WorldWideScience

Sample records for 30s ribosome assembly

  1. Assembly of the 30S ribosomal subunit: positioning ribosomal protein S13 in the S7 assembly branch.

    Science.gov (United States)

    Grondek, Joel F; Culver, Gloria M

    2004-12-01

    Studies of Escherichia coli 30S ribosomal subunit assembly have revealed a hierarchical and cooperative association of ribosomal proteins with 16S ribosomal RNA; these results have been used to compile an in vitro 30S subunit assembly map. In single protein addition and omission studies, ribosomal protein S13 was shown to be dependent on the prior association of ribosomal protein S20 for binding to the ribonucleoprotein particle. While the overwhelming majority of interactions revealed in the assembly map are consistent with additional data, the dependency of S13 on S20 is not. Structural studies position S13 in the head of the 30S subunit > 100 A away from S20, which resides near the bottom of the body of the 30S subunit. All of the proteins that reside in the head of the 30S subunit, except S13, have been shown to be part of the S7 assembly branch, that is, they all depend on S7 for association with the assembling 30S subunit. Given these observations, the assembly requirements for S13 were investigated using base-specific chemical footprinting and primer extension analysis. These studies reveal that S13 can bind to 16S rRNA in the presence of S7, but not S20. Additionally, interaction between S13 and other members of the S7 assembly branch have been observed. These results link S13 to the 3' major domain family of proteins, and the S7 assembly branch, placing S13 in a new location in the 30S subunit assembly map where its position is in accordance with much biochemical and structural data.

  2. Exploring assembly energetics of the 30S ribosomal subunit using an implicit solvent approach.

    Science.gov (United States)

    Trylska, Joanna; McCammon, J Andrew; Brooks Iii, Charles L

    2005-08-10

    To explore the relationship between the assembly of the 30S ribosomal subunit and interactions among the constituent components, 16S RNA and proteins, relative binding free energies of the T. thermophilus 30S proteins to the 16S RNA were studied based on an implicit solvent model of electrostatic, nonpolar, and entropic contributions. The late binding proteins in our assembly map were found not to bind to the naked 16S RNA. The 5' domain early kinetic class proteins, on average, carry the highest positive charge, get buried the most upon binding to 16S RNA, and show the most favorable binding. Some proteins (S10/S14, S6/S18, S13/S19) have more stabilizing interactions while binding as dimers. Our computed assembly map resembles that of E. coli; however, the central domain path is more similar to that of A. aeolicus, a hyperthermophilic bacteria.

  3. Tagging ribosomal protein S7 allows rapid identification of mutants defective in assembly and function of 30 S subunits.

    Science.gov (United States)

    Fredrick, K; Dunny, G M; Noller, H F

    2000-05-01

    Ribosomal protein S7 nucleates folding of the 16 S rRNA 3' major domain, which ultimately forms the head of the 30 S ribosomal subunit. Recent crystal structures indicate that S7 lies on the interface side of the 30 S subunit, near the tRNA binding sites of the ribosome. To map the functional surface of S7, we have tagged the protein with a Protein Kinase A recognition site and engineered alanine substitutions that target each exposed, conserved residue. We have also deleted conserved features of S7, using its structure to guide our design. By radiolabeling the tag sequence using Protein Kinase A, we are able to track the partitioning of each mutant protein into 30 S, 70 S, and polyribosome fractions in vivo. Overexpression of S7 confers a growth defect, and we observe a striking correlation between this phenotype and proficiency in 30 S subunit assembly among our collection of mutants. We find that the side chain of K35 is required for efficient assembly of S7 into 30 S subunits in vivo, whereas those of at least 17 other conserved exposed residues are not required. In addition, an S7 derivative lacking the N-terminal 17 residues causes ribosomes to accumulate on mRNA to abnormally high levels, indicating that our approach can yield interesting mutant ribosomes.

  4. Independent in vitro assembly of all three major morphological parts of the 30S ribosomal subunit of Thermus thermophilus.

    Science.gov (United States)

    Agalarov, S C; Selivanova, O M; Zheleznyakova, E N; Zheleznaya, L A; Matvienko, N I; Spirin, A S

    1999-12-01

    Fragments of the 16S rRNA of Thermus thermophilus representing the 3' domain (nucleotides 890-1515) and the 5' domain (nucleotides 1-539) have been prepared by transcription in vitro. Incubation of these fragments with total 30S ribosomal proteins of T. thermophilus resulted in formation of specific RNPs. The particle assembled on the 3' RNA domain contained seven proteins corresponding to Escherichia coli ribosomal proteins S3, S7, S9, S10, S13, S14, and S19. All of them have previously been shown to interact with the 3' domain of the 16S RNA and to be localized in the head of the 30S ribosomal subunit. The particle formed on the 5' RNA domain contained five ribosomal proteins corresponding to E. coli proteins S4, S12, S17, S16, and S20. These proteins are known to be localized in the main part of the body of the 30S subunit. Both types of particle were compact and had sedimentation coefficients of 15.5 S and 13 S, respectively. Together with our recent demonstration of the reconstitution of the RNA particle representing the platform of the T. thermophilus 30S ribosomal subunit [Agalarov, S.C., Zheleznyakova, E.N., Selivanova, O.M., Zheleznaya, L.A., Matvienko, N.I., Vasiliev, V.D. & Spirin, A.S. (1998) Proc. Natl Acad. Sci. USA 95, 999-1003], these experiments establish that all three main structural lobes of the small ribosomal subunit can be reconstituted independently of each other and prepared in the individual state.

  5. Assembly of the central domain of the 30S ribosomal subunit: roles for the primary binding ribosomal proteins S15 and S8.

    Science.gov (United States)

    Jagannathan, Indu; Culver, Gloria M

    2003-07-01

    Assembly of the 30S ribosomal subunit occurs in a highly ordered and sequential manner. The ordered addition of ribosomal proteins to the growing ribonucleoprotein particle is initiated by the association of primary binding proteins. These proteins bind specifically and independently to 16S ribosomal RNA (rRNA). Two primary binding proteins, S8 and S15, interact exclusively with the central domain of 16S rRNA. Binding of S15 to the central domain results in a conformational change in the RNA and is followed by the ordered assembly of the S6/S18 dimer, S11 and finally S21 to form the platform of the 30S subunit. In contrast, S8 is not part of this major platform assembly branch. Of the remaining central domain binding proteins, only S21 association is slightly dependent on S8. Thus, although S8 is a primary binding protein that extensively contacts the central domain, its role in assembly of this domain remains unclear. Here, we used directed hydroxyl radical probing from four unique positions on S15 to assess organization of the central domain of 16S rRNA as a consequence of S8 association. Hydroxyl radical probing of Fe(II)-S15/16S rRNA and Fe(II)-S15/S8/16S rRNA ribonucleoprotein particles reveal changes in the 16S rRNA environment of S15 upon addition of S8. These changes occur predominantly in helices 24 and 26 near previously identified S8 binding sites. These S8-dependent conformational changes are consistent with 16S rRNA folding in complete 30S subunits. Thus, while S8 binding is not absolutely required for assembly of the platform, it appears to affect significantly the 16S rRNA environment of S15 by influencing central domain organization.

  6. Assembly of the 30S subunit from Escherichia coli ribosomes occurs via two assembly domains which are initiated by S4 and S7.

    Science.gov (United States)

    Nowotny, V; Nierhaus, K H

    1988-09-01

    A protein which initiates assembly of ribosomes is defined as a protein which binds to the respective rRNA without cooperativity (i.e., without the help of other proteins) during the onset of assembly and is essential for the formation of active ribosomal subunits. The number of proteins binding without cooperativity was determined by monitoring the reconstitution output of active particles at various inputs of 16S rRNA, in the presence of constant amounts of 30S-derived proteins (TP30): This showed that only two of the proteins of the 30S subunit are assembly-initiator proteins. These two proteins are still present on a LiCl core particle comprising 16S rRNA and 12 proteins (including minor proteins). The 12 proteins were isolated, and a series of reconstitution experiments at various levels of rRNA excess demonstrated that S4 and S7 are the initiator proteins. Pulse-chase experiments performed during the early assembly with 14C- and 3H-labeled TP30 and the determination of the 14C/3H ratio of the individual proteins within the assembled particles revealed a bilobal structure of the 30S assembly: A group of six proteins headed by S4 (namely, S4, S20, S16, S15, S6, and S18) resisted the chasing most efficiently (S4 assembly domain). None of the proteins depending on S7 during assembly were found in this group but rather in a second group with intermediate chasing stability [S7 assembly domain; consisting of S7, S9, (S8), S19, and S3]. A number of proteins could be fully chased during the early assembly and therefore represent "late assembly proteins" (S10, S5, S13, S2, S21, S1). These findings fit well with the 30S assembly map.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Studies on the ability of partially iodinated 16S RNA to participate in 30S ribosome assembly.

    Science.gov (United States)

    Schendel, P L; Craven, G R

    1976-11-01

    Deproteinated 16S RNA was iodinated at pH 5.0 in an aqueous solution containing TlCl3 plus KI for 1-5 hours at 42 degrees C. Under these conditions 33 moles of iodine are incorporated per mole of RNA. As judged by sucrose gradient sedimentation, the iodinated RNA does not exhibit any large alteration in conformation as compared to unmodified 16S. The iodinated RNA was examined for its ability to reconstitute with total 30S proteins. Sedimentation velocity analysis reveals that the reconstituted subunit has a sedimentation constant of approximately 20S. In addition, protein analysis of particles reconstituted with 16S RNA iodinated for 5 hours indicates that proteins S2, S10, S13, S14, S15, S17, S18, S19, and S21 are no longer able to participate in the 30S assembly process and that proteins S6, S16 and S20 are present in reduced amounts. The ramifications of these results concerning protein-RNA and RNA-RNA interactions occurring in ribosome assembly are discussed.

  8. Structural insights into the assembly of the 30S ribosomal subunit in vivo: functional role of S5 and location of the 17S rRNA precursor sequence.

    Science.gov (United States)

    Yang, Zhixiu; Guo, Qiang; Goto, Simon; Chen, Yuling; Li, Ningning; Yan, Kaige; Zhang, Yixiao; Muto, Akira; Deng, Haiteng; Himeno, Hyouta; Lei, Jianlin; Gao, Ning

    2014-05-01

    The in vivo assembly of ribosomal subunits is a highly complex process, with a tight coordination between protein assembly and rRNA maturation events, such as folding and processing of rRNA precursors, as well as modifications of selected bases. In the cell, a large number of factors are required to ensure the efficiency and fidelity of subunit production. Here we characterize the immature 30S subunits accumulated in a factor-null Escherichia coli strain (∆rsgA∆rbfA). The immature 30S subunits isolated with varying salt concentrations in the buffer system show interesting differences on both protein composition and structure. Specifically, intermediates derived under the two contrasting salt conditions (high and low) likely reflect two distinctive assembly stages, the relatively early and late stages of the 3' domain assembly, respectively. Detailed structural analysis demonstrates a mechanistic coupling between the maturation of the 5' end of the 17S rRNA and the assembly of the 30S head domain, and attributes a unique role of S5 in coordinating these two events. Furthermore, our structural results likely reveal the location of the unprocessed terminal sequences of the 17S rRNA, and suggest that the maturation events of the 17S rRNA could be employed as quality control mechanisms on subunit production and protein translation.

  9. Efficient reconstitution of functional Escherichia coli 30S ribosomal subunits from a complete set of recombinant small subunit ribosomal proteins.

    Science.gov (United States)

    Culver, G M; Noller, H F

    1999-06-01

    Previous studies have shown that the 30S ribosomal subunit of Escherichia coli can be reconstituted in vitro from individually purified ribosomal proteins and 16S ribosomal RNA, which were isolated from natural 30S subunits. We have developed a 30S subunit reconstitution system that uses only recombinant ribosomal protein components. The genes encoding E. coli ribosomal proteins S2-S21 were cloned, and all twenty of the individual proteins were overexpressed and purified. Reconstitution, following standard procedures, using the complete set of recombinant proteins and purified 16S ribosomal RNA is highly inefficient. Efficient reconstitution of 30S subunits using these components requires sequential addition of proteins, following either the 30S subunit assembly map (Mizushima & Nomura, 1970, Nature 226:1214-1218; Held et al., 1974, J Biol Chem 249:3103-3111) or following the order of protein assembly predicted from in vitro assembly kinetics (Powers et al., 1993, J MoI Biol 232:362-374). In the first procedure, the proteins were divided into three groups, Group I (S4, S7, S8, S15, S17, and S20), Group II (S5, S6, S9, Sll, S12, S13, S16, S18, and S19), and Group III (S2, S3, S10, S14, and S21), which were sequentially added to 16S rRNA with a 20 min incubation at 42 degrees C following the addition of each group. In the second procedure, the proteins were divided into Group I (S4, S6, S11, S15, S16, S17, S18, and S20), Group II (S7, S8, S9, S13, and S19), Group II' (S5 and S12) and Group III (S2, S3, S10, S14, and S21). Similarly efficient reconstitution is observed whether the proteins are grouped according to the assembly map or according to the results of in vitro 30S subunit assembly kinetics. Although reconstitution of 30S subunits using the recombinant proteins is slightly less efficient than reconstitution using a mixture of total proteins isolated from 30S subunits, it is much more efficient than reconstitution using proteins that were individually isolated

  10. Binding of 16S rRNA to chloroplast 30S ribosomal proteins blotted on nitrocellulose.

    Science.gov (United States)

    Rozier, C; Mache, R

    1984-10-11

    Protein-RNA associations were studied by a method using proteins blotted on a nitrocellulose sheet. This method was assayed with Escherichia Coli 30S ribosomal components. In stringent conditions (300 mM NaCl or 20 degrees C) only 9 E. coli ribosomal proteins strongly bound to the 16S rRNA: S4, S5, S7, S9, S12, S13, S14, S19, S20. 8 of these proteins have been previously found to bind independently to the 16S rRNA. The same method was applied to determine protein-RNA interactions in spinach chloroplast 30S ribosomal subunits. A set of only 7 proteins was bound to chloroplast rRNA in stringent conditions: chloroplast S6, S10, S11, S14, S15, S17 and S22. They also bound to E. coli 16S rRNA. This set includes 4 chloroplast-synthesized proteins: S6, S11, S15 and S22. The core particles obtained after treatment by LiCl of chloroplast 30S ribosomal subunit contained 3 proteins (S6, S10 and S14) which are included in the set of 7 binding proteins. This set of proteins probably play a part in the early steps of the assembly of the chloroplast 30S ribosomal subunit.

  11. Ribosome Assembly as Antimicrobial Target

    Directory of Open Access Journals (Sweden)

    Rainer Nikolay

    2016-05-01

    Full Text Available Many antibiotics target the ribosome and interfere with its translation cycle. Since translation is the source of all cellular proteins including ribosomal proteins, protein synthesis and ribosome assembly are interdependent. As a consequence, the activity of translation inhibitors might indirectly cause defective ribosome assembly. Due to the difficulty in distinguishing between direct and indirect effects, and because assembly is probably a target in its own right, concepts are needed to identify small molecules that directly inhibit ribosome assembly. Here, we summarize the basic facts of ribosome targeting antibiotics. Furthermore, we present an in vivo screening strategy that focuses on ribosome assembly by a direct fluorescence based read-out that aims to identify and characterize small molecules acting as primary assembly inhibitors.

  12. Cross-links between ribosomal proteins of 30S subunits in 70S tight couples and in 30S subunits.

    Science.gov (United States)

    Lambert, J M; Boileau, G; Cover, J A; Traut, R R

    1983-08-01

    Ribosome 70S tight couples and 30S subunits derived from them were modified with 2-iminothiolane under conditions where about two sulfhydryl groups per protein were added to the ribosomal particles. The 70S and 30S particles were not treated with elevated concentrations of NH4Cl, in contrast to those used in earlier studies. The modified particles were oxidized to promote disulfide bond formation. Proteins were extracted from the cross-linked particles by using conditions to preclude disulfide interchange. Disulfide-linked protein complexes were fractionated on the basis of charge by electrophoresis in polyacrylamide/urea gels at pH 5.5. The proteins from sequential slices of the urea gels were analyzed by two-dimensional diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Final identification of proteins in cross-linked complexes was made by radioiodination of the proteins, followed by two-dimensional polyacrylamide/urea gel electrophoresis. Attention was focused on cross-links between 30S proteins. We report the identification of 27 cross-linked dimers and 2 trimers of 30S proteins, all but one of which were found in both 70S ribosomes and free 30S subunits in similar yield. Seven of the cross-links, S3-S13, S13-S21, S14-S19, S7-S12, S9-S13, S11-S21, and S6-S18-S21, have not been reported previously when 2-iminothiolane was used. Cross-links S3-S13, S13-S21, S7-S12, S11-S21, and S6-S18-S21 are reported for the first time. The identification of the seven new cross-links is illustrated and discussed in detail. Ten of the dimers reported in the earlier studies of Sommer & Traut (1976) [Sommer, A., & Traut, R. R. (1976) J. Mol. Biol. 106, 995-1015], using 30S subunits treated with high salt concentrations, were not found in the experiments reported here.

  13. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    Directory of Open Access Journals (Sweden)

    E. Han Dao

    2015-07-01

    Full Text Available In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecond X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.

  14. Binding of 16S rRNA to chloroplast 30S ribosomal proteins blotted on nitrocellulose

    OpenAIRE

    Rozier, Claude; Mache, Régis

    1984-01-01

    Protein-RNA associations were studied by a method using proteins blotted on a nitrocellulose sheet. This method was assayed with Escherichia Coli 30S ribosomal components. In stringent conditions (300 mM NaCl or 20° C) only 9 E. coli ribosomal proteins strongly bound to the 16S rRNA: S4, S5, S7, S9, S12, S13, S14, S19, S20. 8 of these proteins have been previously found to bind independently to the 16S rRNA. The same method was applied to determine protein-RNA interactions in spinach chloropl...

  15. Mutations of ribosomal protein S5 suppress a defect in late-30S ribosomal subunit biogenesis caused by lack of the RbfA biogenesis factor.

    Science.gov (United States)

    Nord, Stefan; Bhatt, Monika J; Tükenmez, Hasan; Farabaugh, Philip J; Wikström, P Mikael

    2015-08-01

    The in vivo assembly of ribosomal subunits requires assistance by maturation proteins that are not part of mature ribosomes. One such protein, RbfA, associates with the 30S ribosomal subunits. Loss of RbfA causes cold sensitivity and defects of the 30S subunit biogenesis and its overexpression partially suppresses the dominant cold sensitivity caused by a C23U mutation in the central pseudoknot of 16S rRNA, a structure essential for ribosome function. We have isolated suppressor mutations that restore partially the growth of an RbfA-lacking strain. Most of the strongest suppressor mutations alter one out of three distinct positions in the carboxy-terminal domain of ribosomal protein S5 (S5) in direct contact with helix 1 and helix 2 of the central pseudoknot. Their effect is to increase the translational capacity of the RbfA-lacking strain as evidenced by an increase in polysomes in the suppressed strains. Overexpression of RimP, a protein factor that along with RbfA regulates formation of the ribosome's central pseudoknot, was lethal to the RbfA-lacking strain but not to a wild-type strain and this lethality was suppressed by the alterations in S5. The S5 mutants alter translational fidelity but these changes do not explain consistently their effect on the RbfA-lacking strain. Our genetic results support a role for the region of S5 modified in the suppressors in the formation of the central pseudoknot in 16S rRNA.

  16. A purified nucleoprotein fragment of the 30 S ribosomal subunit of Escherichia coli.

    Science.gov (United States)

    Spitnik-Elson, P; Elson, D; Abramowitz, R

    1979-02-27

    A '13 S' nucleoprotein fragment was isolated from a nuclease digest of Escherichia coli 30-S ribosomal subunits and purified to gel electrophoretic homogeneity. It contained two polynucleotides, of about 1.1 . 10(5) and 2.5 . 10(4) daltons, which separated when the fragment was deproteinized. The major protein components were S4, S7 and S9/11, with S15, S16, S18, S19 and S20 present in reduced amount.

  17. Neutron Scattering and the 30 S Ribosomal Subunit of E. Coli

    Science.gov (United States)

    Moore, P. B.; Engelman, D. M.; Langer, J. A.; Ramakrishnan, V. R.; Schindler, D. G.; Schoenborn, B. P.; Sillers, I. Y.; Yabuki, S.

    1982-06-01

    This paper reviews the progress made in the study of the internal organization of the 30 S ribosomal subunit of E. coli by neutron scattering since 1975. A map of that particle showing the position of 14 of the subunit's 21 proteins is presented, and the methods currently used for collecting and analyzing such data are discussed. Also discussed is the possibility of extending the interpretation of neutron mapping data beyond the limits practical today.

  18. The protein composition of reconstituted 30S ribosomal subunits: the effects of single protein omission.

    Science.gov (United States)

    Buck, M A; Olah, T V; Perrault, A R; Cooperman, B S

    1991-06-01

    Using reverse phase HPLC, we have been able to quantify the protein compositions of reconstituted 30S ribosomal subunits, formed either with the full complement of 30S proteins in the reconstitution mix or with a single protein omitted. We denote particles formed in the latter case as SPORE (single protein omission reconstitution) particles. An important goal in 30S reconstitution studies is the formation of reconstituted subunits having uniform protein composition, preferably corresponding to one copy of each protein per reconstituted particle. Here we describe procedures involving variation of the protein:rRNA ratio that approach this goal. In SPORE particles the omission of one protein often results in the partial loss in uptake of other proteins. We also describe procedures to increase the uptake of such proteins into SPORE particles, thus enhancing the utility of the SPORE approach in defining the role of specific proteins in 30S structure and function. The losses of proteins other than the omitted protein provide a measure of protein:protein interaction within the 30S subunit. Most of these losses are predictable on the basis of other such measures. However, we do find evidence for several long-range protein:protein interactions (S6:S3, S6:S12, S10:S16, and S6:S4) that have not been described previously.

  19. Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit

    Energy Technology Data Exchange (ETDEWEB)

    Ogle, James M.; Brodersen, Ditlev E.; Clemons, William M.; Tarry, Michael J.; Carter, Andrew P.; Ramakrishnan, V. (MRC Laboratory of Molecular Biology)

    2009-10-07

    Crystal structures of the 30S ribosomal subunit in complex with messenger RNA and cognate transfer RNA in the A site, both in the presence and absence of the antibiotic paromomycin, have been solved at between 3.1 and 3.3 angstroms resolution. Cognate transfer RNA (tRNA) binding induces global domain movements of the 30S subunit and changes in the conformation of the universally conserved and essential bases A1492, A1493, and G530 of 16S RNA. These bases interact intimately with the minor groove of the first two base pairs between the codon and anticodon, thus sensing Watson-Crick base-pairing geometry and discriminating against near-cognate tRNA. The third, or 'wobble,' position of the codon is free to accommodate certain noncanonical base pairs. By partially inducing these structural changes, paromomycin facilitates binding of near-cognate tRNAs.

  20. The aminoglycoside resistance methyltransferases from the ArmA/Rmt family operate late in the 30S ribosomal biogenesis pathway.

    Science.gov (United States)

    Zarubica, Tamara; Baker, Matthew R; Wright, H Tonie; Rife, Jason P

    2011-02-01

    Bacterial resistance to 4,6-type aminoglycoside antibiotics, which target the ribosome, has been traced to the ArmA/RmtA family of rRNA methyltransferases. These plasmid-encoded enzymes transfer a methyl group from S-adenosyl-L-methionine to N7 of the buried G1405 in the aminoglycoside binding site of 16S rRNA of the 30S ribosomal subunit. ArmA methylates mature 30S subunits but not 16S rRNA, 50S, or 70S ribosomal subunits or isolated Helix 44 of the 30S subunit. To more fully characterize this family of enzymes, we have investigated the substrate requirements of ArmA and to a lesser extent its ortholog RmtA. We determined the Mg+² dependence of ArmA activity toward the 30S ribosomal subunits and found that the enzyme recognizes both low Mg+² (translationally inactive) and high Mg+² (translationally active) forms of this substrate. We tested the effects of LiCl pretreatment of the 30S subunits, initiation factor 3 (IF3), and gentamicin/kasugamycin resistance methyltransferase (KsgA) on ArmA activity and determined whether in vivo derived pre-30S ribosomal subunits are ArmA methylation substrates. ArmA failed to methylate the 30S subunits generated from LiCl washes above 0.75 M, despite the apparent retention of ribosomal proteins and a fully mature 16S rRNA. From our experiments, we conclude that ArmA is most active toward the 30S ribosomal subunits that are at or very near full maturity, but that it can also recognize more than one form of the 30S subunit.

  1. Secondary structures of proteins from the 30S subunit of the Escherichia coli ribosome.

    Science.gov (United States)

    Dzionara, M; Robinson, S M; Wittmann-Liebold, B

    1977-08-01

    The secondary structures of the proteins S4, S6, S8, S9, S12, S13, S15, S16, S18, S20 and S21 from the subunit of the E. coli ribosome were predicted according to four different methods. From the resultant diagrams indicating regions of helix, turn, extended structure and random coil, average values for the respective secondary structures could be calculated for each protein. Using the known relative distances for residues in the helical, turn and sheet or allowed random conformations, estimates are made of the maximum possible lengths of the proteins in order to correlate these with results obtained from antibody binding studies to the 30S subunit as determined by electron microscopy. The influence of amino acid changes on the predicted secondary structures of proteins from a few selected mutants was studied. The altered residues tend to be structurally conservative or to induce only minimal local changes.

  2. A computational investigation on the connection between dynamics properties of ribosomal proteins and ribosome assembly.

    Directory of Open Access Journals (Sweden)

    Brittany Burton

    Full Text Available Assembly of the ribosome from its protein and RNA constituents has been studied extensively over the past 50 years, and experimental evidence suggests that prokaryotic ribosomal proteins undergo conformational changes during assembly. However, to date, no studies have attempted to elucidate these conformational changes. The present work utilizes computational methods to analyze protein dynamics and to investigate the linkage between dynamics and binding of these proteins during the assembly of the ribosome. Ribosomal proteins are known to be positively charged and we find the percentage of positive residues in r-proteins to be about twice that of the average protein: Lys+Arg is 18.7% for E. coli and 21.2% for T. thermophilus. Also, positive residues constitute a large proportion of RNA contacting residues: 39% for E. coli and 46% for T. thermophilus. This affirms the known importance of charge-charge interactions in the assembly of the ribosome. We studied the dynamics of three primary proteins from E. coli and T. thermophilus 30S subunits that bind early in the assembly (S15, S17, and S20 with atomic molecular dynamic simulations, followed by a study of all r-proteins using elastic network models. Molecular dynamics simulations show that solvent-exposed proteins (S15 and S17 tend to adopt more stable solution conformations than an RNA-embedded protein (S20. We also find protein residues that contact the 16S rRNA are generally more mobile in comparison with the other residues. This is because there is a larger proportion of contacting residues located in flexible loop regions. By the use of elastic network models, which are computationally more efficient, we show that this trend holds for most of the 30S r-proteins.

  3. Positions of proteins S14, S18 and S20 in the 30 S ribosomal subunit of Escherichia coli.

    Science.gov (United States)

    Ramakrishnan, V; Capel, M; Kjeldgaard, M; Engelman, D M; Moore, P B

    1984-04-01

    A map of the 30 S ribosomal subunit is presented giving the positions of 15 of its 21 proteins. The components located in the map are S1, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S14, S15, S18 and S20.

  4. A model for the interaction of the G3-subdomain of Geobacillus stearothermophilus IF2 with the 30S ribosomal subunit

    NARCIS (Netherlands)

    Dongre, Ramachandra; Folkers, Gert E; Gualerzi, Claudio O; Boelens, Rolf; Wienk, Hans

    2016-01-01

    Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet-tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the I

  5. Mitochondrial ribosome assembly in health and disease.

    Science.gov (United States)

    De Silva, Dasmanthie; Tu, Ya-Ting; Amunts, Alexey; Fontanesi, Flavia; Barrientos, Antoni

    2015-01-01

    The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health.

  6. A bifunctional archaeal protein that is a component of 30S ribosomal subunits and interacts with C/D box small RNAs

    Directory of Open Access Journals (Sweden)

    Andrea Ciammaruconi

    2008-01-01

    Full Text Available We have identified a novel archaeal protein that apparently plays two distinct roles in ribosome metabolism. It is a polypeptide of about 18 kDa (termed Rbp18 that binds free cytosolic C/D box sRNAs in vivo and in vitro and behaves as a structural ribosomal protein, specifically a component of the 30S ribosomal subunit. As Rbp18 is selectively present in Crenarcheota and highly thermophilic Euryarchaeota, we propose that it serves to protect C/D box sRNAs from degradation and perhaps to stabilize thermophilic 30S subunits.

  7. Molecular interactions of ribosomal components. IV: Cooperative interactions during assembly in vitro.

    Science.gov (United States)

    Green, M; Kurland, C G

    1973-08-01

    Cooperative interactions between different 30S ribosomal proteins during assembly in vitro are described. The site specific binding of S7 to 16S RNA is enhanced by S20; that of S16 requires S4 and S20; and S7 is required for the maximum binding of S9, S13 and S19. Some of these interactions are reflected in the protein neighborhoods of the functional ribosome, but this may not be a general rule. Finally, we suggest that the assembly cooperativety observed may not be a consequence of direct-protein interactions.

  8. A ribonucleoprotein fragment of the 30 S ribosome of E. coli containing two contiguous domains of the 16 S RNA.

    Science.gov (United States)

    Spitnik-Elson, P; Elson, D; Avital, S; Abramowitz, R

    1982-08-11

    Ribonucleoprotein fragments of the 30 S ribosome of E. coli have been prepared by limited ribonuclease digestion and mild heating of the ribosome in a constant ionic environment. One such fragment has been described previously. A second electrophoretically homogeneous fragment has now been isolated and its RNA and protein moieties have been characterized. It contains the 5' half of the 16 S RNA, encompassing domains I and II except for the extreme 5' terminus and several small gaps. Seven proteins are present: S4, S5, S6, S8, S12, S15 and S20. The RNA binding sites of five of these proteins are known, and all are RNA sequences that are present in the fragment. Published neutron scattering and immuno-electron microscopic data indicate that six of the proteins are clustered together in a cross sectional slice through the center of the subunit. After deproteinization, the RNA moiety gives two bands in gel electrophoresis, one containing domains I and II and the other, essentially only domain II. The former, although larger, migrates faster in gel electrophoresis, indicating that RNA domains I and II interact with each other in such a way as to become more compact than domain II by itself.

  9. Interrelationships between yeast ribosomal protein assembly events and transient ribosome biogenesis factors interactions in early pre-ribosomes.

    Directory of Open Access Journals (Sweden)

    Steffen Jakob

    Full Text Available Early steps of eukaryotic ribosome biogenesis require a large set of ribosome biogenesis factors which transiently interact with nascent rRNA precursors (pre-rRNA. Most likely, concomitant with that initial contacts between ribosomal proteins (r-proteins and ribosome precursors (pre-ribosomes are established which are converted into robust interactions between pre-rRNA and r-proteins during the course of ribosome maturation. Here we analysed the interrelationship between r-protein assembly events and the transient interactions of ribosome biogenesis factors with early pre-ribosomal intermediates termed 90S pre-ribosomes or small ribosomal subunit (SSU processome in yeast cells. We observed that components of the SSU processome UTP-A and UTP-B sub-modules were recruited to early pre-ribosomes independently of all tested r-proteins. On the other hand, groups of SSU processome components were identified whose association with early pre-ribosomes was affected by specific r-protein assembly events in the head-platform interface of the SSU. One of these components, Noc4p, appeared to be itself required for robust incorporation of r-proteins into the SSU head domain. Altogether, the data reveal an emerging network of specific interrelationships between local r-protein assembly events and the functional interactions of SSU processome components with early pre-ribosomes. They point towards some of these components being transient primary pre-rRNA in vivo binders and towards a role for others in coordinating the assembly of major SSU domains.

  10. Characterisation of RNA fragments obtained by mild nuclease digestion of 30-S ribosomal subunits from Escherichia coli.

    Science.gov (United States)

    Rinke, J; Ross, A; Brimacombe, R

    1977-06-01

    When Escherichia coli 30-S ribosomal subunits are hydrolysed under mild conditions, two ribonucleoprotein fragments of unequal size are produced. Knowledge of the RNA sequences contained in these hydrolysis products was required for the experiments described in the preceding paper, and the RNA sub-fragments have therefore been examined by oligonucleotide analysis. Two well-defined small fragments of free RNA, produced concomitantly with the ribonucleoprotein fragments, were also analysed. The larger ribonucleoprotein fragment, containing predominantly proteins S4, S5, S8, S15, S16 (17) and S20, contains a complex mixture of RNA sub-fragments varying from about 100 to 800 nucleotides in length. All these fragments arose from the 5'-terminal 900 nucleotides of 16-S RNA, corresponding to the well-known 12-S fragment. No long-range interactions could be detected within this RNA region in these experiments. The RNA from the smaller ribonucleoprotein fragment (containing proteins S7, S9 S10, S14 and S19) has been described in detail previously, and consists of about 450 nucleotides near the 3' end of the 16-S RNA, but lacking the 3'-terminal 150 nucleotides. The two small free RNA fragments (above) partly account for these missing 150 nucleotides; both fragments arose from section A of the 16-S RNA, but section J (the 3'-terminal 50 nucleotides) was not found. This result suggests that the 3' region of 16-S RNA is not involved in stable interactions with protein.

  11. Photoinduced cross-linkage, in situ, of Escherichia coli 30S ribosomal proteins to 16S rRNA: identification of cross-linked proteins and relationships between reactivity and ribosome structure.

    Science.gov (United States)

    Gorelic, L

    1976-08-10

    The kinetics of photoinduced cross-linkage of Escherichia coli 30S ribosomal proteins to the 16S-rRNA molecule in the intact Escherichia coli 30S ribosomal subunit was studied in this report. All of the 30S ribosomal proteins become cross-linked to the 16S rRNA before changes in the sedimentation characteristics of the 30S ribosomal subunit can be detected. The proteins exhibit different reactivities in the cross-linkage reaction. One group of proteins-S3, S7-S9, S11, S12, and S15-S19-is cross-linked to the 16S rRNA by single-hit kinetics, or by photoprocesses of nonunity but low multiplicities. A second group of proteins--S1, S2, S4-S6, S10, S13, S14, and S21--is cross-linked to the 16S rRNA by photoprocesses of a complex nature. A comparison of these data with other properties of the individual 30S ribosomal proteins related to ribosome structure indicated that most of the 30S ribosomal proteins cross-linked to the 16S rRNA by photoprocesses of low multiplicities had been classified rRNA-binding proteins by nonphotochemical methods, and most of the proteins cross-linked to the 16S rRNA by photoprocesses of large multiplicities had been classified as nonbinding proteins. There were certain exceptions to these correlations. Proteins S4 and S20, both RNA-binding proteins, become cross-linked to the 16S rRNA by photoprocessses of large multiplicities, and proteins S3, S11, S12, and S18, none of which have been classified RNA-binding proteins, exhibited low multiplicities in the cross-linkage reaction. All of these exceptions could be explained in terms of limitations inherent in the photochemical methods used in this study and in other types of methods that have been used to study RNA-protein interactions in the 30S ribosomal subunit. The data presented here also suggest that labile RNA-protein cross-links are present in the uv-irradiated 30S ribosomal subunits, and that neither peptide-bond cleavage nor photoinduced modification of the charged side-chain groups in

  12. Interconversion of active and inactive 30 S ribosomal subunits is accompanied by a conformational change in the decoding region of 16 S rRNA

    DEFF Research Database (Denmark)

    Moazed, D; Van Stolk, B J; Douthwaite, S

    1986-01-01

    Zamir, Elson and their co-workers have shown that 30 S ribosomal subunits are reversibly inactivated by depletion of monovalent or divalent cations. We have re-investigated the conformation of 16 S rRNA in the active and inactive forms of the 30 S subunit, using a strategy that is designed...... by end-labeling followed by analine-induced strand scission (in some cases preceded by hybrid selection), or by primer extension using synthetic DNA oligomers. These studies show the following: The transition from the active to the inactive state cannot be described as a simple loosening or unfolding...

  13. Function of individual 30S subunit proteins of Escherichia coli. Effect of specific immunoglobulin fragments (Fab) on activities of ribosomal decoding sites.

    Science.gov (United States)

    Lelong, J C; Gros, D; Gros, F; Bollen, A; Maschler, R; Stöffler, G

    1974-02-01

    Specific anti-30S protein immunoglobulin G fragments (Fab) were used to determine the contribution of each of the 30S ribosomal proteins to: (1) polyphenylalanine synthesis, (2) initiation factor-dependent binding of fMet-tRNA, (3) T-factor-dependent binding of phenylalanyl-tRNA, and (4) fixation of radioactive dihydrostreptomycin. Twenty of the 21 possible antibodies (antibody against S17 excepted) were used. In conditions where all the 30S proteins were accessible to Fabs, all of these monovalent antibodies strongly inhibited polyphenylalanine synthesis in vitro. Antibodies against S4, S6, S7, S12, S15, and S16, however, showed a weaker effect.30S proteins can be classified into four categories by their contributions to the function of sites "A" and "P": class I appears nonessential for tRNA positioning at either site (S4, S7, S15, and S16); class II includes proteins whose role in initiation is critical (S2, S5, S6, S12, and S13); class III (S8, S9, S11, and S18) corresponds to proteins whose blockade prevents internal (elongation factor Tudependent) positioning; and class IV includes entities that are essential for activities of both "A" and "P" sites (S1, S3, S10, S14, S19, S20, and S21). Dihydrostreptomycin fixation to the 30S or 70S ribosomes was inhibited by antibodies against S1, S10, S11, S18, S19, S20, and S21, but only weakly by the anti-S12 (Str A protein) Fab. The significance of these results is discussed in relation to 30S protein function, heterogeneity, and topography.

  14. Hierarchical RNA Processing Is Required for Mitochondrial Ribosome Assembly

    Directory of Open Access Journals (Sweden)

    Oliver Rackham

    2016-08-01

    Full Text Available The regulation of mitochondrial RNA processing and its importance for ribosome biogenesis and energy metabolism are not clear. We generated conditional knockout mice of the endoribonuclease component of the RNase P complex, MRPP3, and report that it is essential for life and that heart and skeletal-muscle-specific knockout leads to severe cardiomyopathy, indicating that its activity is non-redundant. Transcriptome-wide parallel analyses of RNA ends (PARE and RNA-seq enabled us to identify that in vivo 5′ tRNA cleavage precedes 3′ tRNA processing, and this is required for the correct biogenesis of the mitochondrial ribosomal subunits. We identify that mitoribosomal biogenesis proceeds co-transcriptionally because large mitoribosomal proteins can form a subcomplex on an unprocessed RNA containing the 16S rRNA. Taken together, our data show that RNA processing links transcription to translation via assembly of the mitoribosome.

  15. Kinase-Mediated Regulation of 40S Ribosome Assembly in Human Breast Cancer

    Science.gov (United States)

    2017-02-01

    AWARD NUMBER: W81XWH-16-1-0008 TITLE: Kinase-Mediated Regulation of 40S Ribosome Assembly in Human Breast Cancer PRINCIPAL INVESTIGATOR...Jan 2017 4. TITLE AND SUBTITLE Kinase-Mediated Regulation of 40S Ribosome Assembly in Human Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...Investigator [PI], Scripps) and John Cleveland (Collaborating/Partnering PI, Moffitt Cancer Center) seek to validate 40S ribosome assembly as a therapeutic

  16. Assembling the archaeal ribosome: roles for translation-factor-related GTPases

    NARCIS (Netherlands)

    Blombach, F.; Brouns, S.J.J.; Oost, van der J.

    2011-01-01

    The assembly of ribosomal subunits from their individual components (rRNA and ribosomal proteins) requires the assistance of a multitude of factors in order to control and increase the efficiency of the assembly process. GTPases of the TRAFAC (translation-factor-related) class constitute a major typ

  17. The Role of Disordered Ribosomal Protein Extensions in the Early Steps of Eubacterial 50 S Ribosomal Subunit Assembly

    Directory of Open Access Journals (Sweden)

    Youri Timsit

    2009-03-01

    Full Text Available Although during the past decade research has shown the functional importance of disorder in proteins, many of the structural and dynamics properties of intrinsically unstructured proteins (IUPs remain to be elucidated. This review is focused on the role of the extensions of the ribosomal proteins in the early steps of the assembly of the eubacterial 50 S subunit. The recent crystallographic structures of the ribosomal particles have revealed the picture of a complex assembly pathway that condenses the rRNA and the ribosomal proteins into active ribosomes. However, little is know about the molecular mechanisms of this process. It is thought that the long basic r-protein extensions that penetrate deeply into the subunit cores play a key role through disorder-order transitions and/or co-folding mechanisms. A current view is that such structural transitions may facilitate the proper rRNA folding. In this paper, the structures of the proteins L3, L4, L13, L20, L22 and L24 that have been experimentally found to be essential for the first steps of ribosome assembly have been compared. On the basis of their structural and dynamics properties, three categories of extensions have been identified. Each of them seems to play a distinct function. Among them, only the coil-helix transition that occurs in a phylogenetically conserved cluster of basic residues of the L20 extension appears to be strictly required for the large subunit assembly in eubacteria. The role of a helix-coil transitions in 23 S RNA folding is discussed in the light of the calcium binding protein calmodulin that shares many structural and dynamics properties with L20.

  18. Kinase Mediated Regulation of 40S Ribosome Assembly in Human Breast Cancer

    Science.gov (United States)

    2017-02-01

    AWARD NUMBER: W81XWH-16-1-0009 TITLE: PRINCIPAL INVESTIGATOR: John Cleveland CONTRACTING ORGANIZATION: H. Lee Moffitt Cancer Center...so designated by other documentation. Kinase-Mediated Regulation of 40S Ribosome Assembly in Human Breast Cancer REPORT DOCUMENTATION PAGE Form...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Kinase-Mediated Regulation of 40S Ribosome Assembly in Human Breast Cancer 5b. GRANT NUMBER W81XWH-16-1-0009 5c

  19. Assembling the archaeal ribosome: roles for translation-factor-related GTPases.

    Science.gov (United States)

    Blombach, Fabian; Brouns, Stan J J; van der Oost, John

    2011-01-01

    The assembly of ribosomal subunits from their individual components (rRNA and ribosomal proteins) requires the assistance of a multitude of factors in order to control and increase the efficiency of the assembly process. GTPases of the TRAFAC (translation-factor-related) class constitute a major type of ribosome-assembly factor in Eukaryota and Bacteria. They are thought to aid the stepwise assembly of ribosomal subunits through a 'molecular switch' mechanism that involves conformational changes in response to GTP hydrolysis. Most conserved TRAFAC GTPases are involved in ribosome assembly or other translation-associated processes. They typically interact with ribosomal subunits, but in many cases, the exact role that these GTPases play remains unclear. Previous studies almost exclusively focused on the systems of Bacteria and Eukaryota. Archaea possess several conserved TRAFAC GTPases as well, with some GTPase families being present only in the archaeo-eukaryotic lineage. In the present paper, we review the occurrence of TRAFAC GTPases with translation-associated functions in Archaea.

  20. rRNA maturation as a "quality" control step in ribosomal subunit assembly in Dictyostelium discoideum.

    Science.gov (United States)

    Mangiarotti, G; Chiaberge, S; Bulfone, S

    1997-10-31

    In Dictyostelium discoideum, newly assembled ribosomal subunits enter polyribosomes while they still contain immature rRNA. rRNA maturation requires the engagement of the subunits in protein synthesis and leads to stabilization of their structure. Maturation of pre-17 S rRNA occurs only after the newly formed 40 S ribosomal particle has entered an 80 S ribosome and participated at least in the formation of one peptide bond or in one translocation event; maturation of pre-26 S rRNA requires the presence on the 80 S particle of a peptidyl-tRNA containing at least 6 amino acids. Newly assembled particles that cannot fulfill these requirements for structural reasons are disassembled into free immature rRNA and ribosomal proteins.

  1. YsxC, an essential protein in Staphylococcus aureus crucial for ribosome assembly/stability

    Directory of Open Access Journals (Sweden)

    García-Lara Jorge

    2009-12-01

    Full Text Available Abstract Background Bacterial growth and division requires a core set of essential proteins, several of which are still of unknown function. They are also attractive targets for the development of new antibiotics. YsxC is a member of a family of GTPases highly conserved across eubacteria with a possible ribosome associated function. Results Here, we demonstrate by the creation of a conditional lethal mutant that ysxC is apparently essential for growth in S. aureus. To begin to elucidate YsxC function, a translational fusion of YsxC to the CBP-ProteinA tag in the staphylococcal chromosome was made, enabling Tandem Affinity Purification (TAP of YsxC-interacting partners. These included the ribosomal proteins S2, S10 and L17, as well as the β' subunit of the RNA polymerase. YsxC was then shown to copurify with ribosomes as an accessory protein specifically localizing to the 50 S subunit. YsxC depletion led to a decrease in the presence of mature ribosomes, indicating a role in ribosome assembly and/or stability in S. aureus. Conclusions In this study we demonstrate that YsxC of S. aureus localizes to the ribosomes, is crucial for ribosomal stability and is apparently essential for the life of S. aureus.

  2. Ribonucleic acid-protein cross-linking within the intact Escherichia coli ribosome, utilizing ethylene glycol bis[3-(2-ketobutyraldehyde) ether], a reversible, bifunctional reagent: identification of 30S proteins.

    Science.gov (United States)

    Brewer, L A; Noller, H F

    1983-08-30

    To obtain detailed topographical information concerning the spatial arrangement of the multitude of ribosomal proteins with respect to specific sequences in the three RNA chains of intact ribosomes, a reagent capable of covalently and reversibly joining RNA to protein has been synthesized [Brewer, L.A., Goelz, S., & Noller, H. F. (1983) Biochemistry (preceding paper in this issue)]. This compound, ethylene glycol bis[3-(2-ketobutyraldehyde) ether] which we term "bikethoxal", possesses two reactive ends similar to kethoxal. Accordingly, it reacts selectively with guanine in single-stranded regions of nucleic acid and with arginine in protein. The cross-linking is reversible in that the arginine- and guanine-bikethoxal linkage can be disrupted by treatment with mild base, allowing identification of the linked RNA and protein components by standard techniques. Further, since the sites of kethoxal modification within the RNA sequences of intact subunits are known, the task of identifying the components of individual ribonucleoprotein complexes should be considerably simplified. About 15% of the ribosomal protein was covalently cross-linked to 16S RNA by bikethoxal under our standard reaction conditions, as monitored by comigration of 35S-labeled protein with RNA on Sepharose 4B in urea. Cross-linked 30S proteins were subsequently removed from 16S RNA by treatment with T1 ribonuclease and/or mild base cleavage of the reagent and were identified by two-dimensional polyacrylamide gel electrophoresis. The major 30S proteins found in cross-linked complexes are S4, S5, S6, S7, S8, S9 (S11), S16, and S18. The minor ones are S2, S3, S12, S13, S14, S15, and S17.

  3. The DEAD-box helicase DDX3 supports the assembly of functional 80S ribosomes.

    Science.gov (United States)

    Geissler, Rene; Golbik, Ralph P; Behrens, Sven-Erik

    2012-06-01

    The DEAD-box helicase DDX3 has suggested functions in innate immunity, mRNA translocation and translation, and it participates in the propagation of assorted viruses. Exploring initially the role of DDX3 in the life cycle of hepatitis C virus, we observed the protein to be involved in translation directed by different viral internal ribosomal entry sites. Extension of these studies revealed a general supportive role of DDX3 in translation initiation. DDX3 was found to interact in an RNA-independent manner with defined components of the translational pre-initiation complex and to specifically associate with newly assembling 80S ribosomes. DDX3 knock down and in vitro reconstitution experiments revealed a significant function of the protein in the formation of 80S translation initiation complexes. Our study implies that DDX3 assists the 60S subunit joining process to assemble functional 80S ribosomes.

  4. Modulation of Decoding Fidelity by Ribosomal Proteins S4 and S5

    OpenAIRE

    2014-01-01

    Ribosomal proteins S4 and S5 participate in the decoding and assembly processes on the ribosome and the interaction with specific antibiotic inhibitors of translation. Many of the characterized mutations affecting these proteins decrease the accuracy of translation, leading to a ribosomal-ambiguity phenotype. Structural analyses of ribosomal complexes indicate that the tRNA selection pathway involves a transition between the closed and open conformations of the 30S ribosomal subunit and requi...

  5. MPV17L2 is required for ribosome assembly in mitochondria

    Science.gov (United States)

    Dalla Rosa, Ilaria; Durigon, Romina; Pearce, Sarah F.; Rorbach, Joanna; Hirst, Elizabeth M.A.; Vidoni, Sara; Reyes, Aurelio; Brea-Calvo, Gloria; Minczuk, Michal; Woellhaf, Michael W.; Herrmann, Johannes M.; Huynen, Martijn A.; Holt, Ian J.; Spinazzola, Antonella

    2014-01-01

    MPV17 is a mitochondrial protein of unknown function, and mutations in MPV17 are associated with mitochondrial deoxyribonucleic acid (DNA) maintenance disorders. Here we investigated its most similar relative, MPV17L2, which is also annotated as a mitochondrial protein. Mitochondrial fractionation analyses demonstrate MPV17L2 is an integral inner membrane protein, like MPV17. However, unlike MPV17, MPV17L2 is dependent on mitochondrial DNA, as it is absent from ρ0 cells, and co-sediments on sucrose gradients with the large subunit of the mitochondrial ribosome and the monosome. Gene silencing of MPV17L2 results in marked decreases in the monosome and both subunits of the mitochondrial ribosome, leading to impaired protein synthesis in the mitochondria. Depletion of MPV17L2 also induces mitochondrial DNA aggregation. The DNA and ribosome phenotypes are linked, as in the absence of MPV17L2 proteins of the small subunit of the mitochondrial ribosome are trapped in the enlarged nucleoids, in contrast to a component of the large subunit. These findings suggest MPV17L2 contributes to the biogenesis of the mitochondrial ribosome, uniting the two subunits to create the translationally competent monosome, and provide evidence that assembly of the small subunit of the mitochondrial ribosome occurs at the nucleoid. PMID:24948607

  6. Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes.

    Science.gov (United States)

    Zhang, Jingyu; Harnpicharnchai, Piyanun; Jakovljevic, Jelena; Tang, Lan; Guo, Yurong; Oeffinger, Marlene; Rout, Michael P; Hiley, Shawna L; Hughes, Timothy; Woolford, John L

    2007-10-15

    More than 170 proteins are necessary for assembly of ribosomes in eukaryotes. However, cofactors that function with each of these proteins, substrates on which they act, and the precise functions of assembly factors--e.g., recruiting other molecules into preribosomes or triggering structural rearrangements of pre-rRNPs--remain mostly unknown. Here we investigated the recruitment of two ribosomal proteins and 5S ribosomal RNA (rRNA) into nascent ribosomes. We identified a ribonucleoprotein neighborhood in preribosomes that contains two yeast ribosome assembly factors, Rpf2 and Rrs1, two ribosomal proteins, rpL5 and rpL11, and 5S rRNA. Interactions between each of these four proteins have been confirmed by binding assays in vitro. These molecules assemble into 90S preribosomal particles containing 35S rRNA precursor (pre-rRNA). Rpf2 and Rrs1 are required for recruiting rpL5, rpL11, and 5S rRNA into preribosomes. In the absence of association of these molecules with pre-rRNPs, processing of 27SB pre-rRNA is blocked. Consequently, the abortive 66S pre-rRNPs are prematurely released from the nucleolus to the nucleoplasm, and cannot be exported to the cytoplasm.

  7. The localization of multiple sites on 16S RNA which are cross-linked to proteins S7 and S8 in Escherichia coli 30S ribosomal subunits by treatment with 2-iminothiolane.

    Science.gov (United States)

    Wower, I; Brimacombe, R

    1983-03-11

    RNA-protein cross-links were introduced into E. coli 30S ribosomal subunits by reaction with 2-iminothiolane followed by a mild ultraviolet irradiation treatment. After removal of non-reacted protein and partial nuclease digestion of the cross-linked 16S RNA-protein moiety, a number of individual cross-linked complexes could be isolated and the sites of attachment of the proteins to the RNA determined. Protein S8 was cross-linked to the RNA at three different positions, within oligo-nucleotides encompassing positions 629-633, 651-654, and (tentatively) 593-597 in the 16S sequence. Protein S7 was cross-linked within two oligonucleotides encompassing positions 1238-1240, and 1377-1378. In addition, a site at position 723-724 was observed, cross-linked to protein S19, S20 or S21.

  8. Stepwise and dynamic assembly of the earliest precursors of small ribosomal subunits in yeast.

    Science.gov (United States)

    Zhang, Liman; Wu, Chen; Cai, Gaihong; Chen, She; Ye, Keqiong

    2016-03-15

    The eukaryotic ribosomal RNA (rRNA) is associated cotranscriptionally with numerous factors into an enormous 90S preribosomal particle that conducts early processing of small ribosomal subunits. The assembly pathway and structure of the 90S particle is poorly understood. Here, we affinity-purified and analyzed the constituents of yeast 90S particles that were assembled on a series of plasmid-encoded 3'-truncated pre-18S RNAs. We determined the assembly point of 65 proteins and the U3, U14, and snR30 small nucleolar RNAs (snoRNAs), revealing a stepwise and dynamic assembly map. The 5' external transcribed spacer (ETS) alone can nucleate a large complex. When the 18S rRNA is nearly complete, the 90S structure undergoes a dramatic reorganization, releasing U14, snR30, and 14 protein factors that bind earlier. We also identified a reference state of 90S that is fully assembled yet has not undergone 5'ETS processing. The assembly map present here provides a new framework to understand small subunit biogenesis.

  9. The DEAD box protein Mrh4 functions in the assembly of the mitochondrial large ribosomal subunit.

    Science.gov (United States)

    De Silva, Dasmanthie; Fontanesi, Flavia; Barrientos, Antoni

    2013-11-01

    Proteins in a cell are universally synthesized by ribosomes. Mitochondria contain their own ribosomes, which specialize in the synthesis of a handful of proteins required for oxidative phosphorylation. The pathway of mitoribosomal biogenesis and factors involved are poorly characterized. An example is the DEAD box proteins, widely known to participate in the biogenesis of bacterial and cytoplasmic eukaryotic ribosomes as either RNA helicases or RNA chaperones, whose mitochondrial counterparts remain completely unknown. Here, we have identified the Saccharomyces cerevisiae mitochondrial DEAD box protein Mrh4 as essential for large mitoribosome subunit biogenesis. Mrh4 interacts with the 21S rRNA, mitoribosome subassemblies, and fully assembled mitoribosomes. In the absence of Mrh4, the 21S rRNA is matured and forms part of a large on-pathway assembly intermediate missing proteins Mrpl16 and Mrpl39. We conclude that Mrh4 plays an essential role during the late stages of mitoribosome assembly by promoting remodeling of the 21S rRNA-protein interactions.

  10. Organization of Mitochondrial Gene Expression in Two Distinct Ribosome-Containing Assemblies

    Directory of Open Access Journals (Sweden)

    Kirsten Kehrein

    2015-02-01

    Full Text Available Mitochondria contain their own genetic system that provides subunits of the complexes driving oxidative phosphorylation. A quarter of the mitochondrial proteome participates in gene expression, but how all these factors are orchestrated and spatially organized is currently unknown. Here, we established a method to purify and analyze native and intact complexes of mitochondrial ribosomes. Quantitative mass spectrometry revealed extensive interactions of ribosomes with factors involved in all the steps of posttranscriptional gene expression. These interactions result in large expressosome-like assemblies that we termed mitochondrial organization of gene expression (MIOREX complexes. Superresolution microscopy revealed that most MIOREX complexes are evenly distributed throughout the mitochondrial network, whereas a subset is present as nucleoid-MIOREX complexes that unite the whole spectrum of organellar gene expression. Our work therefore provides a conceptual framework for the spatial organization of mitochondrial protein synthesis that likely developed to facilitate gene expression in the organelle.

  11. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly

    Science.gov (United States)

    Hunziker, Mirjam; Barandun, Jonas; Petfalski, Elisabeth; Tan, Dongyan; Delan-Forino, Clémentine; Molloy, Kelly R.; Kim, Kelly H.; Dunn-Davies, Hywel; Shi, Yi; Chaker-Margot, Malik; Chait, Brian T.; Walz, Thomas; Tollervey, David; Klinge, Sebastian

    2016-06-01

    Early eukaryotic ribosome biogenesis involves large multi-protein complexes, which co-transcriptionally associate with pre-ribosomal RNA to form the small subunit processome. The precise mechanisms by which two of the largest multi-protein complexes--UtpA and UtpB--interact with nascent pre-ribosomal RNA are poorly understood. Here, we combined biochemical and structural biology approaches with ensembles of RNA-protein cross-linking data to elucidate the essential functions of both complexes. We show that UtpA contains a large composite RNA-binding site and captures the 5' end of pre-ribosomal RNA. UtpB forms an extended structure that binds early pre-ribosomal intermediates in close proximity to architectural sites such as an RNA duplex formed by the 5' ETS and U3 snoRNA as well as the 3' boundary of the 18S rRNA. Both complexes therefore act as vital RNA chaperones to initiate eukaryotic ribosome assembly.

  12. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly.

    Science.gov (United States)

    Hunziker, Mirjam; Barandun, Jonas; Petfalski, Elisabeth; Tan, Dongyan; Delan-Forino, Clémentine; Molloy, Kelly R; Kim, Kelly H; Dunn-Davies, Hywel; Shi, Yi; Chaker-Margot, Malik; Chait, Brian T; Walz, Thomas; Tollervey, David; Klinge, Sebastian

    2016-06-29

    Early eukaryotic ribosome biogenesis involves large multi-protein complexes, which co-transcriptionally associate with pre-ribosomal RNA to form the small subunit processome. The precise mechanisms by which two of the largest multi-protein complexes-UtpA and UtpB-interact with nascent pre-ribosomal RNA are poorly understood. Here, we combined biochemical and structural biology approaches with ensembles of RNA-protein cross-linking data to elucidate the essential functions of both complexes. We show that UtpA contains a large composite RNA-binding site and captures the 5' end of pre-ribosomal RNA. UtpB forms an extended structure that binds early pre-ribosomal intermediates in close proximity to architectural sites such as an RNA duplex formed by the 5' ETS and U3 snoRNA as well as the 3' boundary of the 18S rRNA. Both complexes therefore act as vital RNA chaperones to initiate eukaryotic ribosome assembly.

  13. Cyclization of polyketides and non-ribosomal peptides on and off their assembly lines.

    Science.gov (United States)

    Pang, Bo; Wang, Min; Liu, Wen

    2016-02-01

    Modular polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are multifunctional megaenzymes that serve as templates to program the assembly of short carboxylic acids and amino acids in a primarily co-linear manner. The variation, combination, permutation and evolution of their functional units (e.g., modules, domains and proteins) along with their association with external enzymes have resulted in the generation of numerous versions of templates, the roles of which have not been fully recognized in the structural diversification of polyketides, non-ribosomal peptides and their hybrids present in nature. In this Highlight, we focus on the assembly-line enzymology and associated chemistry by providing examples of some newly characterized cyclization reactions that occur on and off the assembly lines during and after chain elongation for the purpose of elucidating the template effects of PKSs and NRPSs. A fundamental understanding of the underlying biosynthetic logic would facilitate the elucidation of chemical information contained within the PKS or NRPS templates and benefit the development of strategies for genome mining, biosynthesis-inspired chemical synthesis and combinatorial biosynthesis.

  14. Assembly of Saccharomyces cerevisiae ribosomal stalk: binding of P1 proteins is required for the interaction of P2 proteins.

    Science.gov (United States)

    Zurdo, J; Parada, P; van den Berg, A; Nusspaumer, G; Jimenez-Diaz, A; Remacha, M; Ballesta, J P

    2000-08-01

    The yeast ribosomal stalk is formed by a protein pentamer made of the 38 kDa P0 and four 12 kDa acidic P1/P2. The interaction of recombinant acidic proteins P1 alpha and P2 beta with ribosomes from Saccharomyces cerevisiae D4567, lacking all the 12 kDa stalk components, has been used to study the in vitro assembly of this important ribosomal structure. Stimulation of the ribosome activity was obtained by incubating simultaneously the particles with both proteins, which were nonphosphorylated initially and remained unmodified afterward. The N-terminus state, free or blocked, did not affect either the binding or reactivating activity of both proteins. Independent incubation with each protein did not affect the activity of the particles, however, protein P2 beta alone was unable to bind the ribosome whereas P1 alpha could. The binding of P1 alpha alone is a saturable process in acidic-protein-deficient ribosomes and does not take place in complete wild-type particles. Binding of P1 proteins in the absence of P2 proteins takes also place in vivo, when protein P1 beta is overexpressed in S. cerevisiae. In contrast, protein P2 beta is not detected in the ribosome in the P1-deficient D67 strain despite being accumulated in the cytoplasm. The results confirm that neither phosphorylation nor N-terminal blocking of the 12 kDa acidic proteins is required for the assembly and function of the yeast stalk. More importantly, and regardless of the involvement of other elements, they indicate that stalk assembling is a coordinated process, in which P1 proteins would provide a ribosomal anchorage to P2 proteins, and P2 components would confer functionality to the complex.

  15. Diversity of nature's assembly lines - recent discoveries in non-ribosomal peptide synthesis.

    Science.gov (United States)

    Payne, Jennifer A E; Schoppet, Melanie; Hansen, Mathias Henning; Cryle, Max J

    2016-12-20

    The biosynthesis of complex natural products by non-ribosomal peptide synthetases (NRPSs) and the related polyketide synthases (PKSs) represents a major source of important bioactive compounds. These large, multi-domain machineries are able to produce a fascinating range of molecules due to the nature of their modular architectures, which allows natural products to be assembled and tailored in a modular, step-wise fashion. In recent years there has been significant progress in characterising the important domains and underlying mechanisms of non-ribosomal peptide synthesis. More significantly, several studies have uncovered important examples of novel activity in many NRPS domains. These discoveries not only greatly increase the structural diversity of the possible products of NRPS machineries but - possibly more importantly - they improve our understanding of what is a highly important, yet complex, biosynthetic apparatus. In this review, several recent examples of novel NRPS function will be introduced, which highlight the range of previously uncharacterised activities that have now been detected in the biosynthesis of important natural products by these mega-enzyme synthetases.

  16. Time course of large ribosomal subunit assembly in E. coli cells overexpressing a helicase inactive DbpA protein.

    Science.gov (United States)

    Gentry, Riley C; Childs, Jared J; Gevorkyan, Jirair; Gerasimova, Yulia V; Koculi, Eda

    2016-07-01

    DbpA is a DEAD-box RNA helicase implicated in Escherichia coli large ribosomal subunit assembly. Previous studies have shown that when the ATPase and helicase inactive DbpA construct, R331A, is expressed in E. coli cells, a large ribosomal subunit intermediate accumulates. The large subunit intermediate migrates as a 45S particle in a sucrose gradient. Here, using a number of structural and fluorescent assays, we investigate the ribosome profiles of cells lacking wild-type DbpA and overexpressing the R331A DbpA construct. Our data show that in addition to the 45S particle previously described, 27S and 35S particles are also present in the ribosome profiles of cells overexpressing R331A DbpA. The 27S, 35S, and 45S independently convert to the 50S subunit, suggesting that ribosome assembly in the presence of R331A and the absence of wild-type DbpA occurs via multiple pathways.

