WorldWideScience

Sample records for 31p chemical shifts

  1. Regional Differences in Muscle Energy Metabolism in Human Muscle by 31P-Chemical Shift Imaging.

    Science.gov (United States)

    Kime, Ryotaro; Kaneko, Yasuhisa; Hongo, Yoshinori; Ohno, Yusuke; Sakamoto, Ayumi; Katsumura, Toshihito

    2016-01-01

    Previous studies have reported significant region-dependent differences in the fiber-type composition of human skeletal muscle. It is therefore hypothesized that there is a difference between the deep and superficial parts of muscle energy metabolism during exercise. We hypothesized that the inorganic phosphate (Pi)/phosphocreatine (PCr) ratio of the superficial parts would be higher, compared with the deep parts, as the work rate increases, because the muscle fiber-type composition of the fast-type may be greater in the superficial parts compared with the deep parts. This study used two-dimensional 31Phosphorus Chemical Shift Imaging (31P-CSI) to detect differences between the deep and superficial parts of the human leg muscles during dynamic knee extension exercise. Six healthy men participated in this study (age 27±1 year, height 169.4±4.1 cm, weight 65.9±8.4 kg). The experiments were carried out with a 1.5-T superconducting magnet with a 5-in. diameter circular surface coil. The subjects performed dynamic one-legged knee extension exercise in the prone position, with the transmit-receive coil placed under the right quadriceps muscles in the magnet. The subjects pulled down an elastic rubber band attached to the ankle at a frequency of 0.25, 0.5 and 1 Hz for 320 s each. The intracellular pH (pHi) was calculated from the median chemical shift of the Pi peak relative to PCr. No significant difference in Pi/PCr was observed between the deep and the superficial parts of the quadriceps muscles at rest. The Pi/PCr of the superficial parts was not significantly increased with increasing work rate. Compared with the superficial areas, the Pi/PCr of the deep parts was significantly higher (p<0.05) at 1 Hz. The pHi showed no significant difference between the two parts. These results suggest that muscle oxidative metabolism is different between deep and superficial parts of quadriceps muscles during dynamic exercise.

  2. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.

    Science.gov (United States)

    Fedorov, Sergey V; Rusakov, Yury Yu; Krivdin, Leonid B

    2014-11-01

    The main factors affecting the accuracy and computational cost of the calculation of (31)P NMR chemical shifts in the representative series of organophosphorous compounds are examined at the density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) levels. At the DFT level, the best functionals for the calculation of (31)P NMR chemical shifts are those of Keal and Tozer, KT2 and KT3. Both at the DFT and MP2 levels, the most reliable basis sets are those of Jensen, pcS-2 or larger, and those of Pople, 6-311G(d,p) or larger. The reliable basis sets of Dunning's family are those of at least penta-zeta quality that precludes their practical consideration. An encouraging finding is that basically, the locally dense basis set approach resulting in a dramatic decrease in computational cost is justified in the calculation of (31)P NMR chemical shifts within the 1-2-ppm error. Relativistic corrections to (31)P NMR absolute shielding constants are of major importance reaching about 20-30 ppm (ca 7%) improving (not worsening!) the agreement of calculation with experiment. Further better agreement with the experiment by 1-2 ppm can be obtained by taking into account solvent effects within the integral equation formalism polarizable continuum model solvation scheme. We recommend the GIAO-DFT-KT2/pcS-3//pcS-2 scheme with relativistic corrections and solvent effects taken into account as the most versatile computational scheme for the calculation of (31)P NMR chemical shifts characterized by a mean absolute error of ca 9 ppm in the range of 550 ppm.

  3. Ab Initio Calculation of Nuclear Magnetic Resonance Chemical Shift Anisotropy Tensors 1. Influence of Basis Set on the Calculation of 31P Chemical Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Alam, T.M.

    1998-09-01

    The influence of changes in the contracted Gaussian basis set used for ab initio calculations of nuclear magnetic resonance (NMR) phosphorous chemical shift anisotropy (CSA) tensors was investigated. The isotropic chemical shitl and chemical shift anisotropy were found to converge with increasing complexity of the basis set at the Hartree-Fock @IF) level. The addition of d polarization function on the phosphorous nucIei was found to have a major impact of the calculated chemical shi~ but diminished with increasing number of polarization fimctions. At least 2 d polarization fimctions are required for accurate calculations of the isotropic phosphorous chemical shift. The introduction of density fictional theory (DFT) techniques through tie use of hybrid B3LYP methods for the calculation of the phosphorous chemical shift tensor resulted in a poorer estimation of the NMR values, even though DFT techniques result in improved energy and force constant calculations. The convergence of the W parametem with increasing basis set complexity was also observed for the DFT calculations, but produced results with consistent large deviations from experiment. The use of a HF 6-31 l++G(242p) basis set represents a good compromise between accuracy of the simulation and the complexity of the calculation for future ab initio calculations of 31P NMR parameters in larger complexes.

  4. Free magnesium levels in normal human brain and brain tumors: sup 31 P chemical-shift imaging measurements at 1. 5 T

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.S.; Vigneron, D.B.; Murphy-Boesch, J.; Nelson, S.J.; Kessler, H.B.; Coia, L.; Curran, W.; Brown, T.R. (Fox Chase Cancer Center, Philadelphia, PA (United States))

    1991-08-01

    The authors have studied a series of normal subjects and patients with brain tumors, by using {sup 31}P three-dimensional chemical shift imaging to obtain localized {sup 31}P spectra of the brain. A significant proportion of brain cytosolic ATP in normal brain is not complexed to Mg{sup 2+}, as indicated by the chemical shift {delta} of the {beta}-P resonance of ATP. The ATP {beta}P resonance position in brain thus is sensitive to changes in intracellular free Mg{sup 2+} concentration and in the proportion of ATP complexed with Mg because this shift lies on the rising portion of the {delta} vs. Mg{sup 2+} titration curve for ATP. They have measured the ATP {beta}-P shift and compared intracellular free Mg{sup 2+} concentration and fractions of free ATP for normal individuals and a limited series of patients with brain tumors. In four of the five spectra obtained from brain tissue containing a substantial proportion of tumor, intracellular free Mg{sup 2+} was increased, and the fraction of free ATP was decreased, compared with normal brain.

  5. On an accidental degeneracy in the {sup 31}P{l_brace}{sup 1}H{r_brace} NMR chemical shifts in ruthenium diphosphine complexes; Sobre uma degenerescencia acidental nos deslocamentos quimicos de RMN {sup 31}P{l_brace}{sup 1}H{r_brace} em complexos difosfinicos de rutenio

    Energy Technology Data Exchange (ETDEWEB)

    Valle, Eliana Maira Agostini; Nascimento, Fabio Batista do; Ferreira, Antonio Gilberto; Batista, Alzir A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Dept. de Quimica]. E-mail: alzir@dq.ufscar.br; Monteiro, Marcos Claudio Rodrigues; Machado, Sergio de Paula [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Dept. de Quimica Inorganica; Ellena, Javier; Castellano, Eduardo E.; Azevedo, Eduardo Ribeiro de [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2008-07-01

    The [RuCl(bipy)(dppb)(4-pic)]PF{sub 6} complex was prepared and fully characterized. The X-ray crystal structure of this complex was determined in order to make an unambiguous distinction between the two possible positions of the 4-methylpyridine ligand (4-pic) in the compound: trans to phosphorus atom or trans to nitrogen atom. The [RuCl(bipy)(dppb)(4-pic)]PF{sub 6} complex exhibits an unusual temperature-dependent accidental degeneracy of the {sup 31}P chemical shifts in its solution NMR spectrum. (author)

  6. Animal manure phosphorus characterization by sequential chemical fractionation, release kinetics and 31P-NMR analysis

    Directory of Open Access Journals (Sweden)

    Tales Tiecher

    2014-10-01

    Full Text Available Phosphate release kinetics from manures are of global interest because sustainable plant nutrition with phosphate will be a major concern in the future. Although information on the bioavailability and chemical composition of P present in manure used as fertilizer are important to understand its dynamics in the soil, such studies are still scarce. Therefore, P extraction was evaluated in this study by sequential chemical fractionation, desorption with anion-cation exchange resin and 31P nuclear magnetic resonance (31P-NMR spectroscopy to assess the P forms in three different dry manure types (i.e. poultry, cattle and swine manure. All three methods showed that the P forms in poultry, cattle and swine dry manures are mostly inorganic and highly bioavailable. The estimated P pools showed that organic and recalcitrant P forms were negligible and highly dependent on the Ca:P ratio in manures. The results obtained here showed that the extraction of P with these three different methods allows a better understanding and complete characterization of the P pools present in the manures.

  7. Ab Initio Calculations of 31P NMR Chemical Shielding Anisotropy Tensors in Phosphates: Variations Due to Ring Formation

    Directory of Open Access Journals (Sweden)

    Todd M. Alam

    2002-08-01

    Full Text Available Abstract: Ring formation in phosphate systems is expected to influence both the magnitude and orientation of the phosphorus (31P nuclear magnetic resonance (NMR chemical shielding anisotropy (CSA tensor. Ab initio calculations of the 31P CSA tensor in both cyclic and acyclic phosphate clusters were performed as a function of the number of phosphate tetrahedral in the system. The calculation of the 31P CSA tensors employed the GAUSSIAN 98 implementation of the gauge-including atomic orbital (GIAO method at the Hartree-Fock (HF level. It is shown that both the 31P CSA tensor anisotropy, and the isotropic chemical shielding can be used for the identification of cyclic phosphates. The differences between the 31P CSA tensor in acyclic and cyclic phosphate systems become less pronounced with increasing number of phosphate groups within the ring. The orientation of the principal components for the 31P CSA tensor shows some variation due to cyclization, most notably with the smaller, highly strained ring systems.

  8. Protein Chemical Shift Prediction

    CERN Document Server

    Larsen, Anders S

    2014-01-01

    The protein chemical shifts holds a large amount of information about the 3-dimensional structure of the protein. A number of chemical shift predictors based on the relationship between structures resolved with X-ray crystallography and the corresponding experimental chemical shifts have been developed. These empirical predictors are very accurate on X-ray structures but tends to be insensitive to small structural changes. To overcome this limitation it has been suggested to make chemical shift predictors based on quantum mechanical(QM) calculations. In this thesis the development of the QM derived chemical shift predictor Procs14 is presented. Procs14 is based on 2.35 million density functional theory(DFT) calculations on tripeptides and contains corrections for hydrogen bonding, ring current and the effect of the previous and following residue. Procs14 is capable at performing predictions for the 13CA, 13CB, 13CO, 15NH, 1HN and 1HA backbone atoms. In order to benchmark Procs14, a number of QM NMR calculatio...

  9. (31)P Solid-State NMR study of the chemical setting process of a dual-paste injectable brushite cements.

    Science.gov (United States)

    Legrand, A P; Sfihi, H; Lequeux, N; Lemaître, J

    2009-10-01

    The composition and evolution of a brushite-type calcium phosphate cement was investigated by Solid-State NMR and X-ray during the setting process. The cement is obtained by mixing beta-tricalcium phosphate [Ca(3)(PO(4))(2), beta-TCP] and monocalcium phosphate monohydrate [Ca(H(2)PO(4))(2).H(2)O, MCPM] in presence of water, with formation of dicalcium phosphate dihydrate or brushite [CaHPO(2).2H(2)O, DCPD]. Analysis of the initial beta-TCP paste has shown the presence of beta-calcium pyrophosphate [Ca(2)P(2)O(7), beta-CPy] and that of the initial MCPM a mixture of MCPM and dicalcium phosphate [CaHPO(4), DCP]. Follow-up of the chemical composition by (31)P Solid-State NMR enables to show that the chemical setting process appeared to reach an end after 20 min. The constant composition observed at the end of the process was similarly determined.

  10. Empirical isotropic chemical shift surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Czinki, Eszter; Csaszar, Attila G. [Eoetvoes University, Laboratory of Molecular Spectroscopy, Institute of Chemistry (Hungary)], E-mail: csaszar@chem.elte.hu

    2007-08-15

    A list of proteins is given for which spatial structures, with a resolution better than 2.5 A, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles {phi} and {psi} characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS({phi},{psi}) surfaces obtained for the model peptides For-(l-Ala){sub n}-NH{sub 2}, with n = 1, 3, and 5, resulted in so-called empirical ICS({phi},{psi}) surfaces for all major nuclei of the 20 naturally occurring {alpha}-amino acids. Out of the many empirical surfaces determined, it is the 13C{sup {alpha}} ICS({phi},{psi}) surface which seems to be most promising for identifying major secondary structure types, {alpha}-helix, {beta}-strand, left-handed helix ({alpha}{sub D}), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring {alpha}-amino acids. Two-dimensional empirical 13C{sup {alpha}}-{sup 1}H{sup {alpha}} ICS({phi},{psi}) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins.

  11. The effects of intramolecular and intermolecular coordination on (31)P nuclear shielding: phosphorylated azoles.

    Science.gov (United States)

    Chernyshev, Kirill A; Larina, Ludmila I; Chirkina, Elena A; Krivdin, Leonid B

    2012-02-01

    The effects of intramolecular and intermolecular coordination on (31)P nuclear shielding have been investigated in the series of tetracoordinated, pentacoordinated and hexacoordinated N-vinylpyrazoles and intermolecular complexes of N-vinylimidazole and 1-allyl-3,5-dimethylpyrazole with phosphorous pentachloride both experimentally and theoretically. It was shown that either intramolecular or intermolecular coordination involving phosphorous results in a dramatic (31)P nuclear shielding amounting to approximately 150 ppm on changing the phosphorous coordination number by one. A major importance of solvent effects on (31)P nuclear shielding of intramolecular and intermolecular complexes involving N → P coordination bond has been demonstrated. It was found that the zeroth-order regular approximation-gauge-including atomic orbital-B1PW91/DZP method was sufficiently accurate for the calculation of (31)P NMR chemical shifts, provided relativistic corrections are taken into account, the latter being of crucial importance in the description of (31)P nuclear shielding.

  12. 31P MAS-NMR study of flux-grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: Evidence of random cation distribution from paramagnetically shifted NMR resonances

    Energy Technology Data Exchange (ETDEWEB)

    Palke, A. C. [Stanford University; Stebbins, J. F. [Stanford University; Boatner, Lynn A [ORNL

    2013-01-01

    We present 31P magic angle spinning nuclear magnetic resonance (MAS-NMR) spectra of flux-grown solid solutions of La1-xCexPO4 ( x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y1-xMxPO4 (M = Vn+, Ce3+, Nd3+, x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic Vn+, Ce3+, and Nd3+ in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensity of these peaks is related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La3+ or Y3+ with the paramagnetic substitutional species Ce3+ and Nd3+. The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the 31P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii.

  13. 31P magic angle spinning NMR study of flux-grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: evidence of random cation distribution from paramagnetically shifted NMR resonances.

    Science.gov (United States)

    Palke, Aaron C; Stebbins, Jonathan F; Boatner, Lynn A

    2013-11-04

    We present (31)P magic angle spinning nuclear magnetic resonance spectra of flux-grown solid solutions of La(1-x)Ce(x)PO4 (x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y(1-x)M(x)PO4 (M = V(n+), Ce(3+), Nd(3+), x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic V(n+), Ce(3+), and Nd(3+) in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensities of these peaks are related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La(3+) or Y(3+) with the paramagnetic substitutional species Ce(3+) and Nd(3+). The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the (31)P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii.

  14. Protein Structure Determination Using Chemical Shifts

    DEFF Research Database (Denmark)

    Christensen, Anders Steen

    In this thesis, a protein structure determination using chemical shifts is presented. The method is implemented in the open source PHAISTOS protein simulation framework. The method combines sampling from a generative model with a coarse-grained force field and an energy function that includes...... chemical shifts. The method is benchmarked on folding simulations of five small proteins. In four cases the resulting structures are in excellent agreement with experimental data, the fifth case fail likely due to inaccuracies in the energy function. For the Chymotrypsin Inhibitor protein, a structure...... is determined using only chemical shifts recorded and assigned through automated processes. The CARMSD to the experimental X-ray for this structure is 1.1. Å. Additionally, the method is combined with very sparse NOE-restraints and evolutionary distance restraints and tested on several protein structures >100...

  15. Chemical shift prediction for denatured proteins

    Energy Technology Data Exchange (ETDEWEB)

    Prestegard, James H., E-mail: jpresteg@ccrc.uga.edu; Sahu, Sarata C.; Nkari, Wendy K.; Morris, Laura C.; Live, David; Gruta, Christian

    2013-02-15

    While chemical shift prediction has played an important role in aspects of protein NMR that include identification of secondary structure, generation of torsion angle constraints for structure determination, and assignment of resonances in spectra of intrinsically disordered proteins, interest has arisen more recently in using it in alternate assignment strategies for crosspeaks in {sup 1}H-{sup 15}N HSQC spectra of sparsely labeled proteins. One such approach involves correlation of crosspeaks in the spectrum of the native protein with those observed in the spectrum of the denatured protein, followed by assignment of the peaks in the latter spectrum. As in the case of disordered proteins, predicted chemical shifts can aid in these assignments. Some previously developed empirical formulas for chemical shift prediction have depended on basis data sets of 20 pentapeptides. In each case the central residue was varied among the 20 amino common acids, with the flanking residues held constant throughout the given series. However, previous choices of solvent conditions and flanking residues make the parameters in these formulas less than ideal for general application to denatured proteins. Here, we report {sup 1}H and {sup 15}N shifts for a set of alanine based pentapeptides under the low pH urea denaturing conditions that are more appropriate for sparse label assignments. New parameters have been derived and a Perl script was created to facilitate comparison with other parameter sets. A small, but significant, improvement in shift predictions for denatured ubiquitin is demonstrated.

  16. 31P Solid-state NMR based monitoring of permeation of cell penetrating peptides into skin

    Science.gov (United States)

    Desai, Pinaki R.; Cormier, Ashley R.; Shah, Punit P.; Patlolla, Ram R.; Paravastu, Anant K.; Singh, Mandip

    2013-01-01

    The main objective of the current study was to investigate penetration of cell penetrating peptides (CPPs: TAT, R8, R11 and YKA) through skin intercellular lipids using 31P magic angle spinning (MAS) solid-state NMR. In vitro skin permeation studies were performed on rat skin, sections (0–60, 61–120 and 121–180 µm) were collected and analyzed for 31P NMR signal. The concentration dependent shift of 0, 25, 50, 100 and 200 mg/ml of TAT on skin layers, diffusion of TAT, R8, R11 and YKA in the skin and time dependent permeation of R11 was measured on various skin sections using 31P solid-state NMR. Further, CPPs and CPP-tagged fluorescent dye encapsulate liposomes (FLip) in skin layers were tagged using confocal microscopy. The change in 31P NMR chemical shift was found to depend monotonically on the amount of CPP applied on skin, with saturation behavior above 100 mg/ml CPP concentration. R11 and TAT caused more shift in solid-state NMR peaks compared to other peptides. Furthermore, NMR spectra showed R11 penetration up to 180 µm within 30 min. The results of the solid-state NMR study were in agreement with confocal microscopy studies. Thus, 31P solid-state NMR can be used to track CPP penetration into different skin layers. PMID:23702274

  17. 1999 Rose Site 31P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 31P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 22, 1999. The site was...

  18. 2005 Rose Site 31P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 31P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish (5) = between meters 4 and 5). Quantitative analysis of the...

  19. 2012 Rose Site 31P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 31P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 22, 1999. The site was...

  20. 2006 Rose Site 31P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 31P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 22, 1999. The site was...

  1. 2004 Rose Site 31P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 31P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 22, 1999. The site was...

  2. Accessible surface area from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  3. Applications of Chemical Shift Imaging to Marine Sciences

    Directory of Open Access Journals (Sweden)

    Haakil Lee

    2010-08-01

    Full Text Available The successful applications of magnetic resonance imaging (MRI in medicine are mostly due to the non-invasive and non-destructive nature of MRI techniques. Longitudinal studies of humans and animals are easily accomplished, taking advantage of the fact that MRI does not use harmful radiation that would be needed for plain film radiographic, computerized tomography (CT or positron emission (PET scans. Routine anatomic and functional studies using the strong signal from the most abundant magnetic nucleus, the proton, can also provide metabolic information when combined with in vivo magnetic resonance spectroscopy (MRS. MRS can be performed using either protons or hetero-nuclei (meaning any magnetic nuclei other than protons or 1H including carbon (13C or phosphorus (31P. In vivo MR spectra can be obtained from single region ofinterest (ROI or voxel or multiple ROIs simultaneously using the technique typically called chemical shift imaging (CSI. Here we report applications of CSI to marine samples and describe a technique to study in vivo glycine metabolism in oysters using 13C MRS 12 h after immersion in a sea water chamber dosed with [2-13C]-glycine. This is the first report of 13C CSI in a marine organism.

  4. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    . Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series......, which allows the accurate random coil chemical shifts to be obtained at any pH. By correcting the random coil chemical shifts for the effects of temperature and pH, systematic biases of the secondary chemical shifts are minimized, which will improve the reliability of detection of transient secondary...

  5. Phosphatidylcholine contributes to in vivo {sup 31}P MRS signal from the human liver

    Energy Technology Data Exchange (ETDEWEB)

    Chmelik, Marek; Bogner, Wolfgang; Gajdosik, Martin; Gruber, Stephan; Trattnig, Siegfried [Medical University of Vienna, MR Centre of Excellence, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Valkovic, Ladislav [Medical University of Vienna, MR Centre of Excellence, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Institute of Measurement Science, Slovak Academy of Sciences, Department of Imaging Methods, Bratislava (Slovakia); Wolf, Peter; Krebs, Michael [Medical University of Vienna, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Vienna (Austria); Halilbasic, Emina; Trauner, Michael [Medical University of Vienna, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Vienna (Austria); Krssak, Martin [Medical University of Vienna, MR Centre of Excellence, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Medical University of Vienna, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Vienna (Austria)

    2015-07-15

    To demonstrate the overlap of the hepatic and bile phosphorus ({sup 31}P) magnetic resonance (MR) spectra and provide evidence of phosphatidylcholine (PtdC) contribution to the in vivo hepatic {sup 31}P MRS phosphodiester (PDE) signal, suggested in previous reports to be phosphoenolpyruvate (PEP). Phantom measurements to assess the chemical shifts of PEP and PtdC signals were performed at 7 T. A retrospective analysis of hepatic 3D {sup 31}P MR spectroscopic imaging (MRSI) data from 18 and five volunteers at 3 T and 7 T, respectively, was performed. Axial images were inspected for the presence of gallbladder, and PDE signals in representative spectra were quantified. Phantom experiments demonstrated the strong pH-dependence of the PEP chemical shift and proved the overlap of PtdC and PEP (∝2 ppm relative to phosphocreatine) at hepatic pH. Gallbladder was covered in seven of 23 in vivo 3D-MRSI datasets. The PDE{sub gall}/γ-ATP{sub liver} ratio was 4.8-fold higher (p = 0.001) in the gallbladder (PDE{sub gall}/γ-ATP{sub liver} = 3.61 ± 0.79) than in the liver (PDE{sub liver}/γ-ATP{sub liver} = 0.75 ± 0.15). In vivo 7 T {sup 31}P MRSI allowed good separation of PDE components. The gallbladder is a strong source of contamination in adjacent {sup 31}P MR hepatic spectra due to biliary phosphatidylcholine. In vivo {sup 31}P MR hepatic signal at 2.06 ppm may represent both phosphatidylcholine and phosphoenolpyruvate, with a higher phosphatidylcholine contribution due to its higher concentration. (orig.)

  6. TLC and 31P-NMR analysis of low polarity phospholipids.

    Science.gov (United States)

    Vyssotski, Mikhail; MacKenzie, Andrew; Scott, Dawn

    2009-04-01

    High-performance TLC and (31)P-NMR were assessed as methods of observing the presence of numerous low polarity phospholipids: bis-phosphatidic acid (BPA), semi-lyso bis-phosphatidic acid (SLBPA), N-acyl phosphatidylethanolamine (NAPE), N-(1,1-dimethyl-3-oxo-butyl)-phosphatidylethanolamine (diacetone adduct of PE, DOBPE), N-acetyl PE, phosphatidylmethanol (PM), phosphatidylethanol (PEt), phosphatidyl-n-propanol (PP), phosphatidyl-n-butanol (PB). Both techniques are non-discriminative and do not require the prior isolation of individual lipids. It appears that 2D TLC is superior to (31)P NMR in the analysis of low polarity phospholipids. All phosphatidylalcohols were well separated by 2D TLC. However, some compounds which can present difficulty in separation by 2D-TLC (e.g., SLBPA and NAPE; or DOBPE and N-acetyl PE) were easily distinguished using (31)P NMR so the methods are complimentary. A disadvantage of 2D TLC is that Rf values can vary with different brands and batches of TLC plates. The chemical shifts of (31)P NMR were less variable, and so a library of standards may not be necessary for peak identification. Another advantage of (31)P NMR is the ease of quantification of phospholipids. The applicability of the methods was tested on natural extracts of fish brain and cabbage stem.

  7. Simultaneous determination of phenolic compounds and triterpenic acids in oregano growing wild in Greece by 31P NMR spectroscopy.

    Science.gov (United States)

    Agiomyrgianaki, Alexia; Dais, Photis

    2012-11-01

    (31)P nuclear magnetic resonance (NMR) spectroscopy was used to detect and quantify simultaneously a large number of phenolic compounds and the two triterpenic acids, ursolic acid and oleanolic acid, extracted from two oregano species Origanum onites and Origanum vulgare ssp. Hirtum using two different organic solvents ethanol and ethyl acetate. This analytical method is based on the derivatization of the hydroxyl and carboxyl groups of these compounds with the phosphorous reagent 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxa phospholane and the identification of the phosphitylated compounds on the basis of the (31)P chemical shifts. Unambiguous assignment of the (31)P NMR chemical shifts of the dihydroxy- and polyhydroxy-phenols in oregano species as well as those of the triterpenic acids was achieved upon comparison with the chemical shifts of model compounds assigned by using two-dimensional NMR techniques. Furthermore, the integration of the appropriate signals of the hydroxyl derivatives in the corresponding (31)P NMR spectra and the use of the phosphitylated cyclohexanol as an internal standard allowed the quantification of these compounds. The validity of this technique for quantitative measurements was thoroughly examined.

  8. Feasibility of Rapid-Sequence {sup 31}P Magnetic Resonance Spectroscopy in Cardiac Patients

    Energy Technology Data Exchange (ETDEWEB)

    Chida, K.; Otani, H.; Saito, H.; Nagasaka, T.; Kagaya, Y.; Kohzuki, M.; Zuguchi, M.; Shirato, K. [Tohoku Univ., School of Health Sciences, Sendai (Japan). Dept. of Radiological Technology

    2005-07-01

    Purpose: To determine the clinical feasibility of rapid-sequence phosphorus-31 magnetic resonance spectroscopy ({sup 31}P -MRS) of the heart with cardiac patients using a 5T clinical MR system. Material and Methods: Twenty cardiac patients, i.e. dilated cardiomyopathy (DCM)3 cases, hypertrophic cardiomyopathy (HCM) 3 cases, hypertensive heart diseases (HHD) 3 cases, and aortic regurgitation (AR) case were examined using rapid cardiac {sup 31}P-MRS. Complete three-dimensional localization was performed using a two-dimensional phosphorus chemical-shift imaging sequence in combination with 30-mm axial slice-selective excitation. The rapid-sequence {sup 31}P-MRS procedure was phase encoded in arrays of 8x8 steps with an average of 4 acquisitions. The total examination time, including proton imaging and shimming, for the rapid cardiac {sup 31}P-MRS procedure, ranged from 0 to 5 min, depending on the heart rate. Student's t test was used to compare creatine phosphate (PCr)/adenosine triphosphate (ATP) ratios from the cardiac patients with those of the control subjects (n{approx_equal}13). Results: The myocardial PCr/ATP ratio obtained by rapid {sup 31}P-MRS was significantly lower (P <0.001) in DCM patients (1.82{+-}0.33, mean{+-}SD), and in patients with global myocardial dysfunction (combined data for 20 patients:.89{+-}0.32) than in normal volunteers (2.96{+-}0.59). These results are similar to previous studies. Conclusion: Rapid-sequence {sup 31}P-MRS may be a valid diagnostic tool for patients with cardiac disease.

  9. Complete (1)H and (13)C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program casper.

    Science.gov (United States)

    Roslund, Mattias U; Säwén, Elin; Landström, Jens; Rönnols, Jerk; Jonsson, K Hanna M; Lundborg, Magnus; Svensson, Mona V; Widmalm, Göran

    2011-08-16

    The computer program casper uses (1)H and (13)C NMR chemical shift data of mono- to trisaccharides for the prediction of chemical shifts of oligo- and polysaccharides. In order to improve the quality of these predictions the (1)H and (13)C, as well as (31)P when applicable, NMR chemical shifts of 30 mono-, di-, and trisaccharides were assigned. The reducing sugars gave two distinct sets of NMR resonances due to the α- and β-anomeric forms. In total 35 (1)H and (13)C NMR chemical shift data sets were obtained from the oligosaccharides. One- and two-dimensional NMR experiments were used for the chemical shift assignments and special techniques were employed in some cases such as 2D (1)H,(13)C-HSQC Hadamard Transform methodology which was acquired approximately 45 times faster than a regular t(1) incremented (1)H,(13)C-HSQC experiment and a 1D (1)H,(1)H-CSSF-TOCSY experiment which was able to distinguish spin-systems in which the target protons were only 3.3Hz apart. The (1)H NMR chemical shifts were subsequently refined using total line-shape analysis with the PERCH NMR software. The acquired NMR data were then utilized in the casper program (http://www.casper.organ.su.se/casper/) for NMR chemical shift predictions of the O-antigen polysaccharides from Klebsiella O5, Shigella flexneri serotype X, and Salmonella arizonae O62. The data were compared to experimental data of the polysaccharides from the two former strains and the lipopolysaccharide of the latter strain showing excellent agreement between predicted and experimental (1)H and (13)C NMR chemical shifts.

  10. Bayesian inference of protein structure from chemical shift data

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen; Christensen, Anders Steen; Hamelryck, Thomas Wim;

    2015-01-01

    Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term...... content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain......Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model...

  11. 31P NMR for the study of P metabolism and translocation in arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Rasmussen, N.; Lloyd, D.C.; Ratcliffe, R.G.

    2000-01-01

    P-31 nuclear magnetic resonance (NMR) spectroscopy was used to study phosphate (P) metabolism in mycorrhizal and nonmycorrhizal roots of cucumber (Cucumis sativus L) and in external mycelium of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith. The in vivo NMR method allows...... biological systems to be studied non-invasively and non-destructively. (3)1P NMR experiments provide information about cytoplasmic and vacuolar pH, based on the pH-dependent chemical shifts of the signals arising from the inorganic P (P-i) located in the two compartments. Similarly, the resonances arising...... from alpha, beta and gamma phosphates of nucleoside triphosphates (NTP) and nucleoside diphosphates (NDP) supply knowledge about the metabolic activity and the energetic status of the tissue. In addition, the kinetic behaviour of P uptake and storage can be determined with this method. The (3)1P NMR...

  12. 31-P-Magnetresonanztomographie der menschlichen Leber

    OpenAIRE

    2006-01-01

    Die 31-P-Magnetresonanz-Spektroskopie (31-P-MRS) ist eine nicht-invasive Methode, welche einen direkten Einblick in den Phospholipid-Haushalt der menschlichen Leber erlaubt. Mit der 31-P-MR-Spektroskopie wurden Spektren von 10 Patienten mit Leberzirrhose sowie von 13 gesunden Probanden in Kombination mit dem Lokalisationsverfahren 3D-CSI und dem Nachbearbeitungsprogramm SLOOP (Spectral Localization with Optimal Pointspread Funktion) gewonnen. Die Ergebnisse dieser Studie ergaben signifikante ...

  13. Is the Lamb shift chemically significant?

    Science.gov (United States)

    Dyall, Kenneth G.; Bauschlicher, Charles W., Jr.; Schwenke, David W.; Pyykko, Pekka; Arnold, James (Technical Monitor)

    2001-01-01

    The contribution of the Lamb shift to the atomization energies of some prototype molecules, BF3, AlF3, and GaF3, is estimated by a perturbation procedure. It is found to be in the range of 3-5% of the one-electron scalar relativistic contribution to the atomization energy. The maximum absolute value is 0.2 kcal/mol for GaF3. These sample calculations indicate that the Lamb shift is probably small enough to be neglected for energetics of molecules containing light atoms if the target accuracy is 1 kcal/mol, but for higher accuracy calculations and for molecules containing heavy elements it must be considered.

  14. Improved chemical shift prediction by Rosetta conformational sampling

    Energy Technology Data Exchange (ETDEWEB)

    Tian Ye [Sanford Burnham Medical Research Institute (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: fmarassi@sbmri.org [Sanford Burnham Medical Research Institute (United States)

    2012-11-15

    Chemical shift frequencies represent a time-average of all the conformational states populated by a protein. Thus, chemical shift prediction programs based on sequence and database analysis yield higher accuracy for rigid rather than flexible protein segments. Here we show that the prediction accuracy can be significantly improved by averaging over an ensemble of structures, predicted solely from amino acid sequence with the Rosetta program. This approach to chemical shift and structure prediction has the potential to be useful for guiding resonance assignments, especially in solid-state NMR structural studies of membrane proteins in proteoliposomes.

  15. Calculations of proton chemical shifts in olefins and aromatics

    CERN Document Server

    Escrihuela, M C

    2000-01-01

    induced reagents on alpha,beta unsaturated ketones has also been investigated in order to deduce molecular structures and to obtain the assignment of the spectra of these molecules. A semi-empirical calculation of the partial atomic charges in organic compounds based on molecular dipole moments (CHARGE3) was developed into a model capable of predicting proton chemical shifts in a wide variety of organic compounds to a reasonable degree of accuracy. The model has been modified to include condensed aromatic hydrocarbons and substituted benzenes, alkenes, halo-monosubstituted benzenes and halo-alkenes. Within the aromatic compounds the influence of the pi electron densities and the ring current have been investigated, along with the alpha, beta and gamma effects. The model gives the first accurate calculation of the proton chemical shifts of condensed aromatic compounds and the proton substituent chemical shifts (SCS) in the benzene ring. For the data set of 55 proton chemical shifts spanning 3 ppm the rms error...

  16. Bayesian inference of protein structure from chemical shift data

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen; Christensen, Anders Steen; Hamelryck, Thomas Wim;

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model...... Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term......, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction....

  17. Counterion influence on chemical shifts in strychnine salts

    Energy Technology Data Exchange (ETDEWEB)

    Metaxas, Athena E.; Cort, John R.

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.

  18. A chelate-stabilized ruthenium(sigma-pyrrolato) complex: resolving ambiguities in nuclearity and coordination geometry through 1H PGSE and 31P solid-state NMR studies.

    Science.gov (United States)

    Foucault, Heather M; Bryce, David L; Fogg, Deryn E

    2006-12-11

    Reaction of RuCl2(PPh3)3 with LiNN' (NN' = 2-[(2,6-diisopropylphenyl)imino]pyrrolide) affords a single product, with the empirical formula RuCl[(2,6-iPr2C6H3)N=CHC4H3N](PPh3)2. We identify this species as a sigma-pyrrolato complex, [Ru(NN')(PPh3)2]2(mu-Cl)2 (3b), rather than mononuclear RuCl(NN')(PPh3)2 (3a), on the basis of detailed 1D and 2D NMR characterization in solution and in the solid state. Retention of the chelating, sigma-bound iminopyrrolato unit within 3b, despite the presence of labile (dative) chloride and PPh3 donors, indicates that the chelate effect is sufficient to inhibit sigma --> pi isomerization of 3b to a piano-stool, pi-pyrrolato structure. 2D COSY, SECSY, and J-resolved solid-state 31P NMR experiments confirm that the PPh3 ligands on each metal center are magnetically and crystallographically inequivalent, and 31P CP/MAS NMR experiments reveal the largest 99Ru-31P spin-spin coupling constant (1J(99Ru,31P) = 244 +/- 20 Hz) yet measured. Finally, 31P dipolar-chemical shift spectroscopy is applied to determine benchmark phosphorus chemical shift tensors for phosphine ligands in hexacoordinate ruthenium complexes.

  19. 2D 31P solid state NMR spectroscopy, electronic structure and thermochemistry of PbP7

    Science.gov (United States)

    Benndorf, Christopher; Hohmann, Andrea; Schmidt, Peer; Eckert, Hellmut; Johrendt, Dirk; Schäfer, Konrad; Pöttgen, Rainer

    2016-03-01

    Phase pure polycrystalline PbP7 was prepared from the elements via a lead flux. Crystalline pieces with edge-lengths up to 1 mm were obtained. The assignment of the previously published 31P solid state NMR spectrum to the seven distinct crystallographic sites was accomplished by radio-frequency driven dipolar recoupling (RFDR) experiments. As commonly found in other solid polyphosphides there is no obvious correlation between the 31P chemical shift and structural parameters. PbP7 decomposes incongruently under release of phosphorus forming liquid lead as remainder. The thermal decomposition starts at T>550 K with a vapor pressure almost similar to that of red phosphorus. Electronic structure calculations reveal PbP7 as a semiconductor according to the Zintl description and clearly shows the stereo-active Pb-6s2 lone pairs in the electron localization function ELF.

  20. Improving 3D structure prediction from chemical shift data

    Energy Technology Data Exchange (ETDEWEB)

    Schot, Gijs van der [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Zhang, Zaiyong [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany); Vernon, Robert [University of Washington, Department of Biochemistry (United States); Shen, Yang [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Vranken, Wim F. [VIB, Department of Structural Biology (Belgium); Baker, David [University of Washington, Department of Biochemistry (United States); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Lange, Oliver F., E-mail: oliver.lange@tum.de [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany)

    2013-09-15

    We report advances in the calculation of protein structures from chemical shift nuclear magnetic resonance data alone. Our previously developed method, CS-Rosetta, assembles structures from a library of short protein fragments picked from a large library of protein structures using chemical shifts and sequence information. Here we demonstrate that combination of a new and improved fragment picker and the iterative sampling algorithm RASREC yield significant improvements in convergence and accuracy. Moreover, we introduce improved criteria for assessing the accuracy of the models produced by the method. The method was tested on 39 proteins in the 50-100 residue size range and yields reliable structures in 70 % of the cases. All structures that passed the reliability filter were accurate (<2 A RMSD from the reference)

  1. Magnetic shift of the chemical freezeout and electric charge fluctuations

    CERN Document Server

    Fukushima, Kenji

    2016-01-01

    We discuss the effect of a strong magnetic field on the chemical freezeout points in the ultra-relativistic heavy-ion collision. As a result of the inverse magnetic catalysis or the magnetic inhibition, the crossover onset to hot and dense matter out of quarks and gluons should be shifted to a lower temperature. To quantify this shift we employ the hadron resonance gas model and an empirical condition for the chemical freezeout. We point out that the charged particle abundances are significantly affected by the magnetic field so that the electric charge fluctuation is largely enhanced especially at high baryon density. The charge conservation partially cancels the enhancement but our calculation shows that the electric charge fluctuation could serve as a magnetometer.

  2. Protein secondary structure prediction using NMR chemical shift data.

    Science.gov (United States)

    Zhao, Yuzhong; Alipanahi, Babak; Li, Shuai Cheng; Li, Ming

    2010-10-01

    Accurate determination of protein secondary structure from the chemical shift information is a key step for NMR tertiary structure determination. Relatively few work has been done on this subject. There needs to be a systematic investigation of algorithms that are (a) robust for large datasets; (b) easily extendable to (the dynamic) new databases; and (c) approaching to the limit of accuracy. We introduce new approaches using k-nearest neighbor algorithm to do the basic prediction and use the BCJR algorithm to smooth the predictions and combine different predictions from chemical shifts and based on sequence information only. Our new system, SUCCES, improves the accuracy of all existing methods on a large dataset of 805 proteins (at 86% Q(3) accuracy and at 92.6% accuracy when the boundary residues are ignored), and it is easily extendable to any new dataset without requiring any new training. The software is publicly available at http://monod.uwaterloo.ca/nmr/succes.

  3. Estimation of optical chemical shift in nuclear spin optical rotation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fang [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yao, Guo-hua [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); He, Tian-jing [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Chen, Dong-ming, E-mail: dmchen@ustc.edu.cn [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, Fan-chen, E-mail: fcliu@ustc.edu.cn [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-05-19

    Highlights: • Analytical theory of nuclear spin optical rotation (NSOR) is further developed. • Derive formula of NSOR ratio R between different nuclei in a same molecule. • Calculated results of R agree with the experiments. • Analyze influence factors on R and chemical distinction by NSOR. - Abstract: A recently proposed optical chemical shift in nuclear spin optical rotation (NSOR) is studied by theoretical comparison of NSOR magnitude between chemically non-equivalent or different element nuclei in the same molecule. Theoretical expressions of the ratio R between their NSOR magnitudes are derived by using a known semi-empirical formula of NSOR. Taking methanol, tri-ethyl-phosphite and 2-methyl-benzothiazole as examples, the ratios R are calculated and the results approximately agree with the experiments. Based on those, the important influence factors on R and chemical distinction by NSOR are discussed.

  4. Phospholipid composition and organization of cytochrome c oxidase preparations as determined by 31P-nuclear magnetic resonance.

    Science.gov (United States)

    Seelig, A; Seelig, J

    1985-05-14

    The molecular organization as well as the composition of the phospholipids in cytochrome c oxidase preparations (bovine heart) were investigated by 31P-nuclear magnetic resonance. In the so-called 'lipid-rich' preparation the lipids were found to form a fluid bilayer around the enzyme since the 31P-NMR spectrum was characteristic of a fast, axially symmetric motion of the phosphate groups with a chemical shift anisotropy of delta sigma = -45 ppm. In contrast, the 'lipid-depleted' cytochrome c oxidase gave rise to a broader spectrum where the motion of the phospholipids was no longer axially symmetric. Nevertheless, the total width of the spectrum was still considerably narrower than observed for immobilized phospholipids in solid crystals. Both enzyme preparations were dissolved in 1% detergent solution and used for high-resolution 31P-NMR spectroscopy. Narrow lines of about 20 Hz linewidth were obtained for both types of enzyme preparations, and well-resolved resonances could be assigned to cardiolipin, phosphatidylethanolamin and phosphatidylcholine. The major differences between lipid-rich and lipid-depleted cytochrome c oxidase were the absolute amount of phospholipid associated with the protein and the relative contribution of the individual lipid classes to the 31P-NMR spectrum. For lipid-rich cytochrome c oxidase about 130 molecules phospholipid were bound per enzyme (approx. 11 cardiolipins, 54 phosphatidylethanolamines and 64 phosphatidylcholines). For lipid-depleted cytochrome c oxidase only 6-18 lipids were bound per enzyme (1 or 2 cardiolipins, 3-8 phosphatidylethanolamines and 2-8 phosphatidylcholines). In contrast to earlier suggestions that cardiolipin is the only remaining lipid in lipid-depleted cytochrome c oxidase, the 31P-NMR studies demonstrate that all three lipids remain associated with the protein.

  5. (31)P NMR of apicomplexans and the effects of risedronate on Cryptosporidium parvum growth.

    Science.gov (United States)

    Moreno, B; Bailey, B N; Luo, S; Martin, M B; Kuhlenschmidt, M; Moreno, S N; Docampo, R; Oldfield, E

    2001-06-15

    High-resolution 303.6 MHz (31)P NMR spectra have been obtained of perchloric acid extracts of Plasmodium berghei trophozoites, Toxoplasma gondii tachyzoites, and Cryptosporidium parvum oocysts. Essentially complete resonance assignments have been made based on chemical shifts and by coaddition of authentic reference compounds. Signals corresponding to inorganic pyrophosphate were detected in all three species. In T. gondii and C. parvum, additional resonances were observed corresponding to linear triphosphate as well as longer chain polyphosphates. Spectra of P. berghei and T. gondii also indicated the presence of phosphomonoesters and nucleotide phosphates. We also report that the pyrophosphate analog drug, risedronate (used in bone resorption therapy), inhibits the growth of C. parvum in a mouse xenograft model. When taken together, our results indicate that all the major disease-causing apicomplexan parasites contain extensive stores of condensed phosphates and that as with Plasmodium falciparum and T. gondii, the pyrophosphate analog drug risedronate is an inhibitor of C. parvum cell growth.

  6. Exploring new Routes for Identifying Phosphorus Species in Terrestrial and Aquatic Ecosystems with 31P NMR

    Science.gov (United States)

    Vestergren, Johan; Persson, Per; Sundman, Annelie; Ilstedt, Ulrik; Giesler, Reiner; Schleucher, Jürgen; Gröbner, Gerhard

    2014-05-01

    Phosphorus (P) is the primary growth-limiting nutrient in some of the world's biomes. Rock phosphate is a non-renewable resource and the major source of agricultural fertilizers. Predictions of P consumption indicate that rock phosphate mining may peak within 35 years, with severe impacts on worldwide food production1. Organic P compounds constitute a major fraction of soil P, but little is known about the dynamics and bioavailability of organic P species. Our aim is to develop new liquid and solid state 31P-NMR (nuclear magnetic resonance) techniques to identify P-species in water and soils; information required for correlating P speciation with plant and soil processes2, and eventually to improve P use. Soil organic P is frequently extracted using NaOH/EDTA, followed by characterization of the extract by solution 31P-NMR. However, the obtained NMR spectra usually have poor resolution due to line broadening caused by the presence of paramagnetic ions. Therefore, we successfully developed an approach to avoid paramagnetic line broadening by precipitation of metal sulfides. Sulfide precipitation dramatically reduces NMR line widths for soil extracts, without affecting P-composition. The resulting highly improved resolution allowed us to apply for the first time 2D 1H,31P-NMR methods to identify different P monoesters in spectral regions which are extremely crowded in 1D NMR spectra.3 By exploiting 2D 1H-31P NMR spectra of soil extracts we were able to unambiguously identify individual organic P species by combining 31P and 1H chemical shifts and coupling constants. This approach is even suitable for a structural characterization of unknown P-components and for tracing degradation pathways between diesters and monoesters3,4.Currently we apply our approach on boreal4 and tropical soils with focus on Burkina Faso. In addition we also monitor P-species in aqueos ecosystems. For this purpose stream water from the Krycklan catchment in northern Sweden5 has been used to

  7. Distinguishing bicontinuous lipid cubic phases from isotropic membrane morphologies using (31)P solid-state NMR spectroscopy.

    Science.gov (United States)

    Yang, Yu; Yao, Hongwei; Hong, Mei

    2015-04-16

    Nonlamellar lipid membranes are frequently induced by proteins that fuse, bend, and cut membranes. Understanding the mechanism of action of these proteins requires the elucidation of the membrane morphologies that they induce. While hexagonal phases and lamellar phases are readily identified by their characteristic solid-state NMR line shapes, bicontinuous lipid cubic phases are more difficult to discern, since the static NMR spectra of cubic-phase lipids consist of an isotropic (31)P or (2)H peak, indistinguishable from the spectra of isotropic membrane morphologies such as micelles and small vesicles. To date, small-angle X-ray scattering is the only method to identify bicontinuous lipid cubic phases. To explore unique NMR signatures of lipid cubic phases, we first describe the orientation distribution of lipid molecules in cubic phases and simulate the static (31)P chemical shift line shapes of oriented cubic-phase membranes in the limit of slow lateral diffusion. We then show that (31)P T2 relaxation times differ significantly between isotropic micelles and cubic-phase membranes: the latter exhibit 2 orders of magnitude shorter T2 relaxation times. These differences are explained by the different time scales of lipid lateral diffusion on the cubic-phase surface versus the time scales of micelle tumbling. Using this relaxation NMR approach, we investigated a DOPE membrane containing the transmembrane domain (TMD) of a viral fusion protein. The static (31)P spectrum of DOPE shows an isotropic peak, whose T2 relaxation times correspond to that of a cubic phase. Thus, the viral fusion protein TMD induces negative Gaussian curvature, which is an intrinsic characteristic of cubic phases, to the DOPE membrane. This curvature induction has important implications to the mechanism of virus-cell fusion. This study establishes a simple NMR diagnostic probe of lipid cubic phases, which is expected to be useful for studying many protein-induced membrane remodeling phenomena

  8. Theoretical Modeling of 99 Tc NMR Chemical Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Gabriel B.; Andersen, Amity; Washton, Nancy M.; Chatterjee, Sayandev; Levitskaia, Tatiana G.

    2016-09-06

    Technetium (Tc) displays a rich chemistry due to the wide range of oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and 99Tc NMR spec-troscopy is widely used to probe chemical environments of Tc in odd oxidation states. However interpretation of the 99Tc NMR data is hindered by the lack of reference compounds. DFT computations can help fill this gap, but to date few com-putational studies have focused on 99Tc NMR of compounds and complexes. This work systematically evaluates the inclu-sion small percentages of Hartree-Fock exchange correlation and relativistic effects in DFT computations to support in-terpretation of the 99Tc NMR spectra. Hybrid functionals are found to perform better than their pure GGA counterparts, and non-relativistic calculations have been found to generally show a lower mean absolute deviation from experiment. Overall non-relativistic PBE0 and B3PW91 calculations are found to most accurately predict 99Tc NMR chemical shifts.

  9. Differently saturated fatty acids can be differentiated by 31P NMR subsequent to derivatization with 2-chloro-4,4,5,5-tetramethyldioxaphospholane: a cautionary note.

    Science.gov (United States)

    Eibisch, Mandy; Riemer, Thomas; Fuchs, Beate; Schiller, Jürgen

    2013-03-20

    The analysis of free fatty acid (FFA) mixtures is a very important but, even nowadays, challenging task. This particularly applies as the so far most commonly used technique-gas chromatography/mass spectrometry (GC/MS)-is tedious and time-consuming. It has been convincingly shown ( Spyros, A.; Dais, P. J. Agric. Food Chem. 2000, 48, 802 - 5) that FFA may be analyzed by (31)P NMR subsequent to derivatization with 2-chloro-4,4,5,5-tetramethyldioxaphospholane (CTDP). However, it was also indicated that differently unsaturated FFAs result in the same (31)P NMR chemical shift and cannot be differentiated. Therefore, only the overall fatty acid content of a sample can be determined by the CTDP assay. In contrast, we will show here by using high-field NMR (600 MHz spectrometer, i.e., 242.884 MHz for (31)P) that the CTDP assay may be used to differentiate FFAs that have pronounced differences in their double bond contents: saturated fatty acids (16:0), moderately unsaturated (18:1, 18:2), highly unsaturated (20:4), and extremely unsaturated fatty acids (22:6) result in slightly different chemical shifts. The same applies for oxidized fatty acids. Finally, it will also be shown that the CTDP derivatization products decompose in a time-dependent manner. Therefore, all investigations must adhere to a strict time regime.

  10. Relationship between chemical shift value and accessible surface area for all amino acid atoms

    Directory of Open Access Journals (Sweden)

    Rieping Wolfgang

    2009-04-01

    Full Text Available Abstract Background Chemical shifts obtained from NMR experiments are an important tool in determining secondary, even tertiary, protein structure. The main repository for chemical shift data is the BioMagResBank, which provides NMR-STAR files with this type of information. However, it is not trivial to link this information to available coordinate data from the PDB for non-backbone atoms due to atom and chain naming differences, as well as sequence numbering changes. Results We here describe the analysis of a consistent set of chemical shift and coordinate data, in which we focus on the relationship between the per-atom solvent accessible surface area (ASA in the reported coordinates and their reported chemical shift value. The data is available online on http://www.ebi.ac.uk/pdbe/docs/NMR/shiftAnalysis/index.html. Conclusion Atoms with zero per-atom ASA have a significantly larger chemical shift dispersion and often have a different chemical shift distribution compared to those that are solvent accessible. With higher per-atom ASA, the chemical shift values also tend towards random coil values. The per-atom ASA, although not the determinant of the chemical shift, thus provides a way to directly correlate chemical shift information to the atomic coordinates.

  11. Deuterium isotope effects on 13C chemical shifts of 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Kamounah, Fadhil S.; Gryko, Daniel T.

    2013-01-01

    Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found to be nega......Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found...

  12. Quantitative analysis of energy metabolism in human muscle using SLOOP {sup 31}P-MR-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beer, M.; Koestler, H.; Buchner, S.; Sandstede, J.; Hahn, D. [Wuerzburg Univ. (Germany). Inst. fuer Roentgendiagnostik; Schneider, C.; Toyka, K.V. [Neurologische Klinik und Poliklinik der Univ. Wuerzburg (Germany)

    2002-05-01

    Objective: Energy metabolism is vital for regular muscle function. In humans, in vivo analysis using {sup 31}P-MR-spectroscopy (MRS) is mostly restricted to semiquantitative parameters due to technical demands. We applied spatial localization with optimal pointspread function (SLOOP) for quantification in human skeletal and cardiac muscle. Subjects/Methods: 10 healthy volunteers and 4 patients with myotonic dystrophy type 1 were examined using a 1.5 T system (Magnetom VISION) and chemical shift imaging (CSI) for data collection. Concentrations of PCr, ATP and P{sub i} as well as PCr/ATP ratios were calculated by SLOOP. Results: Concentrations of PCr, ATP and P{sub i} were 29.9{+-}3.4, 7.1{+-}0.9 and 5.7{+-}1.2 [mmol/kg] in normal skeletal muscle, corresponding to previously published studies. Two of the patients with a duration of disease longer than 10 years and a pronounced muscle weakness showed a significant decrease of PCr and ATP in skeletal muscle below 10 and 5 mmol/kg. One of these patients had an additional reduction of PCr in cardiac muscle. (orig.) [German] Ziel: Voraussetzung fuer eine regulaere Muskelfunktion ist ein intakter Energiestoffwechsel. Beim Menschen beschraenkten sich bisherige Untersuchungen mittels der {sup 31}P-MR-Spektroskopie (MRS), welche eine In-Vivo-Analyse erlaubt, jedoch zumeist auf die Analyse semiquantitativer Parameter. Wir verwendeten Spatial Localization with Optimal Pointspread Function (SLOOP), um den Stoffwechsel des Skelettmuskels wie des Herzens zu quantifizieren. Patienten/Methoden: 10 Probanden und 4 Patienten mit myotoner Dystrophie Typ 1 wurden an einem 1.5-T-System (Magnetom VISION) mittels der chemical shift imaging (CSI)-Technik untersucht. Die Berechnung der Konzentrationen von PCr, ATP und P{sub 1} sowie des PCr/ATP Verhaeltnisses erfolgte mittels SLOOP. Ergebnisse: Im Skelettmuskel gesunder Probanden betrugen die Absolutkonzentrationen fuer PCr, ATP und P{sub i} 29,9{+-}3.4, 7,1{+-}0,9 und 5,7{+-}1,2 [mmol

  13. A probabilistic model for secondary structure prediction from protein chemical shifts.

    Science.gov (United States)

    Mechelke, Martin; Habeck, Michael

    2013-06-01

    Protein chemical shifts encode detailed structural information that is difficult and computationally costly to describe at a fundamental level. Statistical and machine learning approaches have been used to infer correlations between chemical shifts and secondary structure from experimental chemical shifts. These methods range from simple statistics such as the chemical shift index to complex methods using neural networks. Notwithstanding their higher accuracy, more complex approaches tend to obscure the relationship between secondary structure and chemical shift and often involve many parameters that need to be trained. We present hidden Markov models (HMMs) with Gaussian emission probabilities to model the dependence between protein chemical shifts and secondary structure. The continuous emission probabilities are modeled as conditional probabilities for a given amino acid and secondary structure type. Using these distributions as outputs of first- and second-order HMMs, we achieve a prediction accuracy of 82.3%, which is competitive with existing methods for predicting secondary structure from protein chemical shifts. Incorporation of sequence-based secondary structure prediction into our HMM improves the prediction accuracy to 84.0%. Our findings suggest that an HMM with correlated Gaussian distributions conditioned on the secondary structure provides an adequate generative model of chemical shifts.

  14. Dynamic structures of intact chicken erythrocyte chromatins as studied by 1H-31P cross-polarization NMR.

    Science.gov (United States)

    Akutsu, H; Nishimoto, S; Kyogoku, Y

    1994-08-01

    The dynamic properties of DNA in intact chicken erythrocyte cells, nuclei, nondigested chromatins, digested soluble chromatins, H1, H5-depleted soluble chromatins and nucleosome cores were investigated by means of single-pulse and 1H-31P cross-polarization NMR. The temperature dependence of the phosphorus chemical shift anisotropy was identical for the former three in the presence of 3 mM MgCl2, suggesting that the local higher order structure is identical for these chromatins. The intrinsic phosphorus chemical shift anisotropy of the nucleosome cores was -159 ppm. The chemical shift anisotropy of DNA in the chromatins can be further averaged by the motion of the linker DNA. The spin-lattice relaxation time in the rotating frame of the proton spins (T1p) of the nondigested chromatins was measured at various locking fields. The result was analyzed on the assumption of the isotropic motion to get a rough value of the correlation time of the motion efficient for the relaxation, which was eventually ascribed to the segmental motion of the linker DNA with restricted amplitude. The 30 nm filament structure induced by NaCl was shown to be dynamically different from that induced by MgCl2. Side-by-side compaction of 30-nm filaments was suggested to be induced in the MgCl2 concentration range higher than 0.3 mM. Biological significance of the dynamic structure was discussed in connection with the results obtained.

  15. 31p NMR and ESI-MS Studies on Some Intermediates of the Peptide Coupling Reagents Triphenyl-chlorophosphoranes

    Institute of Scientific and Technical Information of China (English)

    Guo TANG; Gui Ji ZHOU; Feng NI; Li Ming HU; Yu Fen ZHAO

    2005-01-01

    The intermediates of the Appel coupling reagents were studied in acetonitrile,dimethoxyethane and dioxane by 31P NMR, C NMR spectrum and ESI-MS. In dioxane a new high coordinated phosphorous compound with 31p NMR shift at -39 ppm was observed. The ESI-MS showed that it could be a penta-coordinated phosphorous compound containing dioxane. The carboxyl activated intermediates were also studied in three solvents.

  16. Inferential protein structure determination and refinement using fast, electronic structure based backbone amide chemical shift predictions

    CERN Document Server

    Christensen, Anders S

    2015-01-01

    This report covers the development of a new, fast method for calculating the backbone amide proton chemical shifts in proteins. Through quantum chemical calculations, structure-based forudsiglese the chemical shift for amidprotonen in protein has been parameterized. The parameters are then implemented in a computer program called Padawan. The program has since been implemented in protein folding program Phaistos, wherein the method andvendes to de novo folding of the protein structures and to refine the existing protein structures.

  17. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Jerome M.; Erylimaz, Ertan; Cowburn, David, E-mail: cowburn@cowburnlab.org, E-mail: David.cowburn@einstein.yu.edu [Albert Einstein College of Medicine of Yeshiva University, Department of Biochemistry (United States)

    2015-01-15

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder.

  18. A robust algorithm for optimizing protein structures with NMR chemical shifts.

    Science.gov (United States)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S

    2015-11-01

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and "PDB worthy". The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca.

  19. /sup 31/P-NMR studies of a case of type III glycogenosis

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Mitsuru; Aizawa, Hitoshi; Itoh, Masamitsu; Yoshikawa, Kohki; Murase, Toshio

    1988-05-01

    /sup 31/P-NMR spectra of skeletal muscles were obtained from a patient of type III glycogenosis (33 y.o. man, reported by one of the authors, T. Murase, in 1973) and the control subject (32 y.o. man), using a superconducting whole body MR (Magnetom, Siemens). Two parameters, 1. muscle pH calculated from the chemical shift of Pi (inorganic phosphate) and PCr (creatine phosphate) and 2. PCr/Pi ratio were monitored before and after the aerobic or ischemic exercise. In resting state, the spectra were normal except for the muscle pH of thigh extensors (7.3), which was obviously higher than that of the control subject (7.0). Significant reduction of PCr/Pi ratio (from 7.0 to 4.1) was observed after the aerobic exercise in thigh extensors. Such a reduction was not recognized in the control subject. The ischemic exercise of forearm muscles revealed slight decrease in muscle pH (from 7.1 to 6.9), which was less prominent than that of the control subject. These results were compatible with the abnormality in the energy metabolism of this disorder, the block in the pathway of glycogenolysis.

  20. Chemical shift assignments of two oleanane triterpenes from Euonymus hederaceus

    Institute of Scientific and Technical Information of China (English)

    HU He-jiao; WANG Kui-wu; WU Bin; SUN Cui-rong; PAN Yuan-jiang

    2005-01-01

    1H-NMR and 13C-NMR assignments of 12-oleanene-3,11-dione (compound 1) were completely described for the first time through conventional 1D NMR and 2D shift-correlated NMR experiments using 1H-1HCOSY, HMQC, HMBC techniques.Based on its NMR data, the assignments of 28-hydroxyolean-12-ene-3,11-dione (compound 2) were partially revised.

  1. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael;

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...... QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift...

  2. Effects of structural differences on the NMR chemical shifts in isostructural dipeptides.

    Science.gov (United States)

    Altheimer, Benjamin D; Mehta, Manish A

    2014-04-10

    Porous crystalline dipeptides have gained recent attention for their potential as gas-storage materials. Within this large class is a group of dipeptides containing alanine, valine, and isoleucine with very similar crystal structures. We report the (13)C (carbonyl and Cα) and (15)N (amine and amide) solid-state NMR isotropic chemical shifts in a series of seven such isostructural porous dipeptides as well as shift tensor data for the carbonyl and amide sites. Using their known crystal structures and aided by ab initio quantum chemical calculations for the resonance assignments, we elucidate trends relating local structure, hydrogen-bonding patterns, and chemical shift. We find good correlation between the backbone dihedral angles and the Cα1 and Cα2 shifts. For the C1 shift tensor, the δ11 value shifts downfield as the hydrogen-bond distance increases, δ22 shifts upfield, and δ33 shows little variation. The C2 shift tensor shows no appreciable correlation with structural parameters. For the N2 tensor, δ11 shows little dependence on the hydrogen-bond length, whereas δ22 and δ33 both show a decrease in shielding as the hydrogen bond shortens. Our analysis teases apart some, but not all, structural contributors to the observed differences the solid-state NMR chemical shifts.

