportunity to causally determine how memory-relevant synaptic activity is processed and how memories may be distributed or reconsolidated over time. The present review summarizes research employing animal MRI and MRS in the study of brain function, structure, and biochemistry, with a particular focus on age-related cognitive decline.

  11. Fragile X syndrome: a pilot proton magnetic resonance spectroscopy study in premutation carriers

    Directory of Open Access Journals (Sweden)

    Hallahan Brian P

    2012-08-01

    Full Text Available Abstract Purpose There is increasing evidence that neurodevelopmental differences in people with Fragile X syndrome (FraX may be explained by differences in glutamatergic metabolism. Premutation carriers of FraX were originally considered to be unaffected although several recent reports demonstrate neuroanatomical, cognitive, and emotional differences from controls. However there are few studies on brain metabolism in premutation carriers of FraX. Methods We used proton magnetic resonance spectroscopy to compare neuronal integrity of a number of brain metabolites including N-Acetyl Aspartate, Creatine + Phosphocreatinine, Choline, myoInositol, and Glutamate containing substances (Glx in 17 male premutation carriers of FraX and 16 male healthy control individuals. Results There was no significant between-group difference in the concentration of any measured brain metabolites. However there was a differential increase in N-acetyl aspartate with aging in premutation FraX individuals compared to controls. Conclusions This is the first 1 H-MRS study to examine premutation FraX individuals. Although we demonstrated no difference in the concentration of any of the metabolites examined between the groups, this may be due to the large age ranges included in the two samples. The differential increase in NAA levels with aging may reflect an abnormal synaptic pruning process.

  12. ESR (Electronic Spin Resonance Spectroscopy) study of irradiated paper for biomedical material wrapping

    International Nuclear Information System (INIS)

    Ionising radiation treatments are used for sterilization, microbiological decontamination, disinfection, insect disinfestation and food preservation. This ionising radiation generates free radicals (FR) in matter, which can be detected by Electronic Spin Resonance Spectroscopy (ESR). For this work it had analysed different kind of irradiated package papers of syringes, surgical gloves and dressings by ESR. These were irradiated with doses between 20 and 35 kGy of gamma radiation (Cobalt 60). The processed samples were measured in a Bruker ECS 106 spectrometer. The obtained results were: 1-) The irritated samples showed a central peak and two satellites induced by the applied radiation; 2-) The non-irradiated samples did not show the characteristic satellite peaks of the irritated ones; 3-) A linear relationship between the signal heights per unit mass and the applied doses was found; and 4-) The signals were highly stable, with half-time values between 240 and 370 days for 20 and 30 kGy, permitting more than one year of monitoring proceedings. In conclusion, the ESR allows the detection, quantification and time monitoring processes of this kind of irradiated materials. (author)

  13. Preclinical Magnetic Resonance Imaging and Spectroscopy Studies of Memory, Aging, and Cognitive Decline.

    Science.gov (United States)

    Febo, Marcelo; Foster, Thomas C

    2016-01-01

    Neuroimaging provides for non-invasive evaluation of brain structure and activity and has been employed to suggest possible mechanisms for cognitive aging in humans. However, these imaging procedures have limits in terms of defining cellular and molecular mechanisms. In contrast, investigations of cognitive aging in animal models have mostly utilized techniques that have offered insight on synaptic, cellular, genetic, and epigenetic mechanisms affecting memory. Studies employing magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) in animal models have emerged as an integrative set of techniques bridging localized cellular/molecular phenomenon and broader in vivo neural network alterations. MRI methods are remarkably suited to longitudinal tracking of cognitive function over extended periods permitting examination of the trajectory of structural or activity related changes. Combined with molecular and electrophysiological tools to selectively drive activity within specific brain regions, recent studies have begun to unlock the meaning of fMRI signals in terms of the role of neural plasticity and types of neural activity that generate the signals. The techniques provide a unique opportunity to causally determine how memory-relevant synaptic activity is processed and how memories may be distributed or reconsolidated over time. The present review summarizes research employing animal MRI and MRS in the study of brain function, structure, and biochemistry, with a particular focus on age-related cognitive decline. PMID:27468264

  14. Magnetic Resonance Spectroscopy: An In Vivo Molecular Imaging Biomarker for Parkinson’s Disease?

    Directory of Open Access Journals (Sweden)

    Rosella Ciurleo

    2014-01-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative disorder caused by selective loss of dopaminergic neurons in the substantia nigra pars compacta which leads to dysfunction of cerebral pathways critical for the control of movements. The diagnosis of PD is based on motor symptoms, such as bradykinesia, akinesia, muscular rigidity, postural instability, and resting tremor, which are evident only after the degeneration of a significant number of dopaminergic neurons. Currently, a marker for early diagnosis of PD is still not available. Consequently, also the development of disease-modifying therapies is a challenge. Magnetic resonance spectroscopy is a quantitative imaging technique that allows in vivo measurement of certain neurometabolites and may produce biomarkers that reflect metabolic dysfunctions and irreversible neuronal damage. This review summarizes the abnormalities of cerebral metabolites found in MRS studies performed in patients with PD and other forms of parkinsonism. In addition, we discuss the potential role of MRS as in vivo molecular imaging biomarker for early diagnosis of PD and for monitoring the efficacy of therapeutic interventions.

  15. Application of electrochemical surface plasmon resonance spectroscopy for characterization of electrochemical DNA sensors.

    Science.gov (United States)

    Salamifar, S Ehsan; Lai, Rebecca Y

    2014-10-01

    We report the use of electrochemical surface plasmon resonance spectroscopy (EC-SPR) in the characterization of electrochemical DNA sensors. Three DNA probes, including a stem-loop probe and two linear probes (LP), were used in this study. Among the three sensors, the 3xLP sensor, a new sensor design with three consecutive target recognition sites, showed the largest change in SPR signal upon hybridization to T-25, a 25-base target with overhang regions that do not bind to the 3xLP probe. A detection limit of 20nM was determined for T-25 using this sensor. Overall, this work has demonstrated the main advantage of EC-SPR, which is the ability to monitor both optical and electrochemical signals simultaneously, from sensor fabrication to target interrogation and sensor regeneration. It also alludes to the potential use of this hybrid technique to differentiate between non-specific binding and non-specific adsorption of non-complement targets onto the sensor surface.

  16. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    Science.gov (United States)

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  17. New sensitive agents for detecting singlet oxygen by electron spin resonance spectroscopy.

    Science.gov (United States)

    Igarashi, T; Sakurai, K; Oi, T; Obara, H; Ohya, H; Kamada, H

    1999-05-01

    Free radicals are well-established transient intermediates in chemical and biological processes. Singlet oxygen, though not a free radical, is also a fairly common reactive chemical species. It is rare that singlet oxygen is studied with the electron spin resonance (ESR) technique in biological systems, because there are few suitable detecting agents. We have recently researched some semiquinone radicals. Specifically, our focus has been on bipyrazole derivatives, which slowly convert to semiquinone radicals in DMSO solution in the presence of potassium tert-butoxide and oxygen. These bipyrazole derivatives are dimers of 3-methyl-1-phenyl-2-pyrazolin-5-one and have anti-ischemic activities and free radical scavenging properties. In this work, we synthesized a new bipyrazole derivative, 4,4'-bis(1p-carboxyphenyl-3-methyl-5-hydroxyl)-pyrazole, DRD156. The resulting semiquinone radical, formed by reaction with singlet oxygen, was characterized by ESR spectroscopy. DRD156 gave no ESR signals from hydroxyl radical, superoxide, and hydrogen peroxide. DRD156, though, gives an ESR response with hypochlorite. This agent, nevertheless, has a much higher ability to detect singlet oxygen than traditional agents with the ESR technique. PMID:10381208

  18. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  19. Biochemical support for the "threshold" theory of creativity: a magnetic resonance spectroscopy study.

    Science.gov (United States)

    Jung, Rex E; Gasparovic, Charles; Chavez, Robert S; Flores, Ranee A; Smith, Shirley M; Caprihan, Arvind; Yeo, Ronald A

    2009-04-22

    A broadly accepted definition of creativity refers to the production of something both novel and useful within a given social context. Studies of patients with neurological and psychiatric disorders and neuroimaging studies of healthy controls have each drawn attention to frontal and temporal lobe contributions to creativity. Based on previous magnetic resonance (MR) spectroscopy studies demonstrating relationships between cognitive ability and concentrations of N-acetyl-aspartate (NAA), a common neurometabolite, we hypothesized that NAA assessed in gray and white matter (from a supraventricular slab) would relate to laboratory measures of creativity. MR imaging and divergent thinking measures were obtained in a cohort of 56 healthy controls. Independent judges ranked the creative products of each participant, from which a "Composite Creativity Index" (CCI) was created. Different patterns of correlations between NAA and CCI were found in higher verbal ability versus lower verbal ability participants, providing neurobiological support for a critical "threshold" regarding the relationship between intelligence and creativity. To our knowledge, this is the first report assessing the relationship between brain chemistry and creative cognition, as measured with divergent thinking, in a cohort comprised exclusively of normal, healthy participants.

  20. An Experimental Proton Magnetic Resonance Spectroscopy Analysis on Early Stage of Acute Focal Cerebral Ischemia

    Institute of Scientific and Technical Information of China (English)

    易黎; 张苏明; 张新江

    2002-01-01

    Summary: Using different models of focal cerebral ischemia, the temporal and spatial rules ofmetabolism and energy changes in the post-ischemia brain tissue were measured by proton magnet-ic resonance spectroscopy(1HMRS) to provide valuable information for judging the prognosis of a-cute focal cerebral ischemia and carrying out effective therapy. Nine healthy Sprague-Dawly rats(both sexes) were randomly divided into two groups: The rats in the group A (n=4) were occlud-ed with self-thrombus for 1 h; The rats in the group B (n=5) were occluded with thread-embolifor 1 h. The 1H MRS at 30, 40, 50, 60 min respectively was examined and the metabolicchanges of NAA, Cho and Lac in the regions of interest were semiquantitatively analyzed. Thespectrum intregral calculus area ratio of NAA, Cho, Lac to Pcr+Ct was set as the criterion. Thevalues of NAA ~ Cho in the regions of interest were declined gradually within 1 h after ischemia,especially, the ratio of Cho/(Pcr+Cr), NAA/(Pcr+Cr) at 60 min had significant difference withthat at 50 min (P<0. 05). The ratio of Lac/(Pcr+Cr) began to decrease at 40 min from initial in-crease of Lac in both A and B groups. MR proton spectrum analysis was a non-invasive, direct andcomprehensive tool for the study of cellular metabolism and the status of the biochemical energy inacute ischemia stroke.

  1. Analysis of normal and diseased colon mucosa using ultraviolet resonance Raman spectroscopy

    Science.gov (United States)

    Boustany, Nada N.; Manoharan, Ramasamy; Dasari, Ramachandra R.; Feld, Michael S.

    1996-04-01

    Ultraviolet resonance Raman (UVRR) spectroscopy was used to characterize normal and diseased colon mucosa in vitro. A tunable mode-locked Titanium:Sapphire laser operating at 76 MHz was used to irradiate normal and diseased colon tissue samples with 251 nm light generated from the third harmonic of the fundamental radiation. The Raman scattered light was collected and analyzed using a 1 meter spectrometer fitted with a UV coated, liquid nitrogen cooled CCD detector. The measured spectra show prominent bands that correspond to those of known tissue constituents including nucleic acids, aromatic amino acids and lipids. Using the Raman lineshapes measured from pure solutions of nucleotides, tryptophan, tyrosine, FAD, and from lipid-rich serosal fat, the colon spectra were modeled by a least square fitting algorithm whereby the colon spectra were assumed to be a linear combination of the pure biochemical lineshapes. The relative Raman scattering cross section of each biochemical was determined so that the relative concentration of each compound with respect to the others, could be extracted from a given tissue spectrum.

  2. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    Science.gov (United States)

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-08-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique `wagging' mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe-CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe-H moieties in other important natural and synthetic catalysts.