  17. ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria.

    Science.gov (United States)

    Corrigan, Rebecca M; Bellows, Lauren E; Wood, Alison; Gründling, Angelika

    2016-03-22

    The stringent response is a survival mechanism used by bacteria to deal with stress. It is coordinated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp], which interact with target proteins to promote bacterial survival. Although this response has been well characterized in proteobacteria, very little is known about the effectors of this signaling system in Gram-positive species. Here, we report on the identification of seven target proteins for the stringent response nucleotides in the Gram-positive bacterium Staphylococcus aureus We demonstrate that the GTP synthesis enzymes HprT and Gmk bind with a high affinity, leading to an inhibition of GTP production. In addition, we identified five putative GTPases--RsgA, RbgA, Era, HflX, and ObgE--as (p)ppGpp target proteins. We show that RsgA, RbgA, Era, and HflX are functional GTPases and that their activity is promoted in the presence of ribosomes but strongly inhibited by the stringent response nucleotides. By characterizing the function of RsgA in vivo, we ascertain that this protein is involved in ribosome assembly, with an rsgA deletion strain, or a strain inactivated for GTPase activity, displaying decreased growth, a decrease in the amount of mature 70S ribosomes, and an increased level of tolerance to antimicrobials. We additionally demonstrate that the interaction of ppGpp with cellular GTPases is not unique to the staphylococci, as homologs from Bacillus subtilis and Enterococcus faecalis retain this ability. Taken together, this study reveals ribosome inactivation as a previously unidentified mechanism through which the stringent response functions in Gram-positive bacteria.

  18. Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site.

    Science.gov (United States)

    Calviño, Fabiola R; Kharde, Satyavati; Ori, Alessandro; Hendricks, Astrid; Wild, Klemens; Kressler, Dieter; Bange, Gert; Hurt, Ed; Beck, Martin; Sinning, Irmgard

    2015-04-07

    During 60S biogenesis, mature 5S RNP consisting of 5S RNA, RpL5 and RpL11, assembles into a pre-60S particle, where docking relies on RpL11 interacting with helix 84 (H84) of the 25S RNA. How 5S RNP is assembled for recruitment into the pre-60S is not known. Here we report the crystal structure of a ternary symportin Syo1-RpL5-N-RpL11 complex and provide biochemical and structural insights into 5S RNP assembly. Syo1 guards the 25S RNA-binding surface on RpL11 and competes with H84 for binding. Pull-down experiments show that H84 releases RpL11 from the ternary complex, but not in the presence of 5S RNA. Crosslinking mass spectrometry visualizes structural rearrangements on incorporation of 5S RNA into the Syo1-RpL5-RpL11 complex supporting the formation of a pre-5S RNP. Our data underline the dual role of Syo1 in ribosomal protein transport and as an assembly platform for 5S RNP.

  19. Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site

    Science.gov (United States)

    Calviño, Fabiola R.; Kharde, Satyavati; Ori, Alessandro; Hendricks, Astrid; Wild, Klemens; Kressler, Dieter; Bange, Gert; Hurt, Ed; Beck, Martin; Sinning, Irmgard

    2015-04-01

    During 60S biogenesis, mature 5S RNP consisting of 5S RNA, RpL5 and RpL11, assembles into a pre-60S particle, where docking relies on RpL11 interacting with helix 84 (H84) of the 25S RNA. How 5S RNP is assembled for recruitment into the pre-60S is not known. Here we report the crystal structure of a ternary symportin Syo1-RpL5-N-RpL11 complex and provide biochemical and structural insights into 5S RNP assembly. Syo1 guards the 25S RNA-binding surface on RpL11 and competes with H84 for binding. Pull-down experiments show that H84 releases RpL11 from the ternary complex, but not in the presence of 5S RNA. Crosslinking mass spectrometry visualizes structural rearrangements on incorporation of 5S RNA into the Syo1-RpL5-RpL11 complex supporting the formation of a pre-5S RNP. Our data underline the dual role of Syo1 in ribosomal protein transport and as an assembly platform for 5S RNP.

  20. Diurnal Oscillations in Liver Mass and Cell Size Accompany Ribosome Assembly Cycles.

    Science.gov (United States)

    Sinturel, Flore; Gerber, Alan; Mauvoisin, Daniel; Wang, Jingkui; Gatfield, David; Stubblefield, Jeremy J; Green, Carla B; Gachon, Frédéric; Schibler, Ueli

    2017-05-04

    The liver plays a pivotal role in metabolism and xenobiotic detoxification, processes that must be particularly efficient when animals are active and feed. A major question is how the liver adapts to these diurnal changes in physiology. Here, we show that, in mice, liver mass, hepatocyte size, and protein levels follow a daily rhythm, whose amplitude depends on both feeding-fasting and light-dark cycles. Correlative evidence suggests that the daily oscillation in global protein accumulation depends on a similar fluctuation in ribosome number. Whereas rRNA genes are transcribed at similar rates throughout the day, some newly synthesized rRNAs are polyadenylated and degraded in the nucleus in a robustly diurnal fashion with a phase opposite to that of ribosomal protein synthesis. Based on studies with cultured fibroblasts, we propose that rRNAs not packaged into complete ribosomal subunits are polyadenylated by the poly(A) polymerase PAPD5 and degraded by the nuclear exosome. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Expression and localization of VCX/Y proteins and their possible involvement in regulation of ribosome assembly during spermatogenesis

    Institute of Scientific and Technical Information of China (English)

    SHENG WEI ZOU; JIAN CHAO ZHANG; XIAO DONG ZHANG; SHI YING MIAO; SHU DONG ZONG; QI SHENG; LIN FANG WANG

    2003-01-01

    Variable Charge X/Y (VCX/Y) is a human testis-specific gene family that localized on X and Y chromo-somes. In this study, VCY protein was expressed in E. coli in the form of glutathione-S-transferase (GST)fusion protein. With the purified fusion protein as antigen, the anti-GST-VCY antibody was generated andthe localization of VCY protein in human testis was determined by immunohistochemistry. In the testisseminiferous epithelium, VCY proteins were highly expressed in nuclei of germ cells. Using propidium io-dide staining and green fluorescent protein (GFP) tag technologies, VCY and VCX-8r proteins were mainlylocalized in the nucleoli of COS7 cells. In addition, the colocalization for VCY and VCX-8r in COS7 cellswas also observed. With VCY cDNA as bait, a cDNA fragment of acidic ribosomal protein PO was obtainedusing yeast two-hybrid system. All the information above indicates that VCX/Y protein family might beinvolved in the regulation of ribosome assembly during spermatogenesis.

  2. Reading the Evolution of Compartmentalization in the Ribosome Assembly Toolbox: The YRG Protein Family

    Science.gov (United States)

    Pérez-Pulido, Antonio J.; Reynaud, Emmanuel G.; Andrade-Navarro, Miguel A.

    2017-01-01

    Reconstructing the transition from a single compartment bacterium to a highly compartmentalized eukaryotic cell is one of the most studied problems of evolutionary cell biology. However, timing and details of the establishment of compartmentalization are unclear and difficult to assess. Here, we propose the use of molecular markers specific to cellular compartments to set up a framework to advance the understanding of this complex intracellular process. Specifically, we use a protein family related to ribosome biogenesis, YRG (YlqF related GTPases), whose evolution is linked to the establishment of cellular compartments, leveraging the current genomic data. We analyzed orthologous proteins of the YRG family in a set of 171 proteomes for a total of 370 proteins. We identified ten YRG protein subfamilies that can be associated to six subcellular compartments (nuclear bodies, nucleolus, nucleus, cytosol, mitochondria, and chloroplast), and which were found in archaeal, bacterial and eukaryotic proteomes. Our analysis reveals organism streamlining related events in specific taxonomic groups such as Fungi. We conclude that the YRG family could be used as a compartmentalization marker, which could help to trace the evolutionary path relating cellular compartments with ribosome biogenesis. PMID:28072865

  3. Crosstalk in gene expression: coupling and co-regulation of rDNA transcription, pre-ribosome assembly and pre-rRNA processing.

    Science.gov (United States)

    Granneman, Sander; Baserga, Susan J

    2005-06-01

    Ribosomes, the large RNPs that translate mRNA into protein in the cytoplasm of eukaryotic cells, are synthesized in a subcompartment of the nucleus, the nucleolus. There, transcription by Pol I yields a pre-rRNA which is modified, cleaved and assembled with ribosomal proteins to make functional ribosomes. Previously, rRNA transcription and pre-rRNA cleavage in eukaryotes were considered to be separable steps in gene expression. However, recent findings suggest that these two steps in gene expression can be concurrent and are co-regulated. Unexpectedly, optimal rDNA transcription requires the presence of a defined subset of components of the pre-rRNA processing machinery.

  4. The DEAD-box Protein Rok1 Orchestrates 40S and 60S Ribosome Assembly by Promoting the Release of Rrp5 from Pre-40S Ribosomes to Allow for 60S Maturation.

    Directory of Open Access Journals (Sweden)

    Sohail Khoshnevis

    2016-06-01

    Full Text Available DEAD-box proteins are ubiquitous regulators of RNA biology. While commonly dubbed "helicases," their activities also include duplex annealing, adenosine triphosphate (ATP-dependent RNA binding, and RNA-protein complex remodeling. Rok1, an essential DEAD-box protein, and its cofactor Rrp5 are required for ribosome assembly. Here, we use in vivo and in vitro biochemical analyses to demonstrate that ATP-bound Rok1, but not adenosine diphosphate (ADP-bound Rok1, stabilizes Rrp5 binding to 40S ribosomes. Interconversion between these two forms by ATP hydrolysis is required for release of Rrp5 from pre-40S ribosomes in vivo, thereby allowing Rrp5 to carry out its role in 60S subunit assembly. Furthermore, our data also strongly suggest that the previously described accumulation of snR30 upon Rok1 inactivation arises because Rrp5 release is blocked and implicate a previously undescribed interaction between Rrp5 and the DEAD-box protein Has1 in mediating snR30 accumulation when Rrp5 release from pre-40S subunits is blocked.

  5. The DEAD-box Protein Rok1 Orchestrates 40S and 60S Ribosome Assembly by Promoting the Release of Rrp5 from Pre-40S Ribosomes to Allow for 60S Maturation.

    Science.gov (United States)

    Khoshnevis, Sohail; Askenasy, Isabel; Johnson, Matthew C; Dattolo, Maria D; Young-Erdos, Crystal L; Stroupe, M Elizabeth; Karbstein, Katrin

    2016-06-01

    DEAD-box proteins are ubiquitous regulators of RNA biology. While commonly dubbed "helicases," their activities also include duplex annealing, adenosine triphosphate (ATP)-dependent RNA binding, and RNA-protein complex remodeling. Rok1, an essential DEAD-box protein, and its cofactor Rrp5 are required for ribosome assembly. Here, we use in vivo and in vitro biochemical analyses to demonstrate that ATP-bound Rok1, but not adenosine diphosphate (ADP)-bound Rok1, stabilizes Rrp5 binding to 40S ribosomes. Interconversion between these two forms by ATP hydrolysis is required for release of Rrp5 from pre-40S ribosomes in vivo, thereby allowing Rrp5 to carry out its role in 60S subunit assembly. Furthermore, our data also strongly suggest that the previously described accumulation of snR30 upon Rok1 inactivation arises because Rrp5 release is blocked and implicate a previously undescribed interaction between Rrp5 and the DEAD-box protein Has1 in mediating snR30 accumulation when Rrp5 release from pre-40S subunits is blocked.

  6. SrmB, a DEAD-box helicase involved in Escherichia coli ribosome assembly, is specifically targeted to 23S rRNA in vivo.

    Science.gov (United States)

    Trubetskoy, Dmitrii; Proux, Florence; Allemand, Frédéric; Dreyfus, Marc; Iost, Isabelle

    2009-10-01

    DEAD-box proteins play specific roles in remodeling RNA or ribonucleoprotein complexes. Yet, in vitro, they generally behave as nonspecific RNA-dependent ATPases, raising the question of what determines their specificity in vivo. SrmB, one of the five Escherichia coli DEAD-box proteins, participates in the assembly of the large ribosomal subunit. Moreover, when overexpressed, it compensates for a mutation in L24, the ribosomal protein (r-protein) thought to initiate assembly. Here, using the tandem affinity purification (TAP) procedure, we show that SrmB forms a complex with r-proteins L4, L24 and a region near the 5'-end of 23S rRNA that binds these proteins. In vitro reconstitution experiments show that the stability of this complex reflects cooperative interactions of SrmB with L4, L24 and rRNA. These observations are consistent with an early role of SrmB in assembly and explain the genetic link between SrmB and L24. Besides its catalytic core, SrmB possesses a nonconserved C-terminal extension that, we show, is not essential for SrmB function and specificity. In this regard, SrmB differs from DbpA, another DEAD-box protein involved in ribosome assembly.

  7. Ribosomal Initiation Complex Assembly within the Wild-Strain of Coxsackievirus B3 and Live-Attenuated Sabin3-like IRESes during the Initiation of Translation

    Directory of Open Access Journals (Sweden)

    Nathalie Chamond

    2013-02-01

    Full Text Available Coxsackievirus B3 (CVB3 is an enterovirus of the family of Picornaviridae. The Group B coxsackieviruses include six serotypes (B1 to B6 that cause a variety of human diseases, including myocarditis, meningitis, and diabetes. Among the group B, the B3 strain is mostly studied for its cardiovirulence and its ability to cause acute and persistent infections. Translation initiation of CVB3 RNA has been shown to be mediated by a highly ordered structure of the 5’-untranslated region (5’UTR, which harbors an internal ribosome entry site (IRES. Translation initiation is a complex process in which initiator tRNA, 40S and 60S ribosomal subunits are assembled by eukaryotic initiation factors (eIFs into an 80S ribosome at the initiation codon of the mRNA. We have previously addressed the question of whether the attenuating mutations of domain V of the poliovirus IRES were specific for a given genomic context or whether they could be transposed and extrapolated to a genomic related virus, i.e., CVB3 wild-type strain. In this context, we have described that Sabin3-like mutation (U473→C introduced in CVB3 genome led to a defective mutant with a serious reduction in translation efficiency. In this study, we analyzed the efficiency of formation of ribosomal initiation complexes 48S and 80S through 10%–30% and 10%–50% sucrose gradients using rabbit reticulocyte lysates (RRLs and stage-specific translation inhibitors: 5'-Guanylyl-imidodiphosphate (GMP-PNP and Cycloheximide (CHX, respectively. We demonstrated that the interaction of 48S and 80S ribosomal complexes within the mutant CVB3 RNA was abolished compared with the wild-type RNA by ribosome assembly analysis. Taken together, it is possible that the mutant RNA was unable to interact with some trans-acting factors critical for enhanced IRES function.

  8. [Fragment reaction catalyzed by E. coli ribosomes].

    Science.gov (United States)

    Kotusov, V V; Kukhanova, M K; Sal'nikova, N E; Nikolaeva, L V; Kraevskiĭ, A A

    1977-01-01

    It has been shown that 50S subunits of E. coli MRE-600 ribosomes catalyze the reaction of N-(formyl)-methionyl ester of adenosine 5'-phosphate acting as peptide donor, with Phe-tRNA or CACCA-Phe serving as a peptide acceptor. The reaction is stimulated by cytidine 5'phosphate and inhibited by lincomycin, puromycin and chloramphenicol. The obtained results show that the structure of the donor site of peptidyltransferase is completely assembled on the 50S subunit and 30S subunit is not required for its formation.

  9. Effect of mutations in the A site of 16 S rRNA on aminoglycoside antibiotic-ribosome interaction

    DEFF Research Database (Denmark)

    Recht, M I; Douthwaite, S; Dahlquist, K D

    1999-01-01

    Decoding of genetic information occurs upon interaction of an mRNA codon-tRNA anticodon complex with the small subunit of the ribosome. The ribosomal decoding region is associated with highly conserved sequences near the 3' end of 16 S rRNA. The decoding process is perturbed by the aminoglycoside...... of universally conserved nucleotides at 1406 to 1408 and 1494 to 1495 in the decoding region of plasmid-encoded bacterial 16 S rRNA. Phenotypic changes range from the benign effect of U1406-->A or A1408-->G substitutions, to the highly deleterious 1406G and 1495 mutations that assemble into 30 S subunits...... but are defective in forming functional ribosomes. Changes in the local conformation of the decoding region caused by these mutations were identified by chemical probing of isolated 30 S subunits. Ribosomes containing 16 S rRNA with mutations at positions 1408, 1407+1494, or 1495 had reduced affinity...

  10. Rrp12 and the Exportin Crm1 participate in late assembly events in the nucleolus during 40S ribosomal subunit biogenesis.

    Science.gov (United States)

    Moriggi, Giulia; Nieto, Blanca; Dosil, Mercedes

    2014-12-01

    During the biogenesis of small ribosomal subunits in eukaryotes, the pre-40S particles formed in the nucleolus are rapidly transported to the cytoplasm. The mechanisms underlying the nuclear export of these particles and its coordination with other biogenesis steps are mostly unknown. Here we show that yeast Rrp12 is required for the exit of pre-40S particles to the cytoplasm and for proper maturation dynamics of upstream 90S pre-ribosomes. Due to this, in vivo elimination of Rrp12 leads to an accumulation of nucleoplasmic 90S to pre-40S transitional particles, abnormal 35S pre-rRNA processing, delayed elimination of processing byproducts, and no export of intermediate pre-40S complexes. The exportin Crm1 is also required for the same pre-ribosome maturation events that involve Rrp12. Thus, in addition to their implication in nuclear export, Rrp12 and Crm1 participate in earlier biosynthetic steps that take place in the nucleolus. Our results indicate that, in the 40S subunit synthesis pathway, the completion of early pre-40S particle assembly, the initiation of byproduct degradation and the priming for nuclear export occur in an integrated manner in late 90S pre-ribosomes.

  11. The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.

    Science.gov (United States)

    Cavdar Koc, E; Burkhart, W; Blackburn, K; Moseley, A; Spremulli, L L

    2001-06-01

    Identification of all the protein components of the small subunit (28 S) of the mammalian mitochondrial ribosome has been achieved by carrying out proteolytic digestions of whole 28 S subunits followed by analysis of the resultant peptides by liquid chromatography and tandem mass spectrometry (LC/MS/MS). Peptide sequence information was used to search the human EST data bases and complete coding sequences of the proteins were assembled. The human mitochondrial ribosome has 29 distinct proteins in the small subunit. Fourteen of this group of proteins are homologs of the Escherichia coli 30 S ribosomal proteins S2, S5, S6, S7, S9, S10, S11, S12, S14, S15, S16, S17, S18, and S21. All of these proteins have homologs in Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae mitochondrial ribosomes. Surprisingly, three variants of ribosomal protein S18 are found in the mammalian and D. melanogaster mitochondrial ribosomes while C. elegans has two S18 homologs. The S18 homologs tend to be more closely related to chloroplast S18s than to prokaryotic S18s. No mitochondrial homologs to prokaryotic ribosomal proteins S1, S3, S4, S8, S13, S19, and S20 could be found in the peptides obtained from the whole 28 S subunit digests or by analysis of the available data bases. The remaining 15 proteins present in mammalian mitochondrial 28 S subunits (MRP-S22 through MRP-S36) are specific to mitochondrial ribosomes. Proteins in this group have no apparent homologs in bacterial, chloroplast, archaebacterial, or cytosolic ribosomes. All but two of these proteins have a clear homolog in D. melanogaster while all but three can be found in the genome of C. elegans. Five of the mitochondrial specific ribosomal proteins have homologs in S. cerevisiae.

  12. Ribosome maturation in E. coli.

    Science.gov (United States)

    Silengo, L; Altruda, F; Dotto, G P; Lacquaniti, F; Perlo, C; Turco, E; Mangiarotti, G

    1977-01-01

    In vivo and in vitro experiments have shown that processing of ribosomal RNA is a late event in ribosome biogenesis. The precursor form of RNA is probably necessary to speed up the assembly of ribomal proteins. Newly formed ribosomal particles which have already entered polyribosomes differ from mature ribosomes not only in their RNA content but also in their susceptibility to unfolding in low Mg concentration and to RNase attack. Final maturation of new ribosomes is probably dependent on their functioning in protein synthesis. Thus only those ribosomes which have proven to be functional may be converted into stable cellular structures.

  13. Identification of Novel RNA-Protein Contact in Complex of Ribosomal Protein S7 and 3'-Terminal Fragment of 16S rRNA in E. coli.

    Science.gov (United States)

    Golovin, A V; Khayrullina, G A; Kraal, B; Kopylov, Capital A Cyrillic М

    2012-10-01

    For prokaryotes in vitro, 16S rRNA and 20 ribosomal proteins are capable of hierarchical self- assembly yielding a 30S ribosomal subunit. The self-assembly is initiated by interactions between 16S rRNA and three key ribosomal proteins: S4, S8, and S7. These proteins also have a regulatory function in the translation of their polycistronic operons recognizing a specific region of mRNA. Therefore, studying the RNA-protein interactions within binary complexes is obligatory for understanding ribosome biogenesis. The non-conventional RNA-protein contact within the binary complex of recombinant ribosomal protein S7 and its 16S rRNA binding site (236 nucleotides) was identified. UV-induced RNA-protein cross-links revealed that S7 cross-links to nucleotide U1321 of 16S rRNA. The careful consideration of the published RNA- protein cross-links for protein S7 within the 30S subunit and their correlation with the X-ray data for the 30S subunit have been performed. The RNA - protein cross-link within the binary complex identified in this study is not the same as the previously found cross-links for a subunit both in a solution, and in acrystal. The structure of the binary RNA-protein complex formed at the initial steps of self-assembly of the small subunit appears to be rearranged during the formation of the final structure of the subunit.

  14. Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes.

    Science.gov (United States)

    Maier, Uwe-G; Zauner, Stefan; Woehle, Christian; Bolte, Kathrin; Hempel, Franziska; Allen, John F; Martin, William F

    2013-01-01

    Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent aspect of organelle genome evolution is partly explained by the redox regulation hypothesis, which predicts a separate plastid or mitochondrial location for genes encoding bioenergetic membrane proteins of either photosynthesis or respiration. Here we show that convergence in organelle genome evolution is far stronger than previously recognized, because the same set of genes for ribosomal proteins is independently retained by both plastid and mitochondrial genomes. A hitherto unrecognized selective pressure retains genes for the same ribosomal proteins in both organelles. On the Escherichia coli ribosome assembly map, the retained proteins are implicated in 30S and 50S ribosomal subunit assembly and initial rRNA binding. We suggest that ribosomal assembly imposes functional constraints that govern the retention of ribosomal protein coding genes in organelles. These constraints are subordinate to redox regulation for electron transport chain components, which anchor the ribosome to the organelle genome in the first place. As organelle genomes undergo reduction, the rRNAs also become smaller. Below size thresholds of approximately 1,300 nucleotides (16S rRNA) and 2,100 nucleotides (26S rRNA), all ribosomal protein coding genes are lost from organelles, while electron transport chain components remain organelle encoded as long as the organelles use redox chemistry to generate a proton motive force.

  15. 致鹅卵黄性腹膜炎大肠杆菌30S核糖体蛋白S6的原核表达及纯化%Prokaryotic expression and purification of 30 S ribosomal protein S6 of salpingitis-peritonitis Escherichia coli isolated from layer geese

    Institute of Scientific and Technical Information of China (English)

    金文杰; 张勇攀; 钱文正; 邵红霞; 钱琨; 秦爱建

    2012-01-01

    根据已发表的30S核糖体蛋白S6(RPS6)基因序列,设计合成了1对针对RPS6的特异性引物,用PCR方法从致鹅卵黄性腹膜炎大肠杆菌中扩增出RPS6基因,并将扩增的目的片段克隆至pGEM-TEasy载体中。测序正确后将RPS6基因片段克隆进表达载体pET-32a(+)中,提取pET-32a(+)-RPS6质粒,转化到大肠杆菌BL21(DE3)中,用IPTG诱导表达。结果显示,PCR产物大小为396bp,与GenBank中同源序列的相似性为99.7%。SDS-PAGE分析结果表明,构建的重组RPS6在大肠杆菌中获得了可溶性表达,分子质量约为34ku,大小与预期相一致。HisTrap FF镍柱纯化大量表达的RPS6融合蛋白(His-RPS6),证实得到了高纯度的重组蛋白,为该蛋白功能研究提供了条件。%According to the 30 S ribosomal protein S6(RPS6) gene sequence,a pair of specific primers was designed. The genomic DNA was extracted from salpingitis-peritonitis Escherichia coli strain isolated from layer geese and used as template to amplify the RPS6 gene by PCR. The RPS6 fragment was then cloned into the pGEM-T Easy vector and sequenced. The result showed that the RPS6 fragment was 396 bp. Comparing with the sequences of the RPS6 gene deposited in the GenBank,the homology was 99.7% with other E. coli. The RPS6 fragment was digested and cloned into the expression vector pET-32a (+), and then transformed into competent E. coli BL21 (DE3) cells. The positive recombinant pET-32a(+)- RPS6/DE3 clones were identified by double enzyme digestion and then expressed by IPTG induction. SDS-PAGE analysis indicated that the expressed fusion protein was 34 ku and was soluble. Using the HisTrap FF Ni2+ column,the protein His-RPS6 was purified. This recombinant protein provided basis for function research of RPS6.

  16. Cooperative assembly of proteins in the ribosomal GTPase centre demonstrated by their interactions with mutant 23S rRNAs

    DEFF Research Database (Denmark)

    Rosendahl, G; Douthwaite, S

    1995-01-01

    The ribosomal protein L11 binds to the region of 23S rRNA associated with the GTPase-dependent steps of protein synthesis. Nucleotides 1054-1107 within this region of the Escherichia coli 23S rRNA gene were mutagenized with bisulphite. Twenty point mutations (G-->A and C-->T transitions) and nume......The ribosomal protein L11 binds to the region of 23S rRNA associated with the GTPase-dependent steps of protein synthesis. Nucleotides 1054-1107 within this region of the Escherichia coli 23S rRNA gene were mutagenized with bisulphite. Twenty point mutations (G-->A and C-->T transitions...

  17. A fail-safe system for the ribosome under zinc-limiting conditions in Bacillus subtilis.

    Science.gov (United States)

    Natori, Yousuke; Nanamiya, Hideaki; Akanuma, Genki; Kosono, Saori; Kudo, Toshiaki; Ochi, Kozo; Kawamura, Fujio

    2007-01-01

    As zinc is an essential trace metal ion for all living cells, cells elaborate a variety of strategies to cope with zinc starvation. In Bacillus subtilis, genes encoding ribosomal proteins L31 and S14 are duplicated into two types: one type contains a zinc-binding motif (RpmE or RpsN), whereas the other does not (YtiA or YhzA). We have previously shown that displacement of RpmE (L31) by YtiA from already assembled ribosomes is controlled by zinc, and this replacement could contribute to zinc mobilization under zinc-limiting conditions. We propose here that the switch between the two types of S14 has a different significance. rpsN is indispensable for growth and depletion of RpsN results in defective 30S subunits. YhzA can functionally replace RpsN to allow continued ribosome assembly under zinc-limiting conditions. Unlike YtiA, YhzA appeared in the ribosome at a slower rate consistent with incorporation into newly synthesized, rather than pre-existing ribosomes. These results raise the possibility that YhzA is involved in a fail-safe system for the de novo synthesis of ribosomes under zinc-limiting conditions.

  18. Modulation of decoding fidelity by ribosomal proteins S4 and S5.

    Science.gov (United States)

    Agarwal, Deepali; Kamath, Divya; Gregory, Steven T; O'Connor, Michael

    2015-03-01

    Ribosomal proteins S4 and S5 participate in the decoding and assembly processes on the ribosome and the interaction with specific antibiotic inhibitors of translation. Many of the characterized mutations affecting these proteins decrease the accuracy of translation, leading to a ribosomal-ambiguity phenotype. Structural analyses of ribosomal complexes indicate that the tRNA selection pathway involves a transition between the closed and open conformations of the 30S ribosomal subunit and requires disruption of the interface between the S4 and S5 proteins. In agreement with this observation, several of the mutations that promote miscoding alter residues located at the S4-S5 interface. Here, the Escherichia coli rpsD and rpsE genes encoding the S4 and S5 proteins were targeted for mutagenesis and screened for accuracy-altering mutations. While a majority of the 38 mutant proteins recovered decrease the accuracy of translation, error-restrictive mutations were also recovered; only a minority of the mutant proteins affected rRNA processing, ribosome assembly, or interactions with antibiotics. Several of the mutations affect residues at the S4-S5 interface. These include five nonsense mutations that generate C-terminal truncations of S4. These truncations are predicted to destabilize the S4-S5 interface and, consistent with the domain closure model, all have ribosomal-ambiguity phenotypes. A substantial number of the mutations alter distant locations and conceivably affect tRNA selection through indirect effects on the S4-S5 interface or by altering interactions with adjacent ribosomal proteins and 16S rRNA.

  19. Ribosomal ribonucleic acid maturation during bacterial spore germination.

    Science.gov (United States)

    Bleyman, M; Woese, C

    1969-01-01

    All the ribosomal ribonucleic acid made during the early stages of germination of spores of Bacillus subtilis is of the "precursor" type, i.e., that type appearing in the incomplete forms of the ribosome. Shortly before the onset of deoxyribonucleic acid synthesis in germination, this precursor ribonucleic acid changed to the mature ribosomal ribonucleic acid characteristic of the 30S and 50S ribosomal subunits.

  20. GTPases involved in bacterial ribosome maturation.

    Science.gov (United States)

    Goto, Simon; Muto, Akira; Himeno, Hyouta

    2013-05-01

    The ribosome is an RNA- and protein-based macromolecule having multiple functional domains to facilitate protein synthesis, and it is synthesized through multiple steps including transcription, stepwise cleavages of the primary transcript, modifications of ribosomal proteins and RNAs and assemblies of ribosomal proteins with rRNAs. This process requires dozens of trans-acting factors including GTP- and ATP-binding proteins to overcome several energy-consuming steps. Despite accumulation of genetic, biochemical and structural data, the entire process of bacterial ribosome synthesis remains elusive. Here, we review GTPases involved in bacterial ribosome maturation.

  1. Hold on to your friends: Dedicated chaperones of ribosomal proteins: Dedicated chaperones mediate the safe transfer of ribosomal proteins to their site of pre-ribosome incorporation.

    Science.gov (United States)

    Pillet, Benjamin; Mitterer, Valentin; Kressler, Dieter; Pertschy, Brigitte

    2017-01-01

    Eukaryotic ribosomes are assembled from their components, the ribosomal RNAs and ribosomal proteins, in a tremendously complex, multi-step process, which primarily takes place in the nuclear compartment. Therefore, most ribosomal proteins have to travel from the cytoplasm to their incorporation site on pre-ribosomes within the nucleus. However, due to their particular characteristics, such as a highly basic amino acid composition and the presence of unstructured extensions, ribosomal proteins are especially prone to aggregation and degradation in their unassembled state, hence specific mechanisms must operate to ensure their safe delivery. Recent studies have uncovered a group of proteins, termed dedicated chaperones, specialized in accompanying and guarding individual ribosomal proteins. In this essay, we review how these dedicated chaperones utilize different folds to interact with their ribosomal protein clients and how they ensure their soluble expression and interconnect their intracellular transport with their efficient assembly into pre-ribosomes.

  2. A functional interaction between ribosomal proteins S7 and S11 within the bacterial ribosome.

    Science.gov (United States)

    Robert, Francis; Brakier-Gingras, Léa

    2003-11-01

    In this study, we used site-directed mutagenesis to disrupt an interaction that had been detected between ribosomal proteins S7 and S11 in the crystal structure of the bacterial 30 S subunit. This interaction, which is located in the E site, connects the head of the 30 S subunit to the platform and is involved in the formation of the exit channel through which passes the 30 S-bound messenger RNA. Neither mutations in S7 nor mutations in S11 prevented the incorporation of the proteins into the 30 S subunits but they perturbed the function of the ribosome. In vivo assays showed that ribosomes with either mutated S7 or S11 were altered in the control of translational fidelity, having an increased capacity for frameshifting, readthrough of a nonsense codon and codon misreading. Toeprinting and filter-binding assays showed that 30 S subunits with either mutated S7 or S11 have an enhanced capacity to bind mRNA. The effects of the S7 and S11 mutations can be related to an increased flexibility of the head of the 30 S, to an opening of the mRNA exit channel and to a perturbation of the proposed allosteric coupling between the A and E sites. Altogether, our results demonstrate that S7 and S11 interact in a functional manner and support the notion that protein-protein interactions contribute to the dynamics of the ribosome.

  3. Interdependence of Pes1, Bop1, and WDR12 controls nucleolar localization and assembly of the PeBoW complex required for maturation of the 60S ribosomal subunit.

    Science.gov (United States)

    Rohrmoser, Michaela; Hölzel, Michael; Grimm, Thomas; Malamoussi, Anastassia; Harasim, Thomas; Orban, Mathias; Pfisterer, Iris; Gruber-Eber, Anita; Kremmer, Elisabeth; Eick, Dirk

    2007-05-01

    The PeBoW complex is essential for cell proliferation and maturation of the large ribosomal subunit in mammalian cells. Here we examined the role of PeBoW-specific proteins Pes1, Bop1, and WDR12 in complex assembly and stability, nucleolar transport, and pre-ribosome association. Recombinant expression of the three subunits is sufficient for complex formation. The stability of all three subunits strongly increases upon incorporation into the complex. Only overexpression of Bop1 inhibits cell proliferation and rRNA processing, and its negative effects could be rescued by coexpression of WDR12, but not Pes1. Elevated levels of Bop1 induce Bop1/WDR12 and Bop1/Pes1 subcomplexes. Knockdown of Bop1 abolishes the copurification of Pes1 with WDR12, demonstrating Bop1 as the integral component of the complex. Overexpressed Bop1 substitutes for endogenous Bop1 in PeBoW complex assembly, leading to the instability of endogenous Bop1. Finally, indirect immunofluorescence, cell fractionation, and sucrose gradient centrifugation experiments indicate that transport of Bop1 from the cytoplasm to the nucleolus is Pes1 dependent, while Pes1 can migrate to the nucleolus and bind to preribosomal particles independently of Bop1. We conclude that the assembly and integrity of the PeBoW complex are highly sensitive to changes in Bop1 protein levels.

  4. Effect of neomycin and protein S1 on the binding of streptomycin to the ribosome.

    Science.gov (United States)

    Grisé-Miron, L; Brakier-Gingras, L

    1982-04-01

    The binding of [3H]dihydrostreptomycin to the 70-S ribosome or to the 30-S subunit has been investigated in the presence of neomycin by the Millipore filtration or the equilibrium dialysis procedure. It was observed that dihydrostreptomycin binds equally well to the 30-S subunit and the 70-S ribosome, and that neomycin stimulates the binding of dihydrostreptomycin to the ribosome by increasing the association constant and not by creating new binding sites. Specific removal of protein S1 from the 30-S subunit neither affected the binding of dihydrostreptomycin to the ribosome nor the stimulation of dihydrostreptomycin binding by neomycin.

  5. Suppression of a cold-sensitive mutation in ribosomal protein S5 reveals a role for RimJ in ribosome biogenesis.

    Science.gov (United States)

    Roy-Chaudhuri, Biswajoy; Kirthi, Narayanaswamy; Kelley, Teresa; Culver, Gloria M

    2008-06-01

    A specific mutation of Escherichia coli ribosomal protein S5, in which glycine is changed to aspartate at position 28 [S5(G28D)], results in cold sensitivity and defects in ribosome biogenesis and translational fidelity. In an attempt to understand the roles of S5 in these essential cellular functions, we selected extragenic suppressors and identified rimJ as a high-copy suppressor of the cold-sensitive phenotype associated with the S5(G28D) mutation. Our studies indicate that RimJ overexpression suppresses the growth defects, anomalous ribosome profiles and mRNA misreading exhibited by the S5(G28D) mutant strain. Although previously characterized as the N-acetyltransferase of S5, our data indicate that RimJ, when devoid of acetyltransferase activity, can suppress S5(G28D) defects thus indicating that the suppression activity of RimJ is not dependent on its acetyltransferase activity. Additionally, RimJ appears to associate with pre-30S subunits indicating that it acts on the ribonucleoprotein particle. These findings suggest that RimJ has evolved dual functionality; it functions in r-protein acetylation and as a ribosome assembly factor in E. coli.

  6. Highly purified spermatozoal RNA obtained by a novel method indicates an unusual 28S/18S rRNA ratio and suggests impaired ribosome assembly.

    Science.gov (United States)

    Cappallo-Obermann, Heike; Schulze, Wolfgang; Jastrow, Holger; Baukloh, Vera; Spiess, Andrej-Nikolai

    2011-11-01

    Human spermatozoal RNA features special characteristics such as a significantly reduced quantity within spermatozoa compared with somatic cells is described as being devoid of ribosomal RNAs and is difficult to isolate due to a massive excess of genomic DNA in the lysates. Using a novel two-round column-based protocol for human ejaculates delivering highly purified spermatozoal RNA, we uncovered a heterogeneous, but specific banding pattern in microelectrophoresis with 28S ribosomal RNA being indicative for the amount of round cell contamination. Ejaculates with different round cell quantities and density-purified spermatozoa revealed that 18S rRNA but not 28S rRNA is inherent to a pure spermatozoal fraction. Transmission electron microscopy showed monoribosomes and polyribosomes in spermatozoal cytoplasm, while immunohistochemical results suggest the presence of proteins from small and large ribosomal subunits in retained spermatozoal cytoplasm irrespective of 28S rRNA absence.

  7. The nucleolus and transcription of ribosomal genes.

    Science.gov (United States)

    Raska, Ivan; Koberna, Karel; Malínský, Jan; Fidlerová, Helena; Masata, Martin

    2004-10-01

    Ribosome biogenesis is a highly dynamic, steady-state nucleolar process that involves synthesis and maturation of rRNA, its transient interactions with non-ribosomal proteins and RNPs and assembly with ribosomal proteins. In the few years of the 21st century, an exciting progress in the molecular understanding of rRNA and ribosome biogenesis has taken place. In this review, we discuss the recent results on the regulation of rRNA synthesis in relation to the functional organization of the nucleolus, and put an emphasis on the situation encountered in mammalian somatic cells.

  8. Mapping the interaction of SmpB with ribosomes by footprinting of ribosomal RNA

    Science.gov (United States)

    Ivanova, Natalia; Pavlov, Michael Y.; Bouakaz, Elli; Ehrenberg, Måns; Schiavone, Lovisa Holmberg

    2005-01-01

    In trans-translation transfer messenger RNA (tmRNA) and small protein B (SmpB) rescue ribosomes stalled on truncated or in other ways problematic mRNAs. SmpB promotes the binding of tmRNA to the ribosome but there is uncertainty about the number of participating SmpB molecules as well as their ribosomal location. Here, the interaction of SmpB with ribosomal subunits and ribosomes was studied by isolation of SmpB containing complexes followed by chemical modification of ribosomal RNA with dimethyl sulfate, kethoxal and hydroxyl radicals. The results show that SmpB binds 30S and 50S subunits with 1:1 molar ratios and the 70S ribosome with 2:1 molar ratio. SmpB-footprints are similar on subunits and the ribosome. In the 30S subunit, SmpB footprints nucleotides that are in the vicinity of the P-site facing the E-site, and in the 50S subunit SmpB footprints nucleotides that are located below the L7/L12 stalk in the 3D structure of the ribosome. Based on these results, we suggest a mechanism where two molecules of SmpB interact with tmRNA and the ribosome during trans-translation. The first SmpB molecule binds near the factor-binding site on the 50S subunit helping tmRNA accommodation on the ribosome, whereas the second SmpB molecule may functionally substitute for a missing anticodon stem–loop in tmRNA during later steps of trans-translation. PMID:15972795

  9. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ora [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Kim, Sunghan [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Shin, Yun-jeong [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Kim, Woo-Young [College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Koh, Hee-Jong, E-mail: heejkoh@snu.ac.kr [Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Cheon, Choong-Ill, E-mail: ccheon@sookmyung.ac.kr [Department of Biological Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of)

    2015-09-18

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. - Highlights: • Nucleosome assembly protein 1 (AtNAP1) interacts with RPS6 as well as with AtHD2B. • rDNA transcription is regulated S6K1. • Overexpression or down regulation of AtNAP1 results in concomitant increase or decrease in rDNA transcription.

  10. Identification of Novel RNA-Protein Contact in Complex of Ribosomal Protein S7 and 3’-Terminal Fragment of 16S rRNA in E. coli

    Science.gov (United States)

    Golovin, A.V.; Khayrullina, G.A.; Kraal, B.; Kopylov, А.М.

    2012-01-01

    For prokaryotes in vitro, 16S rRNA and 20 ribosomal proteins are capable of hierarchical self- assembly yielding a 30S ribosomal subunit. The self-assembly is initiated by interactions between 16S rRNA and three key ribosomal proteins: S4, S8, and S7. These proteins also have a regulatory function in the translation of their polycistronic operons recognizing a specific region of mRNA. Therefore, studying the RNA–protein interactions within binary complexes is obligatory for understanding ribosome biogenesis. The non-conventional RNA–protein contact within the binary complex of recombinant ribosomal protein S7 and its 16S rRNA binding site (236 nucleotides) was identified. UV–induced RNA–protein cross-links revealed that S7 cross-links to nucleotide U1321 of 16S rRNA. The careful consideration of the published RNA– protein cross-links for protein S7 within the 30S subunit and their correlation with the X-ray data for the 30S subunit have been performed. The RNA – protein cross–link within the binary complex identified in this study is not the same as the previously found cross-links for a subunit both in a solution, and in acrystal. The structure of the binary RNA–protein complex formed at the initial steps of self-assembly of the small subunit appears to be rearranged during the formation of the final structure of the subunit. PMID:23346381

  11. Structure of ERA in Complex with the 3 End of 16s rRNBA Implications for Ribosome Biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tu, C.; Zhou, X; Tropea, J; Austin, B; Waugh, D; Court, D; Ji, X

    2009-01-01

    ERA, composed of an N-terminal GTPase domain followed by an RNA-binding KH domain, is essential for bacterial cell viability. It binds to 16S rRNA and the 30S ribosomal subunit. However, its RNA-binding site, the functional relationship between the two domains, and its role in ribosome biogenesis remain unclear. We have determined two crystal structures of ERA, a binary complex with GDP and a ternary complex with a GTP-analog and the 1531AUCACCUCCUUA1542 sequence at the 3? end of 16S rRNA. In the ternary complex, the first nine of the 12 nucleotides are recognized by the protein. We show that GTP binding is a prerequisite for RNA recognition by ERA and that RNA recognition stimulates its GTP-hydrolyzing activity. Based on these and other data, we propose a functional cycle of ERA, suggesting that the protein serves as a chaperone for processing and maturation of 16S rRNA and a checkpoint for assembly of the 30S ribosomal subunit. The AUCA sequence is highly conserved among bacteria, archaea, and eukaryotes, whereas the CCUCC, known as the anti-Shine-Dalgarno sequence, is conserved in noneukaryotes only. Therefore, these data suggest a common mechanism for a highly conserved ERA function in all three kingdoms of life by recognizing the AUCA, with a 'twist' for noneukaryotic ERA proteins by also recognizing the CCUCC.

  12. Structure of ERA in complex with the 3′ end of 16S rRNA: Implications for ribosome biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Chao; Zhou, Xiaomei; Tropea, Joseph E.; Austin, Brian P.; Waugh, David S.; Court, Donald L.; Ji, Xinhua; (NCI)

    2009-10-09

    ERA, composed of an N-terminal GTPase domain followed by an RNA-binding KH domain, is essential for bacterial cell viability. It binds to 16S rRNA and the 30S ribosomal subunit. However, its RNA-binding site, the functional relationship between the two domains, and its role in ribosome biogenesis remain unclear. We have determined two crystal structures of ERA, a binary complex with GDP and a ternary complex with a GTP-analog and the {sub 1531}AUCACCUCCUUA{sub 1542} sequence at the 3' end of 16S rRNA. In the ternary complex, the first nine of the 12 nucleotides are recognized by the protein. We show that GTP binding is a prerequisite for RNA recognition by ERA and that RNA recognition stimulates its GTP-hydrolyzing activity. Based on these and other data, we propose a functional cycle of ERA, suggesting that the protein serves as a chaperone for processing and maturation of 16S rRNA and a checkpoint for assembly of the 30S ribosomal subunit. The AUCA sequence is highly conserved among bacteria, archaea, and eukaryotes, whereas the CCUCC, known as the anti-Shine-Dalgarno sequence, is conserved in noneukaryotes only. Therefore, these data suggest a common mechanism for a highly conserved ERA function in all three kingdoms of life by recognizing the AUCA, with a 'twist' for noneukaryotic ERA proteins by also recognizing the CCUCC.

  13. Two trypanosome-specific proteins are essential factors for 5S rRNA abundance and ribosomal assembly in Trypanosoma brucei.

    Science.gov (United States)

    Hellman, Kristina M; Ciganda, Martin; Brown, Silvia V; Li, Jinlei; Ruyechan, William; Williams, Noreen

    2007-10-01

    We have previously identified and characterized two novel nuclear RNA binding proteins, p34 and p37, which have been shown to bind 5S rRNA in Trypanosoma brucei. These two proteins are nearly identical, with one major difference, an 18-amino-acid insert in the N-terminal region of p37, as well as three minor single-amino-acid differences. Homologues to p34 and p37 have been found only in other trypanosomatids, suggesting that these proteins are unique to this ancient family. We have employed RNA interference (RNAi) studies in order to gain further insight into the interaction between p34 and p37 with 5S rRNA in T. brucei. In our p34/p37 RNAi cells, decreased expression of the p34 and p37 proteins led to morphological alterations, including loss of cell shape and vacuolation, as well as to growth arrest and ultimately to cell death. Disruption of a higher-molecular-weight complex containing 5S rRNA occurs as well as a dramatic decrease in 5S rRNA levels, suggesting that p34 and p37 serve to stabilize 5S rRNA. In addition, an accumulation of 60S ribosomal subunits was observed, accompanied by a significant decrease in overall protein synthesis within p34/p37 RNAi cells. Thus, the loss of the trypanosomatid-specific proteins p34 and p37 correlates with a diminution in 5S rRNA levels as well as a decrease in ribosome activity and an alteration in ribosome biogenesis.

  14. Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis.

    Science.gov (United States)

    Ren, Jinqi; Wang, Yaqing; Liang, Yuheng; Zhang, Yongqing; Bao, Shilai; Xu, Zhiheng

    2010-04-23

    Modulation of ribosomal assembly is a fine tuning mechanism for cell number and organ size control. Many ribosomal proteins undergo post-translational modification, but their exact roles remain elusive. Here, we report that ribosomal protein s10 (RPS10) is a novel substrate of an oncoprotein, protein-arginine methyltransferase 5 (PRMT5). We show that PRMT5 interacts with RPS10 and catalyzes its methylation at the Arg(158) and Arg(160) residues. The methylation of RPS10 at Arg(158) and Arg(160) plays a role in the proper assembly of ribosomes, protein synthesis, and optimal cell proliferation. The RPS10-R158K/R160K mutant is not efficiently assembled into ribosomes and is unstable and prone to degradation by the proteasomal pathway. In nucleoli, RPS10 interacts with nucleophosmin/B23 and is predominantly concentrated in the granular component region, which is required for ribosome assembly. The RPS10 methylation mutant interacts weakly with nucleophosmin/B23 and fails to concentrate in the granular component region. Our results suggest that PRMT5 is likely to regulate cell proliferation through the methylation of ribosome proteins, and thus reveal a novel mechanism for PRMT5 in tumorigenesis.

  15. Affinity of ribosomal protein S8 from mesophilic and (hyper)thermophilic archaea and bacteria for 16S rRNA correlates with the growth temperatures of the organisms.

    Science.gov (United States)

    Gruber, Thomas; Köhrer, Caroline; Lung, Birgit; Shcherbakov, Dmitri; Piendl, Wolfgang

    2003-08-14

    The ribosomal protein S8 plays a pivotal role in the assembly of the 30S ribosomal subunit. Using filter binding assays, S8 proteins from mesophilic, and (hyper)thermophilic species of the archaeal genus Methanococcus and from the bacteria Escherichia coli and Thermus thermophilus were tested for their affinity to their specific 16S rRNA target site. S8 proteins from hyperthermophiles exhibit a 100-fold and S8 from thermophiles exhibit a 10-fold higher affinity than their mesophilic counterparts. Thus, there is a striking correlation of affinity of S8 proteins for their specific RNA binding site and the optimal growth temperatures of the respective organisms. The stability of individual rRNA-protein complexes might modulate the stability of the ribosome, providing a maximum of thermostability and flexibility at the growth temperature of the organism.

  16. Surveys of non-ribosomal peptide and polyketide assembly lines in fungi and prospects for their analysis in vitro and in vivo.

    Science.gov (United States)

    Evans, Bradley S; Robinson, Sarah J; Kelleher, Neil L

    2011-01-01

    With many bioactive non-ribosomal peptides and polyketides produced in fungi, studies of their biosyntheses are an active area of research. Practical limitations of working with mega-dalton synthetases including cell lysis and protein extraction to recombinant gene and pathway expression has slowed understanding of many secondary metabolic processes relative to bacterial counterparts. Recent advances in accessing fungal biosynthetic machinery are beginning to change this. Here we describe the successes of some studies of thiotemplate biosynthesis in fungal systems, along with very recent advances in chemical tagging and mass spectrometric strategies to selectively study biosynthetic conveyer belts in isolation, and within a few years, in endogenous fungal proteomes. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. A recent intermezzo at the Ribosome Club.

    Science.gov (United States)

    Pavlov, Michael Y; Liljas, Anders; Ehrenberg, Måns

    2017-03-19

    Two sets of ribosome structures have recently led to two different interpretations of what limits the accuracy of codon translation by transfer RNAs. In this review, inspired by this intermezzo at the Ribosome Club, we briefly discuss accuracy amplification by energy driven proofreading and its implementation in genetic code translation. We further discuss general ways by which the monitoring bases of 16S rRNA may enhance the ultimate accuracy (d-values) and how the codon translation accuracy is reduced by the actions of Mg(2+) ions and the presence of error inducing aminoglycoside antibiotics. We demonstrate that complete freezing-in of cognate-like tautomeric states of ribosome-bound nucleotide bases in transfer RNA or messenger RNA is not compatible with recent experiments on initial codon selection by transfer RNA in ternary complex with elongation factor Tu and GTP. From these considerations, we suggest that the sets of 30S subunit structures from the Ramakrishnan group and 70S structures from the Yusupov/Yusupova group may, after all, reflect two sides of the same coin and how the structurally based intermezzo at the Ribosome Club may be resolved simply by taking the dynamic aspects of ribosome function into account.This article is part of the themed issue 'Perspectives on the ribosome'.

  18. 30S Beam Development and X-ray Bursts

    CERN Document Server

    Kahl, D; Kubono, S; Binh, D N; Chen, J; Hashimoto, T; Hayakawa, S; Kaji, D; Kim, A; Kurihara, Y; Lee, N H; Nishimura, S; Ohshiro, Y; nia, K Setoodeh; Wakabayashi, Y; Yamaguchi, H; 10.1063/1.3362583

    2010-01-01

    Over the past three years, we have worked on developing a well-characterized 30S radioactive beam to be used in a future experiment aiming to directly measure the 30S(alpha,p) stellar reaction rate within the Gamow window of Type I X-ray bursts. The importance of the 30S(alpha,p) reaction to X-ray bursts is discussed. Given the astrophysical motivation, the successful results of and challenges involved in the production of a low-energy 30S beam are detailed. Finally, an overview of our future plans regarding this on-going project are presented.

  19. Molecular morphology of ribosomes. Iodination of Escherichia coli ribosomal proteins with solid-state lactoperoxidase.

    Science.gov (United States)

    Michalski, C J; Sells, B H

    1975-03-17

    Using either soluble or solid-state lactoperoxidase, a comparison was made between the enzymic iodination of ribosomal proteins iodinated as 30-S and 50-S subunits or as 70-S monosomes. Proteins S7, S11 and S12 of the 30-S subunit and proteins L2, L11, L26 and L28 of the 50-S subunit were labelled to a greater extent in isolated particles than in the 70-S ribosome. In contrast, proteins S4, S19 and S20 were labelled to a lesser extent in the isolated subunit. No significant differences were observed in the iodination patterns of ribosomes iodinated in the presence of soluble lactoperoxidase and those iodinated in the presence of lactoperoxidase bound to Sepharose 4B. It is suggested that the 30-S subunit undergoes a conformational change during its association with the 50-S subunit to form a 70-S monosome. Implications from results obtained with solid-state lactoperoxidase-catalyzed iodination of ribosomal proteins are also discussed.

  20. The ribosomal genes of Mycoplasma capricolum.

    Science.gov (United States)

    Muto, A; Hori, H; Sawada, M; Kawauchi, Y; Iwami, M; Yamao, F; Osawa, S

    1983-01-01

    The nucleotide sequence of 5S rRNA from Mycoplasma capricolum is more similar to that of the gram-positive bacteria than that of the gram-negative bacteria. The presence of two copies of rRNA genes in M. capricolum genome has been demonstrated. The two different rRNA gene clusters have been cloned in E. coli plasmid vectors and analyzed for the rRNA gene organizations, demonstrating that the gene arrangement is in the order of 16S, 23S, and 5S rDNA. The ribosomes of M. capricolum contain about 30 species of proteins in 50S and 20 in 30S subunits. The number and size of the ribosomal proteins are not significantly different from those of other eubacterial ribosomes.

  1. In vitro synthesis of ribosomal proteins directed by Escherichia coli DNA.

    Science.gov (United States)

    Kaltschmidt, E; Kahan, L; Nomura, M

    1974-02-01

    In vitro synthesis of a number of E. coli 30S ribosomal proteins has been demonstrated in a cell-free system consisting of ribosomes, initiation factors, RNA polymerase, a fraction containing soluble enzymes and factors, and E. coli DNA. DNA-dependent synthesis of the following 30S proteins has been demonstrated: S4, S5, S7, S8, S9, S10, S13, S14, S16, S19, and S20.

  2. 30S RI Beam Production and X-ray Bursts

    CERN Document Server

    Kahl, David; Binh, Dam Nguyen; Chen, Jun; Hashimoto, Takashi; Hayakawa, Seiya; Kim, Aram; Kubono, Shigeru; Kurihara, Yuzo; Lee, Nam Hee; Michimasa, Shin'ichiro; Nishimura, Shunji; Van Ouellet, Christian; nia, Kiana Setoodeh; Wakabayashi, Yasuo; Yamaguchi, Hideotoshi

    2009-01-01

    The present work reports the results of 30S radioactive beam development for a future experiment directly measuring data to extrapolate the 30S(alpha,p) stellar reaction rate in Type I X-ray bursts, a phenomena where nuclear explosions occur repeatedly on the surface of accreting neutron stars. We produce the radioactive ion 30S via the 3He(28Si,30S)n reaction, by bombarding a cryogenically cooled target of 3He at 400 Torr and 80 K with 28Si beams of 6.9 and 7.54 MeV/u. In order to perform a successful future experiment which allows us to calculate the stellar 30S(alpha, p) reaction rate, Hauser-Feshbach calculations indicate we require a 30S beam of ~10^5 particles per second at ~32 MeV. Based on our recent beam development experiments in 2006 and 2008, it is believed that such a beam may be fabricated in 2009 according to the results presented. We plan to measure the 4He(30S,p) cross-section at astrophysical energies in 2009, and some brief remarks on the planned (alpha,p) technique are also elucidated.

  3. [Topography of ribosomal proteins: reconsideration of of protein map of small ribosomal subunit].

    Science.gov (United States)

    Spirin, A S; Agafonov, D E; Kolb, V A; Kommer, A

    1996-11-01

    Exposure of proteins on the surface of the small (30S) ribosomal subunit of Escherichia coli was studied by the hot tritium bombardment technique. Eight of 21 proteins of the 30 S subunit (S3, S8, S10, S12, S15, S16, S17, and S19) had virtually no groups exposed on the surface of the particle, i.e., they were mainly hidden inside. Seven proteins (S1, S4, S5, S7, S18, S20, and S21) were all well exposed on the surface of the particle, thus being outside proteins. The remaining proteins (S2, S6, S9 and/or S11, S13, and S14) were partially exposed. On the basis of these results a reconcilement of the three-dimensional protein map of the small ribosomal subunit has been done and corrected model is proposed.

  4. Architecture of the E.coli 70S ribosome

    DEFF Research Database (Denmark)

    Burkhardt, N.; Diedrich, G.; Nierhaus, K.H.

    1997-01-01

    The 70S ribosome from E.coli was analysed by neutron scattering focusing on the shape and the internal protein-RNA-distribution of the complex. Measurements on selectively deuterated 70S particles and free 30S and 50S subunits applying conventional contrast variation and proton-spin contrast...

  5. Isolation, crystallization, and investigation of ribosomal protein S8 complexed with specific fragments of rRNA of bacterial or archaeal origin.

    Science.gov (United States)

    Tishchenko, S V; Vassilieva, J M; Platonova, O B; Serganov, A A; Fomenkova, N P; Mudrik, E S; Piendl, W; Ehresmann, C; Ehresmann, B; Garber, M B

    2001-09-01

    The core ribosomal protein S8 binds to the central domain of 16S rRNA independently of other ribosomal proteins and is required for assembling the 30S subunit. It has been shown with E. coli ribosomes that a short rRNA fragment restricted by nucleotides 588-602 and 636-651 is sufficient for strong and specific protein S8 binding. In this work, we studied the complexes formed by ribosomal protein S8 from Thermus thermophilus and Methanococcus jannaschii with short rRNA fragments isolated from the same organisms. The dissociation constants of the complexes of protein S8 with rRNA fragments were determined. Based on the results of binding experiments, rRNA fragments of different length were designed and synthesized in preparative amounts in vitro using T7 RNA-polymerase. Stable S8-RNA complexes were crystallized. Crystals were obtained both for homologous bacterial and archaeal complexes and for hybrid complexes of archaeal protein with bacterial rRNA. Crystals of the complex of protein S8 from M. jannaschii with the 37-nucleotide rRNA fragment from the same organism suitable for X-ray analysis were obtained.

  6. Initial bridges between two ribosomal subunits are formed within 9.4 milliseconds, as studied by time-resolved cryo-EM.

    Science.gov (United States)

    Shaikh, Tanvir R; Yassin, Aymen S; Lu, Zonghuan; Barnard, David; Meng, Xing; Lu, Toh-Ming; Wagenknecht, Terence; Agrawal, Rajendra K

    2014-07-08

    Association of the two ribosomal subunits during the process of translation initiation is a crucial step of protein synthesis. The two subunits (30S and 50S) of the bacterial 70S ribosome are held together by 12 dynamic bridges involving RNA-RNA, RNA-protein, and protein-protein interactions. The process of bridge formation, such as whether all these bridges are formed simultaneously or in a sequential order, is poorly understood. To understand such processes, we have developed and implemented a class of microfluidic devices that mix two components to completion within 0.4 ms and spray the mixture in the form of microdroplets onto an electron microscopy grid, yielding a minimum reaction time of 9.4 ms before cryofixation. Using these devices, we have obtained cryo-EM data corresponding to reaction times of 9.4 and 43 ms and have determined 3D structures of ribosomal subunit association intermediates. Molecular analyses of the cryo-EM maps reveal that eight intersubunit bridges (bridges B1a, B1b, B2a, B2b, B3, B7a, B7b, and B8) form within 9.4 ms, whereas the remaining four bridges (bridges B2c, B4, B5, and B6) take longer than 43 ms to form, suggesting that bridges are formed in a stepwise fashion. Our approach can be used to characterize sequences of various dynamic functional events on complex macromolecular assemblies such as ribosomes.

  7. Placeholder factors in ribosome biogenesis: please, pave my way

    Directory of Open Access Journals (Sweden)

    Francisco J. Espinar-Marchena

    2017-04-01

    Full Text Available The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of trans-acting factors and some ribosomal proteins to form pre-ribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of trans-acting factors known as “placeholders”. Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway.

  8. The Ribosomal Database Project

    Science.gov (United States)

    Olsen, G. J.; Overbeek, R.; Larsen, N.; Marsh, T. L.; McCaughey, M. J.; Maciukenas, M. A.; Kuan, W. M.; Macke, T. J.; Xing, Y.; Woese, C. R.

    1992-01-01

    The Ribosomal Database Project (RDP) complies ribosomal sequences and related data, and redistributes them in aligned and phylogenetically ordered form to its user community. It also offers various software packages for handling, analyzing and displaying sequences. In addition, the RDP offers (or will offer) certain analytic services. At present the project is in an intermediate stage of development.

  9. Effects of magnesium ions on ribosomes: a fluorescence study.

    Science.gov (United States)

    Bonincontro, A; Briganti, G; Giansanti, A; Pedone, F; Risuleo, G

    1993-07-18

    Fluorescence intensity measurements of ethidium bromide (EB) bound to ribosomal RNA (rRNA) in suspensions of 30S and 50S subunits, of 70S ribosomal particles and of protein-free extracted rRNA are presented. Changes in the intercalation of EB reflect changes in conformation and degree of exposure of rRNA. The effect of removal of magnesium ions on the binding of EB is compared in protein-free rRNA and in ribosomal particles by a Scatchard plot analysis. In free ribosomal RNA the number of bound EBs do not depend on magnesium content, only the association constant is affected. In intact 70S particles and both in the separated 50S and 30S subunits the presence of magnesium greatly reduces binding of EB and no saturation of the fluorescence intensity with rRNA concentration is observed, preventing a Scatchard plot analysis. Removal of magnesium restores a strong EB intercalation. Then magnesium ions induce a conformational change in the 70S particles as well as in the separated subunits. The different behavior of the free-rRNA and of the ribosomal particles indicates that ribosomal proteins are relevant to the structural changes induced by magnesium ions. The comparison of the number of excluded sites and of the association constant in the 30S, 50S subunits and in the 70S particles indicates that even without Mg2+ ions the two subunits still interact, at variance with the commonly shared opinion that subunits dissociation takes place at low magnesium concentration.

  10. Pengembangan Game Edukatif G30S/PKI Berbasis Android

    Directory of Open Access Journals (Sweden)

    Annisa Hedlina Hendraputri

    2014-11-01

    Full Text Available Gaya hidup masyarakat zaman sekarang tak pernah lepas dari kemajuan teknologi. Masyarakat menengah keatas, baik dari anak-anak hingga orang dewasa, hampir tidak ada yang tidak meggunakan perangkat mobile seperti handphone atau tablet. Namun sayangnya masyarakat zaman sekarang cenderung apatis dengan kondisi sekitarnya, bahkan tidak mengenal sejarah negaranya. Penelitian ini dilakukan untuk mendekatkan kembali anak-anak dengan sejarah terutama peristiwa G30S/PKI melalui game perangkat seluler berbasis Android. Penelitian ini dilakukan dengan menerapkan tahap pengembangan MDLC (Multimedia Development Life Cycle mulai dari tahap penentuan konsep sampai dengan sidtribusi. Sebagai sumber yang relevan, cerita sejarah diambil langsung dari Monumen Pancasila Sakti di Lubang Buaya, Jakarta Timur, sebagai salah satu tempat bersejarah yang erat kaitannya dengan peristiwa G30S/PKI. Hasil dari penelitian ini berupa suatu aplikasi permainan yang menceritakan peristiwa sejarah G30S/PKI yang dikemas menjadi aplikasi perangkat seluler dengan sistem operasi Android. Penelitian ini diharapkan mampu menarik minat anak-anak khususnya usia 9 sampai dengan 12 tahun untuk mempelajari dan mencintai sejarah Indonesia.