  3. 31P NMR Study on Some Phosphorus-Containing Compounds

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    31P NMR has become a widely applied spectroscopic probe of the structure of phosphorus-containing compounds. Meanwhile, the application of 31P NMR has been rapidly expanded to biochemistry and medicinal chemistry of phosphorus-containing compounds because the growing importance of the phosphorus compounds is now widely realized. We report here the results of 31P NMR study on some phosphorus-containing compounds, namely, O-alkyl O-4-nitrophenyl methyl phosphonates with different alkyl chain-length (MePO-n), 4-nitrophenyl alkylphenylphosphinates with different alkyl chain-length (PhP-n), diethyl phosphono- acetonitrile anion and diethyl phosphite anion . Our results indicate that 31P NMR can not only be applied to not only the study of the hydrolytic reactions of MePO-8 and PhP-8 but also be applied to the study of the presence of the anions of diethylphosphonoacetonitrile and diethyl phosphite in nucleophilic reactions.

  4. PPM-One: a static protein structure based chemical shift predictor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dawei; Brüschweiler, Rafael, E-mail: bruschweiler.1@osu.edu [The Ohio State University, Campus Chemical Instrument Center (United States)

    2015-07-15

    We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM-One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs.

  5. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Joshua D.; Summers, Michael F. [University of Maryland Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce.johnson@asrc.cuny.edu [University of Maryland Baltimore County, Department of Chemistry and Biochemistry (United States)

    2015-09-15

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR and {sup 13}C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and {sup 1}H and {sup 13}C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA {sup 1}H and {sup 13}C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides.

  6. Chemical shift selective magnetic resonance imaging of the optic nerve in patients with acute optic neuritis

    DEFF Research Database (Denmark)

    Larsson, H B; Thomsen, C; Frederiksen, J;

    1988-01-01

    Optic neuritis is often the first manifestation of multiple sclerosis (MS). Sixteen patients with acute optic neuritis and one patient with benign intracranial hypertension (BIH) were investigated by magnetic resonance imaging, using a chemical shift selective double spin echo sequence. In 3...... were only shown in 3/16 (19%) of the patients with optic neuritis. Nevertheless, the presented chemical shift selective double spin echo sequence may be of great value for detection of retrobulbar lesions....

  7. Chemical shift MRI can aid in the diagnosis of indeterminate skeletal lesions of the spine

    Energy Technology Data Exchange (ETDEWEB)

    Douis, H. [University Hospital Birmingham, Department of Radiology, Birmingham (United Kingdom); Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Davies, A.M. [Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Jeys, L. [Royal Orthopaedic Hospital, Department of Orthopaedic Oncology, Birmingham (United Kingdom); Sian, P. [Royal Orthopaedic Hospital, Department of Spinal Surgery and Spinal Oncology, Birmingham (United Kingdom)

    2016-04-15

    To evaluate the role of chemical shift MRI in the characterisation of indeterminate skeletal lesions of the spine as benign or malignant. Fifty-five patients (mean age 54.7 years) with 57 indeterminate skeletal lesions of the spine were included in this retrospective study. In addition to conventional MRI at 3 T which included at least sagittal T1WI and T2WI/STIR sequences, patients underwent chemical shift MRI. A cut-off value with a signal drop-out of 20 % was used to differentiate benign lesions from malignant lesions (signal drop-out <20 % being malignant). There were 45 benign lesions and 12 malignant lesions. Chemical shift imaging correctly diagnosed 33 of 45 lesions as benign and 11 of 12 lesions as malignant. In contrast, there were 12 false positive cases and 1 false negative case based on chemical shift MRI. This yielded a sensitivity of 91.7 %, a specificity of 73.3 %, a negative predictive value of 97.1 %, a positive predictive value of 47.8 % and a diagnostic accuracy of 82.5 %. Chemical shift MRI can aid in the characterisation of indeterminate skeletal lesions of the spine in view of its high sensitivity in diagnosing malignant lesions. Chemical shift MRI can potentially avoid biopsy in a considerable percentage of patients with benign skeletal lesions of the spine. (orig.)

  8. Synthesis, NMR spectroscopic characterization and structure of a divinyldisilazane-(triphenylphosphine)platinum(0) complex: observation of isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt).

    Science.gov (United States)

    Wrackmeyer, Bernd; Klimkina, Elena V; Schmalz, Thomas; Milius, Wolfgang

    2013-05-01

    Tetramethyldivinyldisilazane-(triphenylphosphine)platinum(0) was prepared, characterized in solid state by X-ray crystallography and in solution by multinuclear magnetic resonance spectroscopy ((1)H, (13)C, (15)N, (29)Si, (31)P and (195)Pt NMR). Numerous signs of spin-spin coupling constants were determined by two-dimensional heteronuclear shift correlations (HETCOR) and two-dimensional (1)H/(1)H COSY experiments. Isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt) were measured from (195)Pt NMR spectra of the title compound as well as of other Pt(0), Pt(II) and Pt(IV) compounds for comparison. In contrast to other heavy nuclei such as (199)Hg or (207)Pb, the "normal" shifts of the heavy isotopomers to low frequencies are found, covering a range of >500 ppb.

  9. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  10. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.K. [University of Durham, Durham (United Kingdom). Dept. of Chemistry; Becker, E.D. [National Institutes of Health, Bethesda, MD (United States); Menezes, S.M. Cabral de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Granger, P. [University Louis Pasteur, Strasbourg (France). Inst. of Chemistry; Hoffman, R.E. [The Hebrew University of Jerusalem, Safra Campus, Jerusalem (Israel). Dept. of Organic Chemistry; Zilm, K.W., E-mail: r.k.harris@durham.ac.uk [Yale University, New Haven, CT (United States). Dept. of Chemistry

    2008-07-01

    IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the {sup 1}H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3- (trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating {sup 13}C NMR chemical shifts in solids to the scales used for high resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. (author)

  11. Magnetic couplings in the chemical shift of paramagnetic NMR.

    Science.gov (United States)

    Vaara, Juha; Rouf, Syed Awais; Mareš, Jiří

    2015-10-13

    We apply the Kurland-McGarvey (J. Magn. Reson. 1970, 2, 286) theory for the NMR shielding of paramagnetic molecules, particularly its special case limited to the ground-state multiplet characterized by zero-field splitting (ZFS) interaction of the form S·D·S. The correct formulation for this problem was recently presented by Soncini and Van den Heuvel (J. Chem. Phys. 2013, 138, 054113). With the effective electron spin quantum number S, the theory involves 2S+1 states, of which all but one are low-lying excited states, between which magnetic couplings take place by Zeeman and hyperfine interactions. We investigate these couplings as a function of temperature, focusing on both the high- and low-temperature behaviors. As has been seen in work by others, the full treatment of magnetic couplings is crucial for a realistic description of the temperature behavior of NMR shielding up to normal measurement temperatures. At high temperatures, depending on the magnitude of ZFS, the effect of magnetic couplings diminishes, and the Zeeman and hyperfine interactions become effectively averaged in the thermally occupied states of the multiplet. At still higher temperatures, the ZFS may be omitted altogether, and the shielding properties may be evaluated using a doublet-like formula, with all the 2S+1 states becoming effectively degenerate at the limit of vanishing magnetic field. We demonstrate these features using first-principles calculations of Ni(II), Co(II), Cr(II), and Cr(III) complexes, which have ZFS of different sizes and signs. A non-monotonic inverse temperature dependence of the hyperfine shift is predicted for axially symmetric integer-spin systems with a positive D parameter of ZFS. This is due to the magnetic coupling terms that are proportional to kT at low temperatures, canceling the Curie-type 1/kT prefactor of the hyperfine shielding in this case.

  12. Effect of shifting cultivation on soil physical and chemical properties in Bandarban hill district, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Khandakar Showkat Osman; M. Jashimuddin; S. M. Sirajul Haque; Sohag Miah

    2013-01-01

    This study reports the effects of shifting cultivation at slashing stage on soil physicochemical properties at Bandarban Sadar Upazila in Chittagong Hill Tracts of Bangladesh. At this initial stage of shifting cultivation no general trend was found for moisture content, maximum water holding capacity, field capacity, dry and moist bulk density, parti-cle density for some chemical properties between shifting cultivated land and forest having similar soil texture. Organic matter was significantly (p≤0.05) lower in 1-year and 3-year shifting cultivated lands and higher in 2-year shifting cultivation than in adjacent natural forest. Significant differences were also found for total N, exchangeable Ca, Mg and K and in CEC as well as for available P. Slashed area showed higher soil pH. Deterioration in land quality starts from burning of slashing materials and continues through subsequent stages of shifting cultivation.

  13. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts.

    Science.gov (United States)

    Labudde, D; Leitner, D; Krüger, M; Oschkinat, H

    2003-01-01

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the alpha-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely alpha-helix, beta-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  14. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    CERN Document Server

    Christensen, Anders S; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to refine protein structures to this...

  15. From NMR chemical shifts to amino acid types: Investigation of the predictive power carried by nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Antoine; Malliavin, Therese E. [Institut de Biologie Physico-Chimique, Laboratoire de Biochimie Theorique, CNRS UPR 9080 (France)], E-mail: therese.malliavin@ibpc.fr; Nicolas, Pierre; Delsuc, Marc-Andre [INRA - Domaine de Vilvert, Unite Mathematique Informatique et Genome (France)

    2004-09-15

    An approach to automatic prediction of the amino acid type from NMR chemical shift values of its nuclei is presented here, in the frame of a model to calculate the probability of an amino acid type given the set of chemical shifts. The method relies on systematic use of all chemical shift values contained in the BioMagResBank (BMRB). Two programs were designed, one (BMRB stats) for extracting statistical chemical shift parameters from the BMRB and another one (RESCUE2) for computing the probabilities of each amino acid type, given a set of chemical shifts. The Bayesian prediction scheme presented here is compared to other methods already proposed: PROTYP (Grzesiek and Bax, J. Biomol. NMR, 3, 185-204, 1993) RESCUE (Pons and Delsuc, J. Biomol. NMR, 15, 15-26, 1999) and PLATON (Labudde et al., J. Biomol. NMR, 25, 41-53, 2003) and is found to be more sensitive and more specific. Using this scheme, we tested various sets of nuclei. The two nuclei carrying the most information are C{sub {beta}} and H{sub {beta}}, in agreement with observations made in Grzesiek and Bax, 1993. Based on four nuclei: H{sub {beta}}, C{sub {beta}}, C{sub {alpha}} and C', it is possible to increase correct predictions to a rate of more than 75%. Taking into account the correlations between the nuclei chemical shifts has only a slight impact on the percentage of correct predictions: indeed, the largest correlation coefficients display similar features on all amino acids.

  16. Deuterium isotope effects on 13C chemical shifts of negatively charged NH.N systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Pietrzak, Mariusz; Grech, Eugeniusz

    2013-01-01

    Deuterium isotope effects on 13C chemical shifts are investigated in anions of 1,8-bis(4-toluenesulphonamido)naphthalenes together with N,N-(naphthalene-1,8-diyl)bis(2,2,2-trifluoracetamide) all with bis(1,8-dimethylamino)napthaleneH+ as counter ion. These compounds represent both “static......” and equilibrium cases. NMR assignments of the former have been revised. The NH proton is deuteriated. The isotope effects on 13C chemical shifts are rather unusual in these strongly hydrogen bonded systems between a NH and a negatively charged nitrogen atom. The formal four-bond effects are found to be negative...

  17. Protein Structure Validation and Refinement Using Chemical Shifts Derived from Quantum Mechanics

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen

    In this thesis, my work involving dierent aspects of protein structure determination by computer modeling is presented. Determination of several protein's native fold were carried out with Markov chain Monte Carlo simulations in the PHAISTOS protein structure simulation framework, utilizing...... to within 3 A. Furthermore, a fast quantum mechanics based chemical shift predictor was developed together with methodology for using chemical shifts in structure simulations. The developed predictor was used for renement of several protein structures and for reducing the computational cost of quantum...

  18. Ontogenetic shift in response to prey-derived chemical cues in prairie rattlesnakes Crotalus viridis viridis

    Institute of Scientific and Technical Information of China (English)

    Anthony J.SAVIOLA; David CHISZAR; Stephen P.MACKESSY

    2012-01-01

    Snakes often have specialized diets that undergo a shift from one prey type to another depending on the life stage of the snake.Crotalus viridis viridis (prairie rattlesnake) takes different prey at different life stages,and neonates typically prey on ectotherms,while adults feed almost entirely on small endotherms.We hypothesized that elevated rates of tongue flicking to chemical stimuli should correlate with particular prey consumed,and that this response shifts from one prey type to another as individuals age.To examine if an ontogenetic shift in response to chemical cues occurred,we recorded the rate of tongue flicking for 25 neonate,20 subadult,and 20 adult (average SVL=280.9,552,789.5 mm,respectively) wild-caught C.v.viridis to chemical stimuli presented on a cotton-tipped applicator; water-soluble cues from two ectotherms (prairie lizard,Sceloporus undulatus,and house gecko,Hemidactylusfrenatus),two endotherms (deer mouse,Peromyscus maniculatus and lab mouse,Mus musculus),and water controls were used.Neonates tongue flicked significantly more to chemical cues of their common prey,S.undulatus,than to all other chemical cues; however,the response to this lizard's chemical cues decreased in adult rattlesnakes.Subadults tongue flicked with a higher rate of tongue flicking to both S.undulatus and P.maniculatus than to all other treatments,and adults tongue flicked significantly more to P.maniculatus than to all other chemical cues.In addition,all three sub-classes demonstrated a greater response for natural prey chemical cues over chemical stimuli of prey not encountered in the wild (M.musculus and H.frenatus).This shift in chemosensory response correlated with the previously described ontogenetic shifts in C.v.viridis diet.Because many vipers show a similar ontogenetic shift in diet and venom composition,we suggest that this shift in prey cue discrimination is likely a general phenomenon among viperid snakes.

  19. Preservation of bilayer structure in human erythrocytes and erythrocyte ghosts after phospholipase treatment. A 31P-NMR study.

    Science.gov (United States)

    van Meer, G; de Kruijff, B; op den Kamp, J A; van Deenen, L L

    1980-02-15

    1. Fresh human erythrocytes were treated with lytic and non-lytic combinations of phospholipases A2, C and sphingomyelinase. The 31P-NMR spectra of ghosts derived from such erythrocytes show that, in all cases, the residual phospholipids and lysophospholipids remain organized in a bilayer configuration. 2. A bilayer configuration of the (lyso)phospholipids was also observed after treatment of erythrocyte ghosts with various phospholipases even in the case that 98% of the phospholipid was converted into lysophospholipid (72%) and ceramides (26%). 3. A slightly decreased order of the phosphate group of phospholipid molecules, seen as reduced effective chemical shift anisotropy in the 31P-NMR spectra, was found following the formation of diacyglycerols and ceramides in the membrane of intact erythrocytes. Treatment of ghosts always resulted in an extensive decrease in the order of the phosphate groups. 4. The results allow the following conclusions to made: a. Hydrolysis of phospholipids in intact red cells and ghosts does not result in the formation of non-bilayer configuration of residual phospholipids and lysophospholipids. b. Haemolysis, which is obtained by subsequent treatment of intact cells with sphingomyelinase and phospholipase A2, or with phospholipase C, cannot be ascribed to the formation of non-bilayer configuration of phosphate-containing lipids. c. Preservation of bilayer structure, even after hydrolysis of all phospholipid, shows that other membrane constitutents, e.g. cholesterol and/or membrane proteins play an important role in stabilizing the structure of the erythrocyte membrane. d. A major prerequisite for the application of phospholipases in lipid localization studies, the preservation of a bilayer configuration during phospholipid hydrolysis, is met for the erythrocyte membrane.

  20. Biochemical metabolic changes assessed by 31P magnetic resonance spectroscopy after radiation-induced hepatic injury in rabbits

    Institute of Scientific and Technical Information of China (English)

    Ri-Sheng Yu; Liang Hao; Fei Dong; Jian-Shan Mao; Jian-Zhong Sun; Ying Chen; Min Lin; Zhi-Kang Wang; Wen-Hong Ding

    2009-01-01

    AIM:To compare the features of biochemical metabolic changes detected by hepatic phosphorus-31 magnetic resonance spectroscopy (31P MRS) with the liver damage score (LDS) and pathologic changes in rabbits and to investigate the diagnostic value of 31P MRS in acute hepatic radiation injury.METHODS:A total of 30 rabbits received different radiation doses (ranging 5-20 Gy) to establish acute hepatic injury models.Blood biochemical tests,31P MRS and pathological examinations were carried out 24 h after irradiation.The degree of injury was evaluated according to LDS and pathology.Ten healthy rabbits served as controls.The MR examination was performed on a 1.5 T imager using a 1H/31P surface coil by the 2D chemical shift imaging technique.The relative quantities of phosphomonoesters (PME),phosphodiesters (PDE),inorganic phosphate (Pi) and adenosine triphosphate (ATP) were measured.The data were statistically analyzed.RESULTS:(1) Relative quantification of phosphorus metabolites:(a) ATP:there were significant differences (P<0.05) (LDS-groups:control group vs mild group vs moderate group vs severe group,1.83±0.33 vs 1.55±0.24 vs 1.27±0.09 vs 0.98±0.18;pathological groups:control group vs mild group vs moderate group vs severe group,1.83±0.33 vs 1.58±0.25 vs 1.32±0.07 vs 1.02 ± 0.18) of ATP relative quantification among control group,mild injured group,moderate injured group,and severe injured group according to both LDS grading and pathological grading,respectively,and it decreased progressively with the increased degree of injury (r=-0.723,P=0.000).(b) PME and Pi;the relative quantification of PME and Pi decreased significantly in the severe injured group,and the difference between the control group and severe injured group was significant (P<0.05) (PME:LDScontrol group vs LDS-severe group,0.86±0.23 vs 0.58±0.22,P=0.031;pathological control group vs pathological severe group,0.86±0.23 vs 0.60±0.21,P=0.037;Pi:LDS-control group vs LDS-severe group,0.74±0.18 vs

  1. Energy gap in tunneling spectroscopy: effect of the chemical potential shift

    Science.gov (United States)

    Fedotov, N. I.; Zaitsev-Zotov, S. V.

    2016-12-01

    We study the effect of a shift of the chemical potential level on the tunneling conductance spectra. In the systems with gapped energy spectra, significant chemical-potential dependent distortions of the differential tunneling conductance curves, dI/dV, arise in the gap region. An expression is derived for the correction of the dI/dV, which in a number of cases was found to be large. The sign of the correction depends on the chemical potential level position with respect to the gap. The correction of the dI/dV associated with the chemical potential shift has a nearly linear dependence on the tip-sample separation z and vanishes at z → 0.

  2. Indirect two-dimensional heteronuclear NMR spectroscopy. (/sup 31/P, /sup 57/Fe) spectra of organoiron complexes

    Energy Technology Data Exchange (ETDEWEB)

    Benn, R.; Brenneke, H.; Frings, A.; Lehmkuhl, H.; Mehler, G.; Rufinska, A.; Wildt, T.

    1988-08-17

    The indirect heteronuclear two-dimensional (2D) triple-resonance (S,I)-(/sup 1/H) NMR spectroscopy is introduced for measuring the chemical shift and scalar spin-spin coupling constants of an insensitive nucleus I via its scalar coupling J(S,I) by detection of the nucleus S of higher sensitivity. The versatility of this approach is demonstrated by extracting delta(/sup 57/Fe) and J(Fe,X) from (/sup 31/P,/sup 57/Fe)-(/sup 1/H) spectra of various dissolved ((/eta//sup 5/-Cp)(L/sub 2/(R)))Fe, ((/eta//sup 3/-allyl)(/eta//sup 5/-Cp)(L))Fe, and ((/eta//sup 1/,/eta//sup 2/-alkenyl)(/eta//sup 5/-Cp)(L))Fe complexes (R = alkyl, hydride; L = PR/sub 3/). In practice the sensitivity of 2D (/sup 31/P,/sup 57/Fe) spectra was found to be higher than that of the direct observation scheme by at least a factor (..gamma../sub P//..gamma../sub Fe/)/sup 5/2/. Due to the intrinsically higher resolving power of a two-dimensional experiment, small scalar couplings like /sup 2J/(Fe,F) and /sup 1/J(Fe,H) were readily obtained from indirect two-dimensional spectra. Combinations of (/sup 1/H,/sup 57/Fe) and (/sup 31/P,/sup 57/Fe) spectra yielded the relative signs of the J(Fe,X) couplings: /sup 1/J(Fe,P) is positive and increases with increasing ..pi..-acceptor power of the phosphorus ligand L from 55 (L = PMe/sub 3/, R = H) to 149 Hz (L = PF/sub 3/). /sup 1/J(Fe,H) is around +9 Hz (R = H), whereas /sup 2/J(P,H) in these complexes was found to be negative. In all of the allyl complexes investigated, /sup 2J/(Fe,F) (L = PF/sub 3/) is positive and around 3 Hz. In the quasi-tetragonal and -trigonal iron complexes, delta(/sup 57/Fe) varies by about 4000 ppM. This can be rationalized qualitatively by the electronegativity of the atoms directly bonded to iron and the higher oxidation potential in the presence of more basic ligands L via the paramagnetic shielding term. 52 references, 5 figures, 5 tables.

  3. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin

    2011-01-01

    Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues....... The contributions from the neighboring residues are typically removed by using neighbor correction factors determined based on each residue's effect on glycine chemical shifts. Due to its unusual conformational freedom, glycine may be particularly unrepresentative for the remaining residue types. In this study, we...... in the conformational ensemble are an important source of neighbor effects in disordered proteins. Glutamine derived random coil chemical shifts and correction factors modestly improve our ability to predict (13)C chemical shifts of intrinsically disordered proteins compared to existing datasets, and may thus improve...

  4. Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins

    NARCIS (Netherlands)

    Tamiola, Kamil; Mulder, Frans A. A.

    2012-01-01

    NMR spectroscopy offers the unique possibility to relate the structural propensities of disordered proteins and loop segments of folded peptides to biological function and aggregation behaviour. Backbone chemical shifts are ideally suited for this task, provided that appropriate reference data are a

  5. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    2015-01-01

    The paper deals with the use of isotope effects on chemical shifts in characterizing intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB systems are treated. The importance of RAHB will be discussed. Another very important issue is the borderline between “static” ...

  6. Can the current density map topology be extracted from the nucleus independent chemical shifts?

    NARCIS (Netherlands)

    Van Damme, Sofie; Acke, Guillaume; Havenith, Remco W. A.; Bultinck, Patrick

    2016-01-01

    Aromatic compounds are characterised by the presence of a ring current when in a magnetic field. As a consequence, current density maps are used to assess (the degree of) aromaticity of a compound. However, often a more discrete set of so-called Nucleus Independent Chemical Shift (NICS) values is us

  7. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    Science.gov (United States)

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  8. The statistical shift of the chemical potential causing anomalous conductivity in hydrogenated microcrystalline silicon

    NARCIS (Netherlands)

    Lof, R.W.; Schropp, R.E.I.

    2010-01-01

    The behavior of the electrical conductivity in hydrogenated microcrystalline silicon (μ c-Si:H) that is frequently observed is explained by considering the statistical shift in the chemical potential as a function of the crystalline fraction (Xc), the dangling bond density (N db), and the doping den

  9. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael;

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...

  10. Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d(0) Olefin Metathesis Catalysts.

    Science.gov (United States)

    Halbert, Stéphanie; Copéret, Christophe; Raynaud, Christophe; Eisenstein, Odile

    2016-02-24

    The nucleophilic carbon of d(0) Schrock alkylidene metathesis catalysts, [M] = CHR, display surprisingly low downfield chemical shift (δ(iso)) and large chemical shift anisotropy. State-of-the-art four-component relativistic calculations of the chemical shift tensors combined with a two-component analysis in terms of localized orbitals allow a molecular-level understanding of their orientations, the magnitude of their principal components (δ11 > δ22 > δ33) and associated δ(iso). This analysis reveals the dominating influence of the paramagnetic contribution yielding a highly deshielded alkylidene carbon. The largest paramagnetic contribution, which originates from the coupling of alkylidene σ(MC) and π*(MC) orbitals under the action of the magnetic field, is analogous to that resulting from coupling σ(CC) and π*(CC) in ethylene; thus, δ11 is in the MCH plane and is perpendicular to the MC internuclear direction. The higher value of carbon-13 δ(iso) in alkylidene complexes relative to ethylene is thus due to the smaller energy gap between σ(MC) and π*(MC) vs this between σ(CC) and π*(CC) in ethylene. This effect also explains why the highest value of δ(iso) is observed for Mo and the lowest for Ta, the values for W and Re being in between. In the presence of agostic interaction, the chemical shift tensor principal components orientation (δ22 or δ33 parallel or perpendicular to π(MX)) is influenced by the MCH angle because it determines the orientation of the alkylidene CHR fragment relative to the MC internuclear axis. The orbital analysis shows how the paramagnetic terms, understood with a localized bond model, determine the chemical shift tensor and thereby δ(iso).

  11. Magnetic Shift of the Chemical Freeze-out and Electric Charge Fluctuations

    Science.gov (United States)

    Fukushima, Kenji; Hidaka, Yoshimasa

    2016-09-01

    We discuss the effect of a strong magnetic field on the chemical freeze-out points in ultrarelativistic heavy-ion collisions. As a result of inverse magnetic catalysis or magnetic inhibition, the crossover onset to hot and dense matter out of quarks and gluons should be shifted to a lower temperature. To quantify this shift we employ the hadron resonance gas model and an empirical condition for the chemical freeze-out. We point out that the charged particle abundances are significantly affected by the magnetic field so that the electric charge fluctuation is largely enhanced, especially at high baryon density. The charge conservation partially cancels the enhancement, but our calculation shows that the electric charge fluctuation could serve as a magnetometer. We find that the fluctuation exhibits a crossover behavior rapidly increased for e B ≳(0.4 GeV )2, while the charge chemical potential has smoother behavior with an increasing magnetic field.

  12. Human in vivo phosphate metabolite imaging with 31P NMR.

    Science.gov (United States)

    Bottomley, P A; Charles, H C; Roemer, P B; Flamig, D; Engeseth, H; Edelstein, W A; Mueller, O M

    1988-07-01

    Phosphorus (31P) spectroscopic images showing the distribution of high-energy phosphate metabolites in the human brain have been obtained at 1.5 T in scan times of 8.5 to 34 min at 27 and 64 cm3 spatial resolution using pulsed phase-encoding gradient magnetic fields and three-dimensional Fourier transform (3DFT) techniques. Data were acquired as free induction decays with a quadrature volume NMR detection coil of a truncated geometry designed to optimize the signal-to-noise ratio on the coil axis on the assumption that the sample noise represents the dominant noise source, and self-shielded magnetic field gradient coils to minimize eddy-current effects. The images permit comparison of metabolic data acquired simultaneously from different locations in the brain, as well as metabolite quantification by inclusion of a vial containing a standard of known 31P concentration in the image array. Values for the NMR visible adenosine triphosphate in three individuals were about 3 mM of tissue. The ratio of NMR detectable phosphocreatine to ATP in brain was 1.15 +/- 0.17 SD in these experiments. Potential sources of random and systematic error in these and other 31P measurements are identified.

  13. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N.

    Science.gov (United States)

    Shen, Yang; Bax, Ad

    2015-01-01

    Chemical shifts are obtained at the first stage of any protein structural study by NMR spectroscopy. Chemical shifts are known to be impacted by a wide range of structural factors, and the artificial neural network based TALOS-N program has been trained to extract backbone and side-chain torsion angles from (1)H, (15)N, and (13)C shifts. The program is quite robust and typically yields backbone torsion angles for more than 90 % of the residues and side-chain χ 1 rotamer information for about half of these, in addition to reliably predicting secondary structure. The use of TALOS-N is illustrated for the protein DinI, and torsion angles obtained by TALOS-N analysis from the measured chemical shifts of its backbone and (13)C(β) nuclei are compared to those seen in a prior, experimentally determined structure. The program is also particularly useful for generating torsion angle restraints, which then can be used during standard NMR protein structure calculations.

  14. Stereoelectronic effects on 1H nuclear magnetic resonance chemical shifts in methoxybenzenes

    DEFF Research Database (Denmark)

    Lambert, Maja; Olsen, Lars; Jaroszewski, Jerzy W

    2006-01-01

    the Ar-OCH3 torsion out of the ring plane, resulting in large stereoelectronic effects on the chemical shift of Hpara. Conformational searches and geometry optimizations for 3-16 at the B3LYP/6-31G** level, followed by B3LYP/6-311++G(2d,2p) calculations for all low-energy conformers, gave excellent......Investigation of all O-methyl ethers of 1,2,3-benzenetriol and 4-methyl-1,2,3-benzenetriol (3-16) by 1H NMR spectroscopy and density-functional calculations disclosed practically useful conformational effects on 1H NMR chemical shifts in the aromatic ring. While the conversion of phenol (2......) to anisole (1) causes only small positive changes of 1H NMR chemical shifts (Delta delta Hmeta > Hpara, the experimental O-methylation induced shifts in ortho-disubstituted phenols are largest for Hpara, Delta delta equals; 0.19 +/- 0.02 ppm (n = 11...

  15. ({sup 1} H, {sup 13} C and {sup 31} P) NMR of phosphonic acid derivatives; Ressonancia magnetica nuclear ({sup 1} H, {sup 13} C, {sup 31} P) de derivados do acido fosfonico

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Valdevino; Costa, Valentim E. Uberti [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Quimica

    1991-12-31

    In the last years the development of phosphates analogues in the medical and agricultural pesticides has being very expressive. {sup 1} H, {sup 13} C and mainly {sup 31} P NMR are used for stereochemical and conformational analysis, and reactivity studies on the compounds resulting from those chemical processes 2 refs., 4 figs., 1 tab.

  16. Two-Dimensional Proton Chemical-Shift Imaging of Human Muscle Metabolites

    Science.gov (United States)

    Hu, Jiani; Willcott, M. Robert; Moore, Gregory J.

    1997-06-01

    Large lipid signals and strong susceptibility gradients introduced by muscle-bone interfaces represent major technical challenges forin vivoproton MRS of human muscle. Here, the demonstration of two-dimensional proton chemical-shift imaging of human muscle metabolites is presented. This technique utilizes a chemical-shift-selective method for water and lipid suppression and automatic shimming for optimal homogeneity of the magnetic field. The 2D1H CSI technique described facilitates the acquisition of high-spatial-resolution spectra, and allows one to acquire data from multiple muscle groups in a single experiment. A preliminary investigation utilizing this technique in healthy adult males (n= 4) revealed a highly significant difference in the ratio of the creatine to trimethylamine resonance between the fast and slow twitch muscle groups examined. The technique is robust, can be implemented on a commercial scanner with relative ease, and should prove to be a useful tool for both clinical and basic investigators.

  17. Modeling proteins using a super-secondary structure library and NMR chemical shift information.

    Science.gov (United States)

    Menon, Vilas; Vallat, Brinda K; Dybas, Joseph M; Fiser, Andras

    2013-06-04

    A remaining challenge in protein modeling is to predict structures for sequences with no sequence similarity to any experimentally solved structure. Based on earlier observations, the library of protein backbone supersecondary structure motifs (Smotifs) saturated about a decade ago. Therefore, it should be possible to build any structure from a combination of existing Smotifs with the help of limited experimental data that are sufficient to relate the backbone conformations of Smotifs between target proteins and known structures. Here, we present a hybrid modeling algorithm that relies on an exhaustive Smotif library and on nuclear magnetic resonance chemical shift patterns without any input of primary sequence information. In a test of 102 proteins, the algorithm delivered 90 homology-model-quality models, among them 24 high-quality ones, and a topologically correct solution for almost all cases. The current approach opens a venue to address the modeling of larger protein structures for which chemical shifts are available.

  18. PACSY, a relational database management system for protein structure and chemical shift analysis.

    Science.gov (United States)

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L

    2012-10-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu.

  19. Identifying Stereoisomers by ab-initio Calculation of Secondary Isotope Shifts on NMR Chemical Shieldings

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Böhm

    2014-04-01

    Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  20. First-principles calculation of core-level binding energy shift in surface chemical processes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Combined with third generation synchrotron radiation light sources, X-ray photoelectron spectroscopy (XPS) with higher energy resolution, brilliance, enhanced surface sensitivity and photoemission cross section in real time found extensive applications in solid-gas interface chemistry. This paper reports the calculation of the core-level binding energy shifts (CLS) using the first-principles density functional theory. The interplay between the CLS calculations and XPS measurements to uncover the structures, adsorption sites and chemical reactions in complex surface chemical processes are highlight. Its application on clean low index (111) and vicinal transition metal surfaces, molecular adsorption in terms of sites and configuration, and reaction kinetics are domonstrated.

  1. Relationship between electrophilicity index, Hammett constant and nucleus-independent chemical shift

    Indian Academy of Sciences (India)

    M Elango; R Parthasarathi; G Karthik Narayanan; A Md Sabeelullah; U Sarkar; N S Venkatasubramaniyan; V Subramanian; P K Chattaraj

    2005-01-01

    Inter-relationships between the electrophilicity index (), Hammett constant (ó) and nucleusindependent chemical shift (NICS (1) - NICS value one å ngstrom above the ring centre) have been investigated for a series of meta- and para-substituted benzoic acids. Good linear relationships between Hammett constant vs electrophilicity and Hammett constant vs NICS (1) values have been observed. However, the variation of NICS (1) against shows only a low correlation coefficient.

  2. Crime Scene Investigation: Clinical Application of Chemical Shift Imaging as a Problem Solving Tool

    Science.gov (United States)

    2016-02-26

    MDW/SGVU SUBJECT: Professional Presentation Approva l 26 FEB 2016 1. Your paper, entitled Crime Scene Investigation: Clinical Aoolication of...or technical information as a publication/presentation, a new 59 MDW Form 3039 must be submitted for review and approval.] Crime Scene Investiga...tion: Clinical Application of Chemical Shift Imaging as a Problem Solving Tool 1. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED Crime Scene

  3. Chemical shift selective magnetic resonance imaging of the optic nerve in patients with acute optic neuritis

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, H.B.W.; Thomsen, C.; Frederiksen, J.; Henriksen, O.; Olesen, J.

    Optic neuritis is often the first manifestion of multiple sclerosis (MS). Sixteen patients with acute optic neuritis and one patient with benign intracranial hypertension (BIH) were investigated by magnetic resonance imaging, using a chemical shift selective double spin echo sequence. In 3 of the 16 patients, abnormalities were seen. In one patient with bilateral symptoms, signal hyperintensity and swelling of the right side of the chiasm were found. In another patient the optic nerve was found diffusely enlarged with only a marginally increased signal in the second echo. In the third patient an area of signal hyperintensity and swelling was seen in the left optic nerve. In the patient with BIH the subarachnoid space which surrounds the optic nerves was enlarged. Even using this refined pulse sequence, avoiding the major artefact in imaging the optic nerve, the chemical shift artefact, lesions were only shown in 3/16 (19%) of the patients with optic neuritis. Nevertheless, the presented chemical shift selective double spin echo sequence may be of great value for detection of retrobulbar lesions.

  4. Effects of Protein-pheromone Complexation on Correlated Chemical Shift Modulations

    Energy Technology Data Exchange (ETDEWEB)

    Perazzolo, Chiara; Wist, Julien [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland); Loth, Karine; Poggi, Luisa [Ecole Normale Superieure, Departement de chimie, associe au CNRS (France); Homans, Steve [University of Leeds, School of Biochemistry and Microbiology (United Kingdom); Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland)], E-mail: Geoffrey.Bodenhausen@ens.fr

    2005-12-15

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{l_brace}C'N{r_brace} and DQC{l_brace}C'N{r_brace}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand)

  5. Substituent effects in the 13C NMR chemical shifts of alpha-mono-substituted acetonitriles.

    Science.gov (United States)

    Reis, Adriana K C A; Rittner, Roberto

    2007-03-01

    13C chemical shifts empirical calculations, through a very simple additivity relationship, for the alpha-methylene carbon of some alpha-mono-substituted acetonitriles, Y-CH(2)-CN (Y=H, F, Cl, Br, I, OMe, OEt, SMe, SEt, NMe(2), NEt(2), Me and Et), lead to similar, or even better, results in comparison to the reported values obtained through Quantum Mechanics methods. The observed deviations, for some substituents, are very similar for both approaches. This divergence between experimental and calculated, either empirically or theoretically, values are smaller than for the corresponding acetones, amides, acetic acids and methyl esters, which had been named non-additivity effects (or intramolecular interaction chemical shifts, ICS) and attributed to some orbital interactions. Here, these orbital interactions do not seem to be the main reason for the non-additivity effects in the empirical calculations, which must be due solely to the magnetic anisotropy of the heavy atom present in the substituent. These deviations, which were also observed in the theoretical calculations, were attributed in that case to the non-inclusion of relativistic effects and spin-orbit coupling in the Hamiltonian. Some divergence is also observed for the cyano carbon chemical shifts, probably due to the same reasons.

  6. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    OpenAIRE

    2015-01-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ([superscript 13]C–[superscript 13]C, [superscript 15]N–[superscript 13]C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 [superscript 13]C chemical shifts and >3 million chemical...

  7. Semi-LASER localized dynamic 31P magnetic resonance spectroscopy in exercising muscle at ultra-high magnetic field.

    Science.gov (United States)

    Meyerspeer, Martin; Scheenen, Tom; Schmid, Albrecht Ingo; Mandl, Thomas; Unger, Ewald; Moser, Ewald

    2011-05-01

    Magnetic resonance spectroscopy (MRS) can benefit from increased signal-to-noise ratio (SNR) of high magnetic fields. In this work, the SNR gain of dynamic 31P MRS at 7 T was invested in temporal and spatial resolution. Using conventional slice selective excitation combined with localization by adiabatic selective refocusing (semi-LASER) with short echo time (TE = 23 ms), phosphocreatine quantification in a 38 mL voxel inside a single exercising muscle becomes possible from single acquisitions, with SNR = 42 ± 4 in resting human medial gastrocnemius. The method was used to quantify the phosphocreatine time course during 5 min of plantar flexion exercise and recovery with a temporal resolution of 6 s (the chosen repetition time for moderate T1 saturation). Quantification of inorganic phosphate and pH required accumulation of consecutively acquired spectra when (resting) Pi concentrations were low. The localization performance was excellent while keeping the chemical shift displacement acceptably small. The SNR and spectral line widths with and without localization were compared between 3T and 7 T systems in phantoms and in vivo. The results demonstrate that increased sensitivity of ultra-high field can be used to dynamically acquire metabolic information from a clearly defined region in a single exercising muscle while reaching a temporal resolution previously available with MRS in non-localizing studies only. The method may improve the interpretation of dynamic muscle MRS data.

  8. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules.

    Science.gov (United States)

    Martin, Bob; Autschbach, Jochen

    2015-02-07

    Using a recently proposed equation for NMR nuclear magnetic shielding for molecules with unpaired electrons [A. Soncini and W. Van den Heuvel, J. Chem. Phys. 138, 021103 (2013)], equations for the temperature (T) dependent isotropic shielding for multiplets with an effective spin S equal to 1/2, 1, 3/2, 2, and 5/2 in terms of electron paramagnetic resonance spin Hamiltonian parameters are derived and then expanded in powers of 1/T. One simplifying assumption used is that a matrix derived from the zero-field splitting (ZFS) tensor and the Zeeman coupling matrix (g-tensor) share the same principal axis system. The influence of the rhombic ZFS parameter E is only investigated for S = 1. Expressions for paramagnetic contact shielding (from the isotropic part of the hyperfine coupling matrix) and pseudo-contact or dipolar shielding (from the anisotropic part of the hyperfine coupling matrix) are considered separately. The leading order is always 1/T. A temperature dependence of the contact shielding as 1/T and of the dipolar shielding as 1/T(2), which is sometimes assumed in the assignment of paramagnetic chemical shifts, is shown to arise only if S ≥ 1 and zero-field splitting is appreciable, and only if the Zeeman coupling matrix is nearly isotropic (Δg = 0). In such situations, an assignment of contact versus dipolar shifts may be possible based only on linear and quadratic fits of measured variable-temperature chemical shifts versus 1/T. Numerical data are provided for nickelocene (S = 1). Even under the assumption of Δg = 0, a different leading order of contact and dipolar shifts in powers of 1/T is not obtained for S = 3/2. When Δg is not very small, dipolar and contact shifts both depend in leading order in 1/T in all cases, with sizable contributions in order 1/T(n) with n = 2 and higher.

  9. Differential cross sections measurement of 31P(p,pγ1)31P reaction for PIGE applications

    Science.gov (United States)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.

    2016-09-01

    Differential cross sections of proton induced gamma-ray emission from the 31P(p,pγ1)31P (Eγ = 1266 keV) nuclear reaction were measured in the proton energy range of 1886-3007 keV at the laboratory angle of 90°. For these measurements a thin Zn3P2 target evaporated onto a self-supporting C film was used. The gamma-rays and backscattered protons were detected simultaneously. An HPGe detector placed at an angle of 90° with respect to the beam direction was employed to collect gamma-rays while an ion implanted Si detector placed at a scattering angle of 165° was used to detect backscattered protons. Simultaneous collection of gamma-rays and RBS spectra is a great advantage of this approach which makes differential cross-section measurements independent on the collected beam charge. The obtained cross-sections were compared with the previously only measured data in the literature. The validity of the measured differential cross sections was verified through a thick target benchmarking experiment. The overall systematic uncertainty of cross section values was estimated to be better than ±9%.

  10. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsching, Keith J., E-mail: kfritzsc@brandeis.edu [Brandeis University, Department of Chemistry (United States); Hong, Mei [Massachusetts Institute of Technology, Department of Chemistry (United States); Schmidt-Rohr, Klaus, E-mail: srohr@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2016-02-15

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ({sup 13}C–{sup 13}C, {sup 15}N–{sup 13}C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 {sup 13}C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the {sup 13}C NMR data and almost all {sup 15}N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the {sup 13}C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra

  11. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria.

    Science.gov (United States)

    Fritzsching, Keith J; Hong, Mei; Schmidt-Rohr, Klaus

    2016-02-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ((13)C-(13)C, (15)N-(13)C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 (13)C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited "hand-picked" data sets, we show that ~94% of the (13)C NMR data and almost all (15)N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6% of the (13)C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. -2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided

  12. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.

    Science.gov (United States)

    del Rosal, I; Maron, L; Poteau, R; Jolibois, F

    2008-08-14

    Transition metal hydrides are of great interest in chemistry because of their reactivity and their potential use as catalysts for hydrogenation. Among other available techniques, structural properties in transition metal (TM) complexes are often probed by NMR spectroscopy. In this paper we will show that it is possible to establish a viable methodological strategy in the context of density functional theory, that allows the determination of 1H NMR chemical shifts of hydride ligands attached to transition metal atoms in mononuclear systems and clusters with good accuracy with respect to experiment. 13C chemical shifts have also been considered in some cases. We have studied mononuclear ruthenium complexes such as Ru(L)(H)(dppm)2 with L = H or Cl, cationic complex [Ru(H)(H2O)(dppm)2]+ and Ru(H)2(dppm)(PPh3)2, in which hydride ligands are characterized by a negative 1H NMR chemical shift. For these complexes all calculations are in relatively good agreement compared to experimental data with errors not exceeding 20% except for the hydrogen atom in Ru(H)2(dppm)(PPh3)2. For this last complex, the relative error increases to 30%, probably owing to the necessity to take into account dynamical effects of phenyl groups. Carbonyl ligands are often encountered in coordination chemistry. Specific issues arise when calculating 1H or 13C NMR chemical shifts in TM carbonyl complexes. Indeed, while errors of 10 to 20% with respect to experiment are often considered good in the framework of density functional theory, this difference in the case of mononuclear carbonyl complexes culminates to 80%: results obtained with all-electron calculations are overall in very satisfactory agreement with experiment, the error in this case does not exceed 11% contrary to effective core potentials (ECPs) calculations which yield errors always larger than 20%. We conclude that for carbonyl groups the use of ECPs is not recommended, although their use could save time for very large systems, for

  13. Parameter-free calculation of K alpha chemical shifts for Al, Si, and Ge oxides

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2001-01-01

    The chemical shifts of the K alpha radiation line from Al, Si, and Ge ions between their elemental and oxide forms are calculated within the framework of density functional theory using ultrasoft pseudopotentials. It is demonstrated that this theoretical approach yields quantitatively accurate...... results fur the systems investigated, provided that relaxations of the valence electrons upon the core-hole transition are properly accounted for. Therefore, such calculations provide a powerful tool for identification of impurity states based on x-ray fluorescence data. Results for an Al impurity...

  14. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents

    Directory of Open Access Journals (Sweden)

    Benjamin Görling

    2016-09-01

    Full Text Available Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored.

  15. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents

    Science.gov (United States)

    Görling, Benjamin; Bräse, Stefan; Luy, Burkhard

    2016-01-01

    Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored. PMID:27598217

  16. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    Science.gov (United States)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  17. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    DEFF Research Database (Denmark)

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A;

    2000-01-01

    Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations...

  18. Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set.

    Science.gov (United States)

    Paschoal, D; Guerra, C Fonseca; de Oliveira, M A L; Ramalho, T C; Dos Santos, H F

    2016-10-01

    Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc.

  19. 125Te NMR chemical-shift trends in PbTe–GeTe and PbTe–SnTe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Njegic, Bosiljka [Ames Laboratory; Levin, Evgenii M. [Ames Laboratory; Schmidt-Rohr, Klaus [Ames Laboratory

    2013-10-08

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in 125Te NMR chemical shift due to bonding to dopant or “solute” atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the 125Te NMR chemical shifts in PbTe-based alloys, Pb1-xGexTe and Pb1-xSnxTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS 125Te NMR spectra. A simple linear trend in chemical shifts with the number of Pb neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the 125Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.

  20. 125Te NMR chemical-shift trends in PbTe-GeTe and PbTe-SnTe alloys.

    Science.gov (United States)

    Njegic, B; Levin, E M; Schmidt-Rohr, K

    2013-01-01

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in (125)Te NMR chemical shift due to bonding to dopant or "solute" atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the (125)Te NMR chemical shifts in PbTe-based alloys, Pb1-xGexTe and Pb1-xSnxTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS (125)Te NMR spectra. A simple linear trend in chemical shifts with the number of Pb neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the (125)Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.

  1. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Science.gov (United States)

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  2. Predicting the redox state and secondary structure of cysteine residues using multi-dimensional classification analysis of NMR chemical shifts.

    Science.gov (United States)

    Wang, Ching-Cheng; Lai, Wen-Chung; Chuang, Woei-Jer

    2016-09-01

    A tool for predicting the redox state and secondary structure of cysteine residues using multi-dimensional analyses of different combinations of nuclear magnetic resonance (NMR) chemical shifts has been developed. A data set of cysteine [Formula: see text], (13)C(α), (13)C(β), (1)H(α), (1)H(N), and (15)N(H) chemical shifts was created, classified according to redox state and secondary structure, using a library of 540 re-referenced BioMagResBank (BMRB) entries. Multi-dimensional analyses of three, four, five, and six chemical shifts were used to derive rules for predicting the structural states of cysteine residues. The results from 60 BMRB entries containing 122 cysteines showed that four-dimensional analysis of the C(α), C(β), H(α), and N(H) chemical shifts had the highest prediction accuracy of 100 and 95.9 % for the redox state and secondary structure, respectively. The prediction of secondary structure using 3D, 5D, and 6D analyses had the accuracy of ~90 %, suggesting that H(N) and [Formula: see text] chemical shifts may be noisy and made the discrimination worse. A web server (6DCSi) was established to enable users to submit NMR chemical shifts, either in BMRB or key-in formats, for prediction. 6DCSi displays predictions using sets of 3, 4, 5, and 6 chemical shifts, which shows their consistency and allows users to draw their own conclusions. This web-based tool can be used to rapidly obtain structural information regarding cysteine residues directly from experimental NMR data.

  3. The interplay between transient a-helix formation and side chain rotamer distributions in disordered proteins probed by methyl chemical shifts

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Iesmantavicius, Vytautas; Poulsen, Flemming M

    2011-01-01

    and retinoid receptors (ACTR). We find that small differences in the methyl carbon chemical shifts due to the ¿-gauche effect may provide information about the side chain rotamer distributions. However, the effects of neighboring residues on the methyl group chemical shifts obscure the direct observation...... of ¿-gauche effect. To overcome this, we reference the chemical shifts to those in a more disordered state resulting in residue specific random coil chemical shifts. The (13)C secondary chemical shifts of the methyl groups of valine, leucine, and isoleucine show sequence specific effects, which allow...

  4. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    Science.gov (United States)

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-03-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here.

  5. Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

    DEFF Research Database (Denmark)

    Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;

    2011-01-01

    Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation....... This method enables the determination of both the electronic and the protonic (deuteronic) wave functions simultaneously and can directly calculate the geometrical difference induced by H/D isotope effects. The calculations show that the one-bond deuterium isotope effects on 15N nuclear shielding, 1Δ15N......(D), in ammonium and amines decrease as a counterion or water molecule moves closer to the nitrogen. 1Δ15N(D) and 2Δ1H(D) of the NH3+ groups of lysine residues in the B1 domain of protein G have been calculated using truncated side chains and also determined experimentally by NMR. Comparisons show...

  6. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    CERN Document Server

    Sweany, M; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, M

    2011-01-01

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 $\\pm$ 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 $\\pm$ 0.03 for Carbostyril-124, and 1.20 $\\pm$ 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modele...

  7. Handling the influence of chemical shift in amplitude-modulated heteronuclear dipolar recoupling solid-state NMR

    Science.gov (United States)

    Basse, Kristoffer; Shankar, Ravi; Bjerring, Morten; Vosegaard, Thomas; Nielsen, Niels Chr.; Nielsen, Anders B.

    2016-09-01

    We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization (RESPIRATIONCP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the RESPIRATIONCP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous 15N → 13CO and 15N → 13Cα coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability.

  8. 50 years anniversary of the discovery of the core level chemical shifts. The early years of photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mårtensson, Nils [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Sokolowski, Evelyn [Tvär-Ramsdal 1, 611 99 Tystberga (Sweden); Svensson, Svante, E-mail: Svante.Svensson@fysik.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden)

    2014-03-01

    Highlights: • 50 years since the discovery of t the core level chemical shift. • The pioneering years of ESCA. • A critical review of the first core electron chemical shift results. - Abstract: The pioneering years of photoelectron spectroscopy in Uppsala are discussed, especially the work leading to the discovery of the core level chemical shifts. At a very early stage of the project, the pioneering group observed what they described as evidence for chemical shifts in the core level binding energies. However, it can now be seen that the initial observations to a large extent was due to charging of the samples. It is interesting to note that the decisive experiment was realized, not as a result of a systematic study, but was obtained with a large element of serendipity. Only when a chemical binding energy shift was observed between two S2p electron lines in the same molecule, the results were accepted internationally, and the fascinating expansion of modern core level photoelectron spectroscopy could start.

  9. Chemical shift tensor determination using magnetically oriented microcrystal array (MOMA): 13C solid-state CP NMR without MAS

    Science.gov (United States)

    Kusumi, R.; Kimura, F.; Song, G.; Kimura, T.

    2012-10-01

    Chemical shift tensors for the carboxyl and methyl carbons of L-alanine crystals were determined using a magnetically oriented microcrystal array (MOMA) prepared from a microcrystalline powder sample of L-alanine. A MOMA is a single-crystal-like composite in which microcrystals are aligned three-dimensionally in a matrix resin. The single-crystal rotation method was applied to the MOMA to determine the principal values and axes of the chemical shift tensors. The result showed good agreement with the literature data for the single crystal of L-alanine. This demonstrates that the present technique is a powerful tool for determining the chemical shift tensor of a crystal from a microcrystal powder sample.

  10. Chemical shift assignments of zinc finger domain of methionine aminopeptidase 1 (MetAP1) from Homo sapiens.

    Science.gov (United States)

    Rachineni, Kavitha; Arya, Tarun; Singarapu, Kiran Kumar; Addlagatta, Anthony; Bharatam, Jagadeesh

    2015-10-01

    Methionine aminopeptidase Type I (MetAP1) cleaves the initiator methionine from about 70 % of all newly synthesized proteins in almost every living cell. Human MetAP1 is a two domain protein with a zinc finger on the N-terminus and a catalytic domain on the C-terminus. Here, we report the chemical shift assignments of the amino terminal zinc binding domain (ZBD) (1-83 residues) of the human MetAP1 derived by using advanced NMR spectroscopic methods. We were able to assign the chemical shifts of ZBD of MetAP1 nearly complete, which reveal two helical fragments involving residues P44-L49 (α1) and Q59-K82 (α2). The protein structure unfolds upon complex formation with the addition of 2 M excess EDTA, indicated by the appearance of amide resonances in the random coil chemical shift region of (15)NHSQC spectrum.

  11. Origin of the conformational modulation of the 13C NMR chemical shift of methoxy groups in aromatic natural compounds.

    Science.gov (United States)

    Toušek, Jaromír; Straka, Michal; Sklenář, Vladimír; Marek, Radek

    2013-01-24

    The interpretation of nuclear magnetic resonance (NMR) parameters is essential to understanding experimental observations at the molecular and supramolecular levels and to designing new and more efficient molecular probes. In many aromatic natural compounds, unusual (13)C NMR chemical shifts have been reported for out-of-plane methoxy groups bonded to the aromatic ring (~62 ppm as compared to the typical value of ~56 ppm for an aromatic methoxy group). Here, we analyzed this phenomenon for a series of aromatic natural compounds using Density Functional Theory (DFT) calculations. First, we checked the methodology used to optimize the structure and calculate the NMR chemical shifts in aromatic compounds. The conformational effects of the methoxy group on the (13)C NMR chemical shift then were interpreted by the Natural Bond Orbital (NBO) and Natural Chemical Shift (NCS) approaches, and by excitation analysis of the chemical shifts, breaking down the total nuclear shielding tensor into the contributions from the different occupied orbitals and their magnetic interactions with virtual orbitals. We discovered that the atypical (13)C NMR chemical shifts observed are not directly related to a different conjugation of the lone pair of electrons of the methoxy oxygen with the aromatic ring, as has been suggested. Our analysis indicates that rotation of the methoxy group induces changes in the virtual molecular orbital space, which, in turn, correlate with the predominant part of the contribution of the paramagnetic deshielding connected with the magnetic interactions of the BD(CMet-H)→BD*(CMet-OMet) orbitals, resulting in the experimentally observed deshielding of the (13)C NMR resonance of the out-of-plane methoxy group.

  12. Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated "Safe Sites"?

    Science.gov (United States)

    2011-07-26

    Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated ‘‘Safe Sites’’? Hortance Manda*, Luana M. Arce... aegypti to irritant and repellent chemicals that can be exploited to reduce man-vector contact. Maximum efficacy of interventions based on irritant...overall impact. Methods: Using a laboratory box assay, resting patterns of two population strains of female Ae. aegypti (THAI and PERU) were evaluated

  13. SUBSTITUENT CHEMICAL SHIFT (SCS) AND THE SEQUENCE STRUCTURE OF ETHYLENE-VINYL ALCOHOL COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zinan; TIAN Wenjing; WU Shengrong; DAI Yingkun; FENG Zhiliu; SHEN Lianfang; YUAN Hanzhen

    1992-01-01

    Three ethylene-vinyl alcohol copolymers were studied by means of the substituent chemical shift(SCS) method. The SCS parameters of hydroxy (-OH)in two different solvents were obtained: in deuterium oxide/phenol (20/80 W/W ) the parameters are S1 = 42.77 ± 0.08ppm, S2 = 7.15 ±0.06 ppm,S3(s )=-4.08±0.02ppm, S3(t)=-3.09±0.20ppm,S4=0.48±0.03ppm, S5 =0.26±0.05ppm. In o-dichlorobenzen-d4 S1(s)=44.79±0.61ppm, S2=7.40±0.00ppm, S3 (s)=-4.51±0.17ppm, S3 (t)= -3.13± 0.00 ppm, S4 =0 . 63±0.04ppm, S5=0.36±0.00ppm. Simultaneously the 13CNMR spectra of EVA copolymers were assigned by using the SCS parameters obtained.

  14. Chemical shift imaging and localised magnetic resonance spectroscopy in full-term asphyxiated neonates

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Olivier [Children' s Hospital, Paediatric Intensive Care Unit, Bordeaux (France); Chateil, Jean-Francois; Bordessoules, Martine; Brun, Muriel [Children' s Hospital, Radiology Unit, Bordeaux (France)

    2005-10-01

    Diagnosis of brain lesions after birth anoxia-ischemia is essential for appropriate management. Clinical evaluation is not sufficient. MRI has been proven to provide useful information. To compare abnormalities observed with MRI, including diffusion-weighted imaging (DWI), localised magnetic resonance spectroscopy (MRS) and chemical shift imaging (CSI) and correlate these findings with the clinical outcome. Fourteen full-term neonates with birth asphyxia were studied. MRI, MRS and CSI were performed within the first 4 days of life. Lesions observed with DWI were correlated with outcome, but the apparent diffusion coefficient (ADC) did improve diagnostic confidence. The mean value of Lac/Cr for the neonates with a favourable outcome was statically lower than for those who died (0.22 vs 1.04; P = 0.01). The same results were observed for the Lac/NAA ratio (0.21 vs 1.23; P = 0.01). Data obtained with localised MRS and CSI were correlated for the ratio N-acetyl-aspartate/choline, but not for the other metabolites. No correlation was found between the ADC values and the metabolite ratios. Combination of these techniques could be helpful in our understanding of the physiopathological events occurring in neonates with asphyxia. (orig.)

  15. Effects of side-chain orientation on the {sup 13}C chemical shifts of antiparallel {beta}-sheet model peptides

    Energy Technology Data Exchange (ETDEWEB)

    Villegas, Myriam E.; Vila, Jorge A. [Facultad de Ciencias Fisico Matematicas y Naturales, Instituto de Matematica Aplicada San Luis, Universidad Nacional de San Luis, CONICET (Argentina); Scheraga, Harold A. [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States)], E-mail: has5@cornell.edu

    2007-02-15

    The dependence of the {sup 13}C chemical shift on side-chain orientation was investigated at the density functional level for a two-strand antiparallel {beta}-sheet model peptide represented by the amino acid sequence Ac-(Ala){sub 3}-X-(Ala){sub 12}-NH{sub 2} where X represents any of the 17 naturally occurring amino acids, i.e., not including alanine, glycine and proline. The dihedral angles adopted for the backbone were taken from, and fixed at, observed experimental values of an antiparallel {beta}-sheet. We carried out a cluster analysis of the ensembles of conformations generated by considering the side-chain dihedral angles for each residue X as variables, and use them to compute the {sup 13}C chemical shifts at the density functional theory level. It is shown that the adoption of the locally-dense basis set approach for the quantum chemical calculations enabled us to reduce the length of the chemical-shift calculations while maintaining good accuracy of the results. For the 17 naturally occurring amino acids in an antiparallel {beta}-sheet, there is (i) good agreement between computed and observed {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts, with correlation coefficients of 0.95 and 0.99, respectively; (ii) significant variability of the computed {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts as a function of {chi}{sup 1} for all amino acid residues except Ser; and (iii) a smaller, although significant, dependence of the computed {sup 13}C{sup {alpha}} chemical shifts on {chi}{sup {xi}} (with {xi} {>=} 2) compared to {chi}{sup 1} for eleven out of seventeen residues. Our results suggest that predicted {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts, based only on backbone ({phi},{psi}) dihedral angles from high-resolution X-ray structure data or from NMR-derived models, may differ significantly from those observed in solution if the dihedral-angle preferences for the side chains are not taken into

  16. 1H MAS and 1H --> 31P CP/MAS NMR study of human bone mineral.

    Science.gov (United States)

    Kaflak-Hachulska, A; Samoson, A; Kolodziejski, W

    2003-11-01

    Chemical structure of human bone mineral was studied by solid-state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS). Trabecular and cortical bone samples from adult subjects were compared with mineral standards: hydroxyapatite (HA), hydrated and calcined, carbonatoapatite of type B with 9 wt% of CO3(2-) (CHA-B), brushite (BRU) and mixtures of HA with BRU. Proton spectra were acquired with excellent spectral resolution provided by ultra-high speed MAS at 40 kHz. 2D 1H-31P NMR heteronuclear correlation was achieved by cross-polarization (CP) under fast MAS at 12 kHz. 31P NMR was applied with CP from protons under slow MAS at 1 kHz. Appearance of 31P rotational sidebands together with their CP kinetics were analyzed. It was suggested that the sidebands of CP spectra are particularly suitable for monitoring the state of apatite crystal surfaces. The bone samples appeared to be deficient in structural hydroxyl groups analogous to those in HA. We found no direct evidence that the HPO4(2-) brushite-like ions are present in bone mineral. The latter problem is extensively discussed in the literature. The study proves there is a similarity between CHA-B and bone mineral expressed by their similar NMR behavior.

  17. Metabolism of perfused pig intercostal muscles evaluated by 31P-magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Brian Lindegaard; Arendrup, Henrik; Secher, Niels H

    2006-01-01

    consumption and 31P-magnetic resonance spectroscopy (31P-MRS). When perfused at rest with Krebs-Ringer buffer, the preparation maintained physiological levels of phosphocreatine (PCr), inorganic phosphate (Pi), ATP and pH at a stable oxygen consumption of 0.51 +/- 0.01 micromol min(-1) g(-1) for more than 2 h...