  3. An optic fiber sensor for multiple gases based on fiber loop ring-down spectroscopy and microring resonator arrays

    Science.gov (United States)

    Zhang, Xin; Jian, Jia-wen; Zheng, Yan-gong; Jin, Han; Zou, Jie

    2016-07-01

    A high-sensitivity sensor for multiple gases based on microring array filter and fiber loop ring-down spectroscopy system is proposed and demonstrated. The parameters of the resonators are designed so that the filtered signal from a broadband light source can be tuned with an absorption spectral line of gas. Therefore, through adding microring resonators horizontally and vertically, the number of target gases and filter range are increased. In this research, in the broad spectral range of about 0.9 μm, only the absorption spectral lines of target gases are filtered. The simulation results show that three target gases, CH4, CO2 and HF, can be simultaneously detected by the sensing system. Owing to the fiber loop ring-down spectroscopy, the whole system is optimized in mini-size and sensitivity, and we can choose different sensing methods to enhance the measurement accuracy for high and low concentration conditions.

  4. Oxidative stress markers and phosphorus magnetic resonance spectroscopy in a patient with GLUT1 deficiency treated with modified Atkins diet.

    Science.gov (United States)

    Kitamura, Yuri; Okumura, Akihisa; Hayashi, Masaharu; Mori, Harushi; Takahashi, Satoru; Yanagihara, Keiko; Miyata, Rie; Tanuma, Naoyuki; Mimaki, Takashi; Abe, Shinpei; Shimizu, Toshiaki

    2012-05-01

    Glucose transporter type 1 deficiency syndrome is an inborn error of glucose transport across blood-tissue barriers, and the modified Atkins diet is an effective and well-tolerated treatment. To investigate the effects of the modified Atkins diet, we examined the cerebrospinal fluid markers and performed phosphorus magnetic resonance spectroscopy in a patient with glucose transporter type 1 deficiency syndrome before and after the modified Atkins diet. Cerebrospinal fluid levels of the oxidative stress markers, 8-hydroxy-2'-deoxyguanosine and hexanoyl-lysine adduct, were markedly increased above the cutoff index and were normalized 18 months after the modified Atkins diet. Phosphorus magnetic resonance spectroscopy measurements showed 18% increase of PCr/γ-ATP ratio after the modified Atkins diet. These results suggest that the modified Atkins diet may reduce oxidative stress in the brain and improve energy reserve capacity, which is important in sustaining electrophysiological activities essential for performing brain functions.

  5. Magnetic resonance spectroscopy in the prediction of early conversion from amnestic mild cognitive impairment to dementia: a prospective cohort study

    OpenAIRE

    Pedro J. Modrego; Fayed, Nicolas; Sarasa, Manuel

    2011-01-01

    Background Mild cognitive impairment (MCI) of an amnestic type is a common condition in older people and highly predictive of Alzheimer's disease (AD). To date, there is no clear consensus regarding the best antecedent biomarker to predict early conversion to AD. Objective The aim of the study is to demonstrate that 1H magnetic resonance spectroscopy (MRS) of the brain in MCI patients may predict early conversion to dementia within the 2-year period after baseline assessment. Methods A cohort...

  6. Association between muscle hydration measures acquired using bioelectrical impedance spectroscopy and magnetic resonance imaging in healthy and hemodialysis population

    OpenAIRE

    Sawant, Anuradha; House, Andrew A; Chesworth, Bert M.; Connelly, Denise M.; Lindsay, Robert; Gati, Joe; Bartha, Robert; Overend, Tom J.

    2015-01-01

    Abstract Establishing the effect of fluctuating extracellular fluid (ECF) volume on muscle strength in people with end‐stage renal disease (ESRD) on hemodialysis (HD) is essential, as inadequate hydration of the skeletal muscles impacts its strength and endurance. Bioelectrical impedance spectroscopy (BIS) has been a widely used method for estimating ECF volume of a limb or calf segment. Magnetic resonance imaging (MRI)‐acquired transverse relaxation times (T 2) has also been used for estimat...

  7. Reliability of Calf Bioelectrical Impedance Spectroscopy and Magnetic-Resonance-Imaging-Acquired Skeletal Muscle Hydration Measures in Healthy People

    OpenAIRE

    Anuradha Sawant; House, Andrew A; Chesworth, Bert M.; Joseph Gati; Robert Lindsay; Connelly, Denise M.; Robert Bartha; Overend, Tom J.

    2013-01-01

    Purpose. The purpose of this study was to investigate the test-retest reliability, relative variability, and agreement between calf bioelectrical impedance-spectroscopy (cBIS) acquired extracellular fluid (ECF), intracellular fluid (ICF), total water and the ratio of ECF : ICF, magnetic-resonance-imaging (MRI) acquired transverse relaxation times (T2), and apparent diffusion coefficient (ADC) of calf muscles of the same segment in healthy individuals. Methods. Muscle hydration measures were c...

  8. Near-infrared single-photon spectroscopy of a whispering gallery mode resonator using energy-resolving transition edge sensors

    CERN Document Server

    Förtsch, Michael; Stevens, Martin J; Strekalov, Dmitry; Schunk, Gerhard; Fürst, Josef U; Vogl, Ulrich; Sedlmeir, Florian; Schwefel, Harald G L; Leuchs, Gerd; Nam, Sae Woo; Marquardt, Christoph

    2014-01-01

    We demonstrate a method to perform spectroscopy of near-infrared single photons without the need of dispersive elements. This method is based on a photon energy resolving transition edge sensor and is applied for the characterization of widely wavelength tunable narrow-band single photons emitted from a crystalline whispering gallery mode resonator. We measure the emission wavelength of the generated signal and idler photons with an uncertainty of up to 2 nm.

  9. Increased membrane turnover in the brain in cutaneous anthrax without central nervous system disorder: a magnetic resonance spectroscopy study.

    Science.gov (United States)

    Bayindir, Yasar; Firat, Ahmet K; Kayabas, Uner; Alkan, Alpay; Yetkin, Funda; Karakas, Hakki M; Yologlu, Saim

    2012-07-01

    Cutaneous anthrax, caused by Bacillus anthracis contacting the skin, is the most common form of human anthrax. Recent studies implicate the presence of additional, possibly toxin-related subtle changes, even in patients without neurological or radiological findings. In this study, the presence of subtle changes in cutaneous anthrax was investigated at the metabolite level using magnetic resonance spectroscopy. Study subjects were consisted of 10 patients with cutaneous anthrax without co-morbid disease and/or neurological findings, and 13 healthy controls. There were no statistical differences in age and gender between two groups. The diagnosis of cutaneous anthrax was based on medical history, presence of a typical cutaneous lesion, large gram positive bacilli on gram staining and/or positive culture for B. anthracis from cutaneous samples. Brain magnetic resonance imaging examination consisted of conventional imaging and single-voxel magnetic resonance spectroscopy. Magnetic resonance spectroscopy was performed by using point-resolved spectroscopy sequence (TR: 2000ms, TE: 136ms, 128 averages). Voxels of 20mm×20mm×20mm were placed in normal-appearing parietal white matter to detect metabolite levels. Cerebral metabolite peaks were measured in normal appearing parietal white matter. N-acetyl aspartate/creatine and choline/creatine ratios were calculated using standard analytical procedures. Patients and controls were not statistically different regarding parietal white matter N-acetyl aspartate/creatine ratios (p=0.902), a finding that implicates the conservation of neuronal and axonal integrity and neuronal functions. However, choline/creatine ratios were significantly higher in patient groups (p=0.001), a finding implicating an increased membrane turnover. In conclusion, these two findings point to a possibly anthrax toxins-related subtle inflammatory reaction of the central nervous system at the cellular level. PMID:22543072

  10. Longitudinal monitoring of metabolic alterations in cuprizone mouse model of multiple sclerosis using 1H-magnetic resonance spectroscopy.

    OpenAIRE

    Orije, Jasmien; Kara, Firat; Guglielmetti, Caroline; Praet, Jelle; Linden, van der, M.; Ponsaerts, Peter; Verhoye, Marleen

    2015-01-01

    Non-invasive measures of well-known pathological hallmarks of multiple sclerosis (MS) such as demyelination, inflammation and axonal injury would serve as useful markers to monitor disease progression and evaluate potential therapies. To this end, in vivo localized proton magnetic resonance spectroscopy ((1)H-MRS) provides a powerful means to monitor metabolic changes in the brain and may be sensitive to these pathological hallmarks. In our study, we used the cuprizone mouse model to study pa...

  11. Determination of the Antioxidant Status of the Skin by In Vivo-Electron Paramagnetic Resonance (EPR) Spectroscopy

    OpenAIRE

    Silke Barbara Lohan; Anna-Christina Lauer; Sophia Arndt; Annette Friedrich; Kathrin Tscherch; Stefan F. Haag; Darvin, Maxim E.; Henning Vollert; Anke Kleemann; Ingo Gersonde; Norbert Groth; Jürgen Lademann; Sascha Rohn; Martina Claudia Meinke

    2015-01-01

    Organisms produce free radicals which are essential for various metabolic processes (enzymatic oxidation, cellular respiration, signaling). Antioxidants are important chemical compounds that specifically prevent the oxidation of substances by scavenging radicals, especially reactive oxygen species (ROS). Made up of one or two unpaired electrons, ROS are free radicals that are highly reactive and can attack other metabolites. By using electron paramagnetic resonance (EPR) spectroscopy, it is p...

  12. Clinical response of quetiapine in rapid cycling manic bipolar patients and lactate level changes in proton magnetic resonance spectroscopy

    OpenAIRE

    Dajung J Kim; Lyoo, In Kyoon; Yoon, Sujung J; Choi, Taeyoung; Lee, Byungchol; Kim, Jieun E.; Lee, Joonsun S.; Renshaw, Perry F.

    2007-01-01

    The aim of the current study was to evaluate the relationship between quetiapine’s effect on the improvement of mood symptoms in bipolar patients and brain metabolite level changes as measured by proton magnetic resonance spectroscopy (1H-MRS). Rapid cycling bipolar patients in the manic state were recruited and treated with quetiapine for 12 weeks. Clinical assessment was performed using the Young Mania Rating Scale (YMRS), the 17-item Hamilton Depression Rating Scale (HDRS) and the Clinical...

  13. Metabolic abnormalities in skeletal muscle of patients receiving zidovudine therapy observed by 31P in vivo magnetic resonance spectroscopy.

    OpenAIRE

    Sinnwell, T M; Sivakumar, K.; Soueidan, S; Jay, C; Frank, J.A.; McLaughlin, A C; Dalakas, M C

    1995-01-01

    Patients on long-term zidovudine (AZT) therapy experience muscle fatigue and weakness attributed to AZT-induced mitochondrial toxicity in skeletal muscle. To determine if the clinico-pathological abnormalities in these patients correspond to abnormal muscle energy metabolism, we used 31P in vivo magnetic resonance spectroscopy to follow phosphorylated metabolites during exercise. We studied 19 normal volunteers, 6 HIV-positive patients never treated with AZT, and 9 HIV-positive patients who h...

  14. Neuronal and Axonal Degeneration in Experimental Spinal Cord Injury: In Vivo Proton Magnetic Resonance Spectroscopy and Histology

    OpenAIRE

    QIAN, JUNCHAO; Herrera, Juan J.; Narayana, Ponnada A.

    2010-01-01

    Longitudinal in vivo proton magnetic resonance spectroscopy (1H-MRS) and immunohistochemistry were performed to investigate the tissue degeneration in traumatically injured rat spinal cord rostral and caudal to the lesion epicenter. On 1H-MRS significant decreases in N-acetyl aspartate (NAA) and total creatine (Cr) levels in the rostral, epicenter, and caudal segments were observed by 14 days, and levels remained depressed up to 56 days post-injury (PI). In contrast, the total choline (Cho) l...