  11. Protein-protein interactions within late pre-40S ribosomes.

    Directory of Open Access Journals (Sweden)

    Melody G Campbell

    Full Text Available Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  12. Archaeal MBF1 binds to 30S and 70S ribosomes via its helix-turn-helix domain

    NARCIS (Netherlands)

    Blombach, F.; Launay, H.; Snijders, A.P.; Zorraquino, V.; Wu, H.; Koning, de B.; Brouns, S.J.J.; Ettema, T.J.; Camilloni, C.; Cavalli, A.; Vendruscolo, M.; Dickman, M.J.; Cabrita, L.D.; Teana, La A.; Benelli, D.; Londei, P.; Christodoulou, J.; Oost, van der J.

    2014-01-01

    MBF1 (multi-protein bridging factor 1) is a protein containing a conserved HTH (helix–turn–helix) domain in both eukaryotes and archaea. Eukaryotic MBF1 has been reported to function as a transcriptional co-activator that physically bridges transcription regulators with the core transcription initia

  13. The subcellular distribution of the human ribosomal "stalk" components: P1, P2 and P0 proteins

    DEFF Research Database (Denmark)

    Tchórzewski, Marek; Krokowski, Dawid; Rzeski, Wojciech;

    2003-01-01

    The ribosomal "stalk" structure is a distinct lateral protuberance located on the large ribosomal subunit in prokaryotic, as well as in eukaryotic cells. In eukaryotes, this ribosomal structure is composed of the acidic ribosomal P proteins, forming two hetero-dimers (P1/P2) attached......-proteins that are not actively transported into the nucleus; moreover, this might imply that the "stalk" constituents are assembled onto the ribosomal particle at the very last step of ribosomal maturation, which takes part in the cell cytoplasm....

  14. Crystal Structures of EF-G-Ribosome Complexes Trapped in Intermediate States of Translocation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jie; Lancaster, Laura; Donohue, John Paul; Noller, Harry F. [UCSC

    2013-11-12

    Translocation of messenger and transfer RNA (mRNA and tRNA) through the ribosome is a crucial step in protein synthesis, whose mechanism is not yet understood. The crystal structures of three Thermus ribosome-tRNA-mRNA–EF-G complexes trapped with β,γ-imidoguanosine 5'-triphosphate (GDPNP) or fusidic acid reveal conformational changes occurring during intermediate states of translocation, including large-scale rotation of the 30S subunit head and body. In all complexes, the tRNA acceptor ends occupy the 50S subunit E site, while their anticodon stem loops move with the head of the 30S subunit to positions between the P and E sites, forming chimeric intermediate states. Two universally conserved bases of 16S ribosomal RNA that intercalate between bases of the mRNA may act as “pawls” of a translocational ratchet. These findings provide new insights into the molecular mechanism of ribosomal translocation.

  15. The structure of Aquifex aeolicus ribosomal protein S8 reveals a unique subdomain that contributes to an extremely tight association with 16S rRNA.

    Science.gov (United States)

    Menichelli, Elena; Edgcomb, Stephen P; Recht, Michael I; Williamson, James R

    2012-01-20

    The assembly of ribonucleoprotein complexes occurs under a broad range of conditions, but the principles that promote assembly and allow function at high temperature are poorly understood. The ribosomal protein S8 from Aquifex aeolicus (AS8) is unique in that there is a 41-residue insertion in the consensus S8 sequence. In addition, AS8 exhibits an unusually high affinity for the 16S ribosomal RNA, characterized by a picomolar dissociation constant that is approximately 26,000-fold tighter than the equivalent interaction from Escherichia coli. Deletion analysis demonstrated that binding to the minimal site on helix 21 occurred at the same nanomolar affinity found for other bacterial species. The additional affinity required the presence of a three-helix junction between helices 20, 21, and 22. The crystal structure of AS8 was solved, revealing the helix-loop-helix geometry of the unique AS8 insertion region, while the core of the molecule is conserved with known S8 structures. The AS8 structure was modeled onto the structure of the 30S ribosomal subunit from E. coli, suggesting the possibility that the unique subdomain provides additional backbone and side-chain contacts between the protein and an unpaired base within the three-way junction of helices 20, 21, and 22. Point mutations in the protein insertion subdomain resulted in a significantly reduced RNA binding affinity with respect to wild-type AS8. These results indicate that the AS8-specific subdomain provides additional interactions with the three-way junction that contribute to the extremely tight binding to ribosomal RNA.

  16. [Study of the mRNA-binding region of ribosomes at different steps of translation. II. Affinity modification of Escherichia coli ribosomes by benzylidene derivative of AUGU6 in the 70S initiation complex].

    Science.gov (United States)

    Babkina, G T; Karpova, G G; Matasova, N B; Berzin', V M; Gren, E Ia

    1985-01-01

    2',3'-O-(4-[N-(2-chloroethyl)-N-methylamino]) benzylidene derivative of AUGU6 was used for identification of the proteins in the region of the mRNA-binding centre of E. coli ribosomes. This derivative alkylated ribosomes (preferentially 30S ribosomal) with high efficiency within the 70S initiation complex. In both 30S and 50S ribosomal subunits proteins and rRNA were modified. Specificity of the alkylation of ribosomal proteins and rRNA with the reagent was proved by the inhibitory action of AUGU6. Using the method of two-dimensional electrophoresis in polyacrylamide gel the proteins S4, S12, S13, S14, S15, S18, S19 and S20/L26 which are labelled by the analog of mRNA were identified.

  17. Ribosomal Antibiotics: Contemporary Challenges

    Directory of Open Access Journals (Sweden)

    Tamar Auerbach-Nevo

    2016-06-01

    Full Text Available Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.

  18. Crystal structure of elongation factor 4 bound to a clockwise ratcheted ribosome

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, M. G.; Lin, J.; Bulkley, D.; Steitz, T. A.

    2014-08-08

    Elongation factor 4 (EF4/LepA) is a highly conserved guanosine triphosphatase translation factor. It was shown to promote back-translocation of tRNAs on posttranslocational ribosome complexes and to compete with elongation factor G for interaction with pretranslocational ribosomes, inhibiting the elongation phase of protein synthesis. Here, we report a crystal structure of EF4–guanosine diphosphate bound to the Thermus thermophilus ribosome with a P-site tRNA at 2.9 angstroms resolution. The C-terminal domain of EF4 reaches into the peptidyl transferase center and interacts with the acceptor stem of the peptidyl-tRNA in the P site. The ribosome is in an unusual state of ratcheting with the 30S subunit rotated clockwise relative to the 50S subunit, resulting in a remodeled decoding center. The structure is consistent with EF4 functioning either as a back-translocase or a ribosome sequester.

  19. Are there proteins between the ribosomal subunits? Hot tritium bombardment experiments.

    Science.gov (United States)

    Yusupov, M M; Spirin, A S

    1986-03-03

    The hot tritium bombardment technique [(1976) Dokl. Akad. Nauk SSSR 228, 1237-1238] was used for studying the surface localization of ribosomal proteins on Escherichia coli ribosomes. The degree of tritium labeling of proteins was considered as a measure of their exposure (surface localization). Proteins S1, S4, S7, S9 and/or S11, S12 and/or L20, S13, S18, S20, S21, L5, L6, L7/L12, L10, L11, L16, L17, L24, L26 and L27 were shown to be the most exposed on the ribosome surface. The sets of exposed ribosomal proteins on the surface of 70 S ribosomes, on the one hand, and the surfaces of 50 S and 30 S ribosomal subunits in the dissociated state, on the other, were compared. It was found that the dissociation of ribosomes into subunits did not result in exposure of additional ribosomal proteins. The conclusion was drawn that proteins are absent from the contacting surfaces of the ribosomal subunits.

  20. Mechanism of recycling of post-termination ribosomal complexes in eubacteria: a new role of initiation factor 3

    Indian Academy of Sciences (India)

    Anuradha Seshadri; Umesh Varshney

    2006-06-01

    Ribosome recycling is a process which dissociates the post-termination complexes (post-TC) consisting of mRNA-bound ribosomes harbouring deacylated tRNA(s). Ribosome recycling factor (RRF), and elongation factor G (EFG) participate in this crucial process to free the ribosomal subunits for a new round of translation. We discuss the overall pathway of ribosome recycling in eubacteria with especial reference to the important role of the initiation factor 3 (IF3) in this process. Depending on the step(s) at which IF3 function is implicated, three models have been proposed. In model 1, RRF and EFG dissociate the post-TCs into the 50S and 30S subunits, mRNA and tRNA(s). In this model, IF3, which binds to the 30S subunit, merely keeps the dissociated subunits apart by its anti-association activity. In model 2, RRF and EFG separate the 50S subunit from the post-TC. IF3 then dissociates the remaining complex of mRNA, tRNA and the 30S subunit, and keeps the ribosomal subunits apart from each other. However, in model 3, both the genetic and biochemical evidence support a more active role for IF3 even at the step of dissociation of the post-TC by RRF and EFG into the 50S and 30S subunits.

  1. Mapping contacts of the S12-S7 intercistronic region of str operon mRNA with ribosomal protein S7 of E. coli.

    Science.gov (United States)

    Golovin, Andrey; Spiridonova, Vera; Kopylov, Alexei

    2006-10-30

    In E. coli, S7 initiates 30S ribosome assembly by binding to 16S rRNA. It also regulates translation of the S12 and S7 cistrons of the 'streptomycin' operon transcript by binding to the S12-S7 intercistronic region. Here, we describe the contacts of N-terminally His(6)-tagged S7 with this region as mapped by UV-induced cross-linking. The cross-links are located at U(-34), U(-35), quite distant from the start codons of the two cistrons. In order to explain the mechanism of translational repression of S12-S7, we consider a possible conformational rearrangement of the intercistronic RNA structure induced by S7 binding.

  2. Aggregation of Ribosomal Protein S6 at Nucleolus Is Cell Cycle-Controlled and Its Function in Pre-rRNA Processing Is Phosphorylation Dependent.

    Science.gov (United States)

    Zhang, Duo; Chen, Hui-Peng; Duan, Hai-Feng; Gao, Li-Hua; Shao, Yong; Chen, Ke-Yan; Wang, You-Liang; Lan, Feng-Hua; Hu, Xian-Wen

    2016-07-01

    Ribosomal protein S6 (rpS6) has long been regarded as one of the primary r-proteins that functions in the early stage of 40S subunit assembly, but its actual role is still obscure. The correct forming of 18S rRNA is a key step in the nuclear synthesis of 40S subunit. In this study, we demonstrate that rpS6 participates in the processing of 30S pre-rRNA to 18S rRNA only when its C-terminal five serines are phosphorylated, however, the process of entering the nucleus and then targeting the nucleolus does not dependent its phosphorylation. Remarkably, we also find that the aggregation of rpS6 at the nucleolus correlates to the phasing of cell cycle, beginning to concentrate in the nucleolus at later S phase and disaggregate at M phase. J. Cell. Biochem. 117: 1649-1657, 2016. © 2015 Wiley Periodicals, Inc.

  3. Chaperoning 5S RNA assembly

    National Research Council Canada - National Science Library

    Madru, Clément; Lebaron, Simon; Blaud, Magali; Delbos, Lila; Pipoli, Juliana; Pasmant, Eric; Réty, Stéphane; Leulliot, Nicolas

    2015-01-01

    ...—are processed from a single pre-rRNA transcript and assembled into ribosomes. The fourth rRNA, the 5S rRNA, is transcribed by RNA polymerase III and is assembled into the 5S ribonucleoprotein particle (RNP...

  4. Characterization of the domains of E. coli initiation factor IF2 responsible for recognition of the ribosome

    DEFF Research Database (Denmark)

    Manuel Palacios Moreno, Juan; Andersen, Lars Dyrskjøt; Egebjerg Kristensen, Janni

    1999-01-01

    We have studied the interactions between the ribosome and the domains of Escherichia coli translation initiation factor 2, using an in vitro ribosomal binding assay with wild-type forms, N- and C-terminal truncated forms of IF2 as well as isolated structural domains. A deletion mutant of the factor...... consisting of the two N-terminal domains of IF2, binds to both 30S and 50S ribosomal subunits as well as to 70S ribosomes. Furthermore, a truncated form of IF2, lacking the two N-terminal domains, binds to 30S ribosomal subunits in the presence of IF1. In addition, this N-terminal deletion mutant IF2 possess...... a low but significant affinity for the 70S ribosome which is increased by addition of IF1. The isolated C-terminal domain of IF2 has no intrinsic affinity for the ribosome nor does the deletion of this domain from IF2 affect the ribosomal binding capability of IF2. We conclude that the N-terminus of IF2...

  5. Isolation of Moraxella bovis ribosomes and their subsequent use in a vaccine against infectious bovine keratoconjunctivitis.

    Science.gov (United States)

    Pugh, G W; Phillips, M; McDonald, T J; Kopecky, K E

    1981-03-01

    A study was conducted to determine whether a Moraxella bovis ribosomal vaccine would protect calves from infectious bovine keratoconjunctivitis (IBK). Each of 16 calves were given 2 inoculations 21 days apart. Twenty-one days after the 2nd inoculation, 8 of the calves were challenge exposed with a homologous strain culture and 8 calves were challenge exposed to a heterologous strain culture of M bovis. Sedimentation velocity analysis of the ribosomes used in this study indicated that they were mostly 30S and 50S subunits. Chemical assays indicated that the ribosomes were composed of 64% to 65% RNA and 35% to 36% protein. The cesium chloride buoyant density of the ribosomes was 1.62 g/ml. Ribosomes used as antigen gave 1 line of precipitation in a gel-diffusion precipitin test with hyperimmune serum against the whole-cell antigen of the homologous strain of M bovis. The eyes of all the experimentally exposed calves became infected and all calves developed clinical signs of either unilateral or bilateral IBK. None of the sera of the vaccinated calves had detectable precipitins against the ribosomal antigen at the time they were challenge exposed, but most of the sera had precipitins against whole-cell and pilus antigens. The results indicate that M bovis ribosomes, although similar to other bacterial ribosomes, did not protect cattle against IBK.

  6. Molecular inventory control in ribosome biosynthesis.

    Science.gov (United States)

    Warner, J R; Johnson, S P

    1986-11-01

    The eukaryotic cell coordinates the accumulation of each ribosomal protein with every other ribosomal protein, with ribosomal RNA and with the needs of the cell. To do so it regulates the transcription, processing, translation and lifetime of the mRNA for ribosomal proteins. When all else fails, it rapidly degrades any excess ribosomal protein which is synthesized.

  7. [Affinity modification of Escherichia coli ribosomes with photoactivated analogs of mRNA].

    Science.gov (United States)

    Gimautdinova, O I; Zenkova, M A; Karpova, G G; Podust, L M

    1984-01-01

    Oligoribonucleotide derivatives containing the photoactivated arylazidogroup at 5'-end of the oligonucleotide fragment [2-(N-2,4-dinitro-5-azidophenyl) aminoethyl] phosphamides of the oligoribonucleotides, azido-NH (CH2)2NHpN (pN) n-1, were prepared. It was demonstrated that azido-NH(CH2)2NHpA(pA)4 and azido-NH (CH2)2NHpU (pU)3 stimulate the binding of the codonspecific aminoacyl-tRNA with ribosome. After irradiation of the ternary complex ribosome-azido-NH (CH2)2NHpU (pU) n-1 X tRNA with UV-light (lambda greater than 350 nm) covalent binding of the reagent to ribosome occurs. Up to 10% of the reagent, bound in the ternary complex with ribosome, is cross-linked with the ribosomal proteins of 30S and 50S subunits. The ribosomal RNA are not modified by azido-NH (CH2)2NHpU (pU) n-1. The proteins of 30S and 50S subunits, modified with azido-NH (CH2)2NHpU (pU) n-1 with n = 4,7 and 8, were identified. It is shown that proteins of 30S subunits S3, S4, S9, S11, S12, S14, S17, S19, S20 undergo modification. The proteins of 50S subunits L2, L13, L16, L27, L32, L33 are modified. The set of the modified proteins essentially depends on the length of the oligonucleotide part of the reagent and on occupancy of ribosome A-site by a molecule of tRNA.

  8. Requirement for a conserved, tertiary interaction in the core of 23S ribosomal RNA

    DEFF Research Database (Denmark)

    Aagaard, C; Douthwaite, S

    1994-01-01

    A putative base-pairing interaction that determines the folding of the central region of 23S rRNA has been investigated by mutagenesis. Each of the possible base substitutions has been made at the phylogenetically covariant positions adenine-1262 (A1262) and U2017 in Escherichia coli 23S rRNA....... Every substitution that disrupts the potential for Watson-Crick base pairing between these positions reduces or abolishes the participation of 23S rRNA in protein synthesis. All mutant 23S rRNAs are assembled into 50S subunits, but the mutant subunits are less able to stably interact with 30S subunits...... to form translationally active ribosomes. The function of 23S rRNA is largely reestablished by introduction of an alternative G1262.C2017 or U1262.A2017 pair, although neither of these supports polysome formation quite as effectively as the wild-type pair. A 23S rRNA with a C1262.G2017 pair...

  9. Molecular signatures of ribosomal evolution.

    Science.gov (United States)

    Roberts, Elijah; Sethi, Anurag; Montoya, Jonathan; Woese, Carl R; Luthey-Schulten, Zaida

    2008-09-16

    Ribosomal signatures, idiosyncrasies in the ribosomal RNA (rRNA) and/or proteins, are characteristic of the individual domains of life. As such, insight into the early evolution of the domains can be gained from a comparative analysis of their respective signatures in the translational apparatus. In this work, we identify signatures in both the sequence and structure of the rRNA and analyze their contributions to the universal phylogenetic tree using both sequence- and structure-based methods. Domain-specific ribosomal proteins can be considered signatures in their own right. Although it is commonly assumed that they developed after the universal ribosomal proteins, we present evidence that at least one may have been present before the divergence of the organismal lineages. We find correlations between the rRNA signatures and signatures in the ribosomal proteins showing that the rRNA signatures coevolved with both domain-specific and universal ribosomal proteins. Finally, we show that the genomic organization of the universal ribosomal components contains these signatures as well. From these studies, we propose the ribosomal signatures are remnants of an evolutionary-phase transition that occurred as the cell lineages began to coalesce and so should be reflected in corresponding signatures throughout the fabric of the cell and its genome.

  10. Structural Dynamics of the Ribosome

    OpenAIRE

    Korostelev, Andrei; Ermolenko, Dmitri N.; Noller, Harry F.

    2008-01-01

    Protein synthesis is inherently a dynamic process, requiring both small- and large-scale movements of tRNA and mRNA. It has long been suspected that these movements might be coupled to conformational changes in the ribosome, and in its RNA moieties in particular. Recently, the nature of ribosome structural dynamics has begun to emerge from a combination of approaches, most notably cryo-EM, X-ray crystallography and FRET. Ribosome movement occurs both on a grand scale, as in the intersubunit r...

  11. 30S(alpha,p) in X-Ray Bursts at CRIB

    CERN Document Server

    Kahl, D; Kubono, S; Binh, D N; Chen, J; Hashimoto, T; Hayakawa, S; Kaji, D; Kim, A; Kurihara, Y; Lee, N H; Nishimura, S; Ohshiro, Y; nia, K Setoodeh; Wakabayashi, Y; Yamaguchi, H; 10.1063/1.3485188

    2010-01-01

    Over the past three years, we have worked on developing a well-characterized 30S radioactive beam to be used in a future experiment aiming to directly measure the 30S(alpha,p) stellar reaction rate within the Gamow window of Type I X-ray bursts.

  12. The RDP (Ribosomal Database Project).

    Science.gov (United States)

    Maidak, B L; Olsen, G J; Larsen, N; Overbeek, R; McCaughey, M J; Woese, C R

    1997-01-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome-related data, analysis services and associated computer programs. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software for handling, analyzing and displaying alignments and trees. The data are available via anonymous FTP (rdp.life.uiuc.edu), electronic mail (server@rdp.life.uiuc.edu), gopher (rdpgopher.life.uiuc.edu) and WWW (http://rdpwww.life.uiuc.edu/ ). The electronic mail and WWW servers provide ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for possible chimeric rRNA sequences, automated alignment, and a suggested placement of an unknown sequence on an existing phylogenetic tree.

  13. The Ribosomal Database Project (RDP).

    Science.gov (United States)

    Maidak, B L; Olsen, G J; Larsen, N; Overbeek, R; McCaughey, M J; Woese, C R

    1996-01-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome-related data, analysis services and associated computer programs. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams and various software for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (rdp.life.uiuc.edu), electronic mail (server@rdp.life.uiuc.edu), gopher (rdpgopher.life.uiuc.edu) and World Wide Web (WWW)(http://rdpwww.life.uiuc.edu/). The electronic mail and WWW servers provide ribosomal probe checking, screening for possible chimeric rRNA sequences, automated alignment and approximate phylogenetic placement of user-submitted sequences on an existing phylogenetic tree.

  14. Ribosome dynamics and the evolutionary history of ribosomes

    Science.gov (United States)

    Fox, George E.; Paci, Maxim; Tran, Quyen; Petrov, Anton S.; Williams, Loren D.

    2015-09-01

    The ribosome is a dynamic nanomachine responsible for coded protein synthesis. Its major subsystems were essentially in place at the time of the last universal common ancestor (LUCA). Ribosome evolutionary history thus potentially provides a window into the pre- LUCA world. This history begins with the origins of the peptidyl transferase center where the actual peptide is synthesized and then continues over an extended timeframe as additional functional centers including the GTPase center are added. The large ribosomal RNAs (rRNAs) have grown over time by an accretion process and a model exists that proposes a relative age of each accreted element. We have compared atomic resolution ribosome structures before and after EF-G bound GTP hydrolysis and thereby identified the location of 23 pivot points in the large rRNAs that facilitate ribosome dynamics. Pivots in small subunit helices h28 and h44 appear to be especially central to the process and according to the accretion model significantly older than the other helices containing pivots. Overall, the results suggest that ribosomal dynamics occurred in two phases. In the first phase, an inherently mobile h28/h44 combination provided the flexibility needed to create a dynamic ribosome that was essentially a Brownian machine. This addition likely made coded peptide synthesis possible by facilitating movement of a primitive mRNA. During the second phase, addition of pivoting elements and the creation of a factor binding site allowed the regulation of the inherent motion created by h28/h44. All of these events likely occurred before LUCA.

  15. [Mg2+ ions affect the structure of the central domain of the 18S rRNA in the vicinity of the ribosomal protein S13 binding site].

    Science.gov (United States)

    Ivanov, A V; Malygin, A A; Karpova, G G

    2013-01-01

    It is known that Mg2+ ions at high concentrations stabilize the structure of the 16S rRNA in a conformation favorable for binding to the ribosomal proteins in the course of the eubacterial 30S ribosomal subunits assembly in vitro. Effect of Mg2+ on the formation of the 18S rRNA structure at the 40S subunit assembly remains poorly explored. In this paper, we show that the sequentional increase of the Mg2+ concentration from 0.5 mM to 20 mM leads to a significant decrease of the affinity of recombinant human ribosomal protein S13 (rpS13e) to a RNA transcript corresponding to the central domain fragment of the 18S rRNA (18SCD). The regions near the rpS13e binding site in 18SCD (including the nucleotides of helices H20 and H22), whose availabilities to hydroxyl radicals were dependent on the Mg2+ concentration, were determined. It was found that increase of the concentrations of Mg2+ results in the enhanced accessibilities of nucleotides G933-C937 and C1006-A1009 in helix H22 and reduces those of nucleotides A1023, A1024, and A1028-S1026 in the helix H20. Comparison of the results obtained with the crystallographic data on the structure of the central domain of 18S rRNA in the 40S ribosomal subunit led to conclusion that increase of Mg2+ concentrations results in the reorientation of helices H20 and H24 relatively helices H22 and H23 to form a structure, in which these helices are positioned the same way as in 40S subunits. Hence, saturation of the central domain of 18S rRNA with coordinated Mg2+ ions causes the same changes in its structure as rpS13e binding does, and leads to decreasing of this domain affinity to the protein.

  16. The structure of the archaebacterial ribosomal protein S7 and its possible interaction with 16S rRNA.

    Science.gov (United States)

    Hosaka, H; Yao, M; Kimura, M; Tanaka, I

    2001-11-01

    Ribosomal protein S7 is one of the ubiquitous components of the small subunit of the ribosome. It is a 16S rRNA-binding protein positioned close to the exit of the tRNA, and it plays a role in initiating assembly of the head of the 30S subunit. Previous structural analyses of eubacterial S7 have shown that it has a stable alpha-helix core and a flexible beta-arm. Unlike these eubacterial proteins, archaebacterial or eukaryotic S7 has an N-terminal extension of approximately 60 residues. The crystal structure of S7 from archaebacterium Pyrococcus horikoshii (PhoS7) has been determined at 2.1 A resolution. The final model of PhoS7 consists of six major alpha-helices, a short 3(10)-helix and two beta-stands. The major part (residues 18-45) of the N-terminal extension of PhoS7 reinforces the alpha-helical core by well-extended hydrophobic interactions, while the other part (residues 46-63) is not visible in the crystal and is possibly fixed only by interacting with 16S rRNA. These differences in the N-terminal extension as well as in the insertion (between alpha1 and alpha2) of the archaebacterial S7 structure from eubacterial S7 are such that they do not necessitate a major change in the structure of the currently available eubacterial 16S rRNA. Some of the inserted chains might pass through gaps formed by helices of the 16S rRNA.

  17. A protein inventory of human ribosome biogenesis reveals an essential function of exportin 5 in 60S subunit export.

    Science.gov (United States)

    Wild, Thomas; Horvath, Peter; Wyler, Emanuel; Widmann, Barbara; Badertscher, Lukas; Zemp, Ivo; Kozak, Karol; Csucs, Gabor; Lund, Elsebet; Kutay, Ulrike

    2010-10-26

    The assembly of ribosomal subunits in eukaryotes is a complex, multistep process so far mostly studied in yeast. In S. cerevisiae, more than 200 factors including ribosomal proteins and trans-acting factors are required for the ordered assembly of 40S and 60S ribosomal subunits. To date, only few human homologs of these yeast ribosome synthesis factors have been characterized. Here, we used a systematic RNA interference (RNAi) approach to analyze the contribution of 464 candidate factors to ribosomal subunit biogenesis in human cells. The screen was based on visual readouts, using inducible, fluorescent ribosomal proteins as reporters. By performing computer-based image analysis utilizing supervised machine-learning techniques, we obtained evidence for a functional link of 153 human proteins to ribosome synthesis. Our data show that core features of ribosome assembly are conserved from yeast to human, but differences exist for instance with respect to 60S subunit export. Unexpectedly, our RNAi screen uncovered a requirement for the export receptor Exportin 5 (Exp5) in nuclear export of 60S subunits in human cells. We show that Exp5, like the known 60S exportin Crm1, binds to pre-60S particles in a RanGTP-dependent manner. Interference with either Exp5 or Crm1 function blocks 60S export in both human cells and frog oocytes, whereas 40S export is compromised only upon inhibition of Crm1. Thus, 60S subunit export is dependent on at least two RanGTP-binding exportins in vertebrate cells.

  18. [Ribosomal RNA Evolution

    Science.gov (United States)

    1997-01-01

    It is generally believed that an RNA World existed at an early stage in the history of life. During this early period, RNA molecules are seen to be potentially involved in both catalysis and the storage of genetic information. Translation presents several interrelated themes of inquiry for exobiology. First, it is essential, for understanding the very origin of life, how peptides and eventually proteins might have come to be made on the early Earth in a template directed manner. Second, it is necessary to understand how a machinery of similar complexity to that found in the ribosomes of modern organisms came to exist by the time of the last common ancestor (as detected by 16S rRNA sequence studies). Third, the ribosomal RNAs themselves likely had a very early origin and studies of their history may be very informative about the nature of the RNA World. Moreover, studies of these RNAs will contribute to a better understanding of the potential roles of RNA in early evolution.During the past year we have ave conducted a comparative study of four completely sequenced bacterial genoames. We have focused initially on conservation of gene order. The second component of the project continues to build on the model system for studying the validity of variant 5S rRNA sequences in the vicinity of the modern Vibrio proteolyticus 5S rRNA that we established earlier. This system has made it possible to conduct a detailed and extensive analysis of a local portion of the sequence space. These core methods have been used to construct numerous mutants during the last several years. Although it has been a secondary focus, this work has continued over the last year such that we now have in excess of 125 V. proteolyticus derived constructs which have been made and characterized. We have also continued high resolution NMR work on RNA oligomers originally initiated by G. Kenneth Smith who was funded by a NASA Graduate Student Researcher's Fellowship Award until May of 1996. Mr. Smith

  19. Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome.

    Science.gov (United States)

    Poirot, Olivier; Timsit, Youri

    2016-05-26

    From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through "molecular synapses", ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the "sensory-proteins" innervate the functional ribosomal sites, while the "inter-proteins" interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.

  20. Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome

    Science.gov (United States)

    Poirot, Olivier; Timsit, Youri

    2016-05-01

    From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.

  1. Maize reas1 Mutant Stimulates Ribosome Use Efficiency and Triggers Distinct Transcriptional and Translational Responses.

    Science.gov (United States)

    Qi, Weiwei; Zhu, Jie; Wu, Qiao; Wang, Qun; Li, Xia; Yao, Dongsheng; Jin, Ying; Wang, Gang; Wang, Guifeng; Song, Rentao

    2016-02-01

    Ribosome biogenesis is a fundamental cellular process in all cells. Impaired ribosome biogenesis causes developmental defects; however, its molecular and cellular bases are not fully understood. We cloned a gene responsible for a maize (Zea mays) small seed mutant, dek* (for defective kernel), and found that it encodes Ribosome export associated1 (ZmReas1). Reas1 is an AAA-ATPase that controls 60S ribosome export from the nucleus to the cytoplasm after ribosome maturation. dek* is a weak mutant allele with decreased Reas1 function. In dek* cells, mature 60S ribosome subunits are reduced in the nucleus and cytoplasm, but the proportion of actively translating polyribosomes in cytosol is significantly increased. Reduced phosphorylation of eukaryotic initiation factor 2α and the increased elongation factor 1α level indicate an enhancement of general translational efficiency in dek* cells. The mutation also triggers dramatic changes in differentially transcribed genes and differentially translated RNAs. Discrepancy was observed between differentially transcribed genes and differentially translated RNAs, indicating distinct cellular responses at transcription and translation levels to the stress of defective ribosome processing. DNA replication and nucleosome assembly-related gene expression are selectively suppressed at the translational level, resulting in inhibited cell growth and proliferation in dek* cells. This study provides insight into cellular responses due to impaired ribosome biogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. THE 30-S CHAIR STAND TEST AND HABITUAL MOBILITY PREDICT REHABILITATION NEEDS AFTER ACUTE ADMISSION

    DEFF Research Database (Denmark)

    Hansen Bruun, Inge; Nørgaard, Birgitte; Maribo, Thomas

    2016-01-01

    as elderly might be confused or unrealistic about their physical abilities. The 30-s Chair Stand Test (30s-CST) has not been validated in ED, but is used at community level for this purpose. The De Morton Mobility Index (DEMMI) has been validated for acute patients. Our study evaluated if a 30s-CST-score ≤8...... patients were assessed on admission and one month after. Predictors for later functional decline were analysed in logistics regression models. Results: 117 patients were included. The baseline predictors were: Female gender: (OR 1.6); using assistive device (OR 4.6); reduced ability to climb a stairway (OR...... with habitual mobility....

  3. Key Intermediates in Ribosome Recycling Visualized by Time-Resolved Cryoelectron Microscopy.

    Science.gov (United States)

    Fu, Ziao; Kaledhonkar, Sandip; Borg, Anneli; Sun, Ming; Chen, Bo; Grassucci, Robert A; Ehrenberg, Måns; Frank, Joachim

    2016-12-06

    Upon encountering a stop codon on mRNA, polypeptide synthesis on the ribosome is terminated by release factors, and the ribosome complex, still bound with mRNA and P-site-bound tRNA (post-termination complex, PostTC), is split into ribosomal subunits, ready for a new round of translational initiation. Separation of post-termination ribosomes into subunits, or "ribosome recycling," is promoted by the joint action of ribosome-recycling factor (RRF) and elongation factor G (EF-G) in a guanosine triphosphate (GTP) hydrolysis-dependent manner. Here we used a mixing-spraying-based method of time-resolved cryo-electron microscopy (cryo-EM) to visualize the short-lived intermediates of the recycling process. The two complexes that contain (1) both RRF and EF-G bound to the PostTC or (2) deacylated tRNA bound to the 30S subunit are of particular interest. Our observations of the native form of these complexes demonstrate the strong potential of time-resolved cryo-EM for visualizing previously unobservable transient structures.

  4. Chaperoning 5S RNA assembly.

    Science.gov (United States)

    Madru, Clément; Lebaron, Simon; Blaud, Magali; Delbos, Lila; Pipoli, Juliana; Pasmant, Eric; Réty, Stéphane; Leulliot, Nicolas

    2015-07-01

    In eukaryotes, three of the four ribosomal RNAs (rRNAs)—the 5.8S, 18S, and 25S/28S rRNAs—are processed from a single pre-rRNA transcript and assembled into ribosomes. The fourth rRNA, the 5S rRNA, is transcribed by RNA polymerase III and is assembled into the 5S ribonucleoprotein particle (RNP), containing ribosomal proteins Rpl5/uL18 and Rpl11/uL5, prior to its incorporation into preribosomes. In mammals, the 5S RNP is also a central regulator of the homeostasis of the tumor suppressor p53. The nucleolar localization of the 5S RNP and its assembly into preribosomes are performed by a specialized complex composed of Rpf2 and Rrs1 in yeast or Bxdc1 and hRrs1 in humans. Here we report the structural and functional characterization of the Rpf2-Rrs1 complex alone, in complex with the 5S RNA, and within pre-60S ribosomes. We show that the Rpf2-Rrs1 complex contains a specialized 5S RNA E-loop-binding module, contacts the Rpl5 protein, and also contacts the ribosome assembly factor Rsa4 and the 25S RNA. We propose that the Rpf2-Rrs1 complex establishes a network of interactions that guide the incorporation of the 5S RNP in preribosomes in the initial conformation prior to its rotation to form the central protuberance found in the mature large ribosomal subunit. © 2015 Madru et al.; Published by Cold Spring Harbor Laboratory Press.

  5. The importance of ribosome production, and the 5S RNP-MDM2 pathway, in health and disease.

    Science.gov (United States)

    Pelava, Andria; Schneider, Claudia; Watkins, Nicholas J

    2016-08-15

    Ribosomes are abundant, large RNA-protein complexes that are the source of all protein synthesis in the cell. The production of ribosomes is an extremely energetically expensive cellular process that has long been linked to human health and disease. More recently, it has been shown that ribosome biogenesis is intimately linked to multiple cellular signalling pathways and that defects in ribosome production can lead to a wide variety of human diseases. Furthermore, changes in ribosome production in response to nutrient levels in the diet lead to metabolic re-programming of the liver. Reduced or abnormal ribosome production in response to cellular stress or mutations in genes encoding factors critical for ribosome biogenesis causes the activation of the tumour suppressor p53, which leads to re-programming of cellular transcription. The ribosomal assembly intermediate 5S RNP (ribonucleoprotein particle), containing RPL5, RPL11 and the 5S rRNA, accumulates when ribosome biogenesis is blocked. The excess 5S RNP binds to murine double minute 2 (MDM2), the main p53-suppressor in the cell, inhibiting its function and leading to p53 activation. Here, we discuss the involvement of ribosome biogenesis in the homoeostasis of p53 in the cell and in human health and disease. © 2016 The Author(s).

  6. Deletions in a ribosomal protein-coding gene are associated with tigecycline resistance in Enterococcus faecium.

    Science.gov (United States)

    Niebel, Marc; Quick, Joshua; Prieto, Ana Maria Guzman; Hill, Robert L R; Pike, Rachel; Huber, Damon; David, Miruna; Hornsey, Michael; Wareham, David; Oppenheim, Beryl; Woodford, Neil; van Schaik, Willem; Loman, Nicholas

    2015-11-01

    Enterococcus faecium is an emerging nosocomial pathogen associated with antibiotic therapy in the hospital environment. Whole-genome sequences were determined for three pairs of related, consecutively collected E. faecium clinical isolates to determine putative mechanisms of resistance to tigecycline. The first isolates (1S, 2S and 3S) in each of the three pairs were sensitive to tigecycline [minimum inhibitory concentration (MIC) of 0.125 mg/L]. Following tigecycline therapy, the second isolate in each pair demonstrated increased resistance to tigecycline. Two isolates (1R and 2R) were resistant (MIC of 8 mg/L) and one isolate (3I) demonstrated reduced susceptibility (MIC of 0.5 mg/L). Mutations distinguishing each pair of sensitive and resistant isolates were determined through alignment to a reference genome and variant detection. In addition, a de novo assembly of each isolate genome was constructed to confirm mutations. A total of 16 mutations in eleven coding sequences were determined. Mutations in the rpsJ gene, which encodes a structural protein forming part of the 30S ribosomal subunit, were detected in each of the pairs. Mutations were in regions proximal to the predicted tigecycline-binding site. Predicted amino acid substitutions were detected in 1R and 3I. The resistant strains were additionally associated with deletions of 15 nucleotides (2R) and 3 nucleotides (1R). This study confirms that amino acid substitutions in rpsJ contribute towards reduced susceptibility to tigecycline and suggests that deletions may be required for tigecycline resistance in E. faecium.

  7. Direct interaction of the N-terminal domain of ribosomal protein S1 with protein S2 in Escherichia coli.

    Science.gov (United States)

    Byrgazov, Konstantin; Manoharadas, Salim; Kaberdina, Anna C; Vesper, Oliver; Moll, Isabella

    2012-01-01

    Despite of the high resolution structure available for the E. coli ribosome, hitherto the structure and localization of the essential ribosomal protein S1 on the 30 S subunit still remains to be elucidated. It was previously reported that protein S1 binds to the ribosome via protein-protein interaction at the two N-terminal domains. Moreover, protein S2 was shown to be required for binding of protein S1 to the ribosome. Here, we present evidence that the N-terminal domain of S1 (amino acids 1-106; S1(106)) is necessary and sufficient for the interaction with protein S2 as well as for ribosome binding. We show that over production of protein S1(106) affects E. coli growth by displacing native protein S1 from its binding pocket on the ribosome. In addition, our data reveal that the coiled-coil domain of protein S2 (S2α(2)) is sufficient to allow protein S1 to bind to the ribosome. Taken together, these data uncover the crucial elements required for the S1/S2 interaction, which is pivotal for translation initiation on canonical mRNAs in gram-negative bacteria. The results are discussed in terms of a model wherein the S1/S2 interaction surface could represent a possible target to modulate the selectivity of the translational machinery and thereby alter the translational program under distinct conditions.

  8. Evolution of the holozoan ribosome biogenesis regulon

    Science.gov (United States)

    Brown, Seth J; Cole, Michael D; Erives, Albert J

    2008-01-01

    Background The ribosome biogenesis (RiBi) genes encode a highly-conserved eukaryotic set of nucleolar proteins involved in rRNA transcription, assembly, processing, and export from the nucleus. While the mode of regulation of this suite of genes has been studied in the yeast, Saccharomyces cerevisiae, how this gene set is coordinately regulated in the larger and more complex metazoan genomes is not understood. Results Here we present genome-wide analyses indicating that a distinct mode of RiBi regulation co-evolved with the E(CG)-binding, Myc:Max bHLH heterodimer complex in a stem-holozoan, the ancestor of both Metazoa and Choanoflagellata, the protozoan group most closely related to animals. These results show that this mode of regulation, characterized by an E(CG)-bearing core-promoter, is specific to almost all of the known genes involved in ribosome biogenesis in these genomes. Interestingly, this holozoan RiBi promoter signature is absent in nematode genomes, which have not only secondarily lost Myc but are marked by invariant cell lineages typically producing small body plans of 1000 somatic cells. Furthermore, a detailed analysis of 10 fungal genomes shows that this holozoan signature in RiBi genes is not found in hemiascomycete fungi, which evolved their own unique regulatory signature for the RiBi regulon. Conclusion These results indicate that a Myc regulon, which is activated in proliferating cells during normal development as well as during tumor progression, has primordial roots in the evolution of an inducible growth regime in a protozoan ancestor of animals. Furthermore, by comparing divergent bHLH repertoires, we conclude that regulation by Myc but not by other bHLH genes is responsible for the evolutionary maintenance of E(CG) sites across the RiBi suite of genes. PMID:18816399

  9. Evolution of the holozoan ribosome biogenesis regulon

    Directory of Open Access Journals (Sweden)

    Cole Michael D

    2008-09-01

    Full Text Available Abstract Background The ribosome biogenesis (RiBi genes encode a highly-conserved eukaryotic set of nucleolar proteins involved in rRNA transcription, assembly, processing, and export from the nucleus. While the mode of regulation of this suite of genes has been studied in the yeast, Saccharomyces cerevisiae, how this gene set is coordinately regulated in the larger and more complex metazoan genomes is not understood. Results Here we present genome-wide analyses indicating that a distinct mode of RiBi regulation co-evolved with the E(CG-binding, Myc:Max bHLH heterodimer complex in a stem-holozoan, the ancestor of both Metazoa and Choanoflagellata, the protozoan group most closely related to animals. These results show that this mode of regulation, characterized by an E(CG-bearing core-promoter, is specific to almost all of the known genes involved in ribosome biogenesis in these genomes. Interestingly, this holozoan RiBi promoter signature is absent in nematode genomes, which have not only secondarily lost Myc but are marked by invariant cell lineages typically producing small body plans of 1000 somatic cells. Furthermore, a detailed analysis of 10 fungal genomes shows that this holozoan signature in RiBi genes is not found in hemiascomycete fungi, which evolved their own unique regulatory signature for the RiBi regulon. Conclusion These results indicate that a Myc regulon, which is activated in proliferating cells during normal development as well as during tumor progression, has primordial roots in the evolution of an inducible growth regime in a protozoan ancestor of animals. Furthermore, by comparing divergent bHLH repertoires, we conclude that regulation by Myc but not by other bHLH genes is responsible for the evolutionary maintenance of E(CG sites across the RiBi suite of genes.

  10. Reconstitution of functional eukaryotic ribosomes from Dictyostelium discoideum ribosomal proteins and RNA.

    Science.gov (United States)

    Mangiarotti, G; Chiaberge, S

    1997-08-08

    40 and 60 S ribosomal subunits have been reconstituted in vitro from purified ribosomal RNA and ribosomal proteins of Dictyostelium discoideum. The functionality of the reconstituted ribosomes was demonstrated in in vitro mRNA-directed protein synthesis. The reassembly proceeded well with immature precursors of ribosomal RNA but poorly if at all with mature cytoplasmic RNA species. Reassembly also required a preparation of small nuclear RNA(s), acting as morphopoietic factor(s).

  11. TINDAKAN NEGARA TERKAIT PERISTIWA G30S: STUDI MAKNA GADAMERIAN PADA PESELAMAT

    Directory of Open Access Journals (Sweden)

    Hamdan Tri Atmaja

    2012-07-01

    Full Text Available This study aims to gain knowledge of a deep understanding of the state action related to the G30S event. The research method used was a qualitative research approach initiated by Gadamer's hermeneutics. The results showed that state action against survivors were to arrest, investigate, and imprison them to the island of Buru (for men survivors and Plantungan (for women survivors. The G30S event, by survivors, was interpreted as a story of the assassination of the generals by Indonesian Communist Party (PKI, as well as the form of a political conspiracy for Sukarno’s power within ideological background. Investigation and arrest were interpreted by them as an act of unwarranted, political scapegoat, and a form of abuse against them. While prison life, for survivors, was as a form of forced labor, punishment to stigmatize and isolate women Keywords: State Action, the G30S event, Meaning, and Survivor.   Tulisan ini mendeskripsikan secara mendalam tindakan negara terkait peristiwa G30S. Metode penelitian yang digunakan adalah penelitian kualitatif dengan pendekatan hermeneutika yang digagas Gadamer. Hasil penelitian menunjukkan tindakan negara terhadap peselamat adalah melakukan penangkapan, pemeriksaan, dan penahanan serta memenjarakan mereka ke pulau Buru (untuk peselamat laki-laki dan Plantungan (untuk peselamat perempuan. Peristiwa G30S oleh peselamat dimaknai sebagai kisah pembunuhan para jendral oleh PKI, bentuk konspirasi politik memperebutkan kekuasaan Soekarno dengan latar belakang ideologi. Pemeriksaan dan penangkapan dimaknai peselamat sebagai tindakan tidak beralasan, politik kambing hitam, dan sebagai bentuk kesewenang-wenangan terhadap peselamat. Kehidupan penjara dimaknai peselamat sebagai bentuk kerja paksa, hukuman dengan menstigmatisasi dan mengisolasi kaum perempuan. Kata kunci: Tindakan Negara, Peristiwa G30S, Makna, dan  Peselamat.      

  12. 5S rRNA and ribosome.

    Science.gov (United States)

    Gongadze, G M

    2011-12-01

    5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.

  13. Crystal structure of the eukaryotic ribosome.

    Science.gov (United States)

    Ben-Shem, Adam; Jenner, Lasse; Yusupova, Gulnara; Yusupov, Marat

    2010-11-26

    Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation.

  14. Ribosomal targets for antibiotic drug discovery

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Scott C.; Feldman, Michael Brian; Wang, Leyi; Doudna Cate, James H.; Pulk, Arto; Altman, Roger B.; Wasserman, Michael R

    2016-09-13

    The present invention relates to methods to identify molecules that binds in the neomycin binding pocket of a bacterial ribosome using structures of an intact bacterial ribosome that reveal how the ribosome binds tRNA in two functionally distinct states, determined by x-ray crystallography. One state positions tRNA in the peptidyl-tRNA binding site. The second, a fully rotated state, is stabilized by ribosome recycling factor (RRF) and binds tRNA in a highly bent conformation in a hybrid peptidyl/exit (P/E) site. Additionally, the invention relates to various assays, including single-molecule assay for ribosome recycling, and methods to identify compounds that interfere with ribosomal function by detecting newly identified intermediate FRET states using known and novel FRET pairs on the ribosome. The invention also provides vectors and compositions with an N-terminally tagged S13 protein.

  15. THE 30-S CHAIR STAND TEST AND HABITUAL MOBILITY PREDICT REHABILITATION NEEDS AFTER ACUTE ADMISSION

    DEFF Research Database (Denmark)

    Hansen Bruun, Inge; Nørgaard, Birgitte; Backer Mogensen, Christian

    2016-01-01

    . The objectives were 1: What risk factors support the 30s-CST identifying elderly with rehabilitation needs? 2: Does the De Morton Mobility Index (DEMMI) add additional predictive value? Methods/Analysis In this prospective cohort study elderly (65+years) admitted to the ED at weekdays with medical complaints...... were included if oriented in time and place, able to sit on a chair and have a 30s-CST–score ≤ 8. Baseline data were collected within the first 48 hours of admission and the 30s-CST again one month after admission. All risk factors are identified in the literature. The 30s-CST is used at community...... were analyzed in logistics regression models. Results: A loss of 39 patients means that 117 were included in the analysis. The baseline predictors for rehabilitation needs were: Female gender: (OR 1.6); using assistive device (OR 4.6); reduced ability to climb a stairway (OR 2.8); no physical activity...

  16. A Possible Role of the Full-Length Nascent Protein in Post-Translational Ribosome Recycling

    Science.gov (United States)

    Das, Debasis; Samanta, Dibyendu; Bhattacharya, Arpita; Basu, Arunima; Das, Anindita; Ghosh, Jaydip; Chakrabarti, Abhijit; Das Gupta, Chanchal

    2017-01-01

    Each cycle of translation initiation in bacterial cell requires free 50S and 30S ribosomal subunits originating from the post-translational dissociation of 70S ribosome from the previous cycle. Literature shows stable dissociation of 70S from model post-termination complexes by the concerted action of Ribosome Recycling Factor (RRF) and Elongation Factor G (EF-G) that interact with the rRNA bridge B2a/B2b joining 50S to 30S. In such experimental models, the role of full-length nascent protein was never considered seriously. We observed relatively slow release of full-length nascent protein from 50Sof post translation ribosome, and in that process, its toe prints on the rRNA in vivo and in in vitro translation with E.coli S30 extract. We reported earlier that a number of chemically unfolded proteins like bovine carbonic anhydrase (BCA), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), lysozyme, ovalbumin etc., when added to free 70Sin lieu of the full length nascent proteins, also interact with identical RNA regions of the 23S rRNA. Interestingly the rRNA nucleotides that slow down release of the C-terminus of full-length unfolded protein were found in close proximity to the B2a/B2b bridge. It indicated a potentially important chemical reaction conserved throughout the evolution. Here we set out to probe that conserved role of unfolded protein conformation in splitting the free or post-termination 70S. How both the RRF-EFG dependent and the plausible nascent protein–EFG dependent ribosome recycling pathways might be relevant in bacteria is discussed here. PMID:28099529

  17. The pre-existing population of 5S rRNA effects p53 stabilization during ribosome biogenesis inhibition.

    Science.gov (United States)

    Onofrillo, Carmine; Galbiati, Alice; Montanaro, Lorenzo; Derenzini, Massimo

    2017-01-17

    Pre-ribosomal complex RPL5/RPL11/5S rRNA (5S RNP) is considered the central MDM2 inhibitory complex that control p53 stabilization during ribosome biogenesis inhibition. Despite its role is well defined, the dynamic of 5S RNP assembly still requires further characterization. In the present work, we report that MDM2 inhibition is dependent by a pre-existing population of 5S rRNA.

  18. Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis.

    Science.gov (United States)

    Zhang, Junxiang; Yuan, Hui; Yang, Yong; Fish, Tara; Lyi, Sangbom M; Thannhauser, Theodore W; Zhang, Lugang; Li, Li

    2016-04-01

    Plastid ribosomal proteins are essential components of protein synthesis machinery and have diverse roles in plant growth and development. Mutations in plastid ribosomal proteins lead to a range of developmental phenotypes in plants. However, how they regulate these processes is not fully understood, and the functions of some individual plastid ribosomal proteins remain unknown. To identify genes responsible for chloroplast development, we isolated and characterized a mutant that exhibited pale yellow inner leaves with a reduced growth rate in Arabidopsis. The mutant (rps5) contained a missense mutation of plastid ribosomal protein S5 (RPS5), which caused a dramatically reduced abundance of chloroplast 16S rRNA and seriously impaired 16S rRNA processing to affect ribosome function and plastid translation. Comparative proteomic analysis revealed that the rps5 mutation suppressed the expression of a large number of core components involved in photosystems I and II as well as many plastid ribosomal proteins. Unexpectedly, a number of proteins associated with cold stress responses were greatly decreased in rps5, and overexpression of the plastid RPS5 improved plant cold stress tolerance. Our results indicate that RPS5 is an important constituent of the plastid 30S subunit and affects proteins involved in photosynthesis and cold stress responses to mediate plant growth and development.

  19. Structural basis for 5'-ETS recognition by Utp4 at the early stages of ribosome biogenesis.

    Science.gov (United States)

    Calviño, Fabiola R; Kornprobst, Markus; Schermann, Géza; Birkle, Fabienne; Wild, Klemens; Fischer, Tamas; Hurt, Ed; Ahmed, Yasar Luqman; Sinning, Irmgard

    2017-01-01

    Eukaryotic ribosome biogenesis begins with the co-transcriptional assembly of the 90S pre-ribosome. The 'U three protein' (UTP) complexes and snoRNP particles arrange around the nascent pre-ribosomal RNA chaperoning its folding and further maturation. The earliest event in this hierarchical process is the binding of the UTP-A complex to the 5'-end of the pre-ribosomal RNA (5'-ETS). This oligomeric complex predominantly consists of β-propeller and α-solenoidal proteins. Here we present the structure of the Utp4 subunit from the thermophilic fungus Chaetomium thermophilum at 2.15 Å resolution and analyze its function by UV RNA-crosslinking (CRAC) and in context of a recent cryo-EM structure of the 90S pre-ribosome. Utp4 consists of two orthogonal and highly basic β-propellers that perfectly fit the EM-data. The Utp4 structure highlights an unusual Velcro-closure of its C-terminal β-propeller as relevant for protein integrity and potentially Utp8 recognition in the context of the pre-ribosome. We provide a first model of the 5'-ETS RNA from the internally hidden 5'-end up to the region that hybridizes to the 3'-hinge sequence of U3 snoRNA and validate a specific Utp4/5'-ETS interaction by CRAC analysis.

  20. Etudes structurales du ribosome de Staphylococcus aureus

    OpenAIRE

    Khusainov, Iskander

    2015-01-01

    The ribosome is a large cellular machinery that performs the protein synthesis in every living cell. Therefore, the ribosome is one of the major targets of naturally produced antibiotics, which can kill bacterial cells by blocking protein synthesis. However, some bacteria are resistant to these antibiotics due to small modifications of their ribosomes. Among them, Staphylococcus aureus (S. aureus) is a severe pathogen that causes numerous infections in humans. The crystal structures of comple...

  1. Ribosome biogenesis in replicating cells: Integration of experiment and theory.

    Science.gov (United States)

    Earnest, Tyler M; Cole, John A; Peterson, Joseph R; Hallock, Michael J; Kuhlman, Thomas E; Luthey-Schulten, Zaida

    2016-10-01

    Ribosomes-the primary macromolecular machines responsible for translating the genetic code into proteins-are complexes of precisely folded RNA and proteins. The ways in which their production and assembly are managed by the living cell is of deep biological importance. Here we extend a recent spatially resolved whole-cell model of ribosome biogenesis in a fixed volume [Earnest et al., Biophys J 2015, 109, 1117-1135] to include the effects of growth, DNA replication, and cell division. All biological processes are described in terms of reaction-diffusion master equations and solved stochastically using the Lattice Microbes simulation software. In order to determine the replication parameters, we construct and analyze a series of Escherichia coli strains with fluorescently labeled genes distributed evenly throughout their chromosomes. By measuring these cells' lengths and number of gene copies at the single-cell level, we could fit a statistical model of the initiation and duration of chromosome replication. We found that for our slow-growing (120 min doubling time) E. coli cells, replication was initiated 42 min into the cell cycle and completed after an additional 42 min. While simulations of the biogenesis model produce the correct ribosome and mRNA counts over the cell cycle, the kinetic parameters for transcription and degradation are lower than anticipated from a recent analytical time dependent model of in vivo mRNA production. Describing expression in terms of a simple chemical master equation, we show that the discrepancies are due to the lack of nonribosomal genes in the extended biogenesis model which effects the competition of mRNA for ribosome binding, and suggest corrections to parameters to be used in the whole-cell model when modeling expression of the entire transcriptome. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 735-751, 2016.

  2. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation.

  3. Biphasic character of ribosomal translocation and non-Michaelis-Menten kinetics of translation.

    Science.gov (United States)

    Xie, Ping

    2014-12-01

    We study theoretically the kinetics of mRNA translocation in the wild-type (WT) Escherichia coli ribosome, which is composed of a small 30S and large 50S subunit, and the ribosomes with mutations to some intersubunit bridges such as B1a, B4, B7a, and B8. The theoretical results reproduce well the available in vitro experimental data on the biphasic kinetics of the forward mRNA translocation catalyzed by elongation factor G (EF-G) hydrolyzing GTP, which can be best fit by the sum of two exponentials, and the monophasic kinetics of the spontaneous reverse mRNA translocation in the absence of the elongation factor, which can be best fit by a single-exponential function, in both the WT and mutant ribosomes. We show that both the mutation-induced increase in the maximal rate of the slow phase for the forward mRNA translocation and that in the rate of the spontaneous reverse mRNA translocation result from a reduction in the intrinsic energy barrier to resist the rotational movements between the two subunits, giving the same degree of increase in the two rates. The mutation-induced increase in the maximal rate of the fast phase for the forward mRNA translocation results mainly from the increase in the rate of the ribosomal unlocking, a conformational change in the ribosome that widens the mRNA channel for the mRNA translocation to take place, which could be partly due to the effect of the mutation on the intrasubunit 30S head rotation. Moreover, we study the translation rate of the WT and mutant ribosomes. It is shown that the translation rate versus the concentration of EF-G-GTP does not follow the Michaelis-Menten (MM) kinetics, which is in sharp contrast to the general property of other enzymes that the rate of the enzymatic reaction versus the concentration of a substrate follows the MM kinetics. The physical origin of this non-MM kinetics for the ribosome is revealed.

  4. Ribosome Biogenesis in African Trypanosomes Requires Conserved and Trypanosome-Specific Factors

    Science.gov (United States)

    Umaer, Khan; Ciganda, Martin

    2014-01-01

    Large ribosomal subunit protein L5 is responsible for the stability and trafficking of 5S rRNA to the site of eukaryotic ribosomal assembly. In Trypanosoma brucei, in addition to L5, trypanosome-specific proteins P34 and P37 also participate in this process. These two essential proteins form a novel preribosomal particle through interactions with both the ribosomal protein L5 and 5S rRNA. We have generated a procyclic L5 RNA interference cell line and found that L5 itself is a protein essential for trypanosome growth, despite the presence of other 5S rRNA binding proteins. Loss of L5 decreases the levels of all large-subunit rRNAs, 25/28S, 5.8S, and 5S rRNAs, but does not alter small-subunit 18S rRNA. Depletion of L5 specifically reduced the levels of the other large ribosomal proteins, L3 and L11, whereas the steady-state levels of the mRNA for these proteins were increased. L5-knockdown cells showed an increase in the 40S ribosomal subunit and a loss of the 60S ribosomal subunits, 80S monosomes, and polysomes. In addition, L5 was involved in the processing and maturation of precursor rRNAs. Analysis of polysomal fractions revealed that unprocessed rRNA intermediates accumulate in the ribosome when L5 is depleted. Although we previously found that the loss of P34 and P37 does not result in a change in the levels of L5, the loss of L5 resulted in an increase of P34 and P37 proteins, suggesting the presence of a compensatory feedback loop. This study demonstrates that ribosomal protein L5 has conserved functions, in addition to nonconserved trypanosome-specific features, which could be targeted for drug intervention. PMID:24706018

  5. Pseudouridines and pseudouridine synthases of the ribosome.

    Science.gov (United States)

    Ofengand, J; Malhotra, A; Remme, J; Gutgsell, N S; Del Campo, M; Jean-Charles, S; Peil, L; Kaya, Y

    2001-01-01

    psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes

  6. Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits

    Science.gov (United States)

    Gao, Ning; Zavialov, Andrey V.; Ehrenberg, Måns; Frank, Joachim

    2008-01-01

    Summary After termination of protein synthesis, the bacterial ribosome is split into its 30S and 50S subunits by the action of ribosome recycling factor (RRF) and elongation factor G (EF-G) in a GTP-hydrolysis dependent manner. Based on a previous cryo-electron microscopy (cryo-EM) study of ribosomal complexes, we have proposed that the binding of EF-G to an RRF containing post-termination ribosome triggers an inter-domain rotation of RRF, which destabilizes two strong intersubunit bridges (B2a and B3) and, ultimately, separates the two subunits. Here, we present a 9 Å (FSC at 0.5 cutoff) cryo-EM map of a 50S EFG GDPNP RRF complex and a quasi-atomic model derived from it, showing the interaction between EF-G and RRF on the 50S subunit in the presence of the non-cleavable GTP analogue GDPNP. The detailed information in this model and a comparative analysis of EF-G structures in various nucleotide- and ribosome-bound states show how rotation of the RRF head domain may be triggered by various domains of EF-G. For validation of our structural model, all known mutations in EF-G and RRF that relate to ribosome recycling have been taken into account. More importantly, our results indicate a substantial conformational change in the Switch I region of EF-G, suggesting that a conformational signal transduction mechanism, similar to that employed in tRNA translocation on the ribosome by EF-G, translates a large-scale movement of EF-G’s domain IV, induced by GTP hydrolysis, into the domain rotation of RRF that eventually splits the ribosome into subunits. PMID:17996252

  7. The other lives of ribosomal proteins

    Directory of Open Access Journals (Sweden)

    Bhavsar Rital B

    2010-06-01

    Full Text Available Abstract Despite the fact that ribosomal proteins are the constituents of an organelle that is present in every cell, they show a surprising level of regulation, and several of them have also been shown to have other extra-ribosomal functions, such in replication, transcription, splicing or even ageing. This review provides a comprehensive summary of these important aspects.

  8. Complementary roles of initiation factor 1 and ribosome recycling factor in 70S ribosome splitting

    Science.gov (United States)

    Pavlov, Michael Y; Antoun, Ayman; Lovmar, Martin; Ehrenberg, Måns

    2008-01-01

    We demonstrate that ribosomes containing a messenger RNA (mRNA) with a strong Shine–Dalgarno sequence are rapidly split into subunits by initiation factors 1 (IF1) and 3 (IF3), but slowly split by ribosome recycling factor (RRF) and elongation factor G (EF-G). Post-termination-like (PTL) ribosomes containing mRNA and a P-site-bound deacylated transfer RNA (tRNA) are split very rapidly by RRF and EF-G, but extremely slowly by IF1 and IF3. Vacant ribosomes are split by RRF/EF-G much more slowly than PTL ribosomes and by IF1/IF3 much more slowly than mRNA-containing ribosomes. These observations reveal complementary splitting of different ribosomal complexes by IF1/IF3 and RRF/EF-G, and suggest the existence of two major pathways for ribosome splitting into subunits in the living cell. We show that the identity of the deacylated tRNA in the PTL ribosome strongly affects the rate by which it is split by RRF/EF-G and that IF3 is involved in the mechanism of ribosome splitting by IF1/IF3 but not by RRF/EF-G. With support from our experimental data, we discuss the principally different mechanisms of ribosome splitting by IF1/IF3 and by RRF/EF-G. PMID:18497739

  9. Differential Stoichiometry among Core Ribosomal Proteins

    Science.gov (United States)

    Slavov, Nikolai; Semrau, Stefan; Airoldi, Edoardo; Budnik, Bogdan; van Oudenaarden, Alexander

    2015-01-01

    Summary Understanding the regulation and structure of ribosomes is essential to understanding protein synthesis and its dysregulation in disease. While ribosomes are believed to have a fixed stoichiometry among their core ribosomal proteins (RPs), some experiments suggest a more variable composition. Testing such variability requires direct and precise quantification of RPs. We used mass spectrometry to directly quantify RPs across monosomes and polysomes of mouse embryonic stem cells (ESC) and budding yeast. Our data show that the stoichiometry among core RPs in wild-type yeast cells and ESC depends both on the growth conditions and on the number of ribosomes bound per mRNA. Furthermore, we find that the fitness of cells with a deleted RP-gene is inversely proportional to the enrichment of the corresponding RP in polysomes. Together, our findings support the existence of ribosomes with distinct protein composition and physiological function. PMID:26565899

  10. Chaperone binding at the ribosomal exit tunnel

    DEFF Research Database (Denmark)

    Kristensen, Ole; Gajhede, Michael

    2003-01-01

    The exit tunnel region of the ribosome is well established as a focal point for interaction between the components that guide the fate of nascent polypeptides. One of these, the chaperone trigger factor (TF), associates with the 50S ribosomal subunit through its N-terminal domain. Targeting of TF...... to ribosomes is crucial to achieve its remarkable efficiency in protein folding. A similar tight coupling to translation is found in signal recognition particle (SRP)-dependent protein translocation. Here, we report crystal structures of the E. coli TF ribosome binding domain. TF is structurally related...... to the Hsp33 chaperone but has a prominent ribosome anchor located as a tip of the molecule. This tip includes the previously established unique TF signature motif. Comparison reveals that this feature is not found in SRP structures. We identify a conserved helical kink as a hallmark of the TF structure...