  18. Analysis of {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts of cysteine and cystine residues in proteins: a quantum chemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Osvaldo A.; Villegas, Myriam E.; Vila, Jorge A. [Universidad Nacional de San Luis, Instituto de Matematica Aplicada San Luis (Argentina); Scheraga, Harold A., E-mail: has5@cornell.ed [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States)

    2010-03-15

    Cysteines possess a unique property among the 20 naturally occurring amino acids: it can be present in proteins in either the reduced or oxidized form, and can regulate the activity of some proteins. Consequently, to augment our previous treatment of the other types of residues, the {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts of 837 cysteines in disulfide-bonded cystine from a set of seven non-redundant proteins, determined by X-ray crystallography and NMR spectroscopy, were computed at the DFT level of theory. Our results indicate that the errors between observed and computed {sup 13}C{sup {alpha}} chemical shifts of such oxidized cysteines can be attributed to several effects such as: (a) the quality of the NMR-determined models, as evaluated by the conformational-average (ca) rmsd value; (b) the existence of high B-factor or crystal-packing effects for the X-ray-determined structures; (c) the dynamics of the disulfide bonds in solution; and (d) the differences in the experimental conditions under which the observed {sup 13}C{sup {alpha}} chemical shifts and the protein models were determined by either X-ray crystallography or NMR-spectroscopy. These quantum-chemical-based calculations indicate the existence of two, almost non-overlapped, basins for the oxidized and reduced -SH {sup 13}C{sup {beta}}, but not for the {sup 13}C{sup {alpha}}, chemical shifts, in good agreement with the observation of 375 {sup 13}C{sup {alpha}} and 337 {sup 13}C{sup {beta}} resonances from 132 proteins by Sharma and Rajarathnam (2000). Overall, our results indicate that explicit consideration of the disulfide bonds is a necessary condition for an accurate prediction of {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts of cysteines in cystines.

  19. Analysis of the contributions of ring current and electric field effects to the chemical shifts of RNA bases.

    Science.gov (United States)

    Sahakyan, Aleksandr B; Vendruscolo, Michele

    2013-02-21

    Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases.

  20. Elucidation of the substitution pattern of 9,10-anthraquinones through the chemical shifts of peri-hydroxyl protons

    DEFF Research Database (Denmark)

    Schripsema, Jan; Danigno, Denise

    1996-01-01

    In 9,10-anthraquinones the chemical shift of a peri-hydroxyl proton is affected by the substituents in the other benzenoid ring. These effects are additive. They are useful for the determination of substitution patterns and have been used to revise the structures of six previously reported anthra...

  1. The local order of supercooled water in solution with LiCl studied by NMR proton chemical shift

    Science.gov (United States)

    Corsaro, C.; Mallamace, D.; Vasi, S.; Cicero, N.; Dugo, G.; Mallamace, F.

    2016-05-01

    We study by means of Nuclear Magnetic Resonance (NMR) spectroscopy the local order of water molecules in solution with lithium chloride at eutectic concentration. In particular, by measuring the proton chemical shift as a function of the temperature in the interval 203{ K}Widom line for water supporting the liquid-liquid transition hypothesis.

  2. Correlation of 1H NMR Chemical Shift for Aqueous Solutions by Statistical Associating Fluid Theory Association Model

    Institute of Scientific and Technical Information of China (English)

    许波; 李浩然; 王从敏; 许映杰; 韩世钧

    2005-01-01

    1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between SAFT association model and Wilson equation shows that the former is better for dealing with aqueous solutions. Finally, the specialties of both models are discussed.

  3. Interaction Study of an Amorphous Solid Dispersion of Cyclosporin A in Poly-Alpha-Cyclodextrin with Model Membranes by 1H-, 2H-, 31P-NMR and Electron Spin Resonance

    Directory of Open Access Journals (Sweden)

    Jean-Claude Debouzy

    2014-01-01

    Full Text Available The properties of an amorphous solid dispersion of cyclosporine A (ASD prepared with the copolymer alpha cyclodextrin (POLYA and cyclosporine A (CYSP were investigated by 1H-NMR in solution and its membrane interactions were studied by 1H-NMR in small unilamellar vesicles and by 31P 2H NMR in phospholipidic dispersions of DMPC (dimyristoylphosphatidylcholine in comparison with those of POLYA and CYSP alone. 1H-NMR chemical shift variations showed that CYSP really interacts with POLYA, with possible adduct formation, dispersion in the solid matrix of the POLYA, and also complex formation. A coarse approach to the latter mechanism was tested using the continuous variations method, indicating an apparent 1 : 1 stoichiometry. Calculations gave an apparent association constant of log Ka = 4.5. A study of the interactions with phospholipidic dispersions of DMPC showed that only limited interactions occurred at the polar head group level (31P. Conversely, by comparison with the expected chain rigidification induced by CYSP, POLYA induced an increase in the fluidity of the layer while ASD formation led to these effects almost being overcome at 298 K. At higher temperature, while the effect of CYSP seems to vanish, a resulting global increase in chain fluidity was found in the presence of ASD.

  4. Female sea lamprey shift orientation toward a conspecific chemical cue to escape a sensory trap

    Science.gov (United States)

    Brant, Cory O.; Johnson, Nicholas; Li, Ke; Buchinger, Tyler J.; Li, Weiming

    2016-01-01

    The sensory trap model of signal evolution hypothesizes that signalers adapt to exploit a cue used by the receiver in another context. Although exploitation of receiver biases can result in conflict between the sexes, deceptive signaling systems that are mutually beneficial drive the evolution of stable communication systems. However, female responses in the nonsexual and sexual contexts may become uncoupled if costs are associated with exhibiting a similar response to a trait in both contexts. Male sea lamprey (Petromyzon marinus) signal with a mating pheromone, 3-keto petromyzonol sulfate (3kPZS), which may be a match to a juvenile cue used by females during migration. Upstream movement of migratory lampreys is partially guided by 3kPZS, but females only move toward 3kPZS with proximal accuracy during spawning. Here, we use in-stream behavioral assays paired with gonad histology to document the transition of female preference for juvenile- and male-released 3kPZS that coincides with the functional shift of 3kPZS as a migratory cue to a mating pheromone. Females became increasingly biased toward the source of synthesized 3kPZS as their maturation progressed into the reproductive phase, at which point, a preference for juvenile odor (also containing 3kPZS naturally) ceased to exist. Uncoupling of female responses during migration and spawning makes the 3kPZS communication system a reliable means of synchronizing mate search. The present study offers a rare example of a transition in female responses to a chemical cue between nonsexual and sexual contexts, provides insights into the origins of stable communication signaling systems.

  5. Synthesis, crystal structure, vibrational and 31P-NMR spectroscopy of the thiophosphate NaMg[PO3S]·9H2O

    Science.gov (United States)

    Höppe, Henning A.; Scharinger, Stefan W.; Heck, Joachim G.; Gross, Peter; Netzsch, Philip; Kazmierczak, Karolina

    2016-12-01

    NaMg[PO3S]·9H2O was obtained as single-phase crystalline powder starting from NaOH, PSCl3 and MgCl2·6H2O. At room temperature NaMg[PO3S]·9H2O crystallises in space group Cmc21 (no. 36) (a=638.58(4) pm, b=1632.31(10) pm, c=1217.16(7) pm, Z = 4; Rint = 0.032, Rσ = 0.034, R1 = 0.036, wR2 = 0.071). The data collection at 100 K reveals an ordering of the PO3S tetrahedra by undergoing a symmetry reduction to P21 (no. 4) and an according formation of twins (C1121, unconv. setting of P21, a=631.41(3) pm, b=1630.00(7) pm, c=1219.24(5) pm, γ=90.00(2)°, Z = 4; Rint = 0.115, Rσ = 0.064, R1 = 0.045, wR2 = 0.070). NaMg[PO3S]·9H2O comprises isolated PO3S tetrahedra, distorted MgO6 octahedra and trigonal NaO6 prisms. 31P NMR spectroscopy showed a chemical shift of 33.7 ppm. The vibrational spectra of NaMg[PO3S]·9H2O were recorded and the relevant bands were assigned.

  6. Cuticular hydrocarbon divergence in the jewel wasp Nasonia : evolutionary shifts in chemical communication channels?

    NARCIS (Netherlands)

    Buellesbach, J.; Gadau, J.; Beukeboom, L. W.; Echinger, F.; Raychoudhury, R.; Werren, J. H.; Schmitt, T.

    2013-01-01

    The evolution and maintenance of intraspecific communication channels constitute a key feature of chemical signalling and sexual communication. However, how divergent chemical communication channels evolve while maintaining their integrity for both sender and receiver is poorly understood. In this s

  7. Comparing localized and nonlocalized dynamic (31) P magnetic resonance spectroscopy in exercising muscle at 7T

    NARCIS (Netherlands)

    Meyerspeer, M.; Robinson, S.; Nabuurs, C.I.H.C.; Scheenen, T.W.; Schoisengeier, A.; Unger, E.; Kemp, G.J.; Moser, E.

    2012-01-01

    By improving spatial and anatomical specificity, localized spectroscopy can enhance the power and accuracy of the quantitative analysis of cellular metabolism and bioenergetics. Localized and nonlocalized dynamic (31) P magnetic resonance spectroscopy using a surface coil was compared during aerobic

  8. Study of hereditary fructose intolerance by use of 31P magnetic resonance spectroscopy.

    Science.gov (United States)

    Oberhaensli, R D; Rajagopalan, B; Taylor, D J; Radda, G K; Collins, J E; Leonard, J V; Schwarz, H; Herschkowitz, N

    1987-10-24

    The effect of fructose on liver metabolism in patients with hereditary fructose intolerance (HFI) and in heterozygotes for HFI was studied by 31P magnetic resonance spectroscopy (31P-MRS). In patients with HFI (n = 5) ingestion of small amounts of fructose was followed by an increase in sugar phosphates and decrease in inorganic phosphate (Pi) in the liver that could be detected by 31P-MRS. 31P-MRS could be used to diagnose fructose intolerance and to monitor the patients' compliance with a fructose-restricted diet. In heterozygotes (n = 8) 50 g fructose given orally led to accumulation of sugar phosphates and depletion of Pi in the liver. Fructose also induced a larger increase in plasma urate in heterozygotes than in control subjects. The effect of fructose on liver Pi and plasma urate was most pronounced in heterozygotes with gout (n = 3). Heterozygosity for HFI may predispose to hyperuricaemia.

  9. Simultaneous 31P NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: technical aspects

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T

    1994-01-01

    . A nonmagnetic ergometer was used for ankle dorsiflexions that activated only the anterior tibial muscle as verified by post exercise imaging. The coil design and the adiabatic sech/tanh pulse improved sensitivity by 45% and 56% respectively, compared with standard techniques. Simultaneous electromyographic......The bioenergetics of human skeletal muscle can be studied by 31P NMR spectroscopy (31P-MRS) and by surface electromyography (SEMG). Simultaneous 31P-MRS and SEMG permit accurate and noninvasive studies of the correlation between metabolic and electrical changes in exercising and recovering human...... skeletal muscle, a relationship that is still poorly understood. This study describes the optimization of skeletal muscle 31P-MRS in a whole-body magnet, involving surface coil design, utilization of adiabatic radio frequency pulses and advanced time-domain fitting, to the technical design of SEMG...

  10. A NMR experiment for simultaneous correlations of valine and leucine/isoleucine methyls with carbonyl chemical shifts in proteins.

    Science.gov (United States)

    Tugarinov, Vitali; Venditti, Vincenzo; Marius Clore, G

    2014-01-01

    A methyl-detected 'out-and-back' NMR experiment for obtaining simultaneous correlations of methyl resonances of valine and isoleucine/leucine residues with backbone carbonyl chemical shifts, SIM-HMCM(CGCBCA)CO, is described. The developed pulse-scheme serves the purpose of convenience in recording a single data set for all Ile(δ1), Leu(δ) and Val(γ) (ILV) methyl positions instead of acquiring two separate spectra selective for valine or leucine/isoleucine residues. The SIM-HMCM(CGCBCA)CO experiment can be used for ILV methyl assignments in moderately sized protein systems (up to ~100 kDa) where the backbone chemical shifts of (13)C(α), (13)Cβ and (13)CO are known from prior NMR studies and where some losses in sensitivity can be tolerated for the sake of an overall reduction in NMR acquisition time.

  11. Computer programming for nucleic acid studies. II. Total chemical shifts calculation of all protons of double-stranded helices.

    Science.gov (United States)

    Giessner-Prettre, C; Ribas Prado, F; Pullman, B; Kan, L; Kast, J R; Ts'o, P O

    1981-01-01

    A FORTRAN computer program called SHIFTS is described. Through SHIFTS, one can calculate the NMR chemical shifts of the proton resonances of single and double-stranded nucleic acids of known sequences and of predetermined conformations. The program can handle RNA and DNA for an arbitrary sequence of a set of 4 out of the 6 base types A,U,G,C,I and T. Data files for the geometrical parameters are available for A-, A'-, B-, D- and S-conformations. The positions of all the atoms are calculated using a modified version of the SEQ program [1]. Then, based on this defined geometry three chemical shift effects exerted by the atoms of the neighboring nucleotides on the protons of each monomeric unit are calculated separately: the ring current shielding effect: the local atomic magnetic susceptibility effect (including both diamagnetic and paramagnetic terms); and the polarization or electric field effect. Results of the program are compared with experimental results for a gamma (ApApGpCpUpU) 2 helical duplex and with calculated results on this same helix based on model building of A'-form and B-form and on graphical procedure for evaluating the ring current effects.

  12. Solid-state NMR (31)P paramagnetic relaxation enhancement membrane protein immersion depth measurements.

    Science.gov (United States)

    Maltsev, Sergey; Hudson, Stephen M; Sahu, Indra D; Liu, Lishan; Lorigan, Gary A

    2014-04-24

    Paramagnetic relaxation enhancement (PRE) is a widely used approach for measuring long-range distance constraints in biomolecular solution NMR spectroscopy. In this paper, we show that (31)P PRE solid-state NMR spectroscopy can be utilized to determine the immersion depth of spin-labeled membrane peptides and proteins. Changes in the (31)P NMR PRE times coupled with modeling studies can be used to describe the spin-label position/amino acid within the lipid bilayer and the corresponding helical tilt. This method provides valuable insight on protein-lipid interactions and membrane protein structural topology. Solid-state (31)P NMR data on the 23 amino acid α-helical nicotinic acetylcholine receptor nAChR M2δ transmembrane domain model peptide followed predicted behavior of (31)P PRE rates of the phospholipid headgroup as the spin-label moves from the membrane surface toward the center of the membrane. Residue 11 showed the smallest changes in (31)P PRE (center of the membrane), while residue 22 shows the largest (31)P PRE change (near the membrane surface), when compared to the diamagnetic control M2δ sample. This PRE SS-NMR technique can be used as a molecular ruler to measure membrane immersion depth.

  13. Chemical shift of Mn and Cr K-edges in X-ray absorption spectroscopy with synchrotron radiation

    Indian Academy of Sciences (India)

    D Joseph; A K Yadav; S N Jha; D Bhattacharyya

    2013-11-01

    Mn and Cr K X-ray absorption edges were measured in various compounds containing Mn in Mn2+, Mn3+ and Mn4+ oxidation states and Cr in Cr3+ and Cr6+ oxidation states. Few compounds possess tetrahedral coordination in the 1st shell surrounding the cation while others possess octahedral coordination. Measurements have been carried out at the energy dispersive EXAFS beamline at INDUS-2 Synchrotron Radiation Source at Raja Ramanna Centre for Advanced Technology, Indore. Energy shifts of ∼8–16 eV were observed for Mn K edge in the Mn-compounds while a shift of 13–20 eV was observed for Cr K edge in Cr-compounds compared to values in elementalMn and Cr, respectively. The different chemical shifts observed for compounds having the same oxidation state of the cation but different anions or ligands show the effect of different chemical environments surrounding the cations in determining their X-ray absorption edges in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on Mn and Cr cations in the above compounds.

  14. Differential dynamic engagement within 24 SH3 domain: peptide complexes revealed by co-linear chemical shift perturbation analysis.

    Directory of Open Access Journals (Sweden)

    Elliott J Stollar

    Full Text Available There is increasing evidence for the functional importance of multiple dynamically populated states within single proteins. However, peptide binding by protein-protein interaction domains, such as the SH3 domain, has generally been considered to involve the full engagement of peptide to the binding surface with minimal dynamics and simple methods to determine dynamics at the binding surface for multiple related complexes have not been described. We have used NMR spectroscopy combined with isothermal titration calorimetry to comprehensively examine the extent of engagement to the yeast Abp1p SH3 domain for 24 different peptides. Over one quarter of the domain residues display co-linear chemical shift perturbation (CCSP behavior, in which the position of a given chemical shift in a complex is co-linear with the same chemical shift in the other complexes, providing evidence that each complex exists as a unique dynamic rapidly inter-converting ensemble. The extent the specificity determining sub-surface of AbpSH3 is engaged as judged by CCSP analysis correlates with structural and thermodynamic measurements as well as with functional data, revealing the basis for significant structural and functional diversity amongst the related complexes. Thus, CCSP analysis can distinguish peptide complexes that may appear identical in terms of general structure and percent peptide occupancy but have significant local binding differences across the interface, affecting their ability to transmit conformational change across the domain and resulting in functional differences.

  15. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups

    Directory of Open Access Journals (Sweden)

    Ricardo Infante-Castillo

    2012-01-01

    Full Text Available This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO charge and 15N NMR chemical shifts of the nitro groups (15NNitro as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation results show that the model is significant and stable and that the predicted accuracy is within 0.146 MJ kg−1, with an overall root mean squared error of prediction (RMSEP below 0.183 MJ kg−1. Strong correlations were observed between the heat of explosion and the charges (R2 = 0.9533 and 15N NMR chemical shifts (R2 = 0.9531 of the studied compounds. In addition, the dependence of the heat of explosion on the presence of activating or deactivating groups of nitroaromatic explosives was analyzed. All calculations, including optimizations, NBO charges, and 15NNitro NMR chemical shifts analyses, were performed using density functional theory (DFT and a 6-311+G(2d,p basis set. Based on these results, this practical quantitative model can be used as a tool in the design and development of highly energetic materials (HEM based on nitroaromatic compounds.

  16. Identification of zinc-ligated cysteine residues based on 13Calpha and 13Cbeta chemical shift data.

    Science.gov (United States)

    Kornhaber, Gregory J; Snyder, David; Moseley, Hunter N B; Montelione, Gaetano T

    2006-04-01

    Although a significant number of proteins include bound metals as part of their structure, the identification of amino acid residues coordinated to non-paramagnetic metals by NMR remains a challenge. Metal ligands can stabilize the native structure and/or play critical catalytic roles in the underlying biochemistry. An atom's chemical shift is exquisitely sensitive to its electronic environment. Chemical shift data can provide valuable insights into structural features, including metal ligation. In this study, we demonstrate that overlapped 13Cbeta chemical shift distributions of Zn-ligated and non-metal-ligated cysteine residues are largely resolved by the inclusion of the corresponding 13Calpha chemical shift information, together with secondary structural information. We demonstrate this with a bivariate distribution plot, and statistically with a multivariate analysis of variance (MANOVA) and hierarchical logistic regression analysis. Using 287 13Calpha/13Cbeta shift pairs from 79 proteins with known three-dimensional structures, including 86 13Calpha and 13Cbeta shifts for 43 Zn-ligated cysteine residues, along with corresponding oxidation state and secondary structure information, we have built a logistic regression model that distinguishes between oxidized cystines, reduced (non-metal ligated) cysteines, and Zn-ligated cysteines. Classifying cysteines/cystines with a statistical model incorporating all three phenomena resulted in a predictor of Zn ligation with a recall, precision and F-measure of 83.7%, and an accuracy of 95.1%. This model was applied in the analysis of Bacillus subtilis IscU, a protein involved in iron-sulfur cluster assembly. The model predicts that all three cysteines of IscU are metal ligands. We confirmed these results by (i) examining the effect of metal chelation on the NMR spectrum of IscU, and (ii) inductively coupled plasma mass spectrometry analysis. To gain further insight into the frequency of occurrence of non-cysteine Zn

  17. Structural Expression of Chemical Environment and C-13 NMR Chemical Shift for Carbons in Alcohols%脂肪醇分子碳环境结构表征与碳谱化学位移

    Institute of Scientific and Technical Information of China (English)

    刘树深; 徐红

    2000-01-01

    A novel atomic electronegative distance vector (AEDV) has been developed to express the chemical environment of various equivalent carbon in alcohols and four 4-parameter linear relationship between chemical shift and AEDV are created by using multiple linear regression.

  18. 新型有机磷阻燃剂的31P NMR分析%The Analysis of the 31P NMR of Novel Organic Phosphorus Flame Retardants

    Institute of Scientific and Technical Information of China (English)

    王小芳; 范润兰; 王利生

    2008-01-01

    利用31P核磁共振仪对7种新型有机磷阻燃剂(CEPPA、DPPA、ODOPB、TODP、PPDC、PPDCO和DCPP)进行了测定和分析,提供了这些阻燃剂的31P NMR化学位移数据,这些数据可用于鉴定阻燃剂结构,通过峰的数量及面积可测定阻燃剂的纯度和杂质含量.结果表明31P NMR分析是检验有机磷阻燃剂纯度的有效方法.

  19. An atomic electronegative distance vector and carbon-13 nuclear magnetic resonance chemical shifts of alcohols and alkanes

    Institute of Scientific and Technical Information of China (English)

    LIU, Shu-Shea; XIA, Zhi-Ning; CAI, Shao-Xi; LIU, Yan

    2000-01-01

    A novel atomic electronegative distance vector (AEDV) has been developed to express the chemical environment of various chemically equivalent carbon atoms in alcohols and alkanes.Combining AEDV and γ parameter, four five-parameter Iinear relationship equations of chemical shift for four types of carbon atoms are created by using multiple linear regression.Correlation coefficients are R = 0.9887, 0.9972, 0.9978 and 0.9968 and roots of mean square error are RMS = 0.906, 0.821, 1.091and 1.091of four types of carbons, i.e., type1,2, 3, and 4 for primary, secondary, tertiary, and quaternary carbons, respectively. The stability and prediction capacity for external samples of four models have been tested by cross- validation.

  20. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean.

    Science.gov (United States)

    Chappell, P Dreux; Whitney, Leeann P; Haddock, Traci L; Menden-Deuer, Susanne; Roy, Eric G; Wells, Mark L; Jenkins, Bethany D

    2013-01-01

    Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here, we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a 3-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA) method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a 3-month-old Haida eddy remained largely (>80%) similar over a 2-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe) and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response.

  1. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Phoebe Dreux Chappell

    2013-09-01

    Full Text Available Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a three-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a three-month-old Haida eddy remained largely (>80% similar over a two-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response.

  2. Observed and calculated 1H and 13C chemical shifts induced by the in situ oxidation of model sulfides to sulfoxides and sulfones.

    Science.gov (United States)

    Dracínský, Martin; Pohl, Radek; Slavetínská, Lenka; Budesínský, Milos

    2010-09-01

    A series of model sulfides was oxidized in the NMR sample tube to sulfoxides and sulfones by the stepwise addition of meta-chloroperbenzoic acid in deuterochloroform. Various methods of quantum chemical calculations have been tested to reproduce the observed (1)H and (13)C chemical shifts of the starting sulfides and their oxidation products. It has been shown that the determination of the energy-minimized conformation is a very important condition for obtaining realistic data in the subsequent calculation of the NMR chemical shifts. The correlation between calculated and observed chemical shifts is very good for carbon atoms (even for the 'cheap' DFT B3LYP/6-31G* method) and somewhat less satisfactory for hydrogen atoms. The calculated chemical shifts induced by oxidation (the Delta delta values) agree even better with the experimental values and can also be used to determine the oxidation state of the sulfur atom (-S-, -SO-, -SO(2)-).

  3. Predicting paramagnetic 1H NMR chemical shifts and state-energy separations in spin-crossover host-guest systems.

    Science.gov (United States)

    Isley, William C; Zarra, Salvatore; Carlson, Rebecca K; Bilbeisi, Rana A; Ronson, Tanya K; Nitschke, Jonathan R; Gagliardi, Laura; Cramer, Christopher J

    2014-06-14

    The behaviour of metal-organic cages upon guest encapsulation can be difficult to elucidate in solution. Paramagnetic metal centres introduce additional dispersion of signals that is useful for characterisation of host-guest complexes in solution using nuclear magnetic resonance (NMR). However, paramagnetic centres also complicate spectral assignment due to line broadening, signal integration error, and large changes in chemical shifts, which can be difficult to assign even for known compounds. Quantum chemical predictions can provide information that greatly facilitates the assignment of NMR signals and identification of species present. Here we explore how the prediction of paramagnetic NMR spectra may be used to gain insight into the spin crossover (SCO) properties of iron(II)-based metal organic coordination cages, specifically examining how the structure of the local metal coordination environment affects SCO. To represent the tetrahedral metal-organic cage, a model system is generated by considering an isolated metal-ion vertex: fac-ML3(2+) (M = Fe(II), Co(II); L = N-phenyl-2-pyridinaldimine). The sensitivity of the (1)H paramagnetic chemical shifts to local coordination environments is assessed and utilised to shed light on spin crossover behaviour in iron complexes. Our data indicate that expansion of the metal coordination sphere must precede any thermal SCO. An attempt to correlate experimental enthalpies of SCO with static properties of bound guests shows that no simple relationship exists, and that effects are likely due to nuanced dynamic response to encapsulation.

  4. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  5. Muscle glycogenolysis is not activated by changes in cytosolic P-metabolites: a 31P and 1H MRS demonstration.

    Science.gov (United States)

    Hsu, Alex C; Dawson, M Joan

    2003-04-01

    Skeletal muscle contraction and glycogenolysis are closely coupled. The standard explanation for this coupling, as taught in modern biochemistry textbooks, is that the metabolic products of contraction (ADP, AMP, P(i)) feed back to activate glycogenolytic enzymes, thus providing for resynthesis of ATP. However, both in vivo (31)P MRS analyses and chemical analyses of muscle extracts have provided results that are contrary to this theory, at least in its simplest form. The MRS studies suffer from ambiguous assumptions. More importantly, in (31)P MRS studies the dependent and independent variables are often confounded because the glycogenolytic rate is calculated from the same data which are used to calculate the other metabolic variables. The analysis of biopsies has been necessarily quite limited, and suffers from a different set of experimental artifacts. Thus, the problem of contraction-glycogenolysis-coupling was reassessed using a quantitatively accurate (1)H MRS method. It is confirmed that glycogenolysis and contractions are closely coupled during repetitive exercise, while glycogenolysis and P-metabolite concentrations are not. A simple metabolic feedback system cannot explain contraction-glycogenolysis-coupling.

  6. 31P-MRS of skeletal muscle is not a sensitive diagnostic test for mitochondrial myopathy

    DEFF Research Database (Denmark)

    Jeppesen, Tina Dysgaard; Quistorff, Bjørn; Wibrand, Flemming

    2007-01-01

    Clinical phenotypes of persons with mitochondrial DNA (mtDNA) mutations vary considerably. Therefore, diagnosing mitochondrial myopathy (MM) patients can be challenging and warrants diagnostic guidelines. (31)phosphorous magnetic resonance spectroscopy ((31)P-MRS) have been included as a minor...... investigated for the following: 1) (31)P-MRS of lower arm and leg muscles before and after exercise, 2) resting and peak-exercise induced increases of plasma lactate, 3) muscle morphology and -mitochondrial enzyme activity, 4) maximal oxygen uptake (VO(2max)), 5) venous oxygen desaturation during handgrip...... impaired citrate synthase-corrected complex I activity. Resting PCr/P(i) ratio and leg P(i) recovery were lower in MM patients vs. healthy subjects. PCr and ATP production after exercise were similar in patients and healthy subjects. Although the specificity for MM of some (31)P-MRS variables was as high...

  7. Optically detected NMR of optically hyperpolarized 31P neutral donors in 28Si

    CERN Document Server

    Steger, M; Yang, A; Saeedi, K; Hayden, M E; Thewalt, M L W; Itoh, K M; Riemann, H; Abrosimov, N V; Becker, P; Pohl, H -J

    2010-01-01

    The electron and nuclear spins of the shallow donor 31P are promising qubit candidates invoked in many proposed Si-based quantum computing schemes. We have recently shown that the near-elimination of inhomogeneous broadening in highly isotopically enriched 28Si enables an optical readout of both the donor electron and nuclear spins by resolving the donor hyperfine splitting in the near-gap donor bound exciton transitions. We have also shown that pumping these same transitions can very quickly produce large electron and nuclear hyperpolarizations at low magnetic fields, where the equilibrium electron and nuclear polarizations are near zero. Here we show preliminary results of the measurement of 31P neutral donor NMR parameters using this optical nuclear hyperpolarization mechanism for preparation of the 31P nuclear spin system, followed by optical readout of the resulting nuclear spin population after manipulation with NMR pulse sequences. This allows for the observation of single-shot NMR signals with very hi...

  8. Halodemetallation of (Z)-1-[2-(Triarylstannyl)vinyl]-cyclooctanol and Correlation of Proton Chemical Shift with Electronegativity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Introduction Organotin compounds have attracted attention as an optimal model for antitumour agents due to the function of the interesting intramolecular O→Sn coordination[1,2]. Our recent concern has been focused on the preparation of (Z)-1-[2-(triarylstannyl)vinyl]-cyclooctanol[3]. In order to find more appropriate compounds used as anticancer agents and explore the effect of the coordinate O→Sn interaction to the antitumor activity, the new compounds were halodemetallated and characterized. During the course of the process, some linear correlations between proton chemical shifts and the sum of the electronegativities of the tin substituents of halogens were found for the first time.

  9. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups

    OpenAIRE

    Ricardo Infante-Castillo; Samuel P. Hernández-Rivera

    2012-01-01

    This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO) charge and 15N NMR chemical shifts of the nitro groups (15NNitro) as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation re...

  10. The Effect of Molecular Conformation on the Accuracy of Theoretical (1)H and (13)C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.

    Science.gov (United States)

    Chikayama, Eisuke; Shimbo, Yudai; Komatsu, Keiko; Kikuchi, Jun

    2016-04-14

    NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites.

  11. Effect of pH, urea, peptide length, and neighboring amino acids on alanine alpha-proton random coil chemical shifts.

    Science.gov (United States)

    Carlisle, Elizabeth A; Holder, Jessica L; Maranda, Abby M; de Alwis, Adamberage R; Selkie, Ellen L; McKay, Sonya L

    2007-01-01

    Accurate random coil alpha-proton chemical shift values are essential for precise protein structure analysis using chemical shift index (CSI) calculations. The current study determines the chemical shift effects of pH, urea, peptide length and neighboring amino acids on the alpha-proton of Ala using model peptides of the general sequence GnXaaAYaaGn, where Xaa and Yaa are Leu, Val, Phe, Tyr, His, Trp or Pro, and n = 1-3. Changes in pH (2-6), urea (0-1M), and peptide length (n = 1-3) had no effect on Ala alpha-proton chemical shifts. Denaturing concentrations of urea (8M) caused significant downfield shifts (0.10 +/- 0.01 ppm) relative to an external DSS reference. Neighboring aliphatic residues (Leu, Val) had no effect, whereas aromatic amino acids (Phe, Tyr, His and Trp) and Pro caused significant shifts in the alanine alpha-proton, with the extent of the shifts dependent on the nature and position of the amino acid. Smaller aromatic residues (Phe, Tyr, His) caused larger shift effects when present in the C-terminal position (approximately 0.10 vs. 0.05 ppm N-terminal), and the larger aromatic tryptophan caused greater effects in the N-terminal position (0.15 ppm vs. 0.10 C-terminal). Proline affected both significant upfield (0.06 ppm, N-terminal) and downfield (0.25 ppm, C-terminal) chemical shifts. These new Ala correction factors detail the magnitude and range of variation in environmental chemical shift effects, in addition to providing insight into the molecular level interactions that govern protein folding.

  12. NMR chemical shift as analytical derivative of the Helmholtz free energy.

    Science.gov (United States)

    Van den Heuvel, Willem; Soncini, Alessandro

    2013-02-07

    We present a theory for the temperature-dependent nuclear magnetic shielding tensor of molecules with arbitrary electronic structure. The theory is a generalization of Ramsey's theory for closed-shell molecules. The shielding tensor is defined as a second derivative of the Helmholtz free energy of the electron system in equilibrium with the applied magnetic field and the nuclear magnetic moments. This derivative is analytically evaluated and expressed as a sum over states formula. Special consideration is given to a system with an isolated degenerate ground state for which the size of the degeneracy and the composition of the wave functions are arbitrary. In this case, the paramagnetic part of the shielding tensor is expressed in terms of the g and A tensors of the electron paramagnetic resonance spin Hamiltonian of the degenerate state. As an illustration of the proposed theory, we provide an explicit formula for the paramagnetic shift of the central lanthanide ion in endofullerenes Ln@C(60), with Ln = Ce(3+), Nd(3+), Sm(3+), Dy(3+), Er(3+), and Yb(3+), where the ground state can be a strongly spin-orbit coupled icosahedral sextet for which the paramagnetic shift cannot be described by previous theories.

  13. Estudo do metabolismo energético muscular em atletas por 31P-ERM Muscular energetic metabolism study in athletes by 31P-MRS

    Directory of Open Access Journals (Sweden)

    Maria Gisele dos Santos

    2004-04-01

    Full Text Available OBJETIVO: Caracterizar as reservas energéticas de metabólitos fosforilados no músculo esquelético de atletas mediante 31P-ERM. MÉTODOS: Amostra deste estudo foi formada por 14 atletas de alto nível do Centro de Alto Rendimento Esportivo (CAR, Sant Cugat del Vallés, Espanha. O padrão de metabólitos fosforilados foi medido no músculo vasto medial por 31P-ERM. A suplementação oral foi realizada durante 14 dias, na forma de 20g de monohidrato de creatina. Os atletas foram determinados conforme as suas características físicas (peso, altura, índice de massa corporal (IMC, consumo máximo de oxigênio (VO2 Max. em dois grupos: placebo (maltodextrina e suplementação com creatina. O protocolo de exercício foi realizado no interior do túnel de ressonância (160 x 52 cm, a 60 ciclos por minuto para ambas as pernas. RESULTADOS: Os resultados demonstraram um aumento significativo da fosfocreatina (PCr durante o exercício, após o período de suplementação, denotando uma redução do seu consumo no grupo que recebeu suplementação com creatina; não houve diminuição significativa do pH intracelular e fosfato inorgânico após a suplementação. CONCLUSÃO: O protocolo de exercício realizado pelos fundistas no Centro de Diagnóstico de Pedralbes permitiu detectar mediante 31P-ERM, no grupo que foi suplementado com creatina, uma diminuição do consumo de PCr durante os períodos de exercício.BACKGROUND: The aim of this study was to characterize the muscular reservoirs of phosphorilated energetic components of athletes using 31P-MRS. METHODS: The sample was formed by 14 elite athletes from the Center for High Sportive Performance (CAR, Sant Cugat del Vallés, Spain. The pattern of the phosphorilated metabolites was measured from the muscle vastus medialis by 31P-MRS. Oral supplementation of 20 g of Creatine monohydrate was given during 14 days. Two groups of athletes were formed according to their physical characteristics (weight

  14. Modeling the chemical shift of lanthanide 4f electron binding energies

    NARCIS (Netherlands)

    Dorenbos, P.

    2012-01-01

    Lanthanides in compounds can adopt the tetravalent [Xe]4fn−1 (like Ce4+, Pr4+, Tb4+), the trivalent [Xe]4fn (all lanthanides), or the divalent [Xe]4f n+1 configuration (like Eu2+, Yb2+, Sm2+, Tm2+). The 4f-electron binding energy depends on the charge Q of the lanthanide ion and its chemical environ

  15. Nuclear Magnetic Resonance-Assisted Prediction of Secondary Structure for RNA: Incorporation of Direction-Dependent Chemical Shift Constraints.

    Science.gov (United States)

    Chen, Jonathan L; Bellaousov, Stanislav; Tubbs, Jason D; Kennedy, Scott D; Lopez, Michael J; Mathews, David H; Turner, Douglas H

    2015-11-17

    Knowledge of RNA structure is necessary to determine structure-function relationships and to facilitate design of potential therapeutics. RNA secondary structure prediction can be improved by applying constraints from nuclear magnetic resonance (NMR) experiments to a dynamic programming algorithm. Imino proton walks from NOESY spectra reveal double-stranded regions. Chemical shifts of protons in GH1, UH3, and UH5 of GU pairs, UH3, UH5, and AH2 of AU pairs, and GH1 of GC pairs were analyzed to identify constraints for the 5' to 3' directionality of base pairs in helices. The 5' to 3' directionality constraints were incorporated into an NMR-assisted prediction of secondary structure (NAPSS-CS) program. When it was tested on 18 structures, including nine pseudoknots, the sensitivity and positive predictive value were improved relative to those of three unrestrained programs. The prediction accuracy for the pseudoknots improved the most. The program also facilitates assignment of chemical shifts to individual nucleotides, a necessary step for determining three-dimensional structure.

  16. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  17. Theory of NMR chemical shift in an electronic state with arbitrary degeneracy

    CERN Document Server

    Heuvel, Willem Van den

    2012-01-01

    We present a theory of nuclear magnetic resonance (NMR) shielding tensors for electronic states with arbitrary degeneracy. The shieldings are here expressed in terms of generalized Zeeman ($g^{(k)}$) and hyperfine ($A^{(k)}$) tensors, of all ranks $k$ allowed by the size of degeneracy. Contrary to recent proposals [T. O. Pennanen and J. Vaara, Phys. Rev. Lett. 100, 133002 (2008)], our theory is valid in the strong spin-orbit coupling limit. Ab initio calculations for the 4-fold degenerate $\\Gamma_8$ ground state of lanthanide-doped fluorite crystals CaF$_2$:Ln (Ln = Pr$^{2+}$, Nd$^{3+}$, Sm$^{3+}$, and Dy$^{3+}$) show that previously neglected contributions can account for more than 50% of the paramagnetic shift.

  18. Quantitative analysis of deuterium using the isotopic effect on quaternary {sup 13}C NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Tamim A., E-mail: tamim.darwish@ansto.gov.au [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); Yepuri, Nageshwar Rao; Holden, Peter J. [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); James, Michael [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual {sup 1}H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D{sub 2}O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary {sup 13}C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing {sup 13}C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve {sup 13}C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ({sup 1}H, {sup 2}H) resolves closely separated quaternary {sup 13}C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. - Graphical abstract: The relative intensities of quaternary {sup 13}C {"1H,"2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast

  19. Rose Atoll Site 31P 3/6/2006 37-38M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 37 and 38 meters along a permanent transect.

  20. Rose Atoll Site 31P 7/30/2004 20-21M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 20 and 21 meters along a permanent transect.

  1. Rose Atoll Site 31P 7/30/2004 40-41M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 40 and 41 meters along a permanent transect.

  2. Rose Atoll Site 31P 7/30/2004 37-38M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 37 and 38 meters along a permanent transect.

  3. Rose Atoll Site 31P 7/30/2004 8-9M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 8 and 9 meters along a permanent transect.

  4. Rose Atoll Site 31P 7/30/2004 47-48M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 47 and 48 meters along a permanent transect.

  5. Rose Atoll Site 31P 7/30/2004 2-3M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 2 and 3 meters along a permanent transect.

  6. Rose Atoll Site 31P 7/30/2004 43-44M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 43 and 44 meters along a permanent transect.

  7. Rose Atoll Site 31P 7/30/2004 5-6M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 5 and 6 meters along a permanent transect.

  8. Rose Atoll Site 31P 7/30/2004 3-4M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 3 and 4 meters along a permanent transect.

  9. Rose Atoll Site 31P 7/30/2004 27-28M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 27 and 28 meters along a permanent transect.

  10. Rose Atoll Site 31P 7/30/2004 30-31M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 30 and 31 meters along a permanent transect.

  11. Rose Atoll Site 31P 7/30/2004 13-14M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 13 and 14 meters along a permanent transect.

  12. Rose Atoll Site 31P 7/30/2004 18-19M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 18 and 19 meters along a permanent transect.

  13. Rose Atoll Site 31P 7/30/2004 6-7M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 6 and 7 meters along a permanent transect.

  14. Rose Atoll Site 31P 7/30/2004 7-8M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 7 and 8 meters along a permanent transect.

  15. Rose Atoll Site 31P 7/30/2004 48-49M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 48 and 49 meters along a permanent transect.

  16. Rose Atoll Site 31P 7/30/2004 25-26M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 25 and 26 meters along a permanent transect.

  17. Rose Atoll Site 31P 7/30/2004 15-16M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 15 and 16 meters along a permanent transect.

  18. Rose Atoll Site 31P 7/30/2004 23-24M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 23 and 24 meters along a permanent transect.

  19. Rose Atoll Site 31P 7/30/2004 9-10M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 9 and 10 meters along a permanent transect.

  20. Rose Atoll Site 31P 7/30/2004 17-18M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 17 and 18 meters along a permanent transect.

  1. Rose Atoll Site 31P 7/30/2004 12-13M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 12 and 13 meters along a permanent transect.

  2. Rose Atoll Site 31P 7/30/2004 29-30M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 29 and 30 meters along a permanent transect.

  3. Rose Atoll Site 31P 7/30/2004 28-29M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 28 and 29 meters along a permanent transect.

  4. Rose Atoll Site 31P 7/30/2004 35-36M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 35 and 36 meters along a permanent transect.

  5. Rose Atoll Site 31P 7/30/2004 1-2M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 1 and 2 meters along a permanent transect.

  6. Rose Atoll Site 31P 7/30/2004 24-25M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 24 and 25 meters along a permanent transect.

  7. Rose Atoll Site 31P 7/30/2004 38-39M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 38 and 39 meters along a permanent transect.

  8. Rose Atoll Site 31P 7/30/2004 26-27M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 26 and 27 meters along a permanent transect.

  9. Rose Atoll Site 31P 7/30/2004 31-32M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 31 and 32 meters along a permanent transect.

  10. Rose Atoll Site 31P 7/30/2004 36-37M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 36 and 37 meters along a permanent transect.

  11. Rose Atoll Site 31P 7/30/2004 49-50M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 49 and 50 meters along a permanent transect.

  12. Rose Atoll Site 31P 7/30/2004 11-12M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 11 and 12 meters along a permanent transect.

  13. Rose Atoll Site 31P 7/30/2004 42-43M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 42 and 43 meters along a permanent transect.

  14. Rose Atoll Site 31P 7/30/2004 33-34M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 33 and 34 meters along a permanent transect.

  15. Rose Atoll Site 31P 7/30/2004 16-17M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 16 and 17 meters along a permanent transect.

  16. Rose Atoll Site 31P 7/30/2004 14-15M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 14 and 15 meters along a permanent transect.

  17. Rose Atoll Site 31P 7/30/2004 34-35M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 34 and 35 meters along a permanent transect.

  18. Rose Atoll Site 31P 7/30/2004 19-20M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 19 and 20 meters along a permanent transect.

  19. Rose Atoll Site 31P 3/6/2006 24-25M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 24 and 25 meters along a permanent transect.

  20. Rose Atoll Site 31P 3/6/2006 25-26M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 25 and 26 meters along a permanent transect.

  1. Rose Atoll Site 31P 6/21/2005 (18)M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), at meter 18 along a permanent transect.

  2. Rose Atoll Site 31P 3/6/2006 27-28M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 27 and 28 meters along a permanent transect.

  3. Rose Atoll Site 31P 3/6/2006 38-39M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 38 and 39 meters along a permanent transect.

  4. Rose Atoll Site 31P 7/30/2004 0-1M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 0 and 1 meters along a permanent transect.

  5. Rose Atoll Site 31P 7/30/2004 22-23M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 22 and 23 meters along a permanent transect.

  6. Rose Atoll Site 31P 7/30/2004 50-51M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 50 and 51 meters along a permanent transect.

  7. Rose Atoll Site 31P 7/30/2004 4-5M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 4 and 5 meters along a permanent transect.

  8. Rose Atoll Site 31P 7/30/2004 39-40M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 39 and 40 meters along a permanent transect.

  9. Rose Atoll Site 31P 7/30/2004 44-45M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 44 and 45 meters along a permanent transect.

  10. Rose Atoll Site 31P 7/30/2004 21-22M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 21 and 22 meters along a permanent transect.

  11. Rose Atoll Site 31P 7/30/2004 45-46M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 45 and 46 meters along a permanent transect.

  12. Rose Atoll Site 31P 7/30/2004 46-47M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 46 and 47 meters along a permanent transect.

  13. Rose Atoll Site 31P 7/30/2004 32-33M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 32 and 33 meters along a permanent transect.

  14. Rose Atoll Site 31P 7/30/2004 41-42M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 41 and 42 meters along a permanent transect.

  15. Rose Atoll Site 31P 2/22/2012 16-17M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 16 and 17 meters along a permanent transect.

  16. Rose Atoll Site 31P 2/22/2012 47-48M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 47 and 48 meters along a permanent transect.

  17. 31P magnetic resonance spectroscopy of skeletal muscle in patients with fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Jensen, K E; Thomsen, C

    1992-01-01

    31Phosphorous nuclear magnetic resonance (31P NMR) spectroscopy of painful calf muscle was performed in 12 patients with fibromyalgia (FS) and 7 healthy subjects during rest, aerobic and anaerobic exercising conditions, and postexercise recovery. Ratios of inorganic phosphate and creatinine...

  18. Rose Atoll Site 31P 7/30/2004 10-11M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 10 and 11 meters along a permanent transect.

  19. Rose Atoll Site 31P 6/21/2005 (27)M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), at meter 27 along a permanent transect.

  20. Rose Atoll Site 31P 2/22/2012 23-24M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 23 and 24 meters along a permanent transect.

  1. Rose Atoll Site 31P 3/6/2006 10-11M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 10 and 11 meters along a permanent transect.

  2. Rose Atoll Site 31P 3/6/2006 18-19M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 18 and 19 meters along a permanent transect.

  3. Rose Atoll Site 31P 3/6/2006 31-32M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 31 and 32 meters along a permanent transect.

  4. Rose Atoll Site 31P 3/6/2006 23-24M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 23 and 24 meters along a permanent transect.

  5. Rose Atoll Site 31P 3/6/2006 9-10M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 9 and 10 meters along a permanent transect.

  6. Rose Atoll Site 31P 3/6/2006 47-48M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 47 and 48 meters along a permanent transect.

  7. Rose Atoll Site 31P 3/6/2006 1-2M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 1 and 2 meters along a permanent transect.

  8. Rose Atoll Site 31P 3/6/2006 33-34M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Rose Atoll, site 31P (14 32.568S, 168 09.417W), between 33 and 34 meters along a permanent transect.

  9. {sup 31}P-MR spectroscopy in children and adolescents with a familial risk of schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Rzanny, R.; Reichenbach, J.R.; Pfleiderer, S.O.R.; Kaiser, W.A. [Institut fuer Diagnostische und Interventionelle Radiologie, Abteilung MT, Klinikum der Friedrich-Schiller-Universitaet Jena, Philosophenweg 3, 07741 Jena (Germany); Klemm, S.; Blanz, B. [Klinik fuer Kinder- und Jugendpsychiatrie, Klinikum der Friedrich-Schiller-Universitaet Jena, Bachstrasse 18, 07741 Jena (Germany); Schmidt, B.; Volz, H.-P. [Klinik fuer Psychiatrie, Klinikum der Friedrich-Schiller-Universitaet Jena, Bachstrasse 18, 07741 Jena (Germany)

    2003-04-01

    Based on a previous report [9] on alterations of membrane phosphorus metabolism in asymptomatic family members of schizophrenic patients, the aim of the present study was to extend and improve the evaluation and data processing of {sup 31}P spectroscopic data obtained from a larger study population by including an analysis of the broad spectral component (BC) of membrane phospholipids (PL). Eighteen children and siblings of patients with schizophrenia and a gender- and age-matched control group of 18 healthy subjects without familial schizophrenia were investigated with phosphorus magnetic resonance spectroscopy ({sup 31}P-MRS) by using image selected in vivo spectroscopy (ISIS) in the dorsolateral prefrontal regions (DLPFR) of the brain. Spectral analysis was performed by using both the full and truncated FID to estimate metabolic peak ratios of different {sup 31}P metabolites and the intensity and linewidth of the broad component. A significantly higher PDE level (p<0.01) and increased linewidth of the PDE components were observed for the high-risk group compared with the control group (p=0.02). No significant differences were observed for PME as well as for other {sup 31}P-metabolites. No differences were observed between the left and right hemispheres for different normalised {sup 31}P-metabolic levels. Decreased intensities (p=0.03) and smaller linewidths (p=0.01) were obtained for the broad component in the high-risk group. Impairments of membrane metabolism that are typical for schizophrenic patients are partially observed in adolescent asymptomatic family members of schizophrenics, including increased levels of low molecular PDE compounds indicating increased membrane degradation processes, no changes for PME, and decreased intensities and linewidths of the BC indicating changes in the composition and fluidity of membrane phospholipids. Despite limitations to completely suppress fast-relaxing components by dismissing initial FID data points, the

  10. NMR chemical shift as analytical derivative of the Helmholtz free energy

    CERN Document Server

    Heuvel, Willem Van den

    2012-01-01

    We present a theory for the temperature-dependent nuclear magnetic shielding tensor of molecules with arbitrary electronic structure. The theory is a generalization of Ramsey's theory for closed-shell molecules. The shielding tensor is defined as a second derivative of the Helmholtz free energy of the electron system in equilibrium with the applied magnetic field and the nuclear magnetic moments. This derivative is analytically evaluated and expressed as a sum over states formula. Special consideration is given to a system with an isolated degenerate ground state for which the size of the degeneracy and the composition of the wave functions are arbitrary. In this case the paramagnetic part of the shielding tensor is expressed in terms of the $g$ and $A$ tensors of the EPR spin Hamiltonian of the degenerate state. As an illustration of the proposed theory, we provide an explicit formula for the paramagnetic shift of the central lanthanide ion in endofullerenes Ln@C$_{60}$, with Ln=Ce$^{3+}$, Nd$^{3+}$, Sm$^{3+...

  11. Liver fat quantification: Comparison of dual-echo and triple-echo chemical shift MRI to MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Satkunasingham, Janakan; Besa, Cecilia [Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Bane, Octavia [Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Shah, Ami [Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Oliveira, André de; Gilson, Wesley D.; Kannengiesser, Stephan [Siemens AG, Healthcare Sector, Erlangen (Germany); Taouli, Bachir, E-mail: bachir.taouli@mountsinai.org [Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States)

    2015-08-15

    Highlights: • We present a large cohort of patients who underwent dual and triple echo chemical shift imaging against multi-echo T{sub 2} corrected MR spectroscopy (MRS) for liver fat quantification. • Our data suggests that a triple-echo sequence is highly accurate for detection of liver fat, even in the presence of T{sub 2}{sup *} shortening, with minor discrepancies when compared with the advanced fat quantification method. - Abstract: Purpose: To assess the diagnostic value of MRI using dual-echo (2PD) and triple-echo (3PD) chemical shift imaging for liver fat quantification against multi-echo T{sub 2} corrected MR spectroscopy (MRS) used as the reference standard, and examine the effect of T{sub 2}{sup *} imaging on accuracy of MRI for fat quantification. Materials and methods: Patients who underwent 1.5 T liver MRI that incorporated 2PD, 3PD, multi-echo T{sub 2}{sup *} and MRS were included in this IRB approved prospective study. Regions of interest were placed in the liver to measure fat fraction (FF) with 2PD and 3PD and compared with MRS-FF. A random subset of 25 patients with a wide range of MRS-FF was analyzed with an advanced FF calculation method, to prove concordance with the 3PD. The statistical analysis included correlation stratified according to T{sub 2}{sup *}, Bland-Altman analysis, and calculation of diagnostic accuracy for detection of MRS-FF > 6.25%. Results: 220 MRI studies were identified in 217 patients (mean BMI 28.0 ± 5.6). 57/217 (26.2%) patients demonstrated liver steatosis (MRS-FF > 6.25%). Bland-Altman analysis revealed strong agreement between 3PD and MRS (mean ± 1.96 SD: −0.5% ± 4.6%) and weaker agreement between 2PD and MRS (4.7% ± 16.0%). Sensitivity of 3PD for diagnosing FF> 6.25% was higher than that of 2PD. 3PD-FF showed minor discrepancies (coefficient of variation <10%) from FF measured with the advanced method. Conclusion: Our large series study validates the use of 3PD chemical shift sequence for detection of

  12. Chemical structure elucidation from ¹³C NMR chemical shifts: efficient data processing using bipartite matching and maximal clique algorithms.

    Science.gov (United States)

    Koichi, Shungo; Arisaka, Masaki; Koshino, Hiroyuki; Aoki, Atsushi; Iwata, Satoru; Uno, Takeaki; Satoh, Hiroko

    2014-04-28

    Computer-assisted chemical structure elucidation has been intensively studied since the first use of computers in chemistry in the 1960s. Most of the existing elucidators use a structure-spectrum database to obtain clues about the correct structure. Such a structure-spectrum database is expected to grow on a daily basis. Hence, the necessity to develop an efficient structure elucidation system that can adapt to the growth of a database has been also growing. Therefore, we have developed a new elucidator using practically efficient graph algorithms, including the convex bipartite matching, weighted bipartite matching, and Bron-Kerbosch maximal clique algorithms. The utilization of the two matching algorithms especially is a novel point of our elucidator. Because of these sophisticated algorithms, the elucidator exactly produces a correct structure if all of the fragments are included in the database. Even if not all of the fragments are in the database, the elucidator proposes relevant substructures that can help chemists to identify the actual chemical structures. The elucidator, called the CAST/CNMR Structure Elucidator, plays a complementary role to the CAST/CNMR Chemical Shift Predictor, and together these two functions can be used to analyze the structures of organic compounds.

  13. Chemical shift powder spectra enhanced by multiple-contact cross-polarization under slow magic-angle spinning

    Science.gov (United States)

    Raya, Jésus; Perrone, Barbara; Hirschinger, Jérôme

    2013-02-01

    A simple multiple-contact cross-polarization (CP) scheme is applied to a powder sample of ferrocene and β-calcium formate under static and magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. We show that multiple equilibrations-re-equilibrations with the proton spin bath improves the polarization transfer efficiency at short contact times and provides higher signal enhancements than state-of-the art techniques such as adiabatic passage through the Hartmann-Hahn condition CP (APHH-CP) when MAS is applied. The resulting chemical shift powder spectra then are identical to the ones obtained by using ROtor-Directed Exchange of Orientations CP (APHH-RODEO-CP) with intensity gains of a factor 1.1-1.3.

  14. 13C-NMR chemical shift databases as a quick tool to evaluate structural models of humic substances

    DEFF Research Database (Denmark)

    Nyrop Albers, Christian; Hansen, Poul Erik

    2010-01-01

    Models for humic and fulvic acids are discussed based on 13C liquid state NMR spectra combined with results from elemental analysis and titration studies. The analysis of NMR spectra is based on a full reconstruction of the NMR spectrum done with help of 13C-NMR data bases by adding up chemical...... side missing structural elements in the models can be suggested. A number of proposed structures for humic and fulvic acids are discussed based on the above analysis....... shifts of all substructures from the proposed models. A full reconstruction makes sure that all carbons are accounted for and enables on the negative side to discuss structural elements identified from recorded spectra of humic substances that cannot be observed in the simulated spectrum. On the positive...

  15. Chemical shift powder spectra enhanced by multiple-contact cross-polarization under slow magic-angle spinning.

    Science.gov (United States)

    Raya, Jésus; Perrone, Barbara; Hirschinger, Jérôme

    2013-02-01

    A simple multiple-contact cross-polarization (CP) scheme is applied to a powder sample of ferrocene and β-calcium formate under static and magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. We show that multiple equilibrations-re-equilibrations with the proton spin bath improves the polarization transfer efficiency at short contact times and provides higher signal enhancements than state-of-the art techniques such as adiabatic passage through the Hartmann-Hahn condition CP (APHH-CP) when MAS is applied. The resulting chemical shift powder spectra then are identical to the ones obtained by using ROtor-Directed Exchange of Orientations CP (APHH-RODEO-CP) with intensity gains of a factor 1.1-1.3.

  16. Portable Sequentially Shifted Excitation Raman spectroscopy as an innovative tool for in situ chemical interrogation of painted surfaces.

    Science.gov (United States)

    Conti, Claudia; Botteon, Alessandra; Bertasa, Moira; Colombo, Chiara; Realini, Marco; Sali, Diego

    2016-08-07

    We present the first validation and application of portable Sequentially Shifted Excitation (SSE) Raman spectroscopy for the survey of painted layers in art. The method enables the acquisition of shifted Raman spectra and the recovery of the spectral data through the application of a suitable reconstruction algorithm. The technique has a great potentiality in art where commonly a strong fluorescence obscures the Raman signal of the target, especially when conventional portable Raman spectrometers are used for in situ analyses. Firstly, the analytical capability of portable SSE Raman spectroscopy is critically discussed using reference materials and laboratory specimens, comparing its results with other conventional high performance laboratory instruments (benchtop FT-Raman and dispersive Raman spectrometers with an external fiber optic probe); secondly, it is applied directly in situ to study the complex polychromy of Italian prestigious terracotta sculptures of the 16(th) century. Portable SSE Raman spectroscopy represents a new investigation modality in art, expanding the portfolio of non-invasive, chemically specific analytical tools.

  17. Microscopic structures of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate in water probed by the relative chemical shift

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The relative chemical shifts (△δ) △δwere put forward to investigate the microscopic structure of 1-ethyl-3-methyl-imidazolium tetrafluoroborate (EmimBF4) during the dilution process with water.The concentration-dependent △δ(C2)H-(C4)H,△δ(C2)H-(C5)H and △δ(C4)H-(C5)H were analyzed.The results reveal that the variations of the microscopic structures of three aromatic protons are inconsistent.The strength of the H-bond between water and three aromatic protons follows the order:(C2)H···O > (C4)H···O > (C5)H···O.The concentration-dependent △δ(C6)H-(C7)H and △δ(C6)H-(C8)H indicate the formation of the H-bonds of (Calkyl)H···O is impossible,and more water is located around (C6)H than around (C7)H or (C8)H.The concentration-dependent △δ(C2)H-(C4)H and △δ(C2)H-(C5)H both increase rapidly when xwater > 0.9 or so,suggesting the ionic pairs of EmimBF4 are dissociated rapidly.The turning points of concentration-dependent △δ(C2)H-(C4)H and △δ(C2)H-(C5)H indicate that some physical properties of the EmimBF4/water mixtures also change at the corresponding concentration point.The microscopic structures of EmimBF4 in water could be clearly detected by the relative chemical shifts.

  18. Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition.

    Science.gov (United States)

    Lin, Yu-Kai; Chen, Ruei-San; Chou, Tsu-Chin; Lee, Yi-Hsin; Chen, Yang-Fang; Chen, Kuei-Hsien; Chen, Li-Chyong

    2016-08-31

    The thickness-dependent surface states of MoS2 thin films grown by the chemical vapor deposition process on the SiO2-Si substrates are investigated by X-ray photoelectron spectroscopy. Raman and high-resolution transmission electron microscopy suggest the thicknesses of MoS2 films to be ranging from 3 to 10 layers. Both the core levels and valence band edges of MoS2 shift downward ∼0.2 eV as the film thickness increases, which can be ascribed to the Fermi level variations resulting from the surface states and bulk defects. Grainy features observed from the atomic force microscopy topographies, and sulfur-vacancy-induced defect states illustrated at the valence band spectra imply the generation of surface states that causes the downward band bending at the n-type MoS2 surface. Bulk defects in thick MoS2 may also influence the Fermi level oppositely compared to the surface states. When Au contacts with our MoS2 thin films, the Fermi level downshifts and the binding energy reduces due to the hole-doping characteristics of Au and easy charge transfer from the surface defect sites of MoS2. The shift of the onset potentials in hydrogen evolution reaction and the evolution of charge-transfer resistances extracted from the impedance measurement also indicate the Fermi level varies with MoS2 film thickness. The tunable Fermi level and the high chemical stability make our MoS2 a potential catalyst. The observed thickness-dependent properties can also be applied to other transition-metal dichalcogenides (TMDs), and facilitates the development in the low-dimensional electronic devices and catalysts.

  19. Zero discharge tanning: a shift from chemical to biocatalytic leather processing.

    Science.gov (United States)

    Thanikaivelan, Palanisamy; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni; Ramasami, Thirumalachari

    2002-10-01

    Beam house processes (Beam house processes generally mean liming-reliming processes, which employ beam.) contribute more than 60% of the total pollution from leather processing. The use of lime and sodium sulfide is of environmental concern (1, 2). Recently, the authors have developed an enzyme-based dehairing assisted with a very low amount of sodium sulfide, which completely avoids the use of lime. However, the dehaired pelt requires opening up of fiber bundles for further processing, where lime is employed to achieve this through osmotic swelling. Huge amounts of lime sludge and total solids are the main drawbacks of lime. An alternative bioprocess, based on alpha-amylase for fiber opening, has been attempted after enzymatic unhairing. This totally eliminates the use of lime in leather processing. This method enables subsequent processes and operations in leather making feasible without a deliming process. A control experiment was run in parallel using conventional liming-reliming processes. It has been found that the extent of opening up of fiber bundles using alpha-amylase is comparable to that of the control. This has been substantiated through scanning electron microscopic, stratigraphic chrome distribution analysis, and softness measurements. Performance of the leathers is shown to be on a par with leathers produced by the conventional process through physical and hand evaluation. Importantly, softness of the leathers is numerically proven to be comparable with that of control. The process also demonstrates reduction in chemical oxygen demand load by 45% and total solids load by 20% compared to the conventional process. The total dry sludge from the beam house processes is brought down from 152 to 8 kg for processing 1 ton of raw hides.