  15. Improving the selectivity of the ISOLDE resonance ionization laser ion source and in-source laser spectroscopy of polonium

    International Nuclear Information System (INIS)

    Exotic atomic nuclei far away from stability are fascinating objects to be studied in many scientific fields such as atomic-, nuclear-, and astrophysics. Since these are often short-lived isotopes, it is necessary to couple their production with immediate extraction and delivery to an experiment. This is the purpose of the on-line isotope separator facility, ISOLDE, at CERN. An essential aspect of this laboratory is the Resonance Ionization Laser Ion Source (RILIS) because it provides a fast and highly selective means of ionizing the reaction products. This technique is also a sensitive laser-spectroscopy tool for the development and improvement of electron excitation schemes for the resonant laser photoionization and the study of the nuclear structure or fundamental atomic physics. Each of these aspects of the RILIS applications are subjects of this thesis work: a new device for the suppression of unwanted surface ionized contaminants in RILIS ion beams, known as the Laser Ion Source and Trap (LIST), was implemented into the ISOLDE framework, further developed and characterized; a new electron-excitation scheme for the laser ionization of calcium was developed; the ionization energy of polonium was determined by high-precision Rydberg spectroscopy; and finally, the first ever on-line physics operation of the highly selective LIST enabled the study of nuclear structure properties of 217Po by in-source resonance ionization spectroscopy.

  16. Quantification of choline concentration following liver cell apoptosis using 1H magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Zhi-Wei Shen; Zhen Cao; Ke-Zeng You; Zhong-Xian Yang; Ye-Yu Xiao; Xiao-Fang Cheng; Yao-Wen Chen

    2012-01-01

    AIM:To evaluate the feasibility of quantifying liver choline concentrations in both normal and apoptotic rabbit livers in vivo,using 1H magnetic resonance spectroscopy (1H-MRS).METHODS:1H-MRS was performed in 18 rabbits using a 1.5T GE MR system with an eight-channel head/neck receiving coil.Fifteen rabbits were injected with sodium selenite at a dose of 10 μmol/kg to induce the liver cell apoptosis.Point-resolved spectroscopy sequencelocalized spectra were obtained from 10 livers once before and once 24 h after sodium selenite injection in vivo.T1 and T2 relaxation time of water and choline was measured separately in the livers of three healthy rabbits and three selenite-treated rabbits.Hematoxylin and eosin and dUTP-biotin nick end labeling (TUNEL) staining was used to detect and confirm apoptosis.Choline peak areas were measured relative to unsuppressed water using LCModel.Relaxation attenuation was corrected using the average of T1 and T2 relaxation time.The choline concentration was quantified using a formula,which was tested by a phantom with a known concentration.RESULTS:Apoptosis of hepatic cells was confirmed by TUNEL assay.In phantom experiment,the choline concentration (3.01 mmol/L),measured by 1H-MRS,was in good agreement with the actual concentration (3 mmol/L).The average T1 and T2 relaxation time of choline was 612 ± 15 ms and 74 ± 4 ms in the control group and 670 ± 27 ms and 78 ± 5 ms in apoptotic livers in vivo,respectively.Choline was quantified in 10 rabbits,once before and once after the injection with sodium selenite.The choline concentration decreased from 14.5 ± 7.57 mmol/L before sodium selenite injection to 10.8 ± 6.58 mmol/L (mean ± SD,n =10) after treatment (Z =-2.395,P < 0.05,two-sample paired Wilcoxon test).CONCLUSION:1H-MRS can be used to quantify liver choline in vivo using unsuppressed water as an internal reference.Decreased liver choline concentrations are found in sodium selenite-treated rabbits undergoing liver cell

  17. Direct Imaging of Transient Fano Resonances in N2 Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy

    Science.gov (United States)

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J. J.; Kornilov, Oleg

    2016-04-01

    Autoionizing Rydberg states of molecular N2 are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14 ±1 fs , while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  18. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    Science.gov (United States)

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance. PMID:27152799

  19. Characterization of iron, manganese, and copper synthetic hydroxyapatites by electron paramagnetic resonance spectroscopy

    Science.gov (United States)

    Sutter, B.; Wasowicz, T.; Howard, T.; Hossner, L. R.; Ming, D. W.

    2002-01-01

    The incorporation of micronutrients (e.g., Fe, Mn, Cu) into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in NASA's Advanced Life Support (ALS) program for long-duration space missions. Separate Fe3+ (Fe-SHA), Mn2+ (Mn-SHA), and Cu2+ (Cu-SHA) containing SHA materials were synthesized by a precipitation method. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the location of Fe3+, Mn2+, and Cu2+ ions in the SHA structure and to identify other Fe(3+)-, Mn(2+)-, and Cu(2+)-containing phases that formed during precipitation. The EPR parameters for Fe3+ (g=4.20 and 8.93) and for Mn2+ (g=2.01, A=9.4 mT, D=39.0 mT and E=10.5 mT) indicated that Fe3+ and Mn2+ possessed rhombic ion crystal fields within the SHA structure. The Cu2+ EPR parameters (g(z)=2.488, A(z)=5.2 mT) indicated that Cu2+ was coordinated to more than six oxygens. The rhombic environments of Fe3+ and Mn2+ along with the unique Cu2+ environment suggested that these metals substituted for the 7 or 9 coordinate Ca2+ in SHA. The EPR analyses also detected poorly crystalline metal oxyhydroxides or metal-phosphates associated with SHA. The Fe-, Mn-, and Cu-SHA materials are potential slow release sources of Fe, Mn, and Cu for ALS and terrestrial cropping systems.

  20. On-line monitoring of chemical reactions by using bench-top nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Danieli, E; Perlo, J; Duchateau, A L L; Verzijl, G K M; Litvinov, V M; Blümich, B; Casanova, F

    2014-10-01

    Real-time nuclear magnetic resonance (NMR) spectroscopy measurements carried out with a bench-top system installed next to the reactor inside the fume hood of the chemistry laboratory are presented. To test the system for on-line monitoring, a transfer hydrogenation reaction was studied by continuously pumping the reaction mixture from the reactor to the magnet and back in a closed loop. In addition to improving the time resolution provided by standard sampling methods, the use of such a flow setup eliminates the need for sample preparation. Owing to the progress in terms of field homogeneity and sensitivity now available with compact NMR spectrometers, small molecules dissolved at concentrations on the order of 1 mmol L(-1) can be characterized in single-scan measurements with 1 Hz resolution. Owing to the reduced field strength of compact low-field systems compared to that of conventional high-field magnets, the overlap in the spectrum of different NMR signals is a typical situation. The data processing required to obtain concentrations in the presence of signal overlap are discussed in detail, methods such as plain integration and line-fitting approaches are compared, and the accuracy of each method is determined. The kinetic rates measured for different catalytic concentrations show good agreement with those obtained with gas chromatography as a reference analytical method. Finally, as the measurements are performed under continuous flow conditions, the experimental setup and the flow parameters are optimized to maximize time resolution and signal-to-noise ratio. PMID:25111845

  1. {sup 1}H magnetic resonance spectroscopy in the diagnosis of paediatric low grade brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Orphanidou-Vlachou, E., E-mail: eleni.orphanidou@googlemail.com [School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Auer, D., E-mail: dorothee.auer@nottingham.ac.uk [Division of Academic Radiology, School of Medical and Surgical Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Children' s Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham (United Kingdom); Brundler, M.A., E-mail: marie-anne.brundler@bch.nhs.uk [Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Davies, N.P., E-mail: nigel.davies@nhs.net [School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Department of Medical Physics, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Jaspan, T., E-mail: tim.jaspan@nuh.nhs.uk [Children' s Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham (United Kingdom); MacPherson, L., E-mail: Lesley.MacPherson@bch.nhs.uk [Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Natarajan, K., E-mail: Kal.Natarajan@uhb.nhs.uk [Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Department of Medical Physics, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); and others

    2013-06-15

    Introduction: Low grade gliomas are the commonest brain tumours in children but present in a myriad of ways, each with its own treatment challenges. Conventional MRI scans play an important role in their management but have limited ability to identify likely clinical behaviour. The aim of this study is to investigate {sup 1}H magnetic resonance spectroscopy (MRS) as a method for detecting differences between the various low grade gliomas and related tumours in children. Patients and methods: Short echo time single voxel {sup 1}H MRS at 1.5 or 3.0 T was performed prior to treatment on children with low grade brain tumours at two centres and five MR scanners, 69 cases had data which passed quality control. MRS data was processed using LCModel to give mean spectra and metabolite concentrations which were compared using T-tests, ANOVA, Receiver Operator Characteristic curves and logistic regression in SPSS. Results: Significant differences were found in concentrations of key metabolites between glioneuronal and glial tumours (T-test p < 0.05) and between most of the individual histological subtypes of low grade gliomas. The discriminatory metabolites identified, such as choline and myoinositol, are known tumour biomarkers. In the set of pilocytic astrocytomas and unbiopsied optic pathway gliomas, significant differences (p < 0.05, ANOVA) were found in metabolite profiles of tumours depending on location and patient neurofibromatosis type 1 status. Logistic regression analyses yielded equations which could be used to assess the probability of a tumour being of a specific type. Conclusions: MRS can detect subtle differences between low grade brain tumours in children and should form part of the clinical assessment of these tumours.

  2. Study of nanostructural organization of ionic liquids by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Merunka, Dalibor; Peric, Mirna; Peric, Miroslav

    2015-02-19

    The X-band electron paramagnetic resonance spectroscopy (EPR) of a stable, spherical nitroxide spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDTO) has been used to study the nanostructural organization of a series of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids (ILs) with alkyl chain lengths from two to eight carbons. By employing nonlinear least-squares fitting of the EPR spectra, we have obtained values of the rotational correlation time and hyperfine coupling splitting of pDTO to high precision. The rotational correlation time of pDTO in ILs and squalane, a viscous alkane, can be fit very well to a power law functionality with a singular temperature, which often describes a number of physical quantities measured in supercooled liquids. The viscosity of the ILs and squalane, taken from the literature, can also be fit to the same power law expression, which means that the rotational correlation times and the ionic liquid viscosities have similar functional dependence on temperature. The apparent activation energy of both the rotational correlation time of pDTO and the viscous flow of ILs and squalane increases with decreasing temperature; in other words, they exhibit strong non-Arrhenius behavior. The rotational correlation time of pDTO as a function of η/T, where η is the shear viscosity and T is the temperature, is well described by the Stokes-Einstein-Debye (SED) law, while the hydrodynamic probe radii are solvent dependent and are smaller than the geometric radius of the probe. The temperature dependence of hyperfine coupling splitting is the same in all four ionic liquids. The value of the hyperfine coupling splitting starts decreasing with increasing alkyl chain length in the ionic liquids in which the number of carbons in the alkyl chain is greater than four. This decrease together with the decrease in the hydrodynamic radius of the probe indicates a possible existence of nonpolar nanodomains.

  3. Monitoring interferon β treatment response with magnetic resonance spectroscopy in relapsing remitting multiple sclerosis.

    Science.gov (United States)

    Yetkin, Mehmet Fatih; Mirza, Meral; Dönmez, Halil

    2016-09-01

    The aim of this study is to compare the white matter of multiple sclerosis (MS) patients with healthy controls and to monitor the response to the treatment with magnetic resonance spectroscopy (MRS).Fifteen healthy controls and 36 recently diagnosed MS patients never treated with interferon β were included in this study. In the patient group, MRS was performed before treatment, at 6th and 12th month after the initiation of treatment and once in control group. Patient group was divided into 3 interferon groups randomly. Physical examination findings were recorded as Expanded Disability Status Scale scores before treatment, at 6th and 12th month of interferon treatment.At the end of 1 year follow up, 26 of 36 patients completed the study. In patients' white matter lesions, N-acetylaspartate/creatine (NAA/Cr) ratios were lower than control group's white matters. NAA/Cr ratios were higher in control group's white matter than patient's normal appearing white matter but this difference was not statistically significant. There was no difference in choline/creatine (Cho/Cr) ratios between 2 groups. In follow-up period, NAA/Cr and Cho/Cr ratios obtained from patients' white matter lesions and normal appearing white matter did not change statistically.This study showed that in MS patients' white matters, especially in white matter lesions, neuron viability is reduced compared with healthy controls' normal white matter; and in the patients treated with interferon β NAA/Cr ratios remained stable. These stable levels of metabolite ratios in the patients who received interferon β therapy can be explained with either the shortness of the follow-up period post-treatment or may reflect a positive effect of the beta interferon therapy on the progress of MS. PMID:27603381

  4. S-band ferromagnetic resonance spectroscopy and the detection of magnetofossils

    Science.gov (United States)

    Gehring, A. U.; Kind, J.; Charilaou, M.; García-Rubio, I.