  11. Import of ribosomal proteins into yeast mitochondria.

    Science.gov (United States)

    Woellhaf, Michael W; Hansen, Katja G; Garth, Christoph; Herrmann, Johannes M

    2014-12-01

    Mitochondrial ribosomes of baker's yeast contain at least 78 protein subunits. All but one of these proteins are nuclear-encoded, synthesized on cytosolic ribosomes, and imported into the matrix for biogenesis. The import of matrix proteins typically relies on N-terminal mitochondrial targeting sequences that form positively charged amphipathic helices. Interestingly, the N-terminal regions of many ribosomal proteins do not closely match the characteristics of matrix targeting sequences, suggesting that the import processes of these proteins might deviate to some extent from the general import route. So far, the biogenesis of only two ribosomal proteins, Mrpl32 and Mrp10, was studied experimentally and indeed showed surprising differences to the import of other preproteins. In this review article we summarize the current knowledge on the transport of proteins into the mitochondrial matrix, and thereby specifically focus on proteins of the mitochondrial ribosome.

  12. Probing the structure of 16 S ribosomal RNA from Bacillus brevis.

    Science.gov (United States)

    Kop, J; Kopylov, A M; Magrum, L; Siegel, R; Gupta, R; Woese, C R; Noller, H F

    1984-12-25

    A majority (approximately 89%) of the nucleotide sequence of Bacillus brevis 16 S rRNA has been determined by a combination of RNA sequencing methods. Several experimental approaches have been used to probe its structure, including (a) partial RNase digestion of 30 S ribosomal subunits, followed by two-dimensional native/denatured gel electrophoresis, in which base-paired fragments were directly identified; (b) identification of positions susceptible to cleavage by RNase A and RNase T1 in 30 S subunits; (c) sites of attack by cobra venom RNase on naked 16 S rRNA; and (d) nucleotides susceptible to attack by bisulfite in 16 S rRNA. These data are discussed with respect to a secondary structure model for B. brevis 16 S rRNA derived by comparative sequence analysis.

  13. Does power indicate capacity? 30-s Wingate anaerobic test vs. maximal accumulated O2 deficit.

    Science.gov (United States)

    Minahan, C; Chia, M; Inbar, O

    2007-10-01

    The purpose of this study was to evaluate the relationship between anaerobic power and capacity. Seven men and seven women performed a 30-s Wingate Anaerobic Test on a cycle ergometer to determine peak power, mean power, and the fatigue index. Subjects also cycled at a work rate predicted to elicit 120 % of peak oxygen uptake to exhaustion to determine the maximal accumulated O (2) deficit. Peak power and the maximal accumulated O (2) deficit were significantly correlated (r = 0.782, p = 0.001). However, when the absolute difference in exercise values between groups (men and women) was held constant using a partial correlation, the relationship diminished (r = 0.531, p = 0.062). In contrast, we observed a significant correlation between fatigue index and the maximal accumulated O (2) deficit when controlling for gender (r = - 0.597, p = 0.024) and the relationship remained significant when values were expressed relative to active muscle mass. A higher anaerobic power does not indicate a greater anaerobic capacity. Furthermore, we suggest that the ability to maintain power output during a 30-s cycle sprint is related to anaerobic capacity.

  14. The C-terminus of ribosomal protein uS4 contributes to small ribosomal subunit biogenesis and the fidelity of translation.

    Science.gov (United States)

    Kamath, Divya; Allgeyer, Benjamin B; Gregory, Steven T; Bielski, Margaret C; Roelofsz, David M; Sabapathypillai, Sharon L; Vaid, Nikhil; O'Connor, Michael

    2017-07-01

    Ribosomal protein uS4 is an essential ribosomal component involved in multiple functions, including mRNA decoding. Structural analyses indicate that during decoding, the interface between the C-terminus of uS4 and protein uS5 is disrupted and in agreement with this, C-terminal uS4 truncation mutants are readily isolated on the basis of their increased miscoding phenotypes. The same mutants can also display defects in small subunit assembly and 16S rRNA processing and some are temperature sensitive for growth. Starting with one such temperature sensitive Escherichia coli uS4 mutant, we have isolated temperature insensitive derivatives carrying additional, intragenic mutations that restore the C-terminus and ameliorate the ribosomal defects. At least one of these suppressors has no detectable ribosome biogenesis phenotype, yet still miscodes, suggesting that the C-terminal requirements for ribosome assembly are less rigid than for mRNA decoding. In contrast to the uS4 C-terminal mutants that increase miscoding, two Salmonella enterica uS4 mutants with altered C-termini have been reported as being error-restrictive. Here, reconstruction experiments demonstrate that contrary to the previous reports, these mutants have a distinct error-prone, increased misreading phenotype, consistent with the behavior of the equivalent E. coli mutants and their likely structural effects on uS4-uS5 interactions. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Molecular cloning and characterization of a cDNA encoding the Paracoccidioides brasiliensis 135 ribosomal protein.

    Science.gov (United States)

    Jesuino, Rosália S A; Pereira, Maristela; Felipe, M Sueli S; Azevedo, Maristella O; Soares, Célia M A

    2004-06-01

    A 630 bp cDNA encoding an L35 ribosomal protein of Paracoccidioides brasiliensis, designated as Pbl35, was cloned from a yeast expression library. Pbl35 encodes a polypeptide of 125 amino acids, with a predicted molecular mass of 14.5 kDa and a pI of 11.0. The deduced PbL35 shows significant conservation in respect to other described ribosomal L35 proteins from eukaryotes and prokaryotes. Motifs of ribosomal proteins are present in PbL35, including a bipartite nuclear localization signal (NLS) that could be related to the protein addressing to the nucleolus for the ribosomal assembly. The mRNA for PbL35, about 700 nucleotides in length, is expressed at a high level in P. brasiliensis. The PbL35 and the deduced amino acid sequence constitute the first description of a ribosomal protein in P. brasiliensis. The cDNA was deposited in GenBank under accession number AF416509.

  16. Error-prone and error-restrictive mutations affecting ribosomal protein S12.

    Science.gov (United States)

    Agarwal, Deepali; Gregory, Steven T; O'Connor, Michael

    2011-07-01

    Ribosomal protein S12 plays a pivotal role in decoding functions on the ribosome. X-ray crystallographic analyses of ribosomal complexes have revealed that S12 is involved in the inspection of codon-anticodon pairings in the ribosomal A site, as well as in the succeeding domain rearrangements of the 30S subunit that are essential for accommodation of aminoacyl-tRNA. A role for S12 in tRNA selection is also well supported by classical genetic analyses; mutations affecting S12 are readily isolated in bacteria and organelles, since specific alterations in S12 confer resistance to the error-inducing antibiotic streptomycin, and the ribosomes from many such streptomycin-resistant S12 mutants display decreased levels of miscoding. However, substitutions that confer resistance to streptomycin likely represent a very distinct class of all possible S12 mutants. Until recently, the technical difficulties in generating random, unselectable mutations in essential genes in complex operons have generally precluded the analysis of other classes of S12 alterations. Using a recombineering approach, we have targeted the Escherichia coli rpsL gene, encoding S12, for random mutagenesis and screened the resulting mutants for effects on decoding fidelity. We have recovered over 40 different substitutions located throughout the S12 protein that alter the accuracy of translation without substantially affecting the sensitivity to streptomycin. Moreover, this collection includes mutants that promote miscoding, as well as those that restrict decoding errors. These results affirm the importance of S12 in decoding processes and indicate that alterations in this essential protein can have diverse effects on the accuracy of decoding.

  17. Two-neutron knockout from neutron-deficient $^{34}$Ar, $^{30}$S, and $^{26}$Si

    CERN Document Server

    Yoneda, K; Brown, B A; Campbell, C M; Cook, J M; Cottle, P D; Davies, A D; Dinca, D C; Gade, A; Glasmacher, T; Hansen, P G; Hoagland, T; Kemper, K W; Lecouey, J L; Müller, W F; Obertelli, A; Reynolds, R R; Terry, J R; Tostevin, J A; Zwahlen, H

    2006-01-01

    Two-neutron knockout reactions from nuclei in the proximity of the proton dripline have been studied using intermediate-energy beams of neutron-deficient $^{34}$Ar, $^{30}$S, and $^{26}$Si. The inclusive cross sections, and also the partial cross sections for the population of individual bound final states of the $^{32}$Ar, $^{28}$S and $^{24}$Si knockout residues, have been determined using the combination of particle and $\\gamma$-ray spectroscopy. Similar to the two-proton knockout mechanism on the neutron-rich side of the nuclear chart, these two-neutron removal reactions from already neutron-deficient nuclei are also shown to be consistent with a direct reaction mechanism.

  18. Is The Ribosome Targeted By Adaptive Mutations

    DEFF Research Database (Denmark)

    Jimenez Fernandez, Alicia; Molin, Søren; Johansen, Helle Krogh

    2015-01-01

    Introduction: RNA polymerase and ribosomes, composing the macromolecular synthesis machinery (MMSM), carry out the central processes of transcription and translation, but are usually seen as mechanical elements with no regulatory function. Extensive investigations of gene regulation and the high...

  19. The circadian clock coordinates ribosome biogenesis.

    Directory of Open Access Journals (Sweden)

    Céline Jouffe

    Full Text Available Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis.

  20. Potential extra-ribosomal functions of ribosomal proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lu, Hui; Zhu, Yi-Fei; Xiong, Juan; Wang, Rong; Jia, Zhengping

    2015-08-01

    Ribosomal proteins (RPs), are essential components of the ribosomes, the molecular machines that turn mRNA blueprints into proteins, as they serve to stabilize the structure of the rRNA, thus improving protein biosynthesis. In addition, growing evidence suggests that RPs can function in other cellular roles. In the present review, we summarize several potential extra-ribosomal functions of RPs in ribosomal biogenesis, transcription activity, translation process, DNA repair, replicative life span, adhesive growth, and morphological transformation in Saccharomyces cerevisiae. However, the future in-depth studies are needed to identify these novel secondary functions of RPs in S. cerevisiae.

  1. Ribosome Inactivating Proteins from Rosaceae.

    Science.gov (United States)

    Shang, Chenjing; Rougé, Pierre; Van Damme, Els J M

    2016-08-22

    Ribosome-inactivating proteins (RIPs) are widespread among higher plants of different taxonomic orders. In this study, we report on the RIP sequences found in the genome/transcriptome of several important Rosaceae species, including many economically important edible fruits such as apple, pear, peach, apricot, and strawberry. All RIP domains from Rosaceae share high sequence similarity with conserved residues in the catalytic site and the carbohydrate binding sites. The genomes of Malus domestica and Pyrus communis contain both type 1 and type 2 RIP sequences, whereas for Prunus mume, Prunus persica, Pyrus bretschneideri, and Pyrus communis a complex set of type 1 RIP sequences was retrieved. Heterologous expression and purification of the type 1 as well as the type 2 RIP from apple allowed to characterize the biological activity of the proteins. Both RIPs from Malus domestica can inhibit protein synthesis. Furthermore, molecular modelling suggests that RIPs from Rosaceae possess three-dimensional structures that are highly similar to the model proteins and can bind to RIP substrates. Screening of the recombinant type 2 RIP from apple on a glycan array revealed that this type 2 RIP interacts with terminal sialic acid residues. Our data suggest that the RIPs from Rosaceae are biologically active proteins.

  2. RPG: the Ribosomal Protein Gene database

    OpenAIRE

    Nakao, Akihiro; Yoshihama, Maki; Kenmochi, Naoya

    2004-01-01

    RPG (http://ribosome.miyazaki-med.ac.jp/) is a new database that provides detailed information about ribosomal protein (RP) genes. It contains data from humans and other organisms, including Drosophila melanogaster, Caenorhabditis elegans, Saccharo myces cerevisiae, Methanococcus jannaschii and Escherichia coli. Users can search the database by gene name and organism. Each record includes sequences (genomic, cDNA and amino acid sequences), intron/exon structures, genomic locations and informa...

  3. Harnessing natural product assembly lines: structure, promiscuity, and engineering.

    Science.gov (United States)

    Ladner, Christopher C; Williams, Gavin J

    2016-03-01

    Many therapeutically relevant natural products are biosynthesized by the action of giant mega-enzyme assembly lines. By leveraging the specificity, promiscuity, and modularity of assembly lines, a variety of strategies has been developed that enables the biosynthesis of modified natural products. This review briefly summarizes recent structural advances related to natural product assembly lines, discusses chemical approaches to probing assembly line structures in the absence of traditional biophysical data, and surveys efforts that harness the inherent or engineered promiscuity of assembly lines for the synthesis of non-natural polyketides and non-ribosomal peptide analogues.

  4. Single mutations introduced in the essential ribosomal proteins L3 and S10 cause a sporulation defect in Bacillus subtilis.

    Science.gov (United States)

    Akanuma, Genki; Suzuki, Shota; Yano, Koichi; Nanamiya, Hideaki; Natori, Yousuke; Namba, Eri; Watanabe, Kazuya; Tagami, Kazumi; Takeda, Takuya; Iizuka, Yuka; Kobayashi, Ako; Ishizuka, Morio; Yoshikawa, Hirofumi; Kawamura, Fujio

    2013-01-01

    We introduced single mutations into the rplC and rpsJ genes, which encode the essential ribosomal proteins L3 (RplC) and S10 (RpsJ), respectively, and are located in the S10 gene cluster of the gram-positive, endospore-forming bacterium Bacillus subtilis, and examined whether these mutations affected their growth rate, sporulation, competence development and 70S ribosome formation. Mutant cells harboring the G52D mutation in the L3 ribosomal protein, which is located at the peptidyl transferase center of 50S, accumulated 30S subunit at 45°C, probably due to a defect in 50S formation, and exhibited a reduction in the sporulation frequency at high temperature. On the other hand, mutant cells harboring the H56R mutation in the S10 protein, which is located near the aminoacyl-tRNA site of 30S, showed severe growth defect and deficiency in spore formation, and also exhibited significant delay in competence development.

  5. Influence of magnesium and polyamines on the reactivity of individual ribosomal subunit proteins to lactoperoxidase-catalyzed iodination.

    Science.gov (United States)

    Michalski, C J; Boyle, S M; Sells, B H

    1979-03-01

    30S and 50S subunits, in the presence of either 20 mM Mg2+ or 6 mM Mg2+ and 5mM spermidine plus 25 mM putrescine, were observed to completely associate to form 70S monosomes as monitored by sucrose gradient sedimentation. Subunits maintained under the above ionic conditions were compared with 30S and 50S particles at low (6 mM) magnesium concentration with respect to the reactivity of individual ribosomal proteins to lactoperoxidase-catalyzed iodination. Altered reactivity to enzymatic iodination of ribosomal proteins S4, S9, S10, S14, S17, S19, and S20 in the small subunit of ribosomal proteins, L2, L9, L11, L27, and L30 in the large subunit following incubation with high magnesium or magnesium and polyamines suggests that a conformation change in both subunits accompanies the formation of 70S monosomes. The results further demonstrate that the effect of Mg2+ on subunit conformation is mimicked when polyamines are substituted for magnesium necessary for subunit association.

  6. Mesoscale Wind Regimes In The Elqui-valley/chile At 30 S

    Science.gov (United States)

    Kalthoff, N.; Bischoff-Gauß, I.; Fiebig-Wittmaack, M.; Fiedler, F.; Thürauf, J.; Novoa, E.; Pizarro, C.; Castillo, R.; Kohler, M.

    In November 1999, four permanent surface stations were installed in the vicinity of the surface ozone monitoring station on the summit of the Cerro Tololo (2200 m amsl) at 30 S. These stations were used to study the atmospheric flow conditions which are important for the interpretation of the ozone measurements at Cerro Tololo. Addi- tionally, radiosonde ascents were performed in March 2000 near the coast and about 60 km inland. Different wind regimes were distinguished. Above 4 km, large-scale westerly winds prevailed, while northerly winds were observed in a band along the coastline between 2 km and 4 km height. The upper boundary of the northerly wind regime corresponded with the mean height of the Andes. This wind regime resulted from the westerly winds being blocked and forced to flow parallel to the Andes (when Froude number Fr < 1). The phenomenon was also confirmed by model simulations. Seasonally varying thermally induced valley winds and a sea breeze developed be- low the northerly wind regime. In summer, the valley winds reached the Cerro Tololo. Diurnal variation of the top of the valley winds also influenced the lower boundary of the northerly wind regime, which was less than 2 km amsl during the night and greater than 2 km amsl during the day. Thus, this observational and modeling study has shown that in summer the baseline ozone monitoring site at Cerro Tololo can be contaminated by polluted air that is transported from the plains by the thermally induced wind systems.

  7. Structural and Functional Studies of Ribosome-inactivating Proteins and Ribosomal RNA

    Institute of Scientific and Technical Information of China (English)

    LIU Wangyi; ZHANG Jinsong; LIU Renshui; HE Wenjun; LING Jun

    2007-01-01

    @@ A plant's ribosome-inactivating proteins (RIPs) are a group of toxic proteins. Theoretically, they can be employed as a tool enzyme in the exploration of the structure and function of the ribosomal RNA; in practical application, they can be used as an insecticide in agriculture, for preparation of immuno-toxic protein to kill cancer cells or against viral infection in medicine.

  8. Structural diversity in bacterial ribosomes: mycobacterial 70S ribosome structure reveals novel features.

    Directory of Open Access Journals (Sweden)

    Manidip Shasmal

    Full Text Available Here we present analysis of a 3D cryo-EM map of the 70S ribosome from Mycobacterium smegmatis, a saprophytic cousin of the etiological agent of tuberculosis in humans, Mycobacterium tuberculosis. In comparison with the 3D structures of other prokaryotic ribosomes, the density map of the M. smegmatis 70S ribosome reveals unique structural features and their relative orientations in the ribosome. Dramatic changes in the periphery due to additional rRNA segments and extra domains of some of the peripheral ribosomal proteins like S3, S5, S16, L17, L25, are evident. One of the most notable features appears in the large subunit near L1 stalk as a long helical structure next to helix 54 of the 23S rRNA. The sharp upper end of this structure is located in the vicinity of the mRNA exit channel. Although the M. smegmatis 70S ribosome possesses conserved core structure of bacterial ribosome, the new structural features, unveiled in this study, demonstrates diversity in the 3D architecture of bacterial ribosomes. We postulate that the prominent helical structure related to the 23S rRNA actively participates in the mechanisms of translation in mycobacteria.

  9. Distribution of dwell times of a ribosome: effects of infidelity, kinetic proofreading and ribosome crowding.

    Science.gov (United States)

    Sharma, Ajeet K; Chowdhury, Debashish

    2011-04-01

    Ribosome is a molecular machine that polymerizes a protein where the sequence of the amino acid residues, the monomers of the protein, is dictated by the sequence of codons (triplets of nucleotides) on a messenger RNA (mRNA) that serves as the template. The ribosome is a molecular motor that utilizes the template mRNA strand also as the track. Thus, in each step the ribosome moves forward by one codon and, simultaneously, elongates the protein by one amino acid. We present a theoretical model that captures most of the main steps in the mechanochemical cycle of a ribosome. The stochastic movement of the ribosome consists of an alternating sequence of pause and translocation; the sum of the durations of a pause and the following translocation is the time of dwell of the ribosome at the corresponding codon. We derive the analytical expression for the distribution of the dwell times of a ribosome in our model. Wherever experimental data are available, our theoretical predictions are consistent with those results. We suggest appropriate experiments to test the new predictions of our model, particularly the effects of the quality control mechanism of the ribosome and that of their crowding on the mRNA track.

  10. Precursors of ribosomal RNA in yeast nucleus : Biosynthesis and relation to cytoplasmic ribosomal RNA

    NARCIS (Netherlands)

    Sillevis Smitt, W.W.; Vlak, J.M.; Schiphof, R.; Rozijn, Th.H.

    In vivo methylated precursors of ribosomal RNA in yeast have been characterized on acrylamide gels. The initial ribosomal precursor in the yeast nucleus is a 37S RNA component, which is processed to a nuclear 28S RNA. Both the 37S and the 28S RNA components are important constituents of the yeast

  11. Zfrp8/PDCD2 Interacts with RpS2 Connecting Ribosome Maturation and Gene-Specific Translation.

    Directory of Open Access Journals (Sweden)

    Svetlana Minakhina

    Full Text Available Zfrp8/PDCD2 is a highly conserved protein essential for stem cell maintenance in both flies and mammals. It is also required in fast proliferating cells such as cancer cells. Our previous studies suggested that Zfrp8 functions in the formation of mRNP (mRNA ribonucleoprotein complexes and also controls RNA of select Transposable Elements (TEs. Here we show that in Zfrp8/PDCD2 knock down (KD ovaries, specific mRNAs and TE transcripts show increased nuclear accumulation. We also show that Zfrp8/PDCD2 interacts with the (40S small ribosomal subunit through direct interaction with RpS2 (uS5. By studying the distribution of endogenous and transgenic fluorescently tagged ribosomal proteins we demonstrate that Zfrp8/PDCD2 regulates the cytoplasmic levels of components of the small (40S ribosomal subunit, but does not control nuclear/nucleolar localization of ribosomal proteins. Our results suggest that Zfrp8/PDCD2 functions at late stages of ribosome assembly and may regulate the binding of specific mRNA-RNPs to the small ribosomal subunit ultimately controlling their cytoplasmic localization and translation.

  12. Global shape mimicry of tRNA within a viral internal ribosome entry site mediates translational reading frame selection.

    Science.gov (United States)

    Au, Hilda H; Cornilescu, Gabriel; Mouzakis, Kathryn D; Ren, Qian; Burke, Jordan E; Lee, Seonghoon; Butcher, Samuel E; Jan, Eric

    2015-11-24

    The dicistrovirus intergenic region internal ribosome entry site (IRES) adopts a triple-pseudoknotted RNA structure and occupies the core ribosomal E, P, and A sites to directly recruit the ribosome and initiate translation at a non-AUG codon. A subset of dicistrovirus IRESs directs translation in the 0 and +1 frames to produce the viral structural proteins and a +1 overlapping open reading frame called ORFx, respectively. Here we show that specific mutations of two unpaired adenosines located at the core of the three-helical junction of the honey bee dicistrovirus Israeli acute paralysis virus (IAPV) IRES PKI domain can uncouple 0 and +1 frame translation, suggesting that the structure adopts distinct conformations that contribute to 0 or +1 frame translation. Using a reconstituted translation system, we show that ribosomes assembled on mutant IRESs that direct exclusive 0 or +1 frame translation lack reading frame fidelity. Finally, a nuclear magnetic resonance/small-angle X-ray scattering hybrid approach reveals that the PKI domain of the IAPV IRES adopts an RNA structure that resembles a complete tRNA. The tRNA shape-mimicry enables the viral IRES to gain access to the ribosome tRNA-binding sites and form intermolecular contacts with the ribosome that are necessary for initiating IRES translation in a specific reading frame.

  13. The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, Tamar; Mermershtain, Inbal; Davidovich, Chen; Bashan, Anat; Belousoff, Matthew; Wekselman, Itai; Zimmerman, Ella; Xiong, Liqun; Klepacki, Dorota; Arakawa, Kenji; Kinashi, Haruyasu; Mankin, Alexander S.; Yonath, Ada (Hiroshima); (WIS-I); (UIC)

    2010-04-26

    Crystallographic analysis revealed that the 17-member polyketide antibiotic lankacidin produced by Streptomyces rochei binds at the peptidyl transferase center of the eubacterial large ribosomal subunit. Biochemical and functional studies verified this finding and showed interference with peptide bond formation. Chemical probing indicated that the macrolide lankamycin, a second antibiotic produced by the same species, binds at a neighboring site, at the ribosome exit tunnel. These two antibiotics can bind to the ribosome simultaneously and display synergy in inhibiting bacterial growth. The binding site of lankacidin and lankamycin partially overlap with the binding site of another pair of synergistic antibiotics, the streptogramins. Thus, at least two pairs of structurally dissimilar compounds have been selected in the course of evolution to act synergistically by targeting neighboring sites in the ribosome. These results underscore the importance of the corresponding ribosomal sites for development of clinically relevant synergistic antibiotics and demonstrate the utility of structural analysis for providing new directions for drug discovery.

  14. Synthetic peptides and ribosomal proteins as substrate for 60S ribosomal protein kinase from yeast cells

    DEFF Research Database (Denmark)

    Grankowski, N; Gasior, E; Issinger, O G

    1993-01-01

    Kinetic studies on the 60S protein kinase were conducted with synthetic peptides and ribosomal proteins as substrate. Peptide RRREEESDDD proved to be the best synthetic substrate for this enzyme. The peptide has a sequence of amino acids which most closely resembles the structure of potential...... phosphorylation sites in natural substrates, i.e., acidic ribosomal proteins. The superiority of certain kinetic parameters for 60S kinase obtained with the native whole 80S ribosomes over those of the isolated fraction of acidic ribosomal proteins indicates that the affinity of 60S kinase to the specific protein...... substrate not only depends on the structure of the polypeptide chain around the target amino acid but also on its native structure within the 80S ribosome....

  15. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins.

    Directory of Open Access Journals (Sweden)

    Gisela Pöll

    Full Text Available The structural constituents of the large eukaryotic ribosomal subunit are 3 ribosomal RNAs, namely the 25S, 5.8S and 5S rRNA and about 46 ribosomal proteins (r-proteins. They assemble and mature in a highly dynamic process that involves more than 150 proteins and 70 small RNAs. Ribosome biogenesis starts in the nucleolus, continues in the nucleoplasm and is completed after nucleo-cytoplasmic translocation of the subunits in the cytoplasm. In this work we created 26 yeast strains, each of which conditionally expresses one of the large ribosomal subunit (LSU proteins. In vivo depletion of the analysed LSU r-proteins was lethal and led to destabilisation and degradation of the LSU and/or its precursors. Detailed steady state and metabolic pulse labelling analyses of rRNA precursors in these mutant strains showed that LSU r-proteins can be grouped according to their requirement for efficient progression of different steps of large ribosomal subunit maturation. Comparative analyses of the observed phenotypes and the nature of r-protein-rRNA interactions as predicted by current atomic LSU structure models led us to discuss working hypotheses on i how individual r-proteins control the productive processing of the major 5' end of 5.8S rRNA precursors by exonucleases Rat1p and Xrn1p, and ii the nature of structural characteristics of nascent LSUs that are required for cytoplasmic accumulation of nascent subunits but are nonessential for most of the nuclear LSU pre-rRNA processing events.

  16. Induction of ribosomal subunits misassembly by antisense RNAs to control cell growth.

    Science.gov (United States)

    Mangiarotti, G

    2000-08-25

    The assembly of ribosomal subunits starting from free ribosomal RNA and protein of Dictyostelium discoideum was induced in vitro in the presence of several oligoribonucleotides complementary to defined sequences of ribosomal RNA. The reconstituted particles had a full complement of ribosomal proteins, but did not function in an in vitro protein synthesis system and were disassembled following interaction with mRNA. The same result was obtained in vivo by fusing the oligodeossiribonucleotides coding for the selected oligoribonucleotides to the promoter of the gene coding for contact site A protein. This gene is expressed only in the first part of development. Transfected growing cells, transferred in developing buffer in the presence of pulses of cAMP, accumulated significant amounts of the oligoribonucleotides. When retransferred to the growth medium, they grew progressively more slowly, until their doubling time doubled, apparently due to the availability of a limiting amount of functional ribosomes. To avoid disassembly of misassembled subunits (G. Mangiarotti et al., 1997, J. Biol. Chem. 272, 27818-27822), two oligoribonucleotides complementary to sequences present at the 5' ends of pre-17S and pre-26S RNAs were also induced to accumulate during early development with the same technique. When transfected cells were retransferred to the growth medium, their rate of growth declined rapidly to zero and cells died, apparently because they were unable to disassemble misassembled ribosomal subunits and avoid their entry into polyribosomes. This technique to perturb protein synthesis, arrest cell growth, and cause cell suicide will be tested in abnormally growing animal cells.

  17. The ribosome can prevent aggregation of partially folded protein intermediates: studies using the Escherichia coli ribosome.

    Directory of Open Access Journals (Sweden)

    Bani Kumar Pathak

    Full Text Available BACKGROUND: Molecular chaperones that support de novo folding of proteins under non stress condition are classified as chaperone 'foldases' that are distinct from chaperone' holdases' that provide high affinity binding platform for unfolded proteins and prevent their aggregation specifically under stress conditions. Ribosome, the cellular protein synthesis machine can act as a foldase chaperone that can bind unfolded proteins and release them in folding competent state. The peptidyl transferase center (PTC located in the domain V of the 23S rRNA of Escherichia coli ribosome (bDV RNA is the chaperoning center of the ribosome. It has been proposed that via specific interactions between the RNA and refolding proteins, the chaperone provides information for the correct folding of unfolded polypeptide chains. RESULTS: We demonstrate using Escherichia coli ribosome and variants of its domain V RNA that the ribosome can bind to partially folded intermediates of bovine carbonic anhydrase II (BCAII and lysozyme and suppress aggregation during their refolding. Using mutants of domain V RNA we demonstrate that the time for which the chaperone retains the bound protein is an important factor in determining its ability to suppress aggregation and/or support reactivation of protein. CONCLUSION: The ribosome can behave like a 'holdase' chaperone and has the ability to bind and hold back partially folded intermediate states of proteins from participating in the aggregation process. Since the ribosome is an essential organelle that is present in large numbers in all living cells, this ability of the ribosome provides an energetically inexpensive way to suppress cellular aggregation. Further, this ability of the ribosome might also be crucial in the context that the ribosome is one of the first chaperones to be encountered by a large nascent polypeptide chains that have a tendency to form partially folded intermediates immediately following their synthesis.

  18. Functional Importance of Mobile Ribosomal Proteins.

    Science.gov (United States)

    Chang, Kai-Chun; Wen, Jin-Der; Yang, Lee-Wei

    2015-01-01

    Although the dynamic motions and peptidyl transferase activity seem to be embedded in the rRNAs, the ribosome contains more than 50 ribosomal proteins (r-proteins), whose functions remain largely elusive. Also, the precise forms of some of these r-proteins, as being part of the ribosome, are not structurally solved due to their high flexibility, which hinders the efforts in their functional elucidation. Owing to recent advances in cryo-electron microscopy, single-molecule techniques, and theoretical modeling, much has been learned about the dynamics of these r-proteins. Surprisingly, allosteric regulations have been found in between spatially separated components as distant as those in the opposite sides of the ribosome. Here, we focus on the functional roles and intricate regulations of the mobile L1 and L12 stalks and L9 and S1 proteins. Conformational flexibility also enables versatile functions for r-proteins beyond translation. The arrangement of r-proteins may be under evolutionary pressure that fine-tunes mass distributions for optimal structural dynamics and catalytic activity of the ribosome.

  19. Divergent marijuana trajectories among men: Socioeconomic, relationship, and life satisfaction outcomes in the mid-30s.

    Science.gov (United States)

    White, Helene R; Bechtold, Jordan; Loeber, Rolf; Pardini, Dustin

    2015-11-01

    Given recent changes in marijuana policy in the United States, it is important to understand the long-term effects of marijuana use on adult functioning. We examined whether men who displayed different trajectories of marijuana use from adolescence through emerging adulthood (age ∼15-26) differed in terms of socioeconomic, social, and life satisfaction outcomes in their mid-30s. Data came from a longitudinal sample of men who were recruited in early adolescence (N=506) and followed into adulthood. Four trajectory groups based on patterns of marijuana use from adolescence into emerging adulthood were compared on adult outcomes (age ∼36) before and after controlling for co-occurring use of other substances and several pre-existing confounding factors in early adolescence. The potential moderating effect of race was also examined. Although there were initially group differences across all domains, once pre-existing confounds and co-occurring other substance use were included in the model, groups only differed in terms of partner and friend marijuana use. Chronic marijuana users reported the highest proportions of both. Frequent and persistent marijuana use was associated with lower socioeconomic status (SES) for Black men only. After statistically accounting for confounding variables, chronic marijuana users were not at a heightened risk for maladjustment in adulthood except for lower SES among Black men. Chronic users were more likely to have friends and partners who also used marijuana. Future studies should take into account pre-existing differences when examining outcomes of marijuana use. Copyright © 2015. Published by Elsevier Ireland Ltd.

  20. Changes in the conformation of 5S rRNA cause alterations in principal functions of the ribosomal nanomachine.

    Science.gov (United States)

    Kouvela, Ekaterini C; Gerbanas, George V; Xaplanteri, Maria A; Petropoulos, Alexandros D; Dinos, George P; Kalpaxis, Dimitrios L

    2007-01-01

    5S rRNA is an integral component of the large ribosomal subunit in virtually all living organisms. Polyamine binding to 5S rRNA was investigated by cross-linking of N1-azidobenzamidino (ABA)-spermine to naked 5S rRNA or 50S ribosomal subunits and whole ribosomes from Escherichia coli cells. ABA-spermine cross-linking sites were kinetically measured and their positions in 5S rRNA were localized by primer extension analysis. Helices III and V, and loops A, C, D and E in naked 5S rRNA were found to be preferred polyamine binding sites. When 50S ribosomal subunits or poly(U)-programmed 70S ribosomes bearing tRNA(Phe) at the E-site and AcPhe-tRNA at the P-site were targeted, the susceptibility of 5S rRNA to ABA-spermine was greatly reduced. Regardless of 5S rRNA assembly status, binding of spermine induced significant changes in the 5S rRNA conformation; loop A adopted an apparent 'loosening' of its structure, while loops C, D, E and helices III and V achieved a more compact folding. Poly(U)-programmed 70S ribosomes possessing 5S rRNA cross-linked with spermine were more efficient than control ribosomes in tRNA binding, peptidyl transferase activity and translocation. Our results support the notion that 5S rRNA serves as a signal transducer between regions of 23S rRNA responsible for principal ribosomal functions.

  1. The effect of aminoacyl- or peptidyl-tRNA at the A-site on the arrangement of deacylated tRNA at the ribosomal P-site.

    Science.gov (United States)

    Babkina, G T; Bausk, E V; Graifer, D M; Karpova, G G; Matasova, N B

    1984-05-21

    Photoreactive derivatives of E. coli tRNAPhe bearing arylazido groups on guanine residues (azido-tRNA) were used for affinity labelling of E. coli ribosomes in the region of the P-site when the A-site was either free or occupied by aminoacyl- or peptidyl-tRNA. Corresponding complexes of azido-tRNA with ribosomes and poly(U) were obtained both nonenzymatically and with the use of elongation factors. UV-irradiation of the complexes resulted in labelling of ribosomal proteins (preferentially of 30 S subunit). Proteins S9 and S21 were labelled only when the A-site was free; S14 - only when it was occupied; S11, S13, S19 - in both cases; S5, S7, S12, S20 - in some states.

  2. Distribution of dwell times of a ribosome: effects of infidelity, kinetic proofreading and ribosome crowding

    CERN Document Server

    Sharma, Ajeet K

    2010-01-01

    Ribosome is a molecular machine that polymerizes a protein where the sequence of the amino acid subunits of the protein is dictated by the sequence of codons (triplets of nucleotide subunits) on a messenger RNA (mRNA) that serves as the template. The ribosome is a molecular motor that utilizes the template mRNA strand also as the track. Thus, in each step the ribosome moves forward by one codon and, simultaneously, elongates the protein by one amino acid. We present a theoretical model that captures most of the main steps in the mechano-chemical cycle of a ribosome. The stochastic movement of the ribosome consists of an alternating sequence of pause and translocation; the sum of the durations of a pause and the following translocation is defined as the time of dwell of the ribosome at the corresponding codon. We present an analytical calculation of the distribution of the dwell times of a ribosome in our model. Our theoretical prediction is consistent with the experimental results reported in the literature.

  3. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    Science.gov (United States)

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-06-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.

  4. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment

    Science.gov (United States)

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-01-01

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance. DOI: http://dx.doi.org/10.7554/eLife.20420.001 PMID:28220755

  5. Studies on structural stability of thermophilic Sulfolobus acidocaldarius ribosomes.

    Science.gov (United States)

    Yangala, Kalavathi; Suryanarayana, Tangirala

    2007-02-01

    Structural stability of thermophilic archaeon Sulfolobus acidocaldarius ribosomes, with respect their susceptibility to pancreatic RNase A and stability to temperature (deltaTm), on treatment with various stabilizing (polyamines) and destabilizing (sulfhydryl and intercalating) agents were studied and compared with mesophilic E. coli ribosomes, to understand the structural differences between thermophilic and mesophilic ribosomes. Thermophilic archaeal ribosomes and their subunits were 10-times less susceptible to pancreatic RNase A, compared to mesophilic ribosomes, showing the presence of strong and compact structural organization in them. Thermophilic ribosomes treated with destabilizing agents, such as sulfhydryl reagents [5,5'-Dithio-bis-(2-nitrobenzoic acid), N-ethylmaleimide and p-hydroxymercurybenzoate) and intercalating agents (ethidium bromide, EtBr) showed higher stability to RNase A, compared to similarly treated mesophilic ribosomes, indicating the unavailability of thiol-reactive groups and the presence of strong solvent inaccessible inner core. Higher stability of thermophilic ribosomes compared to mesophilic ribosomes to unfolding agents like urea further supported the presence of strong inner core particle. Thermophilic ribosomes treated with intercalating agents, such as EtBr were less susceptible to RNase A, though they bound to more reagent, showing the rigidity or resilience of their macromolecular structure to alterations caused by destabilizing agents. Overall, these results indicated that factors such as presence of strong solvent inaccessible inner core and rigidity of ribosome macromolecular structure contributed stability of thermophilic ribosomes to RNase A and other destabilizing agents, when compared to mesophilic ribosomes.

  6. Ribosomal RNA pseudouridines and pseudouridine synthases.

    Science.gov (United States)

    Ofengand, James

    2002-03-01

    Pseudouridines are found in virtually all ribosomal RNAs but their function is unknown. There are four to eight times more pseudouridines in eukaryotes than in eubacteria. Mapping 19 Haloarcula marismortui pseudouridines on the three-dimensional 50S subunit does not show clustering. In bacteria, specific enzymes choose the site of pseudouridine formation. In eukaryotes, and probably also in archaea, selection and modification is done by a guide RNA-protein complex. No unique specific role for ribosomal pseudouridines has been identified. We propose that pseudouridine's function is as a molecular glue to stabilize required RNA conformations that would otherwise be too flexible.

  7. PPARA intron polymorphism associated with power performance in 30-s anaerobic Wingate Test.

    Directory of Open Access Journals (Sweden)

    Miroslav Petr

    Full Text Available To date, polymorphisms in several genes have been associated with a strength/power performance including alpha 3 actinin, ciliary neurotrophic factor, vitamin D receptor, or angiotensin I converting enzyme, underlining the importance of genetic component of the multifactorial strength/power-related phenotypes. The single nucleotide variation in peroxisome proliferator-activated receptor alpha gene (PPARA intron 7 G/C (rs4253778; g.46630634G>C has been repeatedly found to play a significant role in response to different types of physical activity. We investigated the effect of PPARA intron 7 G/C polymorphism specifically on anaerobic power output in a group of 77 elite male Czech ice hockey players (18-36 y. We determined the relative peak power per body weight (Pmax.kg(-1 and relative peak power per fat free mass (W.kg(-1FFM during the 30-second Wingate Test (WT30 on bicycle ergometer (Monark 894E Peak bike, MONARK, Sweden. All WT30s were performed during the hockey season. Overall genotype frequencies were 50.6% GG homozygotes, 40.3% CG heterozygotes, and 9.1% CC homozygotes. We found statistically significant differences in Pmax.kg(-1 and marginally significant differences in Pmax.kg(-1FFM values in WT30 between carriers and non-carriers for C allele (14.6 ± 0.2 vs. 13.9 ± 0.3 W.kg(-1 and 15.8 ± 0.2 vs. 15.2 ± 0.3 W.kg(-1FFM, P = 0.036 and 0.12, respectively. Furthermore, Pmax.kg(-1FFM strongly positively correlated with the body weight only in individuals with GG genotypes (R = 0.55; p<0.001. Our results indicate that PPARA 7C carriers exhibited higher speed strength measures in WT30. We hypothesize that C allele carriers within the cohort of trained individuals may possess a metabolic advantage towards anaerobic metabolism.

  8. β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis.

    Science.gov (United States)

    Gaudelli, Nicole M; Long, Darcie H; Townsend, Craig A

    2015-04-16

    Non-ribosomal peptide synthetases are giant enzymes composed of modules that house repeated sets of functional domains, which select, activate and couple amino acids drawn from a pool of nearly 500 potential building blocks. The structurally and stereochemically diverse peptides generated in this manner underlie the biosynthesis of a large sector of natural products. Many of their derived metabolites are bioactive such as the antibiotics vancomycin, bacitracin, daptomycin and the β-lactam-containing penicillins, cephalosporins and nocardicins. Penicillins and cephalosporins are synthesized from a classically derived non-ribosomal peptide synthetase tripeptide (from δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase). Here we report an unprecedented non-ribosomal peptide synthetase activity that both assembles a serine-containing peptide and mediates its cyclization to the critical β-lactam ring of the nocardicin family of antibiotics. A histidine-rich condensation domain, which typically performs peptide bond formation during product assembly, also synthesizes the embedded four-membered ring. We propose a mechanism, and describe supporting experiments, that is distinct from the pathways that have evolved to the three other β-lactam antibiotic families: penicillin/cephalosporins, clavams and carbapenems. These findings raise the possibility that β-lactam rings can be regio- and stereospecifically integrated into engineered peptides for application as, for example, targeted protease inactivators.

  9. Reverse Translocation of tRNA in the Ribosome

    OpenAIRE

    2006-01-01

    A widely held view is that directional movement of tRNA in the ribosome is determined by an intrinsic mechanism and driven thermodynamically by transpeptidation. Here, we show that, in certain ribosomal complexes, the pretranslocation (PRE) state is thermodynamically favored over the posttranslocation (POST) state. Spontaneous and efficient conversion from the POST to PRE state is observed when EF-G is depleted from ribosomes in the POST state or when tRNA is added to the E site of ribosomes ...

  10. Ribosome evolution: Emergence of peptide synthesis machinery

    Indian Academy of Sciences (India)

    Koji Tamura

    2011-12-01

    Proteins, the main players in current biological systems, are produced on ribosomes by sequential amide bond (peptide bond) formations between amino-acid-bearing tRNAs. The ribosome is an exquisite super-complex of RNA-proteins, containing more than 50 proteins and at least 3 kinds of RNAs. The combination of a variety of side chains of amino acids (typically 20 kinds with some exceptions) confers proteins with extraordinary structure and functions. The origin of peptide bond formation and the ribosome is crucial to the understanding of life itself. In this article, a possible evolutionary pathway to peptide bond formation machinery (proto-ribosome) will be discussed, with a special focus on the RNA minihelix (primordial form of modern tRNA) as a starting molecule. Combining the present data with recent experimental data, we can infer that the peptidyl transferase center (PTC) evolved from a primitive system in the RNA world comprising tRNA-like molecules formed by duplication of minihelix-like small RNA.

  11. Control of Ribosome Synthesis in Escherichia coli

    DEFF Research Database (Denmark)

    Molin, Søren; Meyenburg, K. von; Måløe, O.

    1977-01-01

    The rate of ribosome synthesis and accumulation in Escherichia coli during the transition after an energy source shift-down was analyzed. The shift was imposed on cultures of stringent and relaxed strains growing in glucose minimal medium by the addition of the glucose analogue {alpha}-methylgluc...

  12. The structure of SAV1646 from Staphylococcus aureus belonging to a new `ribosome-associated' subfamily of bacterial proteins.

    Science.gov (United States)

    Chirgadze, Yuri N; Clarke, Teresa E; Romanov, Vladimir; Kisselman, Gera; Wu-Brown, Jean; Soloveychik, Maria; Chan, Tiffany S Y; Gordon, Roni D; Battaile, Kevin P; Pai, Emil F; Chirgadze, Nickolay Y

    2015-02-01

    The crystal structure of the SAV1646 protein from the pathogenic microorganism Staphylococcus aureus has been determined at 1.7 Å resolution. The 106-amino-acid protein forms a two-layer sandwich with α/β topology. The protein molecules associate as dimers in the crystal and in solution, with the monomers related by a pseudo-twofold rotation axis. A sequence-homology search identified the protein as a member of a new subfamily of yet uncharacterized bacterial `ribosome-associated' proteins with at least 13 members to date. A detailed analysis of the crystal protein structure along with the genomic structure of the operon containing the sav1646 gene allowed a tentative functional model of this protein to be proposed. The SAV1646 dimer is assumed to form a complex with ribosomal proteins L21 and L27 which could help to complete the assembly of the large subunit of the ribosome.

  13. Dataset of the transcribed 45S ribosomal RNA sequence of the tree crop “yerba mate”

    Directory of Open Access Journals (Sweden)

    Patricia M. Aguilera

    2017-06-01

    Full Text Available This contribution contains data related to the research article entitled “The 18S-25S ribosomal RNA unit of yerba mate (Ilex paraguariensis A. St.-Hil.” (Aguilera et al., 2016 [1]. Through a bioinformatic approach involving NGS data, we provide information of the transcribed 45S ribosomal RNA (rRNA sequence of yerba mate, the first reference for the Ilex L. genus. This dataset (Supplementary file 1 comprises information regarding the assembly and annotation of this rRNA unit. The generated data is applicable for comparative analysis and evolutionary studies among Ilex and related taxa. The raw sequencing data used here is available at DDBJ/EMBL/GenBank (NCBI Resource Coordinators, 2016 [2] Sequence Read Archive (SRA under the accession SRP043293 and the consensus 45S ribosomal RNA sequence has been deposited there under the accession GFHV00000000.

  14. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. II. The RNA-protein interaction data.

    Science.gov (United States)

    Mueller, F; Brimacombe, R

    1997-08-29

    The map of the mass centres of the 21 proteins from the Escherichia coli 30 S ribosomal subunit, as determined by neutron scattering, was fitted to a cryoelectron microscopic (cryo-EM) model at a resolution of 20 A of 70 S ribosomes in the pre-translocational state, carrying tRNA molecules at the A and P sites. The fit to the 30 S moiety of the 70 S particles was accomplished with the help of the well-known distribution of the ribosomal proteins in the head, body and side lobe regions of the 30 S subunit, as determined by immuno electron microscopy (IEM). Most of the protein mass centres were found to lie close to the surface (or even outside) of the cryo-EM contour of the 30 S subunit, supporting the idea that the ribosomal proteins are arranged peripherally around the rRNA. The ribosomal protein distribution was then compared with the corresponding model for the 16 S rRNA, fitted to the same EM contour (described in an accompanying paper), in order to analyse the mutual compatibility of the arrangement of proteins and rRNA in terms of the available RNA-protein interaction data. The information taken into account included the hydroxyl radical and base foot-printing data from Noller's laboratory, and our own in situ cross-linking results. Proteins S1 and S14 were not considered, due to the lack of RNA-protein data. Among the 19 proteins analysed, 12 (namely S2, S4, S5, S7, S8, S9, S10, S11, S12, S15, S17 and S21) showed a fit to the rRNA model that varied from being excellent to at least acceptable. Of the remaining 7, S3 and S13 showed a rather poor fit, as did S18 (which is considered in combination with S6 in the foot-printing experiments). S16 was difficult to evaluate, as the foot-print data for this protein cover a large area of the rRNA. S19 and S20 showed a bad fit in terms of the neutron map, but their foot-print and cross-link sites were clustered into compact groups in the rRNA model in those regions of the 30 S subunit where these proteins have

  15. Crystal structure of eukaryotic ribosome and its complexes with inhibitors.

    Science.gov (United States)

    Yusupova, Gulnara; Yusupov, Marat

    2017-03-19

    A high-resolution structure of the eukaryotic ribosome has been determined and has led to increased interest in studying protein biosynthesis and regulation of biosynthesis in cells. The functional complexes of the ribosome crystals obtained from bacteria and yeast have permitted researchers to identify the precise residue positions in different states of ribosome function. This knowledge, together with electron microscopy studies, enhances our understanding of how basic ribosome processes, including mRNA decoding, peptide bond formation, mRNA, and tRNA translocation and cotranslational transport of the nascent peptide, are regulated. In this review, we discuss the crystal structure of the entire 80S ribosome from yeast, which reveals its eukaryotic-specific features, and application of X-ray crystallography of the 80S ribosome for investigation of the binding mode for distinct compounds known to inhibit or modulate the protein-translation function of the ribosome. We also refer to a challenging aspect of the structural study of ribosomes, from higher eukaryotes, where the structures of major distinctive features of higher eukaryote ribosome-the high-eukaryote-specific long ribosomal RNA segments (about 1MDa)-remain unresolved. Presently, the structures of the major part of these high-eukaryotic expansion ribosomal RNA segments still remain unresolved.This article is part of the themed issue 'Perspectives on the ribosome'.

  16. Developmental Trajectories of Marijuana Use among Men: Examining Linkages with Criminal Behavior and Psychopathic Features into the Mid-30s

    Science.gov (United States)

    Pardini, Dustin; Bechtold, Jordan; Loeber, Rolf; White, Helene

    2015-01-01

    Objectives Examine whether young men who chronically use marijuana are at risk for engaging in drug-related and non-drug-related criminal offending and exhibiting psychopathic personality features in their mid-30s. Methods Patterns of marijuana use were delineated in a sample of predominately Black and White young men from adolescence to the mid-20s using latent class growth curve analysis. Self-report and official records of criminal offending and psychopathic personality features were assessed in the mid-30s. Analyses controlled for multiple factors indicative of a preexisting antisocial lifestyle and co-occurring use of other substances and tested for moderation by race. Results Four latent marijuana trajectory groups were identified: chronic high, adolescence-limited, late increasing, and low/nonusers. Relative to low/nonusers, chronic high and late increasing marijuana users exhibited more adult psychopathic features and were more likely to engage in drug-related offending during their mid-30s. Adolescence-limited users were similar to low/nonusers in terms of psychopathic features but were more likely to be arrested for drug-related crimes. No trajectory group differences were found for violence or theft, and the group differences were not moderated by race. Conclusions Young men who engage in chronic marijuana use from adolescence into their 20s are at increased risk for exhibiting psychopathic features, dealing drugs, and enduring drug-related legal problems in their mid-30s relative to men who remain abstinent or use infrequently. PMID:26568641

  17. Mescaline-induced changes of brain-cortex ribosomes. Effect of mescaline on the stability of brain-cortex ribosomes.

    Science.gov (United States)

    Datta, R K; Ghosh, J J

    1970-05-01

    1. During the action of mescaline sulphate on goat brain-cortex slices the ribosomal particles become susceptible to breakdown, releasing protein, RNA, acidsoluble nucleotides and ninhydrin-positive materials, resulting in loss of ribosomal enzyme activities. 2. Ribosomes of the mescaline-treated cortex slices undergo rapid degradation in the presence of trypsin and ribonuclease. 3. Mescaline does not alter the chemical and nucleotide compositions or the u.v.-absorption characteristics of ribosomal particles, however.

  18. Association of a multi-synthetase complex with translating ribosomes in the archaeon Thermococcus kodakarensis

    DEFF Research Database (Denmark)

    Raina, Medha; Elgamal, Sara; Santangelo, Thomas J;

    2012-01-01

    that components of the archaeal protein synthesis machinery associate into macromolecular assemblies in vivo and provide the potential to increase translation efficiency by limiting substrate diffusion away from the ribosome, thus facilitating rapid recycling of tRNAs. STRUCTURED SUMMARY OF PROTEIN INTERACTIONS...... with several other factors involved in protein synthesis, suggesting that MSCs may interact directly with translating ribosomes. In support of this hypothesis, the aminoacyl-tRNA synthetase (aaRS) activities of the MSC were enriched in isolated T. kodakarensis polysome fractions. These data indicate......)-triphosphatase 205, thiamine monophosphate kinase 179, pyruvate formate lyase family activating protein 298, 3-hydroxy-3-methylglutaryl-CoA reductase (mevanolate), N(2), N(2)-dimethylguanosine tRNA methyltransferase 145, N2, N2-dimethylguanosine tRNA methyltransferase 170, putative 5-methylcytosine restriction...

  19. Post-transcriptional regulation of ribosomal protein genes during serum starvation in Entamoeba histolytica.

    Science.gov (United States)

    Ahamad, Jamaluddin; Ojha, Sandeep; Srivastava, Ankita; Bhattacharya, Alok; Bhattacharya, Sudha

    2015-06-01

    Ribosome synthesis involves all three RNA polymerases which are co-ordinately regulated to produce equimolar amounts of rRNAs and ribosomal proteins (RPs). Unlike model organisms where transcription of rRNA and RP genes slows down during stress, in E. histolytica rDNA transcription continues but pre-rRNA processing slows down and unprocessed pre-rRNA accumulates during serum starvation. To investigate the regulation of RP genes under stress we measured transcription of six selected RP genes from the small- and large-ribosomal subunits (RPS6, RPS3, RPS19, RPL5, RPL26, RPL30) representing the early-, mid-, and late-stages of ribosomal assembly. Transcripts of these genes persisted in growth-stressed cells. Expression of luciferase reporter under the control of two RP genes (RPS19 and RPL30) was studied during serum starvation and upon serum replenishment. Although luciferase transcript levels remained unchanged during starvation, luciferase activity steadily declined to 7.8% and 15% of control cells, respectively. After serum replenishment the activity increased to normal levels, suggesting post-transcriptional regulation of these genes. Mutations in the sequence -2 to -9 upstream of AUG in the RPL30 gene resulted in the phenotype expected of post-transcriptional regulation. Transcription of luciferase reporter was unaffected in this mutant, and luciferase activity did not decline during serum starvation, showing that this sequence is required to repress translation of RPL30 mRNA, and mutations in this region relieve repression. Our data show that during serum starvation E. histolytica blocks ribosome biogenesis post-transcriptionally by inhibiting pre-rRNA processing on the one hand, and the translation of RP mRNAs on the other.

  20. Proton scattering from unstable nuclei {sup 20}O, {sup 30}S, {sup 34}Ar: experimental study and models; Diffusion de protons sur les noyaux instables {sup 20}O, {sup 30}S, {sup 34}Ar: etude experimentale et developpement de modeles

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Elias [Institut de Physique Nucleaire, CNRS - IN2P3, Universite Paris - Sud, 91406 Orsay Cedex (France)

    2000-01-28

    Elastic and inelastic proton scattering from the unstable nuclei {sup 20}O, {sup 30}S and {sup 34}Ar were measured in inverse kinematics at the Grand Accelerateur National d'Ions Lourds. Secondary beams of {sup 20}O at 43 MeV/A, {sup 30}S at 53 MeV/A and {sup 34}Ar at 47 MeV/A impinged on a (CH{sub 2}){sub n} target. Recoiling protons were detected in the silicon strip array MUST. Energies and angular distributions of the first 2{sup +} and 3{sup -} states were measured. A phenomenological analysis yields values of the deformation parameters {beta}{sub 2} and {beta}{sub 3} of 0.55 (6) and 0.35 (5) for {sup 20}O, 0.32 (3) and 0.22 (4) for {sup 30}S, 0.27 (2) and 0.39 (3) for {sup 34}Ar, respectively, and allows the extraction of the ratio of neutron to proton transition matrix elements (M{sub n}/M{sub p})/(N/Z) for 2{sup +} states: 2.35 (37) for {sup 20}O, 0.93 (20) for {sup 30}S and 1.35 (28) for {sup 34}Ar. Therefore the proton rich nuclei {sup 30}S and {sup 34}Ar show a 2{sup +} excitation of isoscalar character whereas the excitation of {sup 20}O is of isovector character. In order to perform a microscopic analysis of the data, we have developed a QRPA model, using three Skyrme interaction: SIII, SG2, SLy4. This model reproduces measured B(EL) values for the oxygen, sulfur and argon isotopic chains, whereas RPA calculations, which do not take pairing into account, underestimate these values. In the case of the QRPA model the energies of the first 2{sup +} state are overestimated by about 1 MeV, but the evolution along the isotopic chains is well reproduced. (M{sub n}/M{sub p})/(N/Z) ratios for the first 2{sup +} state deduced from the microscopic analysis using QRPA are 1.98 for {sup 20}O, 1.05 for {sup 30}S and 1.00 for {sup 34}Ar, in agreement with the conclusions of the phenomenological analysis. However important discrepancies are observed between the two types of analysis for other isotopes, in particular neutron rich argon and sulfur nuclei. (author)

  1. Translation regulation via nascent polypeptide-mediated ribosome stalling.

    Science.gov (United States)

    Wilson, Daniel N; Arenz, Stefan; Beckmann, Roland

    2016-04-01

    As the nascent polypeptide chain is being synthesized, it passes through a tunnel within the large ribosomal subunit. Interaction between the nascent polypeptide chain and the ribosomal tunnel can modulate the translation rate and induce translational stalling to regulate gene expression. In this article, we highlight recent structural insights into how the nascent polypeptide chain, either alone or in cooperation with co-factors, can interact with components of the ribosomal tunnel to regulate translation via inactivating the peptidyltransferase center of the ribosome and inducing ribosome stalling.

  2. [Mutual effect of human ribosomal proteins S5 and S16 on their binding with 18S rRNA fragment 1203-1236/1521-1698].

    Science.gov (United States)

    Ian'shina, D D; Malygin, A A; Karpova, G G

    2009-01-01

    Human ribosomal proteins S5 and S16 are homologues of prokaryotic ribosomal proteins S7p and S9p, respectively, that according to X-ray crystallography data on the Thermus thermophilus 30S ribosomal subunit contact the 3'-terminal 16S rRNA region formed by helices H28-H30 and H38-H43. In the present work we report studying mutual effect of human ribosomal proteins S5 and S16 on their binding with RNA transcript corresponding to the region 1203-1236/1521-1698 of the 18S rRNA (helices H28-30 and H41-43), which is homologous to thel6S rRNA region known to contain binding site of S7p and part of binding site of S9p. It was shown that simultaneous binding of ribosomal proteins S5 and S16 with this RNA transcript causes conformational changes in it stabilizing the complex by involvement of new parts of the RNA that interact with neither S5 nor S16 in the respective binary complexes.

  3. Differential scanning calorimetry of whole Escherichia coli treated with the antimicrobial peptide MSI-78 indicate a multi-hit mechanism with ribosomes as a novel target.

    Science.gov (United States)

    Brannan, Alexander M; Whelan, William A; Cole, Emma; Booth, Valerie

    2015-01-01

    Differential Scanning Calorimetry (DSC) of intact Escherichia coli (E. coli) was used to identify non-lipidic targets of the antimicrobial peptide (AMP) MSI-78. The DSC thermograms revealed that, in addition to its known lytic properties, MSI-78 also has a striking effect on ribosomes. MSI-78's effect on DSC scans of bacteria was similar to that of kanamycin, an antibiotic drug known to target the 30S small ribosomal subunit. An in vitro transcription/translation assay helped confirm MSI-78's targeting of ribosomes. The scrambled version of MSI-78 also affected the ribosome peak of the DSC scans, but required greater amounts of peptide to cause a similar effect to the unscrambled peptide. Furthermore, the effect of the scrambled peptide was not specific to the ribosomes; other regions of the DSC thermogram were also affected. These results suggest that MSI-78's effects on E. coli are at least somewhat dependent on its particular structural features, rather than a sole function of its overall charge and hydrophobicity. When considered along with earlier work detailing MSI-78's membrane lytic properties, it appears that MSI-78 operates via a multi-hit mechanism with multiple targets.

  4. Knockdown of ribosomal protein S7 causes developmental abnormalities via p53 dependent and independent pathways in zebrafish.

    Science.gov (United States)

    Duan, Juan; Ba, Qian; Wang, Ziliang; Hao, Miao; Li, Xiaoguang; Hu, Pingting; Zhang, Deyi; Zhang, Ruiwen; Wang, Hui

    2011-08-01

    Ribosomal proteins (RPs), structural components of the ribosome involved in protein synthesis, are of significant importance in all organisms. Previous studies have suggested that some RPs may have other functions in addition to assembly of the ribosome. The small ribosomal subunits RPS7, has been reported to modulate the mdm2-p53 interaction. To further investigate the biological functions of RPS7, we used morpholino antisense oligonucleotides (MO) to specifically knockdown RPS7 in zebrafish. In RPS7-deficient embryos, p53 was activated, and its downstream target genes and biological events were induced, including apoptosis and cell cycle arrest. Hematopoiesis was also impaired seriously in RPS7-deficient embryos, which was confirmed by the hemoglobin O-dianisidine staining of blood cells, and the expression of scl, gata1 and α-E1 globin were abnormal. The matrix metalloproteinase (mmp) family genes were also activated in RPS7 morphants, indicating that improper cell migration might also cause development defects. Furthermore, simultaneously knockdown of the p53 protein by co-injecting a p53 MO could partially reverse the abnormal phenotype in the morphants. These results strengthen the hypothesis that specific ribosomal proteins regulate p53 and that their deficiency affects hematopoiesis. Moreover, our data implicate that RPS7 is a regulator of matrix metalloproteinase (mmp) family in zebrafish system. These specific functions of RPS7 may provide helpful clues to study the roles of RPs in human disease.

  5. 5S Ribosomal RNA Is an Essential Component of a Nascent Ribosomal Precursor Complex that Regulates the Hdm2-p53 Checkpoint

    Directory of Open Access Journals (Sweden)

    Giulio Donati

    2013-07-01

    Full Text Available Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted.

  6. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint.

    Science.gov (United States)

    Donati, Giulio; Peddigari, Suresh; Mercer, Carol A; Thomas, George

    2013-07-11

    Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA) and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Multiple ribosomal proteins are expressed at high levels in developing zebrafish endoderm and are required for normal exocrine pancreas development.