  20. Comparison of experimental and DFT-calculated NMR chemical shifts of 2-amino and 2-hydroxyl substituted phenyl benzimidazoles, benzoxazoles and benzothiazoles in four solvents using the IEF-PCM solvation model.

    Science.gov (United States)

    Pierens, Gregory K; Venkatachalam, T K; Reutens, David C

    2016-04-01

    A comparative study of experimental and calculated NMR chemical shifts of six compounds comprising 2-amino and 2-hydroxy phenyl benzoxazoles/benzothiazoles/benzimidazoles in four solvents is reported. The benzimidazoles showed interesting spectral characteristics, which are discussed. The proton and carbon chemical shifts were similar for all solvents. The largest chemical shift deviations were observed in benzene. The chemical shifts were calculated with density functional theory using a suite of four functionals and basis set combinations. The calculated chemical shifts revealed a good match to the experimentally observed values in most of the solvents. The mean absolute error was used as the primary metric. The use of an additional metric is suggested, which is based on the order of chemical shifts. The DP4 probability measures were also used to compare the experimental and calculated chemical shifts for each compound in the four solvents. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Simultaneous electromyography and 31P nuclear magnetic resonance spectroscopy--with application to muscle fatigue

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T;

    1992-01-01

    The electromyogram (EMG) is often used to study human muscle fatigue, but the changes in the electromyographic signals during muscle contraction are not well understood in relation to muscle metabolism. The 31P NMR spectroscopy is a semi-quantitative non-invasive method for studying the metabolic...... changes in human muscle. The aim of this study was to develop a method by which EMG and NMR spectroscopy measurements could be performed simultaneously. All measurements were performed in a whole body 1.5 Tesla NMR scanner. A calf muscle ergometer, designed for use in a whole body NMR scanner, was used....... The subject had the left foot strapped to the ergometer. The anterior tibial EMG was recorded by bipolar surface electrodes. A surface coil was strapped to the anterior tibial muscle next to the EMG electrodes. Simultaneous measurements of surface EMG and surface coil 31P NMR spectroscopy were performed...

  2. CD and 31P NMR studies of tachykinin and MSH neuropeptides in SDS and DPC micelles

    Science.gov (United States)

    Schneider, Sydney C.; Brown, Taylor C.; Gonzalez, Javier D.; Levonyak, Nicholas S.; Rush, Lydia A.; Cremeens, Matthew E.

    2016-02-01

    Secondary structural characteristics of substance P (SP), neurokinin A (NKA), neurokinin B (NKB), α-melanocyte stimulating hormone peptide (α-MSH), γ1-MSH, γ2-MSH, and melittin were evaluated with circular dichroism in phosphite buffer, DPC micelles, and SDS micelles. CD spectral properties of γ1-MSH and γ2-MSH as well as 31P NMR of DPC micelles with all the peptides are reported for the first time. Although, a trend in the neuropeptide/micelle CD data appears to show increased α-helix content for the tachykinin peptides (SP, NKA, NKB) and increased β-sheet content for the MSH peptides (α-MSH, γ1-MSH, γ2-MSH) with increasing peptide charge, the lack of perturbed 31P NMR signals for all neuropeptides could suggest that the reported antimicrobial activity of SP and α-MSH might not be related to a membrane disruption mode of action.

  3. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models.

    Science.gov (United States)

    Cao, Haihui; Nazarian, Ara; Ackerman, Jerome L; Snyder, Brian D; Rosenberg, Andrew E; Nazarian, Rosalynn M; Hrovat, Mirko I; Dai, Guangping; Mintzopoulos, Dionyssios; Wu, Yaotang

    2010-06-01

    In this study, bone mineral density (BMD) of normal (CON), ovariectomized (OVX), and partially nephrectomized (NFR) rats was measured by (31)P NMR spectroscopy; bone matrix density was measured by (1)H water- and fat-suppressed projection imaging (WASPI); and the extent of bone mineralization (EBM) was obtained by the ratio of BMD/bone matrix density. The capability of these MR methods to distinguish the bone composition of the CON, OVX, and NFR groups was evaluated against chemical analysis (gravimetry). For cortical bone specimens, BMD of the CON and OVX groups was not significantly different; BMD of the NFR group was 22.1% (by (31)P NMR) and 17.5% (by gravimetry) lower than CON. For trabecular bone specimens, BMD of the OVX group was 40.5% (by (31)P NMR) and 24.6% (by gravimetry) lower than CON; BMD of the NFR group was 26.8% (by (31)P NMR) and 21.5% (by gravimetry) lower than CON. No significant change of cortical bone matrix density between CON and OVX was observed by WASPI or gravimetry; NFR cortical bone matrix density was 10.3% (by WASPI) and 13.9% (by gravimetry) lower than CON. OVX trabecular bone matrix density was 38.0% (by WASPI) and 30.8% (by gravimetry) lower than CON, while no significant change in NFR trabecular bone matrix density was observed by either method. The EBMs of OVX cortical and trabecular specimens were slightly higher than CON but not significantly different from CON. Importantly, EBMs of NFR cortical and trabecular specimens were 12.4% and 26.3% lower than CON by (31)P NMR/WASPI, respectively, and 4.0% and 11.9% lower by gravimetry. Histopathology showed evidence of osteoporosis in the OVX group and severe secondary hyperparathyroidism (renal osteodystrophy) in the NFR group. These results demonstrate that the combined (31)P NMR/WASPI method is capable of discerning the difference in EBM between animals with osteoporosis and those with impaired bone mineralization.

  4. High-Frequency (1)H NMR Chemical Shifts of Sn(II) and Pb(II) Hydrides Induced by Relativistic Effects: Quest for Pb(II) Hydrides.

    Science.gov (United States)

    Vícha, Jan; Marek, Radek; Straka, Michal

    2016-10-17

    The role of relativistic effects on (1)H NMR chemical shifts of Sn(II) and Pb(II) hydrides is investigated by using fully relativistic DFT calculations. The stability of possible Pb(II) hydride isomers is studied together with their (1)H NMR chemical shifts, which are predicted in the high-frequency region, up to 90 ppm. These (1)H signals are dictated by sizable relativistic contributions due to spin-orbit coupling at the heavy atom and can be as large as 80 ppm for a hydrogen atom bound to Pb(II). Such high-frequency (1)H NMR chemical shifts of Pb(II) hydride resonances cannot be detected in the (1)H NMR spectra with standard experimental setup. Extended (1)H NMR spectral ranges are thus suggested for studies of Pb(II) compounds. Modulation of spin-orbit relativistic contribution to (1)H NMR chemical shift is found to be important also in the experimentally known Sn(II) hydrides. Because the (1)H NMR chemical shifts were found to be rather sensitive to the changes in the coordination sphere of the central metal in both Sn(II) and Pb(II) hydrides, their application for structural investigation is suggested.

  5. Muscle metabolism of professional athletes using {sup 31}P-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maeurer, J.; Soellner, O.; Ehrenstein, T.; Knollmann, F.; Vogl, T.J.; Felix, R. [Humboldt-Universitaet, Berlin (Germany). Strahlenklinik und Poliklinik; Konstanczak, P. [Medizinische Univ. Luebeck (Germany). Inst. fuer Radiologie; Wolff, R. [Humboldt-Universitaet Berlin (Germany). Dept. of Sports Medicine

    1999-01-01

    Purpose: The aim of the study was to examine muscle metabolism in athletes by {sup 31}P-spectroscopy (MRS) and to evaluate to what degree the respective resonance spectrum correlates with the kind of muscle exercise. Material and Methods: Twelve runners and 12 young ice skaters were studied by {sup 31}P-spectroscopy of the gastrocnemic medialis muscle and the vastus medialis muscle using a surface coil at 1.5 T. Results: Sprinters displayed a higher phosphocreatinine/inorganic phosphate (PCr/Pi) and PCr/{beta}-ATP ratios than marathon runners. The respective parameters for middle distance runners were in between. Ice skaters could prospectively be divided into sprint- and long-distance runners by our results which correlated with the athletes` training performance. Conclusion: {sup 31}P-spectroscopy can evaluate the distribution of muscle fiber types. Thus, the athlete`s potential for sprint- or long-distance running can be determined. Additional studies will have to demonstrate to what extent training may change muscle fiber distribution. (orig.)

  6. /sup 31/P nuclear magnetic resonance study of renal allograft rejection in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, J.I.; Haug, C.E.; Shanley, P.F.; Weil, R. III; Chan, L.

    1988-01-01

    Phosphorus (/sup 31/P) nuclear magnetic resonance (NMR) spectroscopy was used to serially evaluate heterotopic renal allograft rejection in the rat. Renal allografts transplanted to the groin of recipient animals were studied using a 1.89 Tesla horizontal bore magnet. The relative intracellular concentrations of phosphorus metabolites such as adenosine triphosphate and inorganic phosphate as well as intracellular pH were determined by /sup 31/P NMR on days 4, 7, 10, and 14 following transplantation across a major histocompatibility mismatch. Recipient rats chosen to be rejectors received no immunosuppression while animals chosen to be nonrejectors received cyclosporine during the first 7 days following transplantation. By day 7, all rejector rats could be distinguished from nonrejector rats by their higher relative concentration of inorganic phosphate and their lower relative concentration of adenosine triphosphate. These NMR findings correlated with histologic findings of renal infarction probably related to vascular rejection in the allografts. /sup 31/P NMR spectroscopy may have application as a noninvasive tool in the differential diagnosis of posttransplantation renal insufficiency.

  7. Predictions of the fluorine NMR chemical shifts of perfluorinated carboxylic acids, CnF(2n+1)COOH (n = 6-8).

    Science.gov (United States)

    Liu, Zizhong; Goddard, John D

    2009-12-17

    Perfluorinated carboxylic acids (PFCAs) are a class of persistent environmental pollutants. Commercially available PFCAs are mixtures of linear and branched isomers, possibly with impurities. Different isomers have different physical and chemical properties and toxicities. However, little is known about the properties and the finer details of the structures of the individual branched isomers. Full geometry optimizations for the linear n-alkane (C(6)-C(27)) PFCAs indicated that all have helical structures. The helical angle increases slightly with increasing chain length, from 16.3 degrees in C(6)F(13)COOH to 17.0 degrees in C(27)F(55)COOH. This study predicts (19)F NMR parameters for 69 linear and branched isomers of the perfluoro carboxylic acids C(6)F(13)COOH, C(7)F(15)COOH, and C(8)F(17)COOH. B3LYP-GIAO/6-31++G(d,p)//B3LYP/6-31G(d,p) was used for the NMR calculations with analysis of the chemical shifts by the natural bond orbital method. The predictions of the (19)F chemical shifts revealed the differences among the CF(3), CF(2), and CF groups. In general, the absolute values for the chemical shifts for the CF(3) group are smaller than 90 ppm, for the CF larger than 160 ppm, and for the CF(2) between 110 and 130 ppm. The chemical shifts of the branched isomers are smaller in magnitude than the linear ones. The decrease is correlated with the steric hindrance of the CF(3) groups, the more hindered the CF(3), the greater the decrease in the (19)F chemical shifts. The predicted (19)F chemical shifts are similar to those for analogous perfluoro compounds with other terminal functional groups such as -SO(3)H or -SO(3)NH(2)CH(2)CH(3).

  8. In vivo magnetic resonance imaging and 31P spectroscopy of large human brain tumours at 1.5 tesla

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Achten, E;

    1988-01-01

    31P MR spectroscopy of human brain tumours is one feature of magnetic resonance imaging. Eight patients with large superficial brain tumours and eight healthy volunteers were examined with 31P spectroscopy using an 8 cm surface coil for volume selection. Seven frequencies were resolved in our spe...

  9. High accuracy NMR chemical shift corrected for bulk magnetization as a tool for structural elucidation of dilutable microemulsions. Part 1 - Proof of concept.

    Science.gov (United States)

    Hoffman, Roy E; Darmon, Eliezer; Aserin, Abraham; Garti, Nissim

    2016-02-01

    In microemulsions, changes in droplet size and shape and possible transformations occur under various conditions. They are difficult to characterize by most analytical tools because of their nano-sized structure and dynamic nature. Several methods are usually combined to obtain reliable information, guiding the scientist in understanding their physical behavior. We felt that there is a need for a technique that complements those in use today in order to provide more information on the microemulsion behavior, mainly as a function of dilution with water. The improvement of NMR chemical shift measurements independent of bulk magnetization effects makes it possible to study the very weak intermolecular chemical shift effects. In the present study, we used NMR high resolution magic angle spinning to measure the chemical shift very accurately, free of bulk magnetization effects. The chemical shift of microemulsion components is measured as a function of the water content in order to validate the method in an interesting and promising, U-type dilutable microemulsion, which had been previously studied by a variety of techniques. Phase transition points of the microemulsion (O/W, bicontinuous, W/O) and changes in droplet shape were successfully detected using high-accuracy chemical shift measurements. We analyzed the results and found them to be compatible with the previous studies, paving the way for high-accuracy chemical shifts to be used for the study of other microemulsion systems. We detected two transition points along the water dilution line of the concentrate (reverse micelles) corresponding to the transition from swollen W/O nano-droplets to bicontinuous to the O/W droplets along with the changes in the droplets' sizes and shapes. The method seems to be in excellent agreement with other previously studied techniques and shows the advantage of this easy and valid technique.

  10. Intermolecular Interactions in Crystalline Theobromine as Reflected in Electron Deformation Density and (13)C NMR Chemical Shift Tensors.

    Science.gov (United States)

    Bouzková, Kateřina; Babinský, Martin; Novosadová, Lucie; Marek, Radek

    2013-06-11

    An understanding of the role of intermolecular interactions in crystal formation is essential to control the generation of diverse crystalline forms which is an important concern for pharmaceutical industry. Very recently, we reported a new approach to interpret the relationships between intermolecular hydrogen bonding, redistribution of electron density in the system, and NMR chemical shifts (Babinský et al. J. Phys. Chem. A, 2013, 117, 497). Here, we employ this approach to characterize a full set of crystal interactions in a sample of anhydrous theobromine as reflected in (13)C NMR chemical shift tensors (CSTs). The important intermolecular contacts are identified by comparing the DFT-calculated NMR CSTs for an isolated theobromine molecule and for clusters composed of several molecules as selected from the available X-ray diffraction data. Furthermore, electron deformation density (EDD) and shielding deformation density (SDD) in the proximity of the nuclei involved in the proposed interactions are calculated and visualized. In addition to the recently reported observations for hydrogen bonding, we focus here particularly on the stacking interactions. Although the principal relations between the EDD and CST for hydrogen bonding (HB) and stacking interactions are similar, the real-space consequences are rather different. Whereas the C-H···X hydrogen bonding influences predominantly and significantly the in-plane principal component of the (13)C CST perpendicular to the HB path and the C═O···H hydrogen bonding modulates both in-plane components of the carbonyl (13)C CST, the stacking modulates the out-of-plane electron density resulting in weak deshielding (2-8 ppm) of both in-plane principal components of the CST and weak shielding (∼ 5 ppm) of the out-of-plane component. The hydrogen-bonding and stacking interactions may add to or subtract from one another to produce total values observed experimentally. On the example of theobromine, we demonstrate

  11. Membrane interactions in small fast-tumbling bicelles as studied by 31P NMR.

    Science.gov (United States)

    Bodor, Andrea; Kövér, Katalin E; Mäler, Lena

    2015-03-01

    Small fast-tumbling bicelles are ideal for studies of membrane interactions at molecular level; they allow analysis of lipid properties using solution-state NMR. In the present study we used 31P NMR relaxation to obtain detailed information on lipid head-group dynamics. We explored the effect of two topologically different membrane-interacting peptides on bicelles containing either dimyristoylphosphocholine (DMPC), or a mixture of DMPC and dimyristoylphosphoglycerol (DMPG), and dihexanoylphosphocholine (DHPC). KALP21 is a model transmembrane peptide, designed to span a DMPC bilayer and dynorphin B is a membrane surface active neuropeptide. KALP21 causes significant increase in bicelle size, as evidenced by both dynamic light scattering and 31P T2 relaxation measurements. The effect of dynorphin B on bicelle size is more modest, although significant effects on T2 relaxation are observed at higher temperatures. A comparison of 31P T1 values for the lipids with and without the peptides showed that dynorphin B has a greater effect on lipid head-group dynamics than KALP21, especially at elevated temperatures. From the field-dependence of T1 relaxation data, a correlation time describing the overall lipid motion was derived. Results indicate that the positively charged dynorphin B decreases the mobility of the lipid molecules--in particular for the negatively charged DMPG--while KALP21 has a more modest influence. Our results demonstrate that while a transmembrane peptide has severe effects on overall bilayer properties, the surface bound peptide has a more dramatic effect in reducing lipid head-group mobility. These observations may be of general importance for understanding peptide-membrane interactions.

  12. Shifting Phases for Patchy Particles - Effect of mutagenesis and chemical modification on the phase diagram of human gamma D crystallin

    Science.gov (United States)

    McManus, Jennifer J.; James, Susan; McNamara, Ruth; Quinn, Michelle

    2014-03-01

    Single mutations in human gamma D crystallin (HGD), a protein found in the eye lens are associated with several childhood cataracts. Phase diagrams for several of these protein mutants have been measured and reveal that phase boundaries are shifted compared with the native protein, leading to condensation of protein in a physiologically relevant regime. Using HGD as a model protein, we have constructed phase diagrams for double mutants of the protein, incorporating two single amino acid substitutions for which phase diagrams are already known. In doing so, the characteristics of each of the single mutations are maintained but both are now present in the same protein particle. While these proteins are not of interest physiologically, this strategy allows the controlled synthesis of nano-scale patchy particles in which features associated with a known phase behavior can be included. It can also provide a strategy for the controlled crystallisation of proteins. Phase boundaries also change after the chemical modification of the protein, through the covalent attachment of fluorescent labels, for example, and this will also be discussed. The authors acknowledge Science Foundation Ireland Stokes Lectureship and Grant 11/RFP.1/PHY/3165. The authors also acknowledge the Irish Research Council and the John and Pat Hume Scholarship.

  13. Molecular structure and vibrational and chemical shift assignments of 3'-chloro-4-dimethylamino azobenzene by DFT calculations.

    Science.gov (United States)

    Toy, Mehmet; Tanak, Hasan

    2016-01-05

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3'-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400cm(-1) for solid state. The (1)H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory.

  14. 13C-detected NMR experiments for measuring chemical shifts and coupling constants in nucleic acid bases.

    Science.gov (United States)

    Fiala, Radovan; Sklenár, Vladimír

    2007-10-01

    The paper presents a set of two-dimensional experiments that utilize direct (13)C detection to provide proton-carbon, carbon-carbon and carbon-nitrogen correlations in the bases of nucleic acids. The set includes a (13)C-detected proton-carbon correlation experiment for the measurement of (13)C-(13)C couplings, the CaCb experiment for correlating two quaternary carbons, the HCaCb experiment for the (13)C-(13)C correlations in cases where one of the carbons has a proton attached, the HCC-TOCSY experiment for correlating a proton with a network of coupled carbons, and a (13)C-detected (13)C-(15)N correlation experiment for detecting the nitrogen nuclei that cannot be detected via protons. The IPAP procedure is used for extracting the carbon-carbon couplings and/or carbon decoupling in the direct dimension, while the S(3)E procedure is preferred in the indirect dimension of the carbon-nitrogen experiment to obtain the value of the coupling constant. The experiments supply accurate values of (13)C and (15)N chemical shifts and carbon-carbon and carbon-nitrogen coupling constants. These values can help to reveal structural features of nucleic acids either directly or via induced changes when the sample is dissolved in oriented media.

  15. Chemical shifts assignments of the archaeal MC1 protein and a strongly bent 15 base pairs DNA duplex in complex.

    Science.gov (United States)

    Loth, Karine; Landon, Céline; Paquet, Françoise

    2015-04-01

    MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55 in laboratory growth conditions and is structurally unrelated to other DNA-binding proteins. MC1 functions are to shape and to protect DNA against thermal denaturation by binding to it. Therefore, MC1 has a strong affinity for any double-stranded DNA. However, it recognizes and preferentially binds to bent DNA, such as four-way junctions and negatively supercoiled DNA minicircles. Combining NMR data, electron microscopy data, biochemistry, molecular modelisation and docking approaches, we proposed recently a new type of DNA/protein complex, in which the monomeric protein MC1 binds on the concave side of a strongly bent 15 base pairs DNA. We present here the NMR chemical shifts assignments of each partner in the complex, (1)H (15)N MC1 protein and (1)H (13)C (15)N bent duplex DNA, as first step towards the first experimental 3D structure of this new type of DNA/protein complex.

  16. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment.

    Science.gov (United States)

    Jose, K V Jovan; Raghavachari, Krishnan

    2017-03-14

    We present an efficient implementation of the molecules-in-molecules (MIM) fragment-based quantum chemical method for the evaluation of NMR chemical shifts of large biomolecules. Density functional techniques have been employed in conjunction with large basis sets and including the effects of the solvent environment in these calculations. The MIM-NMR method is initially benchmarked on a set of (alanine)10 conformers containing strong intramolecular interactions. The incorporation of a second low level of theory to recover the missing long-range interactions in the primary fragmentation scheme is critical to yield reliable chemical shifts, with a mean absolute deviation (MAD) from direct unfragmented calculations of 0.01 ppm for (1)H chemical shifts and 0.07 ppm for (13)C chemical shifts. In addition, the performance of MIM-NMR has been assessed on two large peptides: the helical portion of ubiquitin ( 1UBQ ) containing 12 residues where the X-ray structure is known, and E6-binding protein of papilloma virus ( 1RIJ ) containing 23 residues where the structure has been derived from solution-phase NMR analysis. The solvation environment is incorporated in these MIM-NMR calculations, either through an explicit, implicit, or a combination of both solvation models. Using an explicit treatment of the solvent molecules within the first solvation sphere (3 Å) and an implicit solvation model for the rest of the interactions, the (1)H and (13)C chemical shifts of ubiquitin show excellent agreement with experiment (mean absolute deviation of 0.31 ppm for (1)H and 1.72 ppm for (13)C), while the larger E6-binding protein yields a mean absolute deviation of 0.34 ppm for (1)H chemical shifts. The proposed MIM-NMR method is computationally cost-effective and provides a substantial speedup relative to conventional full calculations, the largest density functional NMR calculation included in this work involving more than 600 atoms and over 10,000 basis functions. The MIM

  17. Chemical shift as a probe of molecular interfaces: NMR studies of DNA binding by the three amino-terminal zinc finger domains from transcription factor IIIA

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Mark P.; Wuttke, Deborah S.; Clemens, Karen R.; Jahnke, Wolfgang; Radhakrishnan, Ishwar; Tennant, Linda; Reymond, Martine; Chung, John; Wright, Peter E. [Scripps Research Institute, Department of Molecular Biology and Skaggs Institute for Chemical Biology (United States)

    1998-07-15

    We report the NMR resonance assignments for a macromolecular protein/DNA complex containing the three amino-terminal zinc fingers (92 amino acid residues) of Xenopus laevis TFIIIA (termed zf1-3) bound to the physiological DNA target (15 base pairs), and for the free DNA. Comparisons are made of the chemical shifts of protein backbone{sup 1} H{sup N}, {sup 15}N,{sup 13} C{sup {alpha}} and{sup 13} C{sup {beta}} and DNA base and sugar protons of the free and bound species. Chemical shift changes are analyzed in the context of the structures of the zf1-3/DNA complex to assess the utility of chemical shift change as a probe of molecular interfaces. Chemical shift perturbations that occur upon binding in the zf1-3/DNA complex do not correspond directly to the structural interface, but rather arise from a number of direct and indirect structural and dynamic effects.

  18. Multilinear relations between {sup 13} C NMR chemical shifts of aliphatic halides; Relacoes lineares multiplas entre deslocamentos quimicos em RMN {sup 13} C de haletos alifaticos

    Energy Technology Data Exchange (ETDEWEB)

    Doyama, Julio Toshimi [UNESP, Botucatu, SP (Brazil). Inst. de Biociencias. Dept. de Quimica e Bioquimica; Tornero, Maria Teresinha Trovarelli [UNESP, Botucatu, SP (Brazil). Inst. de Biociencias. Dept. de Bioestatistica; Yoshida, Massayoshi [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica

    1999-07-01

    The {sup 13} C NMR chemical shifts of the {alpha}, {beta}, {gamma} and {delta} carbons of 17 sets of aliphatic halides (F, Cl, Br and I), including mono, bi and tricyclic compounds, can be reproduced by a linear equation composed with two constants and two variables: {delta}{sub RX} = A{sup *} {delta}{sub R-X2}, where A and B are constants derived from multilinear regression of {sup 13} C chemical shifts observed; {delta}{sub R-X}, the chemical shifts of aliphatic halide (R-X); and {delta}{sub R-X1}, {delta}{sub R-X2} the chemical shifts of other halides. It was observed a better correlation for aliphatic bromides (R-X) by using data of aliphatic fluorides (R-X 1) and aliphatic iodides (R-X 2), resulting R{sup 2} of 0.9989 and average absolute deviation (AVG) of 0.39 ppm. For the chlorides (R-X), the better correlation was observed by using data of bromides (R-X 1) was observed better correlation with data of bromides (R-X 1) and iodides (R-X 2), R{sup 2} of 0.997 and AVG of 1.10 ppm. For the iodides (R-X) was observed better correlation with data of fluorides (R-X 1) and bromides (R-X 2), R{sup 2} of 0.9972 and AVG of 0.60 ppm. (author)

  19. In vivo 31P nuclear magnetic resonance investigation of tellurite toxicity in Escherichia coli.

    Science.gov (United States)

    Lohmeier-Vogel, Elke M; Ung, Shiela; Turner, Raymond J

    2004-12-01

    Here we compare the physiological state of Escherichia coli exposed to tellurite or selenite by using the noninvasive technique of phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy. We studied glucose-fed Escherichia coli HB101 cells containing either a normal pUC8 plasmid with no tellurite resistance determinants present or the pTWT100 plasmid which contains the resistance determinants tehAB. No differences could be observed in intracellular ATP levels, the presence or absence of a transmembrane pH gradient, or the levels of phosphorylated glycolytic intermediates when resistant cells were studied by 31P NMR in the presence or absence of tellurite. In the sensitive strain, we observed that the transmembrane pH gradient was dissipated and intracellular ATP levels were rapidly depleted upon exposure to tellurite. Only the level of phosphorylated glycolytic intermediates remained the same as observed with resistant cells. Upon exposure to selenite, no differences could be observed by 31P NMR between resistant and sensitive strains, suggesting that the routes for selenite and tellurite reduction within the cells differ significantly, since only tellurite is able to collapse the transmembrane pH gradient and lower ATP levels in sensitive cells. The presence of the resistance determinant tehAB, by an as yet unidentified detoxification event, protects the cells from uncoupling by tellurite.

  20. Study of the thermal neutron radiative capture sup 31 P( n ,. gamma. ) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Xiantang; Shi Zongren; Zhang Ming; Li Guohua; Ding Dazhao (Institute of Atomic Energy, P. O. Box 275, Beijing (CN))

    1989-05-01

    The measurement of the {gamma}-ray spectrum of the {sup 31}P({ital n},{gamma}) reaction induced by thermal neutrons from the heavy water reactor is performed by using three crystal pair spectrometer'', Ge(Li) and HPGe detectors. 128 {gamma}-rays are identified, 24 of them are recognized as primary {gamma}-transitions. The excitation energies of 32 levels are deduced. Two possible levels of 5451.44 keV and 5021.10 keV have not been reported previously. The neutron separation energy is determined to be 7936.65(8) keV and partial cross sections are measured. The thermal neutron capture cross section of {sup 31}P is obtained to be 177(5) mb by comparison with Au({ital n}{sub th}, {gamma}) cross section standard. With the formula of the Lane-Lynn direct interaction, the partial capture cross sections of eight strong primary E1-transitions are calculated and compared with their experimental values, leading to the conclusion that the theoretical values are in coincidence with the experimental ones and the E1-transitions mainly come from 1+ capture state. The correlation analyses of the reduced strengths of E1 and M1 transitions with the spectroscopic factors of (d, p) reaction are performed and the reaction mechanisms discussed.

  1. Lateral diffusion of bilayer lipids measured via (31)P CODEX NMR.

    Science.gov (United States)

    Saleem, Qasim; Lai, Angel; Morales, Hannah H; Macdonald, Peter M

    2012-10-01

    We have employed (31)P CODEX (centre-band-only-detection-of-exchange) NMR to measure lateral diffusion coefficients of phospholipids in unilamellar lipid bilayer vesicles consisting of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), alone or in mixtures with 30 mol% 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) or cholesterol (CHOL). The lateral diffusion coefficients of POPC and POPG were extracted from experimental CODEX signal decays as a function of increasing mixing time, after accounting for the vesicle's size and size distribution, as determined via dynamic light scattering, and the viscosity of the vesicular suspension, as determined via (1)H pulsed field gradient NMR. Lateral diffusion coefficients for POPC and POPG determined in this fashion fell in the range 1.0-3.2 × 10(-12) m(2) s(-1) at 10 °C, depending on the vesicular composition, in good agreement with accepted values. Thus, two advantages of (31)P CODEX NMR for phospholipid lateral diffusion measurements are demonstrated: no labelling of the molecule of interest is necessary, and multiple lateral diffusion coefficients can be measured simultaneously. It is expected that this approach will prove particularly useful in diagnosing heterogeneities in lateral diffusion behaviours, such as might be expected for specific lipid-lipid or lipid-protein interactions, and thermotropic or electrostatically induced phase inhomogeneities.

  2. Chemical shift of U L3 edges in different uranium compounds obtained by X-ray absorption spectroscopy with synchrotron radiation

    Indian Academy of Sciences (India)

    D Joseph; C Nayak; P Venu Babu; S N Jha; D Bhattacharyya

    2014-05-01

    Uranium L3 X-ray absorption edge was measured in various compounds containing uranium in U4+, U5+ and U6+ oxidation states. The measurements have been carried out at the Energy Dispersive EXAFS beamline (BL-08) at INDUS-2 synchrotron radiation source at RRCAT, Indore. Energy shifts of ∼ 2–3 eV were observed for U L3 edge in the U-compounds compared to their value in elemental U. The different chemical shifts observed for the compounds having the same oxidation state of the cation but different anions or ligands show the effect of different chemical environments surrounding the cations in determining their X-ray absorption edges in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on U cation in the above compounds.

  3. Combining ambiguous chemical shift mapping with structure-based backbone and NOE assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2011-01-01

    Chemical shift mapping is an important technique in NMRbased drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically. However, automated methods are necessary for high-throughput drug screening. We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C- labeling, to resolve the ambiguities for a one-toone mapping. On the three proteins, it achieves an average accuracy of 94% or better. Copyright © 2011 ACM.

  4. Relativistic four-component DFT calculations of 1H NMR chemical shifts in transition-metal hydride complexes: unusual high-field shifts beyond the Buckingham-Stephens model.

    Science.gov (United States)

    Hrobárik, Peter; Hrobáriková, Veronika; Meier, Florian; Repiský, Michal; Komorovský, Stanislav; Kaupp, Martin

    2011-06-09

    State-of-the-art relativistic four-component DFT-GIAO-based calculations of (1)H NMR chemical shifts of a series of 3d, 4d, and 5d transition-metal hydrides have revealed significant spin-orbit-induced heavy atom effects on the hydride shifts, in particular for several 4d and 5d complexes. The spin-orbit (SO) effects provide substantial, in some cases even the dominant, contributions to the well-known characteristic high-field hydride shifts of complexes with a partially filled d-shell, and thereby augment the Buckingham-Stephens model of off-center paramagnetic ring currents. In contrast, complexes with a 4d(10) and 5d(10) configuration exhibit large deshielding SO effects on their hydride (1)H NMR shifts. The differences between the two classes of complexes are attributed to the dominance of π-type d-orbitals for the true transition-metal systems compared to σ-type orbitals for the d(10) systems.

  5. Effects of anoxia on 31P NMR spectra of Phycomyces blakesleeanus during development

    Directory of Open Access Journals (Sweden)

    Stanić Marina

    2009-01-01

    Full Text Available The method of 31P NMR spectroscopy was used to investigate the effects of anoxia on Phycomyces blakesleea­nus mycelium during development. The greatest changes were recorded in the PPc, NADH, and α-ATP signals. Decrease of PPc signal intensity is due to chain length reduction and reduction in number of PPn molecules. Smaller decrease of β-ATP compared to α-ATP signal intensity can be attributed to maintenance of ATP concentration at the expense of PPn hydrolysis. Sensitivity to anoxia varies with the growth stage. It is greatest in 32-h and 44-h mycelium, in which PPn is used as an additional energy source, while the smallest effect was noted for 36-h fungi.

  6. 31P NMR Studies on the Ligand Dissociation of Trinuclear Molybde-num Cluster Compounds

    Institute of Scientific and Technical Information of China (English)

    李兆基; 覃业燕; 姚元根; 唐艳红; 康遥; 夏继波; 陈忠; 吴棱

    2003-01-01

    A series of carboxylate-substituted trinudear molybdenum dus-ter compounds formulated as Mo3S4(DTP)3(RCO2)(L), where RffiH, CH3, C2H5, CH2Cl, CCl3, R1C6H4(R1 is the group on the benzene ring of aromatic carboxylate ), L=pyridine,CH3CN, DMF, have been synthesized by the ligand substitu-tion reaction. The dissociation of the loosely-coordinated ligand L from the cluster core was studied by 31p NMR. The dissocia-tion process of L is related to the solvent, temperature, and acidity of carboxylate groups, so as to affect the solution struc-ture and reactive properties of the duster. The long-distance in-teraction between ligands RCO2 and L is transported by Mo3S4 core.

  7. Detoxification of organophosphorus pesticides and nerve agents through RSDL: efficacy evaluation by (31)P NMR spectroscopy.

    Science.gov (United States)

    Elsinghorst, Paul W; Worek, Franz; Koller, Marianne

    2015-03-04

    Intoxication by organophosphorus compounds, especially by pesticides, poses a considerable risk to the affected individual. Countermeasures involve both medical intervention by means of antidotes as well as external decontamination to reduce the risk of dermal absorption. One of the few decontamination options available is Reactive Skin Decontamination Lotion (RSDL), which was originally developed for military use. Here, we present a (31)P NMR spectroscopy based methodology to evaluate the detoxification efficacy of RSDL with respect to a series of organophosphorus pesticides and nerve agents. Kinetic analysis of the obtained NMR data provided degradation half-lives proving that RSDL is also reasonably effective against organophosphorus pesticides. Unexpected observations of different RSDL degradation patterns are presented in view of its reported oximate-catalyzed mechanism of action.

  8. Degradation of black phosphorus: a real-time 31P NMR study

    Science.gov (United States)

    Wang, Yue; Yang, Bingchao; Wan, Bensong; Xi, Xuekui; Zeng, Zhongming; Liu, Enke; Wu, Guangheng; Liu, Zhongyuan; Wang, Wenhong

    2016-09-01

    In this work, degradation behaviors and mechanisms of black phosphorus (BP) crystals in air under ambient conditions were investigated by nuclear magnetic resonance spectroscopy. It has been found that the 31P NMR line intensity for BP decreases exponentially during aging even at the very first several hours, suggesting the origin of the degradation of transport properties. In addition to phosphoric acid, new phosphorous acid was also well resolved in the final aging products. Moreover, BP has been found to be stable in water without the presence of oxygen molecules. These findings are relevant for better understanding of degradation behaviors of BP upon aging and should be helpful for overcoming a barrier that might hamper progress toward applications of BP as a 2D material.

  9. Decomposition of adsorbed VX on activated carbons studied by 31P MAS NMR.

    Science.gov (United States)

    Columbus, Ishay; Waysbort, Daniel; Shmueli, Liora; Nir, Ido; Kaplan, Doron

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) {(DES)2}. Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed.

  10. Decomposition of adsorbed VX on activated carbons studied by {sup 31}P MAS NMR

    Energy Technology Data Exchange (ETDEWEB)

    Ishay Columbus; Daniel Waysbort; Liora Shmueli; Ido Nir; Doron Kaplan [Israel Institute for Biological Research, Ness Ziona (Israel). Departments of Organic Chemistry and Physical Chemistry

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-(2-(diisopropylamino)ethyl) methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. Four types of activated carbon were used, including coal-based BPL. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) ((DES){sub 2}). Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed. 17 refs., 6 figs., 3 tabs.

  11. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    Science.gov (United States)

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  12. Solvent-induced chemical shifts of methoxyl nuclear resonance signals in chalcones by benzene and trifluoroacetic acid

    Science.gov (United States)

    Khurana, Shashi K.; Krishnamoorthy, V.; Parmar, Virinder S.

    The 1H NMR spectra of eight different methoxylated chalcones have separately been recorded, (1) in deuterated chloroform; (2) in a mixture (1:1) of deuterated chloroform and benzene; and (3) in a mixture of deuterated chloroform, benzene and trifluoroacetic acid (2:2:1) and the benzene induced and TFA induced shift values have been assigned to different methoxyl groups. These shift values can serve as a guide in determining the structures of natural or new chalcones. The steric, electronic and conformational factors are discussed to explain the shift values.

  13. Precision Measurement of the Quadrupole Coupling and Chemical Shift Tensors of the Deuterons in α-Calcium Formate

    Science.gov (United States)

    Schmitt, Heike; Zimmermann, H.; Körner, O.; Stumber, M.; Meinel, C.; Haeberlen, U.

    2001-07-01

    Using calcium formate, α-Ca(DCOO)2, as a test sample, we explore how precisely deuteron quadrupole coupling (QC) and chemical shift (CS) tensors Q and σ can currently be measured. The error limits, ±0.09 kHz for the components of Q and ±0.06 ppm for those of σ, are at least three times lower than in any comparable previous experiment. The concept of a new receiver is described. A signal/noise ratio of 100 is realized in single-shot FT spectra. The measurement strategies and a detailed error analysis are presented. The precision of the measurement of Q is limited by the uncertainty of the rotation angles of the sample and that of σ by the uncertainty of the phase correction parameters needed in FT spectroscopy. With a 4-sigma confidence, it is demonstrated for the first time that the unique QC tensor direction of a deuteron attached to a carbon deviates from the bond direction; the deviation found is (1.2±0.3°). Evidence is provided for intermolecular QC contributions. In terms of Q, their size is roughly 4 kHz. The deuteron QC tensors in α-Ca(DCOO)2 (two independent deuteron sites) are remarkable in three respects. For deuterons attached to sp2 carbons, first, the asymmetry factors η and, second, the quadrupole coupling constants CQ, are unusually small, η1=0.018, η2=0.011, and CQ1=(151.27±0.06) kHz, CQ2=(154.09±0.06) kHz. Third, the principal direction associated with the largest negative QC tensor component lies in and not, as usual, perpendicular to the molecular plane. A rationalization is provided for these observations. The CS tensors obtained are in quantitative agreement with the results of an earlier, less precise, line-narrowing multiple-pulse study of α-Ca(HCOO)2. The assignment proposed in that work is confirmed. Finally we argue that a further 10-fold increase of the measurement precision of deuteron QC tensors, and a 2-fold increase of that of CS tensors, should be possible. We indicate the measures that need to be taken.

  14. Detection of chemical vapor with high sensitivity by using the symmetrical metal-cladding waveguide-enhanced Goos-Hänchen shift.

    Science.gov (United States)

    Nie, Yiyou; Li, Yuanhua; Wu, Zhijing; Wang, Xianping; Yuan, Wen; Sang, Minghuang

    2014-04-21

    We present a novel and simple optical structure, i.e., the symmetrical metal-cladding waveguide, in which a polymer layer is added into the guiding layer, for sensitive detection of chemical vapor by using the enhanced Goos-Hänchen (GH) shift (nearly a millimeter scale). Owing to the high sensitivity of the excited ultrahigh-order modes, the vapor-induced effect (swelling effect and refractive index change) in the polymer layer will lead to a dramatic variation of the GH shift. The detected GH shift signal is irrelevant to the power fluctuation of the incident light. The detection limit of 9.5 ppm for toluene and 28.5 ppm for benzene has been achieved.

  15. Theoretical Studies on the Fe-M Interactions and 31p NMR in Fe(CO)3(EtPhPpy)2MX2 (X=NCS, SCN, CI; M=Zn, Cd, Hg)

    Institute of Scientific and Technical Information of China (English)

    Xiao-xuan Huang; Xuan Xu; Mei-xiang Xie

    2008-01-01

    To study the Fe-M interactions and their effects on 31p NMR, the structures of Fe(CO)3(EtPhPpy)21,Fe(CO)3(EtPhPpy)2M(NCS)2 (2: M=Zn, 3: M=Cd, 4: M=Hg) and Fe(CO)3(EtPhPpy)2CdX2 (5: X=CI,6: X=SCN) were investigated by density functional theory (DFT) PBE0 method. The stabilities S of complexes follow S(2)>S(3)>S(4) and S(3)~S(6)>S(5), indicating that 6 is stable and may be synthesized.The complexes with thiocyanate are more stable than that with chloride in Fe(CO)3(EtPhPpy)2CdX2.The strength I of Fe-M interactions follows I(2)≈I(3)31p chemical shifts are caused (compared with mononuclear complex 1).

  16. Chemical shifts of K-X-ray absorption edges on copper in different compounds by X-ray absorption spectroscopy (XAS) with Synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, D., E-mail: djoseph@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Basu, S.; Jha, S.N.; Bhattacharyya, D. [Applied Spectroscopy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2012-03-01

    Cu K X-ray absorption edges were measured in compounds such as CuO, Cu(CH{sub 3}CO{sub 2}){sub 2}, Cu(CO{sub 3}){sub 2}, and CuSO{sub 4} where Cu is present in oxidation state of 2+, using the energy dispersive EXAFS beamline at INDUS-2 Synchrotron radiation source at RRCAT, Indore. Energy shifts of {approx}4-7 eV were observed for Cu K X-ray absorption edge in the above compounds compared to its value in elemental copper. The difference in the Cu K edge energy shifts in the different compounds having same oxidation state of Cu shows the effect of different chemical environments surrounding the cation in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on Cu cations in the above compounds.

  17. Chemical shifts of K-X-ray absorption edges on copper in different compounds by X-ray absorption spectroscopy (XAS) with Synchrotron radiation

    Science.gov (United States)

    Joseph, D.; Basu, S.; Jha, S. N.; Bhattacharyya, D.

    2012-03-01

    Cu K X-ray absorption edges were measured in compounds such as CuO, Cu(CH3CO2)2, Cu(CO3)2, and CuSO4 where Cu is present in oxidation state of 2+, using the energy dispersive EXAFS beamline at INDUS-2 Synchrotron radiation source at RRCAT, Indore. Energy shifts of ˜4-7 eV were observed for Cu K X-ray absorption edge in the above compounds compared to its value in elemental copper. The difference in the Cu K edge energy shifts in the different compounds having same oxidation state of Cu shows the effect of different chemical environments surrounding the cation in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on Cu cations in the above compounds.

  18. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bellstedt, Peter [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Haefner, Sabine; Leppert, Joerg; Goerlach, Matthias; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany)

    2012-12-15

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC Prime C and 3D C Prime NCA with sequential {sup 13}C acquisitions, 3D NHH and 3D NC Prime H with sequential {sup 1}H acquisitions and 3D CANH and 3D C'NH with broadband {sup 13}C-{sup 15}N mixing are demonstrated using microcrystalline samples of the {beta}1 immunoglobulin binding domain of protein G (GB1) and the chicken {alpha}-spectrin SH3 domain.

  19. Evidence of chemical-potential shift with hole doping in Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8+. delta

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z.; Dessau, D.S.; Wells, B.O. (Stanford Electronics Laboratory, Stanford University, Stanford, California 94305 (United States)); Olson, C.G. (Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States)); Mitzi, D.B.; Lombado, L. (Department of Applied Physics, Stanford University, Stanford, California 94305 (United States)); List, R.S.; Arko, A.J. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1991-12-01

    We have performed photoemission studies on high-quality Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} samples with various {delta}. Our results show a clear chemical-potential shift (0.15--0.2 eV) as a function of doping. This result and the existing angle-resolved-photoemission data give a rather standard doping behavior of this compound in its highly doped regime.

  20. Progress in spin dynamics solid-state nuclear magnetic resonance with the application of Floquet-Magnus expansion to chemical shift anisotropy.

    Science.gov (United States)

    Mananga, Eugene Stephane

    2013-01-01

    The purpose of this article is to present an historical overview of theoretical approaches used for describing spin dynamics under static or rotating experiments in solid state nuclear magnetic resonance. The article gives a brief historical overview for major theories in nuclear magnetic resonance and the promising theories. We present the first application of Floquet-Magnus expansion to chemical shift anisotropy when irradiated by BABA pulse sequence.

  1. 31P NMR analysis of intracellular pH of Swiss Mouse 3T3 cells: effects of extracellular Na+ and K+ and mitogenic stimulation.

    Science.gov (United States)

    Civan, M M; Williams, S R; Gadian, D G; Rozengurt, E

    1986-01-01

    Swiss mouse 3T3 cells grown on microcarrier beads were superfused with electrolyte solution during continuous NMR analysis. Conventional 31P and 19F probes of intracellular pH (pHc) were found to be impracticable. Cells were therefore superfused with 1 to 4 mM 2-deoxyglucose, producing a large intracellular, pH-sensitive signal of 2-deoxyglucose phosphate (2DGP). The intracellular incorporation of 2DGP inhibited the Embden-Meyerhof pathway. However, intracellular ATP was at least in part retained and the cellular responsivity to changes in extracellular ionic composition and to the application of growth factors proved intact. Transient replacement of external Na+ with choline or K+ reversibly acidified the intracellular fluids. Quiescent cells and mitogenically stimulated cells displayed the same dependence of shifts in pHc on external Na+ concentration (CoNa). PHc also depended on intracellular Na+ concentration (CcNa). Increasing ccNa by withdrawing external K+ (thereby inhibiting the Na,K-pump) caused reversible intracellular acidification; subsequently reducing CoNa produced a larger acid shift in pHc than with external K+ present. Comparison of separate preparations indicated that pHc was higher in stimulated than in quiescent cells. Transient administration of mitogens also reversibly alkalinized quiescent cells studied continuously. This study documents the feasibility of monitoring pHc of Swiss mouse 3T3 cells using 31P NMR analysis of 2DGP. The results support the concept of a Na/H antiport operative in these cells, both in quiescence and after mitogenic stimulation. The data document by an independent technique that cytoplasmic alkalinization is an early event in mitogenesis, and that full activity of the Embden-Meyerhof pathway is not required for the expression of this event.

  2. All-atom Molecular Dynamic Simulations Combined with the Chemical Shifts Study on the Weak Interactions of Ethanol-water System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rong; LUO San-Lai; WU Wen-Juan

    2008-01-01

    All-atom molecular dynamics(MD)simulation combined with chemical shifts was performed to investigate the interactions over the entire concentration range of the ethanol(EtOH)-water system.The results of the simulation were adopted to explain the NMR experiments by hydrogen bonding analysis.The strong hydrogen bonds and weak C-H…O contacts coexist in the mixtures through the analysis of the radial distribution functions.And the liquid structures in the whole concentration of EtOH-water mixtures can be classified into three regions by the statistic analysis of the hydrogen-bonding network in the MD simulations.Moreover,the chemical shifts of the hydrogen atom are in agreement witb the statistical results of the average number hydrogen bonds in the MD simulations.Interestingly,the excess relative extent Eηrel calculated by the MD simulations and chemical shifts in the EtOH aqueous solutions shows the largest deviation at XEtOH≈0.18.The excess properties present good agreement with the excess enthalpy in the concentration dependence.

  3. Homonuclear chemical shift correlation in rotating solids via RN{sup {nu}}{sub n} symmetry-based adiabatic RF pulse schemes

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Kerstin; Leppert, Joerg; Haefner, Sabine; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai [Institut fuer Molekulare Biotechnologie, Abteilung Molekulare Biophysik/NMR-Spektroskopie (Germany)], E-mail: raman@imb-jena.de

    2004-12-15

    The efficacy of RN{sup {nu}}{sub n} symmetry-based adiabatic Zero-Quantum (ZQ) dipolar recoupling schemes for obtaining chemical shift correlation data at moderate magic angle spinning frequencies has been evaluated. RN{sub n}{sup {nu}} sequences generally employ basic inversion elements that correspond to a net 180 deg. rotation about the rotating frame x-axis. It is shown here via numerical simulations and experimental measurements that it is also possible to achieve efficient ZQ dipolar recoupling via RN{sub n}{sup {nu}} schemes employing adiabatic pulses. Such an approach was successfully used for obtaining {sup 1}3C chemical shift correlation spectra of a uniformly labelled sample of (CUG){sub 9}7- a triplet repeat expansion RNA that has been implicated in the neuromuscular disease myotonic dystrophy. An analysis of the {sup 1}3C sugar carbon chemical shifts suggests, in agreement with our recent {sup 1}5N MAS-NMR studies, that this RNA adopts an A-helical conformation.

  4. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    Science.gov (United States)

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0.

  5. (31)P NMR study of post mortem changes in pig muscle.

    Science.gov (United States)

    Miri, A; Talmant, A; Renou, J P; Monin, G

    1992-01-01

    The rate and the extent of post mortem pH changes in pig muscle largely determine pork quality. Fast pH fall combined with low ultimate pH leads to pale soft exudative (PSE) meat; high ultimate pH leads to dark firm dry (DFD) meat. Post mortem metabolism was studied in pig muscle using(31)P NMR. Fifteen pigs, i.e. 7 Large White pigs and 8 Pietrain pigs, were used. Five pigs of each breed were slaughtered, taking care to minimize preslaughter stress. The other pigs (3 Large Whites and 2 Pietrains) were injected with 0·1 mg adrenaline per kg liveweight before slaughter, in order to increase meat ultimate pH. All the animals were killed by electronarcosis and exsanguination. Three of the adrenaline-treated pigs (1 Large White and 2 Pietrains) gave meat with ultimate pH above 6 (DFD meat). The pigs with normal muscle ultimate pH, i.e. 6 Large Whites and 6 Pietrains, had very variable rates of post mortem muscle metabolism (pH at 30 min after slaughter: 6·17-6·85 in Large Whites; 6·04-6·23 in Pietrains). The relationships between pH and ATP changes were similar in all pigs showing normal muscle ultimate pH, whereas ATP disappeared at a high pH value (on average pH 6·4) in pigs with high ultimate pH. The course of post mortem biochemical changes in a given animal could be predicted rather well by examination of a single(31)P NMR spectrum obtained around 30 min after death. At this time, muscle with a low rate of metabolism simultaneously showed medium to high pH, high ATP content (4-6·8 μmol/g) and rather low Pi content (6-14 μmol/g); muscle with a fast rate of metabolism (PSE-prone muscle) had low pH, low to medium ATP content (1·1-4 μmol/g) and generally high phosphomonoester (PME) content (9-23 μmol/g); muscle with high ultimate pH (DFD-prone muscle) had high pH, low PME content (4-8 μmol/g) and high Pi content (22-27 μmol/g).

  6. Identification of Zinc-ligated Cysteine Residues Based on {sup 13}C{alpha} and {sup 13}C{beta} Chemical Shift Data

    Energy Technology Data Exchange (ETDEWEB)

    Kornhaber, Gregory J.; Snyder, David; Moseley, Hunter N. B.; Montelione, Gaetano T. [Rutgers University, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry (United States)], E-mail: guy@cabm.rutgers.edu

    2006-04-15

    Although a significant number of proteins include bound metals as part of their structure, the identification of amino acid residues coordinated to non-paramagnetic metals by NMR remains a challenge. Metal ligands can stabilize the native structure and/or play critical catalytic roles in the underlying biochemistry. An atom's chemical shift is exquisitely sensitive to its electronic environment. Chemical shift data can provide valuable insights into structural features, including metal ligation. In this study, we demonstrate that overlapped {sup 13}C{beta} chemical shift distributions of Zn-ligated and non-metal-ligated cysteine residues are largely resolved by the inclusion of the corresponding {sup 13}C{alpha} chemical shift information, together with secondary structural information. We demonstrate this with a bivariate distribution plot, and statistically with a multivariate analysis of variance (MANOVA) and hierarchical logistic regression analysis. Using 287 {sup 13}C{alpha}/{sup 13}C{beta} shift pairs from 79 proteins with known three-dimensional structures, including 86 {sup 13}C{alpha} and{sup 13}C{beta} shifts for 43 Zn-ligated cysteine residues, along with corresponding oxidation state and secondary structure information, we have built a logistic regression model that distinguishes between oxidized cystines, reduced (non-metal ligated) cysteines, and Zn-ligated cysteines. Classifying cysteines/cystines with a statisical model incorporating all three phenomena resulted in a predictor of Zn ligation with a recall, precision and F-measure of 83.7%, and an accuracy of 95.1%. This model was applied in the analysis of Bacillus subtilis IscU, a protein involved in iron-sulfur cluster assembly. The model predicts that all three cysteines of IscU are metal ligands. We confirmed these results by (i) examining the effect of metal chelation on the NMR spectrum of IscU, and (ii) inductively coupled plasma mass spectrometry analysis. To gain further insight into

  7. Analysis of 3.0T 31P-MR spectroscopy:gastrocnemius of healthy adults in the resting state%静息状态健康成人腓肠肌3.0T31P-MRS分析

    Institute of Scientific and Technical Information of China (English)

    朱凯; 由长城; 张晓凡; 曾立红; 刘鹏飞

    2011-01-01

    目的 应用3.0T 31P-MRS对不同年龄组左腓肠肌磷代谢物定量分析,评估其磷代谢物特点,并为腓肠肌31P-MRS检查参数优化提供依据.方法 32例健康志愿者,在静息状态下进行31P-MRS单体素扫描,分别显示7个代谢产物波峰,同时计算pH值、PME/β-ATP、PCr/PME、β-ATP/Pi、PME/Pi、PDE/β-ATP相对定量分析.结果 健康成人静息状态下显示7个代谢物.PME、PCr、Pi、总ATP、PCr/PME、PME/Pi青年组和与老年组有统计学差异.中老年组PME、PME/β-ATP、β-ATP/Pi、PME/Pi、PDE/β-ATP男性与女性有统计学差异.结论 3.0T 31P-MRS可无创量化健康成人不同年龄、各组不同性别静息状态腓肠肌磷代谢产物.%Objective To evaluate different age groups of phosphatides metabolism features using 3. OT 31P-MRS, so that to provide the basis for optimization of 31P-MRS examinating gastrocnemius. Methods Single factor 31P-MRS was carried out at the resting state in 32 healthy volunteers, 7 metabolites peaks of gastrocnemius, including pH, PME/13-ATP, PCr/PME,|3-ATP/Pi, PME/Pi and PDE/|3-ATP were showed to implement the relative quantitative analysis. Results MRS showed that the PME, PCr, Pi, total ATP,PCr/PME,PME/Pi in the healthy resting state were significantly different between youth group and the old group. PME, PME/(3-ATP,(3-ATP/Pi, PME/Pi and PDE/(3-ATP were significantly different between men and women in the elderly group. Conclusion 3. OT 31 P-MRS can noninvasively quantify the resting gastrocnemius phosphorus metabolites in healthy adults in different ages and different genders.

  8. Phosphorus in chronosequence of burnt sugar cane in Brazilian cerrado: humic acid analysis by {sup 31}P NMR; Fosforo em cronossequencia de cana-de-acucar queimada no cerrado goiano: analise de acidos humicos por RMN de {sup 31}P

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Celeste Q.; Pereira, Marcos G.; Garcia, Andreas C., E-mail: mgervasiopereira@gmail.com [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Dept. de Solos; Perin, Adriano; Gazolla, Paulo R. [Instituto Federal de Educacao, Ciencia e Tecnologia Goiano, Rio Verde, GO (Brazil); Gonzalez, Antonio P. [Universidade de Coruna, ES (Spain). Faculdad de Ciencias

    2013-10-01

    The aim of this study was to identify, with the use of {sup 31}P NMR spectroscopy, organic P species in humic acids (HA) in samples from Oxisol cultivated in chronosequence with sugar cane, pasture and Cerrado. The main forms of P-type found were orthophosphate, monoester-P (phosphate sugars) and P-diester (orthophosphate). The {sup 31}P NMR technique proved capable of identifying changes in the areas studied as a function of sugar cane burning time. In areas with 1 and 5 years of burnt cane, a decrease in recalcitrant organic P in humic acids indicated the need for use of P-humic substances for plant nutrition (author)

  9. 31P NMR characterization and efficiency of new types of water-insoluble phosphate fertilizers to supply plant-available phosphorus in diverse soil types.

    Science.gov (United States)

    Erro, Javier; Baigorri, Roberto; Yvin, Jean-Claude; Garcia-Mina, Jose M

    2011-03-01

    Hydroponic plant experiments demonstrated the efficiency of a type of humic acid-based water-insoluble phosphate fertilizers, named rhizosphere controlled fertilizers (RCF), to supply available phosphorus (P) to different plant species. This effect was well correlated to the root release of specific organic acids. In this context, the aims of this study are (i) to study the chemical nature of RCF using solid-state (31)P NMR and (ii) to evaluate the real efficiency of RCF matrix as a source of P for wheat plants cultivated in an alkaline and acid soil in comparison with traditional water-soluble (simple superphosphate, SSP) and water-insoluble (dicalcium phosphate, DCP) P fertilizers. The (31)P NMR study revealed the formation of multimetal (double and triple, MgZn and/or MgZnCa) phosphates associated with chelating groups of the humic acid through the formation of metal bridges. With regard to P fertilizer efficiency, the results obtained show that the RCF matrix produced higher plant yields than SSP in both types of soil, with DCP and the water-insoluble fraction from the RCF matrix (WI) exhibiting the best results in the alkaline soil. By contrast, in the acid soil, DCP showed very low efficiency, WI performed on a par with SSP, and RCF exhibited the highest efficiency, thus suggesting a protector effect of humic acid from soil fixation.

  10. Uncovering symmetry-breaking vector and reliability order for assigning secondary structures of proteins from atomic NMR chemical shifts in amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wookyung [Pusan National University, Department of Physics, Center for Proteome Biophysics (Korea, Republic of); Lee, Woonghee; Lee, Weontae [Yonsei University, Department of Biochemistry, Structural Biochemistry and Molecular Biophysics Laboratory (Korea, Republic of); Kim, Suhkmann [Pusan National University, Department of Chemistry, Biochemistry and Bio-NMR Laboratory (Korea, Republic of); Chang, Iksoo, E-mail: iksoochang@pusan.ac.kr [Pusan National University, Department of Physics, Center for Proteome Biophysics (Korea, Republic of)

    2011-12-15

    Unravelling the complex correlation between chemical shifts of {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 1}H{sup {alpha}}, {sup 15}N, {sup 1}H{sup N} atoms in amino acids of proteins from NMR experiment and local structural environments of amino acids facilitates the assignment of secondary structures of proteins. This is an important impetus for both determining the three-dimensional structure and understanding the biological function of proteins. The previous empirical correlation scores which relate chemical shifts of {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 1}H{sup {alpha}}, {sup 15}N, {sup 1}H{sup N} atoms to secondary structures resulted in progresses toward assigning secondary structures of proteins. However, the physical-mathematical framework for these was elusive partly due to both the limited and orthogonal exploration of higher-dimensional chemical shifts of hetero-nucleus and the lack of physical-mathematical understanding underlying those correlation scores. Here we present a simple multi-dimensional hetero-nuclear chemical shift score function (MDHN-CSSF) which captures systematically the salient feature of such complex correlations without any references to a random coil state of proteins. We uncover the symmetry-breaking vector and its reliability order not only for distinguishing different secondary structures of proteins but also for capturing the delicate sensitivity interplayed among chemical shifts of {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 1}H{sup {alpha}}, {sup 15}N, {sup 1}H{sup N} atoms simultaneously, which then provides a straightforward framework toward assigning secondary structures of proteins. MDHN-CSSF could correctly assign secondary structures of training (validating) proteins with the favourable (comparable) Q3 scores in comparison with those from the previous correlation scores. MDHN-CSSF provides a simple and robust strategy for the

  11. Effects of adrenaline on glycogenolysis in resting anaerobic frog muscles studied by 31P-NMR.

    Science.gov (United States)

    Kikuchi, Kimio; Yamada, Takenori; Sugi, Haruo

    2009-11-01

    The effects of adrenaline (also called epinephrine) on glycogenolysis in living anaerobic muscles were examined based on time-dependent changes of (31)P-NMR spectra of resting frog skeletal muscles with and without iodoacetate treatments. The phosphate-metabolite concentration and the intracellular pH determined from the NMR spectra changed with time, reflecting the advancement of various phosphate metabolic reactions coupled with residual ATPase reactions to keep the ATP concentration constant. The results could be explained semi-qualitatively as the ATP regenerative reactions, creatine kinase reaction and glycogenolysis, advanced with time showing the characteristic two phases. Thus, it was clarified for living muscles that adrenaline activates the phosphorylase step of glycogenolysis, and the adrenaline-activated glycogenolysis is further regulated at the phosphofructokinase step by PCr and also possibly by AMP. Associated with the adrenaline-activated glycogenolysis in the examined muscles, the P(i) concentration and the intracellular pH, factors affecting the muscle force, changed significantly, suggesting complicated effects of adrenaline on the muscle contractility.

  12. /sup 31/P NMR characterization of graded traumatic brain injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vink, R.; McIntosh, T.K.; Yamakami, I.; Faden, A.I.