    2012-12-01

    Life on Earth is strongly associated with microbes and earliest evidence for their presence has been hypothesized from putative morphological microfossils in Archaean rocks of about 3.5 Ga. Geological records of microbial biota are sparse, because soft-bodied organisms that are expected to dominate natural environments do not preserve well. Magnetotactic bacteria (MTB) and their chemically stable magnetic remains, known as magnetofossils, have attracted considerable interest as proxy to infer microbial ecology during Earth's history. MTB form intracellularly ferrimagnetic particles encapsulated in membranes termed magnetosomes. These biominerals are organized along their [111] magnetic easy axes in chains that are stabilized by cytoskeletal protein filaments. The alignment of the easy axes causes pronounced magnetic interaction-induced shape anisotropy. Although the magnetic properties of MTB are well known, the detection of magnetofossils in geological samples remains ambiguous due to the decay of organic matter during diagenesis, which can critically effect the chain configuration and thus the anisotropy properties. We report the use of S-band ferromagnetic resonance spectroscopy (FMR) to compare the anisotropic properties of magnetite in chains of cultured intact MTB between 300 and 15 K with those of sediment samples of Holocene age in order to infer magnetofossils in a geological time frame. The spectrum of intact MTB at 300 K exhibits distinct uniaxial anisotropy, which becomes less pronounced upon cooling. Below the Verwey transition this anisotropy is nearly vanished mainly due to the change of direction of the easy axes from [111] to [100]. Magnetofossils in natural samples were detected by uniaxial anisotropy traits similar to those obtained from MTB above Verwey transition, which are indicative of chain configurations of the magnetite particles, generally aligned along the easy axes. Our comparative study emphasizes that essential information can be

  5. Absolute quantitative analysis for sorbic acid in processed foods using proton nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, Takashi, E-mail: ohtsuki@nihs.go.jp [National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Sato, Kyoko; Sugimoto, Naoki; Akiyama, Hiroshi; Kawamura, Yoko [National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A method using qHNMR was applied and validated to determine SA in processed foods. Black-Right-Pointing-Pointer This method has good accuracy, precision, selectiveness, and linearity. Black-Right-Pointing-Pointer The proposed method is more rapid and simple than the conventional method. Black-Right-Pointing-Pointer We found that the proposed method is reliable for the accurate determination of SA. Black-Right-Pointing-Pointer This method can be used for the monitoring of SA in processed foods. - Abstract: An analytical method using solvent extraction and quantitative proton nuclear magnetic resonance (qHNMR) spectroscopy was applied and validated for the absolute quantification of sorbic acid (SA) in processed foods. The proposed method showed good linearity. The recoveries for samples spiked at the maximum usage level specified for food in Japan and at 0.13 g kg{sup -1} (beverage: 0.013 g kg{sup -1}) were larger than 80%, whereas those for samples spiked at 0.063 g kg{sup -1} (beverage: 0.0063 g kg{sup -1}) were between 56.9 and 83.5%. The limit of quantification was 0.063 g kg{sup -1} for foods (and 0.0063 g kg{sup -1} for beverages containing Lactobacillus species). Analysis of the SA content of commercial processed foods revealed quantities equal to or greater than those measured using conventional steam-distillation extraction and high-performance liquid chromatography quantification. The proposed method was rapid, simple, accurate, and precise, and provided International System of Units traceability without the need for authentic analyte standards. It could therefore be used as an alternative to the quantification of SA in processed foods using conventional method.

  6. Brain Phosphorus Magnetic Resonance Spectroscopy Imaging of Sleep Homeostasis and Restoration in Drug Dependence

    Directory of Open Access Journals (Sweden)

    George H. Trksak

    2007-01-01

    Full Text Available Numerous reports have documented a high occurrence of sleep difficulties in drug-dependent populations, prompting researchers to characterize sleep profiles and physiology in drug abusing populations. This mini-review examines studies indicating that drug-dependent populations exhibit alterations in sleep homeostatic and restoration processes in response to sleep deprivation. Sleep deprivation is a principal sleep research tool that results in marked physiological challenge, which provides a means to examine sleep homeostatic processes in response to extended wakefulness. A report from our laboratory demonstrated that following recovery sleep from sleep deprivation, brain high-energy phosphates particularly beta–nucleoside triphosphate (beta-NTP are markedly increased as measured with phosphorus magnetic resonance spectroscopy (MRS. A more recent study examined the effects of sleep deprivation in opiate-dependent methadone-maintained (MM subjects. The study demonstrated increases in brain beta-NTP following recovery sleep. Interestingly, these increases were of a markedly greater magnitude in MM subjects compared to control subjects. A similar study examined sleep deprivation in cocaine-dependent subjects demonstrating that cocaine-dependent subjects exhibit greater increases in brain beta-NTP following recovery sleep when compared to control subjects. The studies suggest that sleep deprivation in both MM subjects and cocaine-dependent subjects is characterized by greater changes in brain ATP levels than control subjects. Greater enhancements in brain ATP following recovery sleep may reflect a greater disruption to or impact of sleep deprivation in drug dependent subjects, whereby sleep restoration processes may be unable to properly regulate brain ATP and maintain brain high-energy equilibrium. These studies support the notion of a greater susceptibility to sleep loss in drug dependent populations. Additional sleep studies in drug abusing

  7. Investigation of brain injury using in vivo multinuclear magnetic resonance imaging and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chew, W.M.

    1989-01-01

    Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) are becoming increasingly important tools to the fields of biochemistry, physiology, and medicine. MRI and MRS studies offer one the opportunity to obtain anatomic images and biochemical information non-invasively and non-destructively, thus making serial repeated measurements possible on the same experimental subject. To investigate brain injury, the non-invasiveness finally allows one to follow the time course of evolution of injury and its effects on the brains metabolism. Although MRI and MRS offer exciting opportunities, much work is needed to overcome the initial problems of signal localization from a specified region of interest. Also, the potential utility of multinuclear (i.e. {sup 13}C, {sup 19}F, {sup 23}Na...) MRI and MRS studies, in assessing brain injury, is yet to be determined. This thesis attacks the aforementioned problems with a series of studies both on phantoms and in vivo. Experiments were performed to determine optimal localization schemes for use in MRS of the brain to overcome the initial problems encountered with MRS studies. The feasibility and utility of multinuclear MRI and MRS was determined in vivo involving {sup 13}C, {sup 19}F, and {sup 23}Na nuclei. The results of these studies have proven that acceptable signal localization for MRS studies is achievable and is not a hindrance for future MRS studies. Also, multinuclear studies have shown that it is feasible to obtain MRI or MRS data from less abundant nuclei and that the information obtained does or can provide useful insights into brain metabolism in pathologic states.

  8. Change in brain magnetic resonance spectroscopy after treatment during acute HIV infection.

    Directory of Open Access Journals (Sweden)

    Napapon Sailasuta

    Full Text Available OBJECTIVE: Single voxel proton magnetic resonance spectroscopy (MRS can be used to monitor changes in brain inflammation and neuronal integrity associated with HIV infection and its treatments. We used MRS to measure brain changes during the first weeks following HIV infection and in response to antiretroviral therapy (ART. METHODS: Brain metabolite levels of N-acetyl aspartate (NAA, choline (tCHO, creatine (CR, myoinositol (MI, and glutamate and glutamine (GLX were measured in acute HIV subjects (n = 31 and compared to chronic HIV+individuals (n = 26 and HIV negative control subjects (n = 10 from Bangkok, Thailand. Metabolites were measured in frontal gray matter (FGM, frontal white matter (FWM, occipital gray matter (OGM, and basal ganglia (BG. Repeat measures were obtained in 17 acute subjects 1, 3 and 6 months following initiation of ART. RESULTS: After adjustment for age we identified elevated BG tCHO/CR in acute HIV cases at baseline (median 14 days after HIV infection compared to control (p = 0.0014, as well as chronic subjects (p = 0.0023. A similar tCHO/CR elevation was noted in OGM; no other metabolite abnormalities were seen between acute and control subjects. Mixed longitudinal models revealed resolution of BG tCHO/CR elevation after ART (p = 0.022 with tCHO/CR similar to control subjects at 6 months. INTERPRETATION: We detected cellular inflammation in the absence of measurable neuronal injury within the first month of HIV infection, and normalization of this inflammation following acutely administered ART. Our findings suggest that early ART may be neuroprotective in HIV infection by mitigating processes leading to CNS injury.

  9. Proton magnetic resonance spectroscopy in patients with early stages of amyotrophic lateral sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Sivak, Stefan [Comenius University, Clinic of Neurology, Jessenius Faculty of Medicine, Martin (Slovakia); Jessenius Medical Faculty, Clinic of Neurology, Martin (Slovakia); Bittsansky, Michal; Dobrota, Dusan [Comenius University, Department of Medical Biochemistry, Jessenius Faculty of Medicine, Martin (Slovakia); Kurca, Egon; Turcanova-Koprusakova, Monika; Grofik, Milan; Nosal, Vladimir [Comenius University, Clinic of Neurology, Jessenius Faculty of Medicine, Martin (Slovakia); Polacek, Hubert [Comenius University, Clinic of Radiodiagnostics, Jessenius Faculty of Medicine, Martin (Slovakia)

    2010-12-15

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder primarily affecting upper and lower motor neurons. Due to relative fast progression of the disease, early diagnosis is essential. Proton magnetic resonance spectroscopy ({sup 1}H-MRS) is used for objectivization of upper motor neuron (UMN) lesions. The aim of this study was to assess the use of {sup 1}H-MRS in the early stages of ALS. Eleven patients with clinically definite (n = 2), probable (n = 7), and probable laboratory-supported (n = 2) diagnosis of ALS with disease duration of less than 14 months were studied. Control group consists of 11 sex- and age-matched healthy subjects. All subjects underwent assessment of functional disability using revised ALS Functional Rating Scale (ALSFRS-R) and single-voxel {sup 1}H-MRS examination of both precentral gyri, pons, medulla oblongata, and occipital lobe. Spectra were evaluated with LCModel software. The mean disease duration was 6.5 {+-} 3.5 months. The median ALSFRS-R was 42. Significant decrease between patient and control groups was found in the NAA/Cre ratio in the left and right precentral gyri (p = 0.008, p = 0.040). Other metabolite ratios in other areas did not show significant differences. Total ALSFRS-R score weakly positively correlated with NAA/Cre ratio in the left precentral gyrus (p = 0.047). {sup 1}H-MRS is sensitive to detect metabolic changes caused by neurodegeneration processes during ALS and can be used for detection of UMN dysfunction. These MRS changes in the early stages of ALS are most prominent in motor cortex. (orig.)

  10. Absolute quantitative analysis for sorbic acid in processed foods using proton nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Highlights: ► A method using qHNMR was applied and validated to determine SA in processed foods. ► This method has good accuracy, precision, selectiveness, and linearity. ► The proposed method is more rapid and simple than the conventional method. ► We found that the proposed method is reliable for the accurate determination of SA. ► This method can be used for the monitoring of SA in processed foods. - Abstract: An analytical method using solvent extraction and quantitative proton nuclear magnetic resonance (qHNMR) spectroscopy was applied and validated for the absolute quantification of sorbic acid (SA) in processed foods. The proposed method showed good linearity. The recoveries for samples spiked at the maximum usage level specified for food in Japan and at 0.13 g kg−1 (beverage: 0.013 g kg−1) were larger than 80%, whereas those for samples spiked at 0.063 g kg−1 (beverage: 0.0063 g kg−1) were between 56.9 and 83.5%. The limit of quantification was 0.063 g kg−1 for foods (and 0.0063 g kg−1 for beverages containing Lactobacillus species). Analysis of the SA content of commercial processed foods revealed quantities equal to or greater than those measured using conventional steam-distillation extraction and high-performance liquid chromatography quantification. The proposed method was rapid, simple, accurate, and precise, and provided International System of Units traceability without the need for authentic analyte standards. It could therefore be used as an alternative to the quantification of SA in processed foods using conventional method.