    Science.gov (United States)

    Provost, Elayne; Weier, Christopher A; Leach, Steven D

    2013-06-01

    Ribosomal protein L (rpl) genes are essential for assembly of the 60S subunit of the eukaryotic ribosome and may also carry out additional extra-ribosomal functions. We have identified a common expression pattern for rpl genes in developing zebrafish larvae. After initially widespread expression in early embryos, the expression of multiple rpl genes becomes increasingly restricted to the endoderm. With respect to the pancreas, rpl genes are highly expressed in ptf1a-expressing pancreatic progenitors at 48 hpf, suggesting possible functional roles in pancreatic morphogenesis and/or differentiation. Utilizing two available mutant lines, rpl23a(hi2582) and rpl6(hi3655b), we found that ptf1a-expressing pancreatic progenitors fail to properly expand in embryos homozygous for either of these genes. In addition to these durable homozygous phenotypes, we also demonstrated recoverable delays in ptf1a-expressing pancreatic progenitor expansion in rpl23a(hi2582) and rpl6(hi3655b) heterozygotes. Disruptions in ribosome assembly are generally understood to initiate a p53-dependent cellular stress response. However, concomitant p53 knockdown was unable to rescue normal pancreatic progenitor expansion in either rpl23a(hi2582) or rpl6(hi3655b) mutant embryos, suggesting required and p53-independent roles for rpl23a and rpl6 in pancreas development.

  8. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies...

  9. History of the ribosome and the origin of translation

    Science.gov (United States)

    Petrov, Anton S.; Gulen, Burak; Norris, Ashlyn M.; Kovacs, Nicholas A.; Lanier, Kathryn A.; Fox, George E.; Harvey, Stephen C.; Wartell, Roger M.; Hud, Nicholas V.; Williams, Loren Dean

    2015-01-01

    We present a molecular-level model for the origin and evolution of the translation system, using a 3D comparative method. In this model, the ribosome evolved by accretion, recursively adding expansion segments, iteratively growing, subsuming, and freezing the rRNA. Functions of expansion segments in the ancestral ribosome are assigned by correspondence with their functions in the extant ribosome. The model explains the evolution of the large ribosomal subunit, the small ribosomal subunit, tRNA, and mRNA. Prokaryotic ribosomes evolved in six phases, sequentially acquiring capabilities for RNA folding, catalysis, subunit association, correlated evolution, decoding, energy-driven translocation, and surface proteinization. Two additional phases exclusive to eukaryotes led to tentacle-like rRNA expansions. In this model, ribosomal proteinization was a driving force for the broad adoption of proteins in other biological processes. The exit tunnel was clearly a central theme of all phases of ribosomal evolution and was continuously extended and rigidified. In the primitive noncoding ribosome, proto-mRNA and the small ribosomal subunit acted as cofactors, positioning the activated ends of tRNAs within the peptidyl transferase center. This association linked the evolution of the large and small ribosomal subunits, proto-mRNA, and tRNA. PMID:26621738

  10. GTPases and the origin of the ribosome

    Directory of Open Access Journals (Sweden)

    Smith Temple F

    2010-05-01

    Full Text Available Abstract Background This paper is an attempt to trace the evolution of the ribosome through the evolution of the universal P-loop GTPases that are involved with the ribosome in translation and with the attachment of the ribosome to the membrane. The GTPases involved in translation in Bacteria/Archaea are the elongation factors EFTu/EF1, the initiation factors IF2/aeIF5b + aeIF2, and the elongation factors EFG/EF2. All of these GTPases also contain the OB fold also found in the non GTPase IF1 involved in initiation. The GTPase involved in the signal recognition particle in most Bacteria and Archaea is SRP54. Results 1 The Elongation Factors of the Archaea based on structural considerations of the domains have the following evolutionary path: EF1→ aeIF2 → EF2. The evolution of the aeIF5b was a later event; 2 the Elongation Factors of the Bacteria based on the topological considerations of the GTPase domain have a similar evolutionary path: EFTu→ IF→2→EFG. These evolutionary sequences reflect the evolution of the LSU followed by the SSU to form the ribosome; 3 the OB-fold IF1 is a mimic of an ancient tRNA minihelix. Conclusion The evolution of translational GTPases of both the Archaea and Bacteria point to the evolution of the ribosome. The elongation factors, EFTu/EF1, began as a Ras-like GTPase bringing the activated minihelix tRNA to the Large Subunit Unit. The initiation factors and elongation factor would then have evolved from the EFTu/EF1 as the small subunit was added to the evolving ribosome. The SRP has an SRP54 GTPase and a specific RNA fold in its RNA component similar to the PTC. We consider the SRP to be a remnant of an ancient form of an LSU bound to a membrane. Reviewers This article was reviewed by George Fox, Leonid Mirny and Chris Sander.

  11. [Study of the photoaffinity modification of Escherichia coli ribosomes near the donor tRNA-binding center].

    Science.gov (United States)

    Bausk, E V; Graĭfer, D M; Karpova, G G

    1985-01-01

    Affinity labelling of E. coli ribosomes near the donor tRNA-binding (P) site was studied with the use of photoreactive derivatives of tRNAPhe bearing arylazidogroups on N7 atoms of guanine residues (azido-tRNA). UV-irradiation of complexes 70S ribosome.poly(U).azido- tRNA(P-site) and 70S ribosome.poly(U).azido-tRNA(P-site).Phe- tRNAPhe(A-site) resulted in covalent attachment of azido-tRNA to ribosomes, both subunits being labelled. In both cases modification extent of 30S subunit was two-fold than that of the 50S one. It was shown that when the A-site was free the azido-tRNA located in P-site labelled proteins S9, S11, S12, S13, S21 and L14, L27, L31. Azido-tRNA located in P-site when the A-site was occupied with Phe-tRNAPhe labelled proteins S11, S12, S13, S14, S19, L32/L33 and possibly L23, L25. From the comparison of the sets of proteins labelled when A-site was free or occupied a conclusion was drawn that aminoacyl-tRNA located in ribosomal A-site affects the arrangement of deacylated tRNA in P-site. Data obtained allow to propose that proteins S5, S19, S20 and L24, L33 interact with guanine residues important for the tRNA tertiary structure formation.

  12. Streptomycin binds to the decoding center of 16 S ribosomal RNA.

    Science.gov (United States)

    Spickler, C; Brunelle, M N; Brakier-Gingras, L

    1997-10-31

    Streptomycin, an error-inducing aminoglycoside antibiotic, binds to a single site on the small ribosomal subunit of bacteria, but this site has not yet been defined precisely. Here, we demonstrate that streptomycin binds to E. coli 16 S rRNA in the absence of ribosomal proteins, and protects a set of bases in the decoding region against dimethyl sulfate attack. The binding studies were performed in a high ionic strength buffer containing 20 mM Mg2+. The pattern of protection in the decoding region was similar to that observed when streptomycin binds to the 30 S subunit. However, streptomycin also protects the 915 region of 16 S rRNA within the 30 S subunit, whereas it did not protect the 915 region of the naked 16 S rRNA. The interaction of streptomycin with 16 S rRNA was further defined by using two fragments that correspond to the 3' minor domain of 16 S rRNA and to the decoding analog, a portion of this domain encompassing the decoding center. In the presence of streptomycin, the pattern of protection against dimethyl sulfate attack for the two fragments was similar to that seen with the full-length 16 S rRNA. This indicates that the 3' minor domain as well as the decoding analog contain the recognition signals for the binding of streptomycin. However, streptomycin could not bind to the decoding analog in the absence of Mg2+. This contrasts with neomycin, another error-inducing aminoglycoside antibiotic, that binds to the decoding analog in the absence of Mg2+, but not at 20 mM Mg2+. Our results suggest that both neomycin and streptomycin interact with the decoding center, but recognize alternative conformations of this region.

  13. RPG: the Ribosomal Protein Gene database.

    Science.gov (United States)

    Nakao, Akihiro; Yoshihama, Maki; Kenmochi, Naoya

    2004-01-01

    RPG (http://ribosome.miyazaki-med.ac.jp/) is a new database that provides detailed information about ribosomal protein (RP) genes. It contains data from humans and other organisms, including Drosophila melanogaster, Caenorhabditis elegans, Saccharo myces cerevisiae, Methanococcus jannaschii and Escherichia coli. Users can search the database by gene name and organism. Each record includes sequences (genomic, cDNA and amino acid sequences), intron/exon structures, genomic locations and information about orthologs. In addition, users can view and compare the gene structures of the above organisms and make multiple amino acid sequence alignments. RPG also provides information on small nucleolar RNAs (snoRNAs) that are encoded in the introns of RP genes.

  14. Tertiary interactions within the ribosomal exit tunnel.

    Science.gov (United States)

    Kosolapov, Andrey; Deutsch, Carol

    2009-04-01

    Although tertiary folding of whole protein domains is prohibited by the cramped dimensions of the ribosomal tunnel, dynamic tertiary interactions may permit folding of small elementary units within the tunnel. To probe this possibility, we used a beta-hairpin and an alpha-helical hairpin from the cytosolic N terminus of a voltage-gated potassium channel and determined a probability of folding for each at defined locations inside and outside the tunnel. Minimalist tertiary structures can form near the exit port of the tunnel, a region that provides an entropic window for initial exploration of local peptide conformations. Tertiary subdomains of the nascent peptide fold sequentially, but not independently, during translation. These studies offer an approach for diagnosing the molecular basis for folding defects that lead to protein malfunction and provide insight into the role of the ribosome during early potassium channel biogenesis.

  15. Role of the cytosolic loop C2 and the C-terminus of YidC in ribosome binding and insertion activity

    NARCIS (Netherlands)

    Geng, Yanping; Kedrov, Alexej; Caumanns, Joseph J; Crevenna, Alvaro H; Lamb, Don C; Beckmann, Roland; Driessen, Arnold J M

    2015-01-01

    Members of the YidC/Oxa1/Alb3 protein family mediate membrane protein insertion and this process is initiated by the assembly of YidC:ribosome nascent chain (RNC) complexes at the inner leaflet of the lipid bilayer. The positively charged C-terminus of Escherichia coli YidC plays a significant role

  16. Characterization of the optical constants and dispersion parameters of chalcogenide Te40Se30S30 thin film: thickness effect

    Science.gov (United States)

    Abd-Elrahman, M. I.; Hafiz, M. M.; Qasem, Ammar; Abdel-Rahim, M. A.

    2016-02-01

    Chalcogenide Te40Se30S30 thin films of different thickness (100-450 nm) are prepared by thermal evaporation of the Te40Se30S30 bulk. X-ray examination of the film shows some prominent peaks relate to crystalline phases indicating the crystallization process. The calculated particles of crystals from the X-ray diffraction peaks are found to be from 11 to 26 nm. As the thickness increases, the transmittance decreases and the reflectance increases. This could be attributed to the increment of the absorption of photons as more states will be available for absorbance in the case of thicker films. The decrease in the direct band gap with thickness is accompanied with an increase in energy of localized states. The obtained data for the refractive index could be fit to the dispersion model based on the single oscillator equation. The single-oscillator energy decreases, while the dispersion energy increases as the thickness increases.

  17. Ribosome Inactivating Proteins from Plants Inhibiting Viruses

    Institute of Scientific and Technical Information of China (English)

    Inderdeep Kaur; R C Gupta; Munish Puri

    2011-01-01

    Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity,which depurinate large ribosomal RNA and arrest protein synthesis.RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins,isolated from plants,are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV),hepatitis B virus (HBV) and herpes simplex virus (HSV).Most of the research work related to RIPs has been focused on antiviral activity against HIV; however,the exact mechanism of antiviral activity is still not clear.The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome,leading to inhibition of viral protein translation and host cell death.Enzymatic activity of RIPs is not hmited to depurination of the large rRNA,in addition they can depurinate viral DNA as well as RNA.Recently,Phase Ⅰ/Ⅱ clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease.The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.

  18. Ribosomal history reveals origins of modern protein synthesis.

    Science.gov (United States)

    Harish, Ajith; Caetano-Anollés, Gustavo

    2012-01-01

    The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17) and the oldest substructure (the ribosomal ratchet) in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world.

  19. Structure of the ribosomal interacting GTPase YjeQ from the enterobacterial species Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, C. E. [Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Johnson, C.; Lamb, H. K. [Institute of Cell and Molecular Biosciences, Catherine Cookson Building, Medical School, Framlington Place, Newcastle University, Newcastle-upon-Tyne NE2 4HH (United Kingdom); Lockyer, M. [Arrow Therapeutics Ltd, Britannia House, Trinity Street, Borough, London SE1 1DA (United Kingdom); Charles, I. G. [The Wolfson Institute for Biomedical Research, The Cruciform Building, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hawkins, A. R. [Institute of Cell and Molecular Biosciences, Catherine Cookson Building, Medical School, Framlington Place, Newcastle University, Newcastle-upon-Tyne NE2 4HH (United Kingdom); Stammers, D. K., E-mail: daves@strubi.ox.ac.uk [Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2007-11-01

    The X-ray crystal structure of the GTPase YjeQ from S. typhimurium is presented and compared with those of orthologues from T. maritima and B. subtilis. The YjeQ class of P-loop GTPases assist in ribosome biogenesis and also bind to the 30S subunit of mature ribosomes. YjeQ ribosomal binding is GTP-dependent and thought to specifically direct protein synthesis, although the nature of the upstream signal causing this event in vivo is as yet unknown. The attenuating effect of YjeQ mutants on bacterial growth in Escherichia coli makes it a potential target for novel antimicrobial agents. In order to further explore the structure and function of YjeQ, the isolation, crystallization and structure determination of YjeQ from the enterobacterial species Salmonella typhimurium (StYjeQ) is reported. Whilst the overall StYjeQ fold is similar to those of the previously reported Thematoga maritima and Bacillus subtilis orthologues, particularly the GTPase domain, there are larger differences in the three OB folds. Although the zinc-finger secondary structure is conserved, significant sequence differences alter the nature of the external surface in each case and may reflect varying signalling pathways. Therefore, it may be easier to develop YjeQ-specific inhibitors that target the N- and C-terminal regions, disrupting the metabolic connectivity rather than the GTPase activity. The availability of coordinates for StYjeQ will provide a significantly improved basis for threading Gram-negative orthologue sequences and in silico compound-screening studies, with the potential for the development of species-selective drugs.

  20. BASIC: A Simple and Accurate Modular DNA Assembly Method.

    Science.gov (United States)

    Storch, Marko; Casini, Arturo; Mackrow, Ben; Ellis, Tom; Baldwin, Geoff S

    2017-01-01

    Biopart Assembly Standard for Idempotent Cloning (BASIC) is a simple, accurate, and robust DNA assembly method. The method is based on linker-mediated DNA assembly and provides highly accurate DNA assembly with 99 % correct assemblies for four parts and 90 % correct assemblies for seven parts [1]. The BASIC standard defines a single entry vector for all parts flanked by the same prefix and suffix sequences and its idempotent nature means that the assembled construct is returned in the same format. Once a part has been adapted into the BASIC format it can be placed at any position within a BASIC assembly without the need for reformatting. This allows laboratories to grow comprehensive and universal part libraries and to share them efficiently. The modularity within the BASIC framework is further extended by the possibility of encoding ribosomal binding sites (RBS) and peptide linker sequences directly on the linkers used for assembly. This makes BASIC a highly versatile library construction method for combinatorial part assembly including the construction of promoter, RBS, gene variant, and protein-tag libraries. In comparison with other DNA assembly standards and methods, BASIC offers a simple robust protocol; it relies on a single entry vector, provides for easy hierarchical assembly, and is highly accurate for up to seven parts per assembly round [2].

  1. Phosphorylation of acidic ribosomal proteins from rabbit reticulocytes by a ribosome-associated casein kinase

    DEFF Research Database (Denmark)

    Issinger, O G

    1977-01-01

    Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate polyacryl......Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate...

  2. The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1.

    Directory of Open Access Journals (Sweden)

    Monique N O'Leary

    Full Text Available Most yeast ribosomal protein genes are duplicated and their characterization has led to hypotheses regarding the existence of specialized ribosomes with different subunit composition or specifically-tailored functions. In yeast, ribosomal protein genes are generally duplicated and evidence has emerged that paralogs might have specific roles. Unlike yeast, most mammalian ribosomal proteins are thought to be encoded by a single gene copy, raising the possibility that heterogenous populations of ribosomes are unique to yeast. Here, we examine the roles of the mammalian Rpl22, finding that Rpl22(-/- mice have only subtle phenotypes with no significant translation defects. We find that in the Rpl22(-/- mouse there is a compensatory increase in Rpl22-like1 (Rpl22l1 expression and incorporation into ribosomes. Consistent with the hypothesis that either ribosomal protein can support translation, knockdown of Rpl22l1 impairs growth of cells lacking Rpl22. Mechanistically, Rpl22 regulates Rpl22l1 directly by binding to an internal hairpin structure and repressing its expression. We propose that ribosome specificity may exist in mammals, providing evidence that one ribosomal protein can influence composition of the ribosome by regulating its own paralog.

  3. Deletion of the RluD pseudouridine synthase promotes SsrA peptide tagging of ribosomal protein S7.

    Science.gov (United States)

    Schaub, Ryan E; Hayes, Christopher S

    2011-01-01

    RluD catalyses formation of three pseudouridine residues within helix 69 of the 50S ribosome subunit. Helix 69 makes important contacts with the decoding centre on the 30S subunit and deletion of rluD was recently shown to interfere with translation termination in Escherichia coli. Here, we show that deletion of rluD increases tmRNA activity on ribosomes undergoing release factor 2 (RF2)-mediated termination at UGA stop codons. Strikingly, tmRNA-mediated SsrA peptide tagging of two proteins, ribosomal protein S7 and LacI, was dramatically increased in ΔrluD cells. S7 tagging was due to a unique C-terminal peptide extension found in E. coli K-12 strains. Introduction of the rpsG gene (encoding S7) from an E. coli B strain abrogated S7 tagging in the ΔrluD background, and partially complemented the mutant's slow-growth phenotype. Additionally, exchange of the K-12 prfB gene (encoding RF2) with the B strain allele greatly reduced tagging in ΔrluD cells. In contrast to E. coli K-12 cells, deletion of rluD in an E. coli B strain resulted in no growth phenotype. These findings indicate that the originally observed rluD phenotypes result from synthetic interactions with rpsG and prfB alleles found within E. coli K-12 strains.

  4. Architecture of the Rix1-Rea1 checkpoint machinery during pre-60S-ribosome remodeling.

    Science.gov (United States)

    Barrio-Garcia, Clara; Thoms, Matthias; Flemming, Dirk; Kater, Lukas; Berninghausen, Otto; Baßler, Jochen; Beckmann, Roland; Hurt, Ed

    2016-01-01

    Ribosome synthesis is catalyzed by ∼200 assembly factors, which facilitate efficient production of mature ribosomes. Here, we determined the cryo-EM structure of a Saccharomyces cerevisiae nucleoplasmic pre-60S particle containing the dynein-related 550-kDa Rea1 AAA(+) ATPase and the Rix1 subcomplex. This particle differs from its preceding state, the early Arx1 particle, by two massive structural rearrangements: an ∼180° rotation of the 5S ribonucleoprotein complex and the central protuberance (CP) rRNA helices, and the removal of the 'foot' structure from the 3' end of the 5.8S rRNA. Progression from the Arx1 to the Rix1 particle was blocked by mutational perturbation of the Rix1-Rea1 interaction but not by a dominant-lethal Rea1 AAA(+) ATPase-ring mutant. After remodeling, the Rix1 subcomplex and Rea1 become suitably positioned to sense correct structural maturation of the CP, which allows unidirectional progression toward mature ribosomes.

  5. The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.

    Science.gov (United States)

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P

    2007-01-01

    The CRS1-YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved "GxxG" loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes.

  6. The structure and function of the eukaryotic ribosome.

    Science.gov (United States)

    Wilson, Daniel N; Doudna Cate, Jamie H

    2012-05-01

    Structures of the bacterial ribosome have provided a framework for understanding universal mechanisms of protein synthesis. However, the eukaryotic ribosome is much larger than it is in bacteria, and its activity is fundamentally different in many key ways. Recent cryo-electron microscopy reconstructions and X-ray crystal structures of eukaryotic ribosomes and ribosomal subunits now provide an unprecedented opportunity to explore mechanisms of eukaryotic translation and its regulation in atomic detail. This review describes the X-ray crystal structures of the Tetrahymena thermophila 40S and 60S subunits and the Saccharomyces cerevisiae 80S ribosome, as well as cryo-electron microscopy reconstructions of translating yeast and plant 80S ribosomes. Mechanistic questions about translation in eukaryotes that will require additional structural insights to be resolved are also presented.

  7. Epistasis analysis of 16S rRNA ram mutations helps define the conformational dynamics of the ribosome that influence decoding.

    Science.gov (United States)

    Ying, Lanqing; Fredrick, Kurt

    2016-04-01

    The ribosome actively participates in decoding, with a tRNA-dependent rearrangement of the 30S A site playing a key role. Ribosomal ambiguity (ram) mutations have mapped not only to the A site but also to the h12/S4/S5 region and intersubunit bridge B8, implicating other conformational changes such as 30S shoulder rotation and B8 disruption in the mechanism of decoding. Recent crystallographic data have revealed that mutation G299A in helix h12 allosterically promotes B8 disruption, raising the question of whether G299A and/or other ram mutations act mainly via B8. Here, we compared the effects of each of several ram mutations in the absence and presence of mutation h8Δ2, which effectively takes out bridge B8. The data obtained suggest that a subset of mutations including G299A act in part via B8 but predominantly through another mechanism. We also found that G299A in h12 and G347U in h14 each stabilize tRNA in the A site. Collectively, these data support a model in which rearrangement of the 30S A site, inward shoulder rotation, and bridge B8 disruption are loosely coupled events, all of which promote progression along the productive pathway toward peptide bond formation.

  8. Chaos and Hyperchaos in a Model of Ribosome Autocatalytic Synthesis

    OpenAIRE

    Likhoshvai, Vitaly A.; Vladislav V. Kogai; Fadeev, Stanislav I.; Khlebodarova, Tamara M.

    2016-01-01

    Any vital activities of the cell are based on the ribosomes, which not only provide the basic machinery for the synthesis of all proteins necessary for cell functioning during growth and division, but for biogenesis itself. From this point of view, ribosomes are self-replicating and autocatalytic structures. In current work we present an elementary model in which the autocatalytic synthesis of ribosomal RNA and proteins, as well as enzymes ensuring their degradation are described with two mon...

  9. An intron in a ribosomal protein gene from Tetrahymena

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Andreasen, Per Hove; Dreisig, Hanne

    1986-01-01

    We have cloned and sequenced a single copy gene encoding a ribosomal protein from the ciliate Tetrahymena thermophila. The gene product was identified as ribosomal protein S25 by comparison of the migration in two-dimensional polyacrylamide gels of the protein synthesized by translation in vitro...... of hybrid-selected mRNA and authentic ribosomal proteins. The proteins show strong homology to ribosomal protein S12 from Escherichia coli. The coding region of the gene is interrupted by a 979-bp intron 68 bp downstream of the translation start. This is the first intron in a protein encoding gene...

  10. Alterations in the ribosomal machinery in cancer and hematologic disorders

    Directory of Open Access Journals (Sweden)

    Shenoy Niraj

    2012-06-01

    Full Text Available Abstract Ribosomes are essential components of the protein translation machinery and are composed of more than 80 unique large and small ribosomal proteins. Recent studies show that in addition to their roles in protein translation, ribosomal proteins are also involved in extra-ribosomal functions of DNA repair, apoptosis and cellular homeostasis. Consequently, alterations in the synthesis or functioning of ribosomal proteins can lead to various hematologic disorders. These include congenital anemias such as Diamond Blackfan anemia and Shwachman Diamond syndrome; both of which are associated with mutations in various ribosomal genes. Acquired uniallelic deletion of RPS14 gene has also been shown to lead to the 5q syndrome, a distinct subset of MDS associated with macrocytic anemia. Recent evidence shows that specific ribosomal proteins are overexpressed in liver, colon, prostate and other tumors. Ribosomal protein overexpression can promote tumorigenesis by interactions with the p53 tumor suppressor pathway and also by direct effects on various oncogenes. These data point to a broad role of ribosome protein alterations in hematologic and oncologic diseases.

  11. Structural and functional topography of the human ribosome

    Institute of Scientific and Technical Information of China (English)

    Dmitri Graifer; Galina Karpova

    2012-01-01

    This review covers data on the structural organization of functional sites in the human ribosome,namely,the messenger RNA binding center,the binding site of the hepatitis C virus RNA internal ribosome entry site,and the peptidyl transferase center.The data summarized here have been obtained primarily by means of a site-directed crosslinking approach with application of the analogs of the respective ribosomal ligands bearing cross-linkers at the designed positions.These data are discussed taking into consideration available structural data on ribosomes from various kingdoms obtained with the use of cryo-electron microscopy,X-ray crystallography,and other approaches.

  12. Ribosome recycling: An essential process of protein synthesis.

    Science.gov (United States)

    Kiel, Michael C; Kaji, Hideko; Kaji, Akira

    2007-01-01

    A preponderance of textbooks outlines cellular protein synthesis (translation) in three basic steps: initiation, elongation, and termination. However, researchers in the field of translation accept that a vital fourth step exists; this fourth step is called ribosome recycling. Ribosome recycling occurs after the nascent polypeptide has been released during the termination step. Despite the release of the polypeptide, ribosomes remain bound to the mRNA and tRNA. It is only during the fourth step of translation that ribosomes are ultimately released from the mRNA, split into subunits, and are free to bind new mRNA, thus the term "ribosome recycling." This step is essential to the viability of cells. In bacteria, it is catalyzed by two proteins, elongation factor G and ribosome recycling factor, a near perfect structural mimic of tRNA. Eukaryotic organelles such as mitochondria and chloroplasts possess ribosome recycling factor and elongation factor G homologues, but the nature of ribosome recycling in eukaryotic cytoplasm is still under investigation. In this review, the discovery of ribosome recycling and the basic mechanisms involved are discussed so that textbook writers and teachers can include this vital step, which is just as important as the three conventional steps, in sections dealing with protein synthesis.

  13. Complete kinetic mechanism for recycling of the bacterial ribosome.

    Science.gov (United States)

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-01-01

    How EF-G and RRF act together to split a post-termination ribosomal complex into its subunits has remained obscure. Here, using stopped-flow experiments with Rayleigh light scattering detection and quench-flow experiments with radio-detection of GTP hydrolysis, we have clarified the kinetic mechanism of ribosome recycling and obtained precise estimates of its kinetic parameters. Ribosome splitting requires that EF-G binds to an already RRF-containing ribosome. EF-G binding to RRF-free ribosomes induces futile rounds of GTP hydrolysis and inhibits ribosome splitting, implying that while RRF is purely an activator of recycling, EF-G acts as both activator and competitive inhibitor of RRF in recycling of the post-termination ribosome. The ribosome splitting rate and the number of GTPs consumed per splitting event depend strongly on the free concentrations of EF-G and RRF. The maximal recycling rate, here estimated as 25 sec(-1), is approached at very high concentrations of EF-G and RRF with RRF in high excess over EF-G. The present in vitro results, suggesting an in vivo ribosome recycling rate of ∼5 sec(-1), are discussed in the perspective of rapidly growing bacterial cells.

  14. In Profile: Models of Ribosome Biogenesis Defects and Regulation of Protein Synthesis

    NARCIS (Netherlands)

    Essers, P.B.M.

    2013-01-01

    Ribosomes are the mediators of protein synthesis in the cell and therefore crucial to proper cell function. In addition, ribosomes are highly abundant, with ribosomal RNA making up 80% of the RNA in the cell. A large amount of resources go into maintaining this pool of ribosomes, so ribosome biogene

  15. The architecture of mammalian ribosomal protein promoters

    Directory of Open Access Journals (Sweden)

    Perry Robert P

    2005-02-01

    Full Text Available Abstract Background Mammalian ribosomes contain 79 different proteins encoded by widely scattered single copy genes. Coordinate expression of these genes at transcriptional and post-transcriptional levels is required to ensure a roughly equimolar accumulation of ribosomal proteins. To date, detailed studies of only a very few ribosomal protein (rp promoters have been made. To elucidate the general features of rp promoter architecture, I made a detailed sequence comparison of the promoter regions of the entire set of orthologous human and mouse rp genes. Results A striking evolutionarily conserved feature of most rp genes is the separation by an intron of the sequences involved in transcriptional and translational regulation from the sequences with protein encoding function. Another conserved feature is the polypyrimidine initiator, which conforms to the consensus (Y2C+1TY(T2(Y3. At least 60 % of the rp promoters contain a largely conserved TATA box or A/T-rich motif, which should theoretically have TBP-binding capability. A remarkably high proportion of the promoters contain conserved binding sites for transcription factors that were previously implicated in rp gene expression, namely upstream GABP and Sp1 sites and downstream YY1 sites. Over 80 % of human and mouse rp genes contain a transposable element residue within 900 bp of 5' flanking sequence; very little sequence identity between human and mouse orthologues was evident more than 200 bp upstream of the transcriptional start point. Conclusions This analysis has provided some valuable insights into the general architecture of mammalian rp promoters and has identified parameters that might coordinately regulate the transcriptional activity of certain subsets of rp genes.

  16. Ribosomal RNA: a key to phylogeny

    Science.gov (United States)

    Olsen, G. J.; Woese, C. R.

    1993-01-01

    As molecular phylogeny increasingly shapes our understanding of organismal relationships, no molecule has been applied to more questions than have ribosomal RNAs. We review this role of the rRNAs and some of the insights that have been gained from them. We also offer some of the practical considerations in extracting the phylogenetic information from the sequences. Finally, we stress the importance of comparing results from multiple molecules, both as a method for testing the overall reliability of the organismal phylogeny and as a method for more broadly exploring the history of the genome.

  17. Molecular dynamics simulation of ribosome jam

    KAUST Repository

    Matsumoto, Shigenori

    2011-09-01

    We propose a coarse-grained molecular dynamics model of ribosome molecules to study the dependence of translation process on environmental parameters. We found the model exhibits traffic jam property, which is consistent with an ASEP model. We estimated the influence of the temperature and concentration of molecules on the hopping probability used in the ASEP model. Our model can also treat environmental effects on the translation process that cannot be explained by such cellular automaton models. © 2010 Elsevier B.V. All rights reserved.

  18. Ribosomal RNA: a key to phylogeny

    Science.gov (United States)

    Olsen, G. J.; Woese, C. R.

    1993-01-01

    As molecular phylogeny increasingly shapes our understanding of organismal relationships, no molecule has been applied to more questions than have ribosomal RNAs. We review this role of the rRNAs and some of the insights that have been gained from them. We also offer some of the practical considerations in extracting the phylogenetic information from the sequences. Finally, we stress the importance of comparing results from multiple molecules, both as a method for testing the overall reliability of the organismal phylogeny and as a method for more broadly exploring the history of the genome.

  19. Note on the shelf break upwelling off the southeast coast of Brazil (lat. 26º30'S

    Directory of Open Access Journals (Sweden)

    Afrânio Rubens de Mesquita

    1983-01-01

    Full Text Available A western margin frontal zone is described, from measurements of temperature, salinity and currents, in a section taken with R/V "Prof. W. Besnard" in December 1980, crossing the shelf break border at latitude 26º30'S. The analyses of the sections showed consistently the occurrence of an ascension of the T and S isolines over the shelf break. Simultaneous current measurements showed a surface eddy structure with clockwise circulation and anti-clockwise circulation having a common stem over the break characterizing a shelf break upwelling.

  20. An investigation of ribosomal protein L10 gene in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Rastam Maria

    2009-01-01

    Full Text Available Abstract Background Autism spectrum disorders (ASD are severe neurodevelopmental disorders with the male:female ratio of 4:1, implying the contribution of X chromosome genetic factors to the susceptibility of ASD. The ribosomal protein L10 (RPL10 gene, located on chromosome Xq28, codes for a key protein in assembling large ribosomal subunit and protein synthesis. Two non-synonymous mutations of RPL10, L206M and H213Q, were identified in four boys with ASD. Moreover, functional studies of mutant RPL10 in yeast exhibited aberrant ribosomal profiles. These results provided a novel aspect of disease mechanisms for autism – aberrant processes of ribosome biosynthesis and translation. To confirm these initial findings, we re-sequenced RPL10 exons and quantified mRNA transcript level of RPL10 in our samples. Methods 141 individuals with ASD were recruited in this study. All RPL10 exons and flanking junctions were sequenced. Furthermore, mRNA transcript level of RPL10 was quantified in B lymphoblastoid cell lines (BLCL of 48 patients and 27 controls using the method of SYBR Green quantitative PCR. Two sets of primer pairs were used to quantify the mRNA expression level of RPL10: RPL10-A and RPL10-B. Results No non-synonymous mutations were detected in our cohort. Male controls showed similar transcript level of RPL10 compared with female controls (RPL10-A, U = 81, P = 0.7; RPL10-B, U = 61.5, P = 0.2. We did not observe any significant difference in RPL10 transcript levels between cases and controls (RPL10-A, U = 531, P = 0.2; RPL10-B, U = 607.5, P = 0.7. Conclusion Our results suggest that RPL10 has no major effect on the susceptibility to ASD.

  1. A Molecular Titration System Coordinates Ribosomal Protein Gene Transcription with Ribosomal RNA Synthesis.

    Science.gov (United States)

    Albert, Benjamin; Knight, Britta; Merwin, Jason; Martin, Victoria; Ottoz, Diana; Gloor, Yvonne; Bruzzone, Maria Jessica; Rudner, Adam; Shore, David

    2016-11-17

    Cell growth potential is determined by the rate of ribosome biogenesis, a complex process that requires massive and coordinated transcriptional output. In the yeast Saccharomyces cerevisiae, ribosome biogenesis is highly regulated at the transcriptional level. Although evidence for a system that coordinates ribosomal RNA (rRNA) and ribosomal protein gene (RPG) transcription has been described, the molecular mechanisms remain poorly understood. Here we show that an interaction between the RPG transcriptional activator Ifh1 and the rRNA processing factor Utp22 serves to coordinate RPG transcription with that of rRNA. We demonstrate that Ifh1 is rapidly released from RPG promoters by a Utp22-independent mechanism following growth inhibition, but that its long-term dissociation requires Utp22. We present evidence that RNA polymerase I activity inhibits the ability of Utp22 to titrate Ifh1 from RPG promoters and propose that a dynamic Ifh1-Utp22 interaction fine-tunes RPG expression to coordinate RPG and rRNA transcription. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Ribosome-independent biosynthesis of biologically active peptides: Application of synthetic biology to generate structural diversity.

    Science.gov (United States)

    Giessen, Tobias W; Marahiel, Mohamed A

    2012-07-16

    Peptide natural products continue to play an important role in modern medicine as last-resort treatments of many life-threatening diseases, as they display many interesting biological activities ranging from antibiotic to antineoplastic. A large fraction of these microbial natural products is assembled by ribosome-independent mechanisms. Progress in sequencing technology and the mechanistic understanding of secondary metabolite pathways has led to the discovery of many formerly cryptic natural products and a molecular understanding of their assembly. Those advances enable us to apply protein and metabolic engineering approaches towards the manipulation of biosynthetic pathways. In this review we discuss the application potential of both templated and non-templated pathways as well as chemoenzymatic strategies for the structural diversification and tailoring of peptide natural products. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Sabot assembly

    Energy Technology Data Exchange (ETDEWEB)

    Bzorgi, Fariborz

    2016-11-08

    A sabot assembly includes a projectile and a housing dimensioned and configured for receiving the projectile. An air pressure cavity having a cavity diameter is disposed between a front end and a rear end of the housing. Air intake nozzles are in fluid communication with the air pressure cavity and each has a nozzle diameter less than the cavity diameter. In operation, air flows through the plurality of air intake nozzles and into the air pressure cavity upon firing of the projectile from a gun barrel to pressurize the air pressure cavity for assisting in separation of the housing from the projectile upon the sabot assembly exiting the gun barrel.

  4. Heterogeneity in men's marijuana use in the 20s: adolescent antecedents and consequences in the 30s.

    Science.gov (United States)

    Washburn, Isaac J; Capaldi, Deborah M

    2015-02-01

    Adolescent psychopathology is commonly connected to marijuana use. How changes in these adolescent antecedents and in adolescent marijuana use are connected to patterns of marijuana use in the 20s is little understood. Another issue not clearly understood is psychopathology in the 30s as predicted by marijuana use in the 20s. This study sought to examine these two issues and the associations with marijuana disorder diagnoses using a longitudinal data set of 205 men with essentially annual reports. Individual psychopathology and family characteristics from the men's adolescence were used to predict their patterns of marijuana use across their 20s, and aspects of the men's psychopathology in their mid-30s were predicted from these patterns. Three patterns of marijuana use in the 20s were identified using growth mixture modeling and were associated with diagnoses of marijuana disorders at age 26 years. Parental marijuana use predicted chronic use for the men in adulthood. Patterns of marijuana use in the 20s predicted antisocial behavior and deviant peer association at age 36 years (controlling for adolescent levels of the outcomes by residualization). These findings indicate that differential patterns of marijuana use in early adulthood are associated with psychopathology toward midlife.

  5. Stimulation of ribosomal frameshifting by antisense LNA

    Science.gov (United States)

    Yu, Chien-Hung; Noteborn, Mathieu H. M.; Olsthoorn, René C. L.

    2010-01-01

    Programmed ribosomal frameshifting is a translational recoding mechanism commonly used by RNA viruses to express two or more proteins from a single mRNA at a fixed ratio. An essential element in this process is the presence of an RNA secondary structure, such as a pseudoknot or a hairpin, located downstream of the slippery sequence. Here, we have tested the efficiency of RNA oligonucleotides annealing downstream of the slippery sequence to induce frameshifting in vitro. Maximal frameshifting was observed with oligonucleotides of 12–18 nt. Antisense oligonucleotides bearing locked nucleid acid (LNA) modifications also proved to be efficient frameshift-stimulators in contrast to DNA oligonucleotides. The number, sequence and location of LNA bases in an otherwise DNA oligonucleotide have to be carefully manipulated to obtain optimal levels of frameshifting. Our data favor a model in which RNA stability at the entrance of the ribosomal tunnel is the major determinant of stimulating slippage rather than a specific three-dimensional structure of the stimulating RNA element. PMID:20693527

  6. Defining the bacteroides ribosomal binding site.

    Science.gov (United States)

    Wegmann, Udo; Horn, Nikki; Carding, Simon R

    2013-03-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3' end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5' untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order.

  7. MALDI-TOF MS analysis of ribosomal proteins coded in S10 and spc operons rapidly classified the Sphingomonadaceae as alkylphenol polyethoxylate-degrading bacteria from the environment.

    Science.gov (United States)

    Hotta, Yudai; Sato, Hiroaki; Hosoda, Akifumi; Tamura, Hiroto

    2012-05-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) using ribosomal subunit proteins coded in the S10-spc-alpha operon as biomarkers was applied for the classification of the Sphingomonadaceae from the environment. To construct a ribosomal protein database, S10-spc-alpha operon of type strains of the Sphingomonadaceae and their related alkylphenol polyethoxylate (APEO(n) )-degrading bacteria were sequenced using specific primers designed based on nucleotide sequences of genome-sequenced strains. The observed MALDI mass spectra of intact cells were compared with the theoretical mass of the constructed ribosomal protein database. The nine selected biomarkers coded in the S10-spc-alpha operon, L18, L22, L24, L29, L30, S08, S14, S17, and S19, could successfully distinguish the Sphingopyxis terrae NBRC 15098(T) and APEO(n) -degrading bacteria strain BSN20, despite only one base difference in the 16S rRNA gene sequence. This method, named the S10-GERMS (S10-spc-alpha operon gene-encoded ribosomal protein mass spectrum) method, is a significantly useful tool for bacterial discrimination of the Sphingomonadaceae at the strain level and can detect and monitor the main APEO(n) -degrading bacteria in the environment. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Selection of scFvs specific for the HepG2 cell line using ribosome display

    Indian Academy of Sciences (India)

    Lei Zhou; Wei-Ping Mao; Juan Fen; Hong-Yun Liu; Chuan-Jing Wei; Wen-Xiu Li; Feng-Yun Zhou

    2009-06-01

    The aim of this study was to construct a ribosome display library of single chain variable fragments (scFvs) associated with hepatocarcinoma and screen such a library for hepatocarcinoma-binding scFvs. mRNA was isolated from the spleens of mice immunized with hepatocellular carcinoma cell line HepG2. Heavy and k chain genes (VH and k) were amplified separately by RT-PCR, and an anti-HepG2 VH/k chain ribosome display library was constructed by assembling VH and k into the VH/k chain with a specially constructed linker by SOE-PCR. The VH/k chain library was transcribed and translated in vitro using a rabbit reticulocyte lysate system. In order to isolate specific scFvs, recognizing HepG2 negative selection on a normal hepatocyte line WRL-68 was carried out before three rounds of positive selection on HepG2. After three rounds of panning, cell enzyme-linked immunosorbent assay (ELISA) showed that one of the scFvs had high affinity for the HepG2 cell and lower affinity for the WRL-68 cell. In this study, we successfully constructed a native ribosome display library. Such a library would prove useful for direct intact cell panning using ribosome display technology. The selected scFv had a potential value for hepatocarcinoma treatment.

  9. Structural Studies of RNA Helicases Involved in Eukaryotic Pre-mRNA Splicing, Ribosome Biogenesis, and Translation Initiation

    DEFF Research Database (Denmark)

    He, Yangzi

    -rRNA. It is nucleolytically cleaved and chemically modified to generate mature rRNAs, which assemble with ribosomal proteins to form the ribosome. Prp43 is required for the processing of the 18S rRNA. Using X-ray crystallography, I determined a high resolution structure of Prp43 bound to ADP, the first structure of a DEAH....../RHA helicase. It defined the conserved structural features of all DEAH/RHA helicases, and unveiled a novel nucleotide binding site. Additionally a preliminary low resolution structure of a ternary complex comprising Prp43, a non-hydrolyzable ATP analogue, and a single-stranded RNA, was obtained. The ribosome...... translates the genetic message encoded in mRNAs to synthesize proteins. Initiation of translation requires localization and recognition of the start codon at the P-site of the 40S small ribosomal subunit. On most eukaryotic mRNAs, the start codon is identified by a scanning mechanism, whereby a small subunit...

  10. Ribosome-stalk biogenesis is coupled with recruitment of nuclear-export factor to the nascent 60S subunit.

    Science.gov (United States)

    Sarkar, Anshuk; Pech, Markus; Thoms, Matthias; Beckmann, Roland; Hurt, Ed

    2016-12-01

    Nuclear export of preribosomal subunits is a key step during eukaryotic ribosome formation. To efficiently pass through the FG-repeat meshwork of the nuclear pore complex, the large pre-60S subunit requires several export factors. Here we describe the mechanism of recruitment of the Saccharomyces cerevisiae RNA-export receptor Mex67-Mtr2 to the pre-60S subunit at the proper time. Mex67-Mtr2 binds at the premature ribosomal-stalk region, which later during translation serves as a binding platform for translational GTPases on the mature ribosome. The assembly factor Mrt4, a structural homolog of cytoplasmic-stalk protein P0, masks this site, thus preventing untimely recruitment of Mex67-Mtr2 to nuclear pre-60S particles. Subsequently, Yvh1 triggers Mrt4 release in the nucleus, thereby creating a narrow time window for Mex67-Mtr2 association at this site and facilitating nuclear export of the large subunit. Thus, a spatiotemporal mark on the ribosomal stalk controls the recruitment of an RNA-export receptor to the nascent 60S subunit.

  11. Assembling consumption

    DEFF Research Database (Denmark)

    Assembling Consumption marks a definitive step in the institutionalisation of qualitative business research. By gathering leading scholars and educators who study markets, marketing and consumption through the lenses of philosophy, sociology and anthropology, this book clarifies and applies...... societies. This is an essential reading for both seasoned scholars and advanced students of markets, economies and social forms of consumption....

  12. Interaction of pleuromutilin derivatives with the ribosomal peptidyl transferase center

    DEFF Research Database (Denmark)

    Long, K. S.; Hansen, L. K.; Jakobsen, L.;

    2006-01-01

    Tiamulin is a pleuromutilin antibiotic that is used in veterinary medicine. The recently published crystal structure of a tiamulin-50S ribosomal subunit complex provides detailed information about how this drug targets the peptidyl transferase center of the ribosome. To promote rational design...

  13. Translation with frameshifting of ribosome along mRNA transcript

    CERN Document Server

    Li, Jingwei

    2015-01-01

    Translation is an important process for prokaryotic and eukaryotic cells to produce necessary proteins for cell growth. Numerious experiments have been performed to explore the translational properties. Diverse models have also been developed to determine the biochemical mechanism of translation. However, to simplify the majority of the existing models, the frameshifting of ribosome along the mRNA transcript is neglected, which actually occurs in real cells and has been extensively experimentally studied. The frameshifting of ribosome evidently influences the efficiency and speed of translation, considering that the peptide chains synthesized by shifted ribosomes will not fold into functional proteins and will degrade rapidly. In this study, a theoretical model is presented to describe the translational process based on the model for totally asymmetric simple exclusion process. In this model, the frameshifting of the ribosome along the mRNA transcript and the attachment/detachment of the ribosome to/from the ...

  14. Regulation of ribosomal DNA amplification by the TOR pathway.

    Science.gov (United States)

    Jack, Carmen V; Cruz, Cristina; Hull, Ryan M; Keller, Markus A; Ralser, Markus; Houseley, Jonathan

    2015-08-01

    Repeated regions are widespread in eukaryotic genomes, and key functional elements such as the ribosomal DNA tend to be formed of high copy repeated sequences organized in tandem arrays. In general, high copy repeats are remarkably stable, but a number of organisms display rapid ribosomal DNA amplification at specific times or under specific conditions. Here we demonstrate that target of rapamycin (TOR) signaling stimulates ribosomal DNA amplification in budding yeast, linking external nutrient availability to ribosomal DNA copy number. We show that ribosomal DNA amplification is regulated by three histone deacetylases: Sir2, Hst3, and Hst4. These enzymes control homologous recombination-dependent and nonhomologous recombination-dependent amplification pathways that act in concert to mediate rapid, directional ribosomal DNA copy number change. Amplification is completely repressed by rapamycin, an inhibitor of the nutrient-responsive TOR pathway; this effect is separable from growth rate and is mediated directly through Sir2, Hst3, and Hst4. Caloric restriction is known to up-regulate expression of nicotinamidase Pnc1, an enzyme that enhances Sir2, Hst3, and Hst4 activity. In contrast, normal glucose concentrations stretch the ribosome synthesis capacity of cells with low ribosomal DNA copy number, and we find that these cells show a previously unrecognized transcriptional response to caloric excess by reducing PNC1 expression. PNC1 down-regulation forms a key element in the control of ribosomal DNA amplification as overexpression of PNC1 substantially reduces ribosomal DNA amplification rate. Our results reveal how a signaling pathway can orchestrate specific genome changes and demonstrate that the copy number of repetitive DNA can be altered to suit environmental conditions.

  15. Crystal Structures of the uL3 Mutant Ribosome: Illustration of the Importance of Ribosomal Proteins for Translation Efficiency.

    Science.gov (United States)

    Mailliot, Justine; Garreau de Loubresse, Nicolas; Yusupova, Gulnara; Meskauskas, Arturas; Dinman, Jonathan D; Yusupov, Marat

    2016-05-22

    The ribosome has been described as a ribozyme in which ribosomal RNA is responsible for peptidyl-transferase reaction catalysis. The W255C mutation of the universally conserved ribosomal protein uL3 has diverse effects on ribosome function (e.g., increased affinities for transfer RNAs, decreased rates of peptidyl-transfer), and cells harboring this mutation are resistant to peptidyl-transferase inhibitors (e.g., anisomycin). These observations beg the question of how a single amino acid mutation may have such wide ranging consequences. Here, we report the structure of the vacant yeast uL3 W255C mutant ribosome by X-ray crystallography, showing a disruption of the A-site side of the peptidyl-transferase center (PTC). An additional X-ray crystallographic structure of the anisomycin-containing mutant ribosome shows that high concentrations of this inhibitor restore a "WT-like" configuration to this region of the PTC, providing insight into the resistance mechanism of the mutant. Globally, our data demonstrate that ribosomal protein uL3 is structurally essential to ensure an optimal and catalytically efficient organization of the PTC, highlighting the importance of proteins in the RNA-centered ribosome.

  16. Automatic evaluation of the 30-s chair stand test using inertial/magnetic-based technology in an older prefrail population.

    Science.gov (United States)

    Millor, Nora; Lecumberri, Pablo; Gomez, Marisol; Martinez-Ramirez, Alicia; Rodriguez-Manas, Leocadio; Garcia-Garcia, Francisco José; Izquierdo, Mikel

    2013-07-01

    The aim of this study was to evaluate the inertial measures of the 30-s chair stand test using modern body-fixed motion sensors. Polynomial data fitting was used to correct the drift effect in the position estimation. Thereafter, the three most important test cycles phases ("impulse," "stand up," and "sit down") were characterized and automatically analyzed. Automated test control is provided, making it possible for researchers without engineering knowledge to run the test. A collection of meaningful data based on kinematic variables is selected for further research. The proposed methodology for data analysis is a feasible tool for use in clinical settings. This method may not only improve rehabilitation therapies but also identify people at risk for falls more accurately than simply evaluating the number of cycles.

  17. KONDISI SOSIAL EKONOMI BURUH PABRIK GULA SRAGI KABUPATEN PEKALONGAN PASCA G 30 S TAHUN 1965-1998

    Directory of Open Access Journals (Sweden)

    Ilin Suryantono

    2011-10-01

    Full Text Available The presence of labor in the sugar industry was once used as a political tool during the conflict in 1965 and became the party that is often neglected in the subsequent period between the years 1965-1998. On the one hand, sugar factory was one of plantation sectors having crucial position as one of development achievement of the new order government, because it increased income. It is an irony to see that workers having a vital role for the development of the country's economy but rather their fate are often not addressed by the state. Fundamental problems that later emerged in the life of labor is poverty, but the truth of this argument needs to be proved through research in order to obtain accurate answers. Keywords: Labor, sugar factory, event G 30 S     Keberadaan buruh di pabrik gula menjadi salah satu alat politik pada tahun 1965 dan menjadi tersisih pada masa berikutnya pada tahun 1965-1998. Di satu sisi, pabrik gula menjadi salah satu sektor perkebunan yang memiliki posisi penting sebagai salah satu capaian pembangunan pada masa pemerintahan Orde Baru, karena posisinya penting dalam meningkatkan pemasukan dalam negeri. Hal ini sangat ironi ketika melihat peran pekerja yang memiliki posisi penting dalam pembangunan ekonomi, tetapi sering kali tidak diperhatikan oleh pemerintah. Permasalahan utama yang muncul dalam kehidupan buruh adalah kemiskinan, tetapi permasalahan ini membutuhkan pembuktian melalui penelitian untuk menemukan jawaban yang tepat.   Kata kunci: buruh, pabrik gula, peristiwa G 30 S  

  18. Dump assembly

    Science.gov (United States)

    Goldmann, Louis H.

    1986-01-01

    A dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough.

  19. Actinomadura Species: Laboratory Maintenance and Ribosome Engineering.

    Science.gov (United States)

    Dhakal, Dipesh; Chung, Nguyen Thanh; Rayamajhi, Vijay; Sohng, Jae Kyung

    2017-02-06

    Actinomadura spp. are aerobic, Gram-positive, catalase-positive, non-acid fast, non-motile actinomycetes. Some species of Actinomadura are associated with opportunistic infections in humans. However, many bioactive compounds with pharmaceutical applications can be isolated from various Actinomadura spp. This unit includes general protocols for the laboratory maintenance of Actinomadura spp., including growth in liquid medium, growth on solid agar, long-term storage, and generation of a higher producing strain by ribosome engineering. Actinomadura hibisca P157-2 is used as a prototype for explaining the considerations for efficient laboratory maintenance of Actinomadura spp. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  20. Higher order structure in ribosomal RNA.

    Science.gov (United States)

    Gutell, R R; Noller, H F; Woese, C R

    1986-05-01

    The only reliable general method currently available for determining precise higher order structure in the large ribosomal RNAs is comparative sequence analysis. The method is here applied to reveal 'tertiary' structure in the 16S-like rRNAs, i.e. structure more complex than simple double-helical, secondary structure. From a list of computer-generated potential higher order interactions within 16S rRNA one such interaction considered likely was selected for experimental test. The putative interaction involves a Watson-Crick one to one correspondence between positions 570 and 866 in the molecule (E. coli numbering). Using existing oligonucleotide catalog information several organisms were selected whose 16S rRNA sequences might test the proposed co-variation. In all of the (phylogenetically independent) cases selected, full sequence evidence confirms the predicted one to one (Watson-Crick) correspondence. An interaction between positions 570 and 866 is, therefore, considered proven phylogenetically.

  1. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    5th April, 2016 – Ordinary General Assembly of the Staff Association! In the first semester of each year, the Staff Association (SA) invites its members to attend and participate in the Ordinary General Assembly (OGA). This year the OGA will be held on Tuesday, April 5th 2016 from 11:00 to 12:00 in BE Auditorium, Meyrin (6-2-024). During the Ordinary General Assembly, the activity and financial reports of the SA are presented and submitted for approval to the members. This is the occasion to get a global view on the activities of the SA, its financial management, and an opportunity to express one’s opinion, including taking part in the votes. Other points are listed on the agenda, as proposed by the Staff Council. Who can vote? Only “ordinary” members (MPE) of the SA can vote. Associated members (MPA) of the SA and/or affiliated pensioners have a right to vote on those topics that are of direct interest to them. Who can give his/her opinion? The Ordinary General Asse...

  2. Traffic of interacting ribosomes on mRNA during protein synthesis: effects of chemo-mechanics of individual ribosomes

    CERN Document Server

    Basu, A; Basu, Aakash; Chowdhury, Debashish

    2006-01-01

    Many {\\it ribosomes} simultaneously move on the same messenger RNA (mRNA), each synthesizing a protein. In contrast to the earlier models, here {\\it we develope a ``unified'' theoretical model} that not only incorporates the {\\it mutual exclusions} of the interacting ribosomes, but also describes explicitly the mechano-chemistry of each of these individual cyclic machines during protein synthesis. Using a combination of analytical and numerical techniques of non-equilibrium statistical mechanics, we analyze the rates of protein synthesis and the spatio-temporal oraganization of the ribosomes in this model. We also predict how these properties would change with the changes in the rates of the various chemo-mechanical processes in each ribosome. Finally, we illustrate the power of this model by making experimentally testable predictions on the rates of protein synthesis and the density profiles of the ribosomes on some mRNAs in {\\it E-coli}.

  3. An extra-ribosomal function of ribosomal protein L13a in macrophage resolves inflammation

    Science.gov (United States)

    Poddar, Darshana; Basu, Abhijit; Baldwin, William; Kondratov, Roman V; Barik, Sailen; Mazumder, Barsanjit

    2013-01-01

    Inflammation is an obligatory attempt of the immune system to protect the host from infections. However, unregulated synthesis of pro-inflammatory products can have detrimental effects. Although mechanisms that lead to inflammation are well appreciated, those that restrain it are not adequately understood. Creating macrophage-specific L13a-knockout (KO) mice here we report that depletion of ribosomal protein L13a abrogates the endogenous translation control of several chemokines in macrophages. Upon LPS-induced endotoxemia these animals displayed symptoms of severe inflammation caused by widespread infiltration of macrophages in major organs causing tissue injury and reduced survival rates. Macrophages from these KO animals show unregulated expression of several chemokines e.g. CXCL13, CCL22, CCL8 and CCR3. These macrophages failed to show L13a-dependent RNA binding complex formation on target mRNAs. In addition, increased polyribosomal abundance of these mRNAs shows a defect in translation control in the macrophages. Thus, our studies provide the first evidence of an essential extra-ribosomal function of ribosomal protein L13a in resolving physiological inflammation in a mammalian host. PMID:23460747

  4. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    Directory of Open Access Journals (Sweden)

    Luthey-Schulten Zaida

    2009-07-01

    Full Text Available Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene transfer (HGT of S4 during bacterial evolution. Results In this study we present the complex evolutionary history of ribosomal protein S4 using 660 bacterial genomes from 16 major bacterial phyla. According to conserved characteristics in the sequences, S4 can be classified into C+ (zinc-binding and C- (zinc-free variants, with 26 genomes (mainly from the class Clostridia containing genes for both. A maximum likelihood phylogenetic tree of the S4 sequences was incongruent with the standard bacterial phylogeny, indicating a departure from strict vertical inheritance. Further analysis using the genome content near the S4 genes, which are usually located in a conserved gene cluster, showed not only that HGT of the C- gene had occurred at various stages of bacterial evolution, but also that both the C- and C+ genes were present before the individual phyla diverged. To explain the latter, we theorize that a gene pool existed early in bacterial evolution from which bacteria could sample S4 gene variants, according to environmental conditions. The distribution of the C+/- variants for seven other zinc-binding ribosomal proteins in these 660 bacterial genomes is consistent with that seen for S4 and may shed light on the evolutionary pressures involved. Conclusion The complex history presented for "core" protein S4 suggests the existence of a gene pool before the emergence of bacterial lineages and reflects the pervasive nature of HGT in subsequent bacterial evolution

  5. Crystal structure of the 80S yeast ribosome.

    Science.gov (United States)

    Jenner, Lasse; Melnikov, Sergey; Garreau de Loubresse, Nicolas; Ben-Shem, Adam; Iskakova, Madina; Urzhumtsev, Alexandre; Meskauskas, Arturas; Dinman, Jonathan; Yusupova, Gulnara; Yusupov, Marat

    2012-12-01

    The first X-ray structure of the eukaryotic ribosome at 3.0Å resolution was determined using ribosomes isolated and crystallized from the yeast Saccharomyces cerevisiae (Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M: The structure of the eukaryotic ribosome at 3.0 A resolution. Science 2011, 334:1524-1529). This accomplishment was possible due to progress in yeast ribosome biochemistry as well as recent advances in crystallographic methods developed for structure determination of prokaryotic ribosomes isolated from Thermus thermophilus and Escherichia coli. In this review we will focus on the development of isolation procedures that allowed structure determination (both cryo-EM and X-ray crystallography) to be successful for the yeast S. cerevisiae. Additionally we will introduce a new nomenclature that facilitates comparison of ribosomes from different species and kingdoms of life. Finally we will discuss the impact of the yeast 80S ribosome crystal structure on perspectives for future investigations.

  6. Conservation of ribosomal protein gene ordering in 16 complete genomes

    Institute of Scientific and Technical Information of China (English)

    王宁; 陈润生; 王永雄

    2000-01-01

    The organization of ribosomal proteins in 16 prokaryotic genomes was studied as an example of comparative genome analyses of gene systems. Hypothetical ribosomal protein-containing operons were constructed. These operons also contained putative genes and other non-ribosomal genes. The correspondences among these genes across different organisms were clarified by sequence homology computations. In this way a cross tabulation of 70 ribosomal proteins genes was constructed. On average, these were organized into 9-14 operons in each genome. There were also 25 non-ribosomal or putative genes in these mainly ribosomal protein operons. Hence the table contains 95 genes in total. It was found that: (i) the conservation of the block of about 20 r-proteins in the L3 and L4 operons across almost the entire eubacteria and ar-chaebacteria is remarkable; (ii) some operons only belong to eubacteria or archaebacte-ria; (iii) although the ribosomal protein operons are highly conserved within domain, there are fine variat

  7. Conservation of ribosomal protein gene ordering in 16 complete genomes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The organization of ribosomal proteins in 16 prokaryotic genomes was studied as an example of comparative genome analyses of gene systems. Hypothetical ribosomal protein-containing operons were constructed. These operons also contained putative genes and other non-ribosomal genes. The correspondences among these genes across different organisms were clarified by sequence homology computations. In this way a cross tabulation of 70 ribosomal proteins genes was constructed. On average, these were organized into 9-14 operons in each genome. There were also 25 non-ribosomal or putative genes in these mainly ribosomal protein operons. Hence the table contains 95 genes in total. It was found that: (i) the conservation of the block of about 20 r-proteins in the L3 and L4 operons across almost the entire eubacteria and archaebacteria is remarkable; (ii) some operons only belong to eubacteria or archaebacteria; (iii) although the ribosomal protein operons are highly conserved within domain, there are fine variations in some operons across different organisms within each domain, and these variations are informative on the evolutionary relations among the organisms. This method provides a new potential for studying the origin and evolution of old species.

  8. Translation complex profile sequencing to study the in vivo dynamics of mRNA-ribosome interactions during translation initiation, elongation and termination.

    Science.gov (United States)

    Shirokikh, Nikolay E; Archer, Stuart K; Beilharz, Traude H; Powell, David; Preiss, Thomas

    2017-04-01

    Messenger RNA (mRNA) translation is a tightly controlled process that is integral to gene expression. It features intricate and dynamic interactions of the small and large subunits of the ribosome with mRNAs, aided by multiple auxiliary factors during distinct initiation, elongation and termination phases. The recently developed ribosome profiling method can generate transcriptome-wide surveys of translation and its regulation. Ribosome profiling records the footprints of fully assembled ribosomes along mRNAs and thus primarily interrogates the elongation phase of translation. Importantly, it does not monitor multiple substeps of initiation and termination that involve complexes between the small ribosomal subunit (SSU) and mRNA. Here we describe a related method, termed 'translation complex profile sequencing' (TCP-seq), that is uniquely capable of recording positions of any type of ribosome-mRNA complex transcriptome-wide. It uses fast covalent fixation of translation complexes in live cells, followed by RNase footprinting of translation intermediates and their separation into complexes involving either the full ribosome or the SSU. The footprints derived from each type of complex are then deep-sequenced separately, generating native distribution profiles during the elongation, as well as the initiation and termination stages of translation. We provide the full TCP-seq protocol for Saccharomyces cerevisiae liquid suspension culture, including a data analysis pipeline. The protocol takes ∼3 weeks to complete by a researcher who is well acquainted with standard molecular biology techniques and who has some experience in ultracentrifugation and the preparation of RNA sequencing (RNA-seq) libraries. Basic Bash and UNIX/Linux command skills are required to use the bioinformatics tools provided.

  9. Expression of a small (p)ppGpp synthetase, YwaC, in the (p)ppGpp(0) mutant of Bacillus subtilis triggers YvyD-dependent dimerization of ribosome.

    Science.gov (United States)

    Tagami, Kazumi; Nanamiya, Hideaki; Kazo, Yuka; Maehashi, Marie; Suzuki, Shota; Namba, Eri; Hoshiya, Masahiro; Hanai, Ryo; Tozawa, Yuzuru; Morimoto, Takuya; Ogasawara, Naotake; Kageyama, Yasushi; Ara, Katsutoshi; Ozaki, Katsuya; Yoshida, Masaki; Kuroiwa, Haruko; Kuroiwa, Tsuneyoshi; Ohashi, Yoshiaki; Kawamura, Fujio

    2012-06-01

    To elucidate the biological functions of small (p)ppGpp synthetases YjbM and YwaC of Bacillus subtilis, we constructed RIK1059 and RIK1066 strains carrying isopropyl-β-D-thiogalactopyranoside (IPTG) inducible yjbM and ywaC genes, respectively, in the ΔrelA ΔyjbM ΔywaC triple mutant background. While the uninduced and IPTG-induced RIK1059 cells grew similarly in LB medium, the growth of RIK1066 cells was arrested following the addition of IPTG during the early exponential growth phase. Induction of YwaC expression by IPTG also severely decreased the intracellular GTP level and drastically altered the transcriptional profile in RIK1066 cells. Sucrose density gradient centrifugation analysis of the ribosomal fractions prepared from the IPTG-induced RIK1066 cells revealed three peaks corresponding to 30S, 50S, and 70S ribosome particles, and also an extra peak. Electron microscope studies revealed that the extra peak fraction contained dimers of 70S ribosomes, which were similar to the Escherichia coli 100S ribosomes. Proteomic analysis revealed that the 70S dimer contained an extra protein, YvyD, in addition to those found in the 70S ribosome. Accordingly, strain resulting from the disruption of the yvyD gene in the RIK1066 cells was unable to form 70S dimers following IPTG induction, indicating that YvyD is required for the formation of these dimers in B. subtilis.