    1988-01-01

    Irreversible tissue injury following central nervous system trauma is believed to result from both mechanical disruption at the time of primary insult, and more delayed autodestructive processes. These delayed events are associated with various biochemical changes, including alterations in phosphate energy metabolism and intracellular pH. Using /sup 31/P NMR, we have monitored the changes in phosphorus energy metabolism and intracellular pH in a single hemisphere of the rat brain over an 8-h period following graded, traumatic, fluid percussion-induced brain injury. Following trauma the ratio of phosphocreatine to inorganic phosphate (PCr/Pi) declined in each injury group. This decline was transitory with low injury (1.0 +/- 0.5 atm), biphasic with moderate (2.1 +/- 0.4 atm) and high (3.9 +/- 0.9 atm) injury, and sustained following severe injury (5.9 +/- 0.7 atm). The initial PCr/Pi decline in the moderate and high injury groups was associated with intracellular acidosis; however, the second decline occurred in the absence of any pH changes. Alterations in ATP occurred only in severely injured animals and such changes were associated with marked acidosis and 100% mortality rate. After 4h, the posttraumatic PCr/Pi ratio correlated linearly with the severity of injury. We suggest that a reduced posttraumatic PCr/Pi ratio may be indicative of altered mitochondrial energy production and may predict a reduced capacity of the cell to recover from traumatic injury.

  13. Hyperpolarization of 29Si by Resonant Nuclear Spin Transfer from Optically Hyperpolarized 31P Donors

    Science.gov (United States)

    Dluhy, Phillip; Salvail, Jeff; Saeedi, Kamyar; Thewalt, Mike; Simons, Stephanie

    2014-03-01

    Recent developments in nanomedicine have allowed nanoparticles of silicon containing hyperpolarized 29Si to be imaged in vivo using magnetic resonance imaging. The extremely long relaxation times and isotropy of the Si lattice make polarized 29Si isotopes ideal for these sorts of imaging methods. However, one of the major difficulties standing in the path of widespread adoption of these techniques is the slow rate at which the 29Si is hyperpolarized and the limited maximum hyperpolarization achievable. In this talk, I will describe an effective method for hyperpolarization of the 29Si isotopes using resonant optical pumping of the donor bound exciton transitions to polarize the 31P donor nuclei, and a choice of static magnetic field that conserves energy during spin flip flops between donor nuclear and 29Si spins to facilitate diffusion of this polarization. Using this method, we are able to polarize greater than 10% of the 29Si centers in 64 hours without seeing saturation of the 29Si polarization.

  14. 31P NMR studies on the effect of phosphite on Phytophthora palmivora.

    Science.gov (United States)

    Niere, J O; Griffith, J M; Grant, B R

    1990-01-01

    31P NMR spectra were obtained from perchloric acid (PCA) and KOH extracts of Phytophthora palmivora mycelium. Signals indicating the presence of large amounts of short-chain polyphosphate were observed in the spectra of PCA extracts of mycelia grown under both low (0.1 mM) and high (10 mM) phosphate conditions. The mean chain length of polyphosphate was calculated from the relative areas of signals arising from terminal and internal P nuclei in the polyphosphate chain. The small amount of polyphosphate evident in the KOH extract had an average chain length similar to PCA-soluble polyphosphate. 32P tracer studies indicated that phosphorus in the PCA fraction accounted for between 50 and 60% of total phosphorus, the bulk of the remainder being divided between the lipid and KOH extracts. The presence of the fungicide phosphorous acid markedly reduced the average chain length of acid-soluble polyphosphate. This reduction occurred both under low-phosphate conditions, in which treatment with phosphorous acid retards growth, and under high-phosphate conditions, in which no significant growth retardation is observed. Treatment with phosphorous acid perturbed phosphorus distribution and lipid composition under low-phosphate conditions.

  15. 骨和软组织肿瘤的3.0T磁共振磷谱变化研究%Changes of 3-tesla 31P-MR spectroscopy of bone and soft tissue tumors

    Institute of Scientific and Technical Information of China (English)

    齐滋华; 李传福; 马祥兴; 李振峰; 张凯; 于德新

    2009-01-01

    Objective To study the characteristic changes of 31P-MR spectroscopy of bone and soft tissue tumors. Methods 41 patients were examined by phosphorus surface coil of 3 tesla MR machine, including 18 benign tumor foci and 28 malignant foci, and adjacent normal muscles. The areas under the peaks of various metabolites in the spectra were measured, including phosphomonoester(PME), inorganic phosphours (Pi), phosphodiester(PDE), phosphocreatine ( Pcr ), adenosine triphosphate (ATP) γ, α, β. The ratios of the metabolites to β-ATP, NTP and Pcr were calculated. Intracellular pH was calculated according to the chemical shift change of Pi relative to Per. Results The ratios of Pcr/PME and PME/NTP in benign and malignant tumor groups were significantly different from those of the normal group ( P < 0.05). Between benign and malignant tumor groups, the ratios of PME/β-ATP and PME/NTP were significantly different (P < 0.05). Conclusion Pcr/PME and PME/NTP are potential diagnostic indexes of bone and soft tissue tumors. PME/β-ATP and PME/NTP are potential indexes of differential diagnosis of bone and soft tissue tumors.%目的 探讨骨和软组织肿瘤磁共振磷谱(31P-MRS)的变化特点.方法 对41例经病理证实的骨和软组织肿瘤患者的18个良性肿瘤病灶、28个恶性肿瘤病灶及其相邻部位正常肌肉组织,应用3.0T MR机进行31P-MRS分析,测量波谱中磷酸单酯(PME)、无机磷(Pi)、磷酸二酯(PDE)、磷酸肌酸(Pcr)、三磷酸腺苷γ-峰(γ-ATP)、α-峰(α-ATP)和β-峰(β-ATP)的峰下面积.分别以β-ATP、三磷酸核苷(NTP)和Pcr为参照,计算各代谢产物的相对比值.根据Pi相对于Pcr化学位移的变化计算细胞内pH值.结果 良、恶性肿瘤组中Pcr/PME、PME/NTP与正常对照组比较,差异均有统计学意义(P<0.05).良、恶性肿瘤组中PME/β-ATP与PME/NTP比较,差异有统计学意义(P<0.05).结论 Pcr/PME和PME/NTP是诊断骨和软组织肿瘤的潜在指标,PME/β-ATP和PME/NTP是

  16. Lipid Dynamics Studied by Calculation of 31P Solid-State NMR Spectra Using Ensembles from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Hansen, Sara Krogh; Vestergaard, Mikkel; Thøgersen, Lea;

    2014-01-01

    We present a method to calculate 31P solid-state NMR spectra based on the dynamic input from extended molecular dynamics (MD) simulations. The dynamic information confered by MD simulations is much more comprehensive than the information provided by traditional NMR dynamics models based on......, for example, order parameters. Therefore, valuable insight into the dynamics of biomolecules may be achieved by the present method. We have applied this method to study the dynamics of lipid bilayers containing the antimicrobial peptide alamethicin, and we show that the calculated 31P spectra obtained...

  17. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order.

  18. Effects of irritant chemicals on Aedes aegypti resting behavior: is there a simple shift to untreated "safe sites"?

    Directory of Open Access Journals (Sweden)

    Hortance Manda

    2011-07-01

    Full Text Available BACKGROUND: Previous studies have identified the behavioral responses of Aedes aegypti to irritant and repellent chemicals that can be exploited to reduce man-vector contact. Maximum efficacy of interventions based on irritant chemical actions will, however, require full knowledge of variables that influence vector resting behavior and how untreated "safe sites" contribute to overall impact. METHODS: Using a laboratory box assay, resting patterns of two population strains of female Ae. aegypti (THAI and PERU were evaluated against two material types (cotton and polyester at various dark:light surface area coverage (SAC ratio and contrast configuration (horizontal and vertical under chemical-free and treated conditions. Chemicals evaluated were alphacypermethrin and DDT at varying concentrations. RESULTS: Under chemical-free conditions, dark material had significantly higher resting counts compared to light material at all SAC, and significantly increased when material was in horizontal configuration. Cotton elicited stronger response than polyester. Within the treatment assays, significantly higher resting counts were observed on chemical-treated dark material compared to untreated light fabric. However, compared to matched controls, significantly less resting observations were made on chemical-treated dark material overall. Most importantly, resting observations on untreated light material (or "safe sites" in the treatment assay did not significantly increase for many of the tests, even at 25% SAC. Knockdown rates were ≤5% for all assays. Significantly more observations of flying mosquitoes were made in test assays under chemical-treatment conditions as compared to controls. CONCLUSIONS/SIGNIFICANCE: When preferred Ae. aegypti resting sites are treated with chemicals, even at reduced treatment coverage area, mosquitoes do not simply move to safe sites (untreated areas following contact with the treated material. Instead, they become agitated

  19. Transport-induced shifts in condensate dew-point and composition in multicomponent systems with chemical reaction

    Science.gov (United States)

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.

  20. Gated /sup 31/P NMR study of tetanic contraction in rat muscle depleted of phosphocreatine

    Energy Technology Data Exchange (ETDEWEB)

    Shoubridge, E.A.; Radda, G.K.

    1987-05-01

    Rats were fed a diet containing 1% ..beta..-guanidino-propionic acid (GPA) for 6-12 wk to deplete their muscles of phosphocreatine (PCr). Gated /sup 31/P nuclear magnetic resonance (NMR) spectra were obtained from the gastrocnemius-plantaris muscle at various time points during either a 1- or 3-s isometric tetanic contraction using a surface coil. The energy cost of a 1-s tetanus in unfatigued control rat muscle was 48.4 ..mu..mol ATP x g dry wt/sup -1/ x s/sup -1/ and was largely supplied by PCr; anaerobic glycogenolysis was negligible. In GPA-fed rats PCr was undetectable after 400 ms. This had no effect on initial force generated per gram, which was not significantly different from controls. Developed tension in a 3-s tetanus in GPA-fed rats could be divided into a peak phase (duration 0.8-0.9 s) and a plateau phase (65% peak tension) in which PCr was undetectable and the (ATP) was < 20% of that in control muscle. Energy from glycogenolysis was sufficient to maintain force generation at this submaximal level. Mean net glycogen utilization per 3-s tetanus was 78% greater than in control muscle. However, the observed decrease in intracellular pH was less than that expected from energy budget calculations, suggesting either increased buffering capacity or modulation of ATP hydrolysis in the muscles of GPA-fed rats. The results demonstrate that the transport role of PCr is not essential in contracting muscle in GPA-fed rats. PCr is probably important in this regard in the larger fibers of control muscle. Although fast-twitch muscles depleted of PCr have nearly twice the glycogen reserves of control muscle, glycogenolysis is limited in its capacity to fill the role of PCr as an energy buffer under conditions of maximum ATP turnover.

  1. COMPRESSION GARMENTS AND RECOVERY FROM ECCENTRIC EXERCISE: A 31P-MRS STUDY

    Directory of Open Access Journals (Sweden)

    Michael I. Trenell

    2006-03-01

    Full Text Available The low oxidative demand and muscular adaptations accompanying eccentric exercise hold benefits for both healthy and clinical populations. Compression garments have been suggested to reduce muscle damage and maintain muscle function. This study investigated whether compression garments could benefit metabolic recovery from eccentric exercise. Following 30-min of downhill walking participants wore compression garments on one leg (COMP, the other leg was used as an internal, untreated control (CONT. The muscle metabolites phosphomonoester (PME, phosphodiester (PDE, phosphocreatine (PCr, inorganic phosphate (Pi and adenosine triphosphate (ATP were evaluated at baseline, 1-h and 48-h after eccentric exercise using 31P-magnetic resonance spectroscopy. Subjective reports of muscle soreness were recorded at all time points. The pressure of the garment against the thigh was assessed at 1-h and 48-h following exercise. There was a significant increase in perceived muscle soreness from baseline in both the control (CONT and compression (COMP leg at 1-h and 48-h following eccentric exercise (p < 0.05. Relative to baseline, both CONT and COMP showed reduced pH at 1-h (p < 0.05. There was no difference between CONT and COMP pH at 1-h. COMP legs exhibited significantly (p < 0.05 elevated skeletal muscle PDE 1-h following exercise. There was no significant change in PCr/Pi, Mg2+ or PME at any time point or between CONT and COMP legs. Eccentric exercise causes disruption of pH control in skeletal muscle but does not cause disruption to cellular control of free energy. Compression garments may alter potential indices of the repair processes accompanying structural damage to the skeletal muscle following eccentric exercise allowing a faster cellular repair

  2. Muscle energetics changes throughout maturation: a quantitative 31P-MRS analysis.

    Science.gov (United States)

    Tonson, Anne; Ratel, Sébastien; Le Fur, Yann; Vilmen, Christophe; Cozzone, Patrick J; Bendahan, David

    2010-12-01

    We quantified energy production in 7 prepubescent boys (11.7 ± 0.6 yr) and 10 men (35.6 ± 7.8 yr) using (31)P-magnetic resonance spectroscopy to investigate whether development affects muscle energetics, given that resistance to fatigue has been reported to be larger before puberty. Each subject performed a finger flexions exercise at 0.7 Hz against a weight adjusted to 15% of their maximal voluntary strength for 3 min, followed by a 15-min recovery period. The total energy cost was similar in both groups throughout the exercise bout, whereas the interplay of the different metabolic pathways was different. At the onset of exercise, children exhibited a higher oxidative contribution (50 ± 15% in boys and 25 ± 8% in men, P contribution was reduced (40 ± 10% in boys and 53 ± 12% in men, P mechanism. The anaerobic glycolysis activity was unaffected by maturation. The recovery phase also disclosed differences regarding the rates of proton efflux (6.2 ± 2.5 vs. 3.8 ± 1.9 mM · pH unit(-1) · min(-1), in boys and men, respectively, P < 0.05), and phosphocreatine recovery, which was significantly faster in boys than in men (rate constant of phosphocreatine recovery: 1.3 ± 0.5 vs. 0.7 ± 0.4 min(-1); V(max): 37.5 ± 14.5 vs. 21.1 ± 12.2 mM/min, in boys and men, respectively, P < 0.05). Our results obtained in vivo clearly showed that maturation affects muscle energetics. Children relied more on oxidative metabolism and less on creatine kinase reaction to meet energy demand during exercise. This phenomenon can be explained by a greater oxidative capacity, probably linked to a higher relative content in slow-twitch fibers before puberty.

  3. Forms and lability of phosphorus in algae and aquatic macrophytes characterized by solution 31P NMR coupled with enzymatic hydrolysis

    Science.gov (United States)

    Increased information on forms and lability of phosphorus (P) in aquatic macrophytes and algae is crucial for better understanding of P biogeochemical cycling in eutrophic lakes. In this work, solution 31P nuclear magnetic resonance (NMR) spectroscopy coupled with enzymatic hydrolysis (EH) was used ...

  4. Semi-LASER localized dynamic 31P magnetic resonance spectroscopy in exercising muscle at ultra-high magnetic field.

    NARCIS (Netherlands)

    Meyerspeer, M.; Scheenen, T.W.J.; Schmid, A.I.; Mandl, T.; Unger, E.; Moser, E.

    2011-01-01

    Magnetic resonance spectroscopy (MRS) can benefit from increased signal-to-noise ratio (SNR) of high magnetic fields. In this work, the SNR gain of dynamic 31P MRS at 7 T was invested in temporal and spatial resolution. Using conventional slice selective excitation combined with localization by adia

  5. Phytate Hydrolysis in Rat Gastrointestinal Tracts, as Observed by 31P Fourier Transform Nuclear Magnetic Resonance Spectroscopy

    OpenAIRE

    Wise, Alan; Richards, Colin P.; Trimble, Mary L.

    1983-01-01

    Phytate hydrolysis was followed through rat gastrointestinal tracts by 31P nuclear magnetic resonance spectroscopy. No phytate hydrolysis products were detected in the diet, stomach, or small intestine. It was concluded that cecal bacteria were responsible for phytate hydrolysis, which continued in the colon and fecal pellet.

  6. In vivo measurements of T1 relaxation times of 31P-metabolites in human skeletal muscle

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Henriksen, O

    1989-01-01

    The T1 relaxation times were estimated for 31P-metabolites in human skeletal muscle. Five healthy volunteers were examined in a 1.5 Tesla wholebody imaging system using an inversion recovery pulse sequence. The calculated T1 relaxation times ranged from 5.517 sec for phosphocreatine to 3.603 sec...

  7. INVIVO 31P MAGNETIC-RESONANCE SPECTROSCOPY (MRS) OF TENDER POINTS IN PATIENTS WITH PRIMARY FIBROMYALGIA SYNDROME

    NARCIS (Netherlands)

    DEBLECOURT, AC; WOLF, RF; VANRIJSWIJK, MH; KAMMAN, RL; KNIPPING, AA; MOOYAART, EL

    1991-01-01

    31P Magnetic Resonance-Spectroscopy was performed at the site of tender points in the trapezius muscle of patients with primary fibromyalgia syndrome. Earlier, in vitro studies have reported changes in the high energy phosphate-metabolism in biopsies taken from tender points of fibromyalgia patients

  8. 平衡电负性与烷烃核磁共振碳谱位移%EQUILIBRIUM ELECTRONEGATIVITY AND 13C NMR CHEMICAL SHIFTS OF ALKANES

    Institute of Scientific and Technical Information of China (English)

    聂长明; 文松年

    2001-01-01

    In this paper, the atomic equilibrium electronegativity in a molecule has been defined and the model of 13C NMR chemical shifts of alkanes has been studied with the atomic equilibrium electronegativity and the structural information parameters NiH(i=0,α,β,γ) and NjC(j=α,β,γ). The results indicate that the 13C NMR chemical shifts of alkanes can be described as follows: CS=-1736.776+755.118AEE+5.2539N0H+1.8837NβH-0.2066NγH By the use of the formula the chemical shifts of 99 carbon atoms are predicated, and the standard error is only 0.9861ppm. The average absolute error is 0.78ppm, The calculated values conform very much to the observed values.%定义了烷烃分子中碳原子的平衡电负性(AEE),用平衡电负性和NiH(i=0,α,β,γ)和NjC(j=α,β,γ)结构信息参数研究了烷烃的13C NMR化学位移模型.结果表明,烷烃13C NMR化学位移(CS)可用下式来定量描述: CS=-1736.776+755.118AEE+5.2539N0H+1.8837NβH-0.2066NγH   用上式估算了99个碳原子的化学位移,标准差为0.9861ppm,平均绝对误差0.78ppm,预测值与实验值十分吻合.

  9. Prediction of microvascular invasion of hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging: Impact of intra-tumoral fat detected on chemical-shift images

    Energy Technology Data Exchange (ETDEWEB)

    Min, Ji Hye [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Young Kon, E-mail: jmyr@dreamwiz.com [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Lim, Sanghyeok [Department of Radiology, Guri Hospital, Hanyang University College of Medicine, Guri (Korea, Republic of); Jeong, Woo Kyoung; Choi, Dongil; Lee, Won Jae [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    Highlights: • Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC. • Alfa-fetoprotein, tumor size, and fat component were associated with MVI of HCC. • Chemical shift MRI should be considered for the evaluation of HCC. - Abstract: Purpose: To investigate the impact of intra-tumoral fat detected by chemical-shift MR imaging in predicting the MVI of HCC. Materials and methods: Gadoxetic acid-enhanced MR imaging of 365 surgically proven HCCs from 365 patients (306 men, 59 women; mean age, 55.6 years) were evaluated. HCCs were classified into two groups, fat-containing and non-fat-containing, based on the presence of fat on chemical-shift images. Fat-containing HCCs were subdivided into diffuse or focal fatty change groups. Logistic regression analyses were used to identify clinical and MR findings associated with MVI. Results: Based on MR imaging, 66 tumors were classified as fat-containing HCCs and 299 as non-fat-containing HCCs. Among the 66 fat-containing HCCs, 38 (57.6%) showed diffuse fatty changes and 28 (42.4%) showed focal fatty changes. MVI was present in 18 (27.3%) fat-containing HCCs and in 117 (39.1%) non-fat-containing HCCs (P = 0.07). Univariate analysis revealed that serum alpha-fetoprotein (AFP) and tumor size were significantly associated with MVI (P < 0.001). A multiple logistic regression analysis showed that log AFP (odds ratio 1.178, P = 0.0016), tumor size (odds ratio 1.809, P < 0.001), and intra-tumoral fat (odds ratio 0.515, P = 0.0387) were independent variables associated with MVI. Conclusion: Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC and, therefore, a possibly more favorable prognosis, but the clinical value of this finding is uncertain.

  10. Chemical shift magnetic resonance imaging in differentiation of benign from malignant vertebral collapse in a rural tertiary care hospital in North India

    Science.gov (United States)

    Mittal, Puneet; Gupta, Ranjana; Mittal, Amit; Joshi, Sandeep

    2016-01-01

    Introduction: Magnetic resonance imaging (MRI) is the modality of the first choice for evaluation of vertebral compression/collapse. Many MRI qualitative features help to differentiate benign from malignant collapse. We conducted this study to look for a quantitative difference in chemical shift values in benign and malignant collapse using dual-echo gradient echo in-phase/out-phase imaging. Materials and Methods: MRI examinations of a total of 38 patients were retrospectively included in the study who had vertebral compression/collapse with marrow edema in which final diagnosis was available at the time of imaging/follow-up. Signal intensity value in the region of abnormal marrow signal and adjacent normal vertebra was measured on in phase/out phase images. Signal intensity ratio (SIR) was measured by dividing signal intensity value on opposite phase images to that on in phase images. SIR was compared in normal vertebrae and benign and malignant vertebral collapse. Results: There were 21 males and 17 females with mean age of 52.4 years (range 28–76 years). Out of total 38 patients, 18 were of benign vertebral collapse and 20 of malignant vertebral collapse. SIR in normal vertebrae was 0.30 ± 0.14, 0.67 ± 0.18 in benign vertebral collapse, and 1.20 ± 0.27 in malignant vertebral collapse with significant difference in SIR of normal vertebrae versus benign collapse (P < 0.01) and in benign collapse versus malignant collapse (P < 0.01). Assuming a cutoff of <0.95 for benign collapse and ≥0.95 for malignant collapse, chemical shift imaging had a sensitivity of 90% and specificity of 94.4%. Conclusion: Chemical shift imaging is a rapid and useful sequence in differentiating benign from malignant vertebral collapse with good specificity and sensitivity.

  11. 1H NMR spectra. Part 30(+): 1H chemical shifts in amides and the magnetic anisotropy, electric field and steric effects of the amide group.

    Science.gov (United States)

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2013-03-01

    The (1)H spectra of 37 amides in CDCl(3) solvent were analysed and the chemical shifts obtained. The molecular geometries and conformational analysis of these amides were considered in detail. The NMR spectral assignments are of interest, e.g. the assignments of the formamide NH(2) protons reverse in going from CDCl(3) to more polar solvents. The substituent chemical shifts of the amide group in both aliphatic and aromatic amides were analysed using an approach based on neural network data for near (≤3 bonds removed) protons and the electric field, magnetic anisotropy, steric and for aromatic systems π effects of the amide group for more distant protons. The electric field is calculated from the partial atomic charges on the N.C═O atoms of the amide group. The magnetic anisotropy of the carbonyl group was reproduced with the asymmetric magnetic anisotropy acting at the midpoint of the carbonyl bond. The values of the anisotropies Δχ(parl) and Δχ(perp) were for the aliphatic amides 10.53 and -23.67 (×10(-6) Å(3)/molecule) and for the aromatic amides 2.12 and -10.43 (×10(-6) Å(3)/molecule). The nitrogen anisotropy was 7.62 (×10(-6) Å(3)/molecule). These values are compared with previous literature values. The (1)H chemical shifts were calculated from the semi-empirical approach and also by gauge-independent atomic orbital calculations with the density functional theory method and B3LYP/6-31G(++) (d,p) basis set. The semi-empirical approach gave good agreement with root mean square error of 0.081 ppm for the data set of 280 entries. The gauge-independent atomic orbital approach was generally acceptable, but significant errors (ca. 1 ppm) were found for the NH and CHO protons and also for some other protons.

  12. Halogen effect on structure and 13C NMR chemical shift of 3,6-disubstituted-N-alkyl carbazoles

    DEFF Research Database (Denmark)

    Radula-Janik, Klaudia; Kupka, Teobald; Ejsmont, Krzysztof

    2013-01-01

    Structures of selected 3,6-dihalogeno-N-alkyl carbazole derivatives were calculated at the B3LYP/6-311++G(3df,2pd) level of theory and their 13C NMR isotropic nuclear shieldings were predicted using density functional theory (DFT). The model compounds contained 9H-, N-methyl and N-ethyl derivatives......). The decreasing electronegativity of the halogen substituent (F, Cl, Br and I) was reflected in both nonrelativistic and relativistic NMR results as decreased values of chemical shifts of carbon atoms attached to halogen (C3 and C6) leading to a strong sensitivity to halogen atom type at 3 and 6 positions...

  13. Other compounds isolated from Simira glaziovii and the {sup 1}H and {sup 13}C NMR chemical shift assignments of new 1-epi-castanopsol

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias Tecnologicas. Lab. de Ciencias Quimicas; Carvalho, Mario G. de, E-mail: mgeraldo@ufrrj.br [Universidade Federal do Rio de Janeiro (NPPN/UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisa em Produtos Naturais

    2012-07-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D {sup 1}H, {sup 13}C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of {sup 1}H and {sup 13}C NMR chemical shift assignments. (author)

  14. Accurate calculation of chemical shifts in highly dynamic H2@C60 through an integrated quantum mechanics/molecular dynamics scheme.

    Science.gov (United States)

    Jiménez-Osés, Gonzalo; García, José I; Corzana, Francisco; Elguero, José

    2011-05-20

    A new protocol combining classical MD simulations and DFT calculations is presented to accurately estimate the (1)H NMR chemical shifts of highly mobile guest-host systems and their thermal dependence. This strategy has been successfully applied for the hydrogen molecule trapped into C(60) fullerene, an unresolved and challenging prototypical case for which experimental values have never been reproduced. The dependence of the final values on the theoretical method and their implications to avoid over interpretation of the obtained results are carefully described.

  15. 1H, 13C and 15N backbone and side-chain chemical shift assignment of the Fyn SH2 domain and its complex with a phosphotyrosine peptide.

    Science.gov (United States)

    Huculeci, Radu; Buts, Lieven; Lenaerts, Tom; van Nuland, Nico A J

    2011-10-01

    SH2 domains are interaction modules uniquely dedicated to recognize phosphotyrosine sites, playing a central role in for instance the activation of tyrosine kinases or phosphatases. Here we report the (1)H, (15)N and (13)C backbone and side-chain chemical shift assignments of the SH2 domain of the human protein tyrosine kinase Fyn, both in its free state and bound to a high-affinity phosphotyrosine peptide corresponding to a specific sequence in the hamster middle-T antigen. The BMRB accession numbers are 17,368 and 17,369, respectively.

  16. Liver steatosis (LS) evaluated through chemical-shift magnetic resonance imaging liver enzymes in morbid obesity; effect of weight loss obtained with intragastric balloon gastric banding.

    Science.gov (United States)

    Folini, Laura; Veronelli, Annamaria; Benetti, Alberto; Pozzato, Carlo; Cappelletti, Marco; Masci, Enzo; Micheletto, Giancarlo; Pontiroli, Antonio E

    2014-01-01

    The aim of this study was to evaluate in morbid obesity clinical and metabolic effects related to weight loss on liver steatosis (LS), measured through chemical-shift magnetic resonance imaging (MRI) and liver enzymes. Forty obese subjects (8 M/32 W; BMI 42.8 ± 7.12 kg/m(2), mean ± SD) were evaluated for LS through ultrasound (US-LS), chemical-shift MRI (MRI-LS), liver enzymes [aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyltransferase (GGT), alkaline phosphatase (ALP)], anthropometric parameters [weight, BMI, waist circumference (WC)], lipids, insulin, insulin resistance (HOMA-IR), glycated hemoglobin (HbA1c), oral glucose tolerance test, and body composition [fat mass (FM) and fat-free mass (FFM) at bio-impedance analysis (BIA)]. Anthropometric measures, MRI-LS, BIA, and biochemical parameters were reevaluated 6 months later in 18 subjects undergoing restrictive bariatric approach, i.e., intragastric balloon (BIB, n = 13) or gastric banding (LAGB, n = 5), and in 13 subjects receiving hypocaloric diet. At baseline, US-LS correlates only with MRI-LS, and the latter correlates with ALT, AST, and GGT. After 6 months, subjects undergoing BIB or LAGB had significant changes of BMI, weight, WC, ALT, AST, GGT, ALP, HbA1c, insulin, HOMA-IR, FM, FFM, and MRI-LS. Diet-treated obese subjects had no significant change of any parameter under study; change of BMI, fat mass, and fat-free mass was significantly greater in LAGB/BIB subjects than in diet-treated subjects. Change of MRI-LS showed a significant correlation with changes in weight, BMI, WC, GGT, ALP, and basal MRI-LS. Significant weight loss after BIB or LAGB is associated with decrease in chemical-shift MRI-LS and with reduction in liver enzymes; chemical-shift MRI and liver enzymes allow monitoring of LS in follow-up studies.

  17. Quantitative and qualitative shifts in defensive metabolites define chemical defense investment during leaf development in Inga, a genus of tropical trees.

    Science.gov (United States)

    Wiggins, Natasha L; Forrister, Dale L; Endara, María-José; Coley, Phyllis D; Kursar, Thomas A

    2016-01-01

    Selective pressures imposed by herbivores are often positively correlated with investments that plants make in defense. Research based on the framework of an evolutionary arms race has improved our understanding of why the amount and types of defenses differ between plant species. However, plant species are exposed to different selective pressures during the life of a leaf, such that expanding leaves suffer more damage from herbivores and pathogens than mature leaves. We hypothesize that this differential selective pressure may result in contrasting quantitative and qualitative defense investment in plants exposed to natural selective pressures in the field. To characterize shifts in chemical defenses, we chose six species of Inga, a speciose Neotropical tree genus. Focal species represent diverse chemical, morphological, and developmental defense traits and were collected from a single site in the Amazonian rainforest. Chemical defenses were measured gravimetrically and by characterizing the metabolome of expanding and mature leaves. Quantitative investment in phenolics plus saponins, the major classes of chemical defenses identified in Inga, was greater for expanding than mature leaves (46% and 24% of dry weight, respectively). This supports the theory that, because expanding leaves are under greater selective pressure from herbivores, they rely more upon chemical defense as an antiherbivore strategy than do mature leaves. Qualitatively, mature and expanding leaves were distinct and mature leaves contained more total and unique metabolites. Intraspecific variation was greater for mature leaves than expanding leaves, suggesting that leaf development is canalized. This study provides a snapshot of chemical defense investment in a speciose genus of tropical trees during the short, few-week period of leaf development. Exploring the metabolome through quantitative and qualitative profiling enables a more comprehensive examination of foliar chemical defense investment.

  18. Fractional enrichment of proteins using [2-{sup 13}C]-glycerol as the carbon source facilitates measurement of excited state {sup 13}Cα chemical shifts with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ahlner, Alexandra; Andresen, Cecilia; Khan, Shahid N. [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden); Kay, Lewis E. [The University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry, One King’s College Circle (Canada); Lundström, Patrik, E-mail: patlu@ifm.liu.se [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden)

    2015-07-15

    A selective isotope labeling scheme based on the utilization of [2-{sup 13}C]-glycerol as the carbon source during protein overexpression has been evaluated for the measurement of excited state {sup 13}Cα chemical shifts using Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion (RD) experiments. As expected, the fractional incorporation of label at the Cα positions is increased two-fold relative to labeling schemes based on [2-{sup 13}C]-glucose, effectively doubling the sensitivity of NMR experiments. Applications to a binding reaction involving an SH3 domain from the protein Abp1p and a peptide from the protein Ark1p establish that accurate excited state {sup 13}Cα chemical shifts can be obtained from RD experiments, with errors on the order of 0.06 ppm for exchange rates ranging from 100 to 1000 s{sup −1}, despite the small fraction of {sup 13}Cα–{sup 13}Cβ spin-pairs that are present for many residue types. The labeling approach described here should thus be attractive for studies of exchanging systems using {sup 13}Cα spin probes.

  19. Free variable selection QSPR study to predict (19)F chemical shifts of some fluorinated organic compounds using Random Forest and RBF-PLS methods.

    Science.gov (United States)

    Goudarzi, Nasser

    2016-04-05

    In this work, two new and powerful chemometrics methods are applied for the modeling and prediction of the (19)F chemical shift values of some fluorinated organic compounds. The radial basis function-partial least square (RBF-PLS) and random forest (RF) are employed to construct the models to predict the (19)F chemical shifts. In this study, we didn't used from any variable selection method and RF method can be used as variable selection and modeling technique. Effects of the important parameters affecting the ability of the RF prediction power such as the number of trees (nt) and the number of randomly selected variables to split each node (m) were investigated. The root-mean-square errors of prediction (RMSEP) for the training set and the prediction set for the RBF-PLS and RF models were 44.70, 23.86, 29.77, and 23.69, respectively. Also, the correlation coefficients of the prediction set for the RBF-PLS and RF models were 0.8684 and 0.9313, respectively. The results obtained reveal that the RF model can be used as a powerful chemometrics tool for the quantitative structure-property relationship (QSPR) studies.

  20. Evaluation of a rabbit model for osteomyelitis by high field, high resolution imaging using the chemical-shift-specific-slice-selection technique.

    Science.gov (United States)

    Volk, A; Crémieux, A C; Belmatoug, N; Vallois, J M; Pocidalo, J J; Carbon, C

    1994-01-01

    The rabbit model of osteomyelitis introduced by C.W. Norden, based on injection of an infecting solution (Staphylococcus aureus, sodium morrhuate) into the tibia, was studied at 4.7 Tesla with a time-efficient chemical shift selective imaging technique, Chemical Shift Specific Slice Selection (C4S). The evolution of the disease over several weeks was followed on water-selective, fat-selective, and sum images obtained simultaneously with this imaging sequence. Experiments were performed either on different groups of rabbits at different times after infection with subsequent sacrifice of the animal and microbiological analysis of the infected tibia or on the same group of animals imaged several times after infection. Associated analysis of the water and fat selective images revealed marrow modifications very early (Day 5 after inoculation) demonstrating the high sensitivity of the employed imaging technique. Later on, bone modifications were best identified on the sum images. Additional experiments performed on animals injected with a noninfecting solution containing only sodium morrhuate showed however that the sclerosing agent alone can yield images similar to those produced by infection at early stages after inoculation. Therefore, the Norden model would not be suitable for monitoring quantitatively outcome of therapy by magnetic resonance imaging. It is however well adapted for the evaluation and optimization of MRI techniques or protocols intended to detect early changes of bone marrow produced by septic or aseptic infarct.

  1. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    Science.gov (United States)

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  2. Optical Red shift in ZnO Nanoflowers Fabricated on Non-Seeded Substrates by Soft Wet Chemical Route

    Science.gov (United States)

    Murali, K. V.; Preetha, K. C.; Ragina, A. J.; Deepa, K.; Remadevi, T. L.

    2011-10-01

    Zinc oxide (ZnO) nanoflowers were fabricated on non-seeded glass substrates by successive ionic layer adsorption and reaction (SILAR) method using different complex agents. Influence of complex agents ammonia, lithium hydroxide and hexamine on the optical properties of the as-synthesized and the samples annealed at 400 °C was studied. Optical red shift was observed in ZnO samples and was analyzed with respect to the complex agents. All samples possessed a steep absorption edge in the wavelength range 375-425 nm. ZnO nanostructures except that synthesized using hexamine have low and steady absorbance and show higher transmittance (70-85%) in the entire visible region. SEM, XRD and EDAX studies confirmed the high surface-to-volume ratio, good optical quality, excellent crystalline nature and purity of the formed and annealed ZnO nanostructures.

  3. Final Technical Report: A Paradigm Shift in Chemical Processing: New Sustainable Chemistries for Low-VOC Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kenneth F.

    2006-07-26

    The project employed new processes to make emulsion polymers from reduced levels of petroleum-derived chemical feedstocks. Most waterborne paints contain spherical, emulsion polymer particles that serve as the film-forming binder phase. Our goal was to make emulsion polymer particles containing 30 percent feedstock that would function as effectively as commercial emulsions made from higher level feedstock. The processes developed yielded particles maintained their film formation capability and binding capacity while preserving the structural integrity of the particles after film formation. Rohm and Haas Company (ROH) and Archer Daniels Midland Company (ADM) worked together to employ novel polymer binders (ROH) and new, non-volatile, biomass-derived coalescing agents (ADM). The University of Minnesota Department of Chemical Engineering and Material Science utilized its unique microscopy capabilities to characterize films made from the New Emulsion Polymers (NEP).

  4. Influence of the computerized {sup 31}P NMR spectra processing on the tissues pH determination precision; Wplyw obrobki cyfrowej widm {sup 31}P MRJ na dokladnosc pomiaru pH tkanek

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, T. [Inst. Chemii, Univ. Slaski, Katowice (Poland)]|[Zaklad Ciala Stalego, Polska Akademia Nauk, Zabrze (Poland); Religa, Z.; Zembala, M.; Nozynski, J.; Wojtek, P. [Slaska Akademia Medyczna, Zabrze (Poland); Pasterna, G. [Inst. Fizyki, Univ. Slaski, Katowice (Poland); Makhyanov, N. [Nizhnekamskneftekhym, Nizhnekamsk, Tatarstan (Russian Federation)

    1995-12-31

    The {sup 31}P NMR spectra of different tissues have been measured. To improve the spectra resolution two method of Fourier transformation have been used and namely the CDRE (Convulsion Difference Resolution Enhancement) and LGM (Lorentz-to-Gaussian Multiplication). It was shown that these procedures allow one to improve the quality of measured spectra what results in better precision of the tissues pH determination. 5 refs, 2 figs.

  5. Investigation of phosphorous in thin films using the {sup 31}P(α,p){sup 34}S nuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Pitthan, E., E-mail: eduardo.pitthan@ufrgs.br [PGMICRO, UFRGS, 91509-900 Porto Alegre, RS (Brazil); Gobbi, A.L. [Laboratório Nacional de Nanotecnologia, 13083-100 Campinas, SP (Brazil); Stedile, F.C. [PGMICRO, UFRGS, 91509-900 Porto Alegre, RS (Brazil); Instituto de Química, UFRGS, 91509-900 Porto Alegre, RS (Brazil)

    2016-03-15

    Phosphorus detection and quantification were obtained, using the {sup 31}P(α,p){sup 34}S nuclear reaction and Rutherford Backscattering Spectrometry, in deposited silicon oxide films containing phosphorus and in carbon substrates implanted with phosphorus. It was possible to determine the total amount of phosphorus using the resonance at 3.640 MeV of the {sup 31}P(α,p){sup 34}S nuclear reaction in samples with phosphorus present in up to 23 nm depth. Phosphorous amounts as low as 4 × 10{sup 14} cm{sup −2} were detected. Results obtained by nuclear reaction were in good agreement with those from RBS measurements. Possible applications of phosphorus deposition routes used in this work are discussed.

  6. Investigation of phosphorous in thin films using the 31P(α,p)34S nuclear reaction

    Science.gov (United States)

    Pitthan, E.; Gobbi, A. L.; Stedile, F. C.

    2016-03-01

    Phosphorus detection and quantification were obtained, using the 31P(α,p)34S nuclear reaction and Rutherford Backscattering Spectrometry, in deposited silicon oxide films containing phosphorus and in carbon substrates implanted with phosphorus. It was possible to determine the total amount of phosphorus using the resonance at 3.640 MeV of the 31P(α,p)34S nuclear reaction in samples with phosphorus present in up to 23 nm depth. Phosphorous amounts as low as 4 × 1014 cm-2 were detected. Results obtained by nuclear reaction were in good agreement with those from RBS measurements. Possible applications of phosphorus deposition routes used in this work are discussed.

  7. Metabolic abnormalities in skeletal muscle of patients receiving zidovudine therapy observed by 31P in vivo magnetic resonance spectroscopy.

    OpenAIRE

    Sinnwell, T M; Sivakumar, K.; Soueidan, S; Jay, C; Frank, J.A.; McLaughlin, A C; Dalakas, M C

    1995-01-01

    Patients on long-term zidovudine (AZT) therapy experience muscle fatigue and weakness attributed to AZT-induced mitochondrial toxicity in skeletal muscle. To determine if the clinico-pathological abnormalities in these patients correspond to abnormal muscle energy metabolism, we used 31P in vivo magnetic resonance spectroscopy to follow phosphorylated metabolites during exercise. We studied 19 normal volunteers, 6 HIV-positive patients never treated with AZT, and 9 HIV-positive patients who h...

  8. {sup 31}P MR spectroscopy to evaluate the efficacy of hepatic artery embolizatio in the treatment of neuroendocrine liver metastases

    Energy Technology Data Exchange (ETDEWEB)

    Ljungberg, Maria; Vikhoff-Baaz, Barbro; Starck, Goeran; Forssell-Aronsson, Eva [Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg (Sweden); Department of Medical Physics and Biomedical Engineering, MR Centre, Sahlgrenska University Hospital, Gothenburg (Sweden)], E-mail: Maria.Ljungberg@vgregion.se; Westberg, Gunnel; Waengberg, Bo; Ahlman, Haakan [Department of Surgery, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Ekholm, Sven [Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden (Sweden)

    2012-12-15

    Background. It is common to treat patients with metastatic disease from gastrointestinal neuroendocrine (NE) tumors with surgical reduction to prolong survival. This can be combined with hepatic arterial embolization (HAE) and medical treatment to reduce hormonal symptoms. Today there are no rapid and reliable methods to evaluate the efficacy of HAE in the treatment of neuroendocrine liver metastasis. Purpose. To investigate metabolic changes in hepatic metastases of NE tumors following HAE, and to establish if there are any early spectral patterns that might indicate therapeutic efficacy based on in vivo {sup 31}P MRS data. Material and Methods. Volume selective {sup 31}P MRS was used to study 11 patients with disseminated NE tumors with regional lymph nodes and bilobar liver metastases. Measurements were performed before and 1 and 3 days after HAE. Results. Non-responders had significantly higher PME/Pi and {alpha}NTP/{Sigma}NTP ratios than the responders before HAE (P < 0.05). Three days after HAE, non-responders still had significantly higher {alpha}NTP/{Sigma}NTP than the responders did (P < 0.05). We also observed trends for increased PME ratios 3 days after HAE, decreased ATP-levels, and liberated Pi in responders. Conclusion. This {sup 31}P-MRS study showed significant differences in PME/Pi and {alpha}NTP/{Sigma}P ratios between responders and non-responders on the day before HAE, which is an interesting finding that may reflect intrinsic properties of the tumor tissue. We also observed trends for cell membrane renewal and increased energy consumption in responders after HAE. These results demonstrate potentials for {sup 31}P-MRS to predict individual responsiveness prior to HAE.

  9. Forms and Lability of Phosphorus in Algae and Aquatic Macrophytes Characterized by Solution 31P NMR Coupled with Enzymatic Hydrolysis

    Science.gov (United States)

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; He, Zhongqi; Zhang, Chen; Giesy, John P.

    2016-01-01

    Solution Phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy coupled with enzymatic hydrolysis (EH) with commercially available phosphatases was used to characterize phosphorus (P) compounds in extracts of the dominant aquatic macrophytes and algae in a eutrophic lake. Total extractable organic P (Po) concentrations ranged from 504 to 1643 mg kg−1 and 2318 to 8395 mg kg−1 for aquatic macrophytes and algae, respectively. Using 31P NMR spectroscopy, 11 Po species were detected in the mono- and diester region. Additionally, orthophosphate, pyrophosphate and phosphonates were also detected. Using EH, phytate-like P was identified as the prevalent class of enzyme-labile Po, followed by labile monoester- and diester-P. Comparison of the NMR and EH data indicated that the distribution pattern of major P forms in the samples determined by the two methods was similar (r = 0.712, p < 0.05). Additional 31P NMR spectroscopic analysis of extracts following EH showed significant decreases in the monoester and pyrophosphate regions, with a corresponding increase in the orthophosphate signal, as compared to unhydrolyzed extracts. Based on these quantity and hydrolysis data, we proposed that recycling of Po in vegetative biomass residues is an important mechanism for long-term self-regulation of available P for algal blooming in eutrophic lakes. PMID:27849040

  10. Forms and Lability of Phosphorus in Algae and Aquatic Macrophytes Characterized by Solution 31P NMR Coupled with Enzymatic Hydrolysis

    Science.gov (United States)

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; He, Zhongqi; Zhang, Chen; Giesy, John P.

    2016-11-01

    Solution Phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy coupled with enzymatic hydrolysis (EH) with commercially available phosphatases was used to characterize phosphorus (P) compounds in extracts of the dominant aquatic macrophytes and algae in a eutrophic lake. Total extractable organic P (Po) concentrations ranged from 504 to 1643 mg kg‑1 and 2318 to 8395 mg kg‑1 for aquatic macrophytes and algae, respectively. Using 31P NMR spectroscopy, 11 Po species were detected in the mono- and diester region. Additionally, orthophosphate, pyrophosphate and phosphonates were also detected. Using EH, phytate-like P was identified as the prevalent class of enzyme-labile Po, followed by labile monoester- and diester-P. Comparison of the NMR and EH data indicated that the distribution pattern of major P forms in the samples determined by the two methods was similar (r = 0.712, p < 0.05). Additional 31P NMR spectroscopic analysis of extracts following EH showed significant decreases in the monoester and pyrophosphate regions, with a corresponding increase in the orthophosphate signal, as compared to unhydrolyzed extracts. Based on these quantity and hydrolysis data, we proposed that recycling of Po in vegetative biomass residues is an important mechanism for long-term self-regulation of available P for algal blooming in eutrophic lakes.

  11. A comparison of MR elastography and {sup 31}P MR spectroscopy with histological staging of liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, Edmund M. [St James' Hospital, Leeds (United Kingdom); St James' Hospital, Department of Radiology, Leeds (United Kingdom); Patterson, Andrew J.; Priest, Andrew N.; Davies, Susan E.; Joubert, Ilse; Krishnan, Anant S.; Shaw, Ashley S.; Alexander, Graeme J.; Allison, Michael E.; Griffiths, William J.H.; Gimson, Alexander E.S. [Addenbrooke' s Hospital, Cambridge (United Kingdom); Griffin, Nyree [St Thomas' s Hospital, London (United Kingdom); Lomas, David J. [University of Cambridge, Department of Radiology, Cambridge (United Kingdom)

    2012-12-15

    Conventional imaging techniques are insensitive to liver fibrosis. This study assesses the diagnostic accuracy of MR elastography (MRE) stiffness values and the ratio of phosphomonoesters (PME)/phosphodiesters (PDE) measured using {sup 31}P spectroscopy against histological fibrosis staging. The local research ethics committee approved this prospective, blinded study. A total of 77 consecutive patients (55 male, aged 49 {+-} 11.5 years) with a clinical suspicion of liver fibrosis underwent an MR examination with a liver biopsy later the same day. Patients underwent MRE and {sup 31}P spectroscopy on a 1.5 T whole body system. The liver biopsies were staged using an Ishak score for chronic hepatitis or a modified NAS fibrosis score for fatty liver disease. MRE increased with and was positively associated with fibrosis stage (Spearman's rank = 0.622, P < 0.001). PME/PDE was not associated with fibrosis stage (Spearman's rank = -0.041, p = 0.741). Area under receiver operating curves for MRE stiffness values were high (range 0.75-0.97). The diagnostic utility of PME/PDE was no better than chance (range 0.44-0.58). MRE-estimated liver stiffness increases with fibrosis stage and is able to dichotomise fibrosis stage groupings. We did not find a relationship between {sup 31}P MR spectroscopy and fibrosis stage. circle Magnetic resonance elastography (MRE) and MR spectroscopy can both assess the liver. (orig.)

  12. Analysis of monoglycerides, diglycerides, sterols, and free fatty acids in coconut (Cocos nucifera L.) oil by 31P NMR spectroscopy.

    Science.gov (United States)

    Dayrit, Fabian M; Buenafe, Olivia Erin M; Chainani, Edward T; de Vera, Ian Mitchelle S

    2008-07-23

    Phosphorus-31 nuclear magnetic resonance spectroscopy ( (31)P NMR) was used to differentiate virgin coconut oil (VCO) from refined, bleached, deodorized coconut oil (RCO). Monoglycerides (MGs), diglycerides (DGs), sterols, and free fatty acids (FFAs) in VCO and RCO were converted into dioxaphospholane derivatives and analyzed by (31)P NMR. On the average, 1-MG was found to be higher in VCO (0.027%) than RCO (0.019%). 2-MG was not detected in any of the samples down to a detection limit of 0.014%. On the average, total DGs were lower in VCO (1.55%) than RCO (4.10%). When plotted in terms of the ratio [1,2-DG/total DGs] versus total DGs, VCO and RCO samples grouped separately. Total sterols were higher in VCO (0.096%) compared with RCO (0.032%), and the FFA content was 8 times higher in VCO than RCO (0.127% vs 0.015%). FFA determination by (31)P NMR and titration gave comparable results. Principal components analysis shows that the 1,2-DG, 1,3-DG, and FFAs are the most important parameters for differentiating VCO from RCO.

  13. Correlations of the chemical shift on fasly rotating biological solids by means of NMR spectroscopy; Korrelationen der chemischen Verschiebung an schnell rotierenden biologischen Festkoerpern mittels NMR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Christian

    2010-04-27

    The basic aim of the thesis was the development and improvement of homo- and heteronuclear feedback sequences for the generation of correlation spectra of the chemical shift. In a first step the possibility of the acquisition of {sup 13}C-{sup 13} correlation spectra of the chemical shift by means of inversion pulses with low RF power factor was studied. Furthermore it was shown that broad-band phase-modulated inversion and universal rotational pulses can be constructed by means of global optimization procedures like the genetic algorithms under regardment of the available RF field strength. By inversion, universal rotational, and 360 pulses as starting values of the optimization efficient homonuclear CN{sub n}{sup {nu}} and RN{sub n}{sup {nu}} mixing sequences as well as heteronuclear RN{sub n}{sup {nu}{sub s},{nu}{sub k}} feedback sequences were generated. The satisfactory power of the numerically optimized sequences was shown by means of the simulation as well by means of correlation experiments of the chemical shift of L-histidine, L-arginine, and the (CUG){sub 97}-RNA. This thesis deals furthermore with the possibility to acquire simultaneously different signals with several receivers. By means of numerically optimized RN{sub n}{sup {nu}{sub s},{nu}{sub k}} pulse sequences both {sup 15}N-{sup 13}C and {sup 13}C-{sup 15}N correlation spectra were simultaneously generated. Furthermore it could be shown that the simultaneous acquisition of 3D-{sup 15}N-{sup 13}C-{sup 13}C and {sup 13}C-{sup 15}N-({sup 1}H)-{sup 1}H correlation spectra is possible. By this in only one measurement process resonance assignments can be met and studies of the global folding performed. A further application of several receivers is the simultaneous acquisition of CHHC, NHHN, NHHC, as well as CHHN spectra. By such experiments it is possible to characterize the hydrogen-bonding pattern and the glycosidic torsion angle {sup {chi}} in RNA. This was demonstrated by means of the (CUG){sub 97

  14. (31)P-MRS of healthy human brain: ATP synthesis, metabolite concentrations, pH, and T1 relaxation times.

    Science.gov (United States)

    Ren, Jimin; Sherry, A Dean; Malloy, Craig R

    2015-11-01

    The conventional method for measuring brain ATP synthesis is (31)P saturation transfer (ST), a technique typically dependent on prolonged pre-saturation with γ-ATP. In this study, ATP synthesis rate in resting human brain is evaluated using EBIT (exchange kinetics by band inversion transfer), a technique based on slow recovery of γ-ATP magnetization in the absence of B1 field following co-inversion of PCr and ATP resonances with a short adiabatic pulse. The unidirectional rate constant for the Pi → γ-ATP reaction is 0.21 ± 0.04 s(-1) and the ATP synthesis rate is 9.9 ± 2.1 mmol min(-1)  kg(-1) in human brain (n = 12 subjects), consistent with the results by ST. Therefore, EBIT could be a useful alternative to ST in studying brain energy metabolism in normal physiology and under pathological conditions. In addition to ATP synthesis, all detectable (31)P signals are analyzed to determine the brain concentration of phosphorus metabolites, including UDPG at around 10 ppm, a previously reported resonance in liver tissues and now confirmed in human brain. Inversion recovery measurements indicate that UDPG, like its diphosphate analogue NAD, has apparent T1 shorter than that of monophosphates (Pi, PMEs, and PDEs) but longer than that of triphosphate ATP, highlighting the significance of the (31)P-(31)P dipolar mechanism in T1 relaxation of polyphosphates. Another interesting finding is the observation of approximately 40% shorter T1 for intracellular Pi relative to extracellular Pi, attributed to the modulation by the intracellular phosphoryl exchange reaction Pi ↔ γ-ATP. The sufficiently separated intra- and extracellular Pi signals also permit the distinction of pH between intra- and extracellular environments (pH 7.0 versus pH 7.4). In summary, quantitative (31)P MRS in combination with ATP synthesis, pH, and T1 relaxation measurements may offer a promising tool to detect biochemical alterations at early stages of brain dysfunctions and diseases.

  15. Genotype-phenotype correlation between the cardiac myosin binding protein C mutation A31P and hypertrophic cardiomyopathy in a cohort of Maine Coon cats

    DEFF Research Database (Denmark)

    Granström, S; Godiksen, M T N; Christiansen, M;

    2015-01-01

    OBJECTIVES: A missense mutation (A31P) in the cardiac myosin binding protein C gene has been associated with hypertrophic cardiomyopathy (HCM) in Maine Coon cats. The aim of this study was to investigate the effect of A31P on development of HCM, myocardial diastolic dysfunction detected by color ...

  16. Characterization of mu s-ms dynamics of proteins using a combined analysis of N-15 NMR relaxation and chemical shift: Conformational exchange in plastocyanin induced by histidine protonations

    DEFF Research Database (Denmark)

    Hass, M. A. S.; Thuesen, Marianne Hallberg; Christensen, Hans Erik Mølager

    2004-01-01

    An approach is presented that allows a detailed, quantitative characterization of conformational exchange processes in proteins on the mus-ms time scale. The approach relies on a combined analysis of NMR relaxation rates and chemical shift changes and requires that the chemical shift...... variabilis (A.v. PCu) (Ma, L.; Hass, M. A. S.; Vierick, N.; Kristensen, S. M.; Ulstrup, J.; Led, J. J. Biochemistry 2003, 42, 320-330). The R-1 and R-2 relaxation rates of the backbone N-15 nuclei were measured at a series of pH and temperatures on an 15N labeled sample of A.v. PCu, and the 15 N chemical...... quantitatively by the correlation between the R-ex terms and the corresponding chemical shift differences of the exchanging species. By this approach, the R-ex terms of N-15 nuclei belonging to contiguous regions in the protein could be assigned to the same exchange process. Furthermore, the analysis...

  17. Stereochemistry of Complex Marine Natural Products by Quantum Mechanical Calculations of NMR Chemical Shifts: Solvent and Conformational Effects on Okadaic Acid

    Directory of Open Access Journals (Sweden)

    Humberto J. Domínguez

    2014-01-01

    Full Text Available Marine organisms are an increasingly important source of novel metabolites, some of which have already inspired or become new drugs. In addition, many of these molecules show a high degree of novelty from a structural and/or pharmacological point of view. Structure determination is generally achieved by the use of a variety of spectroscopic methods, among which NMR (nuclear magnetic resonance plays a major role and determination of the stereochemical relationships within every new molecule is generally the most challenging part in structural determination. In this communication, we have chosen okadaic acid as a model compound to perform a computational chemistry study to predict 1H and 13C NMR chemical shifts. The effect of two different solvents and conformation on the ability of DFT (density functional theory calculations to predict the correct stereoisomer has been studied.

  18. Examination of anticipated chemical shift and shape distortion effect on materials commonly used in prosthetic socket fabrication when measured using MRI: a validation study.

    Science.gov (United States)

    Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan

    2013-01-01

    The quality of lower-limb prosthetic socket fit is influenced by shape and volume consistency during the residual limb shape-capturing process (i.e., casting). Casting can be quantified with magnetic resonance imaging (MRI) technology. However, chemical shift artifact and image distortion may influence the accuracy of MRI when common socket/casting materials are used. We used a purpose-designed rig to examine seven different materials commonly used in socket fabrication during exposure to MRI. The rig incorporated glass marker tubes filled with water doped with 1 g/L copper sulfate (CS) and 9 plastic sample vials (film containers) to hold the specific material specimens. The specimens were scanned 9 times in different configurations. The absolute mean difference of the glass marker tube length was 1.39 mm (2.98%) (minimum = 0.13 mm [0.30%], maximum = 5.47 mm [14.03%], standard deviation = 0.89 mm). The absolute shift for all materials was <1.7 mm. This was less than the measurement tolerance of +/-2.18 mm based on voxel (three-dimensional pixel) dimensions. The results show that MRI is an accurate and repeatable method for dimensional measurement when using matter containing water. Additionally, silicone and plaster of paris plus 1 g/L CS do not show a significant shape distortion nor do they interfere with the MRI image of the residual limb.

  19. Examination of anticipated chemical shift and shape distortion effect on materials commonly used in prosthetic socket fabrication when measured using MRI: A validation study

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Safari, PhD

    2013-02-01

    Full Text Available The quality of lower-limb prosthetic socket fit is influenced by shape and volume consistency during the residual limb shape-capturing process (i.e., casting. Casting can be quantified with magnetic resonance imaging (MRI technology. However, chemical shift artifact and image distortion may influence the accuracy of MRI when common socket/casting materials are used. We used a purpose-designed rig to examine seven different materials commonly used in socket fabrication during exposure to MRI. The rig incorporated glass marker tubes filled with water doped with 1 g/L copper sulfate (CS and 9 plastic sample vials (film containers to hold the specific material specimens. The specimens were scanned 9 times in different configurations. The absolute mean difference of the glass marker tube length was 1.39 mm (2.98% (minimum = 0.13 mm [0.30%], maximum = 5.47 mm [14.03%], standard deviation = 0.89 mm. The absolute shift for all materials was <1.7 mm. This was less than the measurement tolerance of +/–2.18 mm based on voxel (three-dimensional pixel dimensions. The results show that MRI is an accurate and repeatable method for dimensional measurement when using matter containing water. Additionally, silicone and plaster of paris plus 1 g/L CS do not show a significant shape distortion nor do they interfere with the MRI image of the residual limb.

  20. 31P MR Spectroscopy Imaging of Liver : Initial Clinical Study%31P MR波谱成像在肝脏的初步临床应用研究

    Institute of Scientific and Technical Information of China (English)

    刘于宝; 梁长虹; 张忠林; 余元新; 谢淑飞; 林韩斌; 王秋实; 郑君惠

    2006-01-01

    目的探讨31P MRS成像技术在肝脏的初步临床应用.方法对5例健康志愿者、5例乙型肝炎肝功能正常病例、5例慢性活动性肝炎肝硬化、5例原发性肝细胞癌病例行常规MR扫描、31P MRS成像.采用GE公司波谱分析软件(spectroscopy analysis GE)校正,并计算细胞内pH值,分析各峰峰值及各比值变化特征.结果正常组5例中4例肝脏31P波谱提供的6种代谢物峰从左至右为:磷酸单脂(PME)、无机磷(Pi)、磷酸二脂(PDE)、三磷酸腺苷(γ-ATP、α-ATP、β- ATP)6种.其中1例出现7种峰,多出一种因受腹壁肌肉影响产生的磷酸肌酸(PCr)峰.轻度肝炎组,PME轻度升高,PDE轻度减低,PME/PDE值较正常组略高.慢活肝-肝硬化组6个共振峰中仅PME明显升高.原发性肝细胞癌病例中,PME均明显增高,细胞内pH值呈碱性.结论 31P MRS对检测肝脏代谢变化具有重要价值.

  1. Geographical characterization of greek virgin olive oils (cv. Koroneiki) using 1H and 31P NMR fingerprinting with canonical discriminant analysis and classification binary trees.

    Science.gov (United States)

    Petrakis, Panos V; Agiomyrgianaki, Alexia; Christophoridou, Stella; Spyros, Apostolos; Dais, Photis

    2008-05-14

    This work deals with the prediction of the geographical origin of monovarietal virgin olive oil (cv. Koroneiki) samples from three regions of southern Greece, namely, Peloponnesus, Crete, and Zakynthos, and collected in five harvesting years (2001-2006). All samples were chemically analyzed by means of 1H and 31P NMR spectroscopy and characterized according to their content in fatty acids, phenolics, diacylglycerols, total free sterols, free acidity, and iodine number. Biostatistical analysis showed that the fruiting pattern of the olive tree complicates the geographical separation of oil samples and the selection of significant chemical compounds. In this way the inclusion of the harvesting year improved the classification of samples, but increased the dimensionality of the data. Discriminant analysis showed that the geographical prediction at the level of three regions is very high (87%) and becomes (74%) when we pass to the thinner level of six sites (Chania, Sitia, and Heraklion in Crete; Lakonia and Messinia in Peloponnesus; Zakynthos). The use of classification and binary trees made possible the construction of a geographical prediction algorithm for unknown samples in a self-improvement fashion, which can be readily extended to other varieties and areas.