  11. Thalamic metabolic abnormalities in patients with Huntington's disease measured by magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Casseb, R.F.; Castellano, G., E-mail: gabriela@ifi.unicamp.br [Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil); Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin. Dept. de Raios Cosmicos e Cronologia; D' Abreu, A.; Cendes, F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. de Neurologia. Lab. de Neuroimagem; Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil); Ruocco, H.H. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Neurologia. Lab. de Neuroimagem; Lopes-Cendes, I., E-mail: seixas.fk@gmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Genetica Medica; Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil)

    2013-08-15

    Huntington's disease (HD) is a neurologic disorder that is not completely understood; its fundamental physiological mechanisms and chemical effects remain somewhat unclear. Among these uncertainties, we can highlight information about the concentrations of brain metabolites, which have been widely discussed. Concentration differences in affected, compared to healthy, individuals could lead to the development of useful tools for evaluating the progression of disease, or to the advance of investigations of different/alternative treatments. The aim of this study was to compare the thalamic concentration of metabolites in HD patients and healthy individuals using magnetic resonance spectroscopy. We used a 2.0-Tesla magnetic field, repetition time of 1500 ms, and echo time of 135 ms. Spectra from 40 adult HD patients and 26 control subjects were compared. Quantitative analysis was performed using the LCModel method. There were statistically significant differences between HD patients and controls in the concentrations of N-acetylaspartate+N-acetylaspartylglutamate (NAA+NAAG; t-test, P,0.001), and glycerophosphocholine+phosphocholine (GPC+PCh; t-test, P=0.001) relative to creatine+phosphocreatine (Cr+PCr). The NAA+NAAG/Cr+PCr ratio was decreased by 9% and GPC+PCh/Cr+PCr increased by 17% in patients compared with controls. There were no correlations between the concentration ratios and clinical features. Although these results could be caused by T1 and T2 changes, rather than variations in metabolite concentrations given the short repetition time and long echo time values used, our findings point to thalamic dysfunction, corroborating prior evidence. (author)

  12. Proton magnetic resonance spectroscopy and single photon emission CT in patients with olivopontocerebellar atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, Naomi [Yamaguchi Univ., Ube (Japan). School of Medicine

    1998-04-01

    Using proton magnetic resonance spectroscopy ({sup 1}H-MRS) and single photon emission CT (SPECT), the cerebellum of patients with olivopontocerebellar atrophy (OPCA) and of age-matched control subjects was studied. A spectrum was collected from a 27 cm{sup 3} (3 x 3 x 3 cm) voxel in the cerebellum containing white and gray matters in order to measure the distribution and relative signal intensities of N-acetylaspartate (NAA), creatine (Cre) and choline (Cho). In the cerebellum of the patients with OPCA, mean NAA/Cre ratios for OPCA patients were significantly decreased compared with normal control subjects (OPCA, 1.01{+-}0.247; controls, 1.526{+-}0.144: p<0.001). Mean NAA/Cho ratios for OPCA patients were slightly decreased (OPCA, 1.285{+-}0.228; controls 1.702{+-}0.469: p<0.06). Cho/Cre ratios valued in the cerebellum of OPCA patients were not significantly different from those in normal controls (OPCA, 0.793{+-}0.186; controls, 0.946{+-}0.219). The ratio of RI count in the cerebellum to that in the occipital lobe was significantly decreased in OPCA patients (OPCA, 0.947{+-}0.096; controls, 1.06{+-}0.063: p<0.01). Cerebellar signs were assessed including gait ataxia, limb ataxia, dysarthria, saccadic pursuit, and nystagmus separately or in combination. In patients with more severe ataxic gait and dysarthria, MRS revealed slightly lowered NAA/Cre ratio. There was no significant correlation between NAA/Cre ratio and severity of other clinical signs. The MRS and SPECT findings give a confirmative evidence of hypofunction in cerebellum of patients with OPCA. (author)

  13. Maintenance of high-energy brain phosphorous compounds during insulin-induced hypoglycemia in men. 31P nuclear magnetic resonance spectroscopy study

    DEFF Research Database (Denmark)

    Hilsted, Jannik; Jensen, K E; Thomsen, C;

    1988-01-01

    31P nuclear magnetic resonance (NMR) spectroscopy allows noninvasive studies of cerebral energy-rich phosphorous compounds in humans. In an attempt to characterize the relationship between peripheral blood glucose concentrations and whole-brain phosphate metabolism during insulin...

  14. A study of relaxation mechanisms in the A{sup 2}{Sigma}{sup +} state of nitric oxide by time resolved double resonant polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stampanoni-Panariello, A.; Bombach, R.; Hemmerling, B.; Hubschmid, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Double resonant polarization labeling spectroscopy is applied to detect nitric oxide in flames and to characterize rotational energy transfer and orientation changing collisions in its first excited electronic state. (author) 4 figs., 3 refs.

  15. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  16. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  17. Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: A review

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sandra L. [Department of Chemistry, QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Silva, Artur M.S., E-mail: artur.silva@ua.pt [Department of Chemistry, QOPNA, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Ribeiro, Jorge C. [Petrogal SA, Laboratory of Matosinhos Refinery, Rua Belchior Robles, 4452-852 Leca da Palmeira, Matosinhos (Portugal); Martins, Fernando G. [LEPAE, University of Porto, Engineering Faculty, Department of Chemical Engineering, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Da Silva, Francisco A.; Silva, Carlos M. [Department of Chemistry, CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)

    2011-11-30

    Graphical abstract: The chromatographic and spectroscopic techniques used to characterize heavy crude oils, although more focused in the nuclear magnetic resonance spectroscopy as the technique of choice, due to its capability to provide great information on the chemical nature of individual types of proton and carbon atoms in different and complex mixtures of crude oils are described. This review is based on 65 references and describes in a critical and interpretative ways the advantages of the NMR spectroscopy as a main technique to be used in crude oil refining industries that want to characterize crude oil fractions and the obtained refined products. Highlights: Black-Right-Pointing-Pointer Chromatogrfaphic and spectroscopic techniques used to characterize heavy crude oils have been reviewed. Black-Right-Pointing-Pointer This review describes in a critical and interpretative ways the advantages of the NMR spectroscopy as a main technique to be used in crude oil refining industries. Black-Right-Pointing-Pointer The progress in the interpretation of the NMR spectra and of different multivariate data analyses and their potential in the identification and characterization of hydrocarbons and their physical and chemical properties have also been reviewed. - Abstract: The state of the art in the characterization of heavy crude oil mixtures is presented. This characterization can be done by different techniques, such as gas chromatography (GC), high performance liquid chromatography (HPLC), thin layer chromatography (TLC), infrared spectroscopy (IR), Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Nuclear magnetic resonance spectroscopy is the technique of choice due to its capability to provide information on the chemical nature of individual types of hydrogen and carbon atoms in different and complex mixtures of crude oils. The progress made in the interpretation of the NMR spectra with the development of new NMR

  18. Polariton-impurity interactions and photoconductivity in CdTe studied by cyclotron-resonance-excitation spectroscopy

    Science.gov (United States)

    Lavigne, B.; Cox, R. T.

    1991-05-01

    A technique called cyclotron-resonance-excitation spectroscopy has been used to obtain photoconductivity spectra for crystals of the II-VI compound semiconductor CdTe. A 35-GHz electron-spin-resonance spectrometer is used to detect the cyclotron resonance of free carriers created by 680-785-nm laser excitation at 2 K. The cyclotron-resonance signal consists of two major components, attributed to high-mobility electrons (μ>105 cm2/V s) in n-type regions and to lower-mobility electrons (or possibly light holes) in compensated regions of the sample. Persistent photoconductivity effects are observed. The excitation spectrum (i.e., the laser wavelength dependence of the cyclotron-resonance signal) is studied with emphasis on the ~=15-meV-wide excitonic region just below the band-gap energy (1.606 eV). Strong peaks in this region of the spectrum demonstrate that carriers are generated more efficiently just below the band gap than above it. Dips occur in the spectrum at the 1s and 2s exciton energies. Two carrier-generation mechanisms are proposed for the excitonic region: (a) inelastic polariton scattering off neutral donors, ionizing the donors and (b) annihilation of polaritons by ionized acceptors, neutralizing the acceptors. Properties of importance in determining the polariton-impurity interactions are the two-branch polariton dispersion relation, the excitonic content of the polariton wave function, and the polariton group velocity and kinetic energy.

  19. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy.

    Science.gov (United States)

    Kozik, Violetta; Jarzembek, Krystyna; Jędrzejowska, Agnieszka; Bąk, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna

    2015-01-01

    Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05). PMID:26268964

  20. Assembling a prototype resonance electrical impedance spectroscopy system for breast tissue signal detection: preliminary assessment

    Science.gov (United States)

    Sumkin, Jules; Zheng, Bin; Gruss, Michelle; Drescher, John; Leader, Joseph; Good, Walter; Lu, Amy; Cohen, Cathy; Shah, Ratan; Zuley, Margarita; Gur, David

    2008-03-01

    Using electrical impedance spectroscopy (EIS) technology to detect breast abnormalities in general and cancer in particular has been attracting research interests for decades. Large clinical tests suggest that current EIS systems can achieve high specificity (>= 90%) at a relatively low sensitivity ranging from 15% to 35%. In this study, we explore a new resonance frequency based electrical impedance spectroscopy (REIS) technology to measure breast tissue EIS signals in vivo, which aims to be more sensitive to small tissue changes. Through collaboration between our imaging research group and a commercial company, a unique prototype REIS system has been assembled and preliminary signal acquisition has commenced. This REIS system has two detection probes mounted in the two ends of a Y-shape support device with probe separation of 60 mm. During REIS measurement, one probe touches the nipple and the other touches to an outer point of the breast. The electronic system continuously generates sweeps of multi-frequency electrical pulses ranging from 100 to 4100 kHz. The maximum electric voltage and the current applied to the probes are 1.5V and 30mA, respectively. Once a "record" command is entered, multi-frequency sweeps are recorded every 12 seconds until the program receives a "stop recording" command. In our imaging center, we have collected REIS measurements from 150 women under an IRB approved protocol. The database includes 58 biopsy cases, 78 screening negative cases, and other "recalled" cases (for additional imaging procedures). We measured eight signal features from the effective REIS sweep of each breast. We applied a multi-feature based artificial neural network (ANN) to classify between "biopsy" and normal "non-biopsy" breasts. The ANN performance is evaluated using a leave-one-out validation method and ROC analysis. We conducted two experiments. The first experiment attempted to classify 58 "biopsy" breasts and 58 "non-biopsy" breasts acquired on 58 women

  1. Proton magnetic resonance spectroscopy of normal human brain and glioma:a quantitive in vivo study

    Institute of Scientific and Technical Information of China (English)

    TONG Zhi-yong; YAMAKI Toshiaki; WANG Yun-jie

    2005-01-01

    Background In vivo proton magnetic resonance spectroscopy (MRS) provides a noninvasive method of examining a wide variety of cerebral metabolites in both healthy subjects and patients with various brain diseases.Absolute metabolite concentrations have been determined using external and internal standards with known concentrations.When an external standard is placed beside the head, variations in signal amplitudes due to B1 field inhomogeneity and static field inhomogeneity may occur.Hence an internal standard is preferable.The purpose of this study was to quantitatively analyze the metabolite concentrations in normal adult brains and gliomas by in vivo proton MRS using the fully relaxed water signal as an internal standard.Methods Between January 1998 and October 2001, 28 healthy volunteers and 16 patients with gliomas were examined by in vivo proton MRS.Single-voxel spectra were acquired using the point-resolved spectroscopic pulse sequence with a 1.5 T scanner (TR/TE/Ave=3000 ms/30 ms/64).Results The calculated concentrations of N-acetyl-asparatate (NAA), creatine (Cre), choline (Cho), and water (H2O) in the normal hemispheric white matter were (23.59±2.62) mmol/L, (13.06±1.8) mmol/L, (4.28±0.8) mmol/L, and (47 280.96±5414.85) mmol/L, respectively.The metabolite concentrations were not necessarily uniform in different parts of the brain.The concentrations of NAA and Cre decreased in all gliomas (P<0.001).The ratios of NAA/Cho and NAA/H2O showed a significant difference between the normal brain and gliomas, and also between the high and low grades (P<0.001).Conclusions Quantitative analysis of in vivo proton MR spectra using the fully relaxed water signal as an internal standard is useful.The concentrations of NAA and the ratios of NAA/H2O and NAA/Cho conduce to discriminating between the glioma and normal brain, and also between the low-grade glioma and high-grade glioma.