  10. Single-particle cryo-electron microscopy of macromolecular assemblies

    OpenAIRE

    Cheng, Kimberley

    2009-01-01

    In this thesis, single-particle cryo-electron microscopy (cryo-EM) was used to study the structure of three macromolecular assemblies: the two hemocyanin isoforms from Rapana thomasiana, the Pyrococcus furiosus chaperonin, and the ribosome from Escherichia coli. Hemocyanins are large respiratory proteins in arthropods and molluscs. Most molluscan hemocyanins exist as two distinct isoforms composed of related polypeptides. In most species the two isoforms differ in terms of their oligomeric st...

  11. A structural model for multimodular NRPS assembly lines.

    Science.gov (United States)

    Marahiel, Mohamed A

    2016-02-01

    This viewpoint article focuses on the structures of the dissected catalytic domains of non-ribosomal peptide synthetases (NRPSs) associated with substrate selection and activation (A domain), substrate shuttling among the active sites (PCP domain), peptide bond formation (C domain) and product release (TE domain). Structural details of these essential components of the NRPS machinery, integrated in a didomain (PCP-C) and an elongation module (C-A-PCP), were used to generate a model for a multimodular NRPS assembly line.

  12. Ribosome-targeting antibiotics and mechanisms of bacterial resistance.

    Science.gov (United States)

    Wilson, Daniel N

    2014-01-01

    The ribosome is one of the main antibiotic targets in the bacterial cell. Crystal structures of naturally produced antibiotics and their semi-synthetic derivatives bound to ribosomal particles have provided unparalleled insight into their mechanisms of action, and they are also facilitating the design of more effective antibiotics for targeting multidrug-resistant bacteria. In this Review, I discuss the recent structural insights into the mechanism of action of ribosome-targeting antibiotics and the molecular mechanisms of bacterial resistance, in addition to the approaches that are being pursued for the production of improved drugs that inhibit bacterial protein synthesis.

  13. The sequential addition of ribosomal proteins during the formation of the small ribosomal subunit in Friend erythroleukemia cells.

    Science.gov (United States)

    Todorov, I T; Noll, F; Hadjiolov, A A

    1983-03-15

    Nucleolar '80-S' and '40-S' preribosomes (containing 45-S and 21-S pre-rRNA, respectively), as well as cytoplasmic ribosomes, were isolated from Friend erythroleukemia cells. The presence of structural ribosomal proteins in the isolated particles was studied by using antisera against individual rat liver small ribosomal subunit proteins. The analysis is based on the established crossreactivity between rat and mouse ribosomes [F. Noll and H. Bielka (1970) Mol. Gen. Genet. 106, 106-113]. The identification of the proteins was achieved by two independent immunological techniques: the passive haemagglutination test and the enzyme immunoassay of electrophoretically fractionated proteins, blotted on nitrocellulose. All 17 proteins tested are present in cytoplasmic ribosomes. A large number of proteins (S3a, S6, S7, S8, S11, S14, S18, S20, S23/24 and S25) are present in the '80-S' preribosome. Only two proteins (S3 and S21) are added during the formation of the '40-S' preribosome in the nucleolus. Four proteins (S2, S19, S26 and S29) are added at later, possibly extranucleolar, stages of ribosome formation. The results obtained provide evidence for the sequential addition of proteins during the formation of the small ribosomal subunit in Friend erythroleukemia cells.

  14. General Assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : 1- Adoption de l’ordre du jour. 2- Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. 3- Présentation et approbation du rapport d’activités 2014. 4- Présentation et approbation du rapport financier 2014. 5- Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. 6- Programme 2015. 7- Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. 8- Pas de modifications aux Statuts de l'Association du personnel proposée. 9- Élections des membres de la Commission é...

  15. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    Mardi 5 avril à 11 h 00 BE Auditorium Meyrin (6-2-024) Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 5 mai 2015. Présentation et approbation du rapport d’activités 2015. Présentation et approbation du rapport financier 2015. Présentation et approbation du rapport des vérificateurs aux comptes pour 2015. Programme de travail 2016. Présentation et approbation du projet de budget 2016 Approbation du taux de cotisation pour 2017. Modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commissio...

  16. General assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. Présentation et approbation du rapport d’activités 2014. Présentation et approbation du rapport financier 2014. Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. Programme 2015. Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. Pas de modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commission électorale. &am...

  17. General Assembly

    CERN Multimedia

    Staff Association

    2017-01-01

    Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 5 avril 2016. Présentation et approbation du rapport d’activités 2016. Présentation et approbation du rapport financier 2016. Présentation et approbation du rapport des vérificateurs aux comptes pour 2016. Programme de travail 2017. Présentation et approbation du projet de budget 2017 Approbation du taux de cotisation pour 2018. Modifications aux Statuts de l'Association du personnel proposées. Élections des membres de la Commission électorale. Élections des vérifica...

  18. Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors

    DEFF Research Database (Denmark)

    Fu, Yanming; Zeng, Dongdong; Chao, Jie;

    2013-01-01

    Self-assembled DNA origami nanostructures have shown great promise for bottom-up construction of complex objects with nanoscale addressability. Here we show that DNA origami-based 1D nanoribbons and nanotubes are one-pot assembled with controllable sizes and nanoscale addressability with high speed...... (within only 10-20 min), exhibiting extraordinarily high cooperativity that is often observed in assembly of natural molecular machines in cells (e.g. ribosome). By exploiting the high specificity of DNA-based self-assembly, we can precisely anchor proteins on these DNA origami nanostructures with sub-10...

  19. On the optical properties of wedge-shaped thin films of Ag-photodoped As 30S 70 glass

    Science.gov (United States)

    Márquez, E.; Ramirez-Malo, J. B.; Fernández-Peña, J.; Jiménez-Garay, R.; Ewen, P. J. S.; Owen, A. E.

    1993-07-01

    Thin films of a-As 30S 70 prepared by thermal evaporation were photodoped with Ag. The optical transmission was measured over the 0.3 to 2.0 μm spectral region in order to derive the refractive index and absorption coefficient of these Ag-photodoped chalcogenide films. Furthermore, the analytical expressions proposed by Swanepoel, enabling the calculation of the optical constants of a thin film with non-uniform thickness, have successfully been applied. In addition, thickness measurements made by a surface-profiling stylus were also carried out to cross-check the results corresponding to the envelope method. On the other hand, the dispersion of n was discussed in terms of the single-oscillator Wemple and DiDomencio model. Finally, the value of the optical band gap decreased from 2.47 eV in the case of the undoped films down to 1.91 eV in the almost saturated Ag-photodoped films. It is plausible that the decrease in Eoptg by the incorporation of Ag arises from the smaller binding energy of Ag-S and As-As bonds compared to that of As-S bonds.

  20. Family Planning and Preconception Health Among Men in Their Mid-30s: Developing Indicators and Describing Need.

    Science.gov (United States)

    Casey, Frances E; Sonenstein, Freya L; Astone, Nan M; Pleck, Joseph H; Dariotis, Jacinda K; Marcell, Arik V

    2016-01-01

    The Centers for Disease Control and Prevention and Healthy People 2020 call for improvements in meeting men's reproductive health needs but little is known about the proportion of men in need. This study describes men aged 35 to 39 in need of family planning and preconception care, demographic correlates of these needs, and contraception use among men in need of family planning. Using data from Wave 4 (2008-2010) of the National Survey of Adolescent Males, men were classified in need of family planning and preconception care if they reported sex with a female in the last year and believed that they and their partner were fecund; the former included men who were neither intentionally pregnant nor intending future children and the latter included men intending future children. Men were classified as being in need of both if they reported multiple sex partners in the past year. About 40% of men aged 35 to 39 were in need of family planning and about 33% in need of preconception care with 12% in need of both. Current partner's age, current union type, and sexually transmitted infection health risk differentiated men in need of family planning and preconception care (all ps planning reported none of the time current partner hormonal use (55%) or condom use (52%) during the past year. This study identified that many men in their mid-30s are in need of family planning or preconception care.

  1. Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes.

    Science.gov (United States)

    Pacheco, Sabino; Cantón, Emiliano; Zuñiga-Navarrete, Fernando; Pecorari, Frédéric; Bravo, Alejandra; Soberón, Mario

    2015-12-01

    Bacillus thuringiensis (Bt) produces insecticidal proteins that have been used worldwide in the control of insect-pests in crops and vectors of human diseases. However, different insect species are poorly controlled by the available Bt toxins or have evolved resistance to these toxins. Evolution of Bt toxicity could provide novel toxins to control insect pests. To this aim, efficient display systems to select toxins with increased binding to insect membranes or midgut proteins involved in toxicity are likely to be helpful. Here we describe two display systems, phage display and ribosome display, that allow the efficient display of two non-structurally related Bt toxins, Cry1Ac and Cyt1Aa. Improved display of Cry1Ac and Cyt1Aa on M13 phages was achieved by changing the commonly used peptide leader sequence of the coat pIII-fusion protein, that relies on the Sec translocation pathway, for a peptide leader sequence that relies on the signal recognition particle pathway (SRP) and by using a modified M13 helper phage (Phaberge) that has an amber mutation in its pIII genomic sequence and preferentially assembles using the pIII-fusion protein. Also, both Cry1Ac and Cyt1Aa were efficiently displayed on ribosomes, which could allow the construction of large libraries of variants. Furthermore, Cry1Ac or Cyt1Aa displayed on M13 phages or ribosomes were specifically selected from a mixture of both toxins depending on which antigen was immobilized for binding selection. These improved systems may allow the selection of Cry toxin variants with improved insecticidal activities that could counter insect resistances.

  2. Structural features of the tmRNA-ribosome interaction.

    Science.gov (United States)

    Bugaeva, Elizaveta Y; Surkov, Serhiy; Golovin, Andrey V; Ofverstedt, Lars-Göran; Skoglund, Ulf; Isaksson, Leif A; Bogdanov, Alexey A; Shpanchenko, Olga V; Dontsova, Olga A

    2009-12-01

    Trans-translation is a process which switches the synthesis of a polypeptide chain encoded by a nonstop messenger RNA to the mRNA-like domain of a transfer-messenger RNA (tmRNA). It is used in bacterial cells for rescuing the ribosomes arrested during translation of damaged mRNA and directing this mRNA and the product polypeptide for degradation. The molecular basis of this process is not well understood. Earlier, we developed an approach that allowed isolation of tmRNA-ribosomal complexes arrested at a desired step of tmRNA passage through the ribosome. We have here exploited it to examine the tmRNA structure using chemical probing and cryo-electron microscopy tomography. Computer modeling has been used to develop a model for spatial organization of the tmRNA inside the ribosome at different stages of trans-translation.

  3. Structural features of the tmRNA–ribosome interaction

    Science.gov (United States)

    Bugaeva, Elizaveta Y.; Surkov, Serhiy; Golovin, Andrey V.; Öfverstedt, Lars-Göran; Skoglund, Ulf; Isaksson, Leif A.; Bogdanov, Alexey A.; Shpanchenko, Olga V.; Dontsova, Olga A.

    2009-01-01

    Trans-translation is a process which switches the synthesis of a polypeptide chain encoded by a nonstop messenger RNA to the mRNA-like domain of a transfer-messenger RNA (tmRNA). It is used in bacterial cells for rescuing the ribosomes arrested during translation of damaged mRNA and directing this mRNA and the product polypeptide for degradation. The molecular basis of this process is not well understood. Earlier, we developed an approach that allowed isolation of tmRNA–ribosomal complexes arrested at a desired step of tmRNA passage through the ribosome. We have here exploited it to examine the tmRNA structure using chemical probing and cryo-electron microscopy tomography. Computer modeling has been used to develop a model for spatial organization of the tmRNA inside the ribosome at different stages of trans-translation. PMID:19861420

  4. Organization of Replication of Ribosomal DNA in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Linskens, Maarten H.K.; Huberman, Joel A.

    1988-01-01

    Using recently developed replicon mapping techniques, we have analyzed the replication of the ribosomal DNA in Saccharomyces cerevisiae. The results show that (i) the functional origin of replication colocalizes with an autonomously replicating sequence element previously mapped to the

  5. The characterization of cytoplasmic ribosomal protein genes in ...

    African Journals Online (AJOL)

    USER

    2012-04-17

    Apr 17, 2012 ... 2Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, ... ribosomal protein genes of N. bombycis were located in syntenic blocks, .... genome distribution of all RPGs have been displayed and.

  6. The ribosomal gene spacer region in archaebacteria

    Science.gov (United States)

    Achenbach-Richter, L.; Woese, C. R.

    1988-01-01

    Sequences for the spacer regions that separate the 16S and 23S ribosomal RNA genes have been determined for four more (strategically placed) archaebacteria. These confirm the general rule that methanogens and extreme halophiles have spacers that contain a single tRNAala gene, while tRNA genes are not found in the spacer region of the true extreme thermophiles. The present study also shows that the spacer regions from the sulfate reducing Archaeglobus and the extreme thermophile Thermococcus (both of which cluster phylogenetically with the methanogens and extreme halophiles) contain each a tRNAala gene. Thus, not only all methanogens and extreme halophiles show this characteristic, but all organisms on the "methanogen branch" of the archaebacterial tree appear to do so. The finding of a tRNA gene in the spacer region of the extreme thermophile Thermococcus celer is the first known phenotypic property that links this organism with its phylogenetic counterparts, the methanogens, rather than with its phenotypic counterparts, the sulfur-dependent extreme thermophiles.

  7. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins

    Directory of Open Access Journals (Sweden)

    Gayani N. P. Dedduwa-Mudalige

    2015-09-01

    Full Text Available Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.

  8. Fluorescently labeled ribosomes as a tool for analyzing antibiotic binding.

    Science.gov (United States)

    Llano-Sotelo, Beatriz; Hickerson, Robyn P; Lancaster, Laura; Noller, Harry F; Mankin, Alexander S

    2009-08-01

    Measuring the binding of antibiotics and other small-molecular-weight ligands to the 2.5 MDa ribosome often presents formidable challenges. Here, we describe a general method for studying binding of ligands to ribosomes that carry a site-specific fluorescent label covalently attached to one of the ribosomal proteins. As a proof of principle, an environment-sensitive fluorescent group was placed at several specific sites within the ribosomal protein S12. Small ribosomal subunits were reconstituted from native 16S rRNA, individually purified small subunit proteins, and fluorescently labeled S12. The fluorescence characteristics of the reconstituted subunits were affected by several antibiotics, including streptomycin and neomycin, which bind in the vicinity of protein S12. The equilibrium dissociation constants of the drugs obtained using a conventional fluorometer were in good agreement with those observed using previously published methods and with measurements based on the use of radiolabeled streptomycin. The newly developed method is rapid and sensitive, and can be used for determining thermodynamic and kinetic binding characteristics of antibiotics and other small ribosomal ligands. The method can readily be adapted for use in high-throughput screening assays.

  9. Affinity labelling of Escherichia coli ribosomes with a benzylidene derivative of AUGU6 within initiation and pretranslocational complexes.

    Science.gov (United States)

    Babkina, G T; Veniaminova, A G; Vladimirov, S N; Karpova, G G; Yamkovoy, V I; Berzin, V A; Gren, E J; Cielens, I E

    1986-07-01

    Affinity labelling of E. coli ribosomes with the 2',3'-O-[4-(N-2-chloroethyl)-N-methylamino]benzylidene derivative of AUGU6 was studied within the initiation complex (complex I) obtained by using fMet-tRNAMetf and initiation factors and within the pretranslocational complex (complex II) obtained by treatment of complex I with the ternary complex Phe-tRNAPhe.GTP.EF-Tu. Both proteins and rRNA of 30 S as well as 50 S subunits were found to be labelled. Sets of proteins labelled within complexes I and II differ considerably. Within complex II, proteins S13 and L10 were labelled preferentially. On the other hand, within complex I, multiple modification is observed (proteins S4, S12, S13, S14, S15, S18, S19, S20/L26 were found to be alkylated) despite the single fixation of a template in the ribosome by interaction of the AUG codon with fMet-tRNAMetf.

  10. A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin.

    Science.gov (United States)

    Melançon, P; Lemieux, C; Brakier-Gingras, L

    1988-10-25

    Oligonucleotide-directed mutagenesis was used to introduce an A to C transversion at position 523 in the 16S ribosomal RNA gene of Escherichia coli rrnB operon cloned in plasmid pKK3535. E. coli cells transformed with the mutated plasmid were resistant to streptomycin. The mutated ribosomes isolated from these cells were not stimulated by streptomycin to misread the message in a poly(U)-directed assay. They were also restrictive to the stimulation of misreading by other error-promoting related aminoglycoside antibiotics such as neomycin, kanamycin or gentamicin, which do not compete for the streptomycin binding site. The 530 loop where the mutation in the 16S rRNA is located has been mapped at the external surface of the 30S subunit, and is therefore distal from the streptomycin binding site at the subunit interface. Our results support the conclusion that the mutation at position 523 in the 16S rRNA does not interfere with the binding of streptomycin, but prevents the drug from inducing conformational changes in the 530 loop which account for its miscoding effect. Since this effect primarily results from a perturbation of the translational proofreading control, our results also provide evidence that the 530 loop of the 16S rRNA is involved in this accuracy control.

  11. Non-ribosomal peptide synthetases: Identifying the cryptic gene clusters and decoding the natural product

    Indian Academy of Sciences (India)

    MANGAL SINGH; SANDEEP CHAUDHARY; DIPTI SAREEN

    2017-03-01

    Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) present in bacteria and fungi are themajor multi-modular enzyme complexes which synthesize secondary metabolites like the pharmacologically importantantibiotics and siderophores. Each of the multiple modules of an NRPS activates a different amino or aryl acid,followed by their condensation to synthesize a linear or cyclic natural product. The studies on NRPS domains, theknowledge of their gene cluster architecture and tailoring enzymes have helped in the in silico genetic screening of theever-expanding sequenced microbial genomic data for the identification of novel NRPS/PKS clusters and thusdeciphering novel non-ribosomal peptides (NRPs). Adenylation domain is an integral part of the NRPSs and is thesubstrate selecting unit for the final assembled NRP. In some cases, it also requires a small protein, the MbtHhomolog, for its optimum activity. The presence of putative adenylation domain and MbtH homologs in a sequencedgenome can help identify the novel secondary metabolite producers. The role of the adenylation domain in the NRPSgene clusters and its characterization as a tool for the discovery of novel cryptic NRPS gene clusters are discussed.

  12. Connecting the kinetics and energy landscape of tRNA translocation on the ribosome.

    Science.gov (United States)

    Whitford, Paul C; Blanchard, Scott C; Cate, Jamie H D; Sanbonmatsu, Karissa Y

    2013-01-01

    Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states.

  13. Structural and functional characterization of ribosomal protein gene introns in sponges.

    Science.gov (United States)

    Perina, Drago; Korolija, Marina; Mikoč, Andreja; Roller, Maša; Pleše, Bruna; Imešek, Mirna; Morrow, Christine; Batel, Renato; Ćetković, Helena

    2012-01-01

    Ribosomal protein genes (RPGs) are a powerful tool for studying intron evolution. They exist in all three domains of life and are much conserved. Accumulating genomic data suggest that RPG introns in many organisms abound with non-protein-coding-RNAs (ncRNAs). These ancient ncRNAs are small nucleolar RNAs (snoRNAs) essential for ribosome assembly. They are also mobile genetic elements and therefore probably important in diversification and enrichment of transcriptomes through various mechanisms such as intron/exon gain/loss. snoRNAs in basal metazoans are poorly characterized. We examined 449 RPG introns, in total, from four demosponges: Amphimedon queenslandica, Suberites domuncula, Suberites ficus and Suberites pagurorum and showed that RPG introns from A. queenslandica share position conservancy and some structural similarity with "higher" metazoans. Moreover, our study indicates that mobile element insertions play an important role in the evolution of their size. In four sponges 51 snoRNAs were identified. The analysis showed discrepancies between the snoRNA pools of orthologous RPG introns between S. domuncula and A. queenslandica. Furthermore, these two sponges show as much conservancy of RPG intron positions between each other as between themselves and human. Sponges from the Suberites genus show consistency in RPG intron position conservation. However, significant differences in some of the orthologous RPG introns of closely related sponges were observed. This indicates that RPG introns are dynamic even on these shorter evolutionary time scales.

  14. Structural and functional characterization of ribosomal protein gene introns in sponges.

    Directory of Open Access Journals (Sweden)

    Drago Perina

    Full Text Available Ribosomal protein genes (RPGs are a powerful tool for studying intron evolution. They exist in all three domains of life and are much conserved. Accumulating genomic data suggest that RPG introns in many organisms abound with non-protein-coding-RNAs (ncRNAs. These ancient ncRNAs are small nucleolar RNAs (snoRNAs essential for ribosome assembly. They are also mobile genetic elements and therefore probably important in diversification and enrichment of transcriptomes through various mechanisms such as intron/exon gain/loss. snoRNAs in basal metazoans are poorly characterized. We examined 449 RPG introns, in total, from four demosponges: Amphimedon queenslandica, Suberites domuncula, Suberites ficus and Suberites pagurorum and showed that RPG introns from A. queenslandica share position conservancy and some structural similarity with "higher" metazoans. Moreover, our study indicates that mobile element insertions play an important role in the evolution of their size. In four sponges 51 snoRNAs were identified. The analysis showed discrepancies between the snoRNA pools of orthologous RPG introns between S. domuncula and A. queenslandica. Furthermore, these two sponges show as much conservancy of RPG intron positions between each other as between themselves and human. Sponges from the Suberites genus show consistency in RPG intron position conservation. However, significant differences in some of the orthologous RPG introns of closely related sponges were observed. This indicates that RPG introns are dynamic even on these shorter evolutionary time scales.

  15. The Proximity of Ribosomal Protein Genes to oriC Enhances Vibrio cholerae Fitness in the Absence of Multifork Replication

    Science.gov (United States)

    Soler-Bistué, Alfonso; Timmermans, Michaël

    2017-01-01

    ABSTRACT Recent works suggest that bacterial gene order links chromosome structure to cell homeostasis. Comparative genomics showed that, in fast-growing bacteria, ribosomal protein genes (RP) locate near the replication origin (oriC). We recently showed that Vibrio cholerae employs this positional bias as a growth optimization strategy: under fast-growth conditions, multifork replication increases RP dosage and expression. However, RP location may provide advantages in a dosage-independent manner: for example, the physical proximity of the many ribosomal components, in the context of a crowded cytoplasm, may favor ribosome biogenesis. To uncover putative dosage-independent effects, we studied isogenic V. cholerae derivatives in which the major RP locus, S10-spc-α (S10), was relocated to alternative genomic positions. When bacteria grew fast, bacterial fitness was reduced according to the S10 relative distance to oriC. The growth of wild-type V. cholerae could not be improved by additional copies of the locus, suggesting a physiologically optimized genomic location. Slow growth is expected to uncouple RP position from dosage, since multifork replication does not occur. Under these conditions, we detected a fitness impairment when S10 was far from oriC. Deep sequencing followed by marker frequency analysis in the absence of multifork replication revealed an up to 30% S10 dosage reduction associated with its relocation that closely correlated with fitness alterations. Hence, the impact of S10 location goes beyond a growth optimization strategy during feast periods. RP location may be important during the whole life cycle of this pathogen. PMID:28246358

  16. Cyclisation mechanisms in the biosynthesis of ribosomally synthesised and post-translationally modified peptides

    Science.gov (United States)

    2016-01-01

    Summary Ribosomally synthesised and post-translationally modified peptides (RiPPs) are a large class of natural products that are remarkably chemically diverse given an intrinsic requirement to be assembled from proteinogenic amino acids. The vast chemical space occupied by RiPPs means that they possess a wide variety of biological activities, and the class includes antibiotics, co-factors, signalling molecules, anticancer and anti-HIV compounds, and toxins. A considerable amount of RiPP chemical diversity is generated from cyclisation reactions, and the current mechanistic understanding of these reactions will be discussed here. These cyclisations involve a diverse array of chemical reactions, including 1,4-nucleophilic additions, [4 + 2] cycloadditions, ATP-dependent heterocyclisation to form thiazolines or oxazolines, and radical-mediated reactions between unactivated carbons. Future prospects for RiPP pathway discovery and characterisation will also be highlighted. PMID:27559376

  17. Role of the ribosome-associated protein PY in the cold-shock response of Escherichia coli.

    Science.gov (United States)

    Di Pietro, Fabio; Brandi, Anna; Dzeladini, Nadire; Fabbretti, Attilio; Carzaniga, Thomas; Piersimoni, Lolita; Pon, Cynthia L; Giuliodori, Anna Maria

    2013-04-01

    Protein Y (PY) is an Escherichia coli cold-shock protein which has been proposed to be responsible for the repression of bulk protein synthesis during cold adaptation. Here, we present in vivo and in vitro data which clarify the role of PY and its mechanism of action. Deletion of yfiA, the gene encoding protein PY, demonstrates that this protein is dispensable for cold adaptation and is not responsible for the shutdown of bulk protein synthesis at the onset of the stress, although it is able to partially inhibit translation. In vitro assays reveal that the extent of PY inhibition changes with different mRNAs and that this inhibition is related to the capacity of PY of binding 30S subunits with a fairly strong association constant, thus stimulating the formation of 70S monomers. Furthermore, our data provide evidence that PY competes with the other ribosomal ligands for the binding to the 30S subunits. Overall these results suggest an alternative model to explain PY function during cold shock and to reconcile the inhibition caused by PY with the active translation observed for some mRNAs during cold shock. © 2013 The Authors. Published by Blackwell Publishing Ltd.

  18. Role of the ribosome-associated protein PY in the cold-shock response of Escherichia coli

    Science.gov (United States)

    Di Pietro, Fabio; Brandi, Anna; Dzeladini, Nadire; Fabbretti, Attilio; Carzaniga, Thomas; Piersimoni, Lolita; Pon, Cynthia L; Giuliodori, Anna Maria

    2013-01-01

    Protein Y (PY) is an Escherichia coli cold-shock protein which has been proposed to be responsible for the repression of bulk protein synthesis during cold adaptation. Here, we present in vivo and in vitro data which clarify the role of PY and its mechanism of action. Deletion of yfiA, the gene encoding protein PY, demonstrates that this protein is dispensable for cold adaptation and is not responsible for the shutdown of bulk protein synthesis at the onset of the stress, although it is able to partially inhibit translation. In vitro assays reveal that the extent of PY inhibition changes with different mRNAs and that this inhibition is related to the capacity of PY of binding 30S subunits with a fairly strong association constant, thus stimulating the formation of 70S monomers. Furthermore, our data provide evidence that PY competes with the other ribosomal ligands for the binding to the 30S subunits. Overall these results suggest an alternative model to explain PY function during cold shock and to reconcile the inhibition caused by PY with the active translation observed for some mRNAs during cold shock. PMID:23420694

  19. An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors

    Science.gov (United States)

    Toh, Seok-Ming; Mankin, Alexander S.

    2017-01-01

    A number of nucleotide residues in ribosomal RNA undergo specific posttranscriptional modification. The roles of most modifications are unclear, but their clustering in the functionally-important regions of rRNA suggest that they might either directly affect the activity or assembly of the ribosome or modulate its interactions with ligands. Of the 25 modified nucleotides in E. coli 23S rRNA, 14 are located in the peptidyl transferase center, the main antibiotic target in the large ribosomal subunit. Since nucleotide modifications have been closely associated with both antibiotic sensitivity and antibiotic resistance, the loss of some of these posttranscriptional modifications may affect the susceptibility of bacteria to antibiotics. We investigated the antibiotic sensitivity of E. coli cells in which the genes of eight rRNA modifying enzymes targeting the PTC were individually inactivated. The lack of pseudouridine at position 2504 of 23S rRNA was found to significantly increase the susceptibility of bacteria to peptidyl transferase inhibitors. Therefore, this indigenous posttranscriptional modification may have evolved as an intrinsic resistance mechanism protecting bacteria against natural antibiotics. PMID:18554609

  20. Mitochondrial ribosomal proteins and human mitochondrial diseases%线粒体核糖体蛋白与人类线粒体疾病

    Institute of Scientific and Technical Information of China (English)

    赵一婷

    2013-01-01

    Mammalian mitochondrial ribosomes (mitoribosome) have experienced a series of structure recombination during the long period of evolution.Mammalian mitochondrial ribosomes lack several major RNA stem structures of bacterial ribosomes but they are rich in mitochondrial ribosomal proteins (MRPs).All MRPs are synthesized in cytoplasm and imported into the mitochondrial matrix,where they assemble with the two mtDNA-encoded rRNAs.In addition to tRNA and rRNA,mitochondrial DNA also encodes 13 proteins for the inner mitochondrial membrane respiratory chain complex.The mitoribosome is responsible for the synthesis of these 13 proteins.Thus,mutations or defects of MRPs or other translation tools can cause mitochondrial diseases.%哺乳动物线粒体核糖体(mitochondrial ribosome,mitoribosome)在漫长的进化阶段经过一系列的结构重组,rRNA比例降低,新增了部分线粒体核糖体蛋白(mitochondrial ribosomal proteins,MRPs),成为蛋白含量最丰富的核糖体.所有MRPs均为核基因编码,在细胞质中合成,再转运到线粒体,与线粒体基因(mitochondrial DNA,mtDNA)编码的两种rRNA结合.mtDNA除编码tRNA和rRNA外,还编码组成线粒体呼吸链复合体的13种蛋白质.由于线粒体核糖体负责翻译这13种蛋白,MRPs和其他翻译工具的突变和缺陷可造成线粒体的相关疾病.

  1. Phosphorylation of ribosomal proteins influences subunit association and translation of poly (U) in Streptomyces coelicolor.

    Science.gov (United States)

    Mikulík, Karel; Bobek, Jan; Ziková, Alice; Smětáková, Magdalena; Bezoušková, Silvie

    2011-03-01

    The occurrence of phosphorylated proteins in ribosomes of Streptomyces coelicolor was investigated. Little is known about which biological functions these posttranslational modifications might fulfil. A protein kinase associated with ribosomes phosphorylated six ribosomal proteins of the small subunit (S3, S4, S12, S13, S14 and S18) and seven ribosomal proteins of the large subunit (L2, L3, L7/L12, L16, L17, L23 and L27). The ribosomal proteins were phosphorylated mainly on the Ser/Thr residues. Phosphorylation of the ribosomal proteins influences ribosomal subunits association. Ribosomes with phosphorylated proteins were used to examine poly (U) translation activity. Phosphorylation induced about 50% decrease in polyphenylalanine synthesis. After preincubation of ribosomes with alkaline phosphatase the activity of ribosomes was greatly restored. Small differences were observed between phosphorylated and unphosphorylated ribosomes in the kinetic parameters of the binding of Phe-tRNA to the A-site of poly (U) programmed ribosomes, suggesting that the initial binding of Phe-tRNA is not significantly affected by phosphorylation. On contrary, the rate of peptidyl transferase was about two-fold lower than that in unphosphorylated ribosomes. The data presented demonstrate that phosphorylation of ribosomal proteins affects critical steps of protein synthesis.

  2. Development of translating ribosome affinity purification for zebrafish.

    Science.gov (United States)

    Tryon, Robert C; Pisat, Nilambari; Johnson, Stephen L; Dougherty, Joseph D

    2013-03-01

    The regulation of transcription and translation by specific cell types is essential to generate the cellular diversity that typifies complex multicellular organisms. Tagging and purification of ribosomal proteins has been shown to be an innovative and effective means of characterizing the ribosome bound transcriptome of highly specific cell populations in vivo. To test the feasibility of using translating ribosome affinity purification (TRAP) in zebrafish, we have generated both a ubiquitous TRAP line and a melanocyte-specific TRAP line using the native zebrafish rpl10a ribosomal protein. We have demonstrated the capacity to capture mRNA transcripts bound to ribosomes, and confirmed the expected enrichment of melanocyte specific genes and depletion of non-melanocyte genes when expressing the TRAP construct with a cell specific promoter. We have also generated a generic EGFP-rpl10a Tol2 plasmid construct (Tol2-zTRAP) that can be readily modified to target any additional cell populations with characterized promoters in zebrafish. Copyright © 2012 Wiley Periodicals, Inc.

  3. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels.

    Science.gov (United States)

    Burger, Kaspar; Mühl, Bastian; Harasim, Thomas; Rohrmoser, Michaela; Malamoussi, Anastassia; Orban, Mathias; Kellner, Markus; Gruber-Eber, Anita; Kremmer, Elisabeth; Hölzel, Michael; Eick, Dirk

    2010-04-16

    Drugs for cancer therapy belong to different categories of chemical substances. The cellular targets for the therapeutic efficacy are often not unambiguously identified. Here, we describe the process of ribosome biogenesis as a target of a large variety of chemotherapeutic drugs. We determined the inhibitory concentration of 36 chemotherapeutic drugs for transcription and processing of ribosomal RNA by in vivo labeling experiments. Inhibitory drug concentrations were correlated to the loss of nucleolar integrity. The synergism of drugs inhibiting ribosomal RNA synthesis at different levels was studied. Drugs inhibited ribosomal RNA synthesis either at the level of (i) rRNA transcription (e.g. oxaliplatin, doxorubicin, mitoxantrone, methotrexate), (ii) early rRNA processing (e.g. camptothecin, flavopiridol, roscovitine), or (iii) late rRNA processing (e.g. 5-fluorouracil, MG-132, homoharringtonine). Blockage of rRNA transcription or early rRNA processing steps caused nucleolar disintegration, whereas blockage of late rRNA processing steps left the nucleolus intact. Flavopiridol and 5-fluorouracil showed a strong synergism for inhibition of rRNA processing. We conclude that inhibition of ribosome biogenesis by chemotherapeutic drugs potentially may contribute to the efficacy of therapeutic regimens.

  4. Stochastic kinetics of ribosomes: single motor properties and collective behavior

    CERN Document Server

    Garai, Ashok; Chowdhury, Debashish; Ramakrishnan, T V

    2009-01-01

    Synthesis of protein molecules in a cell are carried out by ribosomes. A ribosome can be regarded as a molecular motor which utilizes the input chemical energy to move on a messenger RNA (mRNA) track that also serves as a template for the polymerization of the corresponding protein. The forward movement, however, is characterized by an alternating sequence of translocation and pause. Using a quantitative model, which captures the mechanochemical cycle of an individual ribosome, we derive an {\\it exact} analytical expression for the distribution of its dwell times at the successive positions on the mRNA track. Inverse of the average dwell time satisfies a ``Michaelis-Menten-like'' equation and is consistent with the general formula for the average velocity of a molecular motor with an unbranched mechano-chemical cycle. Extending this formula appropriately, we also derive the exact force-velocity relation for a ribosome. Often many ribosomes simultaneously move on the same mRNA track, while each synthesizes a c...

  5. Visualization of cytosolic ribosomes on the surface of mitochondria by electron cryo-tomography.

    Science.gov (United States)

    Gold, Vicki Am; Chroscicki, Piotr; Bragoszewski, Piotr; Chacinska, Agnieszka

    2017-10-01

    We employed electron cryo-tomography to visualize cytosolic ribosomes on the surface of mitochondria. Translation-arrested ribosomes reveal the clustered organization of the TOM complex, corroborating earlier reports of localized translation. Ribosomes are shown to interact specifically with the TOM complex, and nascent chain binding is crucial for ribosome recruitment and stabilization. Ribosomes are bound to the membrane in discrete clusters, often in the vicinity of the crista junctions. This interaction highlights how protein synthesis may be coupled with transport. Our work provides unique insights into the spatial organization of cytosolic ribosomes on mitochondria. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  6. MPV17L2 is required for ribosome assembly in mitochondria

    NARCIS (Netherlands)

    Rosa, I. Dalla; Durigon, R.; Pearce, S.F.; Rorbach, J.; Hirst, E.M.; Vidoni, S.; Reyes, A.; Brea-Calvo, G.; Minczuk, M.; Woellhaf, M.W.; Herrmann, J.M.; Huynen, M.A.; Holt, I.J.; Spinazzola, A.

    2014-01-01

    MPV17 is a mitochondrial protein of unknown function, and mutations in MPV17 are associated with mitochondrial deoxyribonucleic acid (DNA) maintenance disorders. Here we investigated its most similar relative, MPV17L2, which is also annotated as a mitochondrial protein. Mitochondrial fractionation a

  7. Composition and structure of the 80S ribosome from the green alga Chlamydomonas reinhardtii: 80S ribosomes are conserved in plants and animals.

    Science.gov (United States)

    Manuell, Andrea L; Yamaguchi, Kenichi; Haynes, Paul A; Milligan, Ronald A; Mayfield, Stephen P

    2005-08-12

    We have conducted a proteomic analysis of the 80S cytosolic ribosome from the eukaryotic green alga Chlamydomonas reinhardtii, and accompany this with a cryo-electron microscopy structure of the ribosome. Proteins homologous to all but one rat 40S subunit protein, including a homolog of RACK1, and all but three rat 60S subunit proteins were identified as components of the C. reinhardtii ribosome. Expressed Sequence Tag (EST) evidence and annotation of the completed C. reinhardtii genome identified genes for each of the four proteins not identified by proteomic analysis, showing that algae potentially have a complete set of orthologs to mammalian 80S ribosomal proteins. Presented at 25A, the algal 80S ribosome is very similar in structure to the yeast 80S ribosome, with only minor distinguishable differences. These data show that, although separated by billions of years of evolution, cytosolic ribosomes from photosynthetic organisms are highly conserved with their yeast and animal counterparts.

  8. RNA structures regulating ribosomal protein biosynthesis in bacilli.

    Science.gov (United States)

    Deiorio-Haggar, Kaila; Anthony, Jon; Meyer, Michelle M

    2013-07-01

    In Bacilli, there are three experimentally validated ribosomal-protein autogenous regulatory RNAs that are not shared with E. coli. Each of these RNAs forms a unique secondary structure that interacts with a ribosomal protein encoded by a downstream gene, namely S4, S15, and L20. Only one of these RNAs that interacts with L20 is currently found in the RNA Families Database. We created, or modified, existing structural alignments for these three RNAs and used them to perform homology searches. We have determined that each structure exhibits a narrow phylogenetic distribution, mostly relegated to the Firmicute class Bacilli. This work, in conjunction with other similar work, demonstrates that there are most likely many non-homologous RNA regulatory elements regulating ribosomal protein biosynthesis that still await discovery and characterization in other bacterial species.

  9. Cinnamomin-A Versatile Type Ⅱ Ribosome-inactivating Protein

    Institute of Scientific and Technical Information of China (English)

    Hong XU; Wang-Yi LIU

    2004-01-01

    Ribosome-inactivating proteins(RIPs)are a group of toxic proteins that can specifically act on the universally conserved sarcin/ricin domain(S/R domain)of the largest RNA in ribosome and thus irreversibly inactivate ribosome for protein synthesis.Cinnamomin is a multifunctional type Ⅱ RIP isolated in our laboratory from the mature seeds of the camphor tree.This protein has been extensively studied with regard to its purification,characteristics,structure and function,genetic expression,enzymatic mechanism,physiological role in seed cell and toxicity to cancer cells and insect larvae.The research results of cinnamomin obtained in our laboratory are summarized in this review.Understanding of cinnamomin and the relative new proteins will help expand our knowledge of RIPs and may accelerate theoretical study and the development of their potential applications.

  10. Structural basis for precursor protein-directed ribosomal peptide macrocyclization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunhua; Condurso, Heather L.; Li, Gengnan; Ding, Yousong; Bruner, Steven D. (Florida)

    2016-11-11

    Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides that target proteases with potent reversible inhibition. The product structure is constructed via three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here we describe in detail the structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases MdnC and MdnB interact with a conserved α-helix of the precursor peptide using a novel precursor-peptide recognition mechanism. The results provide insight into the unique protein–protein interactions that are key to the chemistry, suggest an origin for the natural combinatorial synthesis of microviridin peptides, and provide a framework for future engineering efforts to generate designed compounds.

  11. Posttranslational Modifications of Ribosomal Proteins in Escherichia coli.

    Science.gov (United States)

    Nesterchuk, M V; Sergiev, P V; Dontsova, O A

    2011-04-01

    А number of ribosomal proteins inEscherichia coliundergo posttranslational modifications. Six ribosomal proteins are methylated (S11, L3, L11, L7/L12, L16, and L33), three proteins are acetylated (S5, S18, and L7), and protein S12 is methylthiolated. Extra amino acid residues are added to protein S6. С-terminal amino acid residues are partially removed from protein L31. The functional significance of these modifications has remained unclear. These modifications are not vital to the cells, and it is likely that they have regulatory functions. This paper reviews all the known posttranslational modifications of ribosomal proteins inEscherichia coli. Certain enzymes responsible for the modifications and mechanisms of enzymatic reactions are also discussed.

  12. 5SRNAdb: an information resource for 5S ribosomal RNAs.

    Science.gov (United States)

    Szymanski, Maciej; Zielezinski, Andrzej; Barciszewski, Jan; Erdmann, Volker A; Karlowski, Wojciech M

    2016-01-04

    Ribosomal 5S RNA (5S rRNA) is the ubiquitous RNA component found in the large subunit of ribosomes in all known organisms. Due to its small size, abundance and evolutionary conservation 5S rRNA for many years now is used as a model molecule in studies on RNA structure, RNA-protein interactions and molecular phylogeny. 5SRNAdb (http://combio.pl/5srnadb/) is the first database that provides a high quality reference set of ribosomal 5S RNAs (5S rRNA) across three domains of life. Here, we give an overview of new developments in the database and associated web tools since 2002, including updates to database content, curation processes and user web interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides.

    Science.gov (United States)

    Freeman, Michael F; Gurgui, Cristian; Helf, Maximilian J; Morinaka, Brandon I; Uria, Agustinus R; Oldham, Neil J; Sahl, Hans-Georg; Matsunaga, Shigeki; Piel, Jörn

    2012-10-19

    It is held as a paradigm that ribosomally synthesized peptides and proteins contain only l-amino acids. We demonstrate a ribosomal origin of the marine sponge-derived polytheonamides, exceptionally potent, giant natural-product toxins. Isolation of the biosynthetic genes from the sponge metagenome revealed a bacterial gene architecture. Only six candidate enzymes were identified for 48 posttranslational modifications, including 18 epimerizations and 17 methylations of nonactivated carbon centers. Three enzymes were functionally validated, which showed that a radical S-adenosylmethionine enzyme is responsible for the unidirectional epimerization of multiple and different amino acids. Collectively, these complex alterations create toxins that function as unimolecular minimalistic ion channels with near-femtomolar activity. This study broadens the biosynthetic scope of ribosomal systems and creates new opportunities for peptide and protein bioengineering.

  14. Interaction of tRNA with Eukaryotic Ribosome

    Directory of Open Access Journals (Sweden)

    Dmitri Graifer

    2015-03-01

    Full Text Available This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.

  15. Ribosomal Chamber Music: Toward an Understanding of IRES Mechanisms.

    Science.gov (United States)

    Yamamoto, Hiroshi; Unbehaun, Anett; Spahn, Christian M T

    2017-08-01

    Internal initiation is a 5'-end-independent mode of translation initiation engaged by many virus- and putatively some cell-encoded templates. Internal initiation is facilitated by specific RNA tertiary folds, called internal ribosomal entry sites (IRESs), in the 5' untranslated region (UTR) of the respective transcripts. In this review we discuss recent structural insight into how established IRESs first capture and then manipulate the eukaryotic translation machinery through non-canonical interactions and by guiding the intrinsic conformational flexibility of the eukaryotic ribosome. Because IRESs operate with reduced complexity and constitute minimal systems of initiation, comparison with canonical initiation may allow common mechanistic principles of the ribosome to be delineated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Proton and $\\gamma$- partial widths of astrophysically important states of $^{30}$S studied by the $\\beta$-delayed decay of $^{31}$Ar

    CERN Document Server

    Koldste, G T; Borge, M J G; Briz, J A; Carmona-Gallardo, M; Fraile, L M; Fynbo, H O U; Giovinazzo, J; Johansen, J G; Jokinen, A; Jonson, B; Kurturkian-Nieto, T; Kusk, J H; Nilsson, T; Perea, A; Pesudo, V; Picado, E; Riisager, K; Saastamoinen, A; Tengblad, O; Thomas, J -C; Van de Walle, J

    2013-01-01

    Resonances just above the proton threshold in $^{30}$S affect the $^{29}$P$(p,\\gamma)^{30}$S reaction under astrophysical conditions. The ($p,\\gamma$)-reaction rate is currently determined indirectly and depends on the properties of the relevant resonances. We present here a method for finding the ratio between the proton- and $\\gamma$- partial widths of resonances in $^{30}$S. The widths are determined from the $\\beta -2p$ and $\\beta -p-\\gamma$-decay of $^{31}$Ar, which is produced at ISOLDE, CERN. Experimental limits on the ratio between the proton- and $\\gamma$- partial widths for astrophysical relevant levels in $^{30}$S have been found for the first time. A level at 4689.2(24)keV is identified in the $\\gamma$-spectrum, and an upper limit on the $\\Gamma_{p}/\\Gamma_{\\gamma}$ ratio of 0.26 (95% C.L.) is found. In the two-proton spectrum two levels at 5227(3)keV and 5847(4)keV are identified. These levels were previously seen to $\\gamma$-decay and upper limits on the $\\Gamma_{\\gamma}/\\Gamma_{p}$ ratio of 0.5...

  17. Mutation in mitochondrial ribosomal protein S7 (MRPS7) causes congenital sensorineural deafness, progressive hepatic and renal failure and lactic acidemia.

    Science.gov (United States)

    Menezes, Minal J; Guo, Yiran; Zhang, Jianguo; Riley, Lisa G; Cooper, Sandra T; Thorburn, David R; Li, Jiankang; Dong, Daoyuan; Li, Zhijun; Glessner, Joseph; Davis, Ryan L; Sue, Carolyn M; Alexander, Stephen I; Arbuckle, Susan; Kirwan, Paul; Keating, Brendan J; Xu, Xun; Hakonarson, Hakon; Christodoulou, John

    2015-04-15

    Functional defects of the mitochondrial translation machinery, as a result of mutations in nuclear-encoded genes, have been associated with combined oxidative phosphorylation (OXPHOS) deficiencies. We report siblings with congenital sensorineural deafness and lactic acidemia in association with combined respiratory chain (RC) deficiencies of complexes I, III and IV observed in fibroblasts and liver. One of the siblings had a more severe phenotype showing progressive hepatic and renal failure. Whole-exome sequencing revealed a homozygous mutation in the gene encoding mitochondrial ribosomal protein S7 (MRPS7), a c.550A>G transition that encodes a substitution of valine for a highly conserved methionine (p.Met184Val) in both affected siblings. MRPS7 is a 12S ribosomal RNA-binding subunit of the small mitochondrial ribosomal subunit, and is required for the assembly of the small ribosomal subunit. Pulse labeling of mitochondrial protein synthesis products revealed impaired mitochondrial protein synthesis in patient fibroblasts. Exogenous expression of wild-type MRPS7 in patient fibroblasts rescued complexes I and IV activities, demonstrating the deleterious effect of the mutation on RC function. Moreover, reduced 12S rRNA transcript levels observed in the patient's fibroblasts were also restored to normal levels by exogenous expression of wild-type MRPS7. Our data demonstrate the pathogenicity of the identified MRPS7 mutation as a novel cause of mitochondrial RC dysfunction, congenital sensorineural deafness and progressive hepatic and renal failure.

  18. Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans.

    Science.gov (United States)

    Ge, Wei; Wolf, Alexander; Feng, Tianshu; Ho, Chia-Hua; Sekirnik, Rok; Zayer, Adam; Granatino, Nicolas; Cockman, Matthew E; Loenarz, Christoph; Loik, Nikita D; Hardy, Adam P; Claridge, Timothy D W; Hamed, Refaat B; Chowdhury, Rasheduzzaman; Gong, Lingzhi; Robinson, Carol V; Trudgian, David C; Jiang, Miao; Mackeen, Mukram M; Mccullagh, James S; Gordiyenko, Yuliya; Thalhammer, Armin; Yamamoto, Atsushi; Yang, Ming; Liu-Yi, Phebee; Zhang, Zhihong; Schmidt-Zachmann, Marion; Kessler, Benedikt M; Ratcliffe, Peter J; Preston, Gail M; Coleman, Mathew L; Schofield, Christopher J

    2012-12-01

    The finding that oxygenase-catalyzed protein hydroxylation regulates animal transcription raises questions as to whether the translation machinery and prokaryotic proteins are analogously modified. Escherichia coli ycfD is a growth-regulating 2-oxoglutarate oxygenase catalyzing arginyl hydroxylation of the ribosomal protein Rpl16. Human ycfD homologs, Myc-induced nuclear antigen (MINA53) and NO66, are also linked to growth and catalyze histidyl hydroxylation of Rpl27a and Rpl8, respectively. This work reveals new therapeutic possibilities via oxygenase inhibition and by targeting modified over unmodified ribosomes.

  19. RNA polymerase and the ribosome: the close relationship.

    Science.gov (United States)

    McGary, Katelyn; Nudler, Evgeny

    2013-04-01

    In bacteria transcription and translation are linked in time and space. When coupled to RNA polymerase (RNAP), the translating ribosome ensures transcriptional processivity by preventing RNAP backtracking. Recent advances in the field have characterized important linker proteins that bridge the gap between transcription and translation: In particular, the NusE(S10):NusG complex and the NusG homolog, RfaH. The direct link between the moving ribosome and RNAP provides a basis for maintaining genomic integrity while enabling efficient transcription and timely translation of various genes within the bacterial cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Mapping the non-standardized biases of ribosome profiling.

    Science.gov (United States)

    Bartholomäus, Alexander; Del Campo, Cristian; Ignatova, Zoya

    2016-01-01

    Ribosome profiling is a new emerging technology that uses massively parallel amplification of ribosome-protected fragments and next-generation sequencing to monitor translation in vivo with codon resolution. Studies using this approach provide insightful views on the regulation of translation on a global cell-wide level. In this review, we compare different experimental set-ups and current protocols for sequencing data analysis. Specifically, we review the pitfalls at some experimental steps and highlight the importance of standardized protocol for sample preparation and data processing pipeline, at least for mapping and normalization.

  1. An intron in a ribosomal protein gene from Tetrahymena

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Andreasen, Per Hove; Dreisig, Hanne

    1986-01-01

    of hybrid-selected mRNA and authentic ribosomal proteins. The proteins show strong homology to ribosomal protein S12 from Escherichia coli. The coding region of the gene is interrupted by a 979-bp intron 68 bp downstream of the translation start. This is the first intron in a protein encoding gene...... of a ciliate to be described at the nucleotide sequence level. The intron obeys the GT/AG rule for splice junctions of nuclear mRNA introns from higher eukaryotes but lacks the pyrimidine stretch usually found in the immediate vicinity of the 3' splice junction. The structure of the intron and the fact...

  2. A streamlined ribosome profiling protocol for the characterization of microorganisms

    DEFF Research Database (Denmark)

    Latif, Haythem; Szubin, Richard; Tan, Justin

    2015-01-01

    in the microbial research community. Here we present a streamlined ribosome profiling protocol with reduced barriers to entry for microbial characterization studies. Our approach provides simplified alternatives during harvest, lysis, and recovery of monosomes and also eliminates several time-consuming steps......Ribosome profiling is a powerful tool for characterizing in vivo protein translation at the genome scale, with multiple applications ranging from detailed molecular mechanisms to systems-level predictive modeling. Though highly effective, this intricate technique has yet to become widely used...

  3. Probe tip heating assembly

    Science.gov (United States)

    Schmitz, Roger William; Oh, Yunje

    2016-10-25

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably received and clamped within the socket.

  4. Phosphorylation of acidic ribosomal proteins by ribosome-associated protein kinases of ``Saccharomyces cerevisiae`` and ``Schizosaccharomyces pombe``

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowicz, T.; Cytrynska, M.; Kowalczyk, W.; Gasior, E. [Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland)

    1993-12-31

    Two proteins of 13 kDa and 38 kDa, the components of 60S ribosomal subunits, were identified as phosphorylation substrates for protein tightly associated with ``S. cerevisiae`` and ``Schizosaccharomyces pombe`` ribosomes. An enzyme with properties of multifunctional casein kinase II was detected in ribosome preparations from both yeast species. In S. cerevisiae another protein kinase with high substrate specificity toward those proteins was also identified. By using isoelectric focusing, the protein band of 13 kDa from ``S. cerevisiae`` and ``S. pombe`` was resolved respectively into three and four major forms of different charge. The same protein forms were phosphorylated in the in vivo {sup 32}P-labelling experiments. (author). 33 refs, 6 figs.

  5. Newnes electronics assembly handbook

    CERN Document Server

    Brindley, Keith

    2013-01-01

    Newnes Electronics Assembly Handbook: Techniques, Standards and Quality Assurance focuses on the aspects of electronic assembling. The handbook first looks at the printed circuit board (PCB). Base materials, basic mechanical properties, cleaning of assemblies, design, and PCB manufacturing processes are then explained. The text also discusses surface mounted assemblies and packaging of electromechanical assemblies, as well as the soldering process. Requirements for the soldering process; solderability and protective coatings; cleaning of PCBs; and mass solder/component reflow soldering are des

  6. Identification of a Recently Active Mammalian SINE Derived from Ribosomal RNA

    Science.gov (United States)

    Longo, Mark S.; Brown, Judy D.; Zhang, Chu; O’Neill, Michael J.; O’Neill, Rachel J.

    2015-01-01

    Complex eukaryotic genomes are riddled with repeated sequences whose derivation does not coincide with phylogenetic history and thus is often unknown. Among such sequences, the capacity for transcriptional activity coupled with the adaptive use of reverse transcription can lead to a diverse group of genomic elements across taxa, otherwise known as selfish elements or mobile elements. Short interspersed nuclear elements (SINEs) are nonautonomous mobile elements found in eukaryotic genomes, typically derived from cellular RNAs such as tRNAs, 7SL or 5S rRNA. Here, we identify and characterize a previously unknown SINE derived from the 3′-end of the large ribosomal subunit (LSU or 28S rDNA) and transcribed via RNA polymerase III. This new element, SINE28, is represented in low-copy numbers in the human reference genome assembly, wherein we have identified 27 discrete loci. Phylogenetic analysis indicates these elements have been transpositionally active within primate lineages as recently as 6 MYA while modern humans still carry transcriptionally active copies. Moreover, we have identified SINE28s in all currently available assembled mammalian genome sequences. Phylogenetic comparisons indicate that these elements are frequently rederived from the highly conserved LSU rRNA sequences in a lineage-specific manner. We propose that this element has not been previously recognized as a SINE given its high identity to the canonical LSU, and that SINE28 likely represents one of possibly many unidentified, active transposable elements within mammalian genomes. PMID:25637222

  7. Structural dynamics of the yeast Shwachman-Diamond syndrome protein (Sdo1) on the ribosome and its implication in the 60S subunit maturation.

    Science.gov (United States)

    Ma, Chengying; Yan, Kaige; Tan, Dan; Li, Ningning; Zhang, Yixiao; Yuan, Yi; Li, Zhifei; Dong, Meng-Qiu; Lei, Jianlin; Gao, Ning

    2016-03-01

    The human Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease caused by mutations in a highly conserved ribosome assembly factor SBDS. The functional role of SBDS is to cooperate with another assembly factor, elongation factor 1-like (Efl1), to promote the release of eukaryotic initiation factor 6 (eIF6) from the late-stage cytoplasmic 60S precursors. In the present work, we characterized, both biochemically and structurally, the interaction between the 60S subunit and SBDS protein (Sdo1p) from yeast. Our data show that Sdo1p interacts tightly with the mature 60S subunit in vitro through its domain I and II, and is capable of bridging two 60S subunits to form a stable 2:2 dimer. Structural analysis indicates that Sdo1p bind to the ribosomal P-site, in the proximity of uL16 and uL5, and with direct contact to H69 and H38. The dynamic nature of Sdo1p on the 60S subunit, together with its strategic binding position, suggests a surveillance role of Sdo1p in monitoring the conformational maturation of the ribosomal P-site. Altogether, our data support a conformational signal-relay cascade during late-stage 60S maturation, involving uL16, Sdo1p, and Efl1p, which interrogates the functional P-site to control the departure of the anti-association factor eIF6.

  8. Structural dynamics of the yeast Shwachman-Diamond syndrome protein (Sdo1 on the ribosome and its implication in the 60S subunit maturation

    Directory of Open Access Journals (Sweden)

    Chengying Ma

    2016-02-01

    Full Text Available Abstract The human Shwachman-Diamond syndrome (SDS is an autosomal recessive disease caused by mutations in a highly conserved ribosome assembly factor SBDS. The functional role of SBDS is to cooperate with another assembly factor, elongation factor 1-like (Efl1, to promote the release of eukaryotic initiation factor 6 (eIF6 from the late-stage cytoplasmic 60S precursors. In the present work, we characterized, both biochemically and structurally, the interaction between the 60S subunit and SBDS protein (Sdo1p from yeast. Our data show that Sdo1p interacts tightly with the mature 60S subunit in vitro through its domain I and II, and is capable of bridging two 60S subunits to form a stable 2:2 dimer. Structural analysis indicates that Sdo1p bind to the ribosomal P-site, in the proximity of uL16 and uL5, and with direct contact to H69 and H38. The dynamic nature of Sdo1p on the 60S subunit, together with its strategic binding position, suggests a surveillance role of Sdo1p in monitoring the conformational maturation of the ribosomal P-site. Altogether, our data support a conformational signal-relay cascade during late-stage 60S maturation, involving uL16, Sdo1p, and Efl1p, which interrogates the functional P-site to control the departure of the anti-association factor eIF6.

  9. Functional universality and evolutionary diversity: insights from the structure of the ribosome.

    Science.gov (United States)

    Yonath, A; Franceschi, F

    1998-06-15

    The structure of the mammalian ribosome, reconstructed at 25 A resolution, has added a new dimension to our current knowledge, as it manifests the conservation and universality of the ribosome in respect to its primary tasks in protein biosynthesis. A combined approach to study of the ribosome, using X-ray crystallography and electron microscopy, may further improve our understanding of ribosome function in the future.

  10. Establishing Rps6 hemizygous mice as a model for studying how ribosomal protein haploinsufficiency impairs erythropoiesis

    OpenAIRE

    2011-01-01

    Diamond-Blackfan Anemia(DBA) is a congenital hypoproliferative macrocytic anemia; 5q-syndrome myelodysplastic syndrome(MDS) is an acquired hypoproliferative macrocytic anemia. Their common erythroid phenotype reflects a shared pathophysiology -- haploinsufficiency of one of many ribosomal proteins and somatic deletion of one allele of the ribosomal protein S14 gene, respectively. Although these abnormalities lead to defective ribosome biogenesis, why ribosomal protein hemizygosity results in ...

  11. Differential expression of ribosomal proteins in myelodysplastic syndromes.

    Science.gov (United States)

    Rinker, Elizabeth B; Dueber, Julie C; Qualtieri, Julianne; Tedesco, Jason; Erdogan, Begum; Bosompem, Amma; Kim, Annette S

    2016-02-01

    Aberrations of ribosomal biogenesis have been implicated in several congenital bone marrow failure syndromes, such as Diamond-Blackfan anaemia, Shwachman-Diamond syndrome and Dyskeratosis Congenita. Recent studies have identified haploinsufficiency of RPS14 in the acquired bone marrow disease isolated 5q minus syndrome, a subtype of myelodysplastic syndromes (MDS). However, the expression of various proteins comprising the ribosomal subunits and other proteins enzymatically involved in the synthesis of the ribosome has not been explored in non-5q minus MDS. Furthermore, differences in the effects of these expression alterations among myeloid, erythroid and megakaryocyte lineages have not been well elucidated. We examined the expression of several proteins related to ribosomal biogenesis in bone marrow biopsy specimens from patients with MDS (5q minus patients excluded) and controls with no known myeloid disease. Specifically, we found that there is overexpression of RPS24, DKC1 and SBDS in MDS. This overexpression is in contrast to the haploinsufficiency identified in the congenital bone marrow failure syndromes and in acquired 5q minus MDS. Potential mechanisms for these differences and aetiology for these findings in MDS are discussed.

  12. Reverse translocation of tRNA in the ribosome.

    Science.gov (United States)

    Shoji, Shinichiro; Walker, Sarah E; Fredrick, Kurt

    2006-12-28

    A widely held view is that directional movement of tRNA in the ribosome is determined by an intrinsic mechanism and driven thermodynamically by transpeptidation. Here, we show that, in certain ribosomal complexes, the pretranslocation (PRE) state is thermodynamically favored over the posttranslocation (POST) state. Spontaneous and efficient conversion from the POST to PRE state is observed when EF-G is depleted from ribosomes in the POST state or when tRNA is added to the E site of ribosomes containing P-site tRNA. In the latter assay, the rate of tRNA movement is increased by streptomycin and neomycin, decreased by tetracycline, and not affected by the acylation state of the tRNA. In one case, we provide evidence that complex conversion occurs by reverse translocation (i.e., direct movement of the tRNAs from the E and P sites to the P and A sites, respectively). These findings have important implications for the energetics of translocation.

  13. The Database of Ribosomal Cross-links: an update.

    OpenAIRE

    Baranov, P V; Kubarenko, A V; Gurvich, O L; Shamolina, T A; Brimacombe, R

    1999-01-01

    The Database of Ribosomal Cross-links (DRC) was created in 1997. Here we describe new data incorporated into this database and several new features of the DRC. The DRC is freely available via World Wide Web at http://visitweb.com/database/ or http://www. mpimg-berlin-dahlem.mpg.de/ approximately ag_ribo/ag_brimacombe/drc/

  14. mRNA pseudoknot structures can act as ribosomal roadblocks

    DEFF Research Database (Denmark)

    Hansen, Jesper Tholstrup; Oddershede, Lene Broeng; Sørensen, Michael Askvad

    2012-01-01

    Several viruses utilize programmed ribosomal frameshifting mediated by mRNA pseudoknots in combination with a slippery sequence to produce a well defined stochiometric ratio of the upstream encoded to the downstream-encoded protein. A correlation between the mechanical strength of mRNA pseudoknot...

  15. The ribosome-associated complex antagonizes prion formation in yeast.

    Science.gov (United States)

    Amor, Alvaro J; Castanzo, Dominic T; Delany, Sean P; Selechnik, Daniel M; van Ooy, Alex; Cameron, Dale M

    2015-01-01

    The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI(+)] prion - an alternative conformer of Sup35 protein - and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in Δzuo1 strains. Consistent with this finding, Δzuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome.