  2. Fractioning of sodium polyphosphate and characterization by {sup 31}P NMR: a experience to physical-chemistry lessons; Fracionamento de polifosfato de sodio e caracterizacao por RMN de 31P: um experimento para aulas de Fisico-Quimica

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Emilia Celma de Oliveira; Alcantara, Glaucia Braz Alcantara; Damasceno, Fernando Cruvinel, E-mail: elima@quimica.ufg.b [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Inst. de Quimica; Moita Neto, Jose Machado [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Dept. de Quimica; Galembeck, Fernando [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2010-07-01

    This text describes an experiment on fractional precipitation of a polymer together with determination of average degree of polymerization by NMR. Commercial sodium polyphosphate was fractionated by precipitation from aqueous solution by adding increasing amounts of acetone. The polydisperse salt and nine fractions obtained from it were analyzed by {sup 31}P nuclear magnetic resonance and the degree of polymerization of the salts and of the fractions were calculated. Long-chain sodium polyphosphate was also synthesized and analyzed. This experiment was tested in a PChem lab course but it can be used also to illustrate topics of inorganic polymers and analytical chemistry. (author)

  3. Using 31P-NMR to investigate dynamics of soil phosphorus compounds in the Rothamsted Long Term Experiments

    Science.gov (United States)

    Blackwell, Martin; Turner, Ben; Granger, Steve; Hooper, Tony; Darch, Tegan; Hawkins, Jane; Yuan, Huimin; McGrath, Steve

    2015-04-01

    The technique of 31P-NMR spectroscopy has done more to advance the knowledge of phosphorus forms (especially organic phosphorus) in environmental samples than any other method. The technique has advanced such that specific compounds can be identified where previously only broad categories such as orthophosphate monoesters and diesters were distinguishable. The Soil Archive and Long Term Experiments at Rothamsted Research, UK, potentially provides an unequalled opportunity to use this technique to observe changes in soil phosphorus compounds with time and under different treatments, thereby enhancing our understanding of phosphorus cycling and use by plants. Some of the earliest work using this technique on soils was carried out by Hawkes et al. in 1984 and this used soils from two of the oldest Rothamsted Long Term Experiments, namely Highfield and Park Grass. Here we revisit the samples studied in this early work and reanalyse them using current methodology to demonstrate how the 31P-NMR technique has advanced. We also present results from a study on the phosphorus chemistry in soils along the Hoosfield acid strip (Rothamsted, UK), where a pH gradient from 3.7 to 7.8 occurs in a single soil with little variation in total phosphorus (mean ± standard deviation 399 ± 27 mg P kg-1). Soil pH was found to be an important factor in determining the proportion of phosphomonoesters and phosphodiesters in the soil organic phosphorus, although total organic phosphorus concentrations were a relatively consistent proportion of the total soil phosphorus (36 ± 2%) irrespective of soil pH. Key words. 31P-NMR, soil organic phosphorus, long term experiments, Hoosfield acid strip

  4. Quantitative ATP synthesis in human liver measured by localized 31P spectroscopy using the magnetization transfer experiment.

    Science.gov (United States)

    Schmid, A I; Chmelík, M; Szendroedi, J; Krssák, M; Brehm, A; Moser, E; Roden, M

    2008-06-01

    The liver plays a central role in intermediate metabolism. Accumulation of liver fat (steatosis) predisposes to various liver diseases. Steatosis and abnormal muscle energy metabolism are found in insulin-resistant and type-2 diabetic states. To examine hepatic energy metabolism, we measured hepatocellular lipid content, using proton MRS, and rates of hepatic ATP synthesis in vivo, using the 31P magnetization transfer experiment. A suitable localization scheme was developed and applied to the measurements of longitudinal relaxation times (T1) in six healthy volunteers and the ATP-synthesis experiment in nine healthy volunteers. Liver 31P spectra were modelled and quantified successfully using a time domain fit and the AMARES (advanced method for accurate, robust and efficient spectral fitting of MRS data with use of prior knowledge) algorithm describing the essential components of the dataset. The measured T1 relaxation times are comparable to values reported previously at lower field strengths. All nine subjects in whom saturation transfer was measured had low hepatocellular lipid content (1.5 +/- 0.2% MR signal; mean +/- SEM). The exchange rate constant (k) obtained was 0.30 +/- 0.02 s(-1), and the rate of ATP synthesis was 29.5 +/- 1.8 mM/min. The measured rate of ATP synthesis is about three times higher than in human skeletal muscle and human visual cortex, but only about half of that measured in perfused rat liver. In conclusion, 31P MRS at 3 T provides sufficient sensitivity to detect magnetization transfer effects and can therefore be used to assess ATP synthesis in human liver.

  5. Simultaneous 31P-NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: a correlation study

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T

    1995-01-01

    of the muscle. Simultaneous 31P-nuclear magnetic resonance spectroscopy and surface electromyography were performed during sustained static exercise and recovery in healthy volunteers and a patient with McArdle's disease. A clear dissociation between the median power frequency of the surface electromyogram...... and pH was seen in the healthy volunteers during recovery and during exercise in the patient with McArdle's disease. The results indicate that proton or lactate accumulation is not primarily responsible for the spectral changes of the surface electromyogram as previously suggested. The motor unit...

  6. Improved energy kinetics following high protein diet in McArdle's syndrome. A 31P magnetic resonance spectroscopy study

    DEFF Research Database (Denmark)

    Jensen, K E; Jakobsen, J; Thomsen, C;

    1990-01-01

    A patient with McArdle's syndrome was examined using bicycle ergometry and 31P NMR spectroscopy during exercise. The patients working capacity was approximately half the expected capacity of controls. Muscle energy kinetics improved significantly during intravenous glucose infusion and after 6...... weeks of high protein diet. During intravenous infusion of amino acids, no changes in working capacity could be detected. No decrease was seen in intracellular muscle pH during aerobic exercise. A significant decrease in muscle pH during aerobic exercise was detected in all controls....

  7. Wilson's disease: {sup 31}P and {sup 1}H MR spectroscopy and clinical correlation

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Sanjib; Taly, A.B.; Prashanth, L.K. [National Institute of Mental Health and Neurosciences (NIMHANS), Department of Neurology, Bangalore (India); Ravishankar, S.; Vasudev, M.K. [National Institute of Mental Health and Neurosciences (NIMHANS), Department of Neuroimaging and Interventional Radiology, Bangalore (India)

    2010-11-15

    Proton ({sup 1}H) magnetic resonance spectroscopy (MRS) changes are noted in Wilson's disease (WD). However, there are no studies regarding membrane phospholipid abnormality using {sup 31}P MRS in these patients. We aimed to analyze the striatal spectroscopic abnormalities using {sup 31}P and {sup 1}H MRS in WD. Forty patients of WD (treated, 29; untreated,11) and 30 controls underwent routine MR image sequences and in vivo 2-D {sup 31}P and {sup 1}H MRS of basal ganglia using an image-selected technique on a 1.5-T MRI scanner. Statistical analysis was done using Student's t test. The mean durations of illness and treatment were 6.2 {+-} 7.4 and 4.8 {+-} 5.9 years, respectively. MRI images were abnormal in all the patients. {sup 1}H MRS revealed statistically significant reduction of N-acetyl aspartate (NAA)/choline (Cho) and NAA/creatine ratios in striatum ({sup 1}H MRS) of treated patients compared to controls. The mean values of phosphomonoesters (PME) (p < 0.0001), phosphodiesters (PDE) (p < 0.0001), and total phosphorus (TPh) (p < 0.0001) were elevated in patients compared to controls. Statistically significant elevated levels of ratio of PME/PDE (p = 0.05) observed in the striatum were noted in treated patients as compared to controls in the {sup 31}P MRS study. The duration of illness correlated well with increased PME/PDE [p < 0.001], PME/TPh [p < 0.05], and PDE/TPh [p < 0.05] and decreased NAA/Cho [p < 0.05] ratios. There was correlation of MRI score and reduced NAA/Cho ratio with disease severity. The PME/PDE ratio (right) was elevated in the treated group [p < 0.001] compared to untreated group. There is reduced breakdown and/or increased synthesis of membrane phospholipids and increased neuronal damage in basal ganglia in patients with WD. (orig.)

  8. Measurement of the principal values of the chemical-shift tensors of overlapping protonated and unprotonated carbons with the 2D-SUPER technique and dipolar dephasing (DD-SUPER)

    Science.gov (United States)

    Liu, Wei; Wang, Wei D.; Wang, Wei; Bai, Shi; Dybowski, Cecil

    2010-09-01

    A modified 2D-SUPER technique is demonstrated to allow independent measurement of the principal values of the chemical-shift tensors of overlapping protonated and unprotonated carbons. The insertion of a dipolar-dephasing period into the sequence causes loss of signal from protonated carbons. The spectrum obtained with this modification allows one to determine the principal values of the unprotonated carbons with high precision. Subsequent fitting of the usual 2D-SUPER spectrum, with the chemical-shift parameters of the unprotonated carbons fixed, gives the parameters of the overlapped resonances of the protonated carbons. As an example, we report the determination of the 13C chemical-shift parameters of the carbons of form II of piroxicam. The experimental results are compared with those obtained from calculations using the DFT/GIAO method. Potential applications of this method are discussed.

  9. Determination of (3)J((1)H3'-(31)P) couplings in a DNA oligomer with enhanced sensitivity employing a constant-time TOCSY difference experiment.

    Science.gov (United States)

    Reith, Lorenz M; Schlagnitweit, Judith; Smrecki, Vilko; Knör, Günther; Müller, Norbert; Schoefberger, Wolfgang

    2011-03-01

    A constant-time TOCSY difference experiment for the determination of (3)J((1)H3'-(31)P) coupling constants in non-isotope-labelled DNA oligonucleotides is presented. The method is tested on a DNA octamer and compared with the established constant-time NOESY difference method. Each (3)J((1)H3'-(31)P) coupling constant is determined from amplitude changes caused by phosphorous decoupling, which are observable on multiple cross-peaks, thus leading to a high accuracy of the value of the (3)J((1)H3'-(31)P) coupling constant. The new experiment delivers up to three times the sensitivity compared with previously reported methods.

  10. The effects of librations on the 13C chemical shift and 2H electric field gradient tensors in β-calcium formate

    Science.gov (United States)

    Hallock, Kevin J.; Lee, Dong Kuk; Ramamoorthy, A.

    2000-12-01

    The magnitudes and orientations of the principal elements of the 13C chemical shift anisotropy (CSA) tensor in the molecular frame of the formate ion in β-calcium formate is determined using one-dimensional dipolar-shift spectroscopy. The magnitudes of the principal elements of the 13C CSA tensor are σ11C=104 ppm, σ22C=179 ppm, and σ33C=233 ppm. The least shielding element of the 13C CSA tensor, σ33C, is found to be collinear with the C-H bond. The temperature dependence of the 13C CSA and the 2H quadrupole coupling tensors in β-calcium formate are analyzed for a wide range of temperature (173-373 K). It was found that the span of the 13C CSA and the magnitude of the 2H quadrupole coupling interactions are averaged with the increasing temperature. The experimental results also show that the 2H quadrupole coupling tensor becomes more asymmetric with increasing temperature. A librational motion about the σ22C axis of the 13C CSA tensor is used to model the temperature dependence of the 13C CSA tensor. The temperature dependence of the mean-square amplitude of the librational motion is found to be =2.6×10-4(T) rad2 K-1. The same librational motion also accounts for the temperature-dependence of the 2H quadrupole coupling tensor after the relative orientation of the 13C CSA and 2H electric field gradient tensors are taken into account. Reconsideration of the results of a previous study found that the librational motion, not the vibrational motion, accounts for an asymmetry in the 1H-13C dipolar coupling tensor of α-calcium formate at room temperature.

  11. A lanthanide complex with dual biosensing properties: CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts) with europium DOTA-tetraglycinate.

    Science.gov (United States)

    Coman, Daniel; Kiefer, Garry E; Rothman, Douglas L; Sherry, A Dean; Hyder, Fahmeed

    2011-12-01

    Responsive contrast agents (RCAs) composed of lanthanide(III) ion (Ln3R) complexes with a variety of1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA4S) derivatives have shown great potential as molecular imaging agents for MR. A variety of LnDOTA–tetraamide complexes have been demonstrated as RCAs for molecular imaging using chemical exchange saturation transfer (CEST). The CEST method detects proton exchange between bulk water and any exchangeable sites on the ligand itself or an inner sphere of bound water that is shifted by a paramagnetic Ln3R ion bound in the core of the macrocycle. It has also been shown that molecular imaging is possible when the RCA itself is observed (i.e. not its effect on bulk water) using a method called biosensor imaging of redundant deviation in shifts (BIRDS). The BIRDS method utilizes redundant information stored in the nonexchangeable proton resonances emanating from the paramagnetic RCA for ambient factors such as temperature and/or pH.Thus, CEST and BIRDS rely on exchangeable and nonexchangeable protons, respectively, for biosensing. We posited that it would be feasible to combine these two biosensing features into the same RCA (i.e. dual CEST and BIRDS properties). A complex between europium(III) ion (Eu3R) and DOTA–tetraglycinate [DOTA–(gly)S4] was used to demonstrate that its CEST characteristics are preserved, while its BIRDS properties are also detectable. The in vitro temperature sensitivity of EuDOTA–(gly)S4 was used to show that qualitative MR contrast with CEST can be calibrated using quantitative MR mapping with BIRDS, thereby enabling quantitative molecular imaging at high spatial resolution.

  12. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts.

    Science.gov (United States)

    Doyle, Colleen M; Rumfeldt, Jessica A; Broom, Helen R; Sekhar, Ashok; Kay, Lewis E; Meiering, Elizabeth M

    2016-03-08

    The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.

  13. Solid-state nuclear magnetic resonance measurements of HIV fusion peptide 13CO to lipid 31P proximities support similar partially inserted membrane locations of the α helical and β sheet peptide structures.

    Science.gov (United States)

    Gabrys, Charles M; Qiang, Wei; Sun, Yan; Xie, Li; Schmick, Scott D; Weliky, David P

    2013-10-03

    Fusion of the human immunodeficiency virus (HIV) membrane and the host cell membrane is an initial step of infection of the host cell. Fusion is catalyzed by gp41, which is an integral membrane protein of HIV. The fusion peptide (FP) is the ∼25 N-terminal residues of gp41 and is a domain of gp41 that plays a key role in fusion catalysis likely through interaction with the host cell membrane. Much of our understanding of the FP domain has been accomplished with studies of "HFP", i.e., a ∼25-residue peptide composed of the FP sequence but lacking the rest of gp41. HFP catalyzes fusion between membrane vesicles and serves as a model system to understand fusion catalysis. HFP binds to membranes and the membrane location of HFP is likely a significant determinant of fusion catalysis perhaps because the consequent membrane perturbation reduces the fusion activation energy. In the present study, many HFPs were synthesized and differed in the residue position that was (13)CO backbone labeled. Samples were then prepared that each contained a singly (13)CO labeled HFP incorporated into membranes that lacked cholesterol. HFP had distinct molecular populations with either α helical or oligomeric β sheet structure. Proximity between the HFP (13)CO nuclei and (31)P nuclei in the membrane headgroups was probed by solid-state NMR (SSNMR) rotational-echo double-resonance (REDOR) measurements. For many samples, there were distinct (13)CO shifts for the α helical and β sheet structures so that the proximities to (31)P nuclei could be determined for each structure. Data from several differently labeled HFPs were then incorporated into a membrane location model for the particular structure. In addition to the (13)CO labeled residue position, the HFPs also differed in sequence and/or chemical structure. "HFPmn" was a linear peptide that contained the 23 N-terminal residues of gp41. "HFPmn_V2E" contained the V2E mutation that for HIV leads to greatly reduced extent of fusion and

  14. Localized Semi-LASER Dynamic 31P Magnetic Resonance Spectroscopy of the Soleus During and Following Exercise at 7 T

    CERN Document Server

    Fiedler, Georg B; Schmid, Albrecht I; Goluch, Sigrun; Schewzow, Kiril; Laistler, Elmar; Mirzahosseini, Arash; Niess, Fabian; Unger, Ewald; Wolzt, Michael; Moser, Ewald

    2015-01-01

    Object This study demonstrates the applicability of semi-LASER localized dynamic $^{31}$P MRS to deeper lying areas of the exercising human soleus muscle (SOL). The effect of accurate localization and high temporal resolution on data specificity is investigated. Materials and Methods To achieve high signal-to-noise ratio (SNR) at a temporal resolution of 6 s, a custom-built calf coil array was used at 7T. The kinetics of phosphocreatine (PCr) and intracellular pH were quantified separately in SOL and gastrocnemius medialis (GM) muscle of 9 volunteers, during rest, plantar flexion exercise and recovery. Results The average SNR of PCr at rest was 64$\\pm$15 in SOL (83$\\pm$12 in GM). End exercise PCr depletion in SOL (19$\\pm$9%) was far lower than in GM (74$\\pm$14%). pH in SOL increased rapidly and, in contrast to GM, remained elevated until the end of exercise. Conclusion $^{31}$P MRS in single-shots every 6 s localized in the deeper lying SOL enabled quantification of PCr recovery times at low depletions and of...

  15. Fructose-induced aberration of metabolism in familial gout identified by sup 31 P magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Seegmiller, J.E. (John Radcliffe Hospital, Oxford (England) Univ. of California, San Diego (United States)); Dixon, R.M.; Kemp, G.J.; Rajagopalan, B.; Radda, G.K. (John Radcliffe Hospital, Oxford (England)); Angus, P.W. (John Radcliffe Hospital, Oxford (England) Austin Hospital, Heidelburg, Victoria (Australia)); McAlindon, T.E.; Dieppe, P. (Univ. of Bristol (England))

    1990-11-01

    The hyperuricemia responsible for the development of gouty arthritis results from a wide range of environmental factors and underlying genetically determined aberrations of metabolism. {sup 31}P magnetic resonance spectroscopy studies of children with hereditary fructose intolerance revealed a readily detectable rise in phosphomonoesters with a marked fall in inorganic phosphate in their liver in vivo and a rise in serum urate in response to very low doses of oral fructose. Parents and some family members heterozygous for this enzyme deficiency showed a similar pattern when given a substantially larger dose of fructose. Three of the nine heterozygotes thus identified also had clinical gout, suggesting the possibility of this defect being a fairly common cause of gout. In the present study this same noninvasive technology was used to identify the same spectral pattern in 2 of the 11 families studied with hereditary gout. In one family, the index patient's three brothers and his mother all showed the fructose-induced abnormality of metabolism, in agreement with the maternal inheritance of metabolism, in agreement with the maternal inheritance of the gout in this family group. The test dose of fructose used produced a significantly larger increment in the concentration of serum urate in the patients showing the changes in {sup 31}P magnetic resonance spectra than in the other patients with familial gout or in nonaffected members, thus suggesting a simpler method for initial screening for the defect.

  16. Bone and Soft Tissue Tumors:Study of 3.0T31P MR Spectroscopy%3.0T31P-MRS对骨与软组织肿瘤的诊断价值

    Institute of Scientific and Technical Information of China (English)

    齐滋华; 李传福; 马祥兴; 李振峰; 张凯; 于德新

    2008-01-01

    目的 探讨超高场31P-MRS对骨与软组织肿瘤的成像特点.方法 对病理证实的骨与软组织肿瘤41例用磷表面线圈进行31P-MRS分析,测量波谱中各代谢产物的峰下面积,分别以三磷酸腺苷β峰(β-ATP)、三磷酸核苷(NTP)、磷酸肌酸(Pcr)为参照计算各代谢产物的相对比值,根据无机磷(Pi)相对于Pcr化学位移的变化计算细胞内pH值,进行相对定量分析.根据峰下面积计算各代谢产物与β-ATP、三磷酸核苷(NTP=ATP+Pi+Pcr)、Pcr的相对值PME/β-ATP、PDE/β-ATP、β-ATP/Pi、PME/NTP、PDE/NTP、Pcr/Pi及Pcr/PME.并运用SPSS11.5 for Windows软件包进行统计学处理,采用多个独立样本的非参数检验.结果 良、恶性肿瘤组的Pcr/PME、PME/NTP较对照组均有显著性差异(P<0.05).良、恶性肿瘤组PME/β-ATP、PME/NTP的差异有显著性意义(P<0.05).与正常组比较,良、恶性肿瘤组的PME和PDE及Pi峰升高,Pcr峰降低.结论 31P-MRS测得的Pcr/PME、PME/NTP与骨、软组织肿瘤相关,PME/β-ATP、PME/NTP在骨与软组织肿瘤的诊断和鉴别诊断中发挥重要的作用.

  17. Chemical constituents of Ottonia corcovadensis Miq. from Amazon forest: {sup 1}H and {sup 13}C chemical shift assignments; Constituintes quimicos de Ottonia corcovadensis Miq. da floresta Amazonica - atribuicao dos deslocamentos quimicos dos atomos de hidrogenio e carbono

    Energy Technology Data Exchange (ETDEWEB)

    Facundo, Valdir A. [Rondonia Univ., Porto Velho, RO (Brazil). Dept. de Quimica; Morais, Selene M. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Quimica e Fisica; Braz Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Ciencias Quimicas. Setor de Quimica de Produtos Naturais]. E-mail: braz@uenf.br

    2004-02-01

    In an ethanolic extract of leaves of Ottonia corcovadensis (Piperaceae) were identified sixteen terpenoids of essential oil and the three flavonoids 3',4',5,5',7-penta methoxyflavone (1), 3',4',5,7-tetra methoxyflavone (2) and 5-hydroxy-3',4',5',7-tetra methoxyflavone (3) and cafeic acid (4). Two amides (5 and 6) were isolated from an ethanolic extract of the roots. The structures were established by spectral analysis, meanly NMR (1D and 2D) and mass spectra. Extensive NMR analysis was also used to complete {sup 1}H and {sup 13}C chemical shift assignments of the flavonoids and amides. The components of the essential oil were identified by computer library search, retention indices and visual interpretation of mass spectra. (author)

  18. Different early effect of irradiation in brain and small cell lung cancer examined by in vivo 31P-magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Kristjansen, P E; Pedersen, A G; Quistorff, B

    1992-01-01

    Early effects of irradiation were evaluated by non-invasive in vivo 31P-magnetic resonance spectroscopy (31P-MRS) of two small cell lung cancer (SCLC) tumor lines CPH SCCL 54A and 54B, in nude mice. The tumors were originally derived from the same patient and have similar morphology and growth...... characteristics, but a different radiosensitivity. The 54A tumors are twice as radiosensitive as the 54B's. In the present study the tumors were treated with 2.5, 10, and 40 Gy. For comparison, nude mice were given cranial irradiation at the same three doses, and the effect was evaluated by in vivo 31P-MRS...... in ATP/Pi. The differential effect on tumors and brain might be relevant for monitoring irradiation effects by in vivo 31P-MRS in patients with brain metastases....

  19. Maintenance of high-energy brain phosphorous compounds during insulin-induced hypoglycemia in men. 31P nuclear magnetic resonance spectroscopy study

    DEFF Research Database (Denmark)

    Hilsted, Jannik; Jensen, K E; Thomsen, C;

    1988-01-01

    31P nuclear magnetic resonance (NMR) spectroscopy allows noninvasive studies of cerebral energy-rich phosphorous compounds in humans. In an attempt to characterize the relationship between peripheral blood glucose concentrations and whole-brain phosphate metabolism during insulin...

  20. Characterization of soybean phosphatidylcholine purity by {sup 1}H and {sup 31}P NMR; Caracterizacao da pureza de fosfatidilcolina da soja atraves de RMN de {sup 1}H e de {sup 31}P

    Energy Technology Data Exchange (ETDEWEB)

    Mertins, Omar; Sebben, Marcelo; Schneider, Paulo Henrique; Pohlmann, Adriana Raffin; Silveira, Nadya Pesce da [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Quimica]. E-mail: nadya@iq.ufrgs.br

    2008-07-01

    A strategy is proposed to evaluate the purity of phosphatidylcholine from soybean lecithin, obtained by extraction or column chromatography, using the integrals ratio of {sup 1}H NMR spectra. Integrals of methylene signals, around 1.3 and 1.6 ppm, are added and divided by the integral of the choline methyl groups, around 3.3 ppm. Before purification, a ratio of 19.68 {+-} 1.37 was determined. Using extraction, a ratio of 10.70 {+-} 0.61 was found, while from column chromatography, a value of 2.99 {+-} 0.25 was detected. {sup 31}P NMR of standard phosphatidylcholine showed signals at -0.2 and -0.9 ppm, whereas the purified one showed a single signal at -0.9 ppm. (author)

  1. Caracterização da pureza de fosfatidilcolina da soja através de RMN de ¹H e de 31P Characterization of soybean phosphatidylcholine purity by ¹H and 31P NMR

    Directory of Open Access Journals (Sweden)

    Omar Mertins

    2008-01-01

    Full Text Available A strategy is proposed to evaluate the purity of phosphatidylcholine from soybean lecithin, obtained by extraction or column chromatography, using the integrals ratio of ¹H NMR spectra. Integrals of methylene signals, around 1.3 and 1.6 ppm, are added and divided by the integral of the choline methyl groups, around 3.3 ppm. Before purification, a ratio of 19.68±1.37 was determined. Using extraction, a ratio of 10.70±0.61 was found, while from column chromatography, a value of 2.99±0.25 was detected. 31P NMR of standard phosphatidylcholine showed signals at -0.2 and -0.9 ppm, whereas the purified one showed a single signal at -0.9 ppm.

  2. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    Science.gov (United States)

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  3. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    Science.gov (United States)

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations.

  4. Reproducibility of Intra- and Inter-scanner Measurements of Liver Fat Using Complex Confounder-corrected Chemical Shift Encoded MRI at 3.0 Tesla

    Science.gov (United States)

    Wu, Bing; Han, Wei; Li, Zhenhong; Zhao, Yonghua; Ge, Mingmei; Guo, Xueqing; Wu, Xinhuai

    2016-01-01

    The purpose of this study was to prospectively evaluate the reproducibility of the proton density fat-fraction (PDFF) of the liver using the IDEAL algorithm, a quantitative confounder-corrected chemical-shift-encoded MRI method. Data were obtained from 15 volunteers on four different days. The first and the third examinations were conducted on scanner one with one-week intervals, while the second and the fourth tests were performed on scanner two with same time interval. For each test, two MR scans were performed, one before and one after a meal. Regions-of-interest measurements were manually calculated to estimate the PDFF in the right and left lobes on the PDFF images. Reproducibility was measured using the intra-class correlation coefficient (ICC). The ICCs of the PDFF in the right and left lobes were 0.935 and 0.878, respectively. The intra-scanner ICCs of the right lobe before and after a meal or at a one-week interval were 0.924 and 0.953, respectively. The inter-scanner ICCs of PDFF the next day and at a one-week interval were 0.920 and 0.864, respectively. The PDFF of liver derived from IDEAL demonstrated high intra- and inter-scanner measurement reproducibility. The PDFF of the right lobe before a meal was more reproducible than after-meal measurements. PMID:26763303

  5. Scan time reduction in {sup 23}Na-Magnetic Resonance Imaging using the chemical shift imaging sequence. Evaluation of an iterative reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Weingaertner, Sebastian; Konstandin, Simon; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Wetterling, Friedrich [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Dublin Univ. (Ireland) Trinity Inst. of Neuroscience; Fatar, Marc [Heidelberg Univ., Mannheim (Germany). Dept. of Neurology; Neumaier-Probst, Eva [Heidelberg Univ., Mannheim (Germany). Dept. of Neuroradiology

    2015-07-01

    To evaluate potential scan time reduction in {sup 23}Na-Magnetic Resonance Imaging with the chemical shift imaging sequence (CSI) using undersampled data of high-quality datasets, reconstructed with an iterative constrained reconstruction, compared to reduced resolution or reduced signal-to-noise ratio. CSI {sup 23}Na-images were retrospectively undersampled and reconstructed with a constrained reconstruction scheme. The results were compared to conventional methods of scan time reduction. The constrained reconstruction scheme used a phase constraint and a finite object support, which was extracted from a spatially registered {sup 1}H-image acquired with a double-tuned coil. The methods were evaluated using numerical simulations, phantom images and in-vivo images of a healthy volunteer and a patient who suffered from cerebral ischemic stroke. The constrained reconstruction scheme showed improved image quality compared to a decreased number of averages, images with decreased resolution or circular undersampling with weighted averaging for any undersampling factor. Brain images of a stroke patient, which were reconstructed from three-fold undersampled k-space data, resulted in only minor differences from the original image (normalized root means square error < 12%) and an almost identical delineation of the stroke region (mismatch < 6%). The acquisition of undersampled {sup 23}Na-CSI images enables up to three-fold scan time reduction with improved image quality compared to conventional methods of scan time saving.

  6. VITAL NMR: Using Chemical Shift Derived Secondary Structure Information for a Limited Set of Amino Acids to Assess Homology Model Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C [University of Illinois, Urbana-Champaign; Nesbitt, Anna E [University of Illinois, Urbana-Champaign; Hallock, Michael J [University of Illinois, Urbana-Champaign; Rupasinghe, Sanjeewa [University of Illinois, Urbana-Champaign; Tang, Ming [University of Illinois, Urbana-Champaign; Harris, Jason B [ORNL; Baudry, Jerome Y [ORNL; Schuler, Mary A [University of Illinois, Urbana-Champaign; Rienstra, Chad M [University of Illinois, Urbana-Champaign

    2011-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  7. VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C.; Nesbitt, Anna E.; Hallock, Michael J. [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Rupasinghe, Sanjeewa G. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Tang Ming [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Harris, Jason; Baudry, Jerome [University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology (United States); Schuler, Mary A. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Rienstra, Chad M., E-mail: rienstra@illinois.edu [University of Illinois at Urbana-Champaign, Department of Chemistry (United States)

    2012-01-15

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., {sup 13}C-{sup 13}C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  8. Ascorbic acid prolongs the viability and stability of isolated perfused lungs: A mechanistic study using 31P and hyperpolarized 13C nuclear magnetic resonance.

    Science.gov (United States)

    Shaghaghi, Hoora; Kadlecek, Stephen; Siddiqui, Sarmad; Pourfathi, Mehrdad; Hamedani, Hooman; Clapp, Justin; Profka, Harrilla; Rizi, Rahim

    2015-12-01

    Ex vivo lung perfusion (EVLP) has recently shown promise as a means of more accurately gauging the health of lung grafts and improving graft performance post-transplant. However, reperfusion of ischemic lung promotes the depletion of high-energy compounds and a progressive loss of normal mitochondrial function, and it remains unclear how and to what extent the EVLP approach contributes to this metabolic decline. Although ascorbate has been used to mitigate the effects of ischemia-reperfusion injury, the nature of its effects during EVLP are also not clear. To address these uncertainties, this study monitored the energy status of lungs during EVLP and after the administration of ascorbate using (31)P and hyperpolarized (13)C NMR (nuclear magnetic resonance). Our experiments demonstrated that the oxidative phosphorylation capacity and pyruvate dehydrogenase flux of lungs decline during ex vivo perfusion. The addition of ascorbate to the perfusate prolonged lung viability by 80% and increased the hyperpolarized (13)C bicarbonate signal by a factor of 2.7. The effect of ascorbate is apparently due not to its antioxidant quality but rather to its ability to energize cellular respiration given that it increased the lung's energy charge significantly, whereas other antioxidants (glutathione and α-lipoic acid) did not alter energy metabolism. During ascorbate administration, inhibition of mitochondrial complex I with rotenone depressed energy charge and shifted the metabolic state of the lung toward glycolysis; reenergizing the electron transport chain with TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) recovered metabolic activity. This indicates that ascorbate slows the decline of the ex vivo perfused lung's mitochondrial activity through an independent interaction with the electron transport chain complexes.

  9. Small angle X-ray scattering and 31P NMR studies on the phase behavior of phospholipid bilayered mixed micelles

    Science.gov (United States)

    Bolze, Jörg; Fujisawa, Tetsuro; Nagao, Takashi; Norisada, Kazushi; Saitô, Hazime; Naito, Akira

    2000-10-01

    The phase behavior of lipid bilayered micelles (`bicelles') (dimyristoyl-phosphatidylcholine, DMPC/dihexanoyl-phosphatidyl-choline, DHPC 2.6/1) has been studied by small angle X-ray scattering and 31P NMR. Below 3% w/v the bilayers are arranged in tightly packed stacks. At intermediate concentrations single units are observed, whereas at 24% w/v and higher, weak stacking occurs again. The DMPC/DHPC ratio in the bicelles strongly increases at low concentration, which is correlated with an increase in the bicelle size and stacking. The increase of the order parameter in a magnetic field is related to the stack formation. Below 297 K there is no stacking at any concentration and no magnetic alignment.

  10. 31P NMR study of magnetic phase transitions of MnP single crystal under 2 GPa pressure

    Science.gov (United States)

    Fan, GuoZhi; Zhao, Bo; Wu, Wei; Zheng, Ping; Luo, JianLin

    2016-05-01

    Superconductivity on the border of the long-range magnetic order has been discovered in MnP under high pressures. In order to investigate the nature of the magnetic properties adjacent to the superconducting state, we performed zero-field 31P NMR for MnP single crystal under ambient and hydrostatic pressure of 2 GPa, respectively. Radio frequency power level was used to determine whether NMR signal originates from a helical state or not. When 2 GPa pressure was applied, the signal from helical state exists even above 160 K, while that from the ferromagnetic phase was not observed. Our NMR results indicate that the magnetic phase which is adjacent to the superconducting state is in a helical magnetic structure.

  11. Determination of the Tautomeric Equilibria of Pyridoyl Benzoyl -Diketones in the Liquid and Solid State through the use of Deuterium Isotope Effects on 1H and 13C NMR Chemical Shifts and Spin Coupling Constants

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Borisov, Eugeny V.; Lindon, John C.

    2015-01-01

    The tautomeric equilibria for 2-pyridoyl-, 3-pyridoyl-, and 4-pyridoyl-benzoyl methane have been investigated using deuterium isotope effects on 1H and 13C chemical shifts both in the liquid and the solid state. Equilibria are established both in the liquid and the solid state. In addition, in th...

  12. Reproducibility of creatine kinase reaction kinetics in human heart: a (31) P time-dependent saturation transfer spectroscopy study.

    Science.gov (United States)

    Bashir, Adil; Gropler, Robert

    2014-06-01

    Creatine kinase (CK) is essential for the buffering and rapid regeneration of adenosine triphosphate (ATP) in heart tissue. Herein, we demonstrate a (31) P MRS protocol to quantify CK reaction kinetics in human myocardium at 3 T. Furthermore, we sought to quantify the test-retest reliability of the measured metabolic parameters. The method localizes the (31) P signal from the heart using modified one-dimensional image-selected in vivo spectroscopy (ISIS), and a time-dependent saturation transfer (TDST) approach was used to measure CK reaction parameters. Fifteen healthy volunteers (22 measurements in total) were tested. The CK reaction rate constant (kf ) was 0.32 ± 0.05 s(-1) and the coefficient of variation (CV) was 15.62%. The intrinsic T1 for phosphocreatine (PCr) was 7.36 ± 1.79 s with CV = 24.32%. These values are consistent with those reported previously. The PCr/ATP ratio was equal to 1.94 ± 0.15 with CV = 7.73%, which is within the range of healthy subjects. The reproducibility of the technique was tested in seven subjects and inferred parameters, such as kf and T1 , exhibited good reliability [intraclass correlation coefficient (ICC) of 0.90 and 0.79 for kf and T1 , respectively). The reproducibility data provided in this study will enable the calculation of the power and sample sizes required for clinical and research studies. The technique will allow for the examination of cardiac energy metabolism in clinical and research studies, providing insight into the relationship between energy deficit and functional deficiency in the heart.

  13. Shifting Attention

    Science.gov (United States)

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  14. Tough Shift

    DEFF Research Database (Denmark)

    Brewer, Robert S.; Verdezoto, Nervo; Holst, Thomas;

    2015-01-01

    in a student dormitory and found that players did not shift their electricity use, because they were unwilling to change their schedules and found it easier to focus on reducing electricity use. Based on our findings, we discuss the implications for encouraging shifting, and also the challenges of integrating...

  15. The use of chemical shift temperature gradients to establish the paramagnetic susceptibility tensor orientation: Implication for structure determination/refinement in paramagnetic metalloproteins

    Energy Technology Data Exchange (ETDEWEB)

    Xia Zhicheng; Nguyen, Bao D.; La Mar, Gerd N. [University of California, Department of Chemistry (United States)

    2000-06-15

    The use of dipolar shifts as important constraints in refining molecular structure of paramagnetic metalloproteins by solution NMR is now well established. A crucial initial step in this procedure is the determination of the orientation of the anisotropic paramagnetic susceptibility tensor in the molecular frame which is generated interactively with the structure refinement. The use of dipolar shifts as constraints demands knowledge of the diamagnetic shift, which, however, is very often not directly and easily accessible. We demonstrate that temperature gradients of dipolar shifts can serve as alternative constraints for determining the orientation of the magnetic axes, thereby eliminating the need to estimate the diamagnetic shifts. This approach is tested on low-spin, ferric sperm whale cyanometmyoglobin by determining the orientation, anisotropies and anisotropy temperature gradients by the alternate routes of using dipolar shifts and dipolar shift gradients as constraints. The alternate routes ultimately lead to very similar orientation of the magnetic axes, magnetic anisotropies and magnetic anisotropy temperature gradients which, by inference, would lead to an equally valid description of the molecular structure. It is expected that the use of the dipolar shift temperature gradients, rather than the dipolar shifts directly, as constraints will provide an accurate shortcut in a solution structure determination of a paramagnetic metalloprotein.

  16. Origin of the chemical shift in X-ray absorption near-edge spectroscopy at the Mn K-Edge in manganese oxide compounds

    NARCIS (Netherlands)

    de Vries, AH; Hozoi, L; Broer, R; Broer-Braam, H.B.

    2003-01-01

    The absorption edge in Mn K-edge X-ray absorption spectra of manganese oxide compounds shows a shift of several electronvolts in going from MnO through LaMnO3 to CaMnO3. On the other hand, in X-ray photoelectron spectra much smaller shifts are observed. To identify the mechanisms that cause the obse

  17. (1) H NMR Spectra. Part 28: Proton chemical shifts and couplings in three-membered rings. A ring current model for cyclopropane and a novel dihedral angle dependence for (3) J(HH) couplings involving the epoxy proton.

    Science.gov (United States)

    Abraham, Raymond J; Leonard, Paul; Tormena, Cláudio F

    2012-04-01

    The (1) H chemical shifts of selected three-membered ring compounds in CDCl(3) solvent were obtained. This allowed the determination of the substituent chemical shifts of the substituents in the three-membered rings and the long-range effect of these rings on the distant protons. The substituent chemical shifts of common substituents in the cyclopropane ring differ considerably from the same substituents in acyclic fragments and in cyclohexane and were modelled in terms of a three-bond (γ)-effect. For long-range protons (more than three bonds removed), the substituent effects of the cyclopropane ring were analysed in terms of the cyclopropane magnetic anisotropy and steric effect. The cyclopropane magnetic anisotropy (ring current) shift was modelled by (a) a single equivalent dipole perpendicular to and at the centre of the cyclopropane ring and (b) by three identical equivalent dipoles perpendicular to the ring placed at each carbon atom. Model (b) gave a more accurate description of the (1) H chemical shifts and was the selected model. After parameterization, the overall root mean square error for the dataset of 289 entries was 0.068 ppm. The anisotropic effects are significant for the cyclopropane protons (ca 1 ppm) but decrease rapidly with distance. The heterocyclic rings of oxirane, thiirane and aziridine do not possess a ring current. (3) J(HH) couplings of the epoxy ring proton with side-chain protons were obtained and shown to be dependent on both the H-C-C-H and H-C-C-O orientations. Both density functional theory calculations and a simple Karplus-type equation gave general agreement with the observed couplings (root mean square error 0.5 Hz over a 10-Hz range).

  18. Changes of liver metabolite concentrations in adults with disorders of fructose metabolism after intravenous fructose by 31P magnetic resonance spectroscopy.

    Science.gov (United States)

    Boesiger, P; Buchli, R; Meier, D; Steinmann, B; Gitzelmann, R

    1994-10-01

    A novel 31P magnetic resonance spectroscopy procedure allows the estimation of absolute concentrations of certain phosphorus-containing compounds in liver. We have validated this approach by measuring ATP, phosphomonesters, and inorganic phosphate (Pi) during fasting and after an i.v. fructose bolus in healthy adults and in three adults with disorders of fructose metabolism and by comparing results with known metabolic concentrations measured chemically. During fasting, the ATP concentration averaged 2.7 +/- 0.3 (SD, n = 9) mmol/L, which, after due correction for other nucleoside triphosphates, was 2.1 mmol/L and corresponded well with known concentrations. Fructose-1-phosphate (F-1-P) could not be measured during fasting; its concentration after fructose was calculated from the difference of the phosphomonester signals before (2.9 +/- 0.2 mmol/L) and after fructose. Pi was 1.4 +/- 0.3 mmol/L and represented the one fourth of Pi visible in magnetic resonance spectra. In the three healthy controls after fructose (200 mg/kg, 20% solution, 2.5 min), the fructokinase-mediated increase of F-1-P was rapid, reaching 4.9 mmol/L within 3 min, whereas the uncorrected ATP decreased from 2.7 to 1.8 mmol/L and the Pi from 1.4 to 0.3 mmol/L. The subsequent decrease of F-1-P, mediated by fructaldolase, was accompanied by an overshooting rise of Pi to 2.7 mmol/L. In the patient with essential fructosuria, the concentrations of F-1-P, ATP, and Pi remained unchanged, confirming that fructokinase was indeed inactive. In the patient with hereditary fructose intolerance, initial metabolic changes were the same as in the controls, but baseline concentrations were not yet reestablished after 7 h, indicating weak fructaldolase activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Utility of chemical-shift MR imaging in detecting small amounts of fat in extrahepatic abdominal tumors; Utilidad de la tecnica de desplazamiento quimico den RM para la deteccion de pequenas cantidades de grasa en tumores abdominales extrahepaticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.; Falco, J.; Puig, J.; Donoso, L. [Unidad de Diagnostico por Imagen de Alta Tecnologia (UDIAT). Sabadell (Spain)

    1999-07-01

    To determine the utility of the chemical shift technique in magnetic resonance imaging (MRI) to confirm small amounts of fat in extrahepatic intraabdominal tumours. 7 extrahepatic abdominal tumours that are suspected to have fat as seen in the axial computed tomography (TC) are analysed retrospectively. In order to confirm the fat content, the chemical displacement technique with gradient echo sequences (GE) in phase (P) and in opposite phase (OP) was used with MRI 1 T equipment. The tumours corresponded to renal angiomyolipoma (AML) (n=4), intraperitoneal liposarcoma (n=1), retroperitoneal liposarcoma (n=1) and intraabdominal extramedular hematopoiesis (n=1). To confirm the existence of fat in the tumours, we used a quantitative percentage variation parameter of the intensity of the signals (VIS) between the images in P and OP, according to the formula: IS{sub (}p)-IS({sub o}p)x100/IS{sub (}op), where IS is the intensity of the signal. The chemical shift technique showed fat in the seven tumours. Upon visual inspection, all the tumoral areas that were suspected to have fat showed a notable difference in the signal intensity, being hypointense in OP and hyperintense in P. In these areas the average VIS percentage was 170% while in the rest of the tumour the average VIS percentage was 3%. The chemical shift technique with RG sequences can be easily used in MRI equipment and allows us to confirm if a specific abdominal tumour has fat, even if there is only a small quantity. (Author) 13 refs.

  20. Spectroscopic quantification of soil phosphorus forms by 31p-nmr after nine years of organic or mineral fertilization

    Directory of Open Access Journals (Sweden)

    Luciano Colpo Gatiboni

    2013-06-01

    Full Text Available Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1 control without fertilizer; 2 mineral fertilizer at recommended rates for local conditions; 3 5 t ha-1 year-1 of moist poultry litter; 4 60 m³ ha-1 year-1 of liquid cattle manure and 5 40 m³ ha-1 year-1 of liquid swine manure. The 31P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization.

  1. Interrelations of muscle functional MRI, diffusion-weighted MRI and (31) P-MRS in exercised lower back muscles.

    Science.gov (United States)

    Hiepe, Patrick; Gussew, Alexander; Rzanny, Reinhard; Anders, Christoph; Walther, Mario; Scholle, Hans-Christoph; Reichenbach, Jürgen R

    2014-08-01

    Exercise-induced changes of transverse proton relaxation time (T2 ), tissue perfusion and metabolic turnover were investigated in the lower back muscles of volunteers by applying muscle functional MRI (mfMRI) and diffusion-weighted imaging (DWI) before and after as well as dynamic (31) P-MRS during the exercise. Inner (M. multifidus, MF) and outer lower back muscles (M. erector spinae, ES) were examined in 14 healthy young men performing a sustained isometric trunk-extension. Significant phosphocreatine (PCr) depletions ranging from 30% (ES) to 34% (MF) and Pi accumulations between 95% (left ES) and 120%-140% (MF muscles and right ES) were observed during the exercise, which were accompanied by significantly decreased pH values in all muscles (∆pH ≈ -0.05). Baseline T2 values were similar across all investigated muscles (approximately 27 ms at 3 T), but revealed right-left asymmetric increases (T2 ,inc ) after the exercise (right ES/MF: T2 ,inc  = 11.8/9.7%; left ES/MF: T2 ,inc  = 4.6/8.9%). Analyzed muscles also showed load-induced increases in molecular diffusion D (p = .007) and perfusion fraction f (p = .002). The latter parameter was significantly higher in the MF than in the ES muscles both at rest and post exercise. Changes in PCr (p = .03), diffusion (p muscles.

  2. Spectroscopic quantification of soil phosphorus forms by {sup 31}P-NMR after nine years of organic or mineral fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Gatiboni, Luciano Colpo, E-mail: gatiboni@cav.udesc.br [Universidade Estadual de Santa Catarina (UDESC), Lages, SC (Brazil); Brunetto, Gustavo; Rheinheimer, Danilo dos Santos; Kaminski, Joao; Flores, Alex Fabiani Claro; Lima, Maria Angelica Silveira; Girotto, Eduardo; Copetti, Andre Carlos Cruz, E-mail: danilo.rheinheimer@pq.cnpq.br, E-mail: joao.kaminski@gmail.com, E-mail: acflores@quimica.ufsm.br, E-mail: masl32003@gmail.com, E-mail: girottosolos@gmail.com, E-mail: andrecopetti@yahoo.com.br [Universidade Federal de Santa Maria (UFSM), RS (Brazil); Pandolfo, Carla Maria; Veiga, Milton, E-mail: pandolfo@epagri.sc.gov.br, E-mail: milveiga@epagri.sc.gov.br [Empresa de Pesquisa Agropecuaria e Extensao Rural de Santa Catarina (EPAGRI), Campos Novos, SC (Brazil)

    2013-05-15

    Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P) accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1) control without fertilizer; 2) mineral fertilizer at recommended rates for local conditions; 3) 5 t ha{sup -1} year{sup -1} of moist poultry litter; 4) 60 m{sup 3} ha{sup -1} year{sup -1} of liquid cattle manure and 5) 40 m{sup 3} ha{sup -1} year{sup -1} of liquid swine manure. The {sup 31}P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization. (author)

  3. A 31P magnetic resonance spectroscopy study of mitochondrial function in skeletal muscle of patients with Parkinson's disease.

    Science.gov (United States)

    Taylor, D J; Krige, D; Barnes, P R; Kemp, G J; Carroll, M T; Mann, V M; Cooper, J M; Marsden, C D; Schapira, A H

    1994-08-01

    The activity of complex I of the respiratory chain is decreased in the substantia nigra of patients with Parkinson's disease (PD) but the presence of this defect in skeletal muscle is controversial. Therefore, the mitochondrial function of skeletal muscle in patients with PD was investigated in vivo using 31P magnetic resonance spectroscopy. Results from 7 PD patients, 11 age matched controls and 9 mitochondrial myopathy patients with proven complex I deficiency were obtained from finger flexor muscle at rest, during exercise and in recovery from exercise. In resting muscle, the patients with mitochondrial myopathy showed a low PCr/ATP ratio, a low phosphorylation potential, a high P(i)/PCr ratio and a high calculated free [ADP]. During exercise, stores of high energy phosphate were depleted more rapidly than normal, while in recovery, the concentration of phosphocreatine and free ADP returned to pre-exercise values more slowly than normal. In contrast, the patients with PD were not significantly different from normal for any of these variables, and no abnormality of muscle energetics was detected. Three of the PD patients also had mitochondrial function assessed biochemically in muscle biopsies. No respiratory chain defect was identified in any of these patients by polarography or enzyme analysis when compared with age-matched controls. These results suggest that skeletal muscle is not a suitable tissue for the investigation and identification of the biochemical basis of the nigral complex I deficiency in PD.

  4. Exercise-induced 31P-NMR metabolic response of human wrist flexor muscles during partial neuromuscular blockade.

    Science.gov (United States)

    Mizuno, M; Horn, A; Secher, N H; Quistorff, B

    1994-08-01

    The effects of a depolarizing (decamethonium, DECA) and a nondepolarizing neuromuscular blocking agent (vecuronium, VECU) on the phosphorus-31 nuclear magnetic resonance (31P-NMR)-detected metabolic response to muscle contractions were studied separately in six healthy untrained males. Subjects who showed splitting of the P(i) peak during graded rhythmic forearm exercise without the drugs were selected. It was found that both drugs abolished the P(i) peak splitting during exercise. Despite a similar reduction in phosphocreatine (PCr) during exercise with each drug, a smaller increase in P(i) was observed with DECA than with VECU (P VECU (6.79 +/- 0.11) (P VECU, respectively (P < 0.05). On the basis of the concept that depolarizing and nondepolarizing agents have a preferential effect on fast- and slow-twitch muscle fibers, respectively, the present results support the hypothesis that the NMR-observed splitting of the P(i) peak reflects the metabolic differences between the two major fiber types of human skeletal muscle.

  5. Quantitative 31P NMR analysis of solid wood offers an insight into the acetylation of its components.

    Science.gov (United States)

    Sadeghifar, Hasan; Dickerson, James P; Argyropoulos, Dimitris S

    2014-11-26

    As a solid substrate, wood and its components are almost invariably examined via spectroscopic or indirect methods of analysis. Unlike earlier approaches, in this effort we dissolve pulverized wood in ionic liquid and then directly derive its functional group contents by quantitative (31)P NMR. As such, this novel analytical methodology is thoroughly examined and an insight into the detailed way acetylation proceeds on solid wood and its components is provided as a function of wood density and within its various anatomical features. As anticipated, the efficiency of acetylation was found to be greater within low density wood than in high density wood. The lignin, the cellulose and the hemicelluloses of the low density wood was found to be acetylated nearly twice as fast with remarkable differences in their quantitative degree of acetylation amongst them. This direct analytical data validates the applied methodology and confirms, for the first time, that the order of acetylation in solid wood is lignin>hemicellulose>cellulose and no reactivity differences exist between early wood and late wood.

  6. 31P-saturation-transfer nuclear-magnetic-resonance measurements of phosphocreatine turnover in guinea-pig brain slices.

    Science.gov (United States)

    Morris, P G; Feeney, J; Cox, D W; Bachelard, H S

    1985-05-01

    The technique of 31P saturation-transfer n.m.r. was used to determine the forward and the reverse rate constants of creatine phosphotransferase in superfused guinea-pig cerebral tissues in vitro. The calculated forward rate constant of 0.22 +/- 0.03s-1 compared well with a previously reported value for rat brain in vivo [Shoubridge, Briggs & Radda (1982) FEBS Lett. 140, 288-292]. The reverse rate constant was found to be 0.55 +/- 0.10s-1. 3. By using concentrations of ATP and phosphocreatine estimated previously for this superfused preparation [Cox, Morris, Feeney & Bachelard (1983) Biochem. J. 212, 365-370], forward and reverse flux rates were calculated to be 0.68 and 0.72 mumol X s-1 X g-1 respectively. The concordance of forward and reverse fluxes contrasts with the situation observed in vitro in other tissues, and suggests that the creatine phosphotransferase reaction is at equilibrium under the conditions used here. 4. Lowering the concentration of glucose in the superfusing medium from 10mM to 0.5mM had no significant effect on phosphocreatine concentration or on the forward (ATP-generating) flux through creatine phosphotransferase. The results indicate that a normal phosphocreatine content in the presence of lowered glucose availability is reflected by an unchanged turnover rate.

  7. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  8. Double-echo gradient chemical shift MR imaging fails to differentiate minimal fat renal angiomyolipomas from other homogeneous solid renal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ferré, R., E-mail: kn638@yahoo.fr [Department of Radiology, Necker Hospital, 149 rue de Sèvres, 75730 Paris (France); Cornelis, F. [Department of Radiology, Pellegrin Hospital, Place Amélie Raba Léon, 33076 Bordeaux (France); Verkarre, V. [Department of Pathology, Necker Hospital, 149 rue de Sèvres, 75730 Paris (France); Eiss, D.; Correas, J.M. [Department of Radiology, Necker Hospital, 149 rue de Sèvres, 75730 Paris (France); Grenier, N. [Department of Radiology, Pellegrin Hospital, Place Amélie Raba Léon, 33076 Bordeaux (France); Hélénon, O. [Department of Radiology, Necker Hospital, 149 rue de Sèvres, 75730 Paris (France)

    2015-03-15

    Highlights: •Diagnosis of AMLs with minimal fat (mfAMLs) is still challenging with MRI. •Drop of signal on opposed-phase MR imaging is not specific of mfAMLs. •Double-echo gradient-echo sequences cannot accurately differentiate renal mfAMLs from other renal tumors. -- Abstract: Objectives: The purpose of this retrospective study was to evaluate the diagnostic performance of double-echo gradient chemical shift (GRE) magnetic resonance (MR) imaging for the differentiation of angiomyolipomas with minimal fat (mfAML) from other homogeneous solid renal tumors. Methods: Between 2005 and 2010 in two institutions, all histologically proven homogenous solid renal tumors imaged with computed tomography and MR imaging, including GRE sequences, have been retrospectively selected. A total of 118 patients (mean age: 61 years; range: 20–87) with 119 tumors were included. Two readers measured independently the signal intensity (SI) on GRE images and calculated SI index (SII) and tumor-to-spleen ratio (TSR) on in-phase and opposed-phase images. Intra- and interreader agreement was obtained. Cut-off values were derived from the receiver operating characteristic (ROC) curve analysis. Results: Twelve mfAMLs in 11 patients were identified (mean size: 2.8 cm; range: 1.2–3.5), and 107 non-AML tumors (3.2 cm; 1–7.8) in 107 patients. The intraobserver reproducibility of SII and TSR was excellent with an intraclass correlation coefficient equal to 0.99 [0.98–0.99]. The coefficient of correlation between the readers was 0.99. The mean values of TSR for mfAMLs and non-mfAMLs were −7.0 ± 22.8 versus −8.2 ± 21.2 for reader 1 and −6.7 ± 22.8 versus −8.4 ± 20.9 for reader 2 respectively. No significant difference was noticed between the two groups for SII (p = 0.98) and TSR (p = 0.86). Only 1 out of 12 mfAMLs and 11 of 107 non-AML tumors presented with a TSR inferior to −30% (p = 0.83). Conclusion: In a routine practice, GRE sequences cannot be a confident tool to

  9. 31P MR spectroscopic imaging in preoperative embolization therapy of meningiomas; Phosphor-31-MR-spektroskopische Bildgebung bei praeoperativer Embolisationstherapie von Meningeomen

    Energy Technology Data Exchange (ETDEWEB)

    Blankenhorn, M. [Psychiatrische Universitaetsklinik, Ulm (Germany). Abteilung III; Bachert, P.; Kaick, G. van [Deutsches Krebsforschungszentrum Heidelberg (Germany). Forschungsschwerpunkt Radiologische Diagnostik; Semmler, W. [Freie Univ. Berlin (Germany). Inst. fuer Diagnostikforschung; Ende, G. [Zentralinstitut fuer Seelische Gesundheit, Mannheim (Germany). NMR-Forschung in der Psychiatrie; Tronnier, V. [Neurochirurgische Klinik, Klinikum der Universitaet, Heidelberg (Germany); Sartor, K. [Neurologische Klinik, Klinikum der Universitaet, Heidelberg (Germany). Abt. Neuroradiologie

    1999-06-01

    Purpose: {sup 31}P MR spectroscopic imaging ({sup 31}P SI) was evaluated in a clinical study as a method for monitoring presurgical devascularization of meningiomas. The aim was to assess noninvasively metabolic alterations in tumor and in healthy brain tissue before and after embolization. Methods: Localized {sup 31}P MR spectra of the brain were obtained by means of 2D-SI (voxel size: 36 cm{sup 3}) using a 1,5-T whole-body MR tomograph. Results: Eleven of 19 patients with intracranial meningiomas examined in this study underwent preoperative embolization therapy; eight patients were examined before and after treatment. After embolization, alterations of pH and of the concentrations of high-energy phosphates (nucleoside-5`triphosphate=NTP, phosphocreatine=PCr), inorganic phosphate (P{sub i}), and membrane constituents were observed in the tumors. A tendency of [P{sub i}] increase and decrease of [NTP], [PCr], and pH predominated, which is explained by ischemic processes after tumor devascularization. Conclusion: {sup 31}P SI is applicable in clinical studies and detects alterations of phosphate metabolism in a meningioma after embolization. (orig.) [Deutsch] Ziel: Die {sup 31}P-MR-spektroskopische Bildgebung ({sup 31}P-SI) wurde im Rahmen der praeoperativen Embolisationstherapie von Patienten mit Meningeomen als Methode zur Therapieverlaufskontrolle klinisch geprueft. Ziel der Studie war die nichtinvasive Erfassung von Veraenderungen im Metabolismus der Tumoren vor und nach Embolisation im Vergleich zum gesunden Hirngewebe. Methoden: Lokalisierte {sup 31}P-MR-Spektren des Gehirns wurden mit 2D-SI (Voxelgroesse: 36 cm{sup 3}) an einem 1,5-T-Ganzkoerper-MR-Tomographen aufgenommen. Ergebnisse: Elf von insgesamt 19 untersuchten Patienten unterzogen sich einer praeoperativen Embolisation, bei acht Patienten konnte eine Verlaufskontrolle durchgefuehrt werden. Nach Embolisation wurden Veraenderungen des pH und der Konzentrationen von energiereichen Phosphaten (Nukleosid

  10. Determination of pKa values of tenoxicam from 1H NMR chemical shifts and of oxicams from electrophoretic mobilities (CZE) with the aid of programs SQUAD and HYPNMR.

    Science.gov (United States)

    Rodríguez-Barrientos, Damaris; Rojas-Hernández, Alberto; Gutiérrez, Atilano; Moya-Hernández, Rosario; Gómez-Balderas, Rodolfo; Ramírez-Silva, María Teresa

    2009-12-15

    In this work it is explained, by the first time, the application of programs SQUAD and HYPNMR to refine equilibrium constant values through the fit of electrophoretic mobilities determined by capillary zone electrophoresis experiments, due to the mathematical isomorphism of UV-vis absorptivity coefficients, NMR chemical shifts and electrophoretic mobilities as a function of pH. Then, the pK(a) values of tenoxicam in H(2)O/DMSO 1:4 (v/v) have been obtained from (1)H NMR chemical shifts, as well as of oxicams in aqueous solution from electrophoretic mobilities determined by CZE, at 25 degrees C. These values are in very good agreement with those reported by spectrophotometric and potentiometric measurements.

  11. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).

    Science.gov (United States)

    Huang, Yuegao; Coman, Daniel; Ali, Meser M; Hyder, Fahmeed

    2015-01-01

    Relaxivity-based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd(3+)) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the nonexchangeable or the exchangeable protons on the lanthanide complexes themselves. The nonexchangeable protons (e.g. -CHx, where 3 ≥ x ≥ 1) are detected using a three-dimensional chemical shift imaging method called biosensor imaging of redundant deviation in shifts (BIRDS), whereas the exchangeable protons (e.g. -OH or -NHy , where 2 ≥ y ≥ 1) are measured with chemical exchange saturation transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP(8-)) chelated with thulium (Tm(3+) ) and ytterbium (Yb(3+)). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e. 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP(5-) than with TmDOTA-4AmP(5-). In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging.

  12. Power Shift

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ "We are entering a new era of world history: the end of Western domination and the arrival of the Asian century. The question is: will Washington wake up to this reality?" This is the central premise of Kishore Mahbubani's provocative new book The New Asian Hemisphere: The Irresistible Shift of Global Power to the East.

  13. Separation of advanced from mild fibrosis in diffuse liver disease using {sup 31}P magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Noren, Bengt [Department of Radiology, Linkoeping University, SE-581 85 Linkoeping (Sweden); Dahlqvist, Olof [Department of Radiation Physics, Linkoeping University, SE-581 85 Linkoeping (Sweden); Center for Medical Image Science and Visualization (CMIV), Linkoeping University, SE-581 85 Linkoeping (Sweden); Lundberg, Peter [Department of Radiology, Linkoeping University, SE-581 85 Linkoeping (Sweden); Department of Radiation Physics, Linkoeping University, SE-581 85 Linkoeping (Sweden); Center for Medical Image Science and Visualization (CMIV), Linkoeping University, SE-581 85 Linkoeping (Sweden)], E-mail: Peter.Lundberg@imv.liu.se; Almer, Sven [Department of Gastroenterology and Hepatology, Linkoeping University, SE-581 85 Linkoeping (Sweden); Kechagias, Stergios [Department of Internal Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Ekstedt, Mattias [Department of Gastroenterology and Hepatology, Linkoeping University, SE-581 85 Linkoeping (Sweden); Franzen, Lennart [Medilab, SE-183 53 Taeby Sweden (Sweden); Wirell, Staffan [Department of Radiology, Linkoeping University, SE-581 85 Linkoeping (Sweden); Smedby, Orjan [Department of Radiology, Linkoeping University, SE-581 85 Linkoeping (Sweden); Center for Medical Image Science and Visualization (CMIV), Linkoeping University, SE-581 85 Linkoeping (Sweden)

    2008-05-15

    {sup 31}P-MRS using DRESS was used to compare absolute liver metabolite concentrations (PME, Pi, PDE, {gamma}ATP, {alpha}ATP, {beta}ATP) in two distinct groups of patients with chronic diffuse liver disorders, one group with steatosis (NAFLD) and none to moderate inflammation (n = 13), and one group with severe fibrosis or cirrhosis (n = 16). All patients underwent liver biopsy and extensive biochemical evaluation. A control group (n = 13) was also included. Absolute concentrations and the anabolic charge, AC = {l_brace}PME{r_brace}/({l_brace}PME{r_brace} + {l_brace}PDE{r_brace}), were calculated. Comparing the control and cirrhosis groups, lower concentrations of PDE (p = 0.025) and a higher AC (p < 0.001) were found in the cirrhosis group. Also compared to the NAFLD group, the cirrhosis group had lower concentrations of PDE (p = 0.01) and a higher AC (p = 0.009). No significant differences were found between the control and NAFLD group. When the MRS findings were related to the fibrosis stage obtained at biopsy, there were significant differences in PDE between stage F0-1 and stage F4 and in AC between stage F0-1 and stage F2-3. Using a PDE concentration of 10.5 mM as a cut-off value to discriminate between mild, F0-2, and advanced, F3-4, fibrosis the sensitivity and specificity were 81% and 69%, respectively. An AC cut-off value of 0.27 showed a sensitivity of 93% and a specificity of 54%. In conclusion, the results suggest that PDE is a marker of liver fibrosis, and that AC is a potentially clinically useful parameter in discriminating mild fibrosis from advanced.

  14. Partial trisomy 2q due to a maternal balanced translocation t(2;22) (q31;p12)

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, L.S.; Bleiman, M.; Punnett, H.H. [St. Christopher`s Hospital for Children, Philadelphia, PA (United States)] [and others

    1994-09-01

    Features consistent among reported patients with 2q duplications due to familial translocations or de novo duplications include pre- and postnatal growth failure, ocular defects such as congenital glaucoma, cardiac defects, micrognathia, urogenital defects, renal defects, connective tissue laxity, neurologic defects, and dermatologic abnormalities. Genotype/phenotype correlations of patients with trisomy 2q due to familial translocations are complicated by the presence of the deletions of the other chromosome involved. We have had the opportunity to observe `pure` trisomy 2q31-qter resulting from adjacent-1 segregation from 46,XX,t(2;22)(q31;p12) in a carrier mother with apparent loss of the 22 NOR region. He was the 2453 gm product of a gestation complicated by gestational diabetes to a 29-year-old G1 P0 mother and a 30-year-old father. At birth, he was noted to have hypotonia, micrognathia, microphthalmia, left cryptorchidism, hypospadias, bilateral clinodactyly of the fifth digits, mild hyperextensibility of the joints, dry skin disorder, and bilateral hydronephrosis by ultrasound. He was treated for hypoglycemia in the nursery and had a vesicostomy at two months for vesicoureteral reflux. A hearing test at two months found moderate hearing loss in the right ear and mild to moderate hearing loss in the left ear. At 3 months he had surgery for a PDA and bilateral glaucoma and was treated for periods of hypothermia and type IV renal tubular acidosis. This patient and others with unbalanced translocations involving the NOR region of an acrocentric chromosome allow for genotype/phenotype correlation of the `pure` trisomic region.

  15. Creatine and cyclocreatine treatment of human colon adenocarcinoma xenografts: 31P and 1H magnetic resonance spectroscopic studies

    Science.gov (United States)

    Kristensen, C A; Askenasy, N; Jain, R K; Koretsky, A P

    1999-01-01

    Creatine (Cr) and cyclocreatine (cyCr) have been shown to inhibit the growth of a variety of human and murine tumours. The purpose of this study was to evaluate the anti-tumour effect of these molecules in relation to drug accumulation, energy metabolism, tumour water accumulation and toxicity. Nude mice carrying a human colon adenocarcinoma (LS174T) with a creatine kinase (CK) activity of 2.12 units mg−1 protein were fed Cr (2.5% or 5%) or cyCr (0.025%, 0.1% or 0.5%) for 2 weeks and compared with controls fed standard diet. Cr concentrations of 2.5% and 5% significantly inhibited tumour growth, as did 0.1% and 0.5% cyCr. In vivo 31P magnetic resonance spectroscopy (MRS) after 2 weeks of treatment showed an increase in [phosphocreatine (PCr)+phosphocyclocreatine (PcyCr)]/nucleoside triphosphate (NTP) with increasing concentrations of dietary Cr and cyCr, without changes in absolute NTP contents. The antiproliferative effect of the substrates of CK was not related to energy deficiency but was associated with acidosis. Intratumoral substrate concentrations (measured by 1H-MRS) of 4.8 μmol g−1 wet weight Cr (mice fed 2.5% Cr) and 6.2 μmol g−1 cyCr (mice fed 0.1% cyCr) induced a similar decrease in growth rate, indicating that both substrates were equally potent in tumour growth inhibition. The best correlant of growth inhibition was the total Cr or (cyCr+Cr) concentrations in the tissue. In vivo, these agents did not induce excessive water accumulation and had no systemic effects on the mice (weight loss, hypoglycaemia) that may have caused growth inhibition. © 1999 Cancer Research Campaign PMID:9888469

  16. In vivo measurement of intracellular pH in human brain during different tensions of carbon dioxide in arterial blood. A 31P-NMR study

    DEFF Research Database (Denmark)

    Jensen, K E; Thomsen, C; Henriksen, O

    1988-01-01

    The effect of changes in carbon dioxide tension in arterial blood upon intracellular pH in brain tissue was studied in seven healthy volunteers, aged 22-45 years. The pH changes were monitored by use of 31P nuclear magnetic resonance spectroscopy, performed on a whole-body 1.5 Tesla Siemens imaging...

  17. Prediction of (195) Pt NMR chemical shifts of dissolution products of H2 [Pt(OH)6 ] in nitric acid solutions by DFT methods: how important are the counter-ion effects?

    Science.gov (United States)

    Tsipis, Athanassios C; Karapetsas, Ioannis N

    2016-08-01

    (195) Pt NMR chemical shifts of octahedral Pt(IV) complexes with general formula [Pt(NO3 )n (OH)6 - n ](2-) , [Pt(NO3 )n (OH2 )6 - n ](4 - n) (n = 1-6), and [Pt(NO3 )6 - n  - m (OH)m (OH2 )n ](-2 + n - m) formed by dissolution of platinic acid, H2 [Pt(OH)6 ], in aqueous nitric acid solutions are calculated employing density functional theory methods. Particularly, the gauge-including atomic orbitals (GIAO)-PBE0/segmented all-electron relativistically contracted-zeroth-order regular approximation (SARC-ZORA)(Pt) ∪ 6-31G(d,p)(E)/Polarizable Continuum Model computational protocol performs the best. Excellent second-order polynomial plots of δcalcd ((195) Pt) versus δexptl ((195) Pt) chemical shifts and δcalcd ((195) Pt) versus the natural atomic charge QPt are obtained. Despite of neglecting relativistic and spin orbit effects the good agreement of the calculated δ (195) Pt chemical shifts with experimental values is probably because of the fact that the contribution of relativistic and spin orbit effects to computed σ(iso) (195) Pt magnetic shielding of Pt(IV) coordination compounds is effectively cancelled in the computed δ (195) Pt chemical shifts, because the relativistic corrections are expected to be similar in the complexes and the proper reference standard used. To probe the counter-ion effects on the (195) Pt NMR chemical shifts of the anionic [Pt(NO3 )n (OH)6 - n ](2-) and cationic [Pt(NO3 )n (OH2 )6 - n ](4 - n) (n = 0-3) complexes we calculated the (195) Pt NMR chemical shifts of the neutral (PyH)2 [Pt(NO3 )n (OH)6 - n ] (n = 1-6; PyH = pyridinium cation, C5 H5 NH(+) ) and [Pt(NO3 )n (H2 O)6 - n ](NO3 )4 - n (n = 0-3) complexes. Counter-anion effects are very important for the accurate prediction of the (195) Pt NMR chemical shifts of the cationic [Pt(NO3 )n (OH2 )6 - n ](4 - n) complexes, while counter-cation effects are less important for the anionic [Pt(NO3 )n (OH)6

  18. Blood flow and muscle bio-energetics by 31P-nuclear magnetic resonance after local cold acclimation.

    Science.gov (United States)

    Savourey, G; Clerc, L; Vallerand, A L; Leftheriotis, G; Mehier, H; Bittel, J H

    1992-01-01

    To clarify the origin of local cold adaptation and to define precisely its influence on muscle bio-energetics during local exercise, five subjects were subjected to repeated 5 degrees C cold water immersion of the right hand and forearm. The first aim of our investigation was therefore carried out by measuring local skin temperatures and peripheral blood flow during a cold hand test (5 degrees C, 5 min) followed by a 10-min recovery period. The 31P by nuclear magnetic resonance (31PNMR) muscle bio-energetic changes, indicating possible heat production changes, were measured during the recovery period. The second aim of our investigation was carried out by measuring 31PNMR muscle bioenergetics during handgrip exercise (10% of the maximal voluntary contraction for 5 min followed by a 10-min recovery period) performed both at a comfortable ambient temperature (22 degrees C; E) and after a cold hand test (EC), before and after local cold adaptation. Local cold adaptation, confirmed by warmer skin temperatures of the extremities (+30%, P less than 0.05), was related more to an increased peripheral blood flow, as shown by the smaller decrease in systolic peak [-245 (SEM 30) Hz vs -382 (SEM 95) Hz, P less than 0.05] than to a change in local heat production, because muscle bioenergetics did not vary. Acute local cold immersion decreased the inorganic phosphate:phosphocreatine (PC) ratio during EC compared to E [+0.006 (SEM 0.010) vs +0.078 (SEM 0.002) before acclimation and +0.029 (SEM 0.002) vs +0.090 (SEM 0.002) after acclimation respectively, P less than 0.05] without significant change in the PC:beta-adenosine triphosphate ratio and pH. Local adaptation did not modify these results statistically. The recovery of PC during E increased after acclimation [9.0 (SEM 0.2) min vs 3.0 (SEM 0.4) min, P less than 0.05]. These results suggested that local cold adaptation is related more to peripheral blood flow changes than to increased metabolic heat production in the muscle.

  19. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; Liu, J.; Macias, B.; Martin, D. S.; Minkoff, L.; Ploutz-Snyder, R.; Ribeiro, L. C.; Sargsyan, A.; Smith, S. M.

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  20. Site-specific protein backbone and side-chain NMR chemical shift and relaxation analysis of human vinexin SH3 domain using a genetically encoded {sup 15}N/{sup 19}F-labeled unnatural amino acid

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Pan [National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xi, Zhaoyong; Wang, Hu [School of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, Chaowei [National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xiong, Ying, E-mail: yxiong73@ustc.edu.cn [School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Tian, Changlin, E-mail: cltian@ustc.edu.cn [National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-11-19

    Research highlights: {yields} Chemical synthesis of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine. {yields} Site-specific incorporation of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine to SH3. {yields} Site-specific backbone and side chain chemical shift and relaxation analysis. {yields} Different internal motions at different sites of SH3 domain upon ligand binding. -- Abstract: SH3 is a ubiquitous domain mediating protein-protein interactions. Recent solution NMR structural studies have shown that a proline-rich peptide is capable of binding to the human vinexin SH3 domain. Here, an orthogonal amber tRNA/tRNA synthetase pair for {sup 15}N/{sup 19}F-trifluoromethyl-phenylalanine ({sup 15}N/{sup 19}F-tfmF) has been applied to achieve site-specific labeling of SH3 at three different sites. One-dimensional solution NMR spectra of backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F were obtained for SH3 with three different site-specific labels. Site-specific backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F chemical shift and relaxation analysis of SH3 in the absence or presence of a peptide ligand demonstrated different internal motions upon ligand binding at the three different sites. This site-specific NMR analysis might be very useful for studying large-sized proteins or protein complexes.

  1. Using solid (13)C NMR coupled with solution (31)P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China.

    Science.gov (United States)

    Liu, Shasha; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Wang, Hao; He, Zhongqi; Guo, Wenjing; Song, Fanhao; Giesy, John P

    2017-01-01

    Forms and labilities of plant-derived organic matters (OMs) including carbon (C) and phosphorus (P) were fundamental for understanding their release, degradation and environmental behaviour in lake ecosystems. Thus, solid (13)C and solution (31)P nuclear magnetic resonance (NMR) spectroscopy were used to characterize biomass of six aquatic plants in Tai Lake, China. The results showed that carbohydrates (61.2% of the total C) were predominant C functional group in the solid (13)C NMR spectra of plant biomass, which may indicate high lability and bioavailability of aquatic plants-derived organic matter in lakes. There was 72.6-103.7% of the total P in aquatic plant biomass extracted by NaOH-EDTA extracts. Solution (31)P NMR analysis of these NaOH-EDTA extracts further identified several molecular species of P including orthophosphate (50.1%), orthophosphate monoesters (46.8%), DNA (1.6%) and pyrophosphate (1.4%). Orthophosphate monoesters included β-glycerophosphate (17.7%), hydrolysis products of RNA (11.7%), α-glycerophosphate (9.2%) and other unknown monoesters (2.1%). Additionally, phytate, the major form of organic P in many lake sediments, was detected in floating plant water poppy. These inorganic P (e.g. orthophosphate and pyrophosphate) and organic P (e.g. diester and its degradation products) identified in plant biomass were all labile and bioavailable P, which would play an important role in recycling of P in lakes. These results increased knowledge of chemical composition and bioavailability of OMs derived from aquatic plants in lakes.

  2. A compilation of information on the {sup 31}P(p,{alpha}){sup 28}Si reaction and properties of excited levels in the compound nucleus {sup 32}S

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.E.; Smith, D.L. [Argonne National Lab., IL (United States). Technology Development Div.

    1997-11-01

    This report documents a survey of the literature, and provides a compilation of data contained therein, for the {sup 31}P(p,{alpha}){sup 28}Si reaction. Attention is paid here to resonance states in the compound-nuclear system {sup 32}S formed by {sup 31}P + p, with emphasis on the alpha-particle decay channels, {sup 28}Si + {alpha} which populate specific levels in {sup 28}Si. The energy region near the proton separation energy for {sup 32}S is especially important in this context for applications in nuclear astrophysics. Properties of the excited states in {sup 28}Si are also considered. Summaries of all the located references are provided and numerical data contained in them are compiled in EXFOR format where applicable.

  3. The use of {sup 1}H-{sup 31}P GHMBC and covariance NMR to unambiguously determine phosphate ester linkages in complex polysaccharide mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Zartler, Edward R., E-mail: teddyzartler@gmail.com [Merck Research Labs, Merck and Co., Vaccine Analytical Development (United States); Martin, Gary E. [Merck Research Labs, Merck and Co., Structure Elucidation Group (United States)

    2011-11-15

    Poly- and oligo-saccharides are commonly employed as antigens in many vaccines. These antigens contain phosphoester structural elements that are crucial to the antigenicity, and hence the effectiveness of the vaccine. Nuclear Magnetic Resonance (NMR) is a powerful tool for the site-specific identification of phosphoesters in saccharides. We describe here two advances in the characterization of phosphoesters in saccharides: (1) the use of {sup 1}H-{sup 31}P GHMBC to determine the site-specific identity of phosphoester moieties in heterogeneous mixtures and (2) the use of Unsymmetrical/Generalized Indirect Covariance (U/GIC) to calculate a carbon-phosphorus 2D spectrum. The sensitivity of the {sup 1}H-{sup 31}P GHMBC is far greater than the 'standard' {sup 1}H-{sup 31}P GHSQC and allows long-range {sup 3-5}J{sub HP} couplings to be readily detected. This is the first example to be reported of using U/GIC to calculate a carbon-phosphorus spectrum. The U/GIC processing affords, in many cases, a fivefold to tenfold or greater increase in signal-to-noise ratios in the calculated spectrum. When coupled with the high sensitivity of {sup 1}H-{sup 31}P HMBC, U/GIC processing allows the complete and unambiguous assignments of phosphoester moieties present in heterogeneous samples at levels of {approx}5% (or less) of the total sample, expanding the breadth of samples that NMR can be used to analyze. This new analytical technique is generally applicable to any NMR-observable phosphoester.

  4. Value of dynamic 31p magnetic resonance spectroscopy technique in in vivo assessment of the skeletal muscle mitochondrial function in type 2 diabetes

    Institute of Scientific and Technical Information of China (English)

    WU Fei-yun; TU Hui-juan; QIN Bin; CHEN Ting; XU Hua-feng; QI Jing; WANG De-hang

    2012-01-01

    Background Phosphorous magnetic resonance spectroscopy (31p-MRS) has been successfully applied to study intracellular membrane compounds and high-energy phosphate metabolism.This study aimed to evaluate the capability of dynamic 31p-MRS for assessing energy metabolism and mitochondrial function in skeletal muscle from type 2 diabetic patients.Methods Dynamic 31p-MRS was performed on 22 patients with type 2 diabetes and 26 healthy volunteers.Spectra were acquired from quadriceps muscle while subjects were in a state of rest,at exercise and during recovery.The peak areas of inorganic phosphate (Pi),phosphocreatine (PCr),and adenosine triphosphate (ATP) were measured.The concentration of adenosine diphosphate (ADP) and the intracellular pH value were calculated from the biochemistry reaction equilibrium.The time constant and recovery rates of Pi,PCr,and ADP were analyzed using exponential curve fitting.Results As compared to healthy controls,type 2 diabetes patients had significantly lower skeletal muscle concentrations of Pi,PCr and β-ATP,and higher levels of ADP and Pi/PCr.During exercise,diabetics experienced a significant Pi peak increase and PCr peak decrease,and once the exercise was completed both Pi and PCr peaks returned to resting levels.Quantitatively,the mean recovery rates of Pi and PCr in diabetes patients were (10.74±1.26) mmol/s and (4.74±2.36) mmol/s,respectively,which was significantly higher than in controls.Conclusions Non-invasive quantitative 31P-MRS is able to detect energy metabolism inefficiency and mitochondrial function impairment in skeletal muscle of type 2 diabetics.

  5. Assessment of preparation methods for organic phosphorus analysis in phosphorus-polluted Fe/Al-rich Haihe river sediments using solution 31P-NMR.

    Directory of Open Access Journals (Sweden)

    Wenqiang Zhang

    Full Text Available Fe/Al-rich river sediments that were highly polluted with phosphorus (P were used in tests to determine the optimum preparation techniques for measuring organic P (Po using solution (31P nuclear magnetic resonance spectroscopy ((31P-NMR. The optimum pre-treatment, extraction time, sediment to solution ratio and sodium hydroxide-ethylenediaminetetraacetic acid (NaOH-EDTA extractant solution composition were determined. The total P and Po recovery rates were higher from freeze- and air-dried samples than from fresh samples. An extraction time of 16 h was adequate for extracting Po, and a shorter or longer extraction time led to lower recoveries of total P and Po, or led to the degradation of Po. An ideal P recovery rate and good-quality NMR spectra were obtained at a sediment:solution ratio of 1:10, showing that this ratio is ideal for extracting Po. An extractant solution of 0.25 M NaOH and 50 mM EDTA was found to be more appropriate than either NaOH on its own, or a more concentrated NaOH-EDTA mixture for (31P-NMR analysis, as this combination minimized interference from paramagnetic ions and was appropriate for the detected range of Po concentrations. The most appropriate preparation method for Po analysis, therefore, was to extract the freeze-dried and ground sediment sample with a 0.25 M NaOH and 50 mM EDTA solution at a sediment:solution ratio of 1:10, for 16 h, by shaking. As lyophilization of the NaOH-EDTA extracts proved to be an optimal pre-concentration method for Po analysis in the river sediment, the extract was lyophilized as soon as possible, and analyzed by (31P-NMR.

  6. {sup 31}P magnetic resonance spectroscopy to measure in vivo cardiac energetics in normal myocardium and hypertrophic cardiomyopathy: Experiences at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Shivu, Ganesh Nallur [Department of Cardiovascular Medicine, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT (United Kingdom)], E-mail: drgani23@gmail.com; Abozguia, Khalid; Phan, Thanh Trung; Ahmed, Ibrar [Department of Cardiovascular Medicine, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT (United Kingdom); Henning, Anke [Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, CH-8092, Zurich CH ETZ F97 (Switzerland); Frenneaux, Michael [Department of Cardiovascular Medicine, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2010-02-15

    Background: {sup 31}P magnetic resonance spectroscopy (MRS) allows measurement of in vivo high-energy phosphate kinetics in the myocardium. While traditionally {sup 31}P cardiac spectroscopy is performed at 1.5 T, cardiac MRS at higher field strength can theoretically increase signal to noise ratio (SNR) and spectral resolution therefore improving sensitivity and specificity of the cardiac spectra. The reproducibility and feasibility of performing cardiac spectroscopy at 3 T is presented here in this study in healthy volunteers and patients with hypertrophic cardiomyopathy. Methods: Cardiac spectroscopy was performed using a Phillips 3T Achieva scanner in 37 healthy volunteers and 26 patients with hypertrophic cardiomyopathy (HCM) to test the feasibility of the protocol. To test the reproducibility a single volunteer was scanned eight times on separate occasions. A single voxel {sup 31}P MRS was performed using Image Selected In vivo Spectroscopy (ISIS) volume localization. Results: The mean phosphocreatine/adenosine triphosphate (PCr/ATP) ratio of the eight measurements performed on one individual was 2.11 {+-} 0.25. Bland Altman plots showed a variance of 12% in the measurement of PCr/ATP ratios. The PCr/ATP ratio was significantly reduced in HCM patients compared to controls, 1.42 {+-} 0.51 and 2.11 {+-} 0.57, respectively, P < 0.0001. (All results are expressed as mean {+-} standard deviation). Conclusions: Here we demonstrate that cardiac {sup 31}P MRS at 3 T is a reliable method of measuring in vivo high-energy phosphate kinetics in the myocardium for clinical studies and diagnostics. Based on our data an impairment of cardiac energetic state in patients with hypertrophic cardiomyopathy is indisputable.

  7. Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p.

    Science.gov (United States)

    Jaspersen, Sue L; Giddings, Thomas H; Winey, Mark

    2002-12-23

    Accurate duplication of the Saccharomyces cerevisiae spindle pole body (SPB) is required for formation of a bipolar mitotic spindle. We identified mutants in SPB assembly by screening a temperature-sensitive collection of yeast for defects in SPB incorporation of a fluorescently marked integral SPB component, Spc42p. One SPB assembly mutant contained a mutation in a previously uncharacterized open reading frame that we call MPS3 (for monopolar spindle). mps3-1 mutants arrest in mitosis with monopolar spindles at the nonpermissive temperature, suggesting a defect in SPB duplication. Execution point experiments revealed that MPS3 function is required for the first step of SPB duplication in G1. Like cells containing mutations in two other genes required for this step of SPB duplication (CDC31 and KAR1), mps3-1 mutants arrest with a single unduplicated SPB that lacks an associated half-bridge. MPS3 encodes an essential integral membrane protein that localizes to the SPB half-bridge. Genetic interactions between MPS3 and CDC31 and binding of Cdc31p to Mps3p in vitro, as well as the fact that Cdc31p localization to the SPB is partially dependent on Mps3p function, suggest that one function for Mps3p during SPB duplication is to recruit Cdc31p, the yeast centrin homologue, to the half-bridge.

  8. Vacuolar glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, South America, and Europe: a 31P NMR investigation.

    Science.gov (United States)

    Ge, Xia; d'Avignon, D André; Ackerman, Joseph J H; Collavo, Alberto; Sattin, Maurizio; Ostrander, Elizabeth L; Hall, Erin L; Sammons, R Douglas; Preston, Christopher

    2012-02-01

    Lolium spp., ryegrass, variants from Australia, Brazil, Chile, and Italy showing differing levels of glyphosate resistance were examined by (31)P NMR. Extents of glyphosate (i) resistance (LD(50)), (ii) inhibition of 5-enopyruvyl-shikimate-3-phosphate synthase (EPSPS) activity (IC(50)), and (iii) translocation were quantified for glyphosate-resistant (GR) and glyphosate-sensitive (GS) Lolium multiflorum Lam. variants from Chile and Brazil. For comparison, LD(50) and IC(50) data for Lolium rigidum Gaudin variants from Italy were also analyzed. All variants showed similar cellular uptake of glyphosate by (31)P NMR. All GR variants showed glyphosate sequestration within the cell vacuole, whereas there was minimal or no vacuole sequestration in the GS variants. The extent of vacuole sequestration correlated qualitatively with the level of resistance. Previous (31)P NMR studies of horseweed ( Conyza canadensis (L.) Cronquist) revealed that glyphosate sequestration imparted glyphosate resistance. Data presented herein suggest that glyphosate vacuolar sequestration is strongly contributing, if not the major contributing, resistance mechanism in ryegrass as well.

  9. In vivo 31P NMR OSIRIS of bioenergetic changes in rabbit kidneys during and after ischaemia: effect of pretreatment with an indeno-indole compound.

    Science.gov (United States)

    Sørensen, V; Jonsson, O; Pettersson, S; Scherstén, T; Soussi, B

    1998-04-01

    Changes in energy phosphates of rabbit kidneys subjected to ischaemia-reperfusion have been measured in vivo with volume selective 31P NMR spectroscopy. The effects of pretreatment with a new lipid peroxidation inhibitor (indeno-indol derivate--code name H290/51) on the bioenergetic changes were analysed. The left kidney was moved to a subcutaneous pocket to facilitate exact positioning over the surface coil. A 1H NMR image was acquired and a 3.5-mL cube selected for 31P NMR spectra. 31P NMR spectra were recorded before occlusion of the left renal artery, during 1 h of ischaemia and 2 hours of reperfusion. Ischaemia induced drastic changes in the levels of inorganic phosphates and ATP as well as intracellular acidosis. A normalization was observed during reperfusion. Two hours after reperfusion significantly higher values for beta-ATP/Pi and intracellular pH were recorded in the animals pretreated with H290/51. The present technique allows quantitative analyses of changes in kidney bioenergetics in vivo during different experimental conditions. The importance of ischaemia-reperfusion induced lipid peroxidation for mitochondrial function is emphasized.

  10. Plakilactones G and H from a marine sponge. Stereochemical determination of highly flexible systems by quantitative NMR-derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts

    Directory of Open Access Journals (Sweden)

    Simone Di Micco

    2013-12-01

    Full Text Available In this paper the stereostructural investigation of two new oxygenated polyketides, plakilactones G and H, isolated from the marine sponge Plakinastrella mamillaris collected at Fiji Islands, is reported. The stereostructural studies began on plakilactone H by applying an integrated approach of the NOE-based protocol and quantum mechanical calculations of 13C chemical shifts. In particular, plakilactone H was used as a template to extend the application of NMR-derived interproton distances to a highly flexible molecular system with simultaneous assignment of four non-contiguous stereocenters. Chemical derivatization and quantum mechanical calculations of 13C on plakilactone G along with a plausible biogenetic interconversion between plakilactone G and plakilactone H allowed us to determine the absolute configuration in this two new oxygenated polyketides.

  11. 4D Non-uniformly sampled HCBCACON and {sup 1}J(NC{sup {alpha}})-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Novacek, Jiri [Masaryk University, Faculty of Science, NCBR, and CEITEC (Czech Republic); Haba, Noam Y.; Chill, Jordan H. [Bar Ilan University, Department of Chemistry (Israel); Zidek, Lukas, E-mail: lzidek@chemi.muni.cz; Sklenar, Vladimir [Masaryk University, Faculty of Science, NCBR, and CEITEC (Czech Republic)

    2012-06-15

    A pair of 4D NMR experiments for the backbone assignment of disordered proteins is presented. The experiments exploit {sup 13}C direct detection and non-uniform sampling of the indirectly detected dimensions, and provide correlations of the aliphatic proton (H{sup {alpha}}, and H{sup {beta}}) and carbon (C{sup {alpha}}, C{sup {beta}}) resonance frequencies to the protein backbone. Thus, all the chemical shifts regularly used to map the transient secondary structure motifs in the intrinsically disordered proteins (H{sup {alpha}}, C{sup {alpha}}, C{sup {beta}}, C Prime , and N) can be extracted from each spectrum. Compared to the commonly used assignment strategy based on matching the C{sup {alpha}} and C{sup {beta}} chemical shifts, inclusion of the H{sup {alpha}} and H{sup {beta}} provides up to three extra resonance frequencies that decrease the chance of ambiguous assignment. The experiments were successfully applied to the original assignment of a 12.8 kDa intrinsically disordered protein having a high content of proline residues (26 %) in the sequence.

  12. Influence of Chemical Effect on the Kβ/Kα Intensity Ratios and Kβ Energy Shift of Co, Ni, Cu, and Zn Complexes

    Institute of Scientific and Technical Information of China (English)

    G. Apaydma, V. Ayhkg; Z. Biyiklioglu; E. Tirasoglu; H. Kantekin

    2008-01-01

    Chemical effects on the Kβ/Kα intensity ratios and ΔE energy differences for Co, Ni, Cu, and Zn complexes were investigated. The samples were excited by 59.5 keV γ-rays from a 241 Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. We observed the effects of different ligands on the Kβ/Kα intensity ratios and ΔE energy differences for Co, Ni, Cu, and Zn complexes. We tried to investigate chemical effects on central atoms using the behaviors of different ligands in these complexes. The experimental values of Kβ/Kα were compared with the theoretical and other experimental values of pure Co, Ni, Cu, and Zn.

  13. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling.

    Science.gov (United States)

    Barabás, Orsolya; Németh, Veronika; Bodor, Andrea; Perczel, András; Rosta, Edina; Kele, Zoltán; Zagyva, Imre; Szabadka, Zoltán; Grolmusz, Vince I; Wilmanns, Matthias; Vértessy, Beáta G

    2013-12-01

    Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason-Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy ((31)P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme-product complex structure.

  14. Changes in energy metabolism in the quadriceps femoris after a single bout of acute exhaustive swimming in rats: a 31p-magnetic resonance spectroscopy study

    Institute of Scientific and Technical Information of China (English)

    Sun Yingwei; Pan Shinong; Chen Zhian; Zhao Heng; Ma Ying; Zheng Liqiang; Li Qi

    2014-01-01

    Background Little is known about the value of 31P-magnetic resonance spectroscopy (31P-MRS) in in vivo assessment of exhaustive exercise-induced injury in skeletal muscle.We aimed to evaluate the value of a 31P-MRS study using the quadriceps femoris after a single bout of acute exhaustive swimming in rats,and the correlation between 31P-MRS and histological changes.Methods Sixty male Sprague-Dawley rats were randomly assigned to control,half-exhaustive,and exhaustive exercise groups.31P-MRS of the quadriceps femoris of the right lower limb was performed immediately after swimming exercise to detect Pi,PCr,and β-ATP.The Pi/PCr,Pi/β-ATP,PCr/β-ATP,and PCr/(PCr+Pi) were calculated and pH measured.Areas under the receiver operating characteristic curve (AUCs) were calculated to evaluate the diagnostic potential of 31P-MRS in identifying and distinguishing the three groups.HE staining,electron microscopy and desmin immunostaining after imaging of the muscle were used as a reference standard.The correlation between 31P-MRS and the mean absorbance (A value) of desmin staining were analyzed with the Pearson correlation test.Results Pi,PCr,Pi/PCr,and PCr/(PCr+Pi) showed statistically significant intergroup differences (P<0.05).AUCs of Pi,PCr,Pi/PCr,and PCr/(PCr+Pi) were 0.905,0.848,0.930,and 0.930 for the control and half-exhaustive groups,while sensitivity and specificity were 90%/85%,95%/55%,95%/80%,and 90%/85%,respectively.The AUCs of Pi,PCr,Pi/PCr and PCr/(PCr+Pi) were 0.995,0.980,1.000,and 1.000 for the control and exhaustive groups,while sensitivity and specificity were 95%/90%,100%/90%,100%/95%,and 100%/95%,respectively.The AUCs of Pi,PCr,Pi/PCr,and PCr/(PCr+Pi) were 0.735,0.865,0.903,and 0.903 for the half-exhaustive and exhaustive groups,while sensitivity and specificity were 80%/60%,90%/75%,95%/65%,and 95%/70%,respectively.In the half-exhaustive group,some muscle fibers exhibited edema in HE staining,and the

  15. Synthesis, antimicrobial evaluation and theoretical prediction of NMR chemical shifts of thiazole and selenazole derivatives with high antifungal activity against Candida spp.

    Science.gov (United States)

    Łączkowski, Krzysztof Z.; Motylewska, Katarzyna; Baranowska-Łączkowska, Angelika; Biernasiuk, Anna; Misiura, Konrad; Malm, Anna; Fernández, Berta

    2016-03-01

    Synthesis and investigation of antimicrobial activities of novel thiazoles and selenazoles is presented. Their structures were determined using NMR, FAB(+)-MS, HRMS and elemental analyses. To support the experiment, theoretical calculations of the 1H NMR shifts were carried out for representative systems within the DFT B3LYP/6-311++G** approximation which additionally confirmed the structure of investigated compounds. Among the derivatives, compounds 4b, 4h, 4j and 4l had very strong activity against reference strains of Candida albicans ATCC and Candida parapsilosis ATCC 22019 with MIC = 0.49-7.81 μg/ml. In the case of compounds 4b, 4c, 4h - 4j and 4l, the activity was very strong against of Candida spp. isolated from clinical materials, i.e. C. albicans, Candida krusei, Candida inconspicua, Candida famata, Candida lusitaniae, Candida sake, C. parapsilosis and Candida dubliniensis with MIC = 0.24-15.62 μg/ml. The activity of several of these was similar to the activity of commonly used antifungal agent fluconazole. Additionally, compounds 4m - 4s were found to be active against Gram-positive bacteria, both pathogenic staphylococci Staphylococcus aureus ATCC with MIC = 31.25-125 μg/ml and opportunistic bacteria, such as Staphylococcus epidermidis ATCC 12228 and Micrococcus luteus ATCC 10240 with MIC = 7.81-31.25 μg/ml.

  16. Early Detection of Myocardial Bioenergetic Deficits: A 9.4 Tesla Complete Non Invasive 31P MR Spectroscopy Study in Mice with Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Weina Cui

    Full Text Available Duchenne muscular dystrophy (DMD is the most common fatal form of muscular dystrophy characterized by striated muscle wasting and dysfunction. Patients with DMD have a very high incidence of heart failure, which is increasingly the cause of death in DMD patients. We hypothesize that in the in vivo system, the dystrophic cardiac muscle displays bioenergetic deficits prior to any functional or structural deficits. To address this we developed a complete non invasive 31P magnetic resonance spectroscopy (31P MRS approach to measure myocardial bioenergetics in the heart in vivo.Six control and nine mdx mice at 5 months of age were used for the study. A standard 3D -Image Selected In vivo Spectroscopy (3D-ISIS sequence was used to provide complete gradient controlled three-dimensional localization for heart 31P MRS. These studies demonstrated dystrophic hearts have a significant reduction in PCr/ATP ratio compare to normal (1.59±0.13 vs 2.37±0.25, p<0.05.Our present study provides the direct evidence of significant cardiac bioenergetic deficits in the in vivo dystrophic mouse. These data suggest that energetic defects precede the development of significant hemodynamic or structural changes. The methods provide a clinically relevant approach to use myocardial energetics as an early marker of disease in the dystrophic heart. The new method in detecting the in vivo bioenergetics abnormality as an early non-invasive marker of emerging dystrophic cardiomyopathy is critical in management of patients with DMD, and optimized therapies aimed at slowing or reversing the cardiomyopathy.

  17. In vivo (1)H MRS and (31)P MRSI of the response to cyclocreatine in transgenic mouse liver expressing creatine kinase.

    Science.gov (United States)

    Cui, Min-Hui; Jayalakshmi, Kamaiah; Liu, Laibin; Guha, Chandan; Branch, Craig A

    2015-12-01

    Hepatocyte transplantation has been explored as a therapeutic alternative to liver transplantation, but a means to monitor the success of the procedure is lacking. Published findings support the use of in vivo (31)P MRSI of creatine kinase (CK)-expressing hepatocytes to monitor proliferation of implanted hepatocytes. Phosphocreatine tissue level depends upon creatine (Cr) input to the CK enzyme reaction, but Cr measurement by (1)H MRS suffers from low signal-to-noise ratio (SNR). We examine the possibility of using the Cr analog cyclocreatine (CCr, a substrate for CK), which is quickly phosphorylated to phosphocyclocreatine (PCCr), as a higher SNR alternative to Cr. (1)H MRS and (31)P MRSI were employed to measure the effect of incremental supplementation of CCr upon PCCr, γ-ATP, pH and Pi /ATP in the liver of transgenic mice expressing the BB isoform of CK (CKBB) in hepatocytes. Water supplementation with 0.1% CCr led to a peak total PCCr level of 17.15 ± 1.07 mmol/kg wet weight by 6 weeks, while adding 1.0% CCr led to a stable PCCr liver level of 18.12 ± 3.91 mmol/kg by the fourth day of feeding. PCCr was positively correlated with CCr, and ATP concentration and pH declined with increasing PCCr. Feeding with 1% CCr in water induced an apparent saturated level of PCCr, suggesting that CCr quantization may not be necessary for quantifying expression of CK in mice. These findings support the possibility of using (31)P MRS to noninvasively monitor hepatocyte transplant success with CK-expressing hepatocytes.

  18. Unusual Physical and Chemical Properties of Ni in Ce1-xNixO2-y Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, L.; Kubacka, A; Zhou, G; Estrella, M; Martinez-Arias, A; Hanson, J; Fernandez-Garcia, M; Rodriguez, J

    2010-01-01

    The structural and electronic properties of Ce{sub 1-x}Ni{sub x}O{sub 2-y} nanosystems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Ce{sub 1-x}Ni{sub x}O{sub 2-y} systems adopt a lattice with a fluorite-type structure with an acute local order where Ni displays a strongly distorted (oxygen) nearest-neighbor coordination and the presence of Ni atoms as first cation distances, pointing to the existence of Ni-O-Ni entities embedded into the ceria lattice. A Ni {leftrightarrow} Ce exchange within the CeO{sub 2} leads to a charge redistribution and the appearance of O vacancies. The Ni-O bonds in Ce{sub 1-x}Ni{sub x}O{sub 2-y} are more difficult to reduce than the bonds in pure NiO. The specific structural configuration of Ni inside the mixed-metal oxide leads to a unique catalyst with a high activity for the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction and a simultaneous reduction of the methanation activity of nickel. Characterization results indicate that small particles of metallic Ni at the interface position of a ceria network may be the key for high WGS activity and that the formate-carbonate route is operative for the production of hydrogen.

  19. Unusual Physical and Chemical Properties of Ni in Ce1-xNixO2-y Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.A.; Barrio, L.; Kubacka, A.; Zhou, G.; Estrella, M.; Mart& #305; nez-Arias, A.; Hanson, J.C.; Fernandez-Garc& #305; a, M.

    2010-07-29

    The structural and electronic properties of Ce{sub 1-x}Ni{sub x}O{sub 2-y} nanosystems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Ce{sub 1-x}Ni{sub x}O{sub 2-y} systems adopt a lattice with a fluorite-type structure with an acute local order where Ni displays a strongly distorted (oxygen) nearest-neighbor coordination and the presence of Ni atoms as first cation distances, pointing to the existence of Ni-O-Ni entities embedded into the ceria lattice. A Ni {leftrightarrow} Ce exchange within the CeO{sub 2} leads to a charge redistribution and the appearance of O vacancies. The Ni?O bonds in Ce{sub 1-x}Ni{sub x}O{sub 2-y} are more difficult to reduce than the bonds in pure NiO. The specific structural configuration of Ni inside the mixed-metal oxide leads to a unique catalyst with a high activity for the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction and a simultaneous reduction of the methanation activity of nickel. Characterization results indicate that small particles of metallic Ni at the interface position of a ceria network may be the key for high WGS activity and that the formate?carbonate route is operative for the production of hydrogen.

  20. Iboga alkaloids from Peschiera affinis (Apocynaceae) - unequivocal {sup 1}H and {sup 13}C chemical shift assignments: antioxidant activity; Alcaloides iboga de Peschiera affinis (Apocynaceae) - atribuicao inequivoca dos deslocamentos quimicos dos atomos de hidrogenio e carbono: atividade antioxidante

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Allana Kellen L.; Magalhaes, Ticiane S.; Monte, Francisco Jose Q.; Mattos, Marcos Carlos de; Oliveira, Maria Conceicao F. de; Almeida, Maria Mozarina B.; Lemos, Telma L.G.; Braz-Filho, Raimundo [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica], e-mail: tlemos@dqoi.ufc.br

    2009-07-01

    Six known alkaloids iboga type and the triterpene {alpha}- and {beta}-amyrin acetate were isolated from the roots and stems of Peschiera affinis. Their structures were characterized on the basis of spectral data mainly NMR and mass spectra. 1D and 2D NMR spectra were also used to unequivocal {sup 1}H and {sup 13}C chemical shift assignments of alkaloids. The ethanolic extract of roots, alkaloidic and no-alkaloidic fractions and iso-voacristine hydroxyindolenine and voacangine were evaluated for their antioxidative properties using an autographic assay based on {beta}-carotene bleaching on TLC plates, and also spectrophotometric detection by reduction of the stable DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical. (author)

  1. Bioenergetics of the calf muscle in Friedreich ataxia patients measured by 31P-MRS before and after treatment with recombinant human erythropoietin.

    Directory of Open Access Journals (Sweden)

    Wolfgang Nachbauer

    Full Text Available Friedreich ataxia (FRDA is caused by a GAA repeat expansion in the FXN gene leading to reduced expression of the mitochondrial protein frataxin. Recombinant human erythropoietin (rhuEPO is suggested to increase frataxin levels, alter mitochondrial function and improve clinical scores in FRDA patients. Aim of the present pilot study was to investigate mitochondrial metabolism of skeletal muscle tissue in FRDA patients and examine effects of rhuEPO administration by phosphorus 31 magnetic resonance spectroscopy (31P MRS. Seven genetically confirmed FRDA patients underwent 31P MRS of the calf muscles using a rest-exercise-recovery protocol before and after receiving 3000 IU of rhuEPO for eight weeks. FRDA patients showed more rapid phosphocreatine (PCr depletion and increased accumulation of inorganic phosphate (Pi during incremental exercise as compared to controls. After maximal exhaustive exercise prolonged regeneration of PCR and slowed decline in Pi can be seen in FRDA. PCr regeneration as hallmark of mitochondrial ATP production revealed correlation to activity of complex II/III of the respiratory chain and to demographic values. PCr and Pi kinetics were not influenced by rhuEPO administration. Our results confirm mitochondrial dysfunction and exercise intolerance due to impaired oxidative phosphorylation in skeletal muscle tissue of FRDA patients. MRS did not show improved mitochondrial bioenergetics after eight weeks of rhuEPO exposition in skeletal muscle tissue of FRDA patients.EU Clinical Trials Register2008-000040-13.

  2. Bioenergy recovery phenomenon in the myocardium following ischemia and factors contributing to the recovery studied by /sup 31/P magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiyama, Minoru

    1988-10-01

    Metabolism in ischemic and post-ischemic myocardium was studied by the use of /sup 31/P magnetic resonance spectroscopy (/sup 31/P-MRS) to identify factors that cause recovery of ATP levels in post-ischemic hearts. Perfused guinea-pig hearts were treated to 30 or 60 min of ischemia and reperfused by one of three perfusates, one with 200 ..mu..M adenosine (ADO30 for 30 min ischemia), one with 200 ..mu..M inosine (INO30 for 30 min ischemia, and INO60 for 60 min ischemia), and the third without adenine uncleoside. After 4 hours of reperfusion, ATP levels in INO30 were 95.5% of preischemic level, and in ADO30, 113.5% at 4 hours. However, ATP levels in the control increased only up to 70.2%. ATP levels in INO60 improved to 73.4% after 4 hours and then became stable. Left ventricular maximal positive dp/dt also recovered to 82.4% (control, 43.1%) after 6 hours. In an in vivo study, ATP levels depressed after ischemia did not recover after 4 hours of reperfusion. However, ATP levels recovered from 70.2% to 86.6% after the administration of adenosine into the left ventricle (0.1 mmol of adenosine per hour) for 2 hours. Administration of inosine or adenosine to the post-ischemic heart should be useful to improve the myocardial metabolism and cardiac function.

  3. Distribution and mobility of phosphates and sodium ions in cheese by solid-state 31P and double-quantum filtered 23Na NMR spectroscopy.

    Science.gov (United States)

    Gobet, Mallory; Rondeau-Mouro, Corinne; Buchin, Solange; Le Quéré, Jean-Luc; Guichard, Elisabeth; Foucat, Loïc; Moreau, Céline

    2010-04-01

    The feasibility of solid-state magic angle spinning (MAS) (31)P nuclear magnetic resonance (NMR) spectroscopy and (23)Na NMR spectroscopy to investigate both phosphates and Na(+) ions distribution in semi-hard cheeses in a non-destructive way was studied. Two semi-hard cheeses of known composition were made with two different salt contents. (31)P Single-pulse excitation and cross-polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively 'mobile' fraction of colloidal phosphates was evidenced. The detection by (23)Na single-quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of 'bound' sodium ions was evidenced by (23)Na double-quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na(+) ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls.

  4. Comparison of the clinical state and its changes in patients with Duchenne and Becker muscular dystrophy with results of in vivo {sup 31}P magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hajek, M. [MR Unit, Inst. for Clinical and Experimental Medicine, Prague (Czech Republic); Grosmanova, A. [Dept. of Neuropediatrics, Thomayer`s Hospital, Prague (Czech Republic); Horska, A. [MR Unit, Inst. for Clinical and Experimental Medicine, Prague (Czech Republic); Urban, P. [Dept. of Analytical Chemistry, Prague Inst. of Chemical Technology (Czech Republic)

    1993-12-01

    A total of 14 boys with the Duchenne and Becker forms of muscular dystrophy (DMD, BMD) were examined using {sup 31}P magnetic resonance (MR) spectroscopy; 12 boys were examined repeatedly. The results were correlated with clinical findings (including those of genetic tests) and with data obtained from examinations of an age-matched control group. Evaluation of results using principal component analysis revealed maximum variability in the following ratios: phosphocreatine/inorganic phosphate (PCr/Pi), phosphocreatine/phosphodiesters (PCr/PDe) and phosphocreatine/phosphomonoesters (PCr/PMe). A decrease in PCr/Pi correlates with weakness of the hip girdle and of the lower part of the shoulder girdle in DMD/BMD patients. The values of all ratios in the group of patients with the DMD phenotype differ significantly from results obtained in the group with the BMD phenotype. Continuous follow-up of patients using {sup 31}P MR spectroscopy revealed a marked decrease in PCr/Pi in DMD/BMD patients at an age that could be expected in subjects with a typical clinical course of DMD/BMD. An attempt to manage a concomitant disease with prednisone and carnitene was followed by an increase in PCr/Pi in 3 cases. A rise in the PCr/Pi ratio signalled clinical improvement in the patients. A decrease in PCr/Pi was found after controlled physical training, a finding consistent with data obtained from clinical observations describing an adverse effect of physical stress on the dystrophic process. (orig.)

  5. 31P nuclear magnetic resonance in vivo spectroscopy of the metabolic changes induced in the awake rat brain during KCN intoxication and its reversal by hydroxocobalamine.

    Science.gov (United States)

    Benabid, A L; Decorps, M; Remy, C; Le Bas, J F; Confort, S; Leviel, J L

    1987-03-01

    Radiofrequency surface coils were chronically implanted in rats, which were subsequently subjected to 31P nuclear magnetic resonance (NMR) investigations at 4.7 T. The implanted coil allowed study of the animals without need for anesthesia, which is a prerequisite for studies of normal brain metabolism. The animals may be kept in the NMR probe for several hours. During subsequent experiments, they may be placed in the same position, therefore allowing follow-up studies for periods as long as 2 months. This method has been used in the study of sublethal KCN intoxication. KCN, a cytochrome c oxidase inhibitor, induces a blockade of cell respiratory processes, which is reflected, in a dose-dependent manner, by a decrease in phosphocreatine content and pH and an increase in inorganic phosphate content, whereas ATP levels remain constant until high doses of KCN (6 mg/kg i.p.) are reached. 31P NMR allows the time course of these metabolic changes to be followed. For high KCN doses, a new peak, termed X, is observed, which is interpreted as being due to a pool of inorganic phosphate at very low pH (5.65), corresponding to a subset of cells that did not survive KCN injury. Hydroxocobalamine, a specific antidote of KCN, suppresses the metabolic changes due to 6 mg/kg of KCN.

  6. Quantitative 31P NMR for Simultaneous Trace Analysis of Organophosphorus Pesticides in Aqueous Media Using the Stir Bar Sorptive Extraction Method

    Science.gov (United States)

    Ansari, S.; Talebpour, Z.; Molaabasi, F.; Bijanzadeh, H. R.; Khazaeli, S.

    2016-09-01

    The analysis of pesticides in water samples is of primary concern for quality control laboratories due to the toxicity of these compounds and their associated public health risk. A novel analytical method based on stir bar sorptive extraction (SBSE), followed by 31P quantitative nuclear magnetic resonance (31P QNMR), has been developed for simultaneously monitoring and determining four organophosphorus pesticides (OPPs) in aqueous media. The effects of factors on the extraction efficiency of OPPs were investigated using a Draper-Lin small composite design. An optimal sample volume of 4.2 mL, extraction time of 96 min, extraction temperature of 42°C, and desorption time of 11 min were obtained. The results showed reasonable linearity ranges for all pesticides with correlation coefficients greater than 0.9920. The limit of quantification (LOQ) ranged from 0.1 to 2.60 mg/L, and the recoveries of spiked river water samples were from 82 to 94% with relative standard deviation (RSD) values less than 4%. The results show that this method is simple, selective, rapid, and can be applied to other sample matrices.

  7. Direct studies of low-energy resonances in {sup 31}P(p,{alpha}){sup 28}Si and {sup 35}Cl(p,{alpha}){sup 32}S

    Energy Technology Data Exchange (ETDEWEB)

    Moazen, B.H.; Jones, K.L.; Pittman, S.T. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Matei, C. [Oak Ridge Associated Universities, Oak Ridge, TN (United States); Bardayan, D.W.; Smith, M.S. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Blackmon, J.C. [Louisiana State University, Department of Physics, Baton Rouge, LA (United States); Chae, K.Y.; Nesaraja, C.D. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Chipps, K.A.; Matos, M. [Colorado School of Mines, Department of Physics, Golden, CO (United States); Hatarik, R.; O' Malley, P.D.; Pain, S.D.; Peters, W.A. [Rutgers University, Department of Physics and Astronomy, Piscataway, NJ (United States); Kozub, R.L.; Shriner, J.F. [Tennessee Technological University, Department of Physics, Cookeville, TN (United States); Pelham, T. [University of Surrey, Department of Physics, Guilford (United Kingdom)

    2011-05-15

    Low-energy resonances in {sup 31}P(p,{alpha}){sup 28}Si and {sup 35}Cl(p,{alpha}){sup 32}S were studied directly in order to gain a better understanding of reaction cycling in the Si-Ar region in novae. New resonance strengths at E{sub c.m.} = 600 and 622 keV in {sup 31}P(p,{alpha}){sup 28}Si were measured ({omega}{gamma}{sub p,{alpha}} = (2.2{+-}0.7) x 10{sup -2} eV and {omega}{gamma}{sub p,{alpha}} = (0.99{+-}0.08) eV, respectively) as well as the E{sub c.m.} = 610 keV resonance in {sup 35}Cl(p,{alpha}){sup 32}S [{omega}{gamma}{sub p,{alpha}} = (1.2{+-}0.2) x 10{sup -2} eV], the lowest energy that any resonance in this reaction has been observed, directly or indirectly. The strengths of these resonances were found to be lower than previously determined, resulting in even weaker cycling in the Si-Ar region. (orig.) (orig.)

  8. Hard X-ray photoelectron spectra (HXPES) of bulk non-conductor vitreous SiO{sub 2}: Minimum linewidths and surface chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y.F., E-mail: Yongfeng.hu@lightsource.ca [Canadian Light Source, Saskatoon, SK (Canada); Xiao, Q.; Wang, D.; Cui, X. [Canadian Light Source, Saskatoon, SK (Canada); Nesbitt, H.W. [Department of Earth Sciences, University of Western Ontario, London, ONT (Canada); Bancroft, G.M. [Department of Chemistry, University of Western Ontario, London, ONT (Canada)

    2015-07-15

    Highlights: • Electronic structure of non-conducting glass studied by hard X-ray photoelectron spectroscopy. • A thin film of Cr was deposited on the vitreous SiO{sub 2} glass to overcome the sample charging. • Excellent O 1s and Si 1s linewidths were obtained, matching those reported using the laboratory based Kratos Axis Ultra spectrometer equipped with a magnetic compensation system. • The bulk and interface states of non-conducting samples are studied as a function of photon energy. - Abstract: Hard X-ray photoelectron spectra (2200 eV to 5000 eV photon energies) have been obtained for the first time on a bulk non-conductor, vitreous SiO{sub 2}, on a high resolution (E/ΔE of 10,000) synchrotron beamline at the Canadian Light Source (CLS). To minimize charging and differential charging, the SiO{sub 2} was coated with very thin layers (0.5 to 1.5 nm) of Cr metal. The O 1s linewidth obtained at 2500 eV photon energy was 1.26 eV—the minimum linewidth for SiO{sub 2}—and in good agreement with that obtained at 1486 eV on a Kratos Axis Ultra spectrometer equipped with a magnetic charge compensation system. The Si 1s linewidth of 1.5 eV, somewhat broader than that previously obtained at 1486 eV on the Si 2p{sub 3/2} line of 1.16 eV, is mainly due to the much larger inherent Si 1s linewidth (0.5 eV) compared to the inherent Si 2p linewidth (<0.1 eV). Both linewidths are dominated by the large final state vibrational broadening previously described. The Cr coating produces surface monolayers of interfacial Cr “suboxide” (Cr-subox), Cr metal, and a surface Cr oxide (Cr-surfox). Cr-subox (Si−O−Cr) gives rise to the weak near-surface Si 1s peak, while both oxides give rise to both the weak surface O 1s peak and the Cr 2p oxide peak. Both the O 1s and Si 1s surface peaks are shifted by ∼2 eV relative to the large bulk Si 1s and O 1s peaks. The weak Si 1s and O 1s surface peaks along with the Cr 2p oxide peak decrease in intensity greatly as the photon

  9. Non-invasive assessment of phosphate metabolism and oxidative capacity in working skeletal muscle in healthy young Chinese volunteers using 31P Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ming Li

    2016-07-01

    Full Text Available Background. Generally, males display greater strength and muscle capacity than females while performing a task. Muscle biopsy is regarded as the reference method of evaluating muscle functions; however, it is invasive and has sampling errors, and is not practical for longitudinal studies and dynamic measurement during excise. In this study, we built an in-house force control and gauge system for quantitatively applying force to quadriceps while the subjects underwent 31P Magnetic Resonance Spectroscopy (31P-MRS; our aim was to investigate if there is a sex difference of phosphate metabolite change in working muscles in young heathy Chinese volunteers. Methods. Volunteers performed knee-extending excises using a force control and gauge system while lying prone in a Philips 3T Magnetic Resonance (MR scanner. The 31P-MRS coil was firmly placed under the middle of the quadriceps . 31P-MRS measurements of inorganic phosphate (Pi, phosphocreatine (PCr and adenosine triphosphate (ATP were acquired from quadriceps while subjects were in a state of pre-, during- and post-exercise. The PCr, Pi, PCr/Pi, PCr/ATP, pH, work/energy cost ratio (WE, kPCr and oxidative capacity were compared between males and females. Results. A total of 17 volunteers underwent the study. Males: N = 10, age = 23.30 ± 1.25years; females: N = 7, age = 23.57 ± 0.79 years. In this study, males had significantly greater WE (16.33 ± 6.46 vs. 7.82 ± 2.16, p = 0.002 than females. Among PCr, Pi, PCr/Pi, PCr/ATP, pH, kPCr and oxidative capacity at different exercise status, only PCr/Pi (during-exercise, males = 5.630 ± 1.647, females = 4.014 ± 1.298, p = 0.047, PCr/ATP (during-exercise, males =1.273 ± 0.219, females = 1.523 ± 0.167, p = 0.025, and ATP (post-exercise, males = 24.469 ± 3.911 mmol/kg, females = 18.353 ± 4.818 mmol/kg, p = 0.035 had significant sex differences. Males had significantly greater PCr/Pi, but less PCr/ATP than females during exercise, suggesting males had

  10. Structure-based predictions of 13C-NMR chemical shifts for a series of 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indoles derivatives using GA-based MLR method

    Science.gov (United States)

    Ghavami, Raouf; Sadeghi, Faridoon; Rasouli, Zolikha; Djannati, Farhad

    2012-12-01

    Experimental values for the 13C NMR chemical shifts (ppm, TMS = 0) at 300 K ranging from 96.28 ppm (C4' of indole derivative 17) to 159.93 ppm (C4' of indole derivative 23) relative to deuteride chloroform (CDCl3, 77.0 ppm) or dimethylsulfoxide (DMSO, 39.50 ppm) as internal reference in CDCl3 or DMSO-d6 solutions have been collected from literature for thirty 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indole derivatives containing different substituted groups. An effective quantitative structure-property relationship (QSPR) models were built using hybrid method combining genetic algorithm (GA) based on stepwise selection multiple linear regression (SWS-MLR) as feature-selection tools and correlation models between each carbon atom of indole derivative and calculated descriptors. Each compound was depicted by molecular structural descriptors that encode constitutional, topological, geometrical, electrostatic, and quantum chemical features. The accuracy of all developed models were confirmed using different types of internal and external procedures and various statistical tests. Furthermore, the domain of applicability for each model which indicates the area of reliable predictions was defined.

  11. In vivo 31P MRS of human brain at high/ultrahigh fields: a quantitative comparison of NMR detection sensitivity and spectral resolution between 4 T and 7 T.

    Science.gov (United States)

    Qiao, Hongyan; Zhang, Xiaoliang; Zhu, Xiao-Hong; Du, Fei; Chen, Wei

    2006-12-01

    The primary goal of this study was to establish a rigorous approach for determining and comparing the NMR detection sensitivity of in vivo 31P MRS at different field strengths (B0). This was done by calculating the signal-to-noise ratio (SNR) achieved within a unit sampling time at a given field strength. In vivo 31P spectra of human occipital lobe were acquired at 4 and 7 T under similar experimental conditions. They were used to measure the improvement of the human brain 31P MRS when the field strength increases from 4 to 7 T. The relaxation times and line widths of the phosphocreatine (PCr) resonance peak and the RF coil quality factors (Q) were also measured at these two field strengths. Their relative contributions to SNR at a given field strength were analyzed and discussed. The results show that in vivo 31P sensitivity was significantly improved at 7 T as compared with 4 T. Moreover, the line-width of the PCr resonance peak showed less than a linear increase with increased B0, which leads to a significant improvement in 31P spectral resolution. These findings indicate the advantage of high-field strength to improve in vivo 31P MRS quality in both sensitivity and spectral resolution. This advantage should improve the reliability and applicability of in vivo 31P MRS in studying high-energy phosphate metabolism, phospholipid metabolism and cerebral biogenetics in the human at both normal and diseased states noninvasively. Finally, the approach used in this study for calculating in vivo 31P MRS sensitivity provides a general tool in estimating the relative NMR detection sensitivity for any nuclear spin at a given field strength.

  12. Correcting human heart 31P NMR spectra for partial saturation. Evidence that saturation factors for PCr/ATP are homogeneous in normal and disease states

    Science.gov (United States)

    Bottomley, Paul A.; Hardy, Christopher J.; Weiss, Robert G.

    Heart PCr/ATP ratios measured from spatially localized 31P NMR spectra can be corrected for partial saturation effects using saturation factors derived from unlocalized chest surface-coil spectra acquired at the heart rate and approximate Ernst angle for phosphor creatine (PCr) and again under fully relaxed conditions during each 31P exam. To validate this approach in studies of normal and disease states where the possibility of heterogeneity in metabolite T1 values between both chest muscle and heart and normal and disease states exists, the properties of saturation factors for metabolite ratios were investigated theoretically under conditions applicable in typical cardiac spectroscopy exams and empirically using data from 82 cardiac 31P exams in six study groups comprising normal controls ( n = 19) and patients with dilated ( n = 20) and hypertrophic ( n = 5) cardiomyopathy, coronary artery disease ( n = 16), heart transplants ( n = 19), and valvular heart disease ( n = 3). When TR ≪ T1,(PCr), with T1(PCr) ⩾ T1(ATP), the saturation factor for PCr/ATP lies in the range 1.5 ± 0.5, regardless of the T1 values. The precise value depends on the ratio of metabolite T1 values rather than their absolute values and is insensitive to modest changes in TR. Published data suggest that the metabolite T1 ratio is the same in heart and muscle. Our empirical data reveal that the saturation factors do not vary significantly with disease state, nor with the relative fractions of muscle and heart contributing to the chest surface-coil spectra. Also, the corrected myocardial PCr/ATP ratios in each normal or disease state bear no correlation with the corresponding saturation factors nor the fraction of muscle in the unlocalized chest spectra. However, application of the saturation correction (mean value, 1.36 ± 0.03 SE) significantly reduced scatter in myocardial PCr/ATP data by 14 ± 11% (SD) ( p ⩽ 0.05). The findings suggest that the relative T1 values of PCr and ATP are

  13. 健康成人延迟性肌肉酸痛31P-MR波谱及其与肌酸激酶、酸痛指数相关性分析%The changes of healthy adults delayed onset muscle soreness 31P-MR spectroscopy and correlation between serum creatine kinase and soreness index

    Institute of Scientific and Technical Information of China (English)

    王希海; 陈超; 卢昊宁; 孟帆; 李飞; 王子文; 富聪聪; 夏丽莹; 富西湖

    2014-01-01

    目的 分析健康志愿者股四头肌延迟性肌肉酸痛(DOMS)31P-MRS影像特征,及其与肌酸激酶(CK)、酸痛指数相关性.方法 选取10名健康志愿者.所有受试者运用短距离重复跑运动模式进行训练以获得DOMS模型,且在运动前,运动后即刻、1、2、3、5、7d对右侧股四头肌进行31 P-MRS扫描、血清学CK浓度检查、肌肉酸痛指数评分,分别测量31P-MRS无机磷酸盐(Pi)、磷酸肌酸(PCr)和三磷酸腺苷(ATP)峰下面积,并计算Pi/PCr、PCr/ATP、Pi/ATP比值.运用重复测量资料的方差分析对各指标不同时间上的变化的特点进行分析.用Spearman秩相关分析对31P-MRS测量结果与CK值、酸痛指数进行相关性分析.结果 10名健康志愿者右侧股四头肌31P-MRS检查显示Pi峰下面积、Pi/PCr在运动后随时间逐渐增加,在运动后1~2 d达到最大值(分别为0.33 ±0.04、0.27±0.03),两者在时间上有一致性.PCr及ATP峰下面积在运动后即刻较运动前明显下降,在运动后1d逐渐恢复到运动前水平(分别为0.28±0.05、1.22 ±0.04).CK在运动后即刻轻度增高,运动后1d血清中CK[(577±223) U/L]明显增高达到峰值,运动后2 d[(483 ±229) U/L]逐渐下降但仍明显高于运动前水平[(86±30) U/L],运动后7dCK逐渐恢复到运动前水平.Pi峰下面积及Pi/PCr与CK均呈正相关(r值分别为0.631、0.614,P值均<0.01).PCr峰下面积、ATP峰下面积与CK值无相关性(r值分别为0.044、0.188,P值均>0.05).Pi峰下面积、Pi/PCr、Pi/ATP与酸痛指数相呈正相关(r值分别为0.762、0.758,0.616,P值均<0.05).结论 31P-MRS能够有效评估DOMS后骨骼肌代谢产物的变化规律,31P-MRS与血清学指标、肌肉酸痛指数能够对DOMS进行综合评价,十分有助于为运动训练提供科学的理论依据和指导.

  14. 31P-MRS评价肝细胞癌代谢水平及其与临床、病理特征的关系%Relationship between clinical-pathological features and metabolic status of hepatocellular carcinoma detected by 31p magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    于德新; 马祥兴; 李笃民; 张晓明; 王茜; 李传福

    2011-01-01

    Objective To examine the relationship between clinical-pathological features and metabolic status of hepato-cellular carcinoma (HCC) using in vivo 3IP magnetic resonance spectroscopy (31P-MRS). Methods 31P-MRS scanning with a single voxel was carried out on 32 HCC lesions. Groups were formed for the following: with and without capsula, with and without cirrhosis, and with and without infiltration (intrahepatic daughter foci, tumor-emboli in portal veins and lymphatic metastasis). Another group was formed according to the pathological grades of the lesions. Intra-cellular pH value (pHi), and metabolic parameters including phosphomonoester (PME), phosphodiester (PDE), inorganic phosphate (Pi), y-ATP, 0-ATP, a-ATP, lower energetic phosphate (LEP), and the ratios PME/ATP, Pi/ ATP, PME/PDE, PME/Pi, PDE/Pi and PDE/ATP were calculated. Differences in the metabolic parameters between different groups were analyzed. Results HCC exhibited higher values for pHi, Pi, Pi/ATP and LEP, but lower values for o-ATP and PDE/Pi, than the liver (P 0.05). Conclusion Some phosphorus metabolites in HCC are related to clinical-pathological features, and 3IP-MRS can be used to evaluate the biological behavior of HCC in a non-invasive fashion.%目的 利用31 P-MRS检测肝细胞癌(HCC),探讨各代谢参数与临床及病理特征的关系.方法 对32个肝细胞癌病灶进行单体素31P-MRS扫描.根据手术及病理结果显示有无包膜、肝硬化、侵袭转移性以及恶性程度分别进行分组.根据31P-MRS扫描结果计算肝细胞内pH值(pHi)、磷酸单脂(PME)、磷酸双脂(PDE)、无机磷(Pi)、γ-ATP、β-ATP、α-ATP、PME/ATP、Pi/ATP、PME/PDE、PME/Pi、PDE/Pi、PDE/ATP和低能磷酸盐(LEP)等参数.分析以上代谢参数在各分组之间差异.结果 HCC的pHi、Pi、Pi/ATP、LEP均明显大于周围肝组织,α-ATP和PDE/Pi则相反(P<0.05).包膜组病灶的β-ATP小于无包膜组(t=2.290,P=0.029).肝硬化组HCC病灶pHi大于无

  15. Intra- and extracellular pH of the brain in vivo studied by 31P-NMR during hyper- and hypocapnia

    DEFF Research Database (Denmark)

    Portman, M A; Lassen, N A; Cooper, T G;

    1991-01-01

    Studies were performed to determine the pH relationships among the extracellular, intracellular, and arterial blood compartments in the brain in vivo. Resolution of the extracellular monophosphate resonance peak from the intracellular peak in 31P nuclear magnetic resonance (NMR) spectra of sheep...... brain with the calvarium intact enabled pH measurement in these respective compartments. Sheep were then subjected to both hyper- and hypoventilation, which resulted in a wide range of arterial PCO2 and pH values. Linear regression analysis of pH in these compartments yielded slopes of 0.56 +/- 0...... of the extracellular space from the vascular space may be a function of the blood-brain barrier, which contributes to the buffering capability of the extracellular compartment. A marked decrease in the pH gradient between the extracellular and intracellular space occurs during hypercarbia and may influence mechanisms...

  16. Oxidative stress-induced metabolic changes in mouse C2C12 myotubes studied with high-resolution 13C, 1H, and 31P NMR spectroscopy

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Petersen, Bent O;

    2010-01-01

    In this study, stress in relation to slaughter was investigated in a model system by the use of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy for elucidating changes in the metabolites in C2C12 myotubes exposed to H(2)O(2)-induced stress. Oxidative stress resulted in lower...... to lower levels of the unlabeled ((12)C) lactate were identified in the (1)H spectra after stress exposure. These data indicate an increase in de novo synthesis of alanine, concomitant with a release of lactate from the myotubes to the medium at oxidative stress conditions. The changes in the metabolite...... levels of several metabolites, mainly amino acids; however, higher levels of alanine were apparent in the (13)C spectra after incubation with [(13)C(1)]glucose. In the (13)C spectra [(13)C(3)]lactate tended to increase after exposure to increasing concentrations of H(2)O(2); conversely, a tendency...

  17. Hydration behaviour of POPC/C(12)-Bet mixtures investigated by sorption gravimetry, (31)P NMR spectroscopy and X-ray diffraction.

    Science.gov (United States)

    Pfeiffer, H; Weichert, H; Klose, G; Heremans, K

    2012-02-01

    The hydration behaviour of mixtures of the zwitterionic phospholipid 1-palmitoyl-2-oleolyl-sn-glycero-3-phosphocholine (POPC) and the zwitterionic surfactant N,N-dimethyl-N-dodecyl-betain (C(12)-Bet) was investigated by sorption gravimetry, solid-state (31)P NMR-spectroscopy and small angle X-ray diffraction (SAXD). Negative excess hydration (dehydration) was found for almost all hydration degrees investigated. This behaviour is explained by the formation of an inner salt between the dipoles of phospholipid and surfactant headgroups that show a reverse sequence of partial charges with respect to the hydrocarbon backbone. The formation of an inner-salt most probably reduces potential water binding sites. Moreover, NMR data suggest that the incorporation of the zwitterionic surfactant into the phospholipid membrane is correlated with reorientation of the phosphate axis towards the membrane director as well as with reduced lateral and wobbling diffusion.

  18. Observation of fatigue unrelated to gross energy reserve of skeletal muscle during tetanic contraction--an application of 31P-MRS.

    Science.gov (United States)

    Takata, S; Takai, H; Ikata, T; Miura, I

    1988-11-30

    The mechanism of muscle fatigue was studied by 31P-MRS. During tetanic contraction for 2 minutes(min), the tension measured with a strain gauge and Phosphocreatine(PCr)/Inorganic phosphate(Pi)+ Phosphomonoester(PME) ratio decreased to 31.5 +/- 4.4% of the control value and 0.6 +/- 0.1, respectively. The intracellular pH(pH) also decreased to 6.62 +/- 0.04. Toward the end of the stimulation, the tension decreased to 25.3 +/- 1.9% of the control value. However, during 20min stimulation, the PCr/(Pi+PME) ratio increased to 2.5 +/- 0.5 and the pH to 6.91 +/- 0.04. These results show that muscular fatigue is ascribable not to a decreased level of high energy metabolites required for actomyosin ATPase, but to an increase in the threshold intensity of excitation in excitation-contraction coupling.

  19. Analysis of brain metabolism changes induced by acute potassium cyanide intoxication by 31P NMR in vivo using chronically implanted surface coils.

    Science.gov (United States)

    Decorps, M; Lebas, J F; Leviel, J L; Confort, S; Remy, C; Benabid, A L

    1984-03-12

    Chronic implantation of surface coils on the skull has been developed to record 31P NMR spectra of the brain in unanesthetized rats. Intraperitoneal sublethal potassium cyanide doses induce strong and reversible changes in high-energy phosphate compounds in the brain, similar in part to those induced by ischemia. These effects are dose-dependent as far as phosphocreatine, inorganic orthophosphates and pH are concerned; ATP does not seem to be altered by KCN doses ranging from 3 to 5 mg/kg but starts decreasing at a dose of 6 mg/kg. The fraction of Mg2+ complexed ATP which could be estimated as about 90% was not affected by KCN intoxication. For high doses (6 mg/kg) a new peak, appearing on the upfield side of the inorganic phosphate peak, may correspond to an acidic compartment, the significance of which is discussed.

  20. Hormonally induced modulation in the phosphate metabolites of breast cancer: analysis of in vivo 31P MRS signals with a modified prony method.

    Science.gov (United States)

    Viti, V; Ragona, R; Guidoni, L; Barone, P; Furman, E; Degani, H

    1997-08-01

    A modified Prony method (MPM) was applied to analyze the main signals present in spatially resolved 31P NMR spectra of MCF7 breast tumors implanted in nude mice. First, the method was tested on synthetic data to establish its limits of reliability. Its performance with respect to peak identification and quantification of signal intensities was then exploited on data from three implanted tumors during hormonal manipulation with estrogen and the antiestrogenic drug tamoxifen. The phosphomonoester peak was resolved into phosphocholine (PC) and phosphoethanolamine (PE). Treatment with tamoxifen led to a significant reduction in the PE to PE+PC peak amplitude ratio in the tumors under consideration. MPM analysis also revealed the presence of two different inorganic phosphate pools: a larger acidic pool and a smaller alkaline pool during estrogen-induced growth and the reverse during tumor regression.

  1. Importance of the 31-p-nmr-spectroscopy for prediction and early detection of coronary heart disease in patients with diabetes mellitus type I

    CERN Document Server

    Steinboeck, P

    2001-01-01

    Microvascular abnormalities and dysfunction via thickening of the basement membrane are known to occur in diabetic patients. Myocardial high energy phosphates have been shown to be reduced by ischemia and alterations of the cardiac metabolism are the primary consequence of myocardial ischemia. The present study involved 30 male patients with diabetes mellitus type I and 36 healthy male volunteers as age-matched controls. Phosphorus-31-P-nuclear-magnetic-resonance-spectroscopic-imaging of the heart was performed in all subjects using a 1.5 Tesla whole-body-magnetic-resonance-scanner. The ratios of phosphocreatinine (PCr) to adenosine-triphosphate (ATP) were calculated. Moreover, echocardiographic evaluation and stress tests were performed in all individuals. The myocardium of patients with diabetes mellitus type I showed significantly decreased ratios of PCr/ATP compared with healthy controls. This study demonstrates for the first time a decreased ratio of PCr/ATP in the myocardium of patients with diabetes me...

  2. Analyzing Ph value, energy and phospholipid metabolism of various cerebral tumors and normal brain tissue with 31P magnetic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Wei Tan; Guangyao Wu; Junmo Sun

    2006-01-01

    BACKGROUND: 31P magnetic resonance spectroscopy (31P MRS) can be used to non-injuredly and dynamicly detect various metabolites including phosphorus in organis and reflect changes of phospholipid metabolism and energy metabolism in tissue and pH value in cells.OBJECTIVE: To observe changes of pH value, phospholipid metabolism and energy metabolism of various cerebral tumors and normal brain tissue with 31P MRS.DESIGN: Semi-quantitative contrast observation.PARTICIPANTS: A total of 44 patients with cerebral tumor diagnosed with surgery operation were selected from the Department of Magnetic Resonance, Central South Hospital, Wuhan University from September 2004 to June 2006. All the subjects had complete 31P MRS data before steroid and operation. Among them,16 patients had glioma of grade Ⅱ-Ⅲ, 12 spongioblastoma and 16 meningioma. The mean age was (45±6)years. Another 36 subjects without focus on cerebral MRI were regarded as normal group, including 19 males and 18 females, and the mean age was (41±4) years. Included subjects were consent.METHODS: Eclipse1.5T MRS (Philips Company) was used to collect wave spectrum; jMRUI(1.3) was used to analyze experimental data and calculate pH value in voxel and ratios of phosphocreatine (PCr)/inorganic phosphate (Pi), PCr/phosphodiesterase (PDE) and phosphomonoesterase (PME)/β-adenosine triphosphate (β-ATP) of various metabolites. 31P MRS results were compared with t test between tumor patients and normal subjects.MAIN OUTCOME MEASURES: Changes of phospholipid metabolism (PME/PDE), energy metabolism (PCr/ATP) and pH value of various cerebral tumors and normal brain tissues.RESULTS: A total of 44 cases with cerebral tumor and 36 normal subjects were involved in the final analysis. pH value and semi-quantitative measurements of normal brain tissues and various cerebral tumors: ① pH value at top occipital region and temple occipital region of normal brain tissue was 7.04±0.02;PCt/β-ATP was 1.51 ±0.03; PCt/Pi was 2.85

  3. On the calculation of Mossbauer isomer shift

    NARCIS (Netherlands)

    Filatov, Michael

    2007-01-01

    A quantum chemical computational scheme for the calculation of isomer shift in Mossbauer spectroscopy is suggested. Within the described scheme, the isomer shift is treated as a derivative of the total electronic energy with respect to the radius of a finite nucleus. The explicit use of a finite nuc

  4. Xinjiang Guanghui Shifts to Coal Chemical Business

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Xinjiang Guanghui Industry Co., Ltd.(Xinjiang Guanghui, SH: 600256) was established on April 10th, 1999. It is located in Urumqi Economic and Technological Development Zone,Xinjiang of western China. The company got listed in Shanghai Stock Exchange on May 26th, 2000.

  5. Fósforo num Cambissolo cultivado com cana-de-açúcar por longo tempo: II - análise de ácidos húmicos por RMN 31P Phosphorus in an Inceptsoil under long-term sugarcane: II - humic acid analysis by NMR 31P

    Directory of Open Access Journals (Sweden)

    Jader Galba Busato

    2005-12-01

    Full Text Available Sistemas de manejo da lavoura de cana-de-açúcar que favoreçam a matéria orgânica do solo podem aumentar o conteúdo de nutrientes disponíveis e diminuir a necessidade de aplicação de fertilizantes industriais. Apesar da importância dos componentes orgânicos no fornecimento de P, pouco se conhece sobre a sua dinâmica em ambientes tropicais. O objetivo deste trabalho foi identificar, por meio da ressonância magnética nuclear (RMN 31P, as espécies de P nos ácidos húmicos de um Cambissolo Háplico Ta eutrófico vértico, localizado no Município de Campos dos Goytacazes, norte do Estado do Rio de Janeiro, e cultivado com cana-de-açúcar com preservação do palhiço e adição de vinhaça por longo tempo. Por meio da análise de RMN 31P foi possível observar acúmulo de P orgânico em formas mais facilmente mineralizadas nas áreas com preservação de matéria orgânica, tal como P em ligações diésteres. Nas áreas de cana queimada, houve maior participação de espécies orgânicas mais estáveis, como o ortofosfato em ligações monoésteres. Os resultados da espectroscopia de RMN 31P mostram que, nas áreas com maior aporte de resíduo orgânico (i.e., cana crua e cana queimada com adição de vinhaça, os ácidos húmicos constituem uma reserva importante de P orgânico prontamente disponível. Já, nas áreas de cana queimada, o acúmulo de P orgânico recalcitrante nos ácidos húmicos indica utilização do P-lábil das substâncias húmicas como fonte importante para nutrição das plantas.Crop management systems that favor soil organic matter can improve the available nutrient content for plants and reduce the use of industrial fertilizer. Despite the importance of organic compounds as a P source, little is known about its dynamics in tropical environments. The objective of this study was to identify organic P species present in humic acids by NMR 31P analysis in a fine clay Fluventic Eutrochrepts in Campos dos

  6. Research progress on the application of G31P for prevention and control of human diseases%重组人 CXCR1/2拮抗剂 G31P 在人类疾病防治应用的研究进展

    Institute of Scientific and Technical Information of China (English)

    闫文慧; 秦元华; 任一鑫; 崔昱

    2015-01-01

    G31P (重组人CXCR1/2拮抗剂)是一种相对分子质量低的蛋白质,能与IL-8竞争结合其受体,导致IL-8与受体的生物学活性丧失,从而阻断中性粒细胞的趋化性及其引起的非特异性免疫应答,从而控制宿主炎症的发展。近年研究发现IL-8和其受体在肿瘤、心血管疾病和炎症反应性疾病,以及旋毛虫病和血吸虫病等疾病中高表达。探讨应用G31P控制炎症发展,以达到防治疾病的目的已成为目前国内外学者研究的热点之一。%G31P (CXCR1/2 antagonist of human recombinant), a kind of low molecular weight protein, can compete with IL-8 and combine with its receptors, leading to the loss of biological activities of IL-8 and its receptors, blocking the chemotaxis of neutrophils and nonspecific immune response, so as to control the devel-opment of the host inflammation. In recent years, studies found that IL-8 and its receptors were highly ex-pressed in diseases such as cancer, cardiovascular disease and inflammation disease, as well as trichinosis, schistosomiasis. The application of G31P to control inflammation development in order to achieve the purpose of prevention and treatment of disease has become one of hot topics in the study of scholars at home and abroad.

  7. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C.; Joseph, Gabby B.; Yap, Samuel P.; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M. [University of California, San Francisco, Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2012-07-15

    The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 {+-} 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P < 0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0-4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. (orig.)

  8. Value of 31P MR spectroscopy in monitoring the early response of hepatocellular carcinoma to transcatheter arterial chemoembolization%31P-MR波谱分析技术评价化疗栓塞治疗肝细胞癌疗效的初步研究

    Institute of Scientific and Technical Information of China (English)

    袁正; 叶晓丹; 董生; 许立超; 孙志超; 肖湘生

    2008-01-01

    目的 评价MR磷谱分析(31P-MRS)早期监测肝细胞癌(HCC)化疗栓塞治疗疗效的价值.方法 对15例因HCC接受化疗栓塞治疗的患者(共17个癌灶)分别在治疗前和治疗后48 h内进行31P-MRS检查,5名健康志愿者也接受相同参数的检查以作为对照.比较肝癌组织和正常肝组织中的磷酸单酯(PME)和磷酸二酯(PDE)水平;分别计算化疗栓塞前后PME、PDE、与三磷酸核苷比值(PME/NPT)、PDE/NPT,并对治疗前、后数据进行统计学处理.与临床随访资料比较,考量各指标在早期评价疗效中的价值.结果 HCC治疗后PME水平(中位数:1.38×107;范围:0.665×107~6.21×107)低于治疗前(中位数:2.98×107;范围:0.846×107~102.5×107)(P<0.05).临床随访发现冶疗有效病灶31P-MRS中,治疗后48 h内与治疗前相比PME/NPT(P<0.01)和PME/PDE/NPT(P<0.01)比值均下降;临床随访中治疗无效的病灶,PME/NPT比值下降(P<0.05),而PDE/NPT比值轻度上升,但差异无统计学意义(P<0.05).结论 在肝细胞肝癌化疗栓塞治疗前和治疗后48 h内,31P-MRS中PME/NPT和PDE/NPT的比值变化对早期评价疗效和指导后续治疗有指导意义.

  9. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state {sup 13}C NMR and solution {sup 31}P NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shasha [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhu, Yuanrong, E-mail: zhuyuanrong07@mails.ucas.ac.cn [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Meng, Wei, E-mail: mengwei@craes.org.cn [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); He, Zhongqi [USDA-ARS Southern Regional Research Center, 1100 Robert E Lee Blvd, New Orleans, LA 70124 (United States); Feng, Weiying [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhang, Chen [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Giesy, John P. [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2016-02-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state {sup 13}C NMR and solution {sup 31}P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O–C–O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH{sub 3} and COO/N–C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH{sub 3} and COO/N–C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes. - Highlights: • WEOM derived from aquatic macrophytes was characterized. • C and P in WEOM were characterized by solid {sup 13}C NMR and solution {sup 31}P NMR. • Degradation and transformation of macrophyte-derived C and P were investigated. • Macrophyte-derived WEOM are important source for bioavailable nutrients in lakes.

  10. Energy Deregulation Precedes Alteration in Heart Energy Balance in Young Spontaneously Hypertensive Rats: A Non Invasive In Vivo 31P-MR Spectroscopy Follow-Up Study

    Science.gov (United States)

    Deschodt-Arsac, Veronique; Arsac, Laurent; Magat, Julie; Naulin, Jerome; Quesson, Bruno; Dos Santos, Pierre

    2016-01-01

    Introduction Gradual alterations in cardiac energy balance, as assessed by the myocardial PCr/ATP-ratio, are frequently associated with the development of cardiac disease. Despite great interest for the follow-up of myocardial PCr and ATP content, cardiac MR-spectroscopy in rat models in vivo is challenged by sensitivity issues and cross-contamination from other organs. Methods Here we combined MR-Imaging and MR-Spectroscopy (Bruker BioSpec 9.4T) to follow-up for the first time in vivo the cardiac energy balance in the SHR, a genetic rat model of cardiac hypertrophy known to develop early disturbances in cytosolic calcium dynamics. Results We obtained consistent 31P-spectra with high signal/noise ratio from the left ventricle in vivo by using a double-tuned (31P/1H) surface coil. Reasonable acquisition time (<3.2min) allowed assessing the PCr/ATP-ratio comparatively in SHR and age-matched control rats (WKY): i) weekly from 12 to 21 weeks of age; ii) in response to a bolus injection of the ß-adrenoreceptor agonist isoproterenol at age 21 weeks. Discussion Along weeks, the cardiac PCr/ATP-ratio was highly reproducible, steady and similar (2.35±0.06) in SHR and WKY, in spite of detectable ventricular hypertrophy in SHR. At the age 21 weeks, PCr/ATP dropped more markedly (-17.1%±0.8% vs. -3,5%±1.4%, P<0.001) after isoproterenol injection in SHR and recovered slowly thereafter (time constant 21.2min vs. 6.6min, P<0.05) despite similar profiles of tachycardia among rats. Conclusion The exacerbated PCr/ATP drop under ß-adrenergic stimulation indicates a defect in cardiac energy regulation possibly due to calcium-mediated abnormalities in the SHR heart. Of note, defects in energy regulation were present before detectable abnormalities in cardiac energy balance at rest. PMID:27622548

  11. The solubilisation of boar sperm membranes by different detergents - a microscopic, MALDI-TOF MS, 31P NMR and PAGE study on membrane lysis, extraction efficiency, lipid and protein composition

    Directory of Open Access Journals (Sweden)

    Müller Karin

    2009-11-01

    Full Text Available Abstract Background Detergents are often used to isolate proteins, lipids as well as "detergent-resistant membrane domains" (DRMs from cells. Different detergents affect different membrane structures according to their physico-chemical properties. However, the effects of different detergents on membrane lysis of boar spermatozoa and the lipid composition of DRMs prepared from the affected sperm membranes have not been investigated so far. Results Spermatozoa were treated with the selected detergents Pluronic F-127, sodium cholate, CHAPS, Tween 20, Triton X-100 and Brij 96V. Different patterns of membrane disintegration were observed by light and electron microscopy. In accordance with microscopic data, different amounts of lipids and proteins were released from the cells by the different detergents. The biochemical methods to assay the phosphorus and cholesterol contents as well as 31P NMR to determine the phospholipids were not influenced by the presence of detergents since comparable amounts of lipids were detected in the organic extracts from whole cell suspensions after exposure to each detergent. However, matrix-assisted laser desorption and ionization time-of-flight mass spectrometry applied to identify phospholipids was essentially disturbed by the presence of detergents which exerted particular suppression effects on signal intensities. After separation of the membrane fractions released by detergents on a sucrose gradient only Triton X-100 and sodium cholate produced sharp turbid DRM bands. Only membrane solubilisation by Triton X-100 leads to an enrichment of cholesterol, sphingomyelin, phosphatidylinositol and phosphatidylethanolamine in a visible DRM band accompanied by a selective accumulation of proteins. Conclusion The boar sperm membranes are solubilised to a different extent by the used detergents. Particularly, the very unique DRMs isolated after Triton X-100 exposure are interesting candidates for further studies regarding the

  12. Compressive Shift Retrieval

    Science.gov (United States)

    Ohlsson, Henrik; Eldar, Yonina C.; Yang, Allen Y.; Sastry, S. Shankar

    2014-08-01

    The classical shift retrieval problem considers two signals in vector form that are related by a shift. The problem is of great importance in many applications and is typically solved by maximizing the cross-correlation between the two signals. Inspired by compressive sensing, in this paper, we seek to estimate the shift directly from compressed signals. We show that under certain conditions, the shift can be recovered using fewer samples and less computation compared to the classical setup. Of particular interest is shift estimation from Fourier coefficients. We show that under rather mild conditions only one Fourier coefficient suffices to recover the true shift.

  13. Reduced rate of adenosine triphosphate synthesis by in vivo 31P nuclear magnetic resonance spectroscopy and downregulation of PGC-1beta in distal skeletal muscle following burn.

    Science.gov (United States)

    Tzika, A Aria; Mintzopoulos, Dionyssios; Padfield, Katie; Wilhelmy, Julie; Mindrinos, Michael N; Yu, Hongue; Cao, Haihui; Zhang, Qunhao; Astrakas, Loukas G; Zhang, Jiangwen; Yu, Yong-Ming; Rahme, Laurence G; Tompkins, Ronald G

    2008-02-01

    Using a mouse model of burn trauma, we tested the hypothesis that severe burn trauma corresponding to 30% of total body surface area (TBSA) causes reduction in adenosine triphosphate (ATP) synthesis in distal skeletal muscle. We employed in vivo 31P nuclear magnetic resonance (NMR) in intact mice to assess the rate of ATP synthesis, and characterized the concomitant gene expression patterns in skeletal muscle in burned (30% TBSA) versus control mice. Our NMR results showed a significantly reduced rate of ATP synthesis and were complemented by genomic results showing downregulation of the ATP synthase mitochondrial F1 F0 complex and PGC-1beta gene expression. Our findings suggest that inflammation and muscle atrophy in burns are due to a reduced ATP synthesis rate that may be regulated upstream by PGC-1beta. These findings implicate mitochondrial dysfunction in distal skeletal muscle following burn injury. That PGC-1beta is a highly inducible factor in most tissues and responds to common calcium and cyclic adenosine monophosphate (cAMP) signaling pathways strongly suggests that it may be possible to develop drugs that can induce PGC-1beta.

  14. T(1) measurement of (31)P metabolites at rest and during steady-state dynamic exercise using a clinical nuclear magnetic resonance scanner.

    Science.gov (United States)

    Cettolo, V; Piorico, C; Francescato, M P

    2006-03-01

    This article illustrates some problems and possible solutions to determine the apparent spin-lattice relaxation time (T(1)) of the muscular (31)P metabolites at rest and during dynamic steady-state exercise using a clinical 1.5 T NMR scanner and a surface coil. T(1) was first estimated on a phosphates solution (phantom) using four different acquisition protocols, all based on the multiple-point "progressive saturation" method, and by fitting each data set with two different mathematical models. Subsequently, two of the four protocols and both models were used to estimate T(1) both at rest and during exercise on the calf muscles of 10 healthy volunteers. Experimental results obtained on the phantom showed that T(1) is greatly affected by the longest nominal explored repetition time (P<0.001) and by the mathematical model (P<0.001), ranging from 0.65+/-0.10 to 8.4+/-0.8 s. The two acquisition protocols applied on volunteers yielded significantly different T(1) (P<0.001), which were also rather different from the literature values for the same metabolites. Nevertheless, independently of the acquisition protocol and/or the fitting procedure, T(1) of all muscular phosphagens did not change statistically from rest to steady-state aerobic exercise.

  15. Facilitated transport of Mn2+ in sycamore (Acer pseudoplatanus) cells and excised maize root tips. A comparative 31P n.m.r. study in vivo.

    Science.gov (United States)

    Roby, C; Bligny, R; Douce, R; Tu, S I; Pfeffer, P E

    1988-06-01

    Movement of paramagnetic Mn2+ into sycamore (Acer pseudoplatanus) cells has been indirectly examined by observing the line broadening exhibited in its 31P n.m.r. spectra. Mn2+ was observed to pass into the vacuole, while exhibiting a very minor accumulation in the cytoplasm. With time, gradual leakage of phosphate from the vacuole to the cytoplasm was observed along with an increase in glucose-6-phosphate. Anoxia did not appear to affect the relative distribution of Mn2+ in the cytoplasm and vacuole. Under hypoxic conditions restriction of almost all movement of Mn2+ across the plasmalemma as well as the tonoplast was observed. In contrast, maize root tips showed entry and complete complexation of nucleotide triphosphate by Mn2+ during hypoxia. The rate of passage of Mn2+ across the tonoplast in both sycamore and maize root cells is approximately the same. However, the rates of facilitated movement across the respective plasma membranes appear to differ. More rapid movement of Mn2+ across the plasmalemma in maize root tip cells allows a gradual build-up of metal ion in the cytoplasm prior to its diffusion across the tonoplast. Sycamore cells undergo a slower uptake of Mn2+ into their cytoplasms (comparable with the rate of diffusion through the tonoplast), so little or no observable accumulation of Mn2+ is observed in this compartment.

  16. Insight into the protonation and K(I)-interaction of the inositol 1,2,3-trisphosphate as provided by 31P NMR and theoretical calculations

    Science.gov (United States)

    Veiga, Nicolás; Torres, Julia; González, Gabriel; Gómez, Kerman; Mansell, David; Freeman, Sally; Domínguez, Sixto; Kremer, Carlos

    2011-02-01

    Animal cells contain a pool of inositol phosphates whose biological function is still under current investigation. Ins(1,2,3) P3 is probably an important safe chelator of iron cations not strongly bound to proteins. In order to clarify its biological functions, Ins(1,2,3) P3 chemistry under physiological conditions must be completely elucidated. The protonation and complexation behaviour of Ins(1,2,3) P3 has been recently studied under these conditions by potentiometry. Under simulated physiological conditions it forms the protonated species H 2L 4- and H 3L 3-. The presence of high concentrations of potassium in intracellular compartments causes the formation of two predominant Ins(1,2,3) P3 complexes: [K(HL)] 4- and [K(H 2L)] 3-, in the absence of iron. In this work we expand part of this macroscopic knowledge to the inframolecular level, by 31P NMR measurements and focusing on the protonation and complexation of this biologically relevant molecule to potassium. We complete this study with theoretical calculations which lead us to predict the geometries of every form of the ligand and their relative stabilities. The influence of the ring conformation in protonated and complexed forms is also discussed.

  17. Oxidative stress-induced metabolic changes in mouse C2C12 myotubes studied with high-resolution 13C, 1H, and 31P NMR spectroscopy.

    Science.gov (United States)

    Straadt, Ida K; Young, Jette F; Petersen, Bent O; Duus, Jens Ø; Gregersen, Niels; Bross, Peter; Oksbjerg, Niels; Theil, Peter K; Bertram, Hanne C

    2010-02-10

    In this study, stress in relation to slaughter was investigated in a model system by the use of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy for elucidating changes in the metabolites in C2C12 myotubes exposed to H(2)O(2)-induced stress. Oxidative stress resulted in lower levels of several metabolites, mainly amino acids; however, higher levels of alanine were apparent in the (13)C spectra after incubation with [(13)C(1)]glucose. In the (13)C spectra [(13)C(3)]lactate tended to increase after exposure to increasing concentrations of H(2)O(2); conversely, a tendency to lower levels of the unlabeled ((12)C) lactate were identified in the (1)H spectra after stress exposure. These data indicate an increase in de novo synthesis of alanine, concomitant with a release of lactate from the myotubes to the medium at oxidative stress conditions. The changes in the metabolite levels could possibly be useful as markers for meat quality traits.

  18. 31P Magnetic resonance spectroscopyによるラット精巣機能の評価法の検討

    OpenAIRE

    鈴木, 裕志; 蟹本, 雄右; 岡田, 謙一郎; 石井, 靖

    1995-01-01

    精巣の血流遮断と解除,放射線照射,およびホルモン投与の3つの条件下で31P MRSを測定した。1)血流遮断後,ATPはすみやかに減少し60分以内に完全に消失した。2) 3時間までの血流遮断では遮断解除後にATPの回復が認められたが,4時間以上の遮断では解除後もATPの回復は認められなかった。3)放射線照射2週間後ではPME/β-ATP比およびPME/PDE比の減少が認められ,PMEの減少は造精機能障害の指標として有用と考えられた。4)ホルモン投与によるgonadotropin抑制モデルでは,PME/PDE比の減少とPDE/β-ATPの増加を認め,PDEの増加も造精機能障害の第二の指標となりうる...

  19. Simulated biological effects of microgravity on phospholipid and energy metabolism of chicken embryonic brain cells studied by 31P-NMR spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Levels of phosphomonoester (PME), phosphodiester (PDE), ATP and pH in brain cells of chicken embryos rotated for 24 h in a clinostat during the period of hatching the 13th day (E13) and 15th day (E15) embryos were investigated by using 31P-NMR spectroscopy. Significant increases in the values of PME, ATP and pH were identified after E13 rotating for 24 h. With the same treatment, differences were obtained in the phospholipid and energy metabolism of E15, but no significant levels have been reached . The calorimetric assay (malachite green method) was used for measuring the activity of total ATPase. A dramatic decrease was evident in the activity of ATPase in brain cells of rotated E13 and E15. The former is more sensitive than the latter. All the levels mentioned above could restore in 24 h after the rotation stopped, except that the level of ATP was still higher than the control.

  20. Comparison of the compression strength of human vertebral bodies with the mass and density of apatite: a study by 31P NMR spectroscopy.

    Science.gov (United States)

    Brown, C E; Srinivasan, R; Sigmann, P; Myklebust, J B; Battocletti, J H

    1988-10-01

    The force needed to fracture individual human thoracic and lumbar vertebral bodies is compared with the mass and density of apatite. 31P NMR spectrometry was used to quantify the apatite, because it permits the mineral content of bone to be determined noninvasively with minimal nonspecific interference from the organic matrix or from variations in composition of the marrow. Experiments were performed with bones of similar structure and function from a single individual with no history of trabecular fractures, to compensate for the effects of the other variables that affect bone strength. The coefficient of correlation between compression strength and the volume density (i.e., g/cm3) of apatite was 0.95. The correlation of strength with the mass (i.e., grams) of apatite in a vertebral body also was reasonably good, r = 0.82, but correlations with areal density (i.e., g/cm2) and linear density (i.e., g/cm) were much poorer.

  1. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  2. Evidence for a "metabolically inactive" inorganic phosphate pool in adenosine triphosphate synthase reaction using localized 31P saturation transfer magnetic resonance spectroscopy in the rat brain at 11.7 T.

    Science.gov (United States)

    Tiret, Brice; Brouillet, Emmanuel; Valette, Julien

    2016-09-01

    With the increased spectral resolution made possible at high fields, a second, smaller inorganic phosphate resonance can be resolved on (31)P magnetic resonance spectra in the rat brain. Saturation transfer was used to estimate de novo adenosine triphosphate synthesis reaction rate. While the main inorganic phosphate pool is used by adenosine triphosphate synthase, the second pool is inactive for this reaction. Accounting for this new pool may not only help us understand (31)P magnetic resonance spectroscopy metabolic profiles better but also better quantify adenosine triphosphate synthesis.

  3. Constituintes químicos de Ottonia corcovadensis Miq. da floresta Amazônica: atribuição dos deslocamentos químicos dos átomos de hidrogênio e carbono Chemical constituents of Ottonia corcovadensis Miq. from Amazon forest: ¹h and 13c chemical shift assignments

    Directory of Open Access Journals (Sweden)

    Valdir A. Facundo

    2004-02-01

    Full Text Available In an ethanolic extract of leaves of Ottonia corcovadensis (Piperaceae were identified sixteen terpenoids of essential oil and the three flavonoids 3',4',5,5',7-pentamethoxyflavone (1, 3',4',5,7-tetramethoxyflavone (2 and 5-hydroxy-3',4',5',7-tetramethoxyflavone (3 and cafeic acid (4. Two amides (5 and 6 were isolated from an ethanolic extract of the roots. The structures were established by spectral analysis, meanly NMR (1D and 2D and mass spectra. Extensive NMR analysis was also used to complete ¹H and 13C chemical shift assignments of the flavonoids and amides. The components of the essential oil were identified by computer library search, retention indices and visual interpretation of mass spectra.

  4. Comparison of brown and white adipose tissue fat fractions in ob, seipin, and Fsp27 gene knockout mice by chemical shift-selective imaging and (1)H-MR spectroscopy.

    Science.gov (United States)

    Peng, Xin-Gui; Ju, Shenghong; Fang, Fang; Wang, Yu; Fang, Ke; Cui, Xin; Liu, George; Li, Peng; Mao, Hui; Teng, Gao-Jun

    2013-01-15

    Brown adipose tissue (BAT) plays a key role in thermogenesis to protect the body from cold and obesity. White adipose tissue (WAT) stores excess energy in the form of triglycerides. To better understand the genetic effect on regulation of WAT and BAT, we investigated the fat fraction (FF) in two types of adipose tissues in ob/ob, human BSCL2/seipin gene knockout (SKO), Fsp27 gene knockout (Fsp27(-/-)), and wild-type (WT) mice in vivo using chemical shift selective imaging and (1)H-MR spectroscopy. We reported that the visceral fat volume in WAT was significantly larger in ob/ob mice, but visceral fat volumes were lower in SKO and Fsp27(-/-) mice compared with WT mice. BAT FF was significantly higher in ob/ob mice than the WT group and similar to that of WAT. In contrast, WAT FFs in SKO and Fsp27(-/-) mice were lower and similar to that of BAT. The adipocyte size of WAT in ob/ob mice and the BAT adipocyte size in ob/ob, SKO, and Fsp27 mice were significantly larger compared with WT mice. However, the WAT adipocyte size was significantly smaller in SKO mice than in WT mice. Positive correlations were observed between the adipocyte size and FFs of WAT and BAT. These results suggested that smaller adipocyte size correlates with lower FFs of WAT and BAT. In addition, the differences in FFs in WAT and BAT measured by MR methods in different mouse models were related to the different regulation effects of ob, seipin, or Fsp27 gene on developing WAT and BAT.

  5. Functional pools of fast and slow twitch fibers observed by /sup 31/P-NMR during exercise of flexor wrist muscles in man

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Park, C.R.; Brown, R.L.; Chance, B.

    1987-05-01

    Functional compartments of fast and slow twitch fibers have been observed by /sup 31/P-NMR spectroscopy during exercise of the wrist flexor muscles in a sedentary, young male subject. Values of Pi, phosphocreatine (PCr) and adenine nucleotides were determined at rest and during an exercise protocol. The subject flexed his wrist muscles at 20% of maximum strength every 5 sec for 6 min and then increased his effort in the next two 6 min intervals to 40% and 60% of maximum. With exercise, the Pi/PCr rose rapidly to the exceptionally high value of 2.2 at 60% effort. As the Pi increased, the initial single peak (pH 7.0-6.9) split into two distinct components with pH values of 6.8 and 6.3. Quantitatively, distribution of the Pi was 40% in the pH 6.8 peak and 60% in the pH 6.3 peak as determined by area estimation following curve fitting. This presumably reflects two pools of Pi corresponding to the oxidative (slow twitch, high pH) and glycolytic (fast twitch, low pH) fibers. In the second identical exercise sequence which followed immediately, only one Pi peak (pH 6.8-6.9) appeared. This suggested that the glycolytic contribution to energy production was largely exhausted and the residual energy was derived from oxidative metabolism. During exercise at high levels, total phosphate decreased due primarily to loss of NMR visible adenine nucleotides. Similar phenomena have been observed in three other sedentary individuals, but not in trained athletes.

  6. Effect of prior exercise in Pi/PC ratio and intracellular pH during a standardized exercise. A study on human muscle using [31P]NMR.

    Science.gov (United States)

    Laurent, D; Authier, B; Lebas, J F; Rossi, A

    1992-01-01

    Seven subjects underwent a standard localized exercise of calf muscles in order to investigate whether the metabolic exercise-induced steady-state, as revealed by the evaluation of inorganic phosphate/phosphocreatine ratio, depends on the conditioning of the muscle just prior to the exercise. The experimental protocols consisted of two separate experiments using first [31P]nuclear magnetic resonance spectroscopy and second (on 3 subjects) infrared oxyphotometry to respectively follow variation of energy metabolism and tissular deoxygenation. The exercise consisted of 240 successive plantar flexions (0.5 Hz frequency) against a high load equivalent to 80% of the maximal voluntary contraction. This exercise was accomplished before cold exercise and after warm exercise, a warming-up period bringing to approximately 50% of VO2max. The results showed that: (1) steady-state level of phosphate/phosphocreatine and intracellular acidosis was significantly lowered by warming-up; (2) cold and warm exercise steady-state of calculated adenosine diphosphate values were not significantly different; (3) cold exercise rapidly induced a high tissular deoxygenation that is not observed during warm exercise; and (4) time-constant of phosphocreatine resynthesis is lowered after warm exercise but the initial slope of time-evolution is not modified. Parallel experiments also showed that phosphate/phosphocreatine steady-state was not modified in comparison with warm exercise when the same power of exercise was reached by stepwise incrementation of the charge. From these results we postulate that a better tissue oxygenation due to a global or localized warming-up allows to reach the same mechanical performance with a lower decrease of PCr content, owing to a faster adjustment of oxidative metabolism during the transitional period.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Using solid 13C NMR coupled with solution 31P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China

    Science.gov (United States)

    Aquatic plants are involved in the storage and release capacity for organic matter and nutrients. In this study, solid 13C and solution 31P nuclear magnetic resonance (NMR) spectroscopy were used to characterize the biomass samples of six aquatic plants. Solid 13C NMR spectroscopy revealed the domin...

  8. Evaluation of liver function status in patients with obstructive jaundice using in vivo 31-phosphorus magnetic resonance spectroscopy%31p-MRS无创评估梗阻性黄疸肝功能损害的价值

    Institute of Scientific and Technical Information of China (English)

    于德新; 马祥兴; 张晓明; 张宗利; 李传福

    2009-01-01

    目的:探讨31P-MRS技术评价梗阳性黄疸旰功能损害的价值.方法:对36例梗阻性黄疸患者(黄疸组)进行单体素31P-MRS扫描,计算肝细胞内pH值(pHi)、磷酸单脂(PME)、磷酸双脂(PDE)、无机磷(Pi)、γ-ATP、β-ATP、α-ATP、PME/ATP、Pi/ATP、PME/PDE、PME/Pi、PDE/Pi、PDE/ATP和低能磷酸盐(LEP)等.检测临床肝功能血清学指标.以40例正常人为对照组,分析黄疸对31P-MRS检测参数的影响及其与肝功能血清检测指标之间的关系.结果:黄疸组肝脏PME、PDE、PME,ATP、PME/Pi、PDE/ATP及LEP均明显大于对照组,两组差异有统计学意义(P0.05).结论:31P-MRS可以对梗阻性黄疸导致的肝功能损害进行无创性评估,PME和PDE代谢物可能是反映肝功能损害较为敏感的指标.

  9. Correlation of microvessel and mature vessel in hepatocellular carcinoma with tumor metabolism quantized noninvasively by using in-vivo ~(31)P-MRS at 3.0 Tesla%~(31)P-MRS无创量化肝细胞癌细胞代谢水平及其与血管生成的关系

    Institute of Scientific and Technical Information of China (English)

    于德新; 马祥兴; 张宗立; 张晓明; 王茜; 李传福

    2010-01-01

    目的 利用~(31)P-MRS对肝细胞癌(HCC)量化的代谢情况,探讨肿瘤血管生成及其成熟度对代谢的影响.方法 对经病理证实的肝细胞癌31例在手术前行~(31)P-MRS扫描,分析肿瘤和周围肝实质的细胞内pH值(pHi)、磷酸单脂(PME)、磷酸双脂(PDE)、无机磷(Pi)、γ-ATP、β-ATP、α-ATP、PME/ATP、Pi/ATP、PME/PDE、PME/Pi、PDE/Pi、PDE/ATP和低能磷酸盐(LEP)等.利用免疫组化技术检测肿瘤的VEGF、Flk-1表达情况及PCNA指数,利用病理图像自动分析系统统计微血管和成熟血管的数目、平均面积、总面积、周长、直径、异型指数、血管间距、表达部位、动脉数、静脉数、血管成熟指数和平均灌注分数等参数.利用HE染色计算细胞外间隙(ES)面积及细胞外血管外间隙(EES).将~(31)P-MRS技术测得的指标与血管参数进行对照分析.结果 HCC的pHi、PME/PDE以及Pi、β-ATP的峰下面积都高于肝脏(P<0.05);PDE/ATP、PDE/Pi则相反(P<0.05).Pi/ATP在VEGF阳性和阴性表达时差异有统计学意义(P=0.047,f=2.135),PDE/Pi在Flk-1阳性和阴性表达组也具统计学意义(P=0.001,t=2.13).pHi在CD34不同表达部位之间存在统计学意义(P=0.01,F=7.493).pHi与静脉数呈正相关(P=0.003,r=0.749);PME与EES负相关(P=0.029,r=-0.583);Pi与微血管总面积正相关(P=0,r=0.766);γ-ATP与动脉数目呈正相关(P=0.012,r=0.648).与β-ATP有关有ES、PI及微血管的直径、周长和平均面积等(P<0.05).PME/Pi与PI正相关,与微血管异型指数负相关(P<0.05).成熟血管数目、周长、直径及动脉数目与PME/ATP均相关(P<0.05).PDE/Pi与成熟血管间距也为正相关(P=0.041,r=0.533),与LEP有关的因素包括平均灌注分数、EES和微血管总面积(P<0.05).结论 HCC的pHi、Pi、β-ATP、PME/PDE都高于肝脏,PDE/ATP、PDE/Pi则相反;HCC血管生成的异质性影响~(31)P-MRS检测的各个代谢物的水平.%Objective To probe the influence of angiogenesis and its

  10. Sol-gel chemistry synthesis and DTA-TGA, XRPD, SIC and {sup 7}Li, {sup 31}P, {sup 29}Si MAS-NMR studies on the Li-NASICON Li{sub 3}Zr{sub 2-y}Si{sub 2-4y}P{sub 1+4y}O{sub 12} (0 Less-Than-Or-Slanted-Equal-To y Less-Than-Or-Slanted-Equal-To 0.5) system

    Energy Technology Data Exchange (ETDEWEB)

    Belam, W., E-mail: WahidBelam@yahoo.fr [Chemistry Department, Bizerta Science Faculty, 7021 Jarzouna, Bizerta (Tunisia)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer The samples of Li-NASICON were elaborated by sol-gel chemistry. Black-Right-Pointing-Pointer The calcined temperatures of the studied samples were deduced from their thermograms. Black-Right-Pointing-Pointer The recorded X-ray powder diffractograms were indexed in the rhombohedral system. Black-Right-Pointing-Pointer The synthesized Li-NASICON materials are excellent lithium fast cation conductors. - Abstract: Five selected compounds of Li-NASICON, Li{sub 3}Zr{sub 2-y}Si{sub 2-4y}P{sub 1+4y}O{sub 12} (0 Less-Than-Or-Slanted-Equal-To y Less-Than-Or-Slanted-Equal-To 0.5), were synthesized by sol-gel chemistry in order to obtain pure polycrystalline powder and then analyzed by different physicochemical characterizations such as coupled DTA (differential thermal analysis)-TGA (thermogravimetric analysis), XRPD (X-ray powder diffraction), CIS (complex impedance spectroscopy) and MAS (magic angle spinning)-NMR (nuclear magnetic resonance). So the calcined temperature of each sample has been deduced from its corresponding DTA-TGA thermogram. However, the recorded X-ray powder diffractograms were indexed in the rhombohedral system with R3{sup Macron }c space group which corresponds to the ideal structure of NASICON. Whereas, the complex impedance spectroscopy study showed that these Li-NASICON materials are excellent lithium fast cation conductors with total electric conductivity maximal value 1.97 Multiplication-Sign 10{sup -3} S cm{sup -1} at 293 K in the case of Li{sub 3}Zr{sub 1.5}P{sub 3}O{sub 12}. Furthermore, {sup 7}Li, {sup 31}P and {sup 29}Si MAS-NMR spectroscopy study and DFT/B3LYP theoretical calculations of chemical shifts were performed to discuss the ambiguousness that exists between the resonance peak number in the experimental spectrum and the crystallographic site number relative to Li{sub 3}Zr{sub 2}Si{sub 2}PO{sub 12}.

  11. CXCL8((3-73))K11R/G31P antagonizes the neutrophil chemoattractants present in pasteurellosis and mastitis lesions and abrogates neutrophil influx into intradermal endotoxin challenge sites in vivo.

    Science.gov (United States)

    Li, Fang; Zhang, Xiaobei; Mizzi, Chris; Gordon, John R

    2002-11-01

    The ELR(+) CXC chemokines are critical for protective neutrophil responses to most bacterial infections, but nevertheless can contribute importantly to the pathogenic effects of many inflammatory responses. We recently engineered a series of high affinity CXCL8/IL-8 antagonists, one of which, CXCL8((3-73))K11R/G31P, binds very strongly to neutrophils via the CXCR1 and CXCR2. Herein we show in competitive 125I-ligand binding assays that bovine CXCL8((3-73))K11R/G31P has an affinity for neutrophils that is 2-3 orders of magnitude higher than that of CXCL8/IL-8. Furthermore, when used at approximately 0.5 nM, CXCL8((3-73))K11R/G31P inhibited by 50% the chemotactic responses of neutrophils to 129 nM CXCL8/IL-8, but it also blocked chemotactic responses to the alternate ELR-CXC chemokines CXCL1/GRO alpha and CXCL5/ENA-78. Furthermore, CXCL8((3-73))K11R/G31P could inhibit by 93-97% the spectrum of neutrophil chemotactic activities present within wash fluids from clinical bacterial pneumonia or experimental endotoxin-induced mastitis lesions. Finally, intramuscular or subcutaneous application of CXCL8((3-73))K11R/G31P (75 micro g/kg) reduced by up to 97% neutrophil infiltration into intradermal endotoxin challenge sites in cattle, and prevented their circulating neutrophils from responding to CXCL8/IL-8 or ENA-78 in vitro. This data thus encourages further investigation of the potential impact of this novel antagonist on ELR-CXC chemokine-driven inflammatory disorders.

  12. Implementing OpenShift

    CERN Document Server

    Miller, Adam

    2013-01-01

    A standard tutorial-based approach to using OpenShift and deploying custom or pre-built web applications to the OpenShift Online cloud.This book is for software developers and DevOps alike who are interested in learning how to use the OpenShift Platform-as-a-Service for developing and deploying applications, how the environment works on the back end, and how to deploy their very own open source Platform-as-a-Service based on the upstream OpenShift Origin project.

  13. Quantized beam shifts

    CERN Document Server

    Kort-Kamp, W J M; Dalvit, D A R

    2015-01-01

    We predict quantized Imbert-Fedorov, Goos-H\\"anchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant $\\alpha$, while the Goos- H\\"anchen ones in multiples of $\\alpha^2$. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  14. HPLC and 31P NMR characterization of the reaction between antitumor platinum agents and the phosphorothioate chemoprotective agent S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR-2721).

    Science.gov (United States)

    Thompson, D C; Wyrick, S D; Holbrook, D J; Chaney, S G

    1995-10-26

    In prior studies, we examined the effects of the radioprotective and chemoprotective agent WR-2721 [S-2-(3-aminopropylamino)ethylphosphorothioic acid] on the in vivo biotransformation of the cisplatin [cis-diamminedichloroplatinum(II)] analog ormaplatin [(d,I)trans-1,2-diaminocyclohexanetetrachloroplatinum(IV), Pt(dach)Cl4, (formerly called tetraplatin)]. Those data suggested that a direct interaction between WR-2721 and ormaplatin and/or the corresponding Pt(II) drug, Pt(dach)Cl2, may be occurring in vivo. This would be in contrast to the generally accepted hypothesis that WR-2721 is a prodrug that must first be converted by alkaline phosphatase to a free thiol compound, WR-1065, before any appreciable reactivity would be evident. However, the major biotransformation product observed in the peritoneal fluid, plasma, and all tissues was Pt(dach)(WR-1065). We report here on further investigations into the in vitro reactivity of Pt(dach) compounds with WR-2721 and WR-1065. Separation of reaction products resulting from incubation of Pt(dach)(malonato) with either WR-2721 or WR-1065 under physiological conditions gave profiles that were indistinguishable by reverse phase HPLC and cation exchange HPLC at two different pHs. 31P NMR characterization of the dephosphorylation of WR-2721 revealed essentially no loss of inorganic phosphate for up to 24 hr when incubated in unbuffered water at 30 degrees. In contrast, when incubated with a 1:1 molar ratio of cisplatin under the same conditions, the WR-2721 signal was decreased markedly in the first 5 min, and had disappeared almost completely by 1 hr. The signal corresponding to inorganic phosphate increased in parallel to the decrease in the WR-2721 signal. No intermediate formation of a complex containing both platinum and phosphate could be detected at any time. These data suggest that the reaction between WR-2721 and platinum complexes results in rapid dephosphorylation of WR-2721, and, consequently, that the reaction

  15. Effects of temperature and extracellular pH on metabolites: kinetics of anaerobic metabolism in resting muscle by 31P- and 1H-NMR spectroscopy.

    Science.gov (United States)

    Vezzoli, Alessandra; Gussoni, Maristella; Greco, Fulvia; Zetta, Lucia

    2003-09-01

    Environmental stress, such as low temperature, extracellular acidosis and anoxia, is known to play a key role in metabolic regulation. The aim of the present study was to gain insight into the combined temperature-pH regulation of metabolic rate in frog muscle, i.e. an anoxia-tolerant tissue. The rate of exergonic metabolic processes occurring in resting isolated muscles was determined at 15 degrees C and 25 degrees C as well as at extracellular pH values higher (7.9), similar (7.3) and lower (7.0) than the physiological intracellular pH. (31)P and (1)H nuclear magnetic resonance spectroscopy high-resolution measurements were carried out at 4.7 T in isolated frog (Rana esculenta) gastrocnemius muscle during anoxia to assess, by means of reference compounds, the concentration of all phosphate metabolites and lactate. Intra- and extracellular pH was also determined. In the range of examined temperatures (15-25 degrees C), the temperature dependence of anaerobic glycolysis was found to be higher than that of PCr depletion (Q(10)=2.3). High-energy phosphate metabolism was confirmed to be the initial and preferential energy source. The rate of phosphocreatine hydrolysis did not appear to be affected by extracellular pH changes. By contrast, independent of the intracellular pH value, at the higher temperature (25 degrees C) a lowering of the extracellular pH from 7.9 to 7.0 caused a depression in lactate accumulation. This mechanism was ascribed to the transmembrane proton concentration gradient. This parameter was demonstrated to regulate glycolysis, probably through a reduced lactate efflux, depending on the activity of the lactate-H(+) co-transporter. The calculated intracellular buffer capacity was related to intra- and extracellular pH and temperature. At the experimental extracellular pH of 7.9 and at a temperature of 15 degrees C and 25 degrees C, calculated intracellular buffering capacity was 29.50 micromol g(-1) pH unit(-1) and 69.98 micromol g(-1) pH unit(-1

  16. Metabolic Changes in Rats with Photochemically Induced Cerebral Infarction and the Effects of Batroxobin: A Study by Magnetic Resonance Imaging, 1H- and 31P- Magnetic Resonance Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    管兴志; 吴卫平; 匡培根; 匡培梓; 高杨; 管林初; 李丽云; 毛希安; 刘买利

    2001-01-01

    Metabolic changes in rats with photochemically induced cerebral infarction and the effects of batroxobin were investigated 1, 3, 5 and 7 days after infarction by means of magnetic resonance imaging (MRI), 1H- and 31P- magnetic resonance spectroscopy (MRS). A region of T2 hyperintensity was observed in left temporal neocortex in infarction group and batroxobin group 1, 3, 5 and 7 days after infarction. The volume of the region gradually decreased from 1 day to 7 days after infarction. The ratio of NAA/Cho+Cr in the region of T2 hyperintensity in the infarction group was significantly lower than that in the corresponding region in the sham-operated group 3, 5 and 7 days after infarction respectively (P<0.05). Lac appeared in the region of T2 hyperintensity in the infarction group 1, 3, 5 and 7 days after infarction, but it was not observed in the corresponding region in sham-operated group at all time points. Compared with the sham-operated group, the ratios of bATP/PME+PDE and PCr/PME+PDE of the whole brain in the infarction group were significantly lower 1, 3 and 5 days after infarction respectively (P<0.05), and the ratio of bATP/PCr also was significantly lower 1 day after infarction (P<0.05). Batroxobin significantly decreased the volume of the region of T2 hyperintensity 1 and 3 days after infarction (P<0.05), significantly increased the ratio of NAA/Cho+Cr in the region 5 and 7 days after infarction (P<0.05), significantly decreased the ratios of Lac/Cho+Cr and Lac/NAA in the region 5 and 7 days after infarction (P<0.05), and significantly increased the ratios of bATP/PME+PDE and bATP/PCr in the whole brain 1 day after infarction (P<0.05). The results indicated that the infracted region had severe edema, increased Lac and apparent neuronal dysfunction and death, and energy metabolism of the whole brain decreased after focal infarction, and that batroxobin effectively ameliorated the above-mentioned abnormal changes.

  17. Phosphorus speciation by {sup 31}P NMR spectroscopy in bracken (Pteridium aquilinum (L.) Kuhn) and bluebell (Hyacinthoides non-scripta (L.) Chouard ex Rothm.) dominated semi-natural upland soil

    Energy Technology Data Exchange (ETDEWEB)

    Ebuele, Victor O.; Santoro, Anna; Thoss, Vera, E-mail: v.thoss@bangor.ac.uk

    2016-10-01

    Access to P species is a driver for plant community composition based on nutrient acquisition. Here we investigated the distribution and accumulation of soil inorganic P (Pi) and organic P (Po) forms in a bracken and bluebell dominated upland soil for the period between bluebell above ground dominance until biomass is formed from half bluebells and half bracken. Chemical characterisation and {sup 31}P Nuclear Magnetic Resonance spectroscopy was used to determine the organic and inorganic P species. Total P concentration in soils was 0.87 g kg{sup −1}, while in plants (above- and below-ground parts) total P ranged between 0.84–4.0 g kg{sup −1} and 0.14–2.0 g kg{sup −1} for bluebell and bracken, respectively. The P speciation in the plant samples was reflected in the surrounding soil. The main forms of inorganic P detected in the NaOH-EDTA soil extracts were orthophosphate (20.0–31.5%), pyrophosphate (0.6–2.5%) and polyphosphate (0.4–7.0%). Phytate (myo-IP{sub 6}) was the most dominant organic P form (23.6–40.0%). Other major peaks were scyllo-IP{sub 6} and α- and β- glycerophosphate (glyP). In bluebells and bracken the main P form detected was orthophosphate ranging from (21.7–80.4%) and 68.5–81.1%, in above-ground and below-ground biomass, respectively. Other detected forms include α-glyP (4.5–14.4%) and β-glyP (0.9–7.7%) in bluebell, while in bracken they were detected only in stripe and blade in ranges of 2.5–5.5% and 4.4–9.6%, respectively. Pyrophosphate, polyphosphate, scyllo-IP{sub 6}, phosphonates, found in soil samples, were not detected in any plant parts. In particular, the high abundance of phytate in the soil and in bluebell bulbs, may be related to a mechanism through which bluebells create a recalcitrant phosphorus store which form a key part of their adaptation to nutrient poor conditions. - Highlights: • Organic P forms were the dominant P species detected in the bracken (Pteridium aquilinum) and bluebell

  18. Making Shifts toward Proficiency

    Science.gov (United States)

    McGatha, Maggie B.; Bay-Williams, Jennifer M.

    2013-01-01

    The Leading for Mathematical Proficiency (LMP) Framework (Bay-Williams et al.) has three components: (1) The Standards for Mathematical Practice; (2) Shifts in classroom practice; and (3) Teaching skills. This article briefly describes each component of the LMP framework and then focuses more in depth on the second component, the shifts in…

  19. Shifting employment revisited

    NARCIS (Netherlands)

    Cremers, Jan; Gramuglia, Alessia

    2014-01-01

    The CLR-network examined in 2006 the phenomenon of undeclared labour, with specific regard to the construction sector. The resulting study, Shifting Employment: undeclared labour in construction (Shifting-study hereafter), gave evidence that this is an area particularly affected by undeclared activi

  20. Shifted Independent Component Analysis

    DEFF Research Database (Denmark)

    Mørup, Morten; Madsen, Kristoffer Hougaard; Hansen, Lars Kai

    2007-01-01

    Delayed mixing is a problem of theoretical interest and practical importance, e.g., in speech processing, bio-medical signal analysis and financial data modelling. Most previous analyses have been based on models with integer shifts, i.e., shifts by a number of samples, and have often been carried...