  2. Novel use of proton magnetic resonance spectroscopy (1HMRS to non-invasively assess placental metabolism.

    Directory of Open Access Journals (Sweden)

    Fiona C Denison

    Full Text Available BACKGROUND: Placental insufficiency is a major cause of antepartum stillbirth and fetal growth restriction (FGR. In affected pregnancies, delivery is expedited when the risks of ongoing pregnancy outweigh those of prematurity. Current tests are unable to assess placental function and determine optimal timing for delivery. An accurate, non-invasive test that clearly defines the failing placenta would address a major unmet clinical need. Proton magnetic resonance spectroscopy ((1H MRS can be used to assess the metabolic profile of tissue in-vivo. In FGR pregnancies, a reduction in N-acetylaspartate (NAA/choline ratio and detection of lactate methyl are emerging as biomarkers of impaired neuronal metabolism and fetal hypoxia, respectively. However, fetal brain hypoxia is a late and sometimes fatal event in placental compromise, limiting clinical utility of brain (1H MRS to prevent stillbirth. We hypothesised that abnormal placental (1H MRS may be an earlier biomarker of intrauterine hypoxia, affording the opportunity to optimise timing of delivery in at-risk fetuses. METHODS AND FINDINGS: We recruited three women with severe placental insufficiency/FGR and three matched controls. Using a 3T MR system and a combination of phased-array coils, a 20×20×40 mm(1H MRS voxel was selected along the 'long-axis' of the placenta with saturation bands placed around the voxel to prevent contaminant signals. A significant choline peak (choline/lipid ratio 1.35-1.79 was detected in all healthy placentae. In contrast, in pregnancies complicated by FGR, the choline/lipid ratio was ≤0.02 in all placentae, despite preservation of the lipid peak (p<0.001. CONCLUSIONS: This novel proof-of-concept study suggests that in severe placental insufficiency/FGR, the observed 60-fold reduction in the choline/lipid ratio by (1H MRS may represent an early biomarker of critical placental insufficiency. Further studies will determine performance of this test and the potential

  3. Developing and testing a multi-probe resonance electrical impedance spectroscopy system for detecting breast abnormalities

    Science.gov (United States)

    Gur, David; Zheng, Bin; Dhurjaty, Sreeram; Wolfe, Gene; Fradin, Mary; Weil, Richard; Sumkin, Jules; Zuley, Margarita

    2009-02-01

    In our previous study, we reported on the development and preliminary testing of a prototype resonance electrical impedance spectroscopy (REIS) system with a pair of probes. Although our pilot study on 150 young women ranging from 30 to 50 years old indicated the feasibility of using REIS output sweep signals to classify between the women who had negative examinations and those who would ultimately be recommended for biopsy, the detection sensitivity was relatively low. To improve performance when using REIS technology, we recently developed a new multi-probe based REIS system. The system consists of a sensor module box that can be easily lifted along a vertical support device to fit women of different height. Two user selectable breast placement "cups" with different curvatures are included in the system. Seven probes are mounted on each of the cups on opposing sides of the sensor box. By rotating the sensor box, the technologist can select the detection sensor cup that better fits the breast size of the woman being examined. One probe is mounted in the cup center for direct contact with the nipple and the other six probes are uniformly distributed along an outside circle to enable contact with six points on the outer and inner breast skin surfaces. The outer probes are located at a distance of 60mm away from the center (nipple) probe. The system automatically monitors the quality of the contact between the breast surface and each of the seven probes and data acquisition can only be initiated when adequate contact is confirmed. The measurement time for each breast is approximately 15 seconds during which time the system records 121 REIS signal sweep outputs generated from 200 KHz to 800 KHz at 5 KHz increments for all preselected probe pairs. Currently we are measuring 6 pairs between the center probe and each of six probes located on the outer circle as well as two pairs between probe pairs on the outer circle. This new REIS system has been installed in our

  4. A magnetic resonance spectroscopy driven initialization scheme for active shape model based prostate segmentation.

    Science.gov (United States)

    Toth, Robert; Tiwari, Pallavi; Rosen, Mark; Reed, Galen; Kurhanewicz, John; Kalyanpur, Arjun; Pungavkar, Sona; Madabhushi, Anant

    2011-04-01

    Segmentation of the prostate boundary on clinical images is useful in a large number of applications including calculation of prostate volume pre- and post-treatment, to detect extra-capsular spread, and for creating patient-specific anatomical models. Manual segmentation of the prostate boundary is, however, time consuming and subject to inter- and intra-reader variability. T2-weighted (T2-w) magnetic resonance (MR) structural imaging (MRI) and MR spectroscopy (MRS) have recently emerged as promising modalities for detection of prostate cancer in vivo. MRS data consists of spectral signals measuring relative metabolic concentrations, and the metavoxels near the prostate have distinct spectral signals from metavoxels outside the prostate. Active Shape Models (ASM's) have become very popular segmentation methods for biomedical imagery. However, ASMs require careful initialization and are extremely sensitive to model initialization. The primary contribution of this paper is a scheme to automatically initialize an ASM for prostate segmentation on endorectal in vivo multi-protocol MRI via automated identification of MR spectra that lie within the prostate. A replicated clustering scheme is employed to distinguish prostatic from extra-prostatic MR spectra in the midgland. The spatial locations of the prostate spectra so identified are used as the initial ROI for a 2D ASM. The midgland initializations are used to define a ROI that is then scaled in 3D to cover the base and apex of the prostate. A multi-feature ASM employing statistical texture features is then used to drive the edge detection instead of just image intensity information alone. Quantitative comparison with another recent ASM initialization method by Cosio showed that our scheme resulted in a superior average segmentation performance on a total of 388 2D MRI sections obtained from 32 3D endorectal in vivo patient studies. Initialization of a 2D ASM via our MRS-based clustering scheme resulted in an average

  5. Spectroscopic studies on technetium and silicon. A solid-state laser system for the resonance-ionization spectroscopy

    International Nuclear Information System (INIS)

    This doctoral thesis describes advancement and refinement of the titanium:sapphire laser system of the working group LARISSA, Institut fuer Physik, Johannes Gutenberg- Universitaet Mainz and its application to resonance ionization spectroscopy. Activities on the laser systems comprised three major tasks: The output power of the conventional titanium:sapphire lasers could be increased by a factor of two in order to match the needs at resonance ionization laser ion source at ISOL facilities. Additionally, the laser system was complemented by a titanium:sapphire laser in Littrow geometry, which ensures a mode-hop free tuning range from 700 nm to 950 nm, and by an injection seeded titanium:sapphire laser with a spectral width of 20 MHz (in respect to a spectral width of 3 GHz for the conventional lasers). The performance of the new laser system was tested in spectroscopic investigations of highly excited atomic levels of gold and technetium. From the measured level positions the ionization potential of gold could be verified by using the Rydberg-Ritz formula, while the ionization potential of technetium could be determined precisely for the first time. Using the seeded titanium: sapphire laser Doppler-free two-photon spectroscopy inside a hot ionizer cavity was demonstrated. A width of the recorded resonances of 90 MHz was achieved and the hyperfine structure and isotope shift of stable silicon isotopes was well resolved with this method. (orig.)

  6. Integration of 3D 1H-magnetic resonance spectroscopy data into neuronavigation systems for tumor biopsies

    Science.gov (United States)

    Kanberoglu, Berkay; Moore, Nina Z.; Frakes, David; Karam, Lina J.; Debbins, Josef P.; Preul, Mark C.

    2013-03-01

    Many important applications in clinical medicine can benefit from the fusion of spectroscopy data with anatomical images. For example, the correlation of metabolite profiles with specific regions of interest in anatomical tumor images can be useful in characterizing and treating heterogeneous tumors that appear structurally homogeneous. Such applications can build on the correlation of data from in-vivo Proton Magnetic Resonance Spectroscopy Imaging (1HMRSI) with data from genetic and ex-vivo Nuclear Magnetic Resonance spectroscopy. To establish that correlation, tissue samples must be neurosurgically extracted from specifically identified locations with high accuracy. Toward that end, this paper presents new neuronavigation technology that enhances current clinical capabilities in the context of neurosurgical planning and execution. The proposed methods improve upon the current state-of-the-art in neuronavigation through the use of detailed three dimensional (3D) 1H-MRSI data. MRSI spectra are processed and analyzed, and specific voxels are selected based on their chemical contents. 3D neuronavigation overlays are then generated and applied to anatomical image data in the operating room. Without such technology, neurosurgeons must rely on memory and other qualitative resources alone for guidance in accessing specific MRSI-identified voxels. In contrast, MRSI-based overlays provide quantitative visual cues and location information during neurosurgery. The proposed methods enable a progressive new form of online MRSI-guided neuronavigation that we demonstrate in this study through phantom validation and clinical application.

  7. Structural Characterization of Amadori Rearrangement Product of Glucosylated Nα-Acetyl-Lysine by Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chuanjiang Li

    2014-01-01

    Full Text Available Maillard reaction is a nonenzymatic reaction between reducing sugars and free amino acid moieties, which is known as one of the most important modifications in food science. It is essential to characterize the structure of Amadori rearrangement products (ARPs formed in the early stage of Maillard reaction. In the present study, the Nα-acetyl-lysine-glucose model had been successfully set up to produce ARP, Nα-acetyl-lysine-glucose. After HPLC purification, ARP had been identified by ESI-MS with intense [M+H]+ ion at 351 m/z and the purity of ARP was confirmed to be over 90% by the relative intensity of [M+H]+ ion. Further structural characterization of the ARP was accomplished by using nuclear magnetic resonance (NMR spectroscopy, including 1D 1H NMR and 13C NMR, the distortionless enhancement by polarization transfer (DEPT-135 and 2D 1H-1H and 13C-1H correlation spectroscopy (COSY and 2D nuclear overhauser enhancement spectroscopy (NOESY. The complexity of 1D 1H NMR and 13C NMR was observed due to the presence of isomers in glucose moiety of ARP. However, DEPT-135 and 2D NMR techniques provided more structural information to assign the 1H and 13C resonances of ARP. 2D NOESY had successfully confirmed the glycosylated site between 10-N in Nα-acetyl-lysine and 7′-C in glucose.

  8. Applications of magnetic resonance spectroscopy for noninvasive assessment of hepatic steatosis

    OpenAIRE

    Werven, van, J.R.

    2011-01-01

    MR spectroscopy is a noninvasive technique to quantify hepatic steatosis. MR spectroscopy provides information about the chemical composition of tissues in a spectrum. Hepatic steatosis is characterized by accumulation of fat in the liver. The prevalence of hepatic steatosis is increasing due to its relation with obesity and insulin resistance in non-alcoholic fatty liver disease. This thesis describes the applications of MR spectroscopy (primarily on 3T) for noninvasive assessment of hepatic...

  9. Resonance ionization spectroscopy of argon, krypton, and xenon using vacuum ultraviolet light

    International Nuclear Information System (INIS)

    Resonant, single-photon excitation of ground state inert gases requires light in the vacuum ultraviolet spectral region. This paper discusses methods for generating this light. Efficient schemes for ionizing argon, krypton, and xenon using resonant, stepwise single-photon excitation are presented

  10. Double-resonance spectroscopy of InAs/GaAs self-assembled quantum dots

    NARCIS (Netherlands)

    Murdin, B. N.; Hollingworth, A. R.; Barker, J. A.; Clarke, D. G.; Findlay, P. C.; Pidgeon, C. R.; Wells, J. P. R.; Bradley, I. V.; Malik, S.; Murray, R.

    2000-01-01

    We present far-/near-infrared double resonance measurements of self-assembled InAs/GaAs quantum dots. The far-infrared resonance is unambiguously associated with a bound-bound intraband transition in the neutral dots. The results show that the interband photoluminescence (PL) lines originate from co

  11. Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Eriksen, R. L.; Cheng, W.;

    2014-01-01

    Resonant electromagnetic properties of nanoparticles fabricated from high-index semiconductor or dielectric materials are very promising for the realization of novel nanoantennas and metamaterials. In this paper we study optical resonances of Si nanocylinders located on a silica substrate. Multip...... for the realization of dielectric metasurfaces with different functional optical properties....