  16. Classification of methanogenic bacteria by 16S ribosomal RNA characterization

    Energy Technology Data Exchange (ETDEWEB)

    Fox, G.E.; Magrum, L.J.; Balch, W.E.; Wolfe, R.S.; Woese, C.R.

    1977-10-01

    The 16S ribosomal RNAs from 10 species of methanogenic bacteria have been characterized in terms of the oligonucleotides produced by T/sub 1/ RNase digestion. Comparative analysis of these data reveals the methanogens to constitute a distinct phylogenetic group containing two major divisions. These organisms appear to be only distantly related to typical bacteria.

  17. PCR primers for metazoan mitochondrial 12S ribosomal DNA sequences.

    Directory of Open Access Journals (Sweden)

    Ryuji J Machida

    Full Text Available BACKGROUND: Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy. METHODOLOGY/PRINCIPAL FINDINGS: A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI's Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans. CONCLUSIONS/SIGNIFICANCE: Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans.

  18. Protein folding on the ribosome studied using NMR spectroscopy

    Science.gov (United States)

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  19. Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale.

    Science.gov (United States)

    Michel, Audrey M; Baranov, Pavel V

    2013-01-01

    Ribosome profiling or ribo-seq is a new technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome protected mRNA fragments allowing the measurement of ribosome density along all RNA molecules present in the cell. At the same time, the high resolution of this technique allows detailed analysis of ribosome density on individual RNAs. Since its invention, the ribosome profiling technique has been utilized in a range of studies in both prokaryotic and eukaryotic organisms. Several studies have adapted and refined the original ribosome profiling protocol for studying specific aspects of translation. Ribosome profiling of initiating ribosomes has been used to map sites of translation initiation. These studies revealed the surprisingly complex organization of translation initiation sites in eukaryotes. Multiple initiation sites are responsible for the generation of N-terminally extended and truncated isoforms of known proteins as well as for the translation of numerous open reading frames (ORFs), upstream of protein coding ORFs. Ribosome profiling of elongating ribosomes has been used for measuring differential gene expression at the level of translation, the identification of novel protein coding genes and ribosome pausing. It has also provided data for developing quantitative models of translation. Although only a dozen or so ribosome profiling datasets have been published so far, they have already dramatically changed our understanding of translational control and have led to new hypotheses regarding the origin of protein coding genes. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Lactococcus lactis YfiA is necessary and sufficient for ribosome dimerization

    NARCIS (Netherlands)

    Puri, Pranav; Eckhardt, Thomas H; Franken, Linda E; Fusetti, Fabrizia; Stuart, Marc C A; Boekema, Egbert J; Kuipers, Oscar P; Kok, Jan; Poolman, Berend

    2014-01-01

    Dimerization and inactivation of ribosomes in Escherichia coli is a two-step process that involves the binding of ribosome modulation factor (RMF) and hibernation promotion factor (HPF). Lactococcus lactisMG1363 expresses a protein, YfiA(Ll), which associates with ribosomes in the stationary phase o

  1. Structure based hypothesis of a mitochondrial ribosome rescue mechanism

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2012-05-01

    Full Text Available Abstract Background mtRF1 is a vertebrate mitochondrial protein with an unknown function that arose from a duplication of the mitochondrial release factor mtRF1a. To elucidate the function of mtRF1, we determined the positions that are conserved among mtRF1 sequences but that are different in their mtRF1a paralogs. We subsequently modeled the 3D structure of mtRF1a and mtRF1 bound to the ribosome, highlighting the structural implications of these differences to derive a hypothesis for the function of mtRF1. Results Our model predicts, in agreement with the experimental data, that the 3D structure of mtRF1a allows it to recognize the stop codons UAA and UAG in the A-site of the ribosome. In contrast, we show that mtRF1 likely can only bind the ribosome when the A-site is devoid of mRNA. Furthermore, while mtRF1a will adopt its catalytic conformation, in which it functions as a peptidyl-tRNA hydrolase in the ribosome, only upon binding of a stop codon in the A-site, mtRF1 appears specifically adapted to assume this extended, peptidyl-tRNA hydrolyzing conformation in the absence of mRNA in the A-site. Conclusions We predict that mtRF1 specifically recognizes ribosomes with an empty A-site and is able to function as a peptidyl-tRNA hydrolase in those situations. Stalled ribosomes with empty A-sites that still contain a tRNA bound to a peptide chain can result from the translation of truncated, stop-codon less mRNAs. We hypothesize that mtRF1 recycles such stalled ribosomes, performing a function that is analogous to that of tmRNA in bacteria. Reviewers This article was reviewed by Dr. Eugene Koonin, Prof. Knud H. Nierhaus (nominated by Dr. Sarah Teichmann and Dr. Shamil Sunyaev.

  2. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-15

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen the yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  3. Ribosomal Synthesis of Peptides with Multiple β-Amino Acids.

    Science.gov (United States)

    Fujino, Tomoshige; Goto, Yuki; Suga, Hiroaki; Murakami, Hiroshi

    2016-02-17

    The compatibility of β-amino acids with ribosomal translation was studied for decades, but it has been still unclear whether the ribosome can accept various β-amino acids, and whether the ribosome can introduce multiple β-amino acids in a peptide. In the present study, by using the Escherichia coli reconstituted cell-free translation system with a reprogramed genetic code, we screened β-amino acids that give high single incorporation efficiency and used them to synthesize peptides containing multiple β-amino acids. The experiments of single β-amino acid incorporation into a peptide revealed that 13 β-amino acids are compatible with ribosomal translation. Six of the tested β-amino acids (βhGly, l-βhAla, l-βhGln, l-βhPhg, l-βhMet, and d-βhPhg) showed high incorporation efficiencies, and seven (l-βhLeu, l-βhIle, l-βhAsn, l-βhPhe, l-βhLys, d-βhAla, and d-βhLeu) showed moderate incorporation efficiencies; whereas no full-length peptide was produced using other β-amino acids (l-βhPro, l-βhTrp, and l-βhGlu). Subsequent double-incorporation experiments using β-amino acids with high single incorporation efficiency revealed that elongation of peptides with successive β-amino acids is prohibited. Efficiency of the double-incorporation of the β-amino acids was restored by the insertion of Tyr or Ile between the two β-amino acids. On the basis of these experiments, we also designed mRNA sequences of peptides, and demonstrated the ribosomal synthesis of peptides containing different types of β-amino acids at multiple positions.

  4. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.

    Science.gov (United States)

    Sharkey, Liam K R; Edwards, Thomas A; O'Neill, Alex J

    2016-03-22

    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Copyright © 2016 Sharkey et al.

  5. The nature and extent of contributions by defective ribosome products to the HLA peptidome

    Science.gov (United States)

    Bourdetsky, Dmitry; Schmelzer, Christian E. H.; Admon, Arie

    2014-01-01

    MHC class I peptides are products of endogenous cellular protein degradation. Their prompt presentation, after rapid degradation of their newly synthesized source proteins, is needed to alert the immune system during pathogen infection. A possible source for such rapidly degrading proteins can be defective ribosome products (DRiPs), which include polypeptides produced as part of the pioneer round of translation, premature translation termination, and proteins failing to fold properly or to assemble into their multisubunit protein complexes. However, the identities and relative contribution to the MHC peptidome of these mature or newly synthesized and rapidly degraded cellular proteins is not well understood. To clarify these issues, we used dynamic stable isotope labeling by amino acids in cell culture to define the relative rates of synthesis of the HLA class I peptidomes and the source proteomes of three cultured human hematopoietic cell lines. Large numbers of HLA class I peptides were observed to be derived from DRiPs, defined here as HLA peptides that shift from their light to heavy isotope forms faster than their source proteins. Specific groups of proteins, such as ribosomal and T-complex protein 1 (TCP-1), contributed a disproportionately large number of DRiPs to the HLA peptidomes. Furthermore, no significant preference was observed for HLA peptides derived from the amino terminal regions of the proteins, suggesting that the contribution of products of premature translation termination was minimal. Thus, the most likely sources of DRiPs-derived HLA peptides are full-sized, misassembled, and surplus subunits of large protein complexes. PMID:24715725

  6. The structure of Rpf2–Rrs1 explains its role in ribosome biogenesis

    Science.gov (United States)

    Kharde, Satyavati; Calviño, Fabiola R.; Gumiero, Andrea; Wild, Klemens; Sinning, Irmgard

    2015-01-01

    The assembly of eukaryotic ribosomes is a hierarchical process involving about 200 biogenesis factors and a series of remodeling steps. The 5S RNP consisting of the 5S rRNA, RpL5 and RpL11 is recruited at an early stage, but has to rearrange during maturation of the pre-60S ribosomal subunit. Rpf2 and Rrs1 have been implicated in 5S RNP biogenesis, but their precise role was unclear. Here, we present the crystal structure of the Rpf2–Rrs1 complex from Aspergillus nidulans at 1.5 Å resolution and describe it as Brix domain of Rpf2 completed by Rrs1 to form two anticodon-binding domains with functionally important tails. Fitting the X-ray structure into the cryo-EM density of a previously described pre-60S particle correlates with biochemical data. The heterodimer forms specific contacts with the 5S rRNA, RpL5 and the biogenesis factor Rsa4. The flexible protein tails of Rpf2–Rrs1 localize to the central protuberance. Two helices in the Rrs1 C-terminal tail occupy a strategic position to block the rotation of 25S rRNA and the 5S RNP. Our data provide a structural model for 5S RNP recruitment to the pre-60S particle and explain why removal of Rpf2–Rrs1 is necessary for rearrangements to drive 60S maturation. PMID:26117542

  7. Structures of human SRP72 complexes provide insights into SRP RNA remodeling and ribosome interaction

    Science.gov (United States)

    Becker, Matthias M. M.; Lapouge, Karine; Segnitz, Bernd; Wild, Klemens; Sinning, Irmgard

    2017-01-01

    Co-translational protein targeting and membrane protein insertion is a fundamental process and depends on the signal recognition particle (SRP). In mammals, SRP is composed of the SRP RNA crucial for SRP assembly and function and six proteins. The two largest proteins SRP68 and SRP72 form a heterodimer and bind to a regulatory site of the SRP RNA. Despite their essential roles in the SRP pathway, structural information has been available only for the SRP68 RNA-binding domain (RBD). Here we present the crystal structures of the SRP68 protein-binding domain (PBD) in complex with SRP72-PBD and of the SRP72-RBD bound to the SRP S domain (SRP RNA, SRP19 and SRP68) detailing all interactions of SRP72 within SRP. The SRP72-PBD is a tetratricopeptide repeat, which binds an extended linear motif of SRP68 with high affinity. The SRP72-RBD is a flexible peptide crawling along the 5e- and 5f-loops of SRP RNA. A conserved tryptophan inserts into the 5e-loop forming a novel type of RNA kink-turn stabilized by a potassium ion, which we define as K+-turn. In addition, SRP72-RBD remodels the 5f-loop involved in ribosome binding and visualizes SRP RNA plasticity. Docking of the S domain structure into cryo-electron microscopy density maps reveals multiple contact sites between SRP68/72 and the ribosome, and explains the role of SRP72 in the SRP pathway. PMID:27899666

  8. Autonomous electrochromic assembly

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  9. A single missense mutation in a coiled-coil domain of Escherichia coli ribosomal protein S2 confers a thermosensitive phenotype that can be suppressed by ribosomal protein S1.

    Science.gov (United States)

    Aseev, Leonid V; Chugunov, Anton O; Efremov, Roman G; Boni, Irina V

    2013-01-01

    Ribosomal protein S2 is an essential component of translation machinery, and its viable mutated variants conferring distinct phenotypes serve as a valuable tool in studying the role of S2 in translation regulation. One of a few available rpsB mutants, rpsB1, shows thermosensitivity and ensures enhanced expression of leaderless mRNAs. In this study, we identified the nature of the rpsB1 mutation. Sequencing of the rpsB1 allele revealed a G-to-A transition in the part of the rpsB gene which encodes a coiled-coil domain of S2. The resulting E132K substitution resides in a highly conserved site, TKKE, a so-called N-terminal capping box, at the beginning of the second alpha helix. The protruding coiled-coil domain of S2 is known to provide binding with 16S rRNA in the head of the 30S subunit and, in addition, to interact with a key mRNA binding protein, S1. Molecular dynamics simulations revealed a detrimental impact of the E132K mutation on the coiled-coil structure and thereby on the interactions between S2 and 16S rRNA, providing a clue for the thermosensitivity of the rpsB1 mutant. Using a strain producing a leaderless lacZ transcript from the chromosomal lac promoter, we demonstrated that not only the rpsB1 mutation generating S2/S1-deficient ribosomes but also the rpsA::IS10 mutation leading to partial deficiency in S1 alone increased translation efficiency of the leaderless mRNA by about 10-fold. Moderate overexpression of S1 relieved all these effects and, moreover, suppressed the thermosensitive phenotype of rpsB1, indicating the role of S1 as an extragenic suppressor of the E132K mutation.

  10. Mescaline-induced changes of brain-cortex ribosomes. Effect of mescaline on the hydrogen-bonded structure of ribonucleic acid of brain-cortex ribosomes.

    Science.gov (United States)

    Datta, R K; Ghosh, J J

    1970-05-01

    1. The action of mescaline sulphate on the hydrogen-bonded structure of the RNA constituent of ribosomes of goat brain-cortex slices was studied by using the hyperchromic effect of heating and formaldehyde reaction. 2. The ribosomal total RNA species of the mescaline-treated brain-cortex slices have a smaller proportion of hydrogen-bonded structure than the ribosomal RNA species of the untreated brain-cortex slices. 3. Mescaline also appears to have affected this lowering of hydrogen-bonded structure of the ribosomal 28S RNA of brain-cortex tissue.

  11. Structural variation of the ribosomal gene cluster within the class Insecta

    Energy Technology Data Exchange (ETDEWEB)

    Mukha, D.V.; Sidorenko, A.P.; Lazebnaya, I.V. [Vavilov Institute of General Genetics, Moscow (Russian Federation)] [and others

    1995-09-01

    General estimation of ribosomal DNA variation within the class Insecta is presented. It is shown that, using blot-hybridization, one can detect differences in the structure of the ribosomal gene cluster not only between genera within an order, but also between species within a genera, including sibling species. Structure of the ribosomal gene cluster of the Coccinellidae family (ladybirds) is analyzed. It is shown that cloned highly conservative regions of ribosomal DNA of Tetrahymena pyriformis can be used as probes for analyzing ribosomal genes in insects. 24 refs., 4 figs.

  12. Cloning a cDNA Encoding Ribosomal Protein S25 from Amaranthus cruentus L.%籽粒苋(Amaranthus cruentus L.)核糖体蛋白S25基因(cDNA)的克隆及其表达分析

    Institute of Scientific and Technical Information of China (English)

    徐芳秀; 江树业; 等

    2001-01-01

    @@ Ribosomes, the agents of protein synthesis, consist of roughly equal amounts of RNA (rRNA) and protein (r-protein). Knowledge of the ribosome and its function mainly comes from the extensive work on 70S bacterial ribosomes. There are 21 proteins in the small (30S) subunit and 30 in the large (50S) subunit in E. coil ri bosomes. The 80S eukaryotic ribosomes are more com plex than the bacterial ones and contain at least 30 pro teins in the small (40S) subunit and 40 in the large (60 S) subunit. These r-proteins are named S1 to S30 and L1 to L40 according to whether they arise from the small or large subunit, and to their mobility in gels. In plants, several ribosomal protein genes and/or cDNAs have been isolated, such as the small subunit proteins S 11, S13, S14, S16, and S19 and the large subunit proteins L2, L7, L17, and L27. Here we report the r-protein S25 cDNA, Arps25, from Amaranthus cruentus L.

  13. Ribosomal oxygenases are structurally conserved from prokaryotes to humans.

    Science.gov (United States)

    Chowdhury, Rasheduzzaman; Sekirnik, Rok; Brissett, Nigel C; Krojer, Tobias; Ho, Chia-Hua; Ng, Stanley S; Clifton, Ian J; Ge, Wei; Kershaw, Nadia J; Fox, Gavin C; Muniz, Joao R C; Vollmar, Melanie; Phillips, Claire; Pilka, Ewa S; Kavanagh, Kathryn L; von Delft, Frank; Oppermann, Udo; McDonough, Michael A; Doherty, Aiden J; Schofield, Christopher J

    2014-06-19

    2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components and in the hydroxylation of transcription factors and splicing factor proteins. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA and ribosomal proteins have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone N(ε)-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases

  14. Polymer Directed Protein Assemblies

    NARCIS (Netherlands)

    van Rijn, Patrick

    2013-01-01

    Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e. g., virus particles. Viruses are a multi-protein assembly of which the morphology is

  15. Polymer Directed Protein Assemblies

    NARCIS (Netherlands)

    van Rijn, Patrick

    Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e. g., virus particles. Viruses are a multi-protein assembly of which the morphology is

  16. In vivo labelling of functional ribosomes reveals spatial regulation during starvation in Podospora anserina

    Directory of Open Access Journals (Sweden)

    Silar Philippe

    2000-11-01

    Full Text Available Abstract Background To date, in eukaryotes, ribosomal protein expression is known to be regulated at the transcriptional and/or translational levels. But other forms of regulation may be possible. Results Here, we report the successful tagging of functional ribosomal particles with a S7-GFP chimaeric protein, making it possible to observe in vivo ribosome dynamics in the filamentous fungus Podospora anserina. Microscopic observations revealed a novel kind of ribosomal protein regulation during the passage between cell growth and stationary phases, with a transient accumulation of ribosomal proteins and/or ribosome subunits in the nucleus, possibly the nucleolus, being observed at the beginning of stationary phase. Conclusion Nuclear sequestration can be another level of ribosomal protein regulation in eukaryotic cells.This may contribute to the regulation of cell growth and division.

  17. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  18. The Cyanobacterial Ribosomal-Associated Protein LrtA Is Involved in Post-Stress Survival in Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Carla V Galmozzi

    Full Text Available A light-repressed transcript encodes the LrtA protein in cyanobacteria. We show that half-life of lrtA transcript from Synechocystis sp. PCC 6803 is higher in dark-treated cells as compared to light-grown cells, suggesting post-transcriptional control of lrtA expression. The lrtA 5´ untranslated leader region is involved in that darkness-dependent regulation. We also found that Synechocystis sp. PCC 6803 LrtA is a ribosome-associated protein present in both 30S and 70S ribosomal particles. In order to investigate the function of this protein we have constructed a deletion mutant of the lrtA gene. Cells lacking LrtA (∆lrtA had significantly lower amount of 70S particles and a greater amount of 30S and 50S particles, suggesting a role of LrtA in stabilizing 70S particles. Synechocystis strains with different amounts of LrtA protein: wild-type, ∆lrtA, and LrtAS (overexpressing lrtA showed no differences in their growth rate under standard laboratory conditions. However, a clear LrtA dose-dependent effect was observed in the presence of the antibiotic tylosin, being the LrtAS strains the most sensitive. Similar results were obtained under hyperosmotic stress caused by sorbitol. Conversely, after prolonged periods of starvation, ∆lrtA strains were delayed in their growth with respect to the wild-type and the LrtAS strains. A positive role of LrtA protein in post-stress survival is proposed.

  19. The Cyanobacterial Ribosomal-Associated Protein LrtA Is Involved in Post-Stress Survival in Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Galmozzi, Carla V; Florencio, Francisco J; Muro-Pastor, M Isabel

    2016-01-01

    A light-repressed transcript encodes the LrtA protein in cyanobacteria. We show that half-life of lrtA transcript from Synechocystis sp. PCC 6803 is higher in dark-treated cells as compared to light-grown cells, suggesting post-transcriptional control of lrtA expression. The lrtA 5´ untranslated leader region is involved in that darkness-dependent regulation. We also found that Synechocystis sp. PCC 6803 LrtA is a ribosome-associated protein present in both 30S and 70S ribosomal particles. In order to investigate the function of this protein we have constructed a deletion mutant of the lrtA gene. Cells lacking LrtA (∆lrtA) had significantly lower amount of 70S particles and a greater amount of 30S and 50S particles, suggesting a role of LrtA in stabilizing 70S particles. Synechocystis strains with different amounts of LrtA protein: wild-type, ∆lrtA, and LrtAS (overexpressing lrtA) showed no differences in their growth rate under standard laboratory conditions. However, a clear LrtA dose-dependent effect was observed in the presence of the antibiotic tylosin, being the LrtAS strains the most sensitive. Similar results were obtained under hyperosmotic stress caused by sorbitol. Conversely, after prolonged periods of starvation, ∆lrtA strains were delayed in their growth with respect to the wild-type and the LrtAS strains. A positive role of LrtA protein in post-stress survival is proposed.

  20. The Cyanobacterial Ribosomal-Associated Protein LrtA Is Involved in Post-Stress Survival in Synechocystis sp. PCC 6803

    Science.gov (United States)

    Galmozzi, Carla V.; Florencio, Francisco J.; Muro-Pastor, M. Isabel

    2016-01-01

    A light-repressed transcript encodes the LrtA protein in cyanobacteria. We show that half-life of lrtA transcript from Synechocystis sp. PCC 6803 is higher in dark-treated cells as compared to light-grown cells, suggesting post-transcriptional control of lrtA expression. The lrtA 5´ untranslated leader region is involved in that darkness-dependent regulation. We also found that Synechocystis sp. PCC 6803 LrtA is a ribosome-associated protein present in both 30S and 70S ribosomal particles. In order to investigate the function of this protein we have constructed a deletion mutant of the lrtA gene. Cells lacking LrtA (∆lrtA) had significantly lower amount of 70S particles and a greater amount of 30S and 50S particles, suggesting a role of LrtA in stabilizing 70S particles. Synechocystis strains with different amounts of LrtA protein: wild-type, ∆lrtA, and LrtAS (overexpressing lrtA) showed no differences in their growth rate under standard laboratory conditions. However, a clear LrtA dose-dependent effect was observed in the presence of the antibiotic tylosin, being the LrtAS strains the most sensitive. Similar results were obtained under hyperosmotic stress caused by sorbitol. Conversely, after prolonged periods of starvation, ∆lrtA strains were delayed in their growth with respect to the wild-type and the LrtAS strains. A positive role of LrtA protein in post-stress survival is proposed. PMID:27442126

  1. Dynamic protein composition of Arabidopsis thaliana cytosolic ribosomes in response to sucrose feeding as revealed by label free MSE proteomics

    NARCIS (Netherlands)

    Hummel, M.; Cordewener, J.H.G.C.; Groot, de J.C.M.; Smeekens, S.; America, A.H.P.; Hanson, J.

    2012-01-01

    Cytosolic ribosomes are among the largest multisubunit cellular complexes. Arabidopsis thaliana ribosomes consist of 79 different ribosomal proteins (r-proteins) that each are encoded by two to six (paralogous) genes. It is unknown whether the paralogs are incorporated into the ribosome and whether

  2. Soldering in electronics assembly

    CERN Document Server

    Judd, Mike

    2013-01-01

    Soldering in Electronics Assembly discusses several concerns in soldering of electronic assemblies. The book is comprised of nine chapters that tackle different areas in electronic assembly soldering. Chapter 1 discusses the soldering process itself, while Chapter 2 covers the electronic assemblies. Chapter 3 talks about solders and Chapter 4 deals with flux. The text also tackles the CS and SC soldering process. The cleaning of soldered assemblies, solder quality, and standards and specifications are also discussed. The book will be of great use to professionals who deal with electronic assem

  3. Expression of protein-coding genes embedded in ribosomal DNA

    DEFF Research Database (Denmark)

    Johansen, Steinar D; Haugen, Peik; Nielsen, Henrik

    2007-01-01

    Ribosomal DNA (rDNA) is a specialised chromosomal location that is dedicated to high-level transcription of ribosomal RNA genes. Interestingly, rDNAs are frequently interrupted by parasitic elements, some of which carry protein genes. These are non-LTR retrotransposons and group II introns...... that encode reverse transcriptase-like genes, and group I introns and archaeal introns that encode homing endonuclease genes (HEGs). Although rDNA-embedded protein genes are widespread in nuclei, organelles and bacteria, there is surprisingly little information available on how these genes are expressed....... Exceptions include a handful of HEGs from group I introns. Recent studies have revealed unusual and essential roles of group I and group I-like ribozymes in the endogenous expression of HEGs. Here we discuss general aspects of rDNA-embedded protein genes and focus on HEG expression from group I introns...

  4. Pactamycin binding site on archaebacterial and eukaryotic ribosomes

    Energy Technology Data Exchange (ETDEWEB)

    Tejedor, F.; Amils, R.; Ballesta, J.P.G.

    1987-01-27

    The presence of a photoreactive acetophenone group in the protein synthesis inhibitor pactamycin and the possibility of obtaining active iodinated derivatives that retain full biological activity allow the antibiotic binding site on Saccharomyces cerevisiae and archaebacterium Sulfolobus solfataricus ribosomes to be photoaffinity labeled. Four major labeled proteins have been identified in the yeast ribosomes, i.e., YS10, YS18, YS21/24, and YS30, while proteins AL1a, AS10/L8, AS18/20, and AS21/22 appeared as radioactive spots in S. solfataricus. There seems to be a correlation between some of the proteins labeled in yeast and those previously reported in Escherichia coli indicating that the pactamycin binding sites of both species, which are in the small subunit close to the initiation factors and mRNA binding sites, must have similar characteristics.

  5. Evolution of Drosophila ribosomal protein gene core promoters.

    Science.gov (United States)

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2009-03-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, and mammals, demonstrating the evolutionary dynamics of the ribosomal gene regulatory network. We also report a motif present in similar numbers of RPGs among Drosophila species which does not appear to be conserved at the individual RPG gene level. A module-wise stabilizing selection theory is proposed to explain this observation. Overall, our results provide significant insight into the fast-evolving nature of transcriptional regulation in the RPG module.

  6. Electrostatics in the ribosomal tunnel modulate chain elongation rates.

    Science.gov (United States)

    Lu, Jianli; Deutsch, Carol

    2008-12-05

    Electrostatic potentials along the ribosomal exit tunnel are nonuniform and negative. The significance of electrostatics in the tunnel remains relatively uninvestigated, yet they are likely to play a role in translation and secondary folding of nascent peptides. To probe the role of nascent peptide charges in ribosome function, we used a molecular tape measure that was engineered to contain different numbers of charged amino acids localized to known regions of the tunnel and measured chain elongation rates. Positively charged arginine or lysine sequences produce transient arrest (pausing) before the nascent peptide is fully elongated. The rate of conversion from transiently arrested to full-length nascent peptide is faster for peptides containing neutral or negatively charged residues than for those containing positively charged residues. We provide experimental evidence that extraribosomal mechanisms do not account for this charge-specific pausing. We conclude that pausing is due to charge-specific interactions between the tunnel and the nascent peptide.

  7. Organellar genome, nuclear ribosomal DNA repeat unit, and microsatellites isolated from a small-scale of 454 GS FLX sequencing on two mosses.

    Science.gov (United States)

    Liu, Yang; Forrest, Laura L; Bainard, Jillian D; Budke, Jessica M; Goffinet, Bernard

    2013-03-01

    Recent innovations in high-throughput DNA sequencing methodology (next generation sequencing technologies [NGS]) allow for the generation of large amounts of high quality data that may be particularly critical for resolving ambiguous relationships such as those resulting from rapid radiations. Application of NGS technology to bryology is limited to assembling entire nuclear or organellar genomes of selected exemplars of major lineages (e.g., classes). Here we outline how organellar genomes and the entire nuclear ribosomal DNA repeat can be obtained from minimal amounts of moss tissue via small-scale 454 GS FLX sequencing. We sampled two Funariaceae species, Funaria hygrometrica and Entosthodon obtusus, and assembled nearly complete organellar genomes and the whole nuclear ribosomal DNA repeat unit (18S-ITS1-5.8S-ITS2-26S-IGS1-5S-IGS2) for both taxa. Sequence data from these species were compared to sequences from another Funariaceae species, Physcomitrella patens, revealing low overall degrees of divergence of the organellar genomes and nrDNA genes with substitutions spread rather evenly across their length, and high divergence within the external spacers of the nrDNA repeat. Furthermore, we detected numerous microsatellites among the 454 assemblies. This study demonstrates that NGS methodology can be applied to mosses to target large genomic regions and identify microsatellites.

  8. Transcription Factor Substitution during the Evolution of Fungal Ribosome Regulation

    OpenAIRE

    Hogues, Hervé; Lavoie, Hugo; Sellam, Adnane; Mangos, Maria; Roemer, Terry; Purisima, Enrico; Nantel, André; Whiteway, Malcolm

    2008-01-01

    Coordinated ribosomal protein (RP) gene expression is crucial for cellular viability, but the transcriptional network controlling this regulon has only been well characterized in the yeast Saccharomyces cerevisiae. We have used whole-genome transcriptional and location profiling to establish that, in Candida albicans, the RP regulon is controlled by the Myb domain protein Tbf1 working in conjunction with Cbf1. These two factors bind both the promoters of RP genes and the rDNA locus; Tbf1 acti...

  9. The European database on small subunit ribosomal RNA

    OpenAIRE

    Wuyts, Jan; Van de Peer, Yves; Winkelmans, Tina; De Wachter, Rupert

    2002-01-01

    The European database on SSU rRNA can be consulted via the World WideWeb at http://rrna.uia.ac.be/ssu/ and compiles all complete or nearly complete small subunit ribosomal RNA sequences. Sequences are provided in aligned format. The alignment takes into account the secondary structure information derived by comparative sequence analysis of thousands of sequences. Additional information such as literature references, taxonomy, secondary structure models and nucleotide variability maps, is also...

  10. A relaxed mutant with an altered ribosomal protein L11.

    Science.gov (United States)

    Parker, J; Watson, R J; Friesen, J D

    1976-02-27

    Relaxed mutants of Escherichia coli have been isolated which have an altered electrophoretic mobility of ribosomal protein L11. It can be shown that reversion to stringency in one of these mutants occurs simultaneously with a reversion of L11 protein to tis normal mobility. The L11 structural gene, rplK, maping near rif, is carried by the bacteriophage lambdacI857S7drifd18, and is most likely identical with relC.

  11. The localization of ribosomal DNA in Sciaridae (Diptera: Nematocera) reassessed.

    Science.gov (United States)

    Madalena, Christiane Rodriguez Gutierrez; Amabis, José Mariano; Stocker, Ann Jacob; Gorab, Eduardo

    2007-01-01

    The chromosomal localization of ribosomal DNA (rDNA) was studied in polytene and diploid tissues of four sciarid species, Trichosia pubescens, Rhynchosciara americana, R. milleri and Schwenkfeldina sp. While hybridization to mitotic chromosomes showed the existence of a single rDNA locus, ribosomal probes hybridized to more than one polytene chromosome region in all the species analyzed as a result of micronucleolar attachment to specific chromosome sites. Micronucleoli are small, round bodies containing transcriptionally active, probably extrachromosomal rDNA. In T. pubescens the rDNA is predominantly localized in chromosome sections X-10 and X-8. In R. americana the rDNA is frequently found associated with centromeric heterochromatin of the chromosomes X, C, B and A, and also with sections X-1 and B-13. Ribosomal probes in R. milleri hybridized with high frequency to pericentric and telomeric regions of its polytene complement. Schwfenkfeldina sp. displays a remarkably unusual distribution of rDNA in polytene nuclei, characterized by the attachment of micronucleoli to many chromosome regions. The results showed that micronucleoli preferentially associate with intercalary or terminal heterochromatin of all sciarid flies analyzed and, depending on the species, are attached to a few (Trichosia), moderate (Rhynchosciara) or a large (Schwenkfeldina sp.) number of polytene chromosome sites.

  12. On ribosome load, codon bias and protein abundance.

    Directory of Open Access Journals (Sweden)

    Stefan Klumpp

    Full Text Available Different codons encoding the same amino acid are not used equally in protein-coding sequences. In bacteria, there is a bias towards codons with high translation rates. This bias is most pronounced in highly expressed proteins, but a recent study of synthetic GFP-coding sequences did not find a correlation between codon usage and GFP expression, suggesting that such correlation in natural sequences is not a simple property of translational mechanisms. Here, we investigate the effect of evolutionary forces on codon usage. The relation between codon bias and protein abundance is quantitatively analyzed based on the hypothesis that codon bias evolved to ensure the efficient usage of ribosomes, a precious commodity for fast growing cells. An explicit fitness landscape is formulated based on bacterial growth laws to relate protein abundance and ribosomal load. The model leads to a quantitative relation between codon bias and protein abundance, which accounts for a substantial part of the observed bias for E. coli. Moreover, by providing an evolutionary link, the ribosome load model resolves the apparent conflict between the observed relation of protein abundance and codon bias in natural sequences and the lack of such dependence in a synthetic gfp library. Finally, we show that the relation between codon usage and protein abundance can be used to predict protein abundance from genomic sequence data alone without adjustable parameters.

  13. Photoaffinity labeling of the pactamycin binding site on eubacterial ribosomes

    Energy Technology Data Exchange (ETDEWEB)

    Tejedor, F.; Amils, R.; Ballesta, J.P.

    1985-07-02

    Pactamycin, an inhibitor of the initial steps of protein synthesis, has an acetophenone group in its chemical structure that makes the drug a potentially photoreactive molecule. In addition, the presence of a phenolic residue makes it easily susceptible to radioactive labeling. Through iodination, one radioactive derivative of pactamycin has been obtained with biological activities similar to the unmodified drug when tested on in vivo and cell-free systems. With the use of (/sup 125/I)iodopactamycin, ribosomes of Escherichia coli have been photolabeled under conditions that preserve the activity of the particles and guarantee the specificity of the binding sites. Under these conditions, RNA is preferentially labeled when free, small ribosomal subunits are photolabeled, but proteins are the main target in the whole ribosome. This indicates that an important conformational change takes place in the binding site on association of the two subunits. The major labeled proteins are S2, S4, S18, S21, and L13. These proteins in the pactamycin binding site are probably related to the initiation step of protein synthesis.

  14. Composite fan stator assembly

    Energy Technology Data Exchange (ETDEWEB)

    Donges, G.L.

    1993-07-13

    A composite fan stator assembly is described for a gas turbine engine having at least two fan rotor stages, the composite stator assembly comprising: an annular composite fan case assembly including an access port, the fan case assembly circumferentially disposed around first and second fan rotor stage locations, a composite fan stator stage supported by and extending radially inward of the fan case assembly and axially disposed between the two fan rotor stage locations, the fan stator stage includes at least one removable vane segment accessible for removal through the access port for assembly and reassembly, the composite fan case assembly including a separable composite forward fan case assembly and a separable composite aft fan case assembly spaced axially aft of the forward fan case assembly, the forward fan case assembly being bolted to the aft fan case assembly, wherein the composite fan stator stage is axially and radially trapped and supported by the forward and aft fan case assemblies. A composite stator vane assembly comprising: a composite inner shroud, a composite outer shroud disposed radially outward of the inner shroud, a plurality of vanes disposed between the shrouds, the vanes including a suction side and a pressure side and radially inner and outer roots, the roots extending through platforms of corresponding ones of the inner and outer shrouds, four box-type attachment elements corresponding to curved suction and pressure sides of the inner and outer roots, the box-type attachment elements having two connected legs angled with respect to each other, a first one of the legs extending along, conforming to the curve of, and bonded to a corresponding one of the airfoil root sides, and a second one of the legs extending along and bonded to a composite shroud surface.

  15. Phosphorylation in vivo of non-ribosomal proteins from native 40 S ribosomal particles of Krebs II mouse ascites-tumour cells

    DEFF Research Database (Denmark)

    Schuck, J; Reichert, G; Issinger, O G

    1981-01-01

    Four non-ribosomal proteins from native 40 S ribosomal subunits with mol.wts. of 110 000, 84 000, 68 000 and 26 000 were phosphorylated in vivo when ascites cells were incubated in the presence of [32P]Pi. The 110 000-, 84 000- and 26 000-dalton proteins are identical with phosphorylated products...

  16. Mescaline-induced changes of brain-cortex ribosomes. Role of sperimidine in counteracting the destabilizing effect of mescaline of brain-cortex ribosomes.

    Science.gov (United States)

    Datta, R K; Antopol, W; Ghosh, J J

    1971-11-01

    1. The effect of spermidine on the mescaline-induced changes of brain-cortex ribosomes was studied by adding spermidine during the treatment of goat brain-cortex slices with mescaline. 2. Mescaline treatment of brain-cortex slices removed a portion of the endogenous spermidine from ribosomes and this removal was significantly prevented when spermidine was present during mescaline treatment. 3. Spermidine present during mescaline treatment of brain-cortex slices counteracted, to some extent, the destabilizing effect of mescaline on ribosomes with respect to heat denaturation. 4. Mescaline treatment of brain-cortex slices made ribosomes more susceptible to breakdown, releasing protein and RNA, and resulting in loss of ribosomal enzymic activities. However, spermidine present during mescaline treatment counteracted moderately the mescaline-induced ribosomal susceptibility to breakdown and ribosomal loss of enzymic activities. 5. Ribosomes of mescaline-treated cortex slices were rapidly degraded by ribonuclease and trypsin. However, if spermidine was present during mescaline treatment of brain-cortex slices the rates of degradation diminished.

  17. Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance.

    Science.gov (United States)

    Villa, Laura; Feudi, Claudia; Fortini, Daniela; García-Fernández, Aurora; Carattoli, Alessandra

    2014-01-01

    Full genome sequences were determined for five Klebsiella pneumoniae strains belonging to the sequence type 512 (ST512) clone, producing KPC-3. Three strains were resistant to tigecycline, one showed an intermediate phenotype, and one was susceptible. Comparative analysis performed using the genome of the susceptible strain as a reference sequence identified genetic differences possibly associated with resistance to tigecycline. Results demonstrated that mutations in the ramR gene occurred in two of the three sequenced strains. Mutations in RamR were previously demonstrated to cause overexpression of the AcrAB-TolC efflux system and were implicated in tigecycline resistance in K. pneumoniae. The third strain showed a mutation located at the vertex of a very well conserved loop in the S10 ribosomal protein, which is located in close proximity to the tigecycline target site in the 30S ribosomal subunit. This mutation was previously shown to be associated with tetracycline resistance in Neisseria gonorrhoeae. A PCR-based approach was devised to amplify the potential resistance mechanisms identified by genomics and applied to two additional ST512 strains showing resistance to tigecycline, allowing us to identify mutations in the ramR gene.

  18. Structure of Utp21 tandem WD domain provides insight into the organization of the UTPB complex involved in ribosome synthesis.

    Directory of Open Access Journals (Sweden)

    Cheng Zhang

    Full Text Available Assembly of the eukaryotic ribosome requires a large number of trans-acting proteins and small nucleolar RNAs that transiently associate with the precursor rRNA to facilitate its modification, processing and binding with ribosomal proteins. UTPB is a large evolutionarily conserved complex in the 90S small subunit processome that mediates early processing of 18S rRNA. UTPB consists of six proteins Utp1/Pwp1, Utp6, Utp12/Dip2, Utp13, Utp18 and Utp21 and has abundant WD domains. Here, we determined the crystal structure of the tandem WD domain of yeast Utp21 at 2.1 Å resolution, revealing two open-clamshell-shaped β-propellers. The bottom faces of both WD domains harbor several conserved patches that potentially function as molecular binding sites. We show that residues 100-190 of Utp18 bind to the tandem WD domain of Utp21. Structural mapping of previous crosslinking data shows that the WD domains of Utp18 and Utp1 are organized on two opposite sides of the Utp21 WD domains. This study reports the first structure of a UTPB component and provides insight into the structural organization of the UTPB complex.

  19. The conserved Bud20 zinc finger protein is a new component of the ribosomal 60S subunit export machinery.

    Science.gov (United States)

    Bassler, Jochen; Klein, Isabella; Schmidt, Claudia; Kallas, Martina; Thomson, Emma; Wagner, Maria Anna; Bradatsch, Bettina; Rechberger, Gerald; Strohmaier, Heimo; Hurt, Ed; Bergler, Helmut

    2012-12-01

    The nuclear export of the preribosomal 60S (pre-60S) subunit is coordinated with late steps in ribosome assembly. Here, we show that Bud20, a conserved C(2)H(2)-type zinc finger protein, is an unrecognized shuttling factor required for the efficient export of pre-60S subunits. Bud20 associates with late pre-60S particles in the nucleoplasm and accompanies them into the cytoplasm, where it is released through the action of the Drg1 AAA-ATPase. Cytoplasmic Bud20 is then reimported via a Kap123-dependent pathway. The deletion of Bud20 induces a strong pre-60S export defect and causes synthetic lethality when combined with mutant alleles of known pre-60S subunit export factors. The function of Bud20 in ribosome export depends on a short conserved N-terminal sequence, as we observed that mutations or the deletion of this motif impaired 60S subunit export and generated the genetic link to other pre-60S export factors. We suggest that the shuttling Bud20 is recruited to the nascent 60S subunit via its central zinc finger rRNA binding domain to facilitate the subsequent nuclear export of the preribosome employing its N-terminal extension.

  20. Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide.

    Science.gov (United States)

    Shi, Zhen; Fujii, Kotaro; Kovary, Kyle M; Genuth, Naomi R; Röst, Hannes L; Teruel, Mary N; Barna, Maria

    2017-07-06

    Emerging studies have linked the ribosome to more selective control of gene regulation. However, an outstanding question is whether ribosome heterogeneity at the level of core ribosomal proteins (RPs) exists and enables ribosomes to preferentially translate specific mRNAs genome-wide. Here, we measured the absolute abundance of RPs in translating ribosomes and profiled transcripts that are enriched or depleted from select subsets of ribosomes within embryonic stem cells. We find that heterogeneity in RP composition endows ribosomes with differential selectivity for translating subpools of transcripts, including those controlling metabolism, cell cycle, and development. As an example, mRNAs enriched in binding to RPL10A/uL1-containing ribosomes are shown to require RPL10A/uL1 for their efficient translation. Within several of these transcripts, this level of regulation is mediated, at least in part, by internal ribosome entry sites. Together, these results reveal a critical functional link between ribosome heterogeneity and the post-transcriptional circuitry of gene expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Disassembly of the Staphylococcus aureus hibernating 100S ribosome by an evolutionarily conserved GTPase.

    Science.gov (United States)

    Basu, Arnab; Yap, Mee-Ngan F

    2017-09-11

    The bacterial hibernating 100S ribosome is a poorly understood form of the dimeric 70S particle that has been linked to pathogenesis, translational repression, starvation responses, and ribosome turnover. In the opportunistic pathogen Staphylococcus aureus and most other bacteria, hibernation-promoting factor (HPF) homodimerizes the 70S ribosomes to form a translationally silent 100S complex. Conversely, the 100S ribosomes dissociate into subunits and are presumably recycled for new rounds of translation. The regulation and disassembly of the 100S ribosome are largely unknown because the temporal abundance of the 100S ribosome varies considerably among different bacterial phyla. Here, we identify a universally conserved GTPase (HflX) as a bona fide dissociation factor of the S. aureus 100S ribosome. The expression levels hpf and hflX are coregulated by general stress and stringent responses in a temperature-dependent manner. While all tested guanosine analogs stimulate the splitting activity of HflX on the 70S ribosome, only GTP can completely dissociate the 100S ribosome. Our results reveal the antagonistic relationship of HPF and HflX and uncover the key regulators of 70S and 100S ribosome homeostasis that are intimately associated with bacterial survival.

  2. Cryo-EM structure of the archaeal 50S ribosomal subunit in complex with initiation factor 6 and implications for ribosome evolution

    DEFF Research Database (Denmark)

    Greber, Basil J; Boehringer, Daniel; Godinic-Mikulcic, Vlatka

    2012-01-01

    Translation of mRNA into proteins by the ribosome is universally conserved in all cellular life. The composition and complexity of the translation machinery differ markedly between the three domains of life. Organisms from the domain Archaea show an intermediate level of complexity, sharing several...... additional components of the translation machinery with eukaryotes that are absent in bacteria. One of these translation factors is initiation factor 6 (IF6), which associates with the large ribosomal subunit. We have reconstructed the 50S ribosomal subunit from the archaeon Methanothermobacter...... thermautotrophicus in complex with archaeal IF6 at 6.6 Å resolution using cryo-electron microscopy (EM). The structure provides detailed architectural insights into the 50S ribosomal subunit from a methanogenic archaeon through identification of the rRNA expansion segments and ribosomal proteins that are shared...

  3. A protein interaction map of the kalimantacin biosynthesis assembly line

    Directory of Open Access Journals (Sweden)

    Birgit Uytterhoeven

    2016-11-01

    Full Text Available The antimicrobial secondary metabolite kalimantacin is produced by a hybrid polyketide/ non-ribosomal peptide system in Pseudomonas fluorescens BCCM_ID9359. In this study, the kalimantacin biosynthesis gene cluster is analyzed by yeast two-hybrid analysis, creating a protein-protein interaction map of the entire assembly line. In total, 28 potential interactions were identified, of which 13 could be confirmed further. These interactions include the dimerization of ketosynthase domains, a link between assembly line modules 9 and 10, and a specific interaction between the trans-acting enoyl reductase BatK and the carrier proteins of modules 8 and 10. These interactions reveal fundamental insight into the biosynthesis of secondary metabolites.This study is the first to reveal interactions in a complete biosynthetic pathway. Similar future studies could build a strong basis for engineering strategies in such clusters.

  4. Ribosome-dependent ATPase interacts with conserved membrane protein in Escherichia coli to modulate protein synthesis and oxidative phosphorylation.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    Full Text Available Elongation factor RbbA is required for ATP-dependent deacyl-tRNA release presumably after each peptide bond formation; however, there is no information about the cellular role. Proteomic analysis in Escherichia coli revealed that RbbA reciprocally co-purified with a conserved inner membrane protein of unknown function, YhjD. Both proteins are also physically associated with the 30S ribosome and with members of the lipopolysaccharide transport machinery. Genome-wide genetic screens of rbbA and yhjD deletion mutants revealed aggravating genetic interactions with mutants deficient in the electron transport chain. Cells lacking both rbbA and yhjD exhibited reduced cell division, respiration and global protein synthesis as well as increased sensitivity to antibiotics targeting the ETC and the accuracy of protein synthesis. Our results suggest that RbbA appears to function together with YhjD as part of a regulatory network that impacts bacterial oxidative phosphorylation and translation efficiency.

  5. Development of a long-pulse (30-s), high-energy (120-keV) ion source for neutral-beam applications

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.C.; Barber, G.C.; Blue, C.W.

    1983-01-01

    Multimegawatt neutral beams of hydrogen or deuterium atoms are needed for fusion machine applications such as MFTB-B, TFTR-U, DIII-U, and FED (INTOR or ETR). For these applications, a duoPIGatron ion source is being developed to produce high-brightness deuterium beams at a beam energy of approx. 120 keV for pulse lengths up to 30 s. A long-pulse plasma generator with active water cooling has been operated at an arc level of 1200 A with 30-s pulse durations. The plasma density and uniformity are sufficient for supplying a 60-A beam of hydrogen ions to a 13- by 43-cm accelerator. A 10- by 25-cm tetrode accelerator has been operated to form 120-keV hydrogen ion beams. Using the two-dimensional (2-D) ion extraction code developed at Oak Ridge National Laboratory (ORNL), a 13- by 43-cm tetrode accelerator has been designed and is being fabricated. The aperture shapes of accelerator grids are optimized for 120-keV beam energy.

  6. Spanning high-dimensional expression space using ribosome-binding site combinatorics.

    Science.gov (United States)

    Zelcbuch, Lior; Antonovsky, Niv; Bar-Even, Arren; Levin-Karp, Ayelet; Barenholz, Uri; Dayagi, Michal; Liebermeister, Wolfram; Flamholz, Avi; Noor, Elad; Amram, Shira; Brandis, Alexander; Bareia, Tasneem; Yofe, Ido; Jubran, Halim; Milo, Ron

    2013-05-01

    Protein levels are a dominant factor shaping natural and synthetic biological systems. Although proper functioning of metabolic pathways relies on precise control of enzyme levels, the experimental ability to balance the levels of many genes in parallel is a major outstanding challenge. Here, we introduce a rapid and modular method to span the expression space of several proteins in parallel. By combinatorially pairing genes with a compact set of ribosome-binding sites, we modulate protein abundance by several orders of magnitude. We demonstrate our strategy by using a synthetic operon containing fluorescent proteins to span a 3D color space. Using the same approach, we modulate a recombinant carotenoid biosynthesis pathway in Escherichia coli to reveal a diversity of phenotypes, each characterized by a distinct carotenoid accumulation profile. In a single combinatorial assembly, we achieve a yield of the industrially valuable compound astaxanthin 4-fold higher than previously reported. The methodology presented here provides an efficient tool for exploring a high-dimensional expression space to locate desirable phenotypes.

  7. In vivo analysis of internal ribosome entry at the Hairless locus by genome engineering in Drosophila.

    Science.gov (United States)

    Smylla, Thomas K; Preiss, Anette; Maier, Dieter

    2016-10-07

    Cell communication in metazoans requires the highly conserved Notch signaling pathway, which is subjected to strict regulation of both activation and silencing. In Drosophila melanogaster, silencing involves the assembly of a repressor complex by Hairless (H) on Notch target gene promoters. We previously found an in-frame internal ribosome entry site in the full length H transcript resulting in two H protein isoforms (H(p120) and H(p150)). Hence, H may repress Notch signalling activity in situations where cap-dependent translation is inhibited. Here we demonstrate the in vivo importance of both H isoforms for proper fly development. To this end, we replaced the endogenous H locus by constructs specifically affecting translation of either H(p150) or H(p120) isoforms using genome engineering. Our findings indicate the functional relevance of both H proteins. Based on bristle phenotypes, the predominant isoform H(p150) appears to be of particular importance. In contrast, growth regulation and venation of the wing require the concomitant activity of both isoforms. Finally, the IRES dependent production of H(p120) during mitosis was verified in vivo. Together our data confirm IRES mediated translation of H protein in vivo, supporting strict regulation of Notch in different cellular settings.

  8. Proteomic characterization of the small subunit of Chlamydomonas reinhardtii chloroplast ribosome: identification of a novel S1 domain-containing protein and unusually large orthologs of bacterial S2, S3, and S5.

    Science.gov (United States)

    Yamaguchi, Kenichi; Prieto, Susana; Beligni, María Verónica; Haynes, Paul A; McDonald, W Hayes; Yates, John R; Mayfield, Stephen P

    2002-11-01

    To understand how chloroplast mRNAs are translated into functional proteins, a detailed understanding of all of the components of chloroplast translation is needed. To this end, we performed a proteomic analysis of the plastid ribosomal proteins in the small subunit of the chloroplast ribosome from the green alga Chlamydomonas reinhardtii. Twenty proteins were identified, including orthologs of Escherichia coli S1, S2, S3, S4, S5, S6, S7, S9, S10, S12, S13, S14, S15, S16, S17, S18, S19, S20, and S21 and a homolog of spinach plastid-specific ribosomal protein-3 (PSRP-3). In addition, a novel S1 domain-containing protein, PSRP-7, was identified. Among the identified proteins, S2 (57 kD), S3 (76 kD), and S5 (84 kD) are prominently larger than their E. coli or spinach counterparts, containing N-terminal extensions (S2 and S5) or insertion sequence (S3). Structural predictions based on the crystal structure of the bacterial 30S subunit suggest that the additional domains of S2, S3, and S5 are located adjacent to each other on the solvent side near the binding site of the S1 protein. These additional domains may interact with the S1 protein and PSRP-7 to function in aspects of mRNA recognition and translation initiation that are unique to the Chlamydomonas chloroplast.

  9. Binding of helix-threading peptides to E. coli 16S ribosomal RNA and inhibition of the S15-16S complex.

    Science.gov (United States)

    Gooch, Barry D; Krishnamurthy, Malathy; Shadid, Mohammad; Beal, Peter A

    2005-12-01

    Helix-threading peptides (HTPs) constitute a new class of small molecules that bind selectively to duplex RNA structures adjacent to helix defects and project peptide functionality into the dissimilar duplex grooves. To further explore and develop the capabilities of the HTP design for binding RNA selectively, we identified helix 22 of the prokaryotic ribosomal RNA 16S as a target. This helix is a component of the binding site for the ribosomal protein S15. In addition, the S15-16S RNA interaction is important for the ordered assembly of the bacterial ribosome. Here we present the synthesis and characterization of helix-threading peptides that bind selectively to helix 22 of E. coli 16S RNA. These compounds bind helix 22 by threading intercalation placing the N termini in the minor groove and the C termini in the major groove. Binding is dependent on the presence of a highly conserved purine-rich internal loop in the RNA, whereas removal of the loop minimally affects binding of the classical intercalators ethidium bromide and methidiumpropyl-EDTAFe (MPEFe). Moreover, binding selectivity translates into selective inhibition of formation of the S15-16S complex.

  10. Senescent changes in the ribosomes of animal cells in vivo and in vitro

    Science.gov (United States)

    Miquel, J.; Johnson, J. E., Jr.

    1979-01-01

    The paper examines RNA-ribosomal changes observed in protozoa and fixed postmitotic cells, as well as the characteristics of intermitotic cells. Attention is given to a discussion of the implications of the reported ribosomal changes as to the senescent deterioration of protein synthesis and physiological functions. A survey of the literature suggests that, while the data on ribosomal change in dividing cells both in vivo and in vitro are inconclusive, there is strong histological and biochemical evidence in favor of some degree of quantitative ribosomal loss in fixed postmitotic cells. Since these decreases in ribosomes are demonstrated in differential cells from nematodes, insects and mammals, they may represent a universal manifestation of cytoplasmic senescence in certain types of fixed postmitotic animal cells. The observed variability in ribosomal loss for cells belonging to the same type suggests that this involution phenomenon is rather related to the wear and tear suffered by a particular cell.

  11. Control of ribosome traffic by position-dependent choice of synonymous codons

    DEFF Research Database (Denmark)

    Mitarai, Namiko; Pedersen, Steen

    2013-01-01

    Messenger RNA (mRNA) encodes a sequence of amino acids by using codons. For most amino acids, there are multiple synonymous codons that can encode the amino acid. The translation speed can vary from one codon to another, thus there is room for changing the ribosome speed while keeping the amino...... acid sequence and hence the resulting protein. Recently, it has been noticed that the choice of the synonymous codon, via the resulting distribution of slow- and fast-translated codons, affects not only on the average speed of one ribosome translating the mRNA but also might have an effect on nearby...... ribosomes by affecting the appearance of 'traffic jams' where multiple ribosomes collide and form queues. To test this 'context effect' further, we here investigate the effect of the sequence of synonymous codons on the ribosome traffic by using a ribosome traffic model with codon-dependent rates, estimated...

  12. The fail-safe system to rescue the stalled ribosomes in Escherichia coli.

    Science.gov (United States)

    Abo, Tatsuhiko; Chadani, Yuhei

    2014-01-01

    Translation terminates at stop codon. Without stop codon, ribosome cannot terminate translation properly and reaches and stalls at the 3'-end of the mRNA lacking stop codon. Bacterial tmRNA-mediated trans-translation releases such stalled ribosome and targets the protein product to degradation by adding specific "degradation tag." Recently two alternative ribosome rescue factors, ArfA (YhdL) and ArfB (YaeJ), have been found in Escherichia coli. These three ribosome rescue systems are different each other in terms of molecular mechanism of ribosome rescue and their activity, but they are mutually related and co-operate to maintain the translation system in shape. This suggests the biological significance of ribosome rescue.

  13. Senescent changes in the ribosomes of animal cells in vivo and in vitro

    Science.gov (United States)

    Miquel, J.; Johnson, J. E., Jr.

    1979-01-01

    The paper examines RNA-ribosomal changes observed in protozoa and fixed postmitotic cells, as well as the characteristics of intermitotic cells. Attention is given to a discussion of the implications of the reported ribosomal changes as to the senescent deterioration of protein synthesis and physiological functions. A survey of the literature suggests that, while the data on ribosomal change in dividing cells both in vivo and in vitro are inconclusive, there is strong histological and biochemical evidence in favor of some degree of quantitative ribosomal loss in fixed postmitotic cells. Since these decreases in ribosomes are demonstrated in differential cells from nematodes, insects and mammals, they may represent a universal manifestation of cytoplasmic senescence in certain types of fixed postmitotic animal cells. The observed variability in ribosomal loss for cells belonging to the same type suggests that this involution phenomenon is rather related to the wear and tear suffered by a particular cell.

  14. Structures of the Bacterial Ribosome in Classical and Hybrid States of tRNA Binding

    Energy Technology Data Exchange (ETDEWEB)

    Dunkle, Jack A.; Wang, Leyi; Feldman, Michael B.; Pulk, Arto; Chen, Vincent B.; Kapral, Gary J.; Noeske, Jonas; Richardson, Jane S.; Blanchard, Scott C.; Cate, Jamie H. Doudna (Cornell); (UCB); (Duke)

    2011-09-06

    During protein synthesis, the ribosome controls the movement of tRNA and mRNA by means of large-scale structural rearrangements. We describe structures of the intact bacterial ribosome from Escherichia coli that reveal how the ribosome binds tRNA in two functionally distinct states, determined to a resolution of {approx}3.2 angstroms by means of x-ray crystallography. One state positions tRNA in the peptidyl-tRNA binding site. The second, a fully rotated state, is stabilized by ribosome recycling factor and binds tRNA in a highly bent conformation in a hybrid peptidyl/exit site. The structures help to explain how the ratchet-like motion of the two ribosomal subunits contributes to the mechanisms of translocation, termination, and ribosome recycling.

  15. ex vivo DNA assembly

    Directory of Open Access Journals (Sweden)

    Adam B Fisher

    2013-10-01

    Full Text Available Even with decreasing DNA synthesis costs there remains a need for inexpensive, rapid and reliable methods for assembling synthetic DNA into larger constructs or combinatorial libraries. Advances in cloning techniques have resulted in powerful in vitro and in vivo assembly of DNA. However, monetary and time costs have limited these approaches. Here, we report an ex vivo DNA assembly method that uses cellular lysates derived from a commonly used laboratory strain of Escherichia coli for joining double-stranded DNA with short end homologies embedded within inexpensive primers. This method concurrently shortens the time and decreases costs associated with current DNA assembly methods.

  16. Composite turbine bucket assembly

    Energy Technology Data Exchange (ETDEWEB)

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  17. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  18. Genome-wide polysomal analysis of a yeast strain with mutated ribosomal protein S9

    Directory of Open Access Journals (Sweden)

    Arava Yoav

    2007-08-01

    Full Text Available Abstract Background The yeast ribosomal protein S9 (S9 is located at the entrance tunnel of the mRNA into the ribosome. It is known to play a role in accurate decoding and its bacterial homolog (S4 has recently been shown to be involved in opening RNA duplexes. Here we examined the effects of changing the C terminus of S9, which is rich in acidic amino acids and extends out of the ribosome surface. Results We performed a genome-wide analysis to reveal effects at the transcription and translation levels of all yeast genes. While negligible relative changes were observed in steady-state mRNA levels, a significant number of mRNAs appeared to have altered ribosomal density. Notably, 40% of the genes having reliable signals changed their ribosomal association by more than one ribosome. Yet, no general correlations with physical or functional features of the mRNA were observed. Ribosome Density Mapping (RDM along four of the mRNAs with increased association revealed an increase in ribosomal density towards the end of the coding region for at least two of them. Read-through analysis did not reveal any increase in read-through of a premature stop codon by the mutant strain. Conclusion The ribosomal protein rpS9 appears to be involved in the translation of many mRNAs, since altering its C terminus led to a significant change in ribosomal association of many mRNAs. We did not find strong correlations between these changes and several physical features of the mRNA, yet future studies with advanced tools may allow such correlations to be determined. Importantly, our results indicate an accumulation of ribosomes towards the end of the coding regions of some mRNAs. This suggests an involvement of S9 in ribosomal dissociation during translation termination.

  19. tmRNA-SmpB: a journey to the centre of the bacterial ribosome.

    OpenAIRE

    Weis, Félix; Bron, Patrick; Giudice, Emmanuel; Rolland, Jean-Paul; Thomas, Daniel; Felden, Brice; Gillet, Reynald

    2010-01-01

    International audience; Ribosomes mediate protein synthesis by decoding the information carried by messenger RNAs (mRNAs) and catalysing peptide bond formation between amino acids. When bacterial ribosomes stall on incomplete messages, the trans-translation quality control mechanism is activated by the transfer-messenger RNA bound to small protein B (tmRNA-SmpB ribonucleoprotein complex). Trans-translation liberates the stalled ribosomes and triggers degradation of the incomplete proteins. He...

  20. Specialized yeast ribosomes: a customized tool for selective mRNA translation.

    Directory of Open Access Journals (Sweden)

    Johann W Bauer

    Full Text Available Evidence is now accumulating that sub-populations of ribosomes - so-called specialized ribosomes - can favour the translation of subsets of mRNAs. Here we use a large collection of diploid yeast strains, each deficient in one or other copy of the set of ribosomal protein (RP genes, to generate eukaryotic cells carrying distinct populations of altered 'specialized' ribosomes. We show by comparative protein synthesis assays that different heterologous mRNA reporters based on luciferase are preferentially translated by distinct populations of specialized ribosomes. These mRNAs include reporters carrying premature termination codons (PTC thus allowing us to identify specialized ribosomes that alter the efficiency of translation termination leading to enhanced synthesis of the wild-type protein. This finding suggests that these strains can be used to identify novel therapeutic targets in the ribosome. To explore this further we examined the translation of the mRNA encoding the extracellular matrix protein laminin β3 (LAMB3 since a LAMB3-PTC mutant is implicated in the blistering skin disease Epidermolysis bullosa (EB. This screen identified specialized ribosomes with reduced levels of RP L35B as showing enhanced synthesis of full-length LAMB3 in cells expressing the LAMB3-PTC mutant. Importantly, the RP L35B sub-population of specialized ribosomes leave both translation of a reporter luciferase carrying a different PTC and bulk mRNA translation largely unaltered.

  1. Methylation of yeast ribosomal protein S2 is elevated during stationary phase growth conditions.

    Science.gov (United States)

    Ladror, Daniel T; Frey, Brian L; Scalf, Mark; Levenstein, Mark E; Artymiuk, Jacklyn M; Smith, Lloyd M

    2014-03-14

    Ribosomes, as the center of protein translation in the cell, require careful regulation via multiple pathways. While regulation of ribosomal synthesis and function has been widely studied on the transcriptional and translational "levels," the biological roles of ribosomal post-translational modifications (PTMs) are largely not understood. Here, we explore this matter by using quantitative mass spectrometry to compare the prevalence of ribosomal methylation and acetylation for yeast in the log phase and the stationary phase of growth. We find that of the 27 modified peptides identified, two peptides experience statistically significant changes in abundance: a 1.9-fold decrease in methylation for k(Me)VSGFKDEVLETV of ribosomal protein S1B (RPS1B), and a 10-fold increase in dimethylation for r(DiMe)GGFGGR of ribosomal protein S2 (RPS2). While the biological role of RPS1B methylation has largely been unexplored, RPS2 methylation is a modification known to have a role in processing and export of ribosomal RNA. This suggests that yeast in the stationary phase increase methylation of RPS2 in order to regulate ribosomal synthesis. These results demonstrate the utility of mass spectrometry for quantifying dynamic changes in ribosomal PTMs.

  2. Modeling of ribosome dynamics on a ds-mRNA under an external load

    Science.gov (United States)

    Shakiba, Bahareh; Dayeri, Maryam; Mohammad-Rafiee, Farshid

    2016-07-01

    Protein molecules in cells are synthesized by macromolecular machines called ribosomes. According to the recent experimental data, we reduce the complexity of the ribosome and propose a model to express its activity in six main states. Using our model, we study the translation rate in different biological relevant situations in the presence of external force and the translation through the RNA double stranded region in the absence or presence of the external force. In the present study, we give a quantitative theory for translation rate and show that the ribosome behaves more like a Brownian Ratchet motor. Our findings could shed some light on understanding behaviors of the ribosome in biological conditions.

  3. Modeling of Ribosome Dynamics on a ds-mRNA under an External Load

    CERN Document Server

    Shakiba, Bahareh; Mohammad-Rafiee, Farshid

    2016-01-01

    Protein molecules in cells are synthesized by macromolecular machines called ribosomes. According to recent experimental data, we reduce the complexity of the ribosome and propose a model to express its activity in six main states. Using our model, we study the translation rate in different biological relevant situations in the presence of external force, and translation through the RNA double stranded region in the absence or presence of the external force. In the present study, we give a quantitative theory for translation rate and show that the ribosome behaves more like a Brownian Ratchet motor. Our findings could shed some light on understanding behaviors of the ribosome in biological conditions.

  4. Ligation-free ribosome profiling of cell type-specific translation in the brain.

    Science.gov (United States)

    Hornstein, Nicholas; Torres, Daniela; Das Sharma, Sohani; Tang, Guomei; Canoll, Peter; Sims, Peter A

    2016-01-01

    Ribosome profiling has emerged as a powerful tool for genome-wide measurements of translation, but library construction requires multiple ligation steps and remains cumbersome relative to more conventional deep-sequencing experiments. We report a new, ligation-free approach to ribosome profiling that does not require ligation. Library construction for ligation-free ribosome profiling can be completed in one day with as little as 1 ng of purified RNA footprints. We apply ligation-free ribosome profiling to mouse brain tissue to identify new patterns of cell type-specific translation and test its ability to identify translational targets of mTOR signaling in the brain.

  5. Generation of monoclonal antibodies for the assessment of protein purification by recombinant ribosomal coupling

    DEFF Research Database (Denmark)

    Kristensen, Janni; Sperling-Petersen, Hans Uffe; Mortensen, Kim Kusk;

    2005-01-01

    We recently described a conceptually novel method for the purification of recombinant proteins with a propensity to form inclusion bodies in the cytoplasm of Escherichia coli. Recombinant proteins were covalently coupled to the E. coli ribosome by fusing them to ribosomal protein 23 (rpL23...... Sepharose affinity chromatography. The purified antibodies were used to evaluate the separation of ribosomes from GFP, streptavidin, murine interleukin-6, a phagedisplay antibody and yeast elongation factor 1A by centrifugation, when ribosomes with covalently coupled target protein were cleaved at specific...

  6. Immunohistochemical evidence for an association of ribosomes with microfilaments in 3T3 fibroblasts.

    Science.gov (United States)

    Hesketh, J E; Horne, Z; Campbell, G P

    1991-02-01

    Ribosome distribution in cultured fibroblasts was investigated immunohistochemically using antibodies which recognize the 60S ribosomal subunit. After treatment of cells with buffer containing 25mM KCl and 0.05% Nonidet-P40 immunostained material was present in punctate patterns and linear arrays consistent with some ribosomes being associated with the cytoskeleton. Treatment of the cells with 130mM KCl caused loss of both the beaded lines of immunostaining and micro-filaments. Double immunostaining showed ribosomes to be closely associated with microfilaments.

  7. Rates of synthesis and degradation of ribosomal ribonucleic acid during differentiation of Dictyostelium discoideum.

    Science.gov (United States)

    Mangiarotti, G; Altruda, F; Lodish, H F

    1981-01-01

    Synthesis of ribosomes and ribosomal ribonucleic acid (RNA) continued during differentiation of Dictyostelium discoideum concurrently with extensive turnover of ribosomes synthesized during both growth and developmental stages. We show here that the rate of synthesis of 26S and 17S ribosomal RNA during differentiation was less than 15% of that in growing cells, and by the time of sorocarp formation only about 25% of the cellular ribosomes had been synthesized during differentiation. Ribosomes synthesized during growth and differentiation were utilized in messenger RNA translation to the same extent; about 50% of each class were on polyribosomes. Ribosome degradation is apparently an all-or-nothing process, since virtually all 80S monosomes present in developing cells could be incorporated into polysomes when growth conditions were restored. By several criteria, ribosomes synthesized during growth and differentiation were functionally indistinguishable. Our data, together with previously published information on changes in the messenger RNA population during differentiation, indicate that synthesis of new ribosomes is not necessary for translation of developmentally regulated messenger RNA. We also establish that the overall rate of messenger RNA synthesis during differentiation is less than 15% of that in growing cells.

  8. Two Dictyostelium ribosomal proteins act as RNases for specific classes of mRNAs.

    Science.gov (United States)

    Mangiarotti, Giorgio

    2003-03-01

    Phosphorylation of ribosomal protein S6 leads to the stabilization of pre-spore specific mRNAs during development of Dictyostelium discoideum. The purification of S6 kinase has allowed the identification of protein S11 as the mRNase specific for pre-spore mRNAs. Methylation of ribosomal protein S31 leads to the destabilization of ribosomal protein mRNAs. The purification of S31 methyltransferase has allowed the identification of protein S29 as the mRNAse specific for ribosomal protein mRNAs.

  9. Ribosome-inactivating lectins with polynucleotide:adenosine glycosidase activity.

    Science.gov (United States)

    Battelli, M G; Barbieri, L; Bolognesi, A; Buonamici, L; Valbonesi, P; Polito, L; Van Damme, E J; Peumans, W J; Stirpe, F

    1997-05-26

    Lectins from Aegopodium podagraria (APA), Bryonia dioica (BDA), Galanthus nivalis (GNA), Iris hybrid (IRA) and Sambucus nigra (SNAI), and a new lectin-related protein from Sambucus nigra (SNLRP) were studied to ascertain whether they had the properties of ribosome-inactivating proteins (RIP). IRA and SNLRP inhibited protein synthesis by a cell-free system and, at much higher concentrations, by cells and had polynucleotide:adenosine glycosidase activity, thus behaving like non-toxic type 2 (two chain) RIP. APA and SNAI had much less activity, and BDA and GNA did not inhibit protein synthesis.

  10. Mosaic tetracycline resistance genes encoding ribosomal protection proteins.

    Science.gov (United States)

    Warburton, Philip J; Amodeo, Nina; Roberts, Adam P

    2016-12-01

    First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-reported contribution to tetracycline resistance in bacteria.

  11. Expanding the Entamoeba Universe: New Hosts Yield Novel Ribosomal Lineages.

    Science.gov (United States)

    Jacob, Alison S; Busby, Eloise J; Levy, Abigail D; Komm, Natasha; Clark, C Graham

    2016-01-01

    Removing the requirement for cell culture has led to a substantial increase in the number of lineages of Entamoeba recognized as distinct. Surveying the range of potential host species for this parasite genus has barely been started and it is clear that additional sampling of the same host in different locations often identifies additional diversity. In this study, using small subunit ribosomal RNA gene sequencing, we identify four new lineages of Entamoeba, including the first report of Entamoeba from an elephant, and extend the host range of some previously described lineages. In addition, examination of microbiome data from a number of host animals suggests that substantial Entamoeba diversity remains to be uncovered.

  12. Distribución y abundancia de larvas de Munida gregaria (Fabricius, 1793, Sergestes arcticus Kröyer, 1855 y Neotrypaea uncinata (H. Milne-Edwards, 1837 entre Puerto Montt (41°30'S y Laguna San Rafael (46°30'S, sur de Chile

    Directory of Open Access Journals (Sweden)

    Armando Mujica

    2013-11-01

    Full Text Available Se describe la distribución y abundancia de los estadios larvales de Munida gregaria, Neotrypaea uncinata y Sergestes arcticus, capturadas en cinco cruceros oceanográficos efectuados, en los fiordos y canales australes de Chile, entre Puerto Montt (41°30'S y Laguna San Rafael (46°30'S. Sobre la base de diferentes masas de aguas, se caracterizaron tres áreas oceanográficas, donde se determinó la abundancia y frecuencia de ocurrencia de los estadios larvales de las tres especies capturadas en los diferentes cruceros. Se aplicaron estadígrafos para relacionar la abundancia y frecuencia de ocurrencia de los estadios larvales, las zonas oceanográficas definidas y los años de muestreo, lo que permitió discriminar áreas de desove y la posible dispersión de larvas de las especies estudiadas en la zona de estudio.

  13. Extending reference assembly models

    DEFF Research Database (Denmark)

    Church, Deanna M.; Schneider, Valerie A.; Steinberg, Karyn Meltz

    2015-01-01

    The human genome reference assembly is crucial for aligning and analyzing sequence data, and for genome annotation, among other roles. However, the models and analysis assumptions that underlie the current assembly need revising to fully represent human sequence diversity. Improved analysis tools...

  14. Assembly of primary cilia

    DEFF Research Database (Denmark)

    Pedersen, Lotte B; Veland, Iben R; Schrøder, Jacob M

    2008-01-01

    in primary cilia assembly or function have been associated with a panoply of disorders and diseases, including polycystic kidney disease, left-right asymmetry defects, hydrocephalus, and Bardet Biedl Syndrome. Here we provide an up-to-date review focused on the molecular mechanisms involved in the assembly...

  15. Extending reference assembly models

    DEFF Research Database (Denmark)

    Church, Deanna M.; Schneider, Valerie A.; Steinberg, Karyn Meltz;

    2015-01-01

    The human genome reference assembly is crucial for aligning and analyzing sequence data, and for genome annotation, among other roles. However, the models and analysis assumptions that underlie the current assembly need revising to fully represent human sequence diversity. Improved analysis tools...

  16. Perspective: Geometrically frustrated assemblies

    Science.gov (United States)

    Grason, Gregory M.

    2016-09-01

    This perspective will overview an emerging paradigm for self-organized soft materials, geometrically frustrated assemblies, where interactions between self-assembling elements (e.g., particles, macromolecules, proteins) favor local packing motifs that are incompatible with uniform global order in the assembly. This classification applies to a broad range of material assemblies including self-twisting protein filament bundles, amyloid fibers, chiral smectics and membranes, particle-coated droplets, curved protein shells, and phase-separated lipid vesicles. In assemblies, geometric frustration leads to a host of anomalous structural and thermodynamic properties, including heterogeneous and internally stressed equilibrium structures, self-limiting assembly, and topological defects in the equilibrium assembly structures. The purpose of this perspective is to (1) highlight the unifying principles and consequences of geometric frustration in soft matter assemblies; (2) classify the known distinct modes of frustration and review corresponding experimental examples; and (3) describe outstanding questions not yet addressed about the unique properties and behaviors of this broad class of systems.

  17. Laser bottom hole assembly

    Science.gov (United States)

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  18. Assembly: a resource for assembled genomes at NCBI.

    Science.gov (United States)

    Kitts, Paul A; Church, Deanna M; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D; Pruitt, Kim D; Kimchi, Avi

    2016-01-04

    The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site.

  19. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  20. Constrained space camera assembly

    Science.gov (United States)

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  1. Nucleotide sequence of a crustacean 18S ribosomal RNA gene and secondary structure of eukaryotic small subunit ribosomal RNAs.

    Science.gov (United States)

    Nelles, L; Fang, B L; Volckaert, G; Vandenberghe, A; De Wachter, R

    1984-12-11

    The primary structure of the gene for 18 S rRNA of the crustacean Artemia salina was determined. The sequence has been aligned with 13 other small ribosomal subunit RNA sequences of eukaryotic, archaebacterial, eubacterial, chloroplastic and plant mitochondrial origin. Secondary structure models for these RNAs were derived on the basis of previously proposed models and additional comparative evidence found in the alignment. Although there is a general similarity in the secondary structure models for eukaryotes and prokaryotes, the evidence seems to indicate a different topology in a central area of the structures.

  2. Ribosomal DNA copy number loss and sequence variation in cancer.

    Science.gov (United States)

    Xu, Baoshan; Li, Hua; Perry, John M; Singh, Vijay Pratap; Unruh, Jay; Yu, Zulin; Zakari, Musinu; McDowell, William; Li, Linheng; Gerton, Jennifer L

    2017-06-01

    Ribosomal DNA is one of the most variable regions in the human genome with respect to copy number. Despite the importance of rDNA for cellular function, we know virtually nothing about what governs its copy number, stability, and sequence in the mammalian genome due to challenges associated with mapping and analysis. We applied computational and droplet digital PCR approaches to measure rDNA copy number in normal and cancer states in human and mouse genomes. We find that copy number and sequence can change in cancer genomes. Counterintuitively, human cancer genomes show a loss of copies, accompanied by global copy number co-variation. The sequence can also be more variable in the cancer genome. Cancer genomes with lower copies have mutational evidence of mTOR hyperactivity. The PTEN phosphatase is a tumor suppressor that is critical for genome stability and a negative regulator of the mTOR kinase pathway. Surprisingly, but consistent with the human cancer genomes, hematopoietic cancer stem cells from a Pten-/- mouse model for leukemia have lower rDNA copy number than normal tissue, despite increased proliferation, rRNA production, and protein synthesis. Loss of copies occurs early and is associated with hypersensitivity to DNA damage. Therefore, copy loss is a recurrent feature in cancers associated with mTOR activation. Ribosomal DNA copy number may be a simple and useful indicator of whether a cancer will be sensitive to DNA damaging treatments.

  3. Ribosomal Protein S14 Negatively Regulates c-Myc Activity*

    Science.gov (United States)

    Zhou, Xiang; Hao, Qian; Liao, Jun-ming; Liao, Peng; Lu, Hua

    2013-01-01

    The ribosomal gene RPS14 is associated with the cancer-prone 5q-syndrome, which is caused by an interstitial deletion of the long arm of human chromosome 5. Previously, we found that ribosomal protein S14 (RPS14) binds to and inactivates MDM2, consequently leading to p53-dependent cell-cycle arrest and growth inhibition. However, it remains elusive whether RPS14 regulates cell proliferation in a p53-independent manner. Here, we show that RPS14 interacts with the Myc homology box II (MBII) and the C-terminal basic helix-loop-helix leucine zipper (bHLH-LZ) domains of the oncoprotein c-Myc. Further, RPS14 inhibited c-Myc transcriptional activity by preventing the recruitment of c-Myc and its cofactor, TRRAP, to the target gene promoters, as thus suppressing c-Myc-induced cell proliferation. Also, siRNA-mediated RPS14 depletion elevated c-Myc transcriptional activity determined by its target gene, Nucleolin, expression. Interestingly, RPS14 depletion also resulted in the induction of c-Myc mRNA and subsequent protein levels. Consistent with this, RPS14 promoted c-Myc mRNA turnover through an Argonaute 2 (Ago2)- and microRNA-mediated pathway. Taken together, our study demonstrates that RPS14 negates c-Myc functions by directly inhibiting its transcriptional activity and mediating its mRNA degradation via miRNA. PMID:23775087

  4. Ribosomal small subunit domains radiate from a central core

    Science.gov (United States)

    Gulen, Burak; Petrov, Anton S.; Okafor, C. Denise; Vander Wood, Drew; O’Neill, Eric B.; Hud, Nicholas V.; Williams, Loren Dean

    2016-01-01

    The domain architecture of a large RNA can help explain and/or predict folding, function, biogenesis and evolution. We offer a formal and general definition of an RNA domain and use that definition to experimentally characterize the rRNA of the ribosomal small subunit. Here the rRNA comprising a domain is compact, with a self-contained system of molecular interactions. A given rRNA helix or stem-loop must be allocated uniquely to a single domain. Local changes such as mutations can give domain-wide effects. Helices within a domain have interdependent orientations, stabilities and interactions. With these criteria we identify a core domain (domain A) of small subunit rRNA. Domain A acts as a hub, linking the four peripheral domains and imposing orientational and positional restraints on the other domains. Experimental characterization of isolated domain A, and mutations and truncations of it, by methods including selective 2′OH acylation analyzed by primer extension and circular dichroism spectroscopy are consistent with our architectural model. The results support the utility of the concept of an RNA domain. Domain A, which exhibits structural similarity to tRNA, appears to be an essential core of the small ribosomal subunit. PMID:26876483

  5. Riboproteomics of the hepatitis C virus internal ribosomal entry site.

    Science.gov (United States)

    Lu, Henry; Li, Weiqun; Noble, William Stafford; Payan, Donald; Anderson, D C

    2004-01-01

    Hepatitis C virus (HCV) protein translation is mediated by a cis-acting RNA, an internal ribosomal entry site (IRES), located in the 5' nontranslated region of the viral RNA. To examine proteins bound to the IRES, which could include proteins important for its function as well as potential drug targets, we used shotgun peptide sequencing to identify proteins in quadruplicate protein affinity extracts of lysed Huh7 cells, obtained using a biotinylated IRES. Twenty-six proteins bound the HCV IRES but not a reversed complementary sequence RNA or vector RNA controls. These included five ribosomal subunits, nine eukaryotic initiation factor 3 subunits, and novel interacting proteins such as the cytoskeletal-related proteins actin, FHOS (formin homologue overexpressed in spleen) and MIP-T3 (microtubule interacting protein that associates with TRAF3). Other novel HCV IRES-binding proteins included UNR (upstream of N-ras), UNR-interacting protein, and the RNA-binding proteins PAI-1 (plasminogen activator inhibitor-1) mRNA binding protein and Ewing sarcoma breakpoint 1 region protein EWS. A large set of additional proteins bound both the HCV IRES and a reversed complementary IRES sequence control, including the known HCV interactors PTB (polypyrimidine tract binding protein), the La autoantigen, and nucleolin. The discovery of these novel HCV IRES-binding proteins suggests links between IRES biology and the cytoskeleton, signal transduction, and other cellular functions.

  6. Analysis of ribosomal protein gene structures: implications for intron evolution.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs and mitochondrial ribosomal proteins (MRPs, which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be "conserved," i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.

  7. Ribosomal small subunit domains radiate from a central core

    Science.gov (United States)

    Gulen, Burak; Petrov, Anton S.; Okafor, C. Denise; Vander Wood, Drew; O'Neill, Eric B.; Hud, Nicholas V.; Williams, Loren Dean

    2016-02-01

    The domain architecture of a large RNA can help explain and/or predict folding, function, biogenesis and evolution. We offer a formal and general definition of an RNA domain and use that definition to experimentally characterize the rRNA of the ribosomal small subunit. Here the rRNA comprising a domain is compact, with a self-contained system of molecular interactions. A given rRNA helix or stem-loop must be allocated uniquely to a single domain. Local changes such as mutations can give domain-wide effects. Helices within a domain have interdependent orientations, stabilities and interactions. With these criteria we identify a core domain (domain A) of small subunit rRNA. Domain A acts as a hub, linking the four peripheral domains and imposing orientational and positional restraints on the other domains. Experimental characterization of isolated domain A, and mutations and truncations of it, by methods including selective 2‧OH acylation analyzed by primer extension and circular dichroism spectroscopy are consistent with our architectural model. The results support the utility of the concept of an RNA domain. Domain A, which exhibits structural similarity to tRNA, appears to be an essential core of the small ribosomal subunit.

  8. The location of protein S8 and surrounding elements of 16S rRNA in the 70S ribosome from combined use of directed hydroxyl radical probing and X-ray crystallography.

    Science.gov (United States)

    Lancaster, L; Culver, G M; Yusupova, G Z; Cate, J H; Yusupov, M M; Noller, H F

    2000-05-01

    Ribosomal protein S8, which is essential for the assembly of the central domain of 16S rRNA, is one of the most thoroughly studied RNA-binding proteins. To map its surrounding RNA in the ribosome, we carried out directed hydroxyl radical probing of 16S rRNA using Fe(II) tethered to nine different positions on the surface of protein S8 in 70S ribosomes. Hydroxyl radical-induced cleavage was observed near the classical S8-binding site in the 620 stem, and flanking the other S8-footprinted regions of the central domain at the three-helix junction near position 650 and the 825 and 860 stems. In addition, cleavage near the 5' terminus of 16S rRNA, in the 300 region of its 5' domain, and in the 1070 region of its 3'-major domain provide information about the proximity to S8 of RNA elements not directly involved in its binding. These data, along with previous footprinting and crosslinking results, allowed positioning of protein S8 and its surrounding RNA elements in a 7.8-A map of the Thermus thermophilus 70S ribosome. The resulting model is in close agreement with the extensive body of data from previous studies using protein-protein and protein-RNA crosslinking, chemical and enzymatic footprinting, and genetics.

  9. Dynamic nanoparticle assemblies.

    Science.gov (United States)

    Wang, Libing; Xu, Liguang; Kuang, Hua; Xu, Chuanlai; Kotov, Nicholas A

    2012-11-20

    Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic, and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple levels of hierarchy of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously form superstructures containing more than two inorganic nanoscale particles that display the ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the "bottom-up" fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Superstructures of NPs (and those held together by similar intrinsic forces)are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable super structures with a nearly constant number of NPs or Class 2 where the total number of NPs changes, while the organizational motif in the final superstructure remains the same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of

  10. Effects of electroacupuncture on the expression of p70 ribosomal protein S6 kinase and ribosomal protein S6 in the hippocampus of rats with vascular dementia

    Institute of Scientific and Technical Information of China (English)

    Yanzhen Zhu; Xuan Wang; Xiaobao Ye; Changhua Gao; Wei Wang

    2012-01-01

    This study investigated the mechanism underlying electroacupuncture therapy for vascular dementia through electroacupuncture at the acupoints of Baihui (DU20), Dazhui (DU14), and bilateral Shenshu (BL23) in a rat model of vascular dementia produced by bilateral middle cerebral artery occlusion. Morris water maze test showed that electroacupuncture improved the learning ability of vascular dementia rats. Western blot assay revealed that the expression of p70 ribosomal protein S6 kinase and ribosomal protein S6 in vascular dementia rats was significantly increased after electroacupuncture, compared with the model group that was not treated with acupuncture. The average escape latency was also shortened after electroacupuncture, and escape strategies in the spatial probe test improved from edge and random searches, to linear and trending swim pathways. The experimental findings indicate that electroacupuncture improves learning and memory ability by up-regulating expression of p70 ribosomal protein S6 kinase and ribosomal protein S6 in the hippocampus of vascular dementia rats.

  11. DC source assemblies

    Science.gov (United States)

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  12. Modular assembled space telescope

    Science.gov (United States)

    Feinberg, Lee D.; Budinoff, Jason; MacEwen, Howard; Matthews, Gary; Postman, Marc

    2013-09-01

    We present a new approach to building a modular segmented space telescope that greatly leverages the heritage of the Hubble Space Telescope and the James Webb Space Telescope. The modular design in which mirror segments are assembled into identical panels allows for economies of scale and for efficient space assembly that make a 20-m aperture approach cost effective. This assembly approach can leverage NASA's future capabilities and has the power to excite the public's imagination. We discuss the science drivers, basic architecture, technology, and leveraged NASA infrastructure, concluding with a proposed plan for going forward.

  13. The Saccharomyces cerevisiae protein Stm1p facilitates ribosome preservation during quiescence

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyke, Natalya; Chanchorn, Ekkawit [Department of Chemistry and Physics, Western Carolina University, 111 Memorial Drive, Cullowhee, NC 28723 (United States); Van Dyke, Michael W., E-mail: mvandyke@email.wcu.edu [Department of Chemistry and Physics, Western Carolina University, 111 Memorial Drive, Cullowhee, NC 28723 (United States)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Stm1p confers increased resistance to the macrolide starvation-mimic rapamycin. Black-Right-Pointing-Pointer Stm1p maintains 80S ribosome integrity during stationary phase-induced quiescence. Black-Right-Pointing-Pointer Stm1p facilitates polysome formation following quiescence exit. Black-Right-Pointing-Pointer Stm1p facilitates protein synthesis following quiescence exit. Black-Right-Pointing-Pointer Stm1p is a ribosome preservation factor under conditions of nutrient deprivation. -- Abstract: Once cells exhaust nutrients from their environment, they enter an alternative resting state known as quiescence, whereby proliferation ceases and essential nutrients are obtained through internal stores and through the catabolism of existing macromolecules and organelles. One example of this is ribophagy, the degradation of ribosomes through the process of autophagy. However, some ribosomes need to be preserved for an anticipated recovery from nutrient deprivation. We found that the ribosome-associated protein Stm1p greatly increases the quantity of 80S ribosomes present in quiescent yeast cells and that these ribosomes facilitate increased protein synthesis rates once nutrients are restored. These findings suggest that Stm1p can act as a ribosome preservation factor under conditions of nutrient deprivation and restoration.

  14. A Conserved Proline Switch on the Ribosome Facilitates the Recruitment and Binding of trGTPases

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The process of protein synthesis in vivo is a highly complex and orderly system, which is dependent on the ribosome as factory, mRNA as a template, the amino acid as raw materials, the GTP for energy. Ri- bosomal protein synthesis is a continuous dynamics process, which involves not only the ribosome itself, but also involves the synergy of translation factors.

  15. The Ribosomal Protein uL22 Modulates the Shape of the Protein Exit Tunnel

    DEFF Research Database (Denmark)

    Wekselman, Itai; Zimmerman, Ella; Davidovich, Chen

    2017-01-01

    Erythromycin is a clinically useful antibiotic that binds to an rRNA pocket in the ribosomal exit tunnel. Commonly, resistance to erythromycin is acquired by alterations of rRNA nucleotides that interact with the drug. Mutations in the β hairpin of ribosomal protein uL22, which is rather distal t...

  16. A Long Noncoding RNA on the Ribosome Is Required for Lifespan Extension

    NARCIS (Netherlands)

    Essers, Paul B.; Nonnekens, Julie; Goos, Yvonne J.; Betist, Marco C.|info:eu-repo/dai/nl/304073202; Viester, Marjon D.; Mossink, Britt; Lansu, Nico; Korswagen, Hendrik C.; Jelier, Rob; Brenkman, Arjan B.; MacInnes, Alyson W.|info:eu-repo/dai/nl/338681388

    2015-01-01

    The biogenesis of ribosomes and their coordination of protein translation consume an enormous amount of cellular energy. As such, it has been established that the inhibition of either process can extend eukaryotic lifespan. Here, we used next-generation sequencing to compare ribosome-associated RNAs

  17. The Ribosomal RNA is a Useful Marker to Visualize Rhizobia Interacting with Legume Plants

    Science.gov (United States)

    Rinaudi, Luciana; Isola, Maria C.; Giordano, Walter

    2004-01-01

    Symbiosis between rhizobia and leguminous plants leads to the formation of nitrogen-fixing root nodules. In the present article, we recommend the use of the ribosomal RNA (rRNA) isolated from legume nodules in an experimental class with the purpose of introducing students to the structure of eukaryotic and prokaryotic ribosomes and of…

  18. N(α)-Acetylation of yeast ribosomal proteins and its effect on protein synthesis.

    Science.gov (United States)

    Kamita, Masahiro; Kimura, Yayoi; Ino, Yoko; Kamp, Roza M; Polevoda, Bogdan; Sherman, Fred; Hirano, Hisashi

    2011-04-01

    N(α)-Acetyltransferases (NATs) cause the N(α)-acetylation of the majority of eukaryotic proteins during their translation, although the functions of this modification have been largely unexplored. In yeast (Saccharomyces cerevisiae), four NATs have been identified: NatA, NatB, NatC, and NatD. In this study, the N(α)-acetylation status of ribosomal protein was analyzed using NAT mutants combined with two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS). A total of 60 ribosomal proteins were identified, of which 17 were N(α)-acetylated by NatA, and two by NatB. The N(α)-acetylation of two of these, S17 and L23, by NatA was not previously observed. Furthermore, we tested the effect of ribosomal protein N(α)-acetylation on protein synthesis using the purified ribosomes from each NAT mutant. It was found that the protein synthesis activities of ribosomes from NatA and NatB mutants were decreased by 27% and 23%, respectively, as compared to that of the normal strain. Furthermore, we have shown that ribosomal protein N(α)-acetylation by NatA influences translational fidelity in the presence of paromomycin. These results suggest that ribosomal protein N(α)-acetylation is necessary to maintain the ribosome's protein synthesis function.

  19. Implementation of communication-mediating domains for non-ribosomal peptide production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Siewers, Verena; San-Bento, Rita; Nielsen, Jens

    2010-01-01

    Saccharomyces cerevisiae has in several cases been proven to be a suitable host for the production of natural products and was recently exploited for the production of non-ribosomal peptides. Synthesis of non-ribosomal peptides (NRPs) is mediated by NRP synthetases (NRPSs), modular enzymes, which...

  20. Autogenous Regulation of Splicing of the Transcript of a Yeast Ribosomal Protein Gene

    Science.gov (United States)

    Dabeva, Mariana D.; Post-Beittenmiller, Martha A.; Warner, Jonathan R.

    1986-08-01

    The gene for a yeast ribosomal protein, RPL32, contains a single intron. The product of this gene appears to participate in feedback control of the splicing of the intron from the transcript. This autogenous regulation of splicing provides a striking analogy to the autogenous regulation of translation of ribosomal proteins in Escherichia coli.

  1. Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway

    NARCIS (Netherlands)

    Heijnen, Harry F; van Wijk, Richard; Pereboom, Tamara C; Goos, Yvonne J; Seinen, Cor W; van Oirschot, Brigitte A; van Dooren, Rowie; Gastou, Marc; Giles, Rachel H; van Solinge, Wouter; Kuijpers, Taco W; Gazda, Hanna T; Bierings, Marc B; Da Costa, Lydie; MacInnes, Alyson W

    2014-01-01

    Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA), for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP) genes. Here we

  2. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis

    DEFF Research Database (Denmark)

    Villa, Elizabeth; Sengupta, Jayati; Trabuco, Leonard G.

    2009-01-01

    In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a...

  3. Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway

    NARCIS (Netherlands)

    Heijnen, Harry F; van Wijk, Richard; Pereboom, Tamara C; Goos, Yvonne J; Seinen, Cor W; van Oirschot, Brigitte A; van Dooren, Rowie; Gastou, Marc; Giles, Rachel H; van Solinge, Wouter; Kuijpers, Taco W; Gazda, Hanna T; Bierings, Marc B; Da Costa, Lydie; MacInnes, Alyson W

    2014-01-01

    Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA), for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP) genes. Here we

  4. Inhibition of protein synthesis on the ribosome by tildipirosin compared with other veterinary macrolides

    DEFF Research Database (Denmark)

    Andersen, Niels Møller; Poehlsgaard, Jacob; Warrass, Ralf

    2012-01-01

    on the ribosome (50% inhibitory concentration [IC(50)], 0.23 ± 0.01 μM) and compared it with the established veterinary macrolides tylosin, tilmicosin, and tulathromycin. Mutation and methylation at key rRNA nucleotides revealed differences in the interactions of these macrolides within their common ribosomal...

  5. Current meter data from moored current meter casts in the TOGA Area - Pacific (30 N to 30 S) as part of the Equatorial Pacific Ocean Climate Studies (EPOCS) project from 16 April 1984 - 01 October 1985 (NODC Accession 8700147)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the TOGA Area - Pacific (30 N to 30 S) from April 16, 1984 to October 1, 1985. Data were...

  6. Wind and temperature data from current meter in the TOGA - Pacific Ocean (30 N to 30 S) as part of the Equatorial Pacific Ocean Climate Studies (EPOCS), 28 May 1994 to 21 March 1995 (NODC Accession 9800041)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind and temperature data were collected using current meter in the TOGA Area - Pacific Ocean (30 N to 30 S) from May 28, 1994 to March 21, 1995. Data were submitted...

  7. Current meter data from moored current meter casts in the TOGA Area - Pacific (30 N to 30 S) as part of the Equatorial Pacific Ocean Climate Studies (EPOCS) project from 01 May 1987 to 05 May 1987 (NODC Accession 9000211)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the TOGA Area - Pacific (30 N to 30 S) from 01 May 1987 to 06 August 1988. Data were submitted...

  8. Physical, meteorological, and other data from FIXED PLATFORMS from the TOGA Area - Pacific (30 N to 30 S) as part of the Tropical Ocean Global Atmosphere (TOGA) project from 01 January 1988 to 31 December 1988 (NODC Accession 8900241)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from FIXED PLATFORMS in the TOGA Area - Pacific (30 N to 30 S) from 01 January 1988 to 31 December 1988. Data...

  9. Current meter components and other data from fixed platforms from TOGA Area - Pacific (30 N to 30 S) from 12 December 1986 to 28 March 1991 (NODC Accession 9200261)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components data were collected from fixed platforms from the TOGA Area - Pacific (30 N to 30 S) from 12 December 1986 to 28 March 1991. Data were...

  10. Current meter data from moored current meter casts in the TOGA area - Pacific (30 N to 30 S) as part of the Ocean Thermal Energy Conversion (OTEC) project from 27 December 1980 - 26 June 1986 (NODC Accession 9400011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data were collected using moored current meter casts in the TOGA Area - Pacific (30 N to 30 S) from December 27, 1980 to June 26, 1986. Data were...

  11. Physical, meteorological, and other data from FIXED PLATFORMS from the TOGA Area - Pacific (30 N to 30 S) as part of the Tropical Ocean Global Atmosphere (TOGA) project from 01 January 1990 to 31 December 1990 (NODC Accession 9100037)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, meteorological, and other data were collected from FIXED PLATFORMS in the TOGA Area - Pacific (30 N to 30 S) from 01 January 1990 to 31 December 1990. Data...

  12. Ribosomal Genes in Focus: New Transcripts Label the Dense Fibrillar Components and Form Clusters Indicative of "Christmas Trees" in situ

    National Research Council Canada - National Science Library

    Karel Koberna; Jan Malínský; Artem Pliss; Martin Mas̆ata; Jaromíra Vec̆er̆ová; Markéta Fialová; Jan Bednár; Ivan Ras̆ka

    2002-01-01

    ... localization of these genes. Detailed analyses of HeLa cell nucleoli include direct localization of ribosomal genes by in situ hybridization and their indirect localization via nascent ribosomal transcript mappings...

  13. The structure of the eukaryotic ribosome at 3.0 Å resolution.

    Science.gov (United States)

    Ben-Shem, Adam; Garreau de Loubresse, Nicolas; Melnikov, Sergey; Jenner, Lasse; Yusupova, Gulnara; Yusupov, Marat

    2011-12-16

    Ribosomes translate genetic information encoded by messenger RNA into proteins. Many aspects of translation and its regulation are specific to eukaryotes, whose ribosomes are much larger and intricate than their bacterial counterparts. We report the crystal structure of the 80S ribosome from the yeast Saccharomyces cerevisiae--including nearly all ribosomal RNA bases and protein side chains as well as an additional protein, Stm1--at a resolution of 3.0 angstroms. This atomic model reveals the architecture of eukaryote-specific elements and their interaction with the universally conserved core, and describes all eukaryote-specific bridges between the two ribosomal subunits. It forms the structural framework for the design and analysis of experiments that explore the eukaryotic translation apparatus and the evolutionary forces that shaped it.

  14. Traffic of interacting ribosomes: effects of single-machine mechano-chemistry on protein synthesis

    CERN Document Server

    Basu, A; Basu, Aakash; Chowdhury, Debashish

    2006-01-01

    Many ribosomes simultaneously move on the same messenger RNA (mRNA), each synthesizing a protein. Earlier models of ribosome traffic represent each ribosome by a ``self-propelled particle'' and capture the dynamics by an extension of the totally asymmetric simple exclusion process. In contrast, here we develope a ``unified'' theoretical model that not only incorporates the mutual exclusions of the interacting ribosomes, but also describes explicitly the mechano-chemistry of each of these individual cyclic machines during protein synthesis. Using a combination of analytical and numerical techniques of non-equilibrium statistical mechanics, we analyze this model and illustrate its power by making experimentally testable predictions on the rate of protein synthesis and the density profile of the ribosomes on some mRNAs in E-Coli.

  15. Ribosome collisions and Translation efficiency: Optimization by codon usage and mRNA destabilization

    DEFF Research Database (Denmark)

    Mitarai, Namiko; Sneppen, Kim; Pedersen, Steen

    2008-01-01

    Individual mRNAs are translated by multiple ribosomes that initiate translation with an interval of a few seconds. The ribosome speed is codon dependent, and ribosome queuing has been suggested to explain specific data for translation of some mRNAs in vivo. By modeling the stochastic translation...... process as a traffic problem, we here analyze conditions and consequences of collisions and queuing. The model allowed us to determine the on-rate (0.8 to 1.1 initiations/s) and the time (1 s) the preceding ribosome occludes initiation for Escherichia coli lacZ mRNA in vivo. We find that ribosome...... collisions and queues are inevitable consequences of a stochastic translation mechanism that reduce the translation efficiency substantially on natural mRNAs. The cells minimize collisions by having its mRNAs being unstable and by a highly selected codon usage in the start of the mRNA. The cost of m...

  16. Designing Assemblies Of Plates

    Science.gov (United States)

    Williams, F. W.; Kennedy, D.; Butler, R.; Aston, G.; Anderson, M. S.

    1992-01-01

    VICONOPT calculates vibrations and instabilities of assemblies of prismatic plates. Designed for efficient, accurate analysis of buckling and vibration, and for optimum design of panels of composite materials. Written in FORTRAN 77.

  17. Preparation of Biologically Active Arabidopsis Ribosomes and Comparison with Yeast Ribosomes for Binding to a tRNA-Mimic that Enhances Translation of Plant Plus-Strand RNA Viruses

    Directory of Open Access Journals (Sweden)

    Vera Aleksey Stupina

    2013-07-01

    Full Text Available Isolation of biologically active cell components from multicellular eukaryotic organisms often poses difficult challenges such as low yields and inability to retain the integrity and functionality of the purified compound. We previously identified a cap-independent translation enhancer (3’CITE in the 3’UTR of Turnip crinkle virus (TCV that structurally mimics a tRNA and binds to yeast 80S ribosomes and 60S subunits in the P-site. Yeast ribosomes were used for these studies due to the lack of methods for isolation of plant ribosomes with high yields and integrity. To carry out studies with more natural components, a simple and efficient procedure has been developed for the isolation of large quantities of high quality ribosomes and ribosomal subunits from Arabidopsis thaliana protoplasts prepared from seed-derived callus tissue. Attempts to isolate high quality ribosomes from wheat germ, bean sprouts and evacuolated protoplasts were unsuccessful. Addition of purified Arabidopsis 80S plant ribosomes to ribosome-depleted wheat germ lysates resulted in a greater than 1200-fold enhancement in in vitro translation of a luciferase reporter construct. The TCV 3’CITE bound to ribosomes with a 3 to 7-fold higher efficiency when using plant 80S ribosomes compared with yeast ribosomes, indicating that this viral translational enhancer is adapted to interact more efficiently with host plant ribosomes.

  18. Ribosomal proteins L11 and L10.(L12)4 and the antibiotic thiostrepton interact with overlapping regions of the 23 S rRNA backbone in the ribosomal GTPase centre

    DEFF Research Database (Denmark)

    Rosendahl, G; Douthwaite, S

    1993-01-01

    The Escherichia coli ribosomal protein (r-protein) L11 and its binding site on 23 S ribosomal RNA (rRNA) are associated with ribosomal hydrolysis of guanosine 5'-triphosphate (GTP). We have used hydroxyl radical footprinting to map the contacts between L11 and the backbone riboses in 23 S rRNA, a...

  19. Visualisation in Assembly

    Directory of Open Access Journals (Sweden)

    Václav Štefan

    2016-09-01

    Full Text Available The article is aimed at visualisation types in assembly. Broad usage of artificial visualisation in assembly is held down mainly for economic reasons. One of the possible solutions is usage of the presented light visualisation method. This simple method of light visualisation is convenient when vibration orientation is not working properly and artificial visualisation is economically ineffective. Described principle of orientation is a technical solution of the author.

  20. VIRUS instrument collimator assembly

    Science.gov (United States)

    Marshall, Jennifer L.; DePoy, Darren L.; Prochaska, Travis; Allen, Richard D.; Williams, Patrick; Rheault, Jean-Philippe; Li, Ting; Nagasawa, Daniel Q.; Akers, Christopher; Baker, David; Boster, Emily; Campbell, Caitlin; Cook, Erika; Elder, Alison; Gary, Alex; Glover, Joseph; James, Michael; Martin, Emily; Meador, Will; Mondrik, Nicholas; Rodriguez-Patino, Marisela; Villanueva, Steven; Hill, Gary J.; Tuttle, Sarah; Vattiat, Brian; Lee, Hanshin; Chonis, Taylor S.; Dalton, Gavin B.; Tacon, Mike

    2014-07-01

    The Visual Integral-Field Replicable Unit Spectrograph (VIRUS) instrument is a baseline array 150 identical fiber fed optical spectrographs designed to support observations for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). The collimator subassemblies of the instrument have been assembled in a production line and are now complete. Here we review the design choices and assembly practices used to produce a suite of identical low-cost spectrographs in a timely fashion using primarily unskilled labor.

  1. Fuel assembly reconstitution

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, Mario M.; Oliveira, Monica G.N.; Ferreira Junior, Decio B.M.; Santos, Barbara O. dos; Santos, Jorge E. dos, E-mail: mongeor@eletronuclear.gov.b [ELETROBRAS Termonuclear S.A. - ELETRONUCLEAR, Angra dos Reis, RJ (Brazil)

    2009-07-01

    Fuel failures have been happened in Nuclear Power Plants worldwide, without lost of integrity and safety, mainly for the public, environment and power plants workers. The most common causes of these events are corrosion (CRUD), fretting and pellet cladding interaction. These failures are identified by increasing the activity of fission products, verified by chemical analyses of reactor coolant. Through these analyses, during the fourth operation cycle of Angra 2 Nuclear Power Plant, was possible to observe fuel failure indication. This indication was confirmed in the end of the cycle during the unloading of reactor core through leakage tests of fuel assembly, using the equipment called 'In Mast Sipping' and 'Box Sipping'. After confirmed, the fuel assembly reconstitution was scheduled, and happened in April, 2007, where was identified the cause and the fuel rod failure, which was substitute by dummy rods (zircaloy). The cause was fretting by 'debris'. The actions to avoid and prevent fuel assemblies failures are important. The goals of this work are to describe the methodology of fuel assembly reconstitution using the FARE (Fuel Assembly Reconstitution Equipment) system, to describe the results of this task in economic and security factors of the company and show how the fuel assembly failures are identified during operation and during the outage. (author)

  2. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  3. The emerging roles of ribosome biogenesis in craniofacial development

    Directory of Open Access Journals (Sweden)

    Adam P Ross

    2014-02-01

    Full Text Available Neural crest cells are a transient, migratory cell population, which originates during neurulation at the neural folds and contributes to the majority of tissues, including the mesenchymal structures of the craniofacial skeleton. The deregulation of the complex developmental processes that guide migration, proliferation, and differentiation of neural crest cells may result in a wide range of pathological conditions grouped together as neurocristopathies. Recently, due to their multipotent properties neural crest stem cells have received considerable attention as a possible source for stem cell based regenerative therapies. This exciting prospect underlines the need to further explore the developmental programs that guide neural crest cell differentiation. This review explores the particular importance of ribosome biogenesis defects in this context since a specific interface between ribosomopathies and neurocristopathies exists as evidenced by disorders such as Treacher-Collins-Franceschetti syndrome and Diamond-Blackfan anemia.

  4. A stochastic model of translation with -1 programmed ribosomal frameshifting

    Science.gov (United States)

    Bailey, Brenae L.; Visscher, Koen; Watkins, Joseph

    2014-02-01

    Many viruses produce multiple proteins from a single mRNA sequence by encoding overlapping genes. One mechanism to decode both genes, which reside in alternate reading frames, is -1 programmed ribosomal frameshifting. Although recognized for over 25 years, the molecular and physical mechanism of -1 frameshifting remains poorly understood. We have developed a mathematical model that treats mRNA translation and associated -1 frameshifting as a stochastic process in which the transition probabilities are based on the energetics of local molecular interactions. The model predicts both the location and efficiency of -1 frameshift events in HIV-1. Moreover, we compute -1 frameshift efficiencies upon mutations in the viral mRNA sequence and variations in relative tRNA abundances, predictions that are directly testable in experiment.

  5. Evidence for several higher order structural elements in ribosomal RNA.

    Science.gov (United States)

    Woese, C R; Gutell, R R

    1989-05-01

    Comparative analysis of small subunit ribosomal RNA sequences suggests the existence of two new higher order interactions: (i) a double-helical structure involving positions 505-507 and 524-526 (Escherichia coli numbering) and (ii) an interaction between the region of position 130 and the helix located approximately between positions 180 and 195. In the first of these, one of the strands of the helix exists in the bulge loop, and the other strand exists in the terminal loop of a previously recognized compound helix involving positions 500-545. Therefore, the new structure formally represents a pseudoknot. In the second, the insertion/deletion of a nucleotide in the vicinity of position 130 correlates with the length of the helix in the 180-195 region, the latter having a 3-base-pair stalk when the base in question is deleted and a stalk of approximately 10 pairs when it is inserted.

  6. RNA self-assembly and RNA nanotechnology.

    Science.gov (United States)

    Grabow, Wade W; Jaeger, Luc

    2014-06-17

    as the ribosome, large ribozymes, and riboswitches. Thus, the next step in synthetic RNA design will involve new ways to implement these same types of dynamic and responsive architectures into nanostructures functioning as real nanomachines in and outside the cell. RNA nanotechnology will likely garner broader utility and influence with a greater focus on the interplay between thermodynamic and kinetic influences on RNA self-assembly and using natural RNAs as guiding principles.

  7. Human Assisted Assembly Processes

    Energy Technology Data Exchange (ETDEWEB)

    CALTON,TERRI L.; PETERS,RALPH R.

    2000-01-01

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be a perfectly valid operations, but in reality the operations cannot physically be carried out by a human. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications; however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem HFFMs must be integrated with automated assembly planning to allow engineers to verify that assembly operations are possible and to see ways to make the designs even better. Factories will very likely put humans and robots together in cooperative environments to meet the demands for customized products, for purposes including robotic and automated assembly. For robots to work harmoniously within an integrated environment with humans the robots must have cooperative operational skills. For example, in a human only environment, humans may tolerate collisions with one another if they did not cause much pain. This level of tolerance may or may not apply to robot-human environments. Humans expect that robots will be able to operate and navigate in their environments without collisions or interference. The ability to accomplish this is linked to the sensing capabilities available. Current work in the field of cooperative

  8. Ribosomal protein gene knockdown causes developmental defects in zebrafish.

    Directory of Open Access Journals (Sweden)

    Tamayo Uechi

    Full Text Available The ribosomal proteins (RPs form the majority of cellular proteins and are mandatory for cellular growth. RP genes have been linked, either directly or indirectly, to various diseases in humans. Mutations in RP genes are also associated with tissue-specific phenotypes, suggesting a possible role in organ development during early embryogenesis. However, it is not yet known how mutations in a particular RP gene result in specific cellular changes, or how RP genes might contribute to human diseases. The development of animal models with defects in RP genes will be essential for studying these questions. In this study, we knocked down 21 RP genes in zebrafish by using morpholino antisense oligos to inhibit their translation. Of these 21, knockdown of 19 RPs resulted in the development of morphants with obvious deformities. Although mutations in RP genes, like other housekeeping genes, would be expected to result in nonspecific developmental defects with widespread phenotypes, we found that knockdown of some RP genes resulted in phenotypes specific to each gene, with varying degrees of abnormality in the brain, body trunk, eyes, and ears at about 25 hours post fertilization. We focused further on the organogenesis of the brain. Each knocked-down gene that affected the morphogenesis of the brain produced a different pattern of abnormality. Among the 7 RP genes whose knockdown produced severe brain phenotypes, 3 human orthologs are located within chromosomal regions that have been linked to brain-associated diseases, suggesting a possible involvement of RP genes in brain or neurological diseases. The RP gene knockdown system developed in this study could be a powerful tool for studying the roles of ribosomes in human diseases.

  9. Cross-species functionality of pararetroviral elements driving ribosome shunting.

    Directory of Open Access Journals (Sweden)

    Mikhail M Pooggin

    Full Text Available BACKGROUND: Cauliflower mosaic virus (CaMV and Rice tungro bacilliform virus (RTBV belong to distinct genera of pararetroviruses infecting dicot and monocot plants, respectively. In both viruses, polycistronic translation of pregenomic (pg RNA is initiated by shunting ribosomes that bypass a large region of the pgRNA leader with several short (sORFs and a stable stem-loop structure. The shunt requires translation of a 5'-proximal sORF terminating near the stem. In CaMV, mutations knocking out this sORF nearly abolish shunting and virus viability. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that two distant regions of the CaMV leader that form a minimal shunt configuration comprising the sORF, a bottom part of the stem, and a shunt landing sequence can be replaced by heterologous sequences that form a structurally similar configuration in RTBV without any dramatic effect on shunt-mediated translation and CaMV infectivity. The CaMV-RTBV chimeric leader sequence was largely stable over five viral passages in turnip plants: a few alterations that did eventually occur in the virus progenies are indicative of fine tuning of the chimeric sequence during adaptation to a new host. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate cross-species functionality of pararetroviral cis-elements driving ribosome shunting and evolutionary conservation of the shunt mechanism. We are grateful to Matthias Müller and Sandra Pauli for technical assistance. This work was initiated at Friedrich Miescher Institute (Basel, Switzerland. We thank Prof. Thomas Boller for hosting the group at the Institute of Botany.

  10. Changes in force production and stroke parameters of trained able-bodied and unilateral arm-amputee female swimmers during a 30 s tethered front-crawl swim.

    Science.gov (United States)

    Lee, Casey Jane; Sanders, Ross H; Payton, Carl J

    2014-01-01

    This study examined changes in the propulsive force and stroke parameters of arm-amputee and able-bodied swimmers during tethered swimming. Eighteen well-trained female swimmers (nine unilateral arm amputees and nine able-bodied) were videotaped performing maximal-effort 30 s front-crawl swims, while attached to a load cell mounted on a pool wall. Tether force, stroke rate, stroke phase durations and inter-arm angle were quantified. The able-bodied group produced significantly higher mean and maximum tether forces than the amputee group. The mean of the intra-cyclic force peaks was very similar for both groups. Mean and maximum tether force had significant negative associations with 100 m swim time, for both groups. Both groups exhibited a similar fatigue index (relative decrease in tether force) during the test, but the amputees had a significantly greater stroke rate decline. A significant positive association between stroke rate decline and fatigue index was obtained for the able-bodied group only. Inter-arm angle and relative phase durations did not change significantly during the test for either group, except the recovery phase duration of the arm amputees, which decreased significantly. This study's results can contribute to the development of a more evidence-based classification system for swimmers with a disability.

  11. Lithium- and boron-bearing brines in the Central Andes: exploring hydrofacies on the eastern Puna plateau between 23° and 23°30'S

    Science.gov (United States)

    Steinmetz, R. L. López

    2016-04-01

    Internally drained basins of the Andean Plateau are lithium- and boron-bearing systems. The exploration of ionic facies and parental links in a playa lake located in the eastern Puna (23°-23°30'S) was assessed by hydrochemical determinations of residual brines, feed waters and solutions from weathered rocks. Residual brines have been characterized by the Cl- (SO4 =)/Na+ (K+) ratio. Residual brines from the playa lake contain up to 450 mg/l of boron and up to 125 mg/l of lithium, and the Las Burras River supplies the most concentrated boron (20 mg/l) and lithium (3.75 mg/l) inflows of the basin. The hydro-geochemical assessment allowed for the identification of three simultaneous sources of boron: (1) inflow originating from granitic areas of the Aguilar and Tusaquillas ranges; (2) weathering of the Ordovician basement; and (3) boron-rich water from the Las Burras River. Most of the lithium input of the basin is likely generated by present geothermal sources rather than by weathering and leaching of ignimbrites and plutonic rocks. However, XRD analyses of playa lake sediments revealed the presence of lithian micas of clastic origin, including taeniolite and eucriptite. This study is the first to document these rare Li-micas from the Puna basin. Thus, both residual brines and lithian micas contribute to the total Li content in the studied hydrologic system.

  12. Lithium- and boron-bearing brines in the Central Andes: exploring hydrofacies on the eastern Puna plateau between 23° and 23°30'S

    Science.gov (United States)

    Steinmetz, R. L. López

    2017-01-01

    Internally drained basins of the Andean Plateau are lithium- and boron-bearing systems. The exploration of ionic facies and parental links in a playa lake located in the eastern Puna (23°-23°30'S) was assessed by hydrochemical determinations of residual brines, feed waters and solutions from weathered rocks. Residual brines have been characterized by the Cl- (SO4 =)/Na+ (K+) ratio. Residual brines from the playa lake contain up to 450 mg/l of boron and up to 125 mg/l of lithium, and the Las Burras River supplies the most concentrated boron (20 mg/l) and lithium (3.75 mg/l) inflows of the basin. The hydro-geochemical assessment allowed for the identification of three simultaneous sources of boron: (1) inflow originating from granitic areas of the Aguilar and Tusaquillas ranges; (2) weathering of the Ordovician basement; and (3) boron-rich water from the Las Burras River. Most of the lithium input of the basin is likely generated by present geothermal sources rather than by weathering and leaching of ignimbrites and plutonic rocks. However, XRD analyses of playa lake sediments revealed the presence of lithian micas of clastic origin, including taeniolite and eucriptite. This study is the first to document these rare Li-micas from the Puna basin. Thus, both residual brines and lithian micas contribute to the total Li content in the studied hydrologic system.

  13. Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients.

    Directory of Open Access Journals (Sweden)

    Bai-Wei Gu

    Full Text Available Dyskeratosis congenita (DC is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed "corrected" lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells

  14. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome.

    Science.gov (United States)

    Yu, Shoukai; Lemos, Bernardo

    2016-12-31

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Ribosomal Protein L11 Recruits miR-24/miRISC To Repress c-Myc Expression in Response to Ribosomal Stress ▿

    Science.gov (United States)

    Challagundla, Kishore B.; Sun, Xiao-Xin; Zhang, Xiaoli; DeVine, Tiffany; Zhang, Qinghong; Sears, Rosalie C.; Dai, Mu-Shui

    2011-01-01

    c-Myc promotes cell growth by enhancing ribosomal biogenesis and translation. Deregulated expression of c-Myc and aberrant ribosomal biogenesis and translation contribute to tumorigenesis. Thus, a fine coordination between c-Myc and ribosomal biogenesis is vital for normal cell homeostasis. Here, we show that ribosomal protein L11 regulates c-myc mRNA turnover. L11 binds to c-myc mRNA at its 3′ untranslated region (3′-UTR), the core component of microRNA-induced silencing complex (miRISC) argonaute 2 (Ago2), as well as miR-24, leading to c-myc mRNA reduction. Knockdown of L11 drastically increases the levels and stability of c-myc mRNA. Ablation of Ago2 abrogated the L11-mediated reduction of c-myc mRNA, whereas knockdown of L11 rescued miR-24-mediated c-myc mRNA decay. Interestingly, treatment of cells with the ribosomal stress-inducing agent actinomycin D or 5-fluorouracil significantly decreased the c-myc mRNA levels in an L11- and Ago2-dependent manner. Both treatments enhanced the association of L11 with Ago2, miR-24, and c-myc mRNA. We further show that ribosome-free L11 binds to c-myc mRNA in the cytoplasm and that this binding is enhanced by actinomycin D treatment. Together, our results identify a novel regulatory paradigm wherein L11 plays a critical role in controlling c-myc mRNA turnover via recruiting miRISC in response to ribosomal stress. PMID:21807902

  16. Ribosomal studies on the 70S ribosome of E.coli by means of neutron scattering; Strukturuntersuchungen am 70S-Ribosom von E.coli unter Anwendung von Neutronenstreuung

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, N. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1997-12-31

    Ribosomes are ribonucleo-protein complexes, which catalyse proteinbiosynthesis in all living organisms. Currently, most of the structural models of the prokaryotic 70S ribosome rely on electron microscopy and describe mainly the outer shape of the particle. Neutron scattering can provide information on the internal structure of the ribosome. Parts of the structure can be contrasted for neutrons by means of an isotopic exchange of the naturally occurring hydrogen ({sup 1}H) for deuterium ({sup 2}H), allowing direct measurements in situ. Specifically deuterium-labeled ribosomes (E. coli) were prepared and analysed with neutron scattering. The biochemical methods were established and combined to a generally applicable preparation system. This allows labeling of all ribosomal components in any combination. A systematic analysis of the protein and RNA phases resulted in the development of a new model for the 70S ribosome. This model describes not only the outer shape of the particle, but displays also an experimentally determined internal protein-RNA distribution and the border of subunits for the first time (four-phase model; resolution: 50A). Models of the 70S ribosome from other studies were evaluated and ranked according to consistency with the measured scattering data. Applying a new neutron scattering technique of particular sensitivity, the proton-spin contrast-variation, single proteins could be measured and localized. The positions of the proteins S6 and S10 were determined, providing the first coordinates of protein mass centers within the 70S ribosome. (orig.) [Deutsch] Ribosomen sind Ribonukleinsaeure-Protein Komplexe, die in allen lebenden Organismen die Proteinbiosynthese katalysieren. Strukturmodelle fuer das prokaryontische 70S-Ribosom beruhen derzeit vorwiegend auf elektronenmikroskopischen Untersuchungen und beschreiben im wesentlichen die aeussere Oberflaeche des Partikels. Informationen ueber die innere Struktur des Ribosoms koennen Messungen mit

  17. High-resolution microscopy of active ribosomal genes and key members of the rRNA processing machinery inside nucleolus-like bodies of fully-grown mouse oocytes.

    Science.gov (United States)

    Shishova, Kseniya V; Khodarovich, Yuriy M; Lavrentyeva, Elena A; Zatsepina, Olga V

    2015-10-01

    Nucleolus-like bodies (NLBs) of fully-grown (germinal vesicle, GV) mammalian oocytes are traditionally considered as morphologically distinct entities, which, unlike normal nucleoli, contain transcribed ribosomal genes (rDNA) solely at their surface. In the current study, we for the first time showed that active ribosomal genes are present not only on the surface but also inside NLBs of the NSN-type oocytes. The "internal" rRNA synthesis was evidenced by cytoplasmic microinjections of BrUTP as precursor and by fluorescence in situ hybridization with a probe to the short-lived 5'ETS segment of the 47S pre-rRNA. We further showed that in the NLB mass of NSN-oocytes, distribution of active rDNA, RNA polymerase I (UBF) and rRNA processing (fibrillarin) protein factors, U3 snoRNA, pre-rRNAs and 18S/28S rRNAs is remarkably similar to that in somatic nucleoli capable to make pre-ribosomes. Overall, these observations support the occurrence of rDNA transcription, rRNA processing and pre-ribosome assembly in the NSN-type NLBs and so that their functional similarity to normal nucleoli. Unlike the NSN-type NLBs, the NLBs of more mature SN-oocytes do not contain transcribed rRNA genes, U3 snoRNA, pre-rRNAs, 18S and 28S rRNAs. These results favor the idea that in a process of transformation of NSN-oocytes to SN-oocytes, NLBs cease to produce pre-ribosomes and, moreover, lose their rRNAs. We also concluded that a denaturing fixative 70% ethanol used in the study to fix oocytes could be more appropriate for light microscopy analysis of nucleolar RNAs and proteins in mammalian fully-grown oocytes than a commonly used cross-linking aldehyde fixative, formalin.

  18. Interaction of ribosomal proteins S5, S6, S11, S12, S18 and S21 with 16 S rRNA.

    Science.gov (United States)

    Stern, S; Powers, T; Changchien, L M; Noller, H F

    1988-06-20

    We have examined the effects of assembly of ribosomal proteins S5, S6, S11, S12, S18 and S21 on the reactivities of residues in 16 S rRNA towards chemical probes. The results show that S6, S18 and S11 interact with the 690-720 and 790 loop regions of 16 S rRNA in a highly co-operative manner, that is consistent with the previously defined assembly map relationships among these proteins. The results also indicate that these proteins, one of which (S18) has previously been implicated as a component of the ribosomal P-site, interact with residues near some of the recently defined P-site (class II tRNA protection) nucleotides in 16 S rRNA. In addition, assembly of protein S12 has been found to result in the protection of residues in both the 530 stem/loop and the 900 stem regions; the latter group is closely juxtaposed to a segment of 16 S rRNA recently shown to be protected from chemical probes by streptomycin. Interestingly, both S5 and S12 appear to protect, to differing degrees, a well-defined set of residues in the 900 stem/loop and 5'-terminal regions. These observations are discussed in terms of the effects of S5 and S12 on streptomycin binding, and in terms of the class III tRNA protection found in the 900 stem of 16 S rRNA. Altogether these results show that many of the small subunit proteins, which have previously been shown to be functionally important, appear to be associated with functionally implicated segments of 16 S rRNA.

  19. Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Hussmann

    2015-12-01

    Full Text Available Ribosome profiling produces snapshots of the locations of actively translating ribosomes on messenger RNAs. These snapshots can be used to make inferences about translation dynamics. Recent ribosome profiling studies in yeast, however, have reached contradictory conclusions regarding the average translation rate of each codon. Some experiments have used cycloheximide (CHX to stabilize ribosomes before measuring their positions, and these studies all counterintuitively report a weak negative correlation between the translation rate of a codon and the abundance of its cognate tRNA. In contrast, some experiments performed without CHX report strong positive correlations. To explain this contradiction, we identify unexpected patterns in ribosome density downstream of each type of codon in experiments that use CHX. These patterns are evidence that elongation continues to occur in the presence of CHX but with dramatically altered codon-specific elongation rates. The measured positions of ribosomes in these experiments therefore do not reflect the amounts of time ribosomes spend at each position in vivo. These results suggest that conclusions from experiments in yeast using CHX may need reexamination. In particular, we show that in all such experiments, codons decoded by less abundant tRNAs were in fact being translated more slowly before the addition of CHX disrupted these dynamics.

  20. Translation by polysome: theory of ribosome profile on a single mRNA transcript

    CERN Document Server

    Sharma, Ajeet K

    2011-01-01

    The process of polymerizing a protein by a ribosome, using a messenger RNA (mRNA) as the corresponding template, is called {\\it translation}. Ribosome may be regarded as a molecular motor for which the mRNA template serves also as the track. Often several ribosomes may translate the same (mRNA) simultaneously. The ribosomes bound simultaneously to a single mRNA transcript are the members of a polyribosome (or, simply, {\\it polysome}). Experimentally measured {\\it polysome profile} gives the distribution of polysome {\\it sizes}. Recently a breakthrough in determining the instantaneous {\\it positions} of the ribosomes on a given mRNA track has been achieved and the technique is called {\\it ribosome profiling} \\cite{ingolia10,guo10}. Motivated by the success of these techniques, we have studied the spatio-temporal organization of ribosomes by extending a theoretical model that we have reported elsewhere \\cite{sharma11}. This extended version of our model incorporates not only (i) mechano-chemical cycle of indivi...