  12. Electronically Tunable Surface-Coil-Type Resonator for L-Band EPR Spectroscopy

    Science.gov (United States)

    Hirata, Hiroshi; Walczak, Tadeusz; Swartz, Harold M.

    2000-01-01

    The automatic frequency control (AFC) circuit in conventional electron paramagnetic resonance (EPR) spectrometers automatically tunes the microwave source to the resonance frequency of the resonator. The circuit works satisfactorily for samples stable enough that the geometric relations in the resonance structure do not change in a significant way. When EPR signals are measured during in vivo experiments with small rodents, however, the distance between the signal source and the surface-coil detector can change rapidly. When a conventional AFC circuit keeps the oscillator tuned to the resonator under those conditions, the resultant frequency change may exceed ±5 MHz and markedly shift the position of the EPR signal. Such a shift results in unacceptable effects on the spectra, especially when the experimenter is dealing with narrow EPR lines. The animal movement also causes a mismatching of the resonator and the 50-ohm transmission line. Direct results of this mismatching are increased noise; shifts in the position of the baseline; and a high probability of overdriving the signal preamplifier with consequent loss of the EPR signal. We therefore designed, built, and tested a new surface-coil resonator using varactor diodes for tuning the resonance frequency to the fixed frequency oscillator and for capacitive matching of the resonator to the 50-ohm transmission line. The performance of the automatic matching system was tested in vivo by measuring EPR spectra of lithium phthalocyanine implanted in rats. Stability and sensitivity of the spectrometer were evaluated by measuring EPR spectra with and without the use of the automatic matching system. The overall experimental performance of the spectrometer was found to significantly improve during in vivo experiments using the automatic matching system. Excellent matching between the 50-ohm transmission line and the resonator was maintained under all experimental circumstances that were tested. This should allow us now to

  13. Role of magnetic resonance spectroscopy (MRS in nonlesional temporal lobe ep

    Directory of Open Access Journals (Sweden)

    Abdel Aziz Kamal Aun

    2016-03-01

    Conclusion: MR spectroscopy is a very sensitive guiding tool in predicting the temporal lobe epilepsy (TLE and the side of involvement in patients with TLE even in patients with MR negative studies. It helps in detecting abnormal spectra of various brain metabolites. MR spectroscopy has demonstrated consistent metabolic abnormalities in partial seizures. MRS can also detect bilateral affection with the ipsilateral side more affected.

  14. Applications of magnetic resonance spectroscopy for noninvasive assessment of hepatic steatosis

    NARCIS (Netherlands)

    J.R. van Werven

    2011-01-01

    MR spectroscopy is a noninvasive technique to quantify hepatic steatosis. MR spectroscopy provides information about the chemical composition of tissues in a spectrum. Hepatic steatosis is characterized by accumulation of fat in the liver. The prevalence of hepatic steatosis is increasing due to its

  15. Electronic properties of atomic layer deposition films, anatase and rutile TiO2 studied by resonant photoemission spectroscopy

    Science.gov (United States)

    Das, C.; Richter, M.; Tallarida, M.; Schmeisser, D.

    2016-07-01

    The TiO2 films are prepared by atomic layer deposition (ALD) method using titanium isopropoxide precursors at 250 °C and analyzed using resonant photoemission spectroscopy (resPES). We report on the Ti2p and O1s core levels, on the valence band (VB) spectra and x-ray absorption spectroscopy (XAS) data, and on the resonant photoelectron spectroscopy (resPES) profiles at the O1s and the Ti3p absorption edges. We determine the elemental abundance, the position of the VB maxima, the partial density of states (PDOS) in the VB and in the conduction band (CB) and collect these data in a band scheme. In addition, we analyze the band-gap states as well as the intrinsic states due to polarons and charge-transfer excitations. These states are found to cause multiple Auger decay processes upon resonant excitation. We identify several of these processes and determine their relative contribution to the Auger signal quantitatively. As our resPES data allow a quantitative analysis of these defect states, we determine the relative abundance of the PDOS in the VB and in CB and also the charge neutrality level. The anatase and rutile polymorphs of TiO2 are analyzed in the same way as the TiO2 ALD layer. The electronic properties of the TiO2 ALD layer are compared with the anatase and rutile polymorphs of TiO2. In our comparative study, we find that ALD has its own characteristic electronic structure that is distinct from that of anatase and rutile. However, many details of the electronic structure are comparable and we benefit from our spectroscopic data and our careful analysis to find these differences. These can be attributed to a stronger hybridization of the O2p and Ti3d4s states for the ALD films when compared to the anatase and rutile polymorphs.

  16. Nanocrystalline tin oxide: Possible origin of its weak ferromagnetism deduced from nuclear magnetic resonance and X-ray photoelectron spectroscopies

    Science.gov (United States)

    Zhang, Feng; Lian, Yadong; Gu, Min; Yu, Ji; Tang, Tong B.; Sun, Jian; Zhang, Weiyi

    2016-09-01

    Nanocrystalline tin oxide was fabricated, with molar ratio O/Sn determined as 1.40, 1.55, 1.79, 1.92 and 1.96 from X-ray photoelectron spectroscopy. They displayed weak ferromagnetism, the sample with O/Sn = 1.55 showing the maximum saturation magnetization reaching almost 8 ×10-3 emu /g at room temperature. 119Sn nuclear magnetic resonance allowed the deduction, based on four resolved resonance peaks, that their Sn ions had four possible coordination numbers, namely 3, 4, 5 and 6. The relative fraction of 4-coordinated cations was the one found to bear positive linear correlation with saturation magnetization of the sample. It is surmised that magnetism in tin oxide results mainly from 4-coordination Sn ions, of valance about +3, as estimated from the binding energies of their 3d photoelectron emission levels.

  17. Measurement of High Temperature Anisotropic Elastic Constants of Zr-2.5Nb Pressure Tube Materials by Resonant Ultrasound Spectroscopy

    International Nuclear Information System (INIS)

    Anisotropic elastic constants of Zr-2.5Nb pressure tube materials were determined by a high temperature resonant ultrasound spectroscopy (RUS). The resonant frequencies were measured using alumina wave-guides and wide band ultrasonic transducers in a small furnace. The rectangular parallelepiped specimens were fabricated along with the axial, radial and circumferential direction of the pressure tube. A nine elastic stiffness tensor for orthotropic symmetry was determined in the range of room temperature ∼500 .deg. C. As the temperature increases, the elastic constant tensor, cij gradually decreases. Higher elastic constants along the transverse direction compared to those along the axial or radial direction are similar to the case of Young's modulus or shear modulus. A crossing of shear elastic constants along axial direction and radial direction was observed near 150 .deg. C. This fact corresponds to the crossing of c44 and c66 of single crystal zirconium

  18. Effect of laser spectral bandwidth on coherent control of resonance-enhanced multiphoton-ionization photoelectron spectroscopy

    International Nuclear Information System (INIS)

    The high-resolution (2 + 1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy (REMPI-PS) can be obtained by measuring the photoelectron intensity at a given kinetic energy and scanning the single π phase step position. In this paper, we further demonstrate that the high-resolution (2 + 1) REMPI-PS cannot be achieved at any measured position of the kinetic energy by this measurement method, which is affected by the laser spectral bandwidth. We propose a double π phase step modulation to eliminate the effect of the laser spectral bandwidth, and show the advantage of the double π phase step modulation on achieving the high-resolution (2 + 1) REMPI-PS by considering the contributions involving on- and near-resonant three-photon excitation pathways

  19. Partial-Homogeneity-Based Two-Dimensional High-Resolution Nuclear Magnetic Resonance Spectroscopy under Inhomogeneous Magnetic Fields.

    Science.gov (United States)

    Qiu, Wenqi; Wei, Zhiliang; Ding, Nan; Yang, Yu; Ye, Qimiao; Lin, Yulan; Chen, Zhong

    2016-05-18

    High-resolution multidimensional nuclear magnetic resonance (NMR) spectroscopy serves as an irreplaceable and versatile tool in various chemical investigations. In this study, a method based on the concept of partial homogeneity is developed to offer two-dimensional (2D) high-resolution NMR spectra under inhomogeneous fields. Oscillating gradients are exerted to encode the high-resolution information, and a field-inhomogeneity correction algorithm based on pattern recognition is designed to recover high-resolution spectra. Under fields where inhomogeneity primarily distributes along a single orientation, the proposed method will improve performances of 2D NMR spectroscopy without increasing the experimental duration or significant loss in sensitivity, and thus may open important perspectives for studies of inhomogeneous chemical systems.

  20. Proton magnetic resonance spectroscopy of the anterior cingulate gyrus and caudate nucleus in schizophrenia patients versus healthy controls

    Institute of Scientific and Technical Information of China (English)

    Lutfi Incesu; Meral Baydin; Kerim Aslan; Baris Diren; Huseyin Sahin; Omer Boke; Senol Dane

    2011-01-01

    Proton magnetic resonance spectroscopy (1H-MRS) permits the assessment of cerebral neurometabolites, such as N-acetylaspartate, choline, and creatine, in vivo and has been used to study schizophrenia. The present study used 1H-MRS to compare the spectroscopy change of N-acetylaspartate, creatine, and choline metabolite levels in the anterior cingulate and caudate nucleus of both schizophrenia patients and healthy controls, as well as between the left and right cerebral hemispheres in the schizophrenia patients. Results showed that N-acetylaspartate and creatine metabolite levels in the left anterior cingulate gyrus were significantly lower in the schizophrenia patients than in the healthy controls, indicating hypometabolism. In addition, choline concentration in the left caudate nucleus of schizophrenia patients was significantly lower than in the right caudate nucleus, indicating that it is necessary to study the cerebral lateralization of 1H-MRS in schizophrenia patients.

  1. Electronic many-body effects at metal-organic interfaces studied with PES, NEXAFS and resonant Auger Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haeming, M.; Schoell, A.; Reinert, F. [Universitaet Wuerzburg, Experimentelle Physik VII, D-97074 Wuerzburg (Germany); Umbach, E. [Karlsruhe Institut fuer Technologie (KIT) D-76021 Karlsruhe (Germany)

    2011-07-01

    Electronic many-body and correlation effects have been studied intensively at transition metal compounds with localized d/f electrons. They are related to interesting material properties, e.g. Mott metal-insulator transitions, charge transfer satellites and superconductivity. Recent investigations of graphene,{sup 1} C{sub 60},{sup 2} and TTF-TCNQ{sup 3} showed that many-body effects can also be important for organic thin films. We have investigated several organic thin films (PTCDA, PTCDI, BTCDA, BTCDI, SnPc) deposited on a Ag(111) surfaces with photoelectron spectroscopy, NEXAFS and resonant Auger Raman spectroscopy. Our data provide significant indications for electronic many-body effects involving substrate-adsorbate charge transfer, which can be understood by concepts developed for charge transfer compounds. These results give insight into new, interesting aspects of physics at metal-organic interfaces. {sup 1} I.

  2. Metabolic profiling of heat or anoxic stress in mouse C2C12 myotubes using multinuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Petersen, Bent O;

    2010-01-01

    In the present study, the metabolic effects of heat and anoxic stress in myotubes from the mouse cell line C2C12 were investigated by using a combination of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy and enrichment with [(13)C]-glucose. Both the (13)C and the (1)H NMR......-energy phosphate compounds adenosine triphosphate and phosphocreatine with increasing severity of stress were identified. At anoxic conditions, an increase in (13)C-labeled lactate and appearance of glycerol-3-phosphate were observed. Accumulation of lactate and glycerol-3-phosphate is in agreement with a shift...

  3. Determination of elastic constants in WC/Co metal matrix composites by resonant ultrasound spectroscopy and impulse excitation

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, M.; Chawla, K.K.; Coffin, C.; Patterson, B.R.; Deng, X.; Patel, B.V.; Fang, Z.; Lockwood, G. [Smith International, Inc., Houston, TX (United States)

    2002-01-01

    Elastic moduli were determined by impulse excitation and resonant ultrasound spectroscopy (RUS) techniques for composite systems of WC/Co. Two types of composites were used, including a novel microstructure termed ''double cemented carbides'' consisting of WC/Co granules in a Co matrix, as well as a conventional isotropic WC/Co. The results compared favorably with theoretical values predicted by the bounds of the Hashin-Shtrikman equations for quasi-isotropic materials. Various aspects of the RUS and impulse excitation techniques are discussed, particularly in regard to composite materials. (orig.)

  4. Cross polarization, magic-angle spinning /sup 13/C nuclear magnetic resonance spectroscopy of soil humic fractions

    Energy Technology Data Exchange (ETDEWEB)

    Saiz-Jimenez, C.; Hawkins, B.L.; Maciel, G.E.

    1986-01-01

    Cross polarization, magic-angle spinning /sup 13/C nuclear magnetic resonance spectroscopy was used to characterize humic fractions isolated from different soils. The humic acid fractions are more aromatic than the humin fractions, probably due to the higher polysaccharide content of humins. However, fulvic acid fractions are more aromatic than the corresponding humic acid and humin fractions. These results can be interpreted in terms of the isolation procedure, because the high affinity of Polyclar AT for phenols results in higher aromaticities as compared with other isolation methods (e.g. charcoal).

  5. Resonance-enhanced multiphoton ionization photoelectron spectroscopy of even-parity autoionizing Rydberg states of atomic sulphur

    OpenAIRE

    Woutersen, S.; Milan,, M; Lange; Buma, W.J.

    1997-01-01

    Several previously unobserved Rydberg states of the sulphur atom above the lowest ionization threshold are identified and assigned using (2 + 1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy. All states were accessed by two-photon transitions from either the 3P ground or the 1D excited state, prepared by in situ photodissociation of H2S. The observed states derive from the (2Do)5p and (2Po)4p configurations. For the (2Do)5p 3F and (2Po)4p 3D triplets, extensive photoele...

  6. Resonance enhanced multiphoton ionization photoelectron spectroscopy on nano- and picosecond timescales of Rydberg states of methyl iodide

    OpenAIRE

    Buma, W.J.; Dobber, M.R.; Lange

    1993-01-01

    Rydberg states of methyl iodide have been investigated using resonance enhanced multiphoton ionization in combination with photoelectron spectroscopy with nanosecond and picosecond laser pulses. The study of the ns (6n10) Rydberg states in two-, three-, and four-photon excitations has resulted in an unambiguous identification of state [1] in the 7s and 8s Rydberg states. As a consequence, it is concluded that the transition to 6s[1] in two- and three-photon excitations is anomalously weak. Th...

  7. Solid State Multinuclear Magnetic Resonance Investigation of Electrolyte Decomposition Products on Lithium Ion Electrodes

    Science.gov (United States)

    DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.

    2012-01-01

    Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.

  8. Examination of gamma-irradiated fruits and vegetables by electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    The ESR spectra of the seeds, pits, shells, and skins of a variety of irradiated fruits and vegetables were measured. All spectra, control and irradiated, contained a single resonance with a g-factor of 2.00. Additional resonances due to Mn2+ were observed for the drupelets of blackberries and red raspberries. An unusual radiation-induced radical was observed for irradiated mango seed; however, the signal decayed completely within a few days. It was concluded that only in a few specialized cases could the ESR resonances observed be suitable for postirradiation monitoring or dosimetry. (author)

  9. Examination of gamma-irradiated fruits and vegetables by electron spin resonance spectroscopy

    Science.gov (United States)

    Desrosiers, Marc F.; McLaughlin, William L.

    The ESR spectra of the seeds, pits, shells, and skins of a variety of irradiated fruits and vegetables were measured. All spectra, control and irradiated, contained a single resonance with a g-factor of 2.00. Additional resonances due to Mn 2+ were observed for the drupelets of blackberries and red raspberries. An unusual radiation-induced radical was observed for irradiated mango seed; however, the signal decayed completely within a few days. It was concluded that only in a few specialized cases could the ESR resonances observed be suitable for postirradiation monitoring or dosimetry.

  10. Examination of gamma-irradiated fruits and vegetables by electron spin resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Desrosiers, M.F.; McLaughlin, W.L. (National Inst. of Standards and Technology (NML), Gaithersburg, MD (USA). Center for Radiation Research)

    1989-01-01

    The ESR spectra of the seeds, pits, shells, and skins of a variety of irradiated fruits and vegetables were measured. All spectra, control and irradiated, contained a single resonance with a g-factor of 2.00. Additional resonances due to Mn{sup 2+} were observed for the drupelets of blackberries and red raspberries. An unusual radiation-induced radical was observed for irradiated mango seed; however, the signal decayed completely within a few days. It was concluded that only in a few specialized cases could the ESR resonances observed be suitable for postirradiation monitoring or dosimetry. (author).

  11. Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna.

    Science.gov (United States)

    Li, Ling; Fang Lim, Shuang; Puretzky, Alexander A; Riehn, Robert; Hallen, H D

    2012-09-10

    An aluminum bow-tie nano-antenna is combined with the resonance Raman effect in the deep ultraviolet to dramatically increase the sensitivity of Raman spectra to a small volume of material, such as benzene used here. We further demonstrate gradient-field Raman peaks for several strong infrared modes. We achieve a gain of [Formula: see text] in signal intensity from the near field enhancement due to the surface plasmon resonance in the aluminum nanostructure. The on-line resonance enhancement contributes another factor of several thousands, limited by the laser line width. Thus, an overall gain of hundreds of million is achieved. PMID:23066168

  12. Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna

    OpenAIRE

    Li, Ling; Fang Lim, Shuang; Puretzky, Alexander A.; Riehn, Robert; Hallen, H. D.

    2012-01-01

    An aluminum bow-tie nano-antenna is combined with the resonance Raman effect in the deep ultraviolet to dramatically increase the sensitivity of Raman spectra to a small volume of material, such as benzene used here. We further demonstrate gradient-field Raman peaks for several strong infrared modes. We achieve a gain of ∼105 in signal intensity from the near field enhancement due to the surface plasmon resonance in the aluminum nanostructure. The on-line resonance enhancement contributes ano...

  13. Magnetotunneling spectroscopy of polarons in a quantum well of a resonant-tunneling diode

    International Nuclear Information System (INIS)

    Resonant tunneling of electrons is thoroughly studied in in-plane magnetic fields. Anticrossing is revealed in a spectrum of two-dimensional electrons at energies of optical phonons. The magnetic field changes the momentum of tunneling electrons and causes a voltage shift of a resonance in the tunnel spectra in accordance with the electron dispersion curve. Anticrossing is clearly observed in second derivative current-voltage characteristics of a resonant tunneling diode made of a double-barrier Al0.4Ga0.6As/GaAs heterostructure.

  14. Electron volt spectroscopy on a pulsed neutron source using resonance absorption filters

    International Nuclear Information System (INIS)

    The design aspects of an inelastic neutron spectrometer based on energy selection by the resonance absorption filter difference method are discussed. Detailed calculations of the accessible dynamical range (Q, ω), energy and momentum transfer resolutions and representative count rates are presented for Sm and Ta resonance filters in an inverse geometry spectrometer on a high intensity pulsed source such as the RAL Spallation Neutron Source (SNS). A discussion is given of the double-difference method, which provides a means of improving the resonance attenuation peak shape. As a result of this study, as well as preliminary experimental results, recommendations are made for the future development of the technique. (author)

  15. Magnetic-dipolar-mode Fano resonances for microwave spectroscopy of high absorption matter

    CERN Document Server

    Vaisman, G; Shavit, R

    2015-01-01

    Study of interaction between high absorption matter and microwave radiated energy is a subject of great importance. Especially, this concerns microwave spectroscopic characterization of biological liquids. Use of effective testing methods to obtain information about physical properties of different liquids on the molecular level is one of the most important problems in biophysics. However, the standard methods based on the microwave resonant techniques are not sufficiently suitable for biological liquids because the resonance peak in a resonator with high-loss liquids is so broad that the material parameters cannot be measured correctly. Although molecular vibrations of biomolecules may have microwave frequencies, it is not thought that such resonant coupling is significant due to their low energy compared with thermal energy and the strongly dampening aqueous environment. This paper presents an innovative microwave sensing technique for different types of lossy materials, including biological liquids. The te...

  16. Intercalation between antitumor anthracyclines and DNA as probed by resonance and surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Smulevich, G.; Mantini, A. R.; Casu, M.; Marzocchi, M. P.

    1991-05-01

    The antiturnor anthracyclincs, idarubicin (IDA ), adrianiycin (ADM), epirubicin (EPI), carminomycin (CAR) and 1 1-deoxycarminornycin (DCM), whose siructural formula includes a substituted hydroxyanthraquirionc chrornophore and a sugar residue, form intercalation complexes with DNA. The stacking interaction between the chromophore and the base-pairs of DNA gives rise to noticeable ciTects on resonance Raman (RR) and surface-enhanced resonance Raman (SERRS) scattering as well as on the absorption (ABS), its second derivative (D2) and fluorescence emission (FEM) spectra.

  17. Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance

    International Nuclear Information System (INIS)

    Using pulsed optically detected magnetic resonance techniques, we directly probe electron-spin resonance transitions in the excited-state of single nitrogen-vacancy (NV) color centers in diamond. Unambiguous assignment of excited state fine structure is made, based on changes of NV defect photoluminescence lifetime. This study provides significant insight into the structure of the emitting 3E excited state, which is invaluable for the development of diamond-based quantum information processing.

  18. Static and dynamic strain coupling behaviour of ferroic and multiferroic perovskites from resonant ultrasound spectroscopy

    Science.gov (United States)

    Carpenter, M. A.

    2015-07-01

    Resonant ultrasound spectroscopy (RUS) provides a window on the pervasive influence of strain coupling at phase transitions in perovskites through determination of elastic and anelastic relaxations across wide temperature intervals and with the application of external fields. In particular, large variations of elastic constants occur at structural, ferroelectric and electronic transitions and, because of the relatively long interaction length provided by strain fields in a crystal, Landau theory provides an effective formal framework for characterizing their form and magnitude. At the same time, the Debye equations provide a robust description of dynamic relaxational processes involving the mobility of defects which are coupled with strain. Improper ferroelastic transitions driven by octahedral tilting in KMnF3, LaAlO3, (Ca,Sr)TiO3, Sr(Ti,Zr)O3 and BaCeO3 are accompanied by elastic softening of tens of % and characteristic patterns of acoustic loss due to the mobility of twin walls. RUS data for ferroelectrics and ferroelectric relaxors, including BaTiO3, (K,Na)NbO3,Pb(Mg1/3Nb2/3)O3 (PMN), Pb(Sc1/2Ta1/2)O3 (PST), (Pb(Zn1/3Nb2/3)O3)0.955(PbTiO3)0.045 (PZN-PT) and (Pb(In1/2Nb1/2)O3)0.26(Pb(Mg1/3Nb2/3)O3)0.44(PbTiO3)0.30 (PIN-PMN-PT) show similar patterns of softening and attenuation but also have precursor softening associated with the development of polar nano regions. Defect-induced ferroelectricity occurs in KTaO3, without the development of long range ordering. By way of contrast, spin-lattice coupling is much more variable in strength, as reflected in a greater range of softening behaviour for Pr0.48Ca0.52MnO3 and Sm0.6Y0.4MnO3 as well as for the multiferroic perovskites EuTiO3,BiFeO3, Bi0.9Sm0.1FeO3, Bi0.9Nd0.1FeO3, (BiFeO3)0.64(CaFeO2.5)0.36, (Pb(Fe0.5Ti0.5)O3)0.4(Pb(Zr0.53Ti0.47)O3)0.6. A characteristic feature of transitions in which there is a significant Jahn-Teller component is softening as the transition point is approached from above, as illustrated by

  19. Resonant soft X-ray emission spectroscopy of vanadium oxides andrelated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Thorsten [Uppsala Univ. (Sweden)

    2004-01-01

    In today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one ''spintronic'' device that exploits both charge and ''spin'' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; and (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 μm thick transparent pulsed laser deposited films of the Mn (< 4 at.%) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm

  20. Resonant soft X-ray emission spectroscopy of vanadium oxides andrelated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Thorsten

    2004-11-01

    In today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one ''spintronic'' device that exploits both charge and ''spin'' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; and (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 {micro}m thick transparent pulsed laser deposited films of the Mn (< 4 at.%) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm