WorldWideScience

Sample records for 30-mhz ultrasound array

  1. Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer

    OpenAIRE

    Zemp, Roger J.; Song, Liang; Bitton, Rachel; Shung, K. Kirk; Wang, Lihong V.

    2008-01-01

    We present a novel high-frequency photoacoustic microscopy system capable of imaging the microvasculature of living subjects in realtime to depths of a few mm. The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, and a shared-RAM multi-core-processor computer. Data acquisition, beamforming, scan conversion, and display are implemented in realtime at 50 frame...

  2. High-frequency Ultrasound Doppler System for Biomedical Applications with a 30 MHz Linear Array

    Science.gov (United States)

    Xu, Xiaochen; Sun, Lei; Cannata, Jonathan M.; Yen, Jesse T.; Shung, K. Kirk

    2008-01-01

    In this paper, we report the development of the first high-frequency (HF) pulsed-wave Doppler system using a 30 MHz linear array transducer to assess the cardiovascular functions in small animal. This array based pulsed-wave Doppler system included a 16-channel HF analog beamformer, a HF pulsed-wave Doppler module, timing circuits, HF bipolar pulsers, and analog front-ends. The beamformed echoes acquired by the 16 channel analog beamformer, were directly fed to the HF pulsed-wave Doppler module. Then the in-phase and quadrature-phase (IQ) audio Doppler signals were digitized by either a sound card or a Gage digitizer and stored in a PC. The Doppler spectrogram was displayed on a PC in real time. The two-way beam-widths were determined to be 160 μm to 320 μm when the array was electronically focused at different focal points at depths from 5–10 mm. A micro flow phantom, consisting of a polyimide tube with inner diameter of 127 μm, and the wire phantom were used to evaluate and calibrate the system. The results show that the system is capable of detecting motion velocity of the wire phantom as low as 0.1 mm/s, and detecting blood-mimicking flow velocity in the 127 μm tube lower than 7 mm/s. The system was subsequently used to measure the blood flow in vivo in two mouse abdominal superficial vessels with diameters of approximately 200 μm, and a mouse aorta close to the heart. These results demonstrated that this system may become an indispensable part of the current HF array based imaging systems for small animal studies. PMID:17993243

  3. Mixed Frequency Ultrasound Phased Array

    Institute of Scientific and Technical Information of China (English)

    香勇; 霍健; 施克仁; 陈以方

    2004-01-01

    A mixed frequency ultrasonic phased array (MPA) was developed to improve the focus, in which the element excitation frequencies are not all the same as in a normal constant frequency phased array. A theoretical model of the mixed frequency phased array based on the interference principle was used to simulate the array's sound distribution. The pressure intensity in the array focal area was enhanced and the scanning area having effective contrast resolution was enlarged. The system is especially useful for high intensity focused ultrasound (HIFU) with more powerful energy and ultrasound imaging diagnostics with improved signal to noise ratios, improved beam forming and more uniform imaging quality.

  4. Breast ultrasound tomography with two parallel transducer arrays

    Science.gov (United States)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Gao, Kai; Intrator, Miranda; Hanson, Kenneth

    2016-03-01

    Breast ultrasound tomography is an emerging imaging modality to reconstruct the sound speed, density, and ultrasound attenuation of the breast in addition to ultrasound reflection/beamforming images for breast cancer detection and characterization. We recently designed and manufactured a new synthetic-aperture breast ultrasound tomography prototype with two parallel transducer arrays consisting of a total of 768 transducer elements. The transducer arrays are translated vertically to scan the breast in a warm water tank from the chest wall/axillary region to the nipple region to acquire ultrasound transmission and reflection data for whole-breast ultrasound tomography imaging. The distance of these two ultrasound transducer arrays is adjustable for scanning breasts with different sizes. We use our breast ultrasound tomography prototype to acquire phantom and in vivo patient ultrasound data to study its feasibility for breast imaging. We apply our recently developed ultrasound imaging and tomography algorithms to ultrasound data acquired using our breast ultrasound tomography system. Our in vivo patient imaging results demonstrate that our breast ultrasound tomography can detect breast lesions shown on clinical ultrasound and mammographic images.

  5. Multilayer Array Transducer for Nonlinear Ultrasound Imaging

    Science.gov (United States)

    Owen, Neil R.; Kaczkowski, Peter J.; Li, Tong; Gross, Dan; Postlewait, Steven M.; Curra, Francesco P.

    2011-09-01

    The properties of nonlinear acoustic wave propagation are known to be able to improve the resolution of ultrasound imaging, and could be used to dynamically estimate the physical properties of tissue. However, transducers capable of launching a wave that becomes nonlinear through propagation do not typically have the necessary bandwidth to detect the higher harmonics. Here we present the design and characterization of a novel multilayer transducer for high intensity transmit and broadband receive. The transmit layer was made from a narrow-band, high-power piezoceramic (PZT), with nominal frequency of 2.0 MHz, that was diced into an array of 32 elements. Each element was 0.300 mm wide and 6.3 mm in elevation, and with a pitch of 0.400 mm the overall aperture width was 12.7 mm. A quarter-wave matching layer was attached to the PZT substrate to improve transmit efficiency and bandwidth. The overlaid receive layer was made from polyvinylidene fluoride (PVDF) that had gold metalization on one side. A custom two-sided flex circuit routed electrical connections to the PZT elements and patterned the PVDF elements; the PZT and PVDF elements had identical apertures. A low viscosity and electrically nonconductive epoxy was used for all adhesion layers. Characterization of electrical parameters and acoustic output were performed per standard methods, where transmit and receive events were driven by a software-controlled ultrasound engine. Echo data, collected from ex vivo tissue and digitized at 45 MS/s, exhibited frequency content up to the 4th harmonic of the 2 MHz transmit frequency.

  6. Sub-array patterns of spherical-section phased array for high intensity focused ultrasound surgery

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaodong; WANG Xufei; LU Mingzhu; WAN Mingxi

    2005-01-01

    The sub-array field patterns of spherical-section phased array were implemented for noninvasive ultrasound surgery of liver-tumor. The sub-array approach included field calculation, pseudo-inverse method and genetic algorithm. The sub-arrays uncovered by ribs according to scanned images normally emitted ultrasound. The results from different sub-arrays demonstrated quite satisfied acoustic performances, which included qualified focus size and intensity level for ultrasound surgery with single-focus and multi-foci patterns. Moreover, the patterns could decrease power accumulation on the ribs, and avoid damaging normal tissues. Thus the sub-array method provides a promising tool for phased array ultrasound propagating through strong obstacles like human rib cage, and it may broaden the therapeutic area, make the surgery safer and more flexible.

  7. Phased-array ultrasound technology enhances accuracy of dual frequency ultrasound measurements - towards improved ultrasound bone diagnostics.

    Science.gov (United States)

    Linder, Hans; Malo, Markus K H; Liukkonen, Jukka; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Overlying soft tissues attenuate ultrasound backscattered from bone, complicating diagnostics of osteoporosis at the most important fracture sites. Dual-frequency ultrasound technique (DFUS) has been proposed to solve this problem through determination of thickness and composition of overlying soft tissue. This study applies DFUS technique for the first time with a phased-array transducer to investigate if the thickness of two interfering layers (oil and water) can be accurately determined in a variety of configurations. Results indicate that DFUS may be used with phased-array ultrasound systems, making them a suitable combination to consider in future development of clinical in vivo ultrasound methodologies. PMID:27187271

  8. A High-Frequency High Frame Rate Duplex Ultrasound Linear Array Imaging System for Small Animal Imaging

    Science.gov (United States)

    Zhang, Lequan; Xu, Xiaochen; Hu, Changhong; Sun, Lei; Yen, Jesse T.; Cannata, Jonathan M.; Shung, K. Kirk

    2010-01-01

    High-frequency (HF) ultrasound imaging has been shown to be useful for non-invasively imaging anatomical structures of the eye and small animals in biological and pharmaceutical research, achieving superior spatial resolution. Cardiovascular research utilizing mice requires not only real-time B-scan imaging, but also ultrasound Doppler to evaluate both anatomy and blood flow of the mouse heart. This paper reports the development of a high frequency ultrasound duplex imaging system capable of both B-mode imaging and Doppler flow measurements, using a 64-element linear array. The system included a HF pulsed-wave Doppler module, a 32-channel HF B-mode imaging module, a PC with a 200 MS/s 14-bit A/D card, and real-time LabView software. A 50dB signal-to-noise ratio (SNR) and a depth of penetration of larger than 12 mm were achieved using a 35 MHz linear array with 50 μm pitch. The two-way beam widths were determined to be 165 μm to 260 μm and the clutter energy to total energy ratio (CTR) were 9.1 dB to 12 dB, when the array was electronically focused at different focal points at depths from 4.8 mm to 9.6 mm. The system is capable of acquiring real-time B-mode images at a rate greater than 400 frames per second (fps) for a 4.8 × 13 mm field of view, using a 30 MHz 64-element linear array with 100 μm pitch. Sample in vivo cardiac high frame rate images and duplex images of mouse hearts are shown to assess its current imaging capability and performance for small animals. PMID:20639149

  9. High-resolution medical ultrasound arrays using smart materials technology

    Science.gov (United States)

    Bridger, Keith; Caldwell, Paul J.; Kuhn, Phillip; Winzer, Stephen R.

    1996-05-01

    Current ultrasound images have relatively low contrast (high levels of clutter) and resolution. Image quality could be dramatically improved if 2D ultrasound transducer arrays were available to perform the scans. These improvements would come from reducing clutter by eliminating target echoes that the beam width of a 1D array causes to be superimposed on a scan plane, and enhancing resolution by enabling the use of algorithms which correct the wavefront distortion introduced by propagation through tissue. The advent of 2D arrays would also enable 3D images to be displayed--eventually in real time. The fabrication of 2D ultrasound arrays is, however, very difficult. This stems from the acoustic requirements of the array (aperture, pitch and element size) which combine together to dictate large numbers (> 1000) of very-low capacitance (capacitance and impedance mismatch. This paper will show how the development of composite smart materials involving the integration of electromechanical elements with electronics is being extended to the development of relatively-inexpensive high-sensitivity 2D ultrasound arrays.

  10. High-frequency synthetic ultrasound array incorporating an actuator

    Science.gov (United States)

    Ritter, Timothy A.; Shrout, Thomas R.; Shung, K. Kirk

    2001-05-01

    Ultrasound imaging at frequencies above 20 MHz relies almost exclusively on single-element transducers. IN order to apply array technology at these frequencies, several practical problems must be solved, including spatial scale and fabrication limitations, low device capacitance, and lack of a hardware beamformer. One method of circumventing these problems is to combine an array, an actuator, and a synthetic aperture software beamformer. The array can use relatively wide elements spaced on a coarse pitch. The actuator is used to move the array in short steps (less than the element pitch), and pulse-echo data is acquired at intermediate sample positions. The synthetic aperture beamformer reconstructs the image from the pulse-echo data. A 50 MHz example is analyzed in detail. Estimates of signal-to-noise reveal performance comparable to a standard phased array; furthermore, the actuated array requires half the number of elements, the elements are 8x wider, and only one channel is required. Simulated three-dimensional point spread functions demonstrate side lobe levels approaching - 40dB and main beam widths of 50 to 100 microns. A 50 MHz piezo-composite array design has been tested which displays experimental bandwidth of 70% while maintaining high sensitivity. Individual composite sub-elements are 18 microns wide. Once this array is integrated with a suitable actuator, it is anticipated that a tractable method of imaging with high frequency arrays will result.

  11. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging.

    Science.gov (United States)

    Daoudi, K; van den Berg, P J; Rabot, O; Kohl, A; Tisserand, S; Brands, P; Steenbergen, W

    2014-10-20

    Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expensive systems, which limits their clinical application and makes the combination costly and impracticable. In this work we present and evaluate a compact and ergonomically designed handheld probe, connected to a portable ultrasound system for inexpensive, real-time dual-modality ultrasound/photoacoustic imaging. The probe integrates an ultrasound transducer array and a highly efficient diode stack laser emitting 130 ns pulses at 805 nm wavelength and a pulse energy of 0.56 mJ, with a high pulse repetition frequency of up to 10 kHz. The diodes are driven by a customized laser driver, which can be triggered externally with a high temporal stability necessary to synchronize the ultrasound detection and laser pulsing. The emitted beam is collimated with cylindrical micro-lenses and shaped using a diffractive optical element, delivering a homogenized rectangular light intensity distribution. The system performance was tested in vitro and in vivo by imaging a human finger joint.

  12. Ultrasound cylindrical phased array for transoesophageal thermal therapy: initial studies

    Energy Technology Data Exchange (ETDEWEB)

    Melodelima, David [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Lafon, Cyril [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Prat, Frederic [Centre Hospitalier Bicetre, 78 Avenue General Leclerc, 94275 Le Kremlin Bicetre (France); Birer, Alain [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Cathignol, Dominique [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France)

    2002-12-07

    This work was undertaken to investigate the feasibility of constructing a cylindrical phased array composed of 64 elements spread around the periphery (OD 10.6 mm) for transoesophageal ultrasound thermotherapy. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were successively excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. For these feasibility studies, we used a cylindrical prototype (OD 10.6 mm) composed of 16 elementary transducers distributed over a quarter of the cylinder, all operating at 4.55 MHz. The active part was mechanically reinforced by a rigid damper structure behind the transducers. It was shown that an ultrasound field similar to that emitted by a plane transducer could be generated. Ex vivo experiments on pig's liver demonstrated that the ultrasound beam could be accurately rotated to generate sector-based lesions to a suitable depth (up to 19 mm). Throughout these experiments, exposures lasting 20 s were delivered at an acoustic intensity of 17 W cm{sup -2}. By varying the power from exposure to exposure, the depth of the lesion at different angles could be controlled.

  13. HIFU Monitoring and Control with Dual-Mode Ultrasound Arrays

    Science.gov (United States)

    Casper, Andrew Jacob

    The biological effects of high-intensity focused ultrasound (HIFU) have been known and studied for decades. HIFU has been shown capable of treating a wide variety of diseases and disorders. However, despite its demonstrated potential, HIFU has been slow to gain clinical acceptance. This is due, in part, to the difficulty associated with robustly monitoring and controlling the delivery of the HIFU energy. The non-invasive nature of the surgery makes the assessment of treatment progression difficult, leading to long treatment times and a significant risk of under treatment. This thesis research develops new techniques and systems for robustly monitoring HIFU therapies for the safe and efficacious delivery of the intended treatment. Systems and algorithms were developed for the two most common modes of HIFU delivery systems: single-element and phased array applicators. Delivering HIFU with a single element transducer is a widely used technique in HIFU therapies. The simplicity of a single element offers many benefits in terms of cost and overall system complexity. Typical monitoring schemes rely on an external device (e.g. diagnostic ultrasound or MRI) to assess the progression of therapy. The research presented in this thesis explores using the same element to both deliver and monitor the HIFU therapy. The use of a dual-mode ultrasound transducer (DMUT) required the development of an FPGA based single-channel arbitrary waveform generator and high-speed data acquisition unit. Data collected from initial uncontrolled ablations led to the development of monitoring and control algorithms which were implemented directly on the FPGA. Close integration between the data acquisition and arbitrary waveform units allowed for fast, low latency control over the ablation process. Results are presented that demonstrate control of HIFU therapies over a broad range of intensities and in multiple in vitro tissues. The second area of investigation expands the DMUT research to an

  14. Breast ultrasound tomography with two parallel transducer arrays: preliminary clinical results

    Science.gov (United States)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Intrator, Miranda; Hanson, Kenneth; Epstein, Katherine; Sandoval, Daniel; Williamson, Michael

    2015-03-01

    Ultrasound tomography has great potential to provide quantitative estimations of physical properties of breast tumors for accurate characterization of breast cancer. We design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays. The distance of these two transducer arrays is adjustable for scanning breasts with different sizes. The ultrasound transducer arrays are translated vertically to scan the entire breast slice by slice and acquires ultrasound transmission and reflection data for whole-breast ultrasound imaging and tomographic reconstructions. We use the system to acquire patient data at the University of New Mexico Hospital for clinical studies. We present some preliminary imaging results of in vivo patient ultrasound data. Our preliminary clinical imaging results show promising of our breast ultrasound tomography system with two parallel transducer arrays for breast cancer imaging and characterization.

  15. High-speed dynamic 3D photoacoustic imaging of sentinel lymph node in a murine model using an ultrasound array.

    Science.gov (United States)

    Song, Liang; Kim, Chulhong; Maslov, Konstantin; Shung, K Kirk; Wang, Lihong V

    2009-08-01

    Noninvasive photoacoustic sentinel lymph node (SLN) mapping with high spatial resolution has the potential to improve the false negative rate and eliminate the use of radioactive tracers in SLN identification. In addition, the demonstrated high spatial resolution may enable physicians to replace SLN biopsy with fine needle aspiration biopsy, and thus reduce the risk of associated morbidity. The primary goal of this study is to demonstrate the feasibility of high-speed 3D photoacoustic imaging of the uptake and clearance dynamics of Evans blue dye in SLNs. The photoacoustic imaging system was developed with a 30 MHz ultrasound array and a kHz repetition rate laser system. It acquires one 3D photoacoustic image of 166 B-scan frames in 1 s, with axial, lateral, and elevational resolutions of 25, 70, and 200 microm, respectively. With optic-fiber based light delivery, the entire system is compact and is convenient to use. Upon injection of Evans blue, a blue dye currently used in clinical SLN biopsy, SLNs in mice and rats were accurately and noninvasively mapped in vivo using our imaging system. In our experiments, the SLNs were found to be located at approximately 0.65 mm below the skin surface in mice and approximately 1.2 mm in rats. In some cases, lymph vessels and lymphatic valves were also imaged. The dye dynamics--accumulation and clearance--in SLNs were quantitatively monitored by sequential 3D imaging with temporal resolution of as high as approximately 6 s. The demonstrated capability suggests that high-speed 3D photoacoustic imaging should facilitate the understanding of the dynamics of various dyes in SLNs and potentially help identify SLNs with high accuracy. PMID:19746805

  16. 30 MHz radar observations of artificial E region field-aligned plasma irregularities

    OpenAIRE

    D. L. Hysell

    2008-01-01

    Artificial E region field aligned irregularities (FAIs) have been observed during heating experiments at the HAARP facility using a new 30 MHz coherent scatter radar imager deployed near Homer, Alaska. Irregularities were observed during brief experiments on three quiet days in July and August, 2007, when the daytime E region critical frequency was close to 3 MHz. Irregularities were consistently generated and detected during experiments with O-mode HF pumping on zenith with a 1-min on, 1-min...

  17. I vivo three-dimensional photoacoustic imaging based on a clinicall matrix array ultrasound probe

    NARCIS (Netherlands)

    Wang, Y.; Erpelding, T.N.; Jankovic, L.; Guo, Z.; Robert, J.L.; David, G.; Wang, L.V.

    2011-01-01

    We present an integrated photoacoustic and ultrasonic three-dimensional (3D) volumetric imaging system based on a two-dimensional (2D) matrix array ultrasound probe. A wavelength-tunable dye laser pumpedby a Q-switched Nd:YAG laser serves as the light source and a modified commercial ultrasound imag

  18. In Vivo application and localization of transcranial focused ultrasound using dual-mode ultrasound arrays.

    Science.gov (United States)

    Haritonova, Alyona; Liu, Dalong; Ebbini, Emad S

    2015-12-01

    Focused ultrasound (FUS) has been proposed for a variety of transcranial applications, including neuromodulation, tumor ablation, and blood-brain barrier opening. A flurry of activity in recent years has generated encouraging results demonstrating its feasibility in these and other applications. To date, monitoring of FUS beams has been primarily accomplished using MR guidance, where both MR thermography and elastography have been used. The recent introduction of real-time dual-mode ultrasound array (DMUA) systems offers a new paradigm in transcranial focusing. In this paper, we present first experimental results of ultrasound-guided transcranial FUS (tFUS) application in a rodent brain, both ex vivo and in vivo. DMUA imaging is used for visualization of the treatment region for placement of the focal spot within the brain. This includes the detection and localization of pulsating blood vessels at or near the target point(s). In addition, DMUA imaging is used to monitor and localize the FUS-tissue interactions in real time. In particular, a concave (40 mm radius of curvature), 32-element, 3.5-MHz DMUA prototype was used for imaging and tFUS application in ex vivo and in vivo rat models. The ex vivo experiments were used to evaluate the point spread function of the transcranial DMUA imaging at various points within the brain. In addition, DMUA-based transcranial ultrasound thermography measurements were compared with thermocouple measurements of subtherapeutic tFUS heating in rat brain ex vivo. The ex vivo setting was also used to demonstrate the capability of DMUA to produce localized thermal lesions. The in vivo experiments were designed to demonstrate the ability of the DMUA to apply, monitor, and localize subtherapeutic tFUS patterns that could be beneficial in transient blood-brain barrier opening. The results show that although the DMUA focus is degraded due to the propagation through the skull, it still produces localized heating effects within a sub

  19. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging

    NARCIS (Netherlands)

    Daoudi, K.; Berg, van den P.J.; Rabot, O.; Kohl, A.; Tisserand, S.; Brands, P.J.; Steenbergen, W.

    2014-01-01

    Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expens

  20. Acoustical cross-talk in row–column addressed 2-D transducer arrays for ultrasound imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-01-01

    The acoustical cross-talk in row–column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, λ/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed in the...

  1. Elastic characterization of swine aorta by scanning acoustic microscopy at 30 MHz

    Science.gov (United States)

    Blase, Christopher; Shelke, Amit; Kundu, Tribikram; Bereiter-Hahn, Jürgen

    2011-04-01

    The mechanical properties of blood vessel walls are important determinants of physiology and pathology of the cardiovascular system. Acoustic imaging (B mode) is routinely used in a clinical setting to determine blood flow and wall distensibility. In this study scanning acoustic microscopy in vitro is used to determine spatially resolved tissue elastic properties. Broadband excitation of 30 MHz has been applied through scanning acoustic microscopy (SAM) for topographical imaging of swine thoracic aorta in reflection mode. Three differently treated tissue samples were investigated with SAM: a) treated with elastase to remove elastin, b) autoclaving for 5 hours to remove collagen and c) fresh controlled untreated sample as control. Experimental investigations are conducted for studying the contribution of individual protein components (elastin and collagen) to the material characteristics of the aortic wall. Conventional tensile testing has been conducted on the tissue samples to study the mechanical behavior. The mechanical properties measured by SAM and tensile testing show qualitative agreement.

  2. Electric Field Signatures in Wideband, 3 MHz and 30 MHz of Negative Ground Flashes Pertinent to Swedish Thunderstorms

    Directory of Open Access Journals (Sweden)

    Mohd Muzafar Ismail

    2015-12-01

    Full Text Available In this study, the electric field signatures of negative ground flashes pertinent to the Swedish thunderstorms were recorded simultaneously during the summer of 2014 using wide (up to 100 MHz and narrow (at 3 MHz and 30 MHz as central frequencies bandwidth antenna systems. The electric field signatures were recorded for a time duration of 250 ms. In the analysis, the whole flash was considered and a total of 98 flashes were chosen where electric field signatures of all wideband, 3 MHz and 30 MHz signals were present. It is observed that preliminary breakdown pulses are stronger radiators at 3 and 30 MHz compared to the return strokes. A comparison of our results with those of the previous studies obtained from different geographical regions clearly shows that the strength of preliminary breakdown pulses is higher in the temperate region (Sweden for instance and is a function of latitude.

  3. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy

    Science.gov (United States)

    Hynynen, Kullervo; Jones, Ryan M.

    2016-09-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  4. Genomic SNP array as a gold standard for prenatal diagnosis of foetal ultrasound abnormalities

    NARCIS (Netherlands)

    M. Srebniak (Malgorzata); M. Boter (Marjan); G.G. Oudesluijs (Grétel); T.E. Cohen-Overbeek (Titia); L.C. Govaerts (Lutgarde); K.E.M. Diderich (Karin); R. Oegema (Renske); M.F.C.M. Knapen (Maarten); I.M.B.H. van de Laar (Ingrid); M. Joosten (Marieke); A.R.M. van Opstal (Diane); R-J.H. Galjaard (Robert-Jan)

    2012-01-01

    textabstractBackground: We have investigated whether replacing conventional karyotyping by SNP array analysis in cases of foetal ultrasound abnormalities would increase the diagnostic yield and speed of prenatal diagnosis in clinical practice. Findings/results. From May 2009 till June 2011 we perfor

  5. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy.

    Science.gov (United States)

    Hynynen, Kullervo; Jones, Ryan M

    2016-09-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy. PMID:27494561

  6. Synthetic Aperture Beamforming in Ultrasound using Moving Arrays

    DEFF Research Database (Denmark)

    Andresen, Henrik

    in ultrasound has allowed the technology to evolve from a showing a simple echo along a line to fully visualize entire organs. The image changes significantly depending on the orientation of the transducer, making it more difficult to see exact features. This poses challenges since anatomy is three-dimensional...... was missed and allows a more precise measurement of organ dimensions [2, 3, 4]. Conventional 3D ultrasound imaging is basically faced with two limitations. It is only able to have a single transmit focus point and each line in a 3D volume has to be created independently. This reduces image quality outside...... the focus point and reduces temporal resolution. For better image quality it is desirable to achieve a good resolution at a large range of depths, and achieving a volume-rate fast enough to visualize the dynamics of the investigated organ. A method showing the possibility of meeting both these challenges...

  7. 30 MHz radar observations of artificial E region field-aligned plasma irregularities

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2008-02-01

    Full Text Available Artificial E region field aligned irregularities (FAIs have been observed during heating experiments at the HAARP facility using a new 30 MHz coherent scatter radar imager deployed near Homer, Alaska. Irregularities were observed during brief experiments on three quiet days in July and August, 2007, when the daytime E region critical frequency was close to 3 MHz. Irregularities were consistently generated and detected during experiments with O-mode HF pumping on zenith with a 1-min on, 1-min off CW modulation. The scattering cross sections, rise, and fall times of the echoes were observed as well as their spectral properties. Results were found to be mainly in agreement with observations from other mid- and high-latitude sites with some discrepancies. Radar images of the irregularity-filled volume on one case exhibited clear variations in backscatter power and Doppler shift across the volume. The images furthermore show the emergence of a small irregularity-filled region to the south southwest of the main region in the approximate direction of magnetic zenith.

  8. 30 MHz hardware digital filter for signals of the ZEUS forward tracking detector

    International Nuclear Information System (INIS)

    Here we describe the FADC modules for the 5184 channels of the forward tracking detector of the ZEUS experiment at HERA (DESY), which convert the incoming analogue signals on a 104 MHz clock and apply a hardware digital filtering and zero suppression procedure on the acquired data. A module works on 32 input channels, nine boards are grouped in a 9HU crate. On a given trigger, the data are sequentially transferred to an output buffer for final acquisition, passing a 30 MHz digital filter and zero suppression hardware. The module uses a 9 bit signed FIR filter with eight tabs, where the eight filter coefficients are freely programmable. Only signals with two successive filtered values above a certain threshold are stored for output. Due to the filter procedure the data reduction rate is greater than 95%. The system provides a processing power of 600 mops per board for the foreseen application. In addition to the data reduction the main benefit of the filtering process is the significantly improved separation of double signals. ((orig.))

  9. Volumetric Ultrasound Imaging with Row-Column Addressed 2-D Arrays Using Spatial Matched Filter Beamforming

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann;

    2015-01-01

    . However, the achievable spatial resolution and contrast of the B-mode images in Delay and Sum (DAS) beamforming are limited by the aperture size and by the operating frequency. This paper, investigates Spatial Matched Filter (SMF) beamforming on row-column addressed 2-D arrays to increase spatial......For 3-D ultrasound imaging with row-column addressed 2-D arrays, the two orthogonal 1-D transmit and receive arrays are both used for one-way focusing in the lateral and elevation directions separately and since they are not in the same plane, the two-way focusing is the same as one-way focusing...

  10. A hemisphere array for non-invasive ultrasound brain therapy and surgery

    Science.gov (United States)

    Clement, G. T.; Sun, Jie; Giesecke, Tonia; Hynynen, Kullervo

    2000-12-01

    Ultrasound phased arrays may offer a method for non-invasive deep brain surgery through the skull. In this study a hemispherical phased array system is developed to test the feasibility of trans-skull surgery. The hemispherical shape is incorporated to maximize the penetration area on the skull surface, thus minimizing unwanted heating. Simulations of a 15 cm radius hemisphere divided into 11, 64, 228 and 512 elements are presented. It is determined that 64 elements are sufficient for correcting scattering and reflection caused by trans-skull propagation. An optimal operating frequency near 0.7 MHz is chosen for the array from numerical and experimental thermal gain measurements comparing the power between the transducer focus and the skull surface. A 0.665 MHz air-backed PZT array is constructed and evaluated. The array is used to focus ultrasound through an ex vivo human skull and the resulting fields are measured before and after phase correction of the transducer elements. Finally, to demonstrate the feasibility of trans-skull therapy, thermally induced lesions are produced through a human skull in fresh tissue placed at the ultrasound focus inside the skull.

  11. SOUND-SPEED TOMOGRAPHY USING FIRST-ARRIVAL TRANSMISSION ULTRASOUND FOR A RING ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; QUAN, YOULI [Los Alamos National Laboratory

    2007-01-31

    Sound-speed tomography images can be used for cancer detection and diagnosis. Tumors have generally higher sound speeds than the surrounding tissue. Quality and resolution of tomography images are primarily determined by the insonification/illumination aperture of ultrasound and the capability of the tomography method for accurately handling heterogeneous nature of the breast. We investigate the capability of an efficient time-of-flight tomography method using transmission ultrasound from a ring array for reconstructing sound-speed images of the breast. The method uses first arrival times of transmitted ultrasonic signals emerging from non-beamforming ultrasound transducers located around a ring. It properly accounts for ray bending within the breast by solving the eikonal equation using a finite-difference scheme. We test and validate the time-of-flight transmission tomography method using synthetic data for numerical breast phantoms containing various objects. In our simulation, the objects are immersed in water within a ring array. Two-dimensional synthetic data are generated using a finite-difference scheme to solve acoustic-wave equation in heterogeneous media. We study the reconstruction accuracy of the tomography method for objects with different sizes and shapes as well as different perturbations from the surrounding medium. In addition, we also address some specific data processing issues related to the tomography. Our tomography results demonstrate that the first-arrival transmission tomography method can accurately reconstruct objects larger than approximately five wavelengths of the incident ultrasound using a ring array.

  12. Predicting the sky from 30 MHz to 800 GHz: the extended Global Sky Model

    Science.gov (United States)

    Liu, Adrian

    We propose to construct the extended Global Sky Model (eGSM), a software package and associated data products that are capable of generating maps of the sky at any frequency within a broad range (30 MHz to 800 GHz). The eGSM is constructed from archival data, and its outputs will include not only "best estimate" sky maps, but also accurate error bars and the ability to generate random realizations of missing modes in the input data. Such views of the sky are crucial in the practice of precision cosmology, where our ability to constrain cosmological parameters and detect new phenomena (such as B-mode signatures from primordial gravitational waves, or spectral distortions of the Cosmic Microwave Background; CMB) rests crucially on our ability to remove systematic foreground contamination. Doing so requires empirical measurements of the foreground sky brightness (such as that arising from Galactic synchrotron radiation, among other sources), which are typically performed only at select narrow wavelength ranges. We aim to transcend traditional wavelength limits by optimally combining existing data to provide a comprehensive view of the foreground sky at any frequency within the broad range of 30 MHz to 800 GHz. Previous efforts to interpolate between multi-frequency maps resulted in the Global Sky Model (GSM) of de Oliveira-Costa et al. (2008), a software package that outputs foreground maps at any frequency of the user's choosing between 10 MHz and 100 GHz. However, the GSM has a number of shortcomings. First and foremost, the GSM does not include the latest archival data from the Planck satellite. Multi-frequency models depend crucially on data from Planck, WMAP, and COBE to provide high-frequency "anchor" maps. Another crucial shortcoming is the lack of error bars in the output maps. Finally, the GSM is only able to predict temperature (i.e., total intensity) maps, and not polarization information. With the recent release of Planck's polarized data products, the

  13. Multiple-frequency phased array patterns for therapeutic ultrasound

    Science.gov (United States)

    Ballard, John R.; Liu, Dalong; Casper, Andrew J.; Wan, Yayun; Almekkawy, Mohamed; Ebbini, Emad S.

    2012-10-01

    Modern transducer technology allows for the design and implementation of therapeutic arrays with relatively wide bandwidths (>50%) and low cross coupling between elements. We present results from a 3.5 MHz, 64-element prototype designed for small-animal and superficial therapeutic HIFU applications (Imasonic, Inc.) This transducer has a 58% 6-dB fractional BW average on its elements allowing for therapeutic output in the frequency range of 2.7 - 4.6 MHz. We present a simulation/experimental study to evaluate and optimize the focusing capabilities of the phased array prototype when excited by multiple-frequency components. Preliminary results have shown that multiple-frequency excitation may be beneficial in enhancing the therapeutic effects of HIFU beams. A multiple-focus pattern synthesis algorithm for arrays excited by multiple-frequency signals has been developed and tested using linear pressure field simulations. The algorithm maintains the precise phase relationship between the frequency components at each focal spot to achieve a desirable outcome. Hydrophone measurements to validate the approach show that nonlinear effects at the focal location are more prominent with the frequency mixing compared to conventional single frequency excitation. An in vitro study of lesion formation in freshly excised porcine liver was investigated.

  14. High-Frequency Ultrasound Array Designed for Ultrasound-Guided Breast Biopsy.

    Science.gov (United States)

    Cummins, Thomas; Eliahoo, Payam; Kirk Shung, K

    2016-06-01

    This paper describes the development of a miniaturized high-frequency linear array that can be integrated within a core biopsy needle to improve tissue sampling accuracy during breast cancer biopsy procedures. The 64-element linear array has an element width of [Formula: see text], kerf width of [Formula: see text], element length of 1 mm, and element thickness of [Formula: see text]. The 2-2 array composite was fabricated using deep reactive ion etching of lead magnesium niobate-lead titanate (PMN-PT) single crystal material. The array composite fabrication process as well as a novel high-density electrical interconnect solution are presented and discussed. Array performance measurements show that the array had a center frequency and fractional bandwidth ([Formula: see text]) of 59.1 MHz and 29.4%, respectively. Insertion loss and adjacent element crosstalk at the center frequency were -41.0 and [Formula: see text], respectively. A B-mode image of a tungsten wire target phantom was captured using a synthetic aperture imaging system and the imaging test results demonstrate axial and lateral resolutions of 33.2 and [Formula: see text], respectively. PMID:27046895

  15. In vivo visualization of robotically implemented synthetic tracked aperture ultrasound (STRATUS) imaging system using curvilinear array

    Science.gov (United States)

    Zhang, Haichong K.; Aalamifar, Fereshteh; Boctor, Emad M.

    2016-04-01

    Synthetic aperture for ultrasound is a technique utilizing a wide aperture in both transmit and receive to enhance the ultrasound image quality. The limitation of synthetic aperture is the maximum available aperture size limit determined by the physical size of ultrasound probe. We propose Synthetic-Tracked Aperture Ultrasound (STRATUS) imaging system to overcome the limitation by extending the beamforming aperture size through ultrasound probe tracking. With a setup involving a robotic arm, the ultrasound probe is moved using the robotic arm, while the positions on a scanning trajectory are tracked in real-time. Data from each pose are synthesized to construct a high resolution image. In previous studies, we have demonstrated the feasibility through phantom experiments. However, various additional factors such as real-time data collection or motion artifacts should be taken into account when the in vivo target becomes the subject. In this work, we build a robot-based STRATUS imaging system with continuous data collection capability considering the practical implementation. A curvilinear array is used instead of a linear array to benefit from its wider capture angle. We scanned human forearms under two scenarios: one submerged the arm in the water tank under 10 cm depth, and the other directly scanned the arm from the surface. The image contrast improved 5.51 dB, and 9.96 dB for the underwater scan and the direct scan, respectively. The result indicates the practical feasibility of STRATUS imaging system, and the technique can be potentially applied to the wide range of human body.

  16. In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe

    Science.gov (United States)

    Wang, Yu; Erpelding, Todd N.; Jankovic, Ladislav; Guo, Zijian; Robert, Jean-Luc; David, Guillaume; Wang, Lihong V.

    2012-06-01

    We present an integrated photoacoustic and ultrasonic three-dimensional (3-D) volumetric imaging system based on a two-dimensional (2-D) matrix array ultrasound probe. A wavelength-tunable dye laser pumped by a Q-switched Nd:YAG laser serves as the light source and a modified commercial ultrasound imaging system (iU22, Philips Healthcare) with a 2-D array transducer (X7-2, Philips Healthcare) detects both the pulse-echo ultrasound and photoacoustic signals. A multichannel data acquisition system acquires the RF channel data. The imaging system enables rendering of co-registered 3-D ultrasound and photoacoustic images without mechanical scanning. The resolution along the azimuth, elevation, and axial direction are measured to be 0.69, 0.90 and 0.84 mm for photoacoustic imaging. In vivo 3-D photoacoustic mapping of the sentinel lymph node was demonstrated in a rat model using methylene blue dye. These results highlight the clinical potential of 3-D PA imaging for identification of sentinel lymph nodes for cancer staging in humans.

  17. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    Science.gov (United States)

    Song, Junho; Hynynen, Kullervo

    2009-04-01

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100×100×80 mm3 with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  18. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    International Nuclear Information System (INIS)

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100x100x80 mm3 with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  19. 3-D Ultrasound Imaging Performance of a Row-Column Addressed 2-D Array Transducer: A Measurement Study

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2013-01-01

    A real-time 3-D ultrasound measurement using only 32 elements and 32 emissions is presented. The imaging quality is compared to a conventionally fully addressed array using 1024 elements and 256 emissions. The main-lobe of the measured line spread function is almost identical, but the side...... is 510% larger than when row-column addressing the array. The cyst radius needed to achieve -20 dB intensity in the cyst is 396% larger for the fully addressed array compared to the row-column addressed array. The measurements were made using the experimental ultrasound scanner SARUS and a 32x32 element...

  20. Genomic SNP array as a gold standard for prenatal diagnosis of foetal ultrasound abnormalities

    Directory of Open Access Journals (Sweden)

    Srebniak Malgorzata I

    2012-03-01

    Full Text Available Abstract Background We have investigated whether replacing conventional karyotyping by SNP array analysis in cases of foetal ultrasound abnormalities would increase the diagnostic yield and speed of prenatal diagnosis in clinical practice. Findings/results From May 2009 till June 2011 we performed HumanCytoSNP-12 array (HCS (http://www.Illumina.com analysis in 207 cases of foetal structural abnormalities. HCS allows detecting unbalanced genomic abnormalities with a resolution of about 150/200 kb. All cases were selected by a clinical geneticist after excluding the most common aneuploidies by RAD (rapid aneuploidy detection. Pre-test genetic counselling was offered in all cases. In 24/207 (11,6% foetuses a clinically relevant genetic abnormality was detected. Only 8/24 abnormalities would have been detected if only routine karyotyping was performed. Submicroscopic abnormalities were found in 16/207 (7,7% cases. The array results were achieved within 1-2 weeks after amniocentesis. Conclusions Prenatal SNP array testing is faster than karyotyping and allows detecting much smaller aberrations (~0.15 Mb in addition to the microscopic unbalanced chromosome abnormalities detectable with karyotyping (~ > 5 Mb. Since karyotyping would have missed 66% (16/24 of genomic abnormalities in our cohort, we propose to perform genomic high resolution array testing assisted by pre-test counselling as a primary prenatal diagnostic test in cases of foetal ultrasound abnormalities.

  1. Ultrasound

    Science.gov (United States)

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  2. Validity and reliability of rectus femoris ultrasound measurements: Comparison of curved-array and linear-array transducers

    Directory of Open Access Journals (Sweden)

    Kendra Hammond, MD

    2014-11-01

    Full Text Available Muscle-mass loss augers increased morbidity and mortality in critically ill patients. Muscle-mass loss can be assessed by wide linear-array ultrasound transducers connected to cumbersome, expensive console units. Whether cheaper, hand-carried units equipped with curved-array transducers can be used as alternatives is unknown. Accordingly, our primary aim was to investigate in 15 nondisabled subjects the validity of measurements of rectus femoris cross-sectional area by using a curved-array transducer against a linear-array transducer—the reference-standard technique. In these subjects, we also determined the reliability of measurements obtained by a novice operator versus measurements obtained by an experienced operator. Lastly, the relationship between quadriceps strength and rectus area recorded by two experienced operators with a curved-array transducer was assessed in 17 patients with chronic obstructive pulmonary disease (COPD. In nondisabled subjects, the rectus cross-sectional area measured with the curved-array transducer by the novice and experienced operators was valid (intraclass correlation coefficient [ICC]: 0.98, typical percentage error [%TE]: 3.7% and reliable (ICC: 0.79, %TE: 9.7%. In the subjects with COPD, both reliability (ICC: 0.99 and repeatability (%TE: 7.6% and 9.8% were high. Rectus area was related to quadriceps strength in COPD for both experienced operators (coefficient of determination: 0.67 and 0.70. In conclusion, measurements of rectus femoris cross-sectional area recorded with a curved-array transducer connected to a hand-carried unit are valid, reliable, and reproducible, leading us to contend that this technique is suitable for cross-sectional and longitudinal studies.

  3. 2D array transducers for real-time 3D ultrasound guidance of interventional devices

    Science.gov (United States)

    Light, Edward D.; Smith, Stephen W.

    2009-02-01

    We describe catheter ring arrays for real-time 3D ultrasound guidance of devices such as vascular grafts, heart valves and vena cava filters. We have constructed several prototypes operating at 5 MHz and consisting of 54 elements using the W.L. Gore & Associates, Inc. micro-miniature ribbon cables. We have recently constructed a new transducer using a braided wiring technology from Precision Interconnect. This transducer consists of 54 elements at 4.8 MHz with pitch of 0.20 mm and typical -6 dB bandwidth of 22%. In all cases, the transducer and wiring assembly were integrated with an 11 French catheter of a Cook Medical deployment device for vena cava filters. Preliminary in vivo and in vitro testing is ongoing including simultaneous 3D ultrasound and x-ray fluoroscopy.

  4. Piezoelectric Micromachined Ultrasound Transducer (PMUT Arrays for Integrated Sensing, Actuation and Imaging

    Directory of Open Access Journals (Sweden)

    Yongqiang Qiu

    2015-04-01

    Full Text Available Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs, diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.

  5. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging.

    Science.gov (United States)

    Qiu, Yongqiang; Gigliotti, James V; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E M; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-04-03

    Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.

  6. MR thermometry characterization of a hyperthermia ultrasound array designed using the k-space computational method

    Directory of Open Access Journals (Sweden)

    Lee Hotaik

    2006-10-01

    Full Text Available Abstract Background Ultrasound induced hyperthermia is a useful adjuvant to radiation therapy in the treatment of prostate cancer. A uniform thermal dose (43°C for 30 minutes is required within the targeted cancerous volume for effective therapy. This requires specific ultrasound phased array design and appropriate thermometry method. Inhomogeneous, acoustical, three-dimensional (3D prostate models and economical computational methods provide necessary tools to predict the appropriate shape of hyperthermia phased arrays for better focusing. This research utilizes the k-space computational method and a 3D human prostate model to design an intracavitary ultrasound probe for hyperthermia treatment of prostate cancer. Evaluation of the probe includes ex vivo and in vivo controlled hyperthermia experiments using the noninvasive magnetic resonance imaging (MRI thermometry. Methods A 3D acoustical prostate model was created using photographic data from the Visible Human Project®. The k-space computational method was used on this coarse grid and inhomogeneous tissue model to simulate the steady state pressure wavefield of the designed phased array using the linear acoustic wave equation. To ensure the uniformity and spread of the pressure in the length of the array, and the focusing capability in the width of the array, the equally-sized elements of the 4 × 20 elements phased array were 1 × 14 mm. A probe was constructed according to the design in simulation using lead zerconate titanate (PZT-8 ceramic and a Delrin® plastic housing. Noninvasive MRI thermometry and a switching feedback controller were used to accomplish ex vivo and in vivo hyperthermia evaluations of the probe. Results Both exposimetry and k-space simulation results demonstrated acceptable agreement within 9%. With a desired temperature plateau of 43.0°C, ex vivo and in vivo controlled hyperthermia experiments showed that the MRI temperature at the steady state was 42.9 ± 0.38

  7. The feasibility of MRI-guided whole prostate ablation with a linear aperiodic intracavitary ultrasound phased array

    Energy Technology Data Exchange (ETDEWEB)

    Sokka, S.D. [MIT Harvard Division of Health Sciences and Technology, Boston, MA 02115 (United States); Brigham and Women' s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 (United States); Hynynen, K.H. [Brigham and Women' s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 (United States)

    2000-11-01

    Over the past decade, numerous minimally invasive thermal procedures have been investigated to treat benign prostate hyperplasia and prostate cancer. Of these methods, ultrasound has shown considerable promise due to its ability to produce more precise and deeper thermal foci. In this study, a linear, transrectal ultrasound phased array capable of ablating large tissue volumes was fabricated and evaluated. The device was designed to be compatible for use with MRI guidance and thermometry. The intracavitary applicator increases treatable tissue volume by using an ultrasonic motor to provide a mechanical rotation angle of up to 100 deg. to a 62-element 1D ultrasound array. An aperiodic array geometry was used to reduce grating lobes. In addition, a specially designed Kapton interconnect was used to reduce cable crosstalk and hence also improve the acoustic efficiency of the array. MRI-guided in vivo and ex vivo experiments were performed to verify the array's large-volume ablative capabilities. Ex vivo bovine experiments were performed to assess the focusing range of the applicator. The array generated foci in a 3 cm (2 to 5 cm from the array surface along the axis normal to the array) by 5.5 cm (along the long axis of the array) by 6 cm (along the transverse axis of the array at a depth of 4 cm) volume. In vivo rabbit thigh experiments were performed to evaluate the lesion-producing capabilities in perfused tissue. The array generated 3 cm x 2 cm x 2 cm lesions with 8 to 12 half-minute sonications equally spaced in the volume. The results indicate that transrectal ultrasound coagulation of the whole prostate is feasible with the developed device. (author)

  8. Double Ring Array Catheter for In Vivo Real-Time 3D Ultrasound.

    Science.gov (United States)

    Smith, Stephen W; Gardea, Paul; Patel, Vivek; Douglas, Stephen J; Wolf, Patrick D

    2014-03-12

    We developed new forward-viewing matrix transducers consisting of double ring arrays of 118 total PZT elements integrated into catheters used to deploy medical interventional devices. Our goal is 3D ultrasound guidance of medical device implantation to reduce x-ray fluoroscopy exposure. The double ring arrays were fabricated on inner and outer custom polyimide flexible circuits with inter-element spacing of 0.20 mm and then wrapped around an 11 French (Fr) catheter to produce a 15 Fr catheter (outer diameter [O.D.]). We used a braided cabling technology to connect the elements to the Volumetrics Medical Imaging (VMI) real-time 3D ultrasound scanner. Transducer performance yielded an average -6 dB fractional bandwidth of 49% ± 11% centered at 4.4 MHz for 118 elements. Real-time 3D cardiac scans of the in vivo pig model yielded good image quality including en face views of the tricuspid valve and real-time 3D guidance of an endo-myocardial biopsy catheter introduced into the left ventricle. PMID:24626564

  9. Interventional multispectral photoacoustic imaging with a clinical linear array ultrasound probe for guiding nerve blocks

    Science.gov (United States)

    Xia, Wenfeng; West, Simeon J.; Nikitichev, Daniil I.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.

    2016-03-01

    Accurate identification of tissue structures such as nerves and blood vessels is critically important for interventional procedures such as nerve blocks. Ultrasound imaging is widely used as a guidance modality to visualize anatomical structures in real-time. However, identification of nerves and small blood vessels can be very challenging, and accidental intra-neural or intra-vascular injections can result in significant complications. Multi-spectral photoacoustic imaging can provide high sensitivity and specificity for discriminating hemoglobin- and lipid-rich tissues. However, conventional surface-illumination-based photoacoustic systems suffer from limited sensitivity at large depths. In this study, for the first time, an interventional multispectral photoacoustic imaging (IMPA) system was used to image nerves in a swine model in vivo. Pulsed excitation light with wavelengths in the ranges of 750 - 900 nm and 1150 - 1300 nm was delivered inside the body through an optical fiber positioned within the cannula of an injection needle. Ultrasound waves were received at the tissue surface using a clinical linear array imaging probe. Co-registered B-mode ultrasound images were acquired using the same imaging probe. Nerve identification was performed using a combination of B-mode ultrasound imaging and electrical stimulation. Using a linear model, spectral-unmixing of the photoacoustic data was performed to provide image contrast for oxygenated and de-oxygenated hemoglobin, water and lipids. Good correspondence between a known nerve location and a lipid-rich region in the photoacoustic images was observed. The results indicate that IMPA is a promising modality for guiding nerve blocks and other interventional procedures. Challenges involved with clinical translation are discussed.

  10. Thermal therapy for breast tumors by using a cylindrical ultrasound phased array with multifocus pattern scanning: a preliminary numerical study

    Science.gov (United States)

    Ho, Cheng-Shiao; Ju, Kuen-Cheng; Cheng, Tze-Yuan; Chen, Yung-Yaw; Lin, Win-Li

    2007-08-01

    The purpose of this study is to investigate the feasibility of using a 1 MHz cylindrical ultrasound phased array with multifocus pattern scanning to produce uniform heating for breast tumor thermal therapy. The breast was submerged in water and surrounded by the cylindrical ultrasound phased array. A multifocus pattern was generated and electrically scanned by the phased array to enlarge the treatment lesion in single heating. To prevent overheating normal tissues, a large planning target volume (PTV) would be divided into several planes with several subunits on each plane and sequentially treated with a cooling phase between two successive heatings of the subunit. Heating results for different target temperatures (Ttgt), blood perfusion rates and sizes of the PTV have been studied. Furthermore, a superficial breast tumor with different water temperatures was also studied. Results indicated that a higher target temperature would produce a slightly larger thermal lesion, and a higher blood perfusion rate would not affect the heating lesion size but increase the heating time significantly. The acoustic power deposition and temperature elevations in ribs can be minimized by orienting the acoustic beam from the ultrasound phased array approximately parallel to the ribs. In addition, a large acoustic window on the convex-shaped breast surface for the proposed ultrasound phased array and the cooling effect of water would prevent the skin overheating for the production of a lesion at any desired location. This study demonstrated that the proposed cylindrical ultrasound phased array can provide effective heating for breast tumor thermal therapy without overheating the skin and ribs within a reasonable treatment time.

  11. SUPER-RESOLUTION ULTRASOUND TOMOGRAPHY: A PRELIMINARY STUDY WITH A RING ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; SIMONETTI, FRANCESCO [NON LANL; DURIC, NEBOJSA [NON LANL; RAMA, OLSI [NON LANL

    2007-01-18

    Ultrasound tomography attempts to retrieve the structure of an objective by exploiting the interaction of acoustic waves with the object. A fundamental limit of ultrasound tomography is that features cannot be resolved if they are spaced less than {lambda}/2 apart, where {lambda} is wavelength of the probing wave, regardless of the degree of accuracy of the measurements. Therefore, since the attenuation of the probing wave with propagation distance increases as {lambda} decreases, resolution has to be traded against imaging depth. Recently, it has been shown that the {lambda}/2 limit is a consequence of the Born approximation (implicit in the imaging algorithms currently employed) which neglects the distortion of the probing wavefield as it travels through the medium to be imaged. On the other hand, such a distortion, which is due to the multiple scattering phenomenon, can encode unlimited resolution in the radiating component of the scattered field. Previously, a resolution better than {lambda}/3 has been reported in these proceedings [F. Simonetti, pp. 126 (2006)] in the case of elastic wave probing. In this paper, they demonstrate experimentally a resolution better than {lambda}/4 for objects immersed in a water bth probed by means of a ring array which excites and detects pressure waves in a full view configuration.

  12. Investigation of a spherical-section ultrasound phased array for hepatic ablation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A 3D ultrasound thermal model with a 3D finite element representation for modeling the thermal diffusion effects for hepatic ablation induced by spherical-section ultrasound phased array was developed. The model was first validated against available published measured data in rat liver. Using the validated model, effects of blood perfusion and heating schemes on lesion formation were studied for both single focus and split-focus intensity patterns. It was shown that for single focus sonication pattern the short-duration (~2 s) and high-intensity (~1250 W/cm2) heating scheme can completely reduce the cooling effect of the blood perfusion. The lesion shape and size were significantly altered by perfusion for split-focus pattern even with a rapid heating scheme when the focus spacing was larger than 2.4 mm. Underdosed areas might be present between two foci. Prolonging exposure time or shortening focus spacing can reduce the cool region between two foci. In addition, the influences of thermal and acoustic parameters were also studied. When the therapy depth is short (<5 cm), the lesion size monotonically increases with increasing attenuation coefficient that ranges from 5.4 to 11 Np/(m·MHz).

  13. Ultrasound nondestructive evaluation (NDE) imaging with transducer arrays and adaptive processing.

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2012-01-01

    This paper addresses the challenging problem of ultrasonic non-destructive evaluation (NDE) imaging with adaptive transducer arrays. In NDE applications, most materials like concrete, stainless steel and carbon-reinforced composites used extensively in industries and civil engineering exhibit heterogeneous internal structure. When inspected using ultrasound, the signals from defects are significantly corrupted by the echoes form randomly distributed scatterers, even defects that are much larger than these random reflectors are difficult to detect with the conventional delay-and-sum operation. We propose to apply adaptive beamforming to the received data samples to reduce the interference and clutter noise. Beamforming is to manipulate the array beam pattern by appropriately weighting the per-element delayed data samples prior to summing them. The adaptive weights are computed from the statistical analysis of the data samples. This delay-weight-and-sum process can be explained as applying a lateral spatial filter to the signals across the probe aperture. Simulations show that the clutter noise is reduced by more than 30 dB and the lateral resolution is enhanced simultaneously when adaptive beamforming is applied. In experiments inspecting a steel block with side-drilled holes, good quantitative agreement with simulation results is demonstrated. PMID:22368457

  14. Photoacoustic and Doppler ultrasound for oxygen consumption estimation: implementation on a clinical array system

    Science.gov (United States)

    Jiang, Yan; Harrison, Tyler; Zemp, Roger J.

    2011-03-01

    Recently, we have developed a combined photoacoustic and high-frequency Doppler ultrasound system with a single element transducer to estimate the metabolic rate of oxygen consumption in small animal models. However, the long scanning time due to mechanical motion may be a limitation of our swept-scan system. In this work, the single element transducer was replaced by a clinical array transducer which may provide more accurate flow velocity estimations, higher frame rates, improved penetration depth, and improved depth-of-field due to dynamic focusing capabilities. We used an array system from Verasonics Inc. which enables flexible pulse-sequence programming and parallel channel data acquisition, along with a pulsed laser and optical parametric oscillator. For flow estimation, we implemented a flash- Doppler sequence which transmits ensembles of plane-wave excitations. Echo signals are beamformed and subjected to wall-filtering and Kasai flow estimation algorithms. High frame rates over a wide region can be achieved. Combined interlaced photoacoustic and Doppler imaging on flow phantoms has been performed on this system. We demonstrate the ability to image animal blood to depths of 1.5-cm with high signal-to-noise with both modalities. The light penetration is 2-cm. We discuss the performance of Doppler flow estimation and photoacoustic oxygen saturation estimation and their role in future work of estimating oxygen consumption.

  15. A new method for uniform local heating deep in body using ultrasound phased-array system

    Institute of Scientific and Technical Information of China (English)

    Zhang Chenxi; Bai Jingfeng; Chen Yazhu

    2008-01-01

    A new method for targeted heating of deep tissue was developed by using an ultrasound phased-array system which can generate various multiple foci patterns by electronically changing its amplitude or phase pattern. This method involves using a technique of combining switching and rotating of multiple foci patterns to create a uniform temperature over tissue volumes in various size. Using this method, the target tissue deep in the body can be heated to a specified temperature, which gives conditions for thermo-sensitive liposomes release. A simulation study for a 108-element, spherically sectioned array was performed to determine an optimal heating scheme from a set of multiple focus fields which were produced by inputting different combinations of phases and amplitudes. Comparisons of a static multiple foci field, the switched fields and the switched-rotated fields indicated that the technique of combining switching and rotating of multiple foci patterns has advantages of both lowering the peak temperature and evening the temperature distribution. The simulation results also show that the therapeutic heating zones in various size employing the combined method. These results offer significant data for designing thermotherapy equipment for tumor-specific drug release with thermo-sensitive liposomes.

  16. Thermoacoustic range verification using a clinical ultrasound array provides perfectly co-registered overlay of the Bragg peak onto an ultrasound image

    Science.gov (United States)

    Patch, S. K.; Kireeff Covo, M.; Jackson, A.; Qadadha, Y. M.; Campbell, K. S.; Albright, R. A.; Bloemhard, P.; Donoghue, A. P.; Siero, C. R.; Gimpel, T. L.; Small, S. M.; Ninemire, B. F.; Johnson, M. B.; Phair, L.

    2016-08-01

    The potential of particle therapy due to focused dose deposition in the Bragg peak has not yet been fully realized due to inaccuracies in range verification. The purpose of this work was to correlate the Bragg peak location with target structure, by overlaying the location of the Bragg peak onto a standard ultrasound image. Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the cyclotron inflector. The chopper limited the train of bunches so that 2 Gy were delivered in 2 μ \\text{s} . The ion pulse generated thermoacoustic pulses that were detected by a cardiac ultrasound array, which also produced a grayscale ultrasound image. A filtered backprojection algorithm focused the received signal to the Bragg peak location with perfect co-registration to the ultrasound images. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, in which gas pockets can displace the Bragg peak. Phantom experiments performed with the cavity both empty and filled with olive oil confirmed that displacement of the Bragg peak due to anatomical change could be detected. Thermoacoustic range measurements in the waterbath agreed with Monte Carlo simulation within 1.2 mm. In the phantom, thermoacoustic range estimates and first-order range estimates from CT images agreed to within 1.5 mm.

  17. Thermoacoustic range verification using a clinical ultrasound array provides perfectly co-registered overlay of the Bragg peak onto an ultrasound image.

    Science.gov (United States)

    Patch, S K; Kireeff Covo, M; Jackson, A; Qadadha, Y M; Campbell, K S; Albright, R A; Bloemhard, P; Donoghue, A P; Siero, C R; Gimpel, T L; Small, S M; Ninemire, B F; Johnson, M B; Phair, L

    2016-08-01

    The potential of particle therapy due to focused dose deposition in the Bragg peak has not yet been fully realized due to inaccuracies in range verification. The purpose of this work was to correlate the Bragg peak location with target structure, by overlaying the location of the Bragg peak onto a standard ultrasound image. Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the cyclotron inflector. The chopper limited the train of bunches so that 2 Gy were delivered in [Formula: see text]. The ion pulse generated thermoacoustic pulses that were detected by a cardiac ultrasound array, which also produced a grayscale ultrasound image. A filtered backprojection algorithm focused the received signal to the Bragg peak location with perfect co-registration to the ultrasound images. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, in which gas pockets can displace the Bragg peak. Phantom experiments performed with the cavity both empty and filled with olive oil confirmed that displacement of the Bragg peak due to anatomical change could be detected. Thermoacoustic range measurements in the waterbath agreed with Monte Carlo simulation within 1.2 mm. In the phantom, thermoacoustic range estimates and first-order range estimates from CT images agreed to within 1.5 mm. PMID:27385261

  18. The correlation of the 10 to 30 MeV proton flux from the NOAA satellites and the Thule 30 MHz riometer. Technical memo

    International Nuclear Information System (INIS)

    There is a requirement for realtime specification of riometer absorption in the polar cap region using proton flux measured with satellite-borne detectors. The proton flux data from the NOAA series of satellites and the Thule 30 MHz riometer data satisfy this requirement. A study was done to correlate these two parameters within state-of-the-art theoretical reasoning

  19. Light Focusing and Two-Dimensional Imaging Through Scattering Media using the Photoacoustic Transmission-Matrix with an Ultrasound Array

    CERN Document Server

    Chaigne, Thomas; Katz, Ori; Bossy, Emmanuel; Gigan, Sylvain

    2014-01-01

    We implement the photoacoustic transmission-matrix approach on a two-dimensional photoacoustic imaging system, using a 15 MHz linear ultrasound array. Using a black leaf skeleton as a complex absorbing structure, we demonstrate that the photoacoustic transmission-matrix approach allows to reveal structural features that are invisible in conventional photoacoustic images, as well as to selectively control light focusing on absorbing targets, leading to a local enhancement of the photoacoustic signal.

  20. The role of acoustic nonlinearity in tissue heating behind the rib cage using high intensity focused ultrasound phased array

    OpenAIRE

    Yuldashev, Petr V.; Shmeleva, Svetlana M.; Ilyin, Sergey A.; Sapozhnikov, Oleg A.; Gavrilov, Leonid R.; Khokhlova, Vera A.

    2013-01-01

    The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path, and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field and a 1 MHz phased array consisting of...

  1. A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer

    Science.gov (United States)

    Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.

  2. A 63 element 1.75 dimensional ultrasound phased array for the treatment of benign prostatic hyperplasia

    Directory of Open Access Journals (Sweden)

    Smith Nadine

    2005-06-01

    Full Text Available Abstract Background Prostate cancer and benign prostatic hyperplasia are very common diseases in older American men, thus having a reliable treatment modality for both diseases is of great importance. The currently used treating options, mainly surgical ones, have numerous complications, which include the many side effects that accompany such procedures, besides the invasive nature of such techniques. Focused ultrasound is a relatively new treating modality that is showing promising results in treating prostate cancer and benign prostatic hyperplasia. Thus this technique is gaining more attention in the past decade as a non-invasive method to treat both diseases. Methods In this paper, the design, construction and evaluation of a 1.75 dimensional ultrasound phased array to be used for treating prostate cancer and benign prostatic hyperplasia is presented. With this array, the position of the focus can be controlled by changing the electrical power and phase to the individual elements for electronically focusing and steering in a three dimensional volume. The array was designed with a maximum steering angle of ± 13.5° in the transverse direction and a maximum depth of penetration of 11 cm, which allows the treatment of large prostates. The transducer piezoelectric ceramic, matching layers and cable impedance have been designed for maximum power transfer to tissue. Results To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated field. Ex vivo experiments using bovine tissue were performed with various lesion sizes and indicated the capability of the transducer to ablate tissue using short sonications. Conclusion A 1.75 dimensional array, that overcame the drawbacks associated with one-dimensional arrays, has been designed, built and successfully tested. Design issues, such as cable and ceramic capacitances, were taken into account when designing this

  3. Targeted hyperthermia in prostate with an MR-guided endorectal ultrasound phased array: patient specific modeling and preliminary experiments

    Science.gov (United States)

    Salgaonkar, Vasant A.; Prakash, Punit; Plata, Juan; Holbrook, Andrew; Rieke, Viola; Kurhanewicz, John; Hsu, I.-C.; Diederich, Chris J.

    2013-02-01

    Feasibility of hyperthermia delivery to the prostate with a commercially available MR-guided endorectal ultrasound (ERUS) phased array ablation system (ExAblate 2100, Insightec, LTD) was assessed through computer simulations and ex vivo experiments. The simulations included a 3D FEM-based biothermal model, and acoustic field calculations for the ExAblate phased array (2.3 MHz, 2.3x4.0 cm2) using the rectangular radiator method. Array beamforming strategies were investigated to deliver 30-min hyperthermia (prostate cancer, identified from MR images in representative patient cases. Constraints on power densities, sonication durations and switching speeds imposed by ExAblate hardware and software were incorporated in the models. THIFU systems can be controlled for continuous hyperthermia in prostate to augment radiotherapy and drug delivery. [FUS Foundation, NIH R01 122276, 111981].

  4. Polymer waveguide Fabry-Perot resonator for high-frequency ultrasound detection.

    Science.gov (United States)

    Tadayon, Mohammad Amin; Baylor, Martha-Elizabeth; Ashkenazi, Shai

    2014-12-01

    Piezoelectric technology is the backbone of most medical ultrasound imaging arrays; however, signal transduction efficiency severely deteriorates in scaling the technology to element size smaller than 0.1 mm, often required for high-frequency operation (>20 MHz). Optical sensing and generation of ultrasound has been proposed and studied as an alternative technology for implementing sub-millimeter size arrays with element size down to 10 μm. The application of thin polymer film Fabry-Perot resonators has been demonstrated for high-frequency ultrasound detection; however, their sensitivity is limited by light diffraction loss. Here, we introduce a new method to increase the sensitivity of an optical ultrasound receiver by utilizing a waveguide between the mirrors of the Fabry-Perot resonator. This approach eliminates diffraction loss from the cavity, and therefore the finesse is only limited by mirror loss and absorption. By applying this method, we have achieved noise equivalent pressure of 178 Pa over a bandwidth of 30 MHz or 0.03 Pa/Hz1/2, which is about 20-fold better than a similar device without a waveguide. The finesse of the tested Fabry-Perot resonator was around 200. This result is 5 times higher than the finesse measured in the same device outside the waveguide region.

  5. Endoscopic ultrasound examination of the upper gastrointestinal tract using a curved-array transducer. A preliminary report.

    Science.gov (United States)

    Vilmann, P; Khattar, S; Hancke, S

    1991-01-01

    Endoscopic ultrasound examination (EUS) of the upper gastrointestinal (GI) tract for the assessment of mural and extramural pathology has attracted growing international interest in recent years. Since February 1989, EUS has been performed on selected patients in our institution using a new Picker-Pentax fiber-optic ultrasound (US) gastroscope. The instrument consists of a forward-view fiber-optic gastroscope with a 5-MHz curved-array linear US transducer mounted directly behind the lens. The scanning plane lies in the long axis of the scope. Based on in vitro US examinations and EUS of 118 patients over an 18-month period, our preliminary experience with the instrument is described. Using EUS, various lesions in the esophageal wall as well as in the gastric and duodenal walls can be visualized. Furthermore, organs and structures outside the GI tract can be seen, and lesions such as enlarged lymph nodes in the mediastinum and abdomen; solid and cystic masses in the liver, pancreas and retroperitoneum; arterial aneurysms; esophageal varices; and gall stones and calcifications can be demonstrated. The 5-MHz transducer does not provide very detailed information on the GI wall. The direction of the ultrasound scanning planes is difficult to define, as the transducer cannot be seen through the optic lens. The method demands great expertise in endoscopy and ultrasound. Indications for EUS have not been definitively established. Evaluation of the diagnostic accuracy of this technique requires further controlled studies. We believe that EUS using a curved-array linear transducer will provide significant diagnostic information of clinical relevance to gastroenterology. PMID:1948619

  6. Design and evaluation of a 63 element 1.75-dimensional ultrasound phased array for treating benign prostatic hyperplasia

    Science.gov (United States)

    Saleh, Khaldon Y.; Smith, Nadine B.

    2003-10-01

    Focused ultrasound surgery (FUS) is a clinical method for treating benign prostatic hyperplasia (BPH) in which tissue is noninvasively necrosed by elevating the temperature at the focal point above 60°C using short sonications. With 1.75-dimensional (1.75-D) arrays, the power and phase to the individual elements can be controlled electronically for focusing and steering. This research describes the design, construction and evaluation of a 1.75-D ultrasound phased array to be used in the treatment of benign prostatic hyperplasia. The array was designed with a steering angle of +/-13.5 deg in the transverse direction, and can move the focus in three parallel planes in the longitudinal direction with a relatively large focus size. A piezoelectric ceramic (PZT-8) was used as the material of the transducer and two matching layers were built for maximum acoustic power transmission to tissue. To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated fields. In vivo experiments were performed to verify the capability of the transducer to ablate tissue using short sonications. [Work supported by the Whitaker Foundation and the Department of Defense Congressionally Directed Medical Prostate Cancer Research Program.

  7. A Flexible Ultrasound Transducer Array with Micro-Machined Bulk PZT

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2015-01-01

    Full Text Available This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications.

  8. The Astronomical Low Frequency Array: A Proposed Explorer Mission for Radio Astronomy

    Science.gov (United States)

    Jones, D.; Allen, R.; Basart, J.; Bastian, T.; Bougeret, J. L.; Dennison, B.; Desch, M.; Dwarakanath, K.; Erickson, W.; Finley, D.; Kaiser, M.; Kassim, N.; Kuiper, T.; MacDowall, R.; Mahoney, M.; Perley, R.; Preston, R.; Reiner, M.; Rodriguez, P.; Stone, R.; Unwin, S.; Weiler, K.; Woan, G.; Woo, R.

    1999-01-01

    A radio interferometer array in space providing high dynamic range images with unprecedented angular resolution over the broad frequency range from 0.030 - 30 MHz will open new vistas in solar, terrestial, galactic, and extragalactic astrophysics.

  9. A cylindrical-section ultrasound phased-array applicator for hyperthermia cancer therapy.

    Science.gov (United States)

    Ebbini, E S; Umemura, S I; Ibbini, M; Cain, C A

    1988-01-01

    A phased-array applicator geometry for deep localized hyperthermia is presented. The array consists of rectangular transducer elements forming a section of a cylinder that conforms to the body portals in the abdominal and pelvic regions. Focusing and scanning properties of the cylindrical-section array are investigated in homogeneous lossy media using appropriate computer simulations. The characteristic focus of this array is shown to be spatially limited in both transverse and longitudinal directions with intensity gain values suitable for deep hyperthermia applications. The ability of the cylindrical-section phased array to generate multiple foci using the field conjugation method is examined. The effect of the grating lobes on the power deposition pattern of the scanned field is shown to be minimal. Steady-state temperature distributions are simulated using a three-dimensional thermal model of the normal tissue layers surrounding a tumor of typical volume. The advantages and the limitations of this array configuration are discussed. PMID:18290188

  10. Development of Endoscopic Ultrasound Radial Arrays%环形内窥镜超声换能器的研制

    Institute of Scientific and Technical Information of China (English)

    陈燕; 周丹; 林国豪; 吴锦川; 戴吉岩; 罗豪甦; 陈王丽华

    2014-01-01

    本论文报道了当前环形内窥镜超声换能器的两种不同的制备方法以及其性能的表征。方法一为先采用切割薄片高性能压电PMN-PT单晶和其1~3复合材料制备平面阵列,然后将平面阵列卷曲成圆环形阵列。所制备的128阵元PMN-PT单晶阵列具有较宽带宽达78%,64阵元PMN-PT单晶/环氧1~3复合阵列带宽高达102%。方法二为旋转切割法,通过直接对带有匹配层和背衬材料的压电陶瓷管进行切割,制作不同尺寸及频率的环形超声内窥镜阵列。%We report the fabrication and characterization of endoscopic ultrasound radial arrays transducers for medical imaging by two different methods. The ifrst approach is cal ed wrapping method, high-performance PMN-PT single crystal and PMN-PT/epoxy 1-3 composite plates are used as active elements. After bonded with backing and matching layers and being cut into arrays, transducers are wrapped across a metal tube to form the radial arrays. The bandwidth of the 128-element PMN-PT single crystal radial array and 64-element PMN-PT/epoxy 1-3 composite radial array transducers can achieved 78%and 102%, respectively. In the second method, the PZT tube was selected to fabricate the 50-element 14 MHz and 100-element 3 MHz radial arrays by a rotate-and-dice method. The results show that these two methods are feasible to fabricate radial arrays for endoscopic applications.

  11. Campaign Investigation of Ionospheric Plasma Irregularities in Sporadic E Region Using FORMOSAT-3/COSMIC Satellite and Chung-Li 30 MHz Coherent Radar

    Directory of Open Access Journals (Sweden)

    Chien-Ya Wang

    2009-01-01

    Full Text Available In this article, we present an electron density profile retrieved from total electron density estimated from the difference in phase path excess between GPS frequencies L1 and L2 measured by the FORMOSAT-3/COSMIC satellite, in which the radio occultation inversion technique is employed for retrieval. Except for a regular F layer peak located at a height of about 290 km and a minor peak centered at a height of 140 km, a pronounced sporadic E layer was observed at a height of about 105 km. This intense electron density layer with thickness of about 10 km has very sharp boundaries on the top and bottom sides with scale lengths of -22 and 13 km, respectively. At the time when COSMIC GPS radio occultation took place in the vicinity of Taiwan, the Chung-Li 30 MHz coherent radar detected strong backscatter from 5-meter plasma irregularities. The peak radar backscatter is situated at a height of about 110 km in the topside of the Es layer with a very steep electron density gradient. Interferometry measurement made by the four separate and independent receiving channels of the Chung-Li 30 MHz radar indicates that the configuration of the large scale plasma structure constituted by 5-meter scale field-aligned irregularities is patch-like, and a 2-minute oscillation in zonal displacement of the plasma structure was found. From the temporal displacement of the echo patterns from the plasma irregularities in the bottom side of the layer, the plasma structure in the bottom side of the Es layer was found to move westward at a trace velocity of about 6.2 ms-1. The exceedingly small drift velocity combined with the relatively large scale length of the electron density gradient seem to suggest that the 5-meter plasma irregularities are very unlikely generated through the non-linear cascade process of the large plasma structure at kilometer scale induced by gradient drift instability. Moreover, in light of the fact that both the observed drift velocity (less than

  12. Ultrasound pregnancy

    Science.gov (United States)

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  13. Ultrasound pulse-echo measurements on rough surfaces with linear array transducers

    DEFF Research Database (Denmark)

    Sjøj, Sidsel M. N.; Blanco, Esther N.; Wilhjelm, Jens E.;

    2012-01-01

    The echo from planar surfaces with rms roughness, Rq, in the range from 0-155 μm was measured with a clinical linear array transducer at different angles of incidence at 6 MHz and 12 MHz. The echo-pulse from the surfaces was isolated with an equal sized window and the power of the echo-pulse was ...

  14. Optimal Transthoracic Targeting of Liver Tumors Using Dual-mode Ultrasound Arrays: A numerical and experimental study

    Science.gov (United States)

    Casper, Andrew; Ballard, John; Ebbini, Emad

    2010-03-01

    The targets of therapeutic ultrasound are often located behind strongly scattering objects and layered tissue. These inhomogeneities can degrade the intended foci and misdirect acoustic energy causing unwanted hot spots or failure to meet the therapeutic endpoint at the target. We have previously shown the capabilities of dual-mode ultrasound arrays (DMUAs) in imaging strongly scattering objects in the path of the HIFU beam and, consequently, refocusing the beam to optimize the power deposition at the target while minimizing direct exposure to the obstacles. This capability may be a key to successful transthoracic targeting of abdominal tumors. We have experimentally verified the efficacy of this approach in improving the quality of the therapeutic focus and minimizing collateral damage to critical tissue structures in the path of the HIFU beam. In order to study the phenomena associated with transthoracic focusing more thoroughly, we have developed a finite-difference time-domain simulation capable of characterizing the transient propagation of the therapeutic beam through inhomogeneous, attenuating media. This simulation is shown to provide the necessary information for aberration correction of deep seated foci as well as control over the acoustic field at select points. In addition, the FDTD simulation allows for computation of the temperature rise throughout the therapeutic region as governed by the transient bioheat transfer equation. We have validated the predictive abilities of our simulation with hydrophone measurements as well as thermocouple readings from within tissue mimicking phantoms. The experimental validation of the simulation model allows for its use as a key component in treatment planning of thermal therapy using HIFU. Experimental and simulation results demonstrating the role of the advantages of incorporation of the computational model in optimizing the quality of HIFU beams will be presented and discussed.

  15. Comparison of 3-D Synthetic Aperture Phased-Array Ultrasound Imaging and Parallel Beamforming

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2014-01-01

    simulations and measurements with anultrasound research scanner and a commercially available 3.5-MHz 1024-element 2-D transducer array. To limit the probecable thickness, 256 active elements are used in transmit andreceive for both techniques. The two imaging techniques weredesigned for cardiac imaging, which......B cystic resolutionby up to 62%. The FWHM of the measured line spread func-tion (LSF) at 80mm depth showed a difference of 20% in favorof SAI. SAI reduced the cyst radius at 60mm depth by 39%in measurements. SAI improved the contrast-to-noise ratiomeasured on anechoic cysts embedded in a tissue...

  16. Duplex ultrasound

    Science.gov (United States)

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines traditional ultrasound with Doppler ultrasound . Traditional ultrasound uses sound waves that bounce off blood vessels to create ...

  17. Feasibility of Concurrent Treatment with the Scanning Ultrasound Reflector Linear Array System (SURLAS) and the Helical Tomotherapy System

    Science.gov (United States)

    Peñagarícano, José A.; Moros, Eduardo; Novák, Petr; Yan, Yulong; Corry, Peter

    2010-01-01

    Purpose To evaluate the feasibility of concurrent treatment with the Scanning Ultrasound Reflector Linear Array System (SURLAS) and helical tomotherapy (HT) intensity modulated radiation therapy (IMRT). Methods The SURLAS was placed on a RANDO phantom simulating a patient with superficial or deep recurrent breast cancer. A Megavoltage CT (MVCT) of the phantom with and without the SURLAS was obtained in the HT system. MVCT images with the SURLAS were obtained for two configurations: i) with the SURLAS' long axis parallel and ii) perpendicular to the longitudinal axis of the phantom. The MVCT simulation data set was then transferred to a radiation therapy planning station. Organs at risk (OAR) were contoured including the lungs, heart, abdomen and spinal cord. The metallic parts of the SURLAS were contoured as well and constraints were assigned to completely or directionally block radiation through them. The MVCT-simulation data set and regions of interest (ROI) files were subsequently transferred to the HT planning station. Several HT plans were obtained with optimization parameters that are usually used in the clinic. For comparison purposes, planning was also performed without the SURLAS on the phantom. Results All plans with the SURLAS on the phantom showed adequate dose covering 95% of the planning target volume (PTV D95%), average dose and coefficient of variation of the planning target volume (PTV) dose distribution regardless of the SURLAS' orientation with respect to the RANDO phantom. Likewise, all OAR showed clinically acceptable dose values. Spatial dose distributions and dose-volume histogram (DVH) evaluation showed negligible plan degradation due to the presence of the SURLAS. Beam-on time varied depending on the selected optimization parameters. Conclusion From the perspective of the radiation dosage, concurrent treatment with the SURLAS and HT IMRT is feasible as demonstrated by the obtained clinically acceptable treatment plans. In addition, proper

  18. 太阳射电30~65 MHz 波段模拟接收机的研制%Design of An Analog Receiver for Solar Radio Observation in the Frequency Range of 30MHz to 65MHz

    Institute of Scientific and Technical Information of China (English)

    郭少杰; 汪敏; 董亮; 施硕彪

    2015-01-01

    Solar radio radiations mainly come from the corona of the sun, and radio waves in different bands reflect activities in different layers of the corona.Observational studies about solar radio radiations are among the most important approaches to derive physical-parameter values of the corona ( e.g., temperature, density, and magnetic-field strength) .Decimeter waves come from a corona layer of heights approximately 1 to 2 times of the solar radius above the solar surface, which makes solar radio observations in decimeter waves particularly important in the coronal physics.For example, such studies can be used to monitor propagations of CME ( Coronal Mass Ejection) and shock waves in high layers of the corona, and to forecast space weather. Currently, there is a lack of solar radio observations in decimeter waves in China.It is urgent to build Chinese decimeter-wave solar radio telescopes and associated key equipments.A solar radio antenna array working in low-frequency bands has been built in the YNAO ( Yunnan Observatories) .The array consists of four antennas. It will work with the YNAO 10m solar radio telescope ( working in the frequency range of 625MHz to 1500MHz) and 11m solar radio telescope ( working in the frequency range of 70MHz to 700MHz) , achieving a complete wavelength coverage of coronal radio observation.In this paper we introduce our design of an analog receiver to be installed in the solar radio antenna array of the YNAO.The receiver is to monitor solar radio bursts in decimeter wavelengths corresponding to the frequency range of 30MHz to 65MHz.The analog receiver consists of Baluns, filters, and amplifiers for direct sampling.The performance parameters of the analog receiver meet the requirements for observations: The gain reaches 60dB, the dynamic range is about 33dB, the input third-order intercept point is about -24dBm, and the noise figure is about 4.3dB.We finally calculate the sensitivity limits of the solar radio antenna array with the

  19. Development of a 64 channel ultrasonic high frequency linear array imaging system

    Science.gov (United States)

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M.; Yen, Jesse; Shung, K. Kirk

    2011-01-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20 MHz–120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom

  20. Development of a 64 channel ultrasonic high frequency linear array imaging system.

    Science.gov (United States)

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M; Yen, Jesse; Shung, K Kirk

    2011-12-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20-120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3 ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom images

  1. 3-D Vector Velocity Estimation with Row-Column Addressed Arrays

    DEFF Research Database (Denmark)

    Holbek, Simon; Christiansen, Thomas Lehrmann; Rasmussen, Morten Fischer;

    2015-01-01

    setups, a 124 channel 2-D RC array with integrated apodization, pitch = 270 µm and a center frequency of 3.0 MHz was used. The performance of the estimator was tested on a simulated vessel (Ø = 12 mm) with a parabolic flow profile and a peak velocity of 1 m/s. Measurements were made in a flowrig (Ø = 12...... mm) containing a laminar parabolic flow and a peak velocity of 0.54 m/s. Data was sampled and stored on the experimental ultrasound scanner SARUS. Simulations yields relative mean biases at (- 1.1%, -1.5%, -1.0%) with mean standard deviations of σ˜ were (8.5%, 9.0%, 1.4%) % for (vx, vy, vz) from a 3...... for a clinical implementation of this type of array. The aim of this study is, thus, to develop a technique for estimating 3-D vector flow with a RC array using the transverse oscillation (TO) method. The properties are explored both in a simulation study and with a prototype probe for experimental use. In both...

  2. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... kidneys. There are three types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements into an array of colors to show the speed and direction of blood ...

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements into an array of ...

  4. Annular and Cylindrical Phased Array Geometries for Transrectal High-Intensity Focused Ultrasound (HIFU) using PZT and Piezocomposite Materials

    Science.gov (United States)

    Seip, Ralf; Chen, Wohsing; Carlson, Roy; Frizzell, Leon; Warren, Gary; Smith, Nadine; Saleh, Khaldon; Gerber, Gene; Shung, Kirk; Guo, Hongkai; Sanghvi, Narendra T.

    2005-03-01

    This paper presents engineering progress and the latest in-vitro and in-vivo results obtained with a 4.0 MHz, 20 element, PZT annular transrectal HIFU array and several 4.0 MHz, 211 element, PZT and piezocomposite cylindrical transrectal HIFU arrays for the treatment of prostate cancer. The geometries of both arrays were designed and analyzed to steer the HIFU beams to the desired sites in the prostate volume using multi-channel electronic drivers, with the intent to increase treatment efficiency and reliability for the next generation of HIFU systems. The annular array is able to focus in depth from 25 mm to 50 mm, generate total acoustic powers in excess of 60W, and has been integrated into a modified Sonablate®500 HIFU system capable of controlling such an applicator through custom treatment planning and execution software. Both PZT- and piezocomposite cylindrical arrays were constructed and their characteristics were compared for the transrectal applications. These arrays have been installed into appropriate transducer housings, and have undergone characterization tests to determine their total acoustic power output, focusing range (in depth and laterally), focus quality, efficiency, and comparison tests to determine the material and technology of choice (PZT or piezocomposite) for intra-cavity HIFU applications. Array descriptions, characterization results, in-vitro and in-vivo results, and an overview of their intended use through the application software is shown.

  5. Lateral mode coupling to reduce the electrical impedance of small elements required for high power ultrasound therapy phased arrays

    OpenAIRE

    Hynynen, Kullervo; Yin, Jianhua

    2009-01-01

    A method that uses lateral coupling to reduce the electrical impedance of small transducer elements in generating ultrasound waves was tested. Cylindrical, radially-polled transducer elements were driven at their length resonance frequency. Computer simulation and experimental studies showed that the electrical impedance of the transducer element could be controlled by the cylinder wall thickness, while the operation frequency was determined by the cylinder length. Acoustic intensity (average...

  6. The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array

    Science.gov (United States)

    Yuldashev, Petr V.; Shmeleva, Svetlana M.; Ilyin, Sergey A.; Sapozhnikov, Oleg A.; Gavrilov, Leonid R.; Khokhlova, Vera A.

    2013-04-01

    The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high-intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field, and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low-power sonications. Intensity levels at the face of the array elements that corresponded to the formation of high-amplitude shock fronts in the focal region were determined as 10 W cm-2 in the free field in water and 40 W cm-2 in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue.

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound ... limitations of Pelvic Ultrasound Imaging? What is Pelvic Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  8. Prostate Ultrasound

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves ... the limitations of Prostate Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and ...

  9. Ultrasound -- Pelvis

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound ... limitations of Pelvic Ultrasound Imaging? What is Pelvic Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  10. Ultrasound skin tightening.

    Science.gov (United States)

    Minkis, Kira; Alam, Murad

    2014-01-01

    Ultrasound skin tightening is a noninvasive, nonablative method that allows for energy deposition into the deep dermal and subcutaneous tissue while avoiding epidermal heating. Ultrasound coagulation is confined to arrays of 1-mm(3) zones that include the superficial musculoaponeurotic system and connective tissue. This technology gained approval from the Food and Drug Administration as the first energy-based skin "lifting" device, specifically for lifting lax tissue on the neck, submentum, and eyebrows. Ultrasound has the unique advantage of direct visualization of treated structures during treatment. Ultrasound is a safe and efficacious treatment for mild skin tightening and lifting.

  11. Advantage of annular focus generation by sector-vortex array in cavitation-enhanced high-intensity focused ultrasound treatment

    Science.gov (United States)

    Jimbo, Hayato; Takagi, Ryo; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    High-intensity focused ultrasound (HIFU) is a noninvasive method for cancer treatment. One of the disadvantages of this method is that it has a long total treatment time because of the smallness of the treatment volume by a single exposure. To solve this problem, we have proposed a method of cavitation-enhanced heating, which utilized the heat generated by oscillating the cavitation bubbles, in combination with the method of lateral enlargement of a HIFU focal zone to minimize the surface volume ratio. In a previous study, focal spot scanning at multiple points was employed for the enlargement. This method involves nonlinear propagation and absorption due to the high spatial-peak temporal-peak (SPTP) intensity in addition to the cavitation-enhanced heating. However, it is difficult to predict the size and position of the coagulation volume because they are significantly affected by the nonlinear parameters of the tissue. In this study, a sector vortex method was employed to directly synthesize an annular focal pattern. Since this method can keep the SPTP intensity at a manageably low level, nonlinear propagation and absorption can be minimized. Experimental results demonstrate that the coagulation was generated only in the region where both the cavitation cloud and the heating ultrasound were matched. The proposed method will make the cavitation-enhanced HIFU treatment more accurate and predictable.

  12. Ultrasound-assisted synthesis and visible-light-driven photocatalytic activity of Fe-incorporated TiO2 nanotube array photocatalysts

    International Nuclear Information System (INIS)

    Highlights: ► Fe–TiO2NTs were prepared by an ultrasound-assisted impregnating-calcination method. ► The absorption of TiO2NTs in visible light region was enhanced by incorporating Fe. ► Fe–TiO2NTs exhibited the enhanced visible light photocatalytic activity. ► Fe–TiO2NTs photocatalyst is promising for visible light degradation of wastewater. - Abstract: Fe incorporated TiO2 nanotube arrays (Fe–TiO2NTs) were prepared by an ultrasound-assisted impregnating-calcination method. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy (DRS) indicated that α-Fe2O3 nanoparticles were deposited into the TiO2 nanotubes, and in the mean time, some Fe3+ ions were doped into TiO2 lattice. The absorption of Fe–TiO2NTs in the visible light region increased with the increase of Fe content. The photocatalytic activity of Fe–TiO2NTs was evaluated by the degradation of methylene blue aqueous solution under visible light irradiation. The results demonstrated that the Fe–TiO2NTs exhibited significantly enhanced photocatalytic activity compared with pure TiO2NTs. Photoluminescence (PL) and electrochemical impedance spectroscopy (EIS) analyses further confirmed that the increased photocatalytic activity of the Fe–TiO2NTs was attributed to an enhanced separation and transfer of photogenerated charge carriers.

  13. Circumferential lesion formation around the pulmonary veins in the left atrium with focused ultrasound using a 2D-array endoesophageal device: a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Pichardo, Samuel; Hynynen, Kullervo [Imaging Research-Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Room C713, Toronto, ON M4N 3M5 (Canada)

    2007-08-21

    Atrial fibrillation (AF) is the most frequently sustained cardiac arrhythmia affecting humans. The electrical isolation by ablation of the pulmonary veins (PVs) in the left atrium (LA) of the heart has been proven as an effective cure of AF. The ablation consists mainly in the formation of a localized circumferential thermal coagulation of the cardiac tissue surrounding the PVs. In the present numerical study, the feasibility of producing the required circumferential lesion with an endoesophageal ultrasound probe is investigated. The probe operates at 1 MHz and consists of a 2D array with enough elements (114 x 20) to steer the acoustic field electronically in a volume comparable to the LA. Realistic anatomical conditions of the thorax were considered from the segmentation of histological images of the thorax. The cardiac muscle and the blood-filled cavities in the heart were identified and considered in the sound propagation and thermal models. The influence of different conditions of the thermal sinking in the LA chamber was also studied. The circumferential ablation of the PVs was achieved by the sum of individual lesions induced with the proposed device. Different scenarios of lesion formation were considered where ultrasound exposures (1, 2, 5 and 10 s) were combined with maximal peak temperatures (60, 70 and 80 {sup 0}C). The results of this numerical study allowed identifying the limits and best conditions for controlled lesion formation in the LA using the proposed device. A controlled situation for the lesion formation surrounding the PVs was obtained when the targets were located within a distance from the device in the range of 26 {+-} 7 mm. When combined with a maximal temperature of 70 {sup 0}C and an exposure time between 5 and 10 s, this distance ensured preservation of the esophageal structures, controlled lesion formation and delivery of an acoustic intensity at the transducer surface that is compatible with existing materials. With a peak

  14. Obstetrical Ultrasound

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Obstetric Ultrasound Obstetric ultrasound uses sound waves to produce pictures of ... What are the limitations of Obstetrical Ultrasound Imaging? Obstetric ultrasound cannot identify all fetal abnormalities. Consequently, when ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... CT scanning , and MRI are the methods of choice in such a setting. Large patients are more ... content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Images ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... those sound waves to create an image. Ultrasound examinations do not use ionizing radiation (as used in ... exam may be part of a pelvic ultrasound examination. Doppler ultrasound is a special ultrasound technique that ...

  17. Intravascular Ultrasound

    Science.gov (United States)

    ... Nuclear Ventriculography Optical Coherence Tomography Positron Emission Tomography (PET) Stress Echocardiography Transesophageal Echocardiography Intravascular Ultrasound | Share Intravascular ultrasound ( ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound is most often performed to evaluate the: uterus cervix ovaries fallopian tubes bladder Pelvic ultrasound exams ... to view the endometrium , the lining of the uterus, and the ovaries. Transvaginal ultrasound also provides a ...

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... make secure contact with the body and eliminate air pockets between the transducer and the skin that ... Pelvic Ultrasound Imaging? Ultrasound waves are disrupted by air or gas; therefore ultrasound is not an ideal ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of the structures and organs ... of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or sonography , ...

  1. Intravascular ultrasound

    Science.gov (United States)

    IVUS; Ultrasound - coronary artery; Endovascular ultrasound; Intravascular echocardiography ... A tiny ultrasound wand is attached to the top of a thin tube. This tube is called a catheter. The catheter ...

  2. Assessment of coronary vasomotion by intracoronary ultrasound

    Science.gov (United States)

    Dupouy, Patrick J.; Dubois-Rande, Jean Luc; Pelle, Gabriel; Gallot, Dominique; Geschwind, Herbert J.

    1993-06-01

    Recently, new intravascular ultrasound devices for intracoronary use became available. The aim of the study was to evaluate the accuracy of intravascular ultrasound for the assessment of coronary artery vasomotion and endothelial function in patients with atherosclerosis. Twenty patients with luminal irregularities on coronary angiogram and a high cholesterol level (287 +/- 19 mg/dl) (group 1) and 6 patients with angiographically smooth arteries and a minimally elevated cholesterol level (197 +/- 12 mg/dl) (group 2) were studied. A mechanical intravascular ultrasound probe (4.3 French, 30 MHz, Cardiovascular Imaging Systems) was placed into the proximal segment of the coronary artery. Off-line measurements of the lumen area and calculation of mean intimal thickness indice was performed using digitized ultrasound images. Endothelial function was studied during a sympathetic stimulation by a cold pressor test and after intracoronary administration of papaverine and linsidomine. Mean intimal thickness was higher in group 1 than in group 2 (1.52 +/- 0.64 mm vs. 0.18 +/- 0.08 mm, p < 0.001). Linsidomine infusion induced a significant vasodilating effect in both groups (p < 0.001).

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: ...

  4. Ultrasound transmission attenuation tomography using energy-scaled amplitude ratios

    Science.gov (United States)

    Chen, Ting; Shin, Junseob; Huang, Lianjie

    2016-04-01

    Ultrasound attenuation of breast tumors is related to their types and pathological states, and can be used to detect and characterize breast cancer. Particularly, ultrasound scattering attenuation can infer the margin properties of breast tumors. Ultrasound attenuation tomography quantitatively reconstructs the attenuation properties of the breast. Our synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays records both ultrasound reflection and transmission signals. We develop an ultrasound attenuation tomography method using ultrasound energy-scaled amplitude decays of ultrasound transmission signals and conduct ultrasound attenuation tomography using a known sound-speed model. We apply our ultrasound transmission attenuation tomography method to a breast phantom dataset, and compare the ultrasound attenuation tomography results with conventional beamforming ultrasound images obtained using reflection signals. We show that ultrasound transmission attenuation tomography complements beamforming images in identifying breast lesions.

  5. A multivariate study of the performance of an ultrasound-assisted madder dyes extraction and characterization by liquid chromatography-photodiode array detection

    OpenAIRE

    Cuoco, Guillaume; Mathe, Carole; Archier, Paul; Chemat, Farid; Vieillescazes, Cathy

    2008-01-01

    An extraction method of madder (Rubia tinctorum) roots dyes is established and optimized to obtain the original chemical composition. A central composite design (CCD) was developed to specify the importance of the three major factors studied (time, temperature and solvent composition) affecting the ultrasound-assisted extraction of this matrix. A preliminary granulometric study of madder roots is realized in the aim to determine the optimal particles size corresponding to the best ultrasound ...

  6. Simulation study of the effects of near- and far-field heating during focused ultrasound uterine fibroid ablation using an electronically focused phased array: A theoretical analysis of patient safety

    Energy Technology Data Exchange (ETDEWEB)

    Ellens, Nicholas, E-mail: nicholas.ellens@utoronto.ca; Hynynen, Kullervo [Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada)

    2014-07-15

    Purpose: Assess the feasibility of using large-aperture, flat ultrasonic transducer arrays with 6500 small elements operating at 500 kHz without the use of any mechanical components for the thermal coagulation of uterine fibroids. This study examines the benefits and detriments of using a frequency that is significantly lower than that used in clinical systems (1–1.5 MHz). Methods: Ultrasound simulations were performed using the anatomies of five fibroid patients derived from 3D MRI. Using electronic steering solely, the ultrasound focus from a flat, 6500-element phased array was translated around the volume of the fibroids in various patterns to assess the feasibility of completing full treatments from fixed physical locations. Successive temperature maps were generated by numerically solving the bioheat equation. Using a thermal dose model, the bioeffects of these simulations were quantified and analyzed. Results: The simulations indicate that such an array could be used to perform fibroid treatments to 18 EM{sub 43} at an average rate of 90 ± 20 cm{sup 3}/h without physically moving the transducer array. On average, the maximum near-field thermal dose for each patient was below 4 EM{sub 43}. Fibroid tissue could be treated as close as 40 mm to the spine without reaching temperatures expected to cause pain or damage. Conclusions: Fibroids were successfully targeted and treated from a single transducer position to acceptable extents and without causing damage in the near- or far-field. Compared to clinical systems, treatment rates were good. The proposed treatment paradigm is a promising alternative to existing systems and warrants further investigation.

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... needles are used to extract a sample of cells from organs for laboratory testing. Doppler ultrasound images ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... help to distract the child and make the time pass quickly. The ultrasound exam room may have ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Prostate Images related to Ultrasound - Pelvis About this Site RadiologyInfo.org is produced by: Please note ... you can search the ACR-accredited facilities database . This website does not provide cost information. The costs ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... investigation of the uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries ... abnormal uterine bleeding Some physicians also use 3-D ultrasound or sonohysterography for patients with infertility. Three- ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... medicine, ultrasound is used to detect changes in appearance, size or contour of organs, tissues, and vessels or to detect abnormal masses, such as tumors. In an ultrasound examination, a transducer both sends ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... is used to evaluate the: bladder seminal vesicles prostate Transrectal ultrasound, a special study usually done to view the prostate gland, involves inserting a specialized ultrasound transducer into ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal , endovaginal ) ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... in the lower abdomen and pelvis. There are three types of pelvic ultrasound: abdominal, vaginal (for women), ... physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal , ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... bladder seminal vesicles prostate Transrectal ultrasound, a special study usually done to view the prostate gland, involves ... time to the procedure. If a Doppler ultrasound study is performed, you may actually hear pulse-like ...

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound exams are also used to monitor the health and development of an embryo or fetus during pregnancy. See the Obstetrical Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: pelvic ...

  18. Cranial Ultrasound/Head Ultrasound

    Science.gov (United States)

    ... is the procedure performed? Head Ultrasound A head ultrasound is performed in the neonatal intensive care unit (NICU) at the infant's bedside. The infant is positioned lying face-up. A clear, water-based gel is applied ...

  19. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... beamforming. This is achieved partly because synthetic aperture imaging removes the limitation of a fixed transmit focal depth and instead enables dynamic transmit focusing. Lately, the major ultrasound companies have produced ultrasound scanners using 2-D transducer arrays with enough transducer elements...

  20. Ultrasound physics.

    Science.gov (United States)

    Shriki, Jesse

    2014-01-01

    Bedside ultrasound has become an important modality for obtaining critical information in the acute care of patients. It is important to understand the physics of ultrasound in order to perform and interpret images at the bedside. The physics of both continuous wave and pulsed wave sound underlies diagnostic ultrasound. The instrumentation, including transducers and image processing, is important in the acquisition of appropriate sonographic images. Understanding how these concepts interplay with each other enables practitioners to obtain the best possible images.

  1. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce pictures ... limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  2. General Ultrasound Imaging

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce pictures ... limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  3. Three dimensional (3d) transverse oscillation vector velocity ultrasound imaging

    DEFF Research Database (Denmark)

    2013-01-01

    An ultrasound imaging system (300) includes a transducer array (302) with a two- dimensional array of transducer elements configured to transmit an ultrasound signal and receive echoes, transmit circuitry (304) configured to control the transducer array to transmit the ultrasound signal so...... and the same received set of two dimensional echoes form part of the imaging system...... as to traverse a field of view, and receive circuitry (306) configured to receive a two dimensional set of echoes produced in response to the ultrasound signal traversing structure in the field of view, wherein the structure includes flowing structures such as flowing blood cells, organ cells etc. A beamformer...

  4. Ultrasound -- Vascular

    Science.gov (United States)

    ... page How is the procedure performed? For most ultrasound exams, you will be positioned lying face-up on an examination table that can be ... either side or on occasion placed in a face down position to improve the quality ... (ultrasound technologist) or radiologist then places the transducer on ...

  5. Musculoskeletal Ultrasound

    Science.gov (United States)

    ... examination table or a swivel chair. For other ultrasound exams, the patient is positioned lying face-up or face-down on an examination table. The radiologist or sonographer may ask you to move the extremity being examined or may ... ultrasound studies of infants and children are performed with ...

  6. Ultrasound imaging using coded signals

    DEFF Research Database (Denmark)

    Misaridis, Athanasios

    Modulated (or coded) excitation signals can potentially improve the quality and increase the frame rate in medical ultrasound scanners. The aim of this dissertation is to investigate systematically the applicability of modulated signals in medical ultrasound imaging and to suggest appropriate...... of the excitation signal. Although a gain in signal-to-noise ratio of about 20 dB is theoretically possible for the time-bandwidth product available in ultrasound, it is shown that the effects of transducer weighting and tissue attenuation reduce the maximum gain at 10 dB for robust compression with low sidelobes...... is described. Application of coded excitation in array imaging is evaluated through simulations in Field II. The low degree of the orthogonality among coded signals for ultrasound systems is first discussed, and the effect of mismatched filtering in the cross-correlation properties of the signals is evaluated...

  7. Ultrasound Harmonic Classification of Microemboli

    NARCIS (Netherlands)

    P.C. Palanchon

    2004-01-01

    textabstractThe ultrasound community has experienced dramatic technical advances over the last decades, such as blood °ow measurements with elabo rate Doppler techniques or real time three-dimensional imaging with 2-D phased array transducers. This was partly ascribed to the advantages of ultraso

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ovarian cysts and uterine fibroids ovarian or uterine cancers A transvaginal ultrasound is usually performed to view ... detect: uterine anomalies uterine scars endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... frequently used to evaluate the reproductive and urinary systems. Ultrasound is safe, ... the sounds that bounce back and a computer then uses those sound waves to create an ...

  10. Ultrasound - Scrotum

    Science.gov (United States)

    ... tube immediately next to a testicle that collects sperm) and scrotum. Ultrasound is safe, noninvasive, and does ... tube immediately next to a testis that collects sperm made by the testicle) and scrotum. This study ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... tip of the transducer is smaller than the standard speculum used when performing a Pap test . A ... risks associated with x-ray exposure. Risks For standard diagnostic ultrasound , there are no known harmful effects ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries in planes that ... physicians with expertise in several radiologic areas. Outside links: For the convenience of our users, RadiologyInfo .org ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... stable or changes over time. top of page Benefits Most ultrasound scanning is noninvasive (no needles or ... the possible charges you will incur. Web page review process: This Web page is reviewed regularly by ...

  15. Hip Ultrasound

    Science.gov (United States)

    ... Infant ultrasound can be used to check the hips for developmental dysplasia of the hip (DDH), which in infants can range from a shallow cup (bony acetabular dysplasia), to complete dislocation with the ball of the ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... of urinary and reproductive system disorders in both sexes without even the minimal risks associated with x- ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Sonohysterography Ultrasound - ...

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... for men). These exams are frequently used to evaluate the reproductive and urinary systems. Ultrasound is safe, ... technique that allows the physician to see and evaluate blood flow through arteries and veins in the ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound exams are also used to monitor the health and development of an embryo or fetus during ... and send a signed report to your primary care physician, or to the physician or other healthcare ...

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... prior to the exam. Bringing books, small toys, music or games can help to distract the child ... time to the procedure. If a Doppler ultrasound study is performed, you may actually hear pulse-like ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... between the transducer and the skin that can block the sound waves from passing into your body. ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... frequently used to evaluate the reproductive and urinary systems. Ultrasound is safe, noninvasive and does not use ... and evaluate a variety of urinary and reproductive system disorders in both sexes without even the minimal ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the examination process. To ensure a smooth experience, it often helps to explain the procedure to the ... on the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from ...

  3. Trauma Ultrasound.

    Science.gov (United States)

    Wongwaisayawan, Sirote; Suwannanon, Ruedeekorn; Prachanukool, Thidathit; Sricharoen, Pungkava; Saksobhavivat, Nitima; Kaewlai, Rathachai

    2015-10-01

    Ultrasound plays a pivotal role in the evaluation of acute trauma patients through the use of multi-site scanning encompassing abdominal, cardiothoracic, vascular and skeletal scans. In a high-speed polytrauma setting, because exsanguinations are the primary cause of trauma morbidity and mortality, ultrasound is used for quick and accurate detection of hemorrhages in the pericardial, pleural, and peritoneal cavities during the primary Advanced Trauma Life Support (ATLS) survey. Volume status can be assessed non-invasively with ultrasound of the inferior vena cava (IVC), which is a useful tool in the initial phase and follow-up evaluations. Pneumothorax can also be quickly detected with ultrasound. During the secondary survey and in patients sustaining low-speed or localized trauma, ultrasound can be used to help detect abdominal organ injuries. This is particularly helpful in patients in whom hemoperitoneum is not identified on an initial scan because findings of organ injuries will expedite the next test, often computed tomography (CT). Moreover, ultrasound can assist in detection of fractures easily obscured on radiography, such as rib and sternal fractures.

  4. Ultrasound-assisted matrix solid phase dispersive extraction for the simultaneous analysis of β-lactams (four penicillins and eight cephalosporins) in milk by high performance liquid chromatography with photodiode array detection.

    Science.gov (United States)

    Karageorgou, Eftichia G; Samanidou, Victoria F; Papadoyannis, Ioannis N

    2012-10-01

    The application of ultrasound-assisted matrix solid phase dispersive extraction for the confirmatory analysis of 12 β-lactam antibiotics in milk by high performance liquid chromatography with photodiode array detection has been proposed herein. Four penicillins (cloxacillin, dicloxacillin, oxacillin, and amoxicillin) and eight cephalosporins (cefaclor, cefadroxil, ceftiofur, cefuroxime, cefoperazone, cefazolin, cephalexin, and cefotaxime) are effectively extracted using a mixed sorbent of Quick Easy Cheap Effective Rugged Safe technique and OASIS HLB providing a matrix free from any endogenous interference. Examined analytes were well resolved on an Inertsil ODS-3 analytical column with a mobile phase of CH(3)COONH(4) (0.05 M) and acetonitrile delivered under a gradient program. 1,7-Dimethyl-xanthine was used as internal standard. The method was validated meeting the European Legislation determining linearity, selectivity, stability, decision limit, detection capability, accuracy, precision, and ruggedness according to the Youden approach. Recoveries of all antibiotics rated from 85.0 to 115.7%, while RSD values were <12.7%. Finally, the method was successfully applied to milk samples purchased from local market. PMID:22941669

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... guide biopsy of breast cancer ( see the Ultrasound-Guided Breast Biopsy page . diagnose a variety of heart ... Articles and Media Angioplasty and Vascular Stenting Ultrasound-Guided Breast Biopsy Obstetric Ultrasound Ultrasound - Prostate Biopsies - Overview ...

  6. Therapeutic ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Lawrence A [Center for Industrial and Medical Ultrasound, 1013 NE 40th Street, University of Washington, Seattle, WA 98105 (United States)

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  7. Therapeutic ultrasound

    International Nuclear Information System (INIS)

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  8. Non-linear Ultrasound Imaging

    DEFF Research Database (Denmark)

    Du, Yigang

    without iteration steps. The ASA is implemented in combination with Field II and extended to simulate the pulsed ultrasound fields. The simulated results from a linear array transducer are made by the ASA based on Field II, and by a released non-linear simulation program- Abersim, respectively....... The calculation speed of the ASA is increased approximately by a factor of 140. For the second harmonic point spread function the error of the full width is 1.5% at -6 dB and 6.4% at -12 dB compared to Abersim. To further investigate the linear and non-linear ultrasound fields, hydrophone measurements.......3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS...

  9. Quantitative Ultrasound Measurements at the Heel

    DEFF Research Database (Denmark)

    Daugschies, M.; Brixen, K.; Hermann, P.;

    2015-01-01

    Calcaneal quantitative ultrasound can be used to predict osteoporotic fracture risk, but its ability to monitor therapy is unclear possibly because of its limited precision. We developed a quantitative ultrasound device (foot ultrasound scanner) that measures the speed of sound at the heel...... with the aim of minimizing common error sources like the position and penetration angle of the ultrasound beam, as well as the soft tissue temperature. To achieve these objectives, we used a receiver array, mechanics to adjust the beam direction and a foot temperature sensor. In a group of 60 volunteers, short......-term precision was evaluated for the foot ultrasound scanner and a commercial device (Achilles Insight, GE Medical, Fairfield, CT, USA). In a subgroup of 20 subjects, mid-term precision (1-mo follow-up) was obtained. Compared with measurement of the speed of sound with the Achilles Insight, measurement...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... do not use ionizing radiation (as used in x-rays ), thus there is no radiation exposure to the ... tissues that do not show up well on x-ray images. Ultrasound is the preferred imaging modality for ...

  11. Ultrasound imaging for quantitative measurement of immersed plastic waste particles

    NARCIS (Netherlands)

    Sanaee, S.A.; Bakker, M.C.M.

    2012-01-01

    Ultrasound imaging techniques are proposed for measuring the shape and thickness of immersed waste particles (10-20 mm size) using a linear sensor array from a fixed position. For these purposes both the front and back surface of a particle needs to be reconstructed. Raw ultrasound pulse-echo and pl

  12. Harmonic ultrasound imaging using synthetic aperture sequential beamforming

    DEFF Research Database (Denmark)

    2012-01-01

    A method includes generating an ultrasound image based on the harmonic components in the received echoes using multi-stage beam forming and data generated therefrom. An ultrasound imaging system (100, 200) includes a transducer array (108) including a plurality of transducer elements configured...... to emit ultrasound signals and receive echoes generated in response to the emitted ultrasound signals. The ultrasound imaging system further includes transmit circuitry (1 10) that generates a set of pulses that actuate a set of the plurality of transducer elements to emit ultrasound signals....... The ultrasound imaging system further includes receive circuitry (1 12), including a first beam former (122) configured to process the second harmonic signal components extracted from the received echo signals, generating intermediate scan lines. Memory (126) stores the generated intermediate scan lines...

  13. Ultrasound guided supraclavicular block.

    LENUS (Irish Health Repository)

    Hanumanthaiah, Deepak

    2013-09-01

    Ultrasound guided regional anaesthesia is becoming increasingly popular. The supraclavicular block has been transformed by ultrasound guidance into a potentially safe superficial block. We reviewed the techniques of performing supraclavicular block with special focus on ultrasound guidance.

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats the sound wave data into 3-D images. A Doppler ultrasound study may be ...

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... data into 3-D images. A Doppler ultrasound study may be part of an ultrasound examination. Doppler ... not stain or discolor clothing. In some ultrasound studies, the transducer is attached to a probe and ...

  16. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children's (Pediatric) Ultrasound - Abdomen Children’s (pediatric) ultrasound imaging of the abdomen ... limitations of Abdominal Ultrasound Imaging? What is Abdominal Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  17. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Conventional ultrasound displays the images in thin, ...

  18. Eye and orbit ultrasound

    Science.gov (United States)

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... eye is numbed with medicine (anesthetic drops). The ultrasound wand (transducer) is placed against the front surface ...

  19. Recent technological advancements in breast ultrasound.

    Science.gov (United States)

    Eisenbrey, John R; Dave, Jaydev K; Forsberg, Flemming

    2016-08-01

    Ultrasound is becoming increasingly common as an imaging tool for the detection and characterization of breast tumors. This paper provides an overview of recent technological advancements, especially those that may have an impact in clinical applications in the field of breast ultrasound in the near future. These advancements include close to 100% fractional bandwidth high frequency (5-18MHz) 2D and 3D arrays, automated breast imaging systems to minimize the operator dependence and advanced processing techniques, such as those used for detection of microcalcifications. In addition, elastography and contrast-enhanced ultrasound examinations that are expected to further enhance the clinical importance of ultrasound based breast tumor screening are briefly reviewed. These techniques have shown initial promise in clinical trials and may translate to more comprehensive clinical adoption in the future. PMID:27179143

  20. Ultrasound and Therapy

    Science.gov (United States)

    Lafon, Cyril

    This paper begins with an overview and a description of the interactions between ultrasound and biological tissues encountered during treatment protocols. In a second part of this seminar, two clinical applications of therapeutic ultrasound will be described in details: -Kidney stone destruction by ultrasound (lithotripsy) and High Intensity Focused Ultrasound for treating prostate cancer (HIFU).

  1. Ultrasound in Space Medicine

    Science.gov (United States)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (1) Determine accuracy of ultrasound in novel clinical conditions. (2) Determine optimal training methodologies, (3) Determine microgravity associated changes and (4) Develop intuitive ultrasound catalog to enhance autonomous medical care. Also uses of Ultrasound technology in terrestrial applications are reviewed.

  2. Clinical ultrasound physics

    OpenAIRE

    Abu-Zidan, Fikri M; Hefny, Ashraf F; Corr, Peter

    2011-01-01

    Understanding the basic physics of ultrasound is essential for acute care physicians. Medical ultrasound machines generate and receive ultrasound waves. Brightness mode (B mode) is the basic mode that is usually used. Ultrasound waves are emitted from piezoelectric crystals of the ultrasound transducer. Depending on the acoustic impedance of different materials, which depends on their density, different grades of white and black images are produced. There are different methods that can contro...

  3. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  4. Volumetric Flow Measurement Using an Implantable CMUT Array.

    Science.gov (United States)

    Mengli Wang; Jingkuang Chen

    2011-06-01

    This paper describes volumetric-flow velocity measurement using an implantable capacitive micromachined ultrasonic transducer (CMUT) array. The array is comprised of multiple-concentric CMUT rings for ultrasound transmission and an outmost annular CMUT array for ultrasound reception. Microelectromechanical-system (MEMS) fabrication technology allows reception CMUT on this flowmeter to be implemented with a different membrane thickness and gap height than that of transmission CMUTs, optimizing the performance of these two different kinds of devices. The silicon substrate of this 2-mm-diameter CMUT ring array was bulk micromachined to approximately 80 to 100 μm thick, minimizing tissue disruption. The blood-flow velocity was detected using pulse ultrasound Doppler by comparing the demodulated echo ultrasound with the incident ultrasound. The demodulated ultrasound signal was sampled by a pulse delayed in time domain from the transmitted burst, which corresponds to detecting the signal at a specific distance. The flow tube/vessel diameter was detected through the time-flight delay difference from near and far wall reflections, which was measured from the ultrasound pulse echo. The angle between the ultrasound beam and the flow was found by using the cross-correlation from consecutive ultrasound echoes. Artificial blood flowing through three different polymer tubes was experimented with, while keeping the same volumetric flow rate. The discrepancy in flow measurement results between this CMUT meter and a calibrated laser Doppler flowmeter is less than 5%. PMID:23851472

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... General Ultrasound Videos related to General Ultrasound About this Site RadiologyInfo.org is produced by: Please note ... you can search the ACR-accredited facilities database . This website does not provide cost information. The costs ...

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... again. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  7. Prenatal ultrasound - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100197.htm Prenatal ultrasound - series To use the sharing features on ... A.M. Editorial team. Related MedlinePlus Health Topics Prenatal Testing Ultrasound A.D.A.M., Inc. is ...

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Most ultrasound scanning is noninvasive (no needles ... procedures such as needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known ...

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... medicine, ultrasound is used to detect changes in appearance, size or contour of organs, tissues, and vessels or to detect abnormal masses, such as tumors. In an ultrasound examination, a transducer both sends ...

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... technique that allows the physician to see and evaluate blood flow through arteries and veins in the ... following illness. Ultrasound is used to help physicians evaluate symptoms such as: pain swelling infection Ultrasound is ...

  11. Abdominal ultrasound (image)

    Science.gov (United States)

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X-ray, MRI, ... it has its place as a diagnostic tool. Ultrasound scans use high frequency sound waves to produce ...

  12. Transvaginal ultrasound (image)

    Science.gov (United States)

    Transvaginal ultrasound is a method of imaging the genital tract in females. A hand held probe is inserted directly ... vaginal cavity to scan the pelvic structures, while ultrasound pictures are viewed on a monitor. The test ...

  13. Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging.

    OpenAIRE

    Colchester, R. J.; Zhang, E. Z.; Mosse, C. A.; Beard, P.C.; Papakonstantinou, I.; Desjardins, A. E.

    2015-01-01

    An all-optical ultrasound probe for vascular tissue imaging was developed. Ultrasound was generated by pulsed laser illumination of a functionalized carbon nanotube composite coating on the end face of an optical fiber. Ultrasound was detected with a Fabry-Pérot (FP) cavity on the end face of an adjacent optical fiber. The probe diameter was < 0.84 mm and had an ultrasound bandwidth of ~20 MHz. The probe was translated across the tissue sample to create a virtual linear array of ultrasound tr...

  14. Modeling of ultrasound transducers

    DEFF Research Database (Denmark)

    Bæk, David

    This Ph.D. dissertation addresses ultrasound transducer modeling for medical ultrasound imaging and combines the modeling with the ultrasound simulation program Field II. The project firstly presents two new models for spatial impulse responses (SIR)s to a rectangular elevation focused transducer...

  15. Harmonic Intravascular Ultrasound

    NARCIS (Netherlands)

    M.E. Frijlink (Martijn)

    2006-01-01

    textabstractMedical ultrasound is a popular imaging modality in cardiology. Harmonic Imaging is a technique that has been shown to increase the image quality of diagnostic ultrasound at frequencies below 10 MHz. However, Intravascular Ultrasound, which is a technique to acoustically investigate arte

  16. Large area MEMS based ultrasound device for cancer detection

    Energy Technology Data Exchange (ETDEWEB)

    Wodnicki, Robert, E-mail: wodnicki@research.ge.com [GE Global Research, 1 Research Circle, Niskayuna, NY 12309 (United States); Thomenius, Kai [GE Global Research, 1 Research Circle, Niskayuna, NY 12309 (United States); Ming Hooi, Fong; Sinha, Sumedha P.; Carson, Paul L. [Radiology and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Lin Dersong; Zhuang Xuefeng; Khuri-Yakub, Pierre [Department of Electrical Engineering, Stanford University, Stanford, CA 94309 (United States); Woychik, Charles [GE Global Research, 1 Research Circle, Niskayuna, NY 12309 (United States)

    2011-08-21

    We present image results obtained using a prototype ultrasound array that demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micromachined Ultrasound Transducers (cMUTs) that have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 {mu}m and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to those of production PZT probes; however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.

  17. Micromachined Integrated Transducers for Ultrasound Imaging

    DEFF Research Database (Denmark)

    la Cour, Mette Funding

    The purpose of this project is to develop capacitive micromachined ultrasonic transducers (CMUTs) for medical imaging. Medical ultrasound transducers used today are fabricated using piezoelectric materials and bulk processing. To fabricate transducers capable of delivering a higher imaging...... resolution it is however necessary to develop new fabrication methods that allows fabrication of transducer elements with smaller dimensions. By using microfabrication technology it is possible to push the dimensions down and provide higher design flexibility. This project is part of a large ultrasound...... project and collaboration with a lot of partners to improve medical ultrasound imaging. The focus in this part of the project is to design, fabricate and characterize 1D CMUT arrays. Two versions of 1D transducers are made, one at Stanford University and one at DTU. Electrical and acoustical...

  18. Neonatal cranial ultrasound: current perspectives

    Directory of Open Access Journals (Sweden)

    Franco A

    2013-09-01

    Full Text Available Arie Franco, Kristopher Neal Lewis Department of Radiology, Medical College of Georgia at Georgia Regents University, Augusta, GA, USA Abstract: Ultrasound is the most common imaging tool used in the neonatal intensive care unit. It is portable, readily available, and can be used at bedside. It is the least expensive cross sectional imaging modality and the safest imaging device used in the pediatric population due to its lack of ionizing radiation. There are well established indications for cranial ultrasound in many neonatal patient groups including preterm infants and term infants with birth asphyxia, seizures, congenital infections, etc. Cranial ultrasound is performed with basic grayscale imaging, using a linear array or sector transducer via the anterior fontanel in the coronal and sagittal planes. Additional images can be obtained through the posterior fontanel in preterm newborns. The mastoid fontanel can be used for assessment of the posterior fossa. Doppler images may be obtained for screening of the vascular structures. The normal sonographic neonatal cranial anatomy and normal variants are discussed. The most common pathological findings in preterm newborns, such as germinal matrix-intraventricular hemorrhage and periventricular leukomalacia, are described as well as congenital abnormalities such as holoprosencephaly and agenesis of the corpus callosum. New advances in sonographic equipment enable high-resolution and three-dimensional images, which facilitate obtaining very accurate measurements of various anatomic structures such as the ventricles, the corpus callosum, and the cerebellar vermis. Limited studies have been performed to predict that longitudinal measurements of these anatomic structures might predict the clinical outcome of high-risk preterm newborns. Hemodynamic Doppler studies may offer the potential for early intervention and treatment to counter the hazards of developmental delay and a moribund clinical outcome

  19. Breast ultrasound tomography with total-variation regularization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Li, Cuiping [KARMANOS CANCER INSTIT.; Duric, Neb [KARMANOS CANCER INSTIT

    2009-01-01

    Breast ultrasound tomography is a rapidly developing imaging modality that has the potential to impact breast cancer screening and diagnosis. A new ultrasound breast imaging device (CURE) with a ring array of transducers has been designed and built at Karmanos Cancer Institute, which acquires both reflection and transmission ultrasound signals. To extract the sound-speed information from the breast data acquired by CURE, we have developed an iterative sound-speed image reconstruction algorithm for breast ultrasound transmission tomography based on total-variation (TV) minimization. We investigate applicability of the TV tomography algorithm using in vivo ultrasound breast data from 61 patients, and compare the results with those obtained using the Tikhonov regularization method. We demonstrate that, compared to the Tikhonov regularization scheme, the TV regularization method significantly improves image quality, resulting in sound-speed tomography images with sharp (preserved) edges of abnormalities and few artifacts.

  20. Measurement of a PAGAT gel dosimeter by ultrasound computed tomography

    Science.gov (United States)

    Khoei, S.; Trapp, J. V.; Langton, C. M.

    2013-06-01

    In this work we used a 3D quantitative CT ultrasound imaging system to characterise polymer gel dosimeters. The system comprised of two identical 5 MHz 128 element phased-array ultrasound transducers co-axially aligned and submerged in water as a coupling agent. Rotational and translational movement of the gel dosimeter sample between the transducers were performed using a robotic arm. Ultrasound signals were generated and received using an Olympus Omniscan unit. Dose sensitivity of attenuation and time of flight ultrasonic parameters were assessed using this system.

  1. Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2008-01-01

    In this paper, the adaptive, minimum variance (MV) beamformer is applied to medical ultrasound imaging. The Significant resolution and contrast gain provided by the adaptive, minimum variance (MV) beamformer, introduces the possibility of plane wave (PW) ultrasound imaging. Data is obtained using...... Field H and a 7 MHz, 128-elements, linear array transducer with lambda/2-spacing. MV is compared to the conventional delay-and-sum (DS) beamformer with Boxcar and Hanning weights. Furthermore, the PW images are compared to the a conventional ultrasound image, obtained from a linear scan sequence...

  2. Experimental 3-D Vector Velocity Estimation with Row-Column Addressed Arrays

    DEFF Research Database (Denmark)

    Holbek, Simon; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2016-01-01

    Experimental 3-D vector flow estimates obtained with a 62+62 2-D row-column (RC) array with integrated apodization are presented. A transverse oscillation (TO) velocity estimator is implemented on a 3.0 MHz RC array, to yield realtime 3-D vector flow in a cross-sectional scan plane at 750 frames...... rates. The flow rate measured from five cycles is 2.3 mL/stroke ± 0.1 mL/stroke giving a negative 9.7% bias compared to the pump settings. It is concluded that 124 elements are sufficient to estimate 3-D vector flow, if they are positioned in a row-column wise manner....

  3. Space-based Aperture Array For Ultra-Long Wavelength Radio Astronomy

    CERN Document Server

    Rajan, Raj Thilak; Bentum, Mark; Klein-Wolt, Marc; Belien, Frederik; Arts, Michel; Saks, Noah; van der Veen, Alle-Jan

    2015-01-01

    The past decade has seen the rise of various radio astronomy arrays, particularly for low-frequency observations below 100MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21cm line emission. However, Earth-based radio astronomy below frequencies of 30MHz is severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. Various studies in the past were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. We briefly present the achievable science cases, and dis...

  4. TU-A-9A-06: Semi-Automatic Segmentation of Skin Cancer in High-Frequency Ultrasound Images: Initial Comparison with Histology

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Y [Univ. Alabama at Birmingham, Birmingham, AL (United States); Li, X [Medical College of Wisconsin, Milwaukee, WI (United States); Fishman, K [Sensus Healthcare, Boca Raton, FL (United States); Yang, X [Department of Radiation Oncology and Winship Cancer Institute, Emory Univ., Atlanta, GA (United States); Liu, T [Emory Univ, Atlanta, GA (United States)

    2014-06-15

    Purpose: In skin-cancer radiotherapy, the assessment of skin lesion is challenging, particularly with important features such as the depth and width hard to determine. The aim of this study is to develop interative segmentation method to delineate tumor boundary using high-frequency ultrasound images and to correlate the segmentation results with the histopathological tumor dimensions. Methods: We analyzed 6 patients who comprised a total of 10 skin lesions involving the face, scalp, and hand. The patient’s various skin lesions were scanned using a high-frequency ultrasound system (Episcan, LONGPORT, INC., PA, U.S.A), with a 30-MHz single-element transducer. The lateral resolution was 14.6 micron and the axial resolution was 3.85 micron for the ultrasound image. Semiautomatic image segmentation was performed to extract the cancer region, using a robust statistics driven active contour algorithm. The corresponding histology images were also obtained after tumor resection and served as the reference standards in this study. Results: Eight out of the 10 lesions are successfully segmented. The ultrasound tumor delineation correlates well with the histology assessment, in all the measurements such as depth, size, and shape. The depths measured by the ultrasound have an average of 9.3% difference comparing with that in the histology images. The remaining 2 cases suffered from the situation of mismatching between pathology and ultrasound images. Conclusion: High-frequency ultrasound is a noninvasive, accurate and easy-accessible modality to image skin cancer. Our segmentation method, combined with high-frequency ultrasound technology, provides a promising tool to estimate the extent of the tumor to guide the radiotherapy procedure and monitor treatment response.

  5. Use of modulated excitation signals in medical ultrasound. Part III: High frame rate imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Jensen, Jørgen Arendt

    2005-01-01

    For pt.II, see ibid., vol.52, no.2, p.192-207 (2005). This paper, the last from a series of three papers on the application of coded excitation signals in medical ultrasound, investigates the possibility of increasing the frame rate in ultrasound imaging by using modulated excitation signals...... or no reduction in signal-to-noise ratio and image quality. By using these techniques, a complete ultrasound-phased array image can be created using only two emissions....

  6. Use of ultrasound in the management of thyroid cancer.

    Science.gov (United States)

    Lew, John I; Solorzano, Carmen C

    2010-01-01

    The use of ultrasound for thyroid cancer has evolved dramatically over the last few decades. Since the late 1960s, ultrasound has become essential in the examination of the thyroid gland with the increased availability of high-frequency linear array transducers and computer-enhanced imaging capabilities of modern day portable ultrasound equipment in a clinic- or office-based setting. As a noninvasive, rapid, and easily reproducible imaging study, ultrasound has been demonstrated to have a broadened utility beyond the simple confirmation of thyroid nodules and their sizes. Recently, office-based ultrasound has become an integral part of clinical practice, where it has demonstrated overwhelming benefits to patients being evaluated and treated for thyroid cancer. Ultrasound has become useful in the qualitative characterization of thyroid nodules based on benign or malignant features. On the basis of such classifications and the relative risk for thyroid malignancy, the need for ultrasound-guided fine-needle aspiration, preoperative and intraoperative staging, lymph node mapping, and the extent of surgery can subsequently be determined. Furthermore, ultrasound has additional value in the surveillance of patients treated for thyroid cancer. PMID:20215358

  7. Ultrasound-Guided Breast Biopsy

    Science.gov (United States)

    ... Professions Site Index A-Z Ultrasound-Guided Breast Biopsy An ultrasound-guided breast biopsy uses sound waves ... Guided Breast Biopsy? What is Ultrasound-Guided Breast Biopsy? Lumps or abnormalities in the breast are often ...

  8. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... located within a child's abdomen. A Doppler ultrasound study may be part of a child's abdominal ultrasound ... pain from the procedure. If a Doppler ultrasound study is performed, your child may actually hear pulse- ...

  9. Medical ultrasound imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2007-01-01

    The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy...... are shown. Both systems using linear and non-linear propagation of ultrasound are described. The blood velocity can also be non-invasively visualized using ultrasound and the basic signal processing for doing this is introduced. Examples for spectral velocity estimation, color flow maging and the new vector...

  10. 3D ultrafast ultrasound imaging in vivo

    International Nuclear Information System (INIS)

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability. (fast track communication)

  11. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Children's (pediatric) abdominal ultrasound imaging produces pictures ...

  12. Venous Ultrasound (Extremities)

    Science.gov (United States)

    ... page How is the procedure performed? For most ultrasound exams, you will be positioned lying face-up on an examination table that can be ... either side or on occasion placed in a face down position to improve the quality ... (ultrasound technologist) or radiologist then places the transducer on ...

  13. Compensated Row-Column Ultrasound Imaging System Using Fisher Tippett Multilayered Conditional Random Field Model

    OpenAIRE

    Ibrahim Ben Daya; Albert I H Chen; Mohammad Javad Shafiee; Alexander Wong; John T. W. Yeow

    2015-01-01

    3-D ultrasound imaging offers unique opportunities in the field of non destructive testing that cannot be easily found in A-mode and B-mode images. To acquire a 3-D ultrasound image without a mechanically moving transducer, a 2-D array can be used. The row column technique is preferred over a fully addressed 2-D array as it requires a significantly lower number of interconnections. Recent advances in 3-D row-column ultrasound imaging systems were largely focused on sensor design. However, the...

  14. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm;

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  15. Membrane design of an all-optical ultrasound receiver

    NARCIS (Netherlands)

    Leinders, S.M.; Dongen, K.W.A. van; Jong, N. de; Verweij, M.D.; Westerveld, W.J.; Urbach, H.P.; Neer, P.L.M.J. van; Pozo Torres, J.M.

    2013-01-01

    Ultrasound sensors such as piezoelectric transducers and CMUTs are successfully used for medical imaging. However, especially wiring of individual elements is difficult in the fabrication of small piezoelectric arrays, used in, e.g. the field of intravascular imaging. As an alternative, we designed

  16. Adaptive Receive and Transmit Apodization for Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Austeng, Andreas; Synnevåg, Johan-Fredrik;

    2009-01-01

    emission images before summation. The method is investigated using simulated SA ultrasound data obtained using Field II. Data of 13 point targets distributed at depths from 40 mm to 70 mm, and a 5.5 MHz, 64-element linear array transducer have been used. The investigation has shown that the introduction of...

  17. Ultrasound specific similarity measures for three-dimensional mosaicing

    Science.gov (United States)

    Wachinger, Christian; Navab, Nassir

    2008-03-01

    The introduction of 2D array ultrasound transducers enables the instantaneous acquisition of ultrasound volumes in the clinical practice. The next step coming along is the combination of several scans to create compounded volumes that provide an extended field-of-view, so called mosaics. The correct alignment of multiple images, which is a complex task, forms the basis of mosaicing. Especially the simultaneous intensity-based registration has many properties making it a good choice for ultrasound mosaicing in comparison to the pairwise one. Fundamental for each registration approach is a suitable similarity measure. So far, only standard measures like SSD, NNC, CR, and MI were used for mosaicing, which implicitly assume an additive Gaussian distributed noise. For ultrasound images, which are degraded by speckle patterns, alternative noise models based on multiplicative Rayleigh distributed noise were proposed in the field of motion estimation. Setting these models into the maximum likelihood estimation framework, which enables the mathematical modeling of the registration process, led us to ultrasound specific bivariate similarity measures. Subsequently, we used an extension of the maximum likelihood estimation framework, which we developed in a previous work, to also derive multivariate measures. They allow us to perform ultrasound specific simultaneous registration for mosaicing. These measures have a higher potential than afore mentioned standard measures since they are specifically designed to cope with problems arising from the inherent contamination of ultrasound images by speckle patterns. The results of the experiments that we conducted on a typical mosaicing scenario with only partly overlapping images confirm this assumption.

  18. Space-based aperture array for ultra-long wavelength radio astronomy

    Science.gov (United States)

    Rajan, Raj Thilak; Boonstra, Albert-Jan; Bentum, Mark; Klein-Wolt, Marc; Belien, Frederik; Arts, Michel; Saks, Noah; van der Veen, Alle-Jan

    2016-02-01

    The past decade has seen the advent of various radio astronomy arrays, particularly for low-frequency observations below 100 MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21 cm line emission. However, Earth-based radio astronomy observations at frequencies below 30 MHz are severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10 MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. In the past, such space-based radio astronomy studies were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. Furthermore, successful space-based missions which mapped the sky in this frequency regime, such as the lunar orbiter RAE-2, were restricted by very poor spatial resolution. Recently concluded studies, such as DARIS (Disturbuted Aperture Array for Radio Astronomy In Space) have shown the ready feasibility of a 9 satellite constellation using off the shelf components. The aim of this article is to discuss the current trends and technologies towards the feasibility of a space-based aperture array for astronomical observations in the Ultra-Long Wavelength (ULW) regime of greater than 10 m i.e., below 30 MHz. We briefly present the achievable science cases, and discuss the system design for selected scenarios such as extra-galactic surveys. An extensive discussion is presented on various sub-systems of the potential satellite array, such as radio astronomical antenna design, the on-board signal processing, communication architectures and joint space-time estimation of the

  19. Hepatic applications of endoscopic ultrasound

    DEFF Research Database (Denmark)

    Srinivasan, Indu; Tang, Shou-Jiang; Vilmann, Andreas S;

    2015-01-01

    The diagnosis and staging of various gastrointestinal malignancies have been made possible with the use of endoscopic ultrasound, which is a relatively safe procedure. The field of endoscopic ultrasound is fast expanding due to advancements in therapeutic endoscopic ultrasound. Though various...... of endoscopic ultrasound, thus not only providing an overview of utilization of endoscopic ultrasound in various liver conditions but also speculating its future role....

  20. Ultrasound assessment of schistosomiasis.

    Science.gov (United States)

    Richter, J; Botelho, M C; Holtfreter, M C; Akpata, R; El Scheich, T; Neumayr, A; Brunetti, E; Hatz, C; Dong, Y; Dietrich, C F

    2016-07-01

    In 2000, the World Health Organization (WHO) issued an ultrasound field protocol for assessing the morbidity due to Schistosoma (S.) haematobium and S. mansoni. The experience with this classification has recently been reviewed systematically. The WHO protocol was well accepted worldwide. Here we review the use of ultrasound to assess the morbidity due to schistosomiasis with emphasis on easy, quick, and reproducible ways that can be used in the field. Findings obtained with high-end ultrasound scanners in the hospital setting that might eventually have applications in the field are also described. PMID:27429103

  1. Bedside ocular ultrasound.

    Science.gov (United States)

    Roque, Pedro J; Hatch, Nicholas; Barr, Laurel; Wu, Teresa S

    2014-04-01

    Many ocular emergencies are difficult to diagnose in the emergency setting with conventional physical examination tools. Additionally, persistent efforts to re-examine the eye may be deleterious to a patient's overall condition. Ultrasound is an important tool because it affords physicians a rapid, portable, accurate, and dynamic tool for evaluation of a variety of ocular and orbital diseases. The importance of understanding orbital anatomy, with attention to the firm attachment points of the various layers of the eye, cannot be understated. This article describes the relevant eye anatomy, delves into the ultrasound technique, and illustrates a variety of orbital pathologies detectable by bedside ultrasound.

  2. Electronic hardware design for ultrasound Transient Elastography

    Directory of Open Access Journals (Sweden)

    Anand Sneh

    2012-08-01

    Full Text Available Transient Elastography, an emerging technique in Medical Ultrasonography has wide spread application in detection of malignant tumors. This non invasive method uses low frequency waves orthogonal to the direction of propagation of ultrasound waves. Piezoelectric crystals in ultrasound probe are excited using high voltage Pulsar which converts digital pulses into high voltages pulses. The pulse parameters are programmed using Field Programmable Gate Array (FPGA. The circuit has separate crystals for transmission, receptioneliminating high voltage multiplexer and TR switch. The receiver section uses integrated circuit having low noise amplifier, time gain compensation, anti aliasing filter & analog to digital convertor and processed in FPGA. Both FPGAs are controlled by microcontroller. Since all channels are received simultaneously, a large data rate transmission through Ethernet interface for real time data interfacing and image processing is required. The speed of the waves travelling in the orthogonal direction can be measured using motion modeling.

  3. Observations of Rotating Radio Transients with the First Station of the Long Wavelength Array

    CERN Document Server

    Taylor, G B; McCrackan, M; McLaughlin, M A; Miller, R; Karako-Argaman, C; Dowell, J; Schinzel, F K

    2016-01-01

    Rotating Radio Transients (RRATs) are a subclass of pulsars first identified in 2006 that are detected only in searches for single pulses and not through their time averaged emission. Here, we present the results of observations of 19 RRATs using the first station of the Long Wavelength Array (LWA1) at frequencies between 30 MHz and 88 MHz. The RRATs observed here were first detected in higher frequency pulsar surveys. Of the 19 RRATs observed, 2 sources were detected and their dispersion measures, periods, pulse profiles, and flux densities are reported and compared to previous higher frequency measurements. We find a low detection rate (11%), which could be a combination of the lower sensitivity of LWA1 compared to the higher frequency telescopes, and the result of scattering by the interstellar medium or a spectral turnover.

  4. Silicon photonic micro-ring resonators to sense strain and ultrasound

    NARCIS (Netherlands)

    Westerveld, W.J.

    2014-01-01

    We demonstrated that photonic micro-ring resonators can be used in micro-machined ultrasound microphones. This might cause a breakthrough in array transducers for ultrasonography; first because optical multiplexing allows array interrogation via one optical fiber and second because the silicon-on-in

  5. Ultrasound transducer assembly and method for manufacturing an ultrasound transducer assembly

    NARCIS (Netherlands)

    Dekker, R.; Henneken, V.A.; Louwerse, M.C.; Raganato, M.F.

    2015-01-01

    The present invention relates to an ultrasound transducer assembly (10), in particular for intravascular ultrasound systems. The ultrasound transducer assembly comprises at least one silicon substrate element (30) including an ultrasound transducer element (14) for emitting and receiving ultrasound

  6. Integrated Interventional Devices For Real Time 3D Ultrasound Imaging and Therapy

    Science.gov (United States)

    Smith, Stephen W.; Lee, Warren; Gentry, Kenneth L.; Pua, Eric C.; Light, Edward D.

    2006-05-01

    Two recent advances have expanded the potential of medical ultrasound: the introduction of real-time 3-D ultrasound imaging with catheter, transesophageal and laparoscopic probes and the development of interventional ultrasound therapeutic systems for focused ultrasound surgery, ablation and ultrasound enhanced drug delivery. This work describes devices combining both technologies. A series of transducer probes have been designed, fabricated and tested including: 1) a 12 French side scanning catheter incorporating a 64 element matrix array for imaging at 5MHz and a piston ablation transducer operating at 10 MHz. 2) a 14 Fr forward-scanning catheter integrating a 112 element 2-D array for imaging at 5 MHz encircled by an ablation annulus operating at 10 MHz. Finite element modeling was then used to simulate catheter annular and linear phased array transducers for ablation. 3) Linear phased array transducers were built to confirm the finite element analysis at 4 and 8 MHz including a mechanically focused 86 element 9 MHz array which transmits an ISPTA of 29.3 W/cm2 and creates a lesion in 2 minutes. 4) 2-D arrays of 504 channels operating at 5 MHz have been developed for transesophageal and laparascopic 3D imaging as well as therapeutic heating. All the devices image the heart anatomy including atria, valves, septa and en face views of the pulmonary veins.

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... biopsies , in which needles are used to sample cells from an abnormal area for laboratory testing. image ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... terms of the distance traveled per unit of time, rather than as a color picture. It can ...

  9. Ultrasound Modulated Bioluminescence Tomography

    CERN Document Server

    Bal, Guillaume

    2013-01-01

    We propose a method to reconstruct the density of a luminescent source in a highly-scattering medium from ultrasound modulated optical measurements. Our approach is based on the solution to a hybrid inverse source problem for the diffusion equation.

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... deeper into the body. Ultrasound has difficulty penetrating bone and, therefore, can only see the outer surface ... children or adults). For visualizing internal structure of bones or certain joints, other imaging modalities such as ...

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... over time. top of page What are the benefits vs. risks? Benefits Most ultrasound scanning is noninvasive (no needles or ... the possible charges you will incur. Web page review process: This Web page is reviewed regularly by ...

  12. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... between the transducer and the skin that can block the sound waves from passing into your body. ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ...

  13. Ultrasound in pregnancy (image)

    Science.gov (United States)

    The ultrasound has become a standard procedure used during pregnancy. It can demonstrate fetal growth and can detect increasing ... abnormalities, hydrocephalus, anencephaly, club feet, and other ... does not produce ionizing radiation and is considered ...

  14. Ultrasound beamforming using compressed data.

    Science.gov (United States)

    Li, Yen-Feng; Li, Pai-Chi

    2012-05-01

    The rapid advancements in electronics technologies have made software-based beamformers for ultrasound array imaging feasible, thus facilitating the rapid development of high-performance and potentially low-cost systems. However, one challenge to realizing a fully software-based system is transferring data from the analog front end to the software back end at rates of up to a few gigabits per second. This study investigated the use of data compression to reduce the data transfer requirements and optimize the associated trade-off with beamforming quality. JPEG and JPEG2000 compression techniques were adopted. The acoustic data of a line phantom were acquired with a 128-channel array transducer at a center frequency of 3.5 MHz, and the acoustic data of a cyst phantom were acquired with a 64-channel array transducer at a center frequency of 3.33 MHz. The receive-channel data associated with each transmit event are separated into 8 × 8 blocks and several tiles before JPEG and JPEG2000 data compression is applied, respectively. In one scheme, the compression was applied to raw RF data, while in another only the amplitude of baseband data was compressed. The maximum compression ratio of RF data compression to produce an average error of lower than 5 dB was 15 with JPEG compression and 20 with JPEG2000 compression. The image quality is higher with baseband amplitude data compression than with RF data compression; although the maximum overall compression ratio (compared with the original RF data size), which was limited by the data size of uncompressed phase data, was lower than 12, the average error in this case was lower than 1 dB when the compression ratio was lower than 8. PMID:22434817

  15. Array tomography: imaging stained arrays.

    Science.gov (United States)

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. In this protocol, tissue arrays are imaged using conventional wide-field fluorescence microscopy. Images can be captured manually or, with the appropriate software and hardware, the process can be automated. PMID:21041399

  16. Array tomography: production of arrays.

    Science.gov (United States)

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time consuming and require some practice to perfect. This protocol describes the sectioning of embedded tissues and the mounting of the serial arrays. The procedures require some familiarity with the techniques used for ultramicrotome sectioning for electron microscopy. PMID:21041397

  17. Clinical Utility of Endoscopic Ultrasound in Solid Pancreatic Mass Lesions Deemed Resectable by Computer Tomography

    Directory of Open Access Journals (Sweden)

    Mark A Virtue

    2008-03-01

    Full Text Available Context Appropriate surgical exploration and resection of pancreatic carcinoma depends on accurate preoperative evaluation. Objective Determine the accuracy of endoscopic ultrasound in predicting the need for surgical exploration in patients with solid pancreatic masses deemed by computer tomography to be resectable without venous grafting (absence of distant metastatic disease or major vascular involvement. Patients All patients between March 2000 and November 2003 with focal pancreatic mass lesions deemed to be surgically resectable by computer tomography. Fortynine patients participated (29 males, 20 females; age range: 40-86 years. Intervention Preoperative linear-array endoscopic ultrasound. Main outcome measure Surgical pathology compared to computer tomography and endoscopic ultrasound results. Results Out of the 49 patients, 33 (67.3% had pancreatic neoplasms and 16 (32.7% had chronic pancreatitis. Endoscopic ultrasound correctly diagnosed all 16 patients with chronic pancreatitis. Endoscopic ultrasound correctly identified 18 (54.5% of those with neoplasms as having unresectable disease while 6 (18.2% patients were appropriately identified as resectable by endoscopic ultrasound. The remaining 9 patients (27.3% were deemed resectable by endoscopic ultrasound, but were unresectable at the time of surgery. None of the patients were falsely designated as unresectable by endoscopic ultrasound. Conclusion Endoscopic ultrasound is an important compliment to computed tomography in predicting resectability and in avoiding nontherapeutic laparotomy of solid pancreatic neoplasms. Moreover, endoscopic ultrasound classification did not discourage surgery of resectable pancreatic masses.

  18. High-Frequency, Low-Intensity Pulsed Ultrasound Enhances Alveolar Bone Healing of Extraction Sockets in Rats: A Pilot Study.

    Science.gov (United States)

    Kang, Kyung Lhi; Kim, Eun-Cheol; Park, Joon Bong; Heo, Jung Sun; Choi, Yumi

    2016-02-01

    Most studies of the beneficial effects of low-intensity pulsed ultrasound (LIPUS) on bone healing have used frequencies between 1.0 and 1.5 MHz. However, after consideration of ultrasound wave characteristics and depth of target tissue, higher-frequency LIPUS may have been more effective on superficially positioned alveolar bone. We investigated this hypothesis by applying LIPUS (frequency, 3.0 MHz; intensity, 30 mW/cm(2)) on shaved right cheeks over alveolar bones of tooth extraction sockets in rats for 10 min/d for 2 wk after tooth extraction; the control group (left cheek of the same rats) did not receive LIPUS treatment. Compared with the control group, the LIPUS group manifested more new bone growth inside the sockets on histomorphometric analysis (maximal difference = 2.5-fold on the seventh day after extraction) and higher expressions of osteogenesis-related mRNAs and proteins than the control group did. These findings indicate that 3.0-MHz LIPUS could enhance alveolar bone formation and calcification in rats.

  19. Assessment of the Kinetic Trajectory of the Median Nerve in the Wrist by High-Frequency Ultrasound

    Directory of Open Access Journals (Sweden)

    Yi-Hsun Lin

    2014-04-01

    Full Text Available Carpal tunnel syndrome (CTS is typically diagnosed by physical examination or nerve conduction measurements. With these diagnostics however it is difficult to obtain anatomical information in the carpal tunnel. To further improve the diagnosis of CTS, an attempt using 30 MHz high-frequency ultrasound to noninvasively detect the local anatomical structures and the kinetic trajectory of the median nerve (MN in the wrist was explored. Measurements were performed on the right wrist of 14 asymptomatic volunteers. The kinetic trajectory of the MN corresponding to flexion (from 0° to 90° and extension (from 90° to 0° movements of the fingers were detected by a cross correlation-based motion tracking technique. The average displacements of the MN according to finger movements were measured to be 3.74 and 2.04 mm for male and female subjects, respectively. Moreover, the kinetic trajectory of the MN in both the ulnar-palmar and total directions generally follows a sigmoidal curve tendency. This study has verified that the use of high-frequency ultrasound imaging and a motion tracking technique to sensitively detect the displacement and kinetic trajectory of the MN for the assessment of CTS patients is feasible.

  20. Ultrasound- and MRI-Guided Prostate Biopsy

    Science.gov (United States)

    ... Index A-Z Ultrasound- and MRI-Guided Prostate Biopsy Ultrasound- and MRI-guided prostate biopsy uses imaging ... Biopsy? What is Ultrasound- and MRI-guided Prostate Biopsy? Ultrasound- and MRI-guided prostate biopsies are performed ...

  1. Synthetic tracked aperture ultrasound imaging: design, simulation, and experimental evaluation.

    Science.gov (United States)

    Zhang, Haichong K; Cheng, Alexis; Bottenus, Nick; Guo, Xiaoyu; Trahey, Gregg E; Boctor, Emad M

    2016-04-01

    Ultrasonography is a widely used imaging modality to visualize anatomical structures due to its low cost and ease of use; however, it is challenging to acquire acceptable image quality in deep tissue. Synthetic aperture (SA) is a technique used to increase image resolution by synthesizing information from multiple subapertures, but the resolution improvement is limited by the physical size of the array transducer. With a large F-number, it is difficult to achieve high resolution in deep regions without extending the effective aperture size. We propose a method to extend the available aperture size for SA-called synthetic tracked aperture ultrasound (STRATUS) imaging-by sweeping an ultrasound transducer while tracking its orientation and location. Tracking information of the ultrasound probe is used to synthesize the signals received at different positions. Considering the practical implementation, we estimated the effect of tracking and ultrasound calibration error to the quality of the final beamformed image through simulation. In addition, to experimentally validate this approach, a 6 degree-of-freedom robot arm was used as a mechanical tracker to hold an ultrasound transducer and to apply in-plane lateral translational motion. Results indicate that STRATUS imaging with robotic tracking has the potential to improve ultrasound image quality. PMID:27088108

  2. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... be guided by ultrasound, are used to sample cells from organs for laboratory testing help identify the ... in which needles are used to extract sample cells from an abnormal area for laboratory testing. Ultrasound ...

  3. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... vomiting in young infants Because ultrasound provides real-time images, images that are renewed continuously, it also ...

  4. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Most ultrasound scanning is noninvasive (no needles ... cord and hip joints in newborns and infants. Risks For standard diagnostic ultrasound , there are no known ...

  5. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... medicine, ultrasound is used to detect changes in appearance, size or contour of organs, tissues, and vessels or to detect abnormal masses, such as tumors. In an ultrasound examination, a transducer both sends ...

  6. Developing an emergency ultrasound app

    DEFF Research Database (Denmark)

    Foss, Kim Thestrup; Subhi, Yousif; Aagaard, Rasmus;

    2015-01-01

    Focused emergency ultrasound is rapidly evolving as a clinical skill for bedside examination by physicians at all levels of education. Ultrasound is highly operator-dependent and relevant training is essential to ensure appropriate use. When supplementing hands-on focused ultrasound courses, e......-learning can increase the learning effect. We developed an emergency ultrasound app to enable onsite e-learning for trainees. In this paper, we share our experiences in the development of this app and present the final product....

  7. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke;

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... of SA imaging. Due to the complete data set, it is possible to have both dynamic transmit and receive focusing to improve contrast and resolution. It is also possible to improve penetration depth by employing codes during ultrasound transmission. Data sets for vector flow imaging can be acquired using...... short imaging sequences, whereby both the correct velocity magnitude and angle can be estimated. A number of examples of both phantom and in-vivo SA images will be presented measured by the experimental ultrasound scanner RASMUS to demonstrate the many benefits of SA imaging....

  8. Ultrasound cleaning of microfilters

    DEFF Research Database (Denmark)

    Hald, Jens; Bjørnø, Irina; Jensen, Leif Bjørnø

    1999-01-01

    The aim of the present work is to develop, design, and manufacture a high-power ultrasound transducer module to be used for preventing the blocking of plastic-based microfilters by organic materials, and possibly to prolong the lifetime of the filters in industry using the cavitation on the surface...... suitable for cleaning of microfilters without damaging the filter structure. The filter surface was studied using an optical microscope before and after the experiment. When high-power ultrasound (max. 75 W/cm2) was applied to the surface of some microfilters, no visible damage was found, while others...... filters were damaged. The results of the laboratory experiments formed background for the final design of an ultrasound transducer module for use by foodstuff filtration plants. [This work was financed by the EU Project WAMBIO PL96-3257 (FAIR Programme).]...

  9. Ultrasound applications in electrodiagnosis.

    Science.gov (United States)

    Boon, Andrea J; Smith, Jay; Harper, C Michel

    2012-01-01

    This review article discusses the current scope of high-resolution diagnostic ultrasound in the diagnosis of neuromuscular disease, both as a complementary tool to electrodiagnosis and in some cases as a stand-alone imaging modality. Indications, limitations, potential for research, and training and credentialing are discussed. Indications include needle guidance for nerve conduction studies and needle electromyography, diagnosis of nerve entrapment, diagnostic muscle imaging via grayscale analysis, and dynamic real-time imaging, including sonopalpation, to provide additional diagnostic information. The role of neuromuscular ultrasound in research is discussed, including the need to evaluate the sensitivity, specificity, positive and negative predictive value, and cost-effectiveness of these techniques when they are used alone or in combination. Training and credentialing are reviewed, specifically noting the challenge of the lack of formal training programs and the relatively long, flat learning curve of diagnostic ultrasound.

  10. Synthetic Receive Beamforming and Image Acquisition Capabilities Using an 8 x 128 1.75D Array

    DEFF Research Database (Denmark)

    Fernandez, Anna T.; Gammelmark, Kim; Dahl, Jeremy J.;

    2003-01-01

    Ultrasound imaging can be improved with higher order arrays through elevation dynamic focusing in future, higher channel count systems. However, modifications to current system hardware could yield increased imaging depth-of-field with 1.75D arrays (arrays with individually addressable elements, ...

  11. Ultrasound Application in Audiology

    Directory of Open Access Journals (Sweden)

    Farzad Rahimi

    1992-04-01

    Full Text Available Diagnostic ultrasound is a beneficial technique which can be used the audiologists based on essential instruction. Although there are a lot of barriers in relation to the size of the probe and the resolution of the pictures which are obtained,with this method some kind of information can be gained that is impossible to get by any other method. The ability of real- time A and B modes for direct visualization makes them useful tools to study the changes of the ear structures. Ultrasound system is a useful method to evaluate dizzy patients, which can be potentially used along with vestibular tests.

  12. Modeling of higher harmonics formation in medical ultrasound systems

    DEFF Research Database (Denmark)

    Taylor, Louise Kold; Schlaikjer, Malene; Jensen, Jørgen Arendt

    2002-01-01

    The pressure eld emitted from multi-element medical ultrasound transducers can be simulated with Field II in the linear regime. By expanding this program's application to the nonlinear regime, beamforming schemes can be studied under strong focusing and high pressure levels as well, providing...... a valuable tool for simulating ultrasound harmonic imaging. An extended version of Field II is obtained by means of operator splitting. The pressure eld is calculated by propagation of the eld from the transducer through a number of planes. Every plane serves as a virtual aperture for the next plane......, and nonlinear distortion is accounted for by the lossless Burgers' Equation. This method has no plane-wave approximation and the full eects of diraction, attenuation, and nonlinear wave propagation can be observed under electronic focusing of array transducers in medical ultrasound systems. A single example...

  13. Focused Ultrasound and Lithotripsy.

    Science.gov (United States)

    Ikeda, Teiichiro; Yoshizawa, Shin; Koizumi, Norihiro; Mitsuishi, Mamoru; Matsumoto, Yoichiro

    2016-01-01

    Shock wave lithotripsy has generally been a first choice for kidney stone removal. The shock wave lithotripter uses an order of microsecond pulse durations and up to a 100 MPa pressure spike triggered at approximately 0.5-2 Hz to fragment kidney stones through mechanical mechanisms. One important mechanism is cavitation. We proposed an alternative type of lithotripsy method that maximizes cavitation activity to disintegrate kidney stones using high-intensity focused ultrasound (HIFU). Here we outline the method according to the previously published literature (Matsumoto et al., Dynamics of bubble cloud in focused ultrasound. Proceedings of the second international symposium on therapeutic ultrasound, pp 290-299, 2002; Ikeda et al., Ultrasound Med Biol 32:1383-1397, 2006; Yoshizawa et al., Med Biol Eng Comput 47:851-860, 2009; Koizumi et al., A control framework for the non-invasive ultrasound the ragnostic system. Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS), pp 4511-4516, 2009; Koizumi et al., IEEE Trans Robot 25:522-538, 2009). Cavitation activity is highly unpredictable; thus, a precise control system is needed. The proposed method comprises three steps of control in kidney stone treatment. The first step is control of localized high pressure fluctuation on the stone. The second step is monitoring of cavitation activity and giving feedback on the optimized ultrasound conditions. The third step is stone tracking and precise ultrasound focusing on the stone. For the high pressure control we designed a two-frequency wave (cavitation control (C-C) waveform); a high frequency ultrasound pulse (1-4 MHz) to create a cavitation cloud, and a low frequency trailing pulse (0.5 MHz) following the high frequency pulse to force the cloud into collapse. High speed photography showed cavitation collapse on a kidney stone and shock wave emission from the cloud. We also conducted in-vitro erosion tests of model and natural

  14. Cardiological Ultrasound Imaging

    NARCIS (Netherlands)

    Thijssen, J.M.; Korte, C.L. de

    2014-01-01

    This review paper is intended for the interested outsider of the field of echocardiography and it presents a short introduction into the numerous ultrasound (US) methods and techniques for anatomical and functional diagnosis of the heart. The basic techniques are generally used for some time already

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... is commonly called an “echocardiogram” or “echo” for short. Doppler ultrasound images can help the physician to ... not an ideal imaging technique for air-filled bowel or organs obscured by the bowel. In most ...

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... that allows the physician to see and evaluate blood flow through arteries and veins in the abdomen, arms, legs, neck and/or brain (in infants and children) or within various body organs such as the liver or kidneys. There are three types of Doppler ultrasound: Color Doppler uses a computer ...

  17. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... do not use ionizing radiation (as used in x-rays ), thus there is no radiation exposure to the ... tissues that do not show up well on x-ray images. Ultrasound is the preferred imaging modality for ...

  18. [Ultrasound guided percutaneous nephrolithotripsy].

    Science.gov (United States)

    Guliev, B G

    2014-01-01

    The study was aimed to the evaluation of the effectiveness and results of ultrasound guided percutaneous nephrolithotripsy (PNL) for the treatment of patients with large stones in renal pelvis. The results of PNL in 138 patients who underwent surgery for kidney stones from 2011 to 2013 were analyzed. Seventy patients (Group 1) underwent surgery with combined ultrasound and radiological guidance, and 68 patients (Group 2)--only with ultrasound guidance. The study included patients with large renal pelvic stones larger than 2.2 cm, requiring the formation of a single laparoscopic approach. Using the comparative analysis, the timing of surgery, the number of intra- and postoperative complications, blood loss and length of stay were evaluated. Percutaneous access was successfully performed in all patients. Postoperative complications (exacerbation of chronic pyelonephritis, gross hematuria) were observed in 14.3% of patients in Group 1 and in 14.7% of patients in Group 2. Bleeding requiring blood transfusion, and injuries of adjacent organs were not registered. Efficacy of PNL in the Group 1 was 95.7%; 3 (4.3%) patients required additional interventions. In Group 2, the effectiveness of PNL was 94.1%, 4 (5.9%) patients additionally underwent extracorporeal lithotripsy. There were no significant differences in the effectiveness of PNL, the volume of blood loss and duration of hospitalization. Ultrasound guided PNL can be performed in large pelvic stones and sufficient expansion of renal cavities, thus reducing radiation exposure of patients and medical staff.

  19. Ultrasound: Infant Hip

    Science.gov (United States)

    ... ultrasound when they suspect a problem called developmental dysplasia of the hip (DDH) . DDH is a hip deformity that can ... THIS TOPIC X-Ray Exam: Leg Length Developmental Dysplasia of the Hip X-Ray Exam: Hip Contact Us Print Resources ...

  20. [Ultrasound guided percutaneous nephrolithotripsy].

    Science.gov (United States)

    Guliev, B G

    2014-01-01

    The study was aimed to the evaluation of the effectiveness and results of ultrasound guided percutaneous nephrolithotripsy (PNL) for the treatment of patients with large stones in renal pelvis. The results of PNL in 138 patients who underwent surgery for kidney stones from 2011 to 2013 were analyzed. Seventy patients (Group 1) underwent surgery with combined ultrasound and radiological guidance, and 68 patients (Group 2)--only with ultrasound guidance. The study included patients with large renal pelvic stones larger than 2.2 cm, requiring the formation of a single laparoscopic approach. Using the comparative analysis, the timing of surgery, the number of intra- and postoperative complications, blood loss and length of stay were evaluated. Percutaneous access was successfully performed in all patients. Postoperative complications (exacerbation of chronic pyelonephritis, gross hematuria) were observed in 14.3% of patients in Group 1 and in 14.7% of patients in Group 2. Bleeding requiring blood transfusion, and injuries of adjacent organs were not registered. Efficacy of PNL in the Group 1 was 95.7%; 3 (4.3%) patients required additional interventions. In Group 2, the effectiveness of PNL was 94.1%, 4 (5.9%) patients additionally underwent extracorporeal lithotripsy. There were no significant differences in the effectiveness of PNL, the volume of blood loss and duration of hospitalization. Ultrasound guided PNL can be performed in large pelvic stones and sufficient expansion of renal cavities, thus reducing radiation exposure of patients and medical staff. PMID:25807772

  1. Ultrasound of renal transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, G.M

    2001-10-01

    The most effective primary treatment of chronic renal failure is renal transplantation. A significant improvement in lifestyle and family life in conjunction with it being an extremely cost-effective procedure has resulted in an intense monitoring and imaging programme to help ensure a successful outcome. Ultrasound, both grey-scale and colour-flow Doppler, are useful monitoring techniques when interpreted in the clinical context, and in the delineation of peri-transplant collections, some of which can be drained under ultrasound guidance. After the early post-operative period it can also be utilized in the diagnosis of chronic vascular complications including transplant artery stenosis and arteriovenous fistula, although it is of limited use in the diagnosis of chronic rejection. This article will discuss the role of ultrasound in all its guises and how its efficacy in both the early transplant period in the monitoring of graft dysfunction and in the detection of the more chronic conditions including transplant artery stenosis and arteriovenous fistulae. A more limited role for ultrasound also exists in the long-term follow-up of patients and to aid the detection of complications including susceptibility to malignancy. Baxter, G.M. (2001)

  2. Deconvolution of ultrasound images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1992-01-01

    Based on physical models, it is indicated that the received pressure field in ultrasound B-mode images can be described by a convolution between a tissue reflection signal and the emitted pressure field. This result is used in a description of current image formation and in formulating a new...

  3. Recursive ultrasound imaging

    DEFF Research Database (Denmark)

    2000-01-01

    A method and an apparatus for recursive ultrasound imaging is presented. The method uses a Synthetic Transmit Aperture, but unlike previous approaches a new frame is created at every pulse emission. In receive, parallel beam forming is implemented. The beam formed RF data is added to the previously...

  4. Designing Non-linear Frequency Modulated Signals For Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    In this paper a new method for designing non-linear frequency modulated (NLFM) waveforms for ultrasound imaging is proposed. The objective is to control the amplitude spectrum of the designed waveform and still keep a constant transmit amplitude, so that the transmitted energy is maximized...... is tested experimentally using the RASMUS ultrasound system with a 7 MHz linear array transducer. Synthetic transmit aperture ultrasound imaging is applied to acquire data. The proposed design method was compared to a linear FM signal. Due to more efficient spectral usage, a gain in SNR of 4.3plusmn1.2 d...

  5. Ultrasound Imaging Using Diffraction Tomography in a Cylindrical Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H; Littrup, P

    2002-01-24

    Tomographic images of tissue phantoms and a sample of breast tissue have been produced from an acoustic synthetic array system for frequencies near 500 kHz. The images for sound speed and attenuation show millimeter resolution and demonstrate the feasibility of obtaining high-resolution tomographic images with frequencies that can deeply penetrate tissue. The image reconstruction method is based on the Born approximation to acoustic scattering and is a simplified version of a method previously used by Andre (Andre, et. al., Int. J. Imaging Systems and Technology, Vol 8, No. 1, 1997) for a circular acoustic array system. The images have comparable resolution to conventional ultrasound images at much higher frequencies (3-5 MHz) but with lower speckle noise. This shows the potential of low frequency, deeply penetrating, ultrasound for high-resolution quantitative imaging.

  6. Flat HIFU transducer with a sawtooth-shaped ultrasound radiation face

    Science.gov (United States)

    Son, Keon-Ho; Cho, Young-Ki; Kim, Dae-Seung; Kim, Myung-Deok; Kang, Kook-Jin

    2013-10-01

    High-intensity focused ultrasound (HIFU) transducers are spherically-curved in order to obtain a high intensity gain of the converged ultrasound energy at the geometrical focus. Ultrasound imaging devices monitor the procedure of HIFU treatment in ultrasound-guided HIFU systems where the image probe is positioned at the apex of the HIFU transducer, which has a spherical surface. However, the remote image probe's location yields a poor image quality compared to that obtained using conventional ultrasound imaging where the image probe is in direct contact with the surface. A phased array HIFU transducer with a new structure is suggested to overcome this limitation. The centers of the array elements are distributed over the flat surface of the transducer. However, the elements are tilted to form a geometrical focus, like a transducer with a spherically-curved surface, to obtain a high focal gain. The cross-section of the ultrasound radiation face of the transducer resembles the teeth of a saw. The acoustic field emitted from this transducer was simulated in order to design and produce the transducer. The simulation was compared with the measured sound field to verify that the transducer was correctly manufactured and designed; subsequently, the acoustic power was measured, and ultrasound images were obtained through the installation of an image probe on the transducer, which confirmed the application of this transducer to HIFU treatment.

  7. Integrated transrectal probe for translational ultrasound-photoacoustic imaging

    Science.gov (United States)

    Bell, Kevan L.; Harrison, Tyler; Usmani, Nawaid; Zemp, Roger J.

    2016-03-01

    A compact photoacoustic transrectal probe is constructed for improved imaging in brachytherapy treatment. A 192 element 5 MHz linear transducer array is mounted inside a small 3D printed casing along with an array of optical fibers. The device is fed by a pump laser and tunable NIR-optical parametric oscillator with data collected by a Verasonics ultrasound platform. This assembly demonstrates improved imaging of brachytherapy seeds in phantoms with depths up to 5 cm. The tuneable excitation in combination with standard US integration provides adjustable contrast between the brachytherapy seeds, blood filled tubes and background tissue.

  8. Robotic inspection of fiber reinforced composites using phased array UT

    Science.gov (United States)

    Stetson, Jeffrey T.; De Odorico, Walter

    2014-02-01

    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  9. Screen printed thick film based pMUT arrays

    DEFF Research Database (Denmark)

    Hedegaard, Tobias; Pedersen, T; Thomsen, Erik Vilain;

    2008-01-01

    This article reports on the fabrication and characterization of lambda-pitched piezoelectric micromachined ultrasound transducer (pMUT) arrays fabricated using a unique process combining conventional silicon technology and low cost screen printing of thick film PZT. The pMUTs are designed as 8...

  10. Creating a collimated ultrasound beam in highly attenuating fluids.

    Science.gov (United States)

    Raeymaekers, Bart; Pantea, Cristian; Sinha, Dipen N

    2012-04-01

    We have devised a method, based on a parametric array concept, to create a low-frequency (300-500 kHz) collimated ultrasound beam in fluids highly attenuating to sound. This collimated beam serves as the basis for designing an ultrasound visualization system that can be used in the oil exploration industry for down-hole imaging in drilling fluids. We present the results of two different approaches to generating a collimated beam in three types of highly attenuating drilling mud. In the first approach, the drilling mud itself was used as a nonlinear mixing medium to create a parametric array. However, the short absorption length in mud limits the mixing length and, consequently, the resulting beam is weak and broad. In the second improved approach, the beam generation process was confined to a separate "frequency mixing tube" that contained an acoustically non-linear, low attenuation medium (e.g., water) that allowed establishing a usable parametric array in the mixing tube. A low-frequency collimated beam was thus created prior to its propagation into the drilling fluid. Using the latter technique, the penetration depth of the low frequency ultrasound beam in the drilling fluid was significantly extended. We also present measurements of acoustic nonlinearity in various types of drilling mud. PMID:22204917

  11. Ultrasound-Assisted Freezing

    Science.gov (United States)

    Delgado, A. E.; Sun, Da-Wen

    Freezing is a well-known preservation method widely used in the food industry. The advantages of freezing are to a certain degree counterbalanced by the risk of damage caused by the formation and size of ice crystals. Over recent years new approaches have been developed to improve and control the crystallization process, and among these approaches sonocrystallization has proved to be very useful, since it can enhance both the nucleation rate and the crystal growth rate. Although ultrasound has been successfully used for many years in the evaluation of various aspects of foods and in medical applications, the use of power ultrasound to directly improve processes and products is less popular in food manufacturing. Foodstuffs are very complex materials, and research is needed in order to define the specific sound parameters that aid the freezing process and that can later be used for the scale-up and production of commercial frozen food products.

  12. All-optical pulse-echo ultrasound probe for intravascular imaging (Conference Presentation)

    Science.gov (United States)

    Colchester, Richard J.; Noimark, Sacha; Mosse, Charles A.; Zhang, Edward Z.; Beard, Paul C.; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2016-02-01

    High frequency ultrasound probes such as intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE) catheters can be invaluable for guiding minimally invasive medical procedures in cardiology such as coronary stent placement and ablation. With current-generation ultrasound probes, ultrasound is generated and received electrically. The complexities involved with fabricating these electrical probes can result in high costs that limit their clinical applicability. Additionally, it can be challenging to achieve wide transmission bandwidths and adequate wideband reception sensitivity with small piezoelectric elements. Optical methods for transmitting and receiving ultrasound are emerging as alternatives to their electrical counterparts. They offer several distinguishing advantages, including the potential to generate and detect the broadband ultrasound fields (tens of MHz) required for high resolution imaging. In this study, we developed a miniature, side-looking, pulse-echo ultrasound probe for intravascular imaging, with fibre-optic transmission and reception. The axial resolution was better than 70 microns, and the imaging depth in tissue was greater than 1 cm. Ultrasound transmission was performed by photoacoustic excitation of a carbon nanotube/polydimethylsiloxane composite material; ultrasound reception, with a fibre-optic Fabry-Perot cavity. Ex vivo tissue studies, which included healthy swine tissue and diseased human tissue, demonstrated the strong potential of this technique. To our knowledge, this is the first study to achieve an all-optical pulse-echo ultrasound probe for intravascular imaging. The potential for performing all-optical B-mode imaging (2D and 3D) with virtual arrays of transmit/receive elements, and hybrid imaging with pulse-echo ultrasound and photoacoustic sensing are discussed.

  13. Musculoskeletal infections: ultrasound appearances

    Energy Technology Data Exchange (ETDEWEB)

    Chau, C.L.F. [Department of Radiology, North District Hospital, NTEC, Fanling, NT, Hong Kong (China)]. E-mail: c8681@yahoo.com; Griffith, J.F. [Department of Diagnostic Radiology and Organ Imaging, Prince of Wales Hospital, NTEC, Shatin, NT, Hong Kong (China)

    2005-02-01

    Musculoskeletal infections are commonly encountered in clinical practice. This review will discuss the ultrasound appearances of a variety of musculoskeletal infections such as cellulitis, infective tenosynovitis, pyomyositis, soft-tissue abscesses, septic arthritis, acute and chronic osteomyelitis, and post-operative infection. The peculiar sonographic features of less common musculoskeletal infections, such as necrotizing fasciitis, and rice body formation in atypical mycobacterial tenosynovitis, and bursitis will also be presented.

  14. Prostate Focused Ultrasound Therapy.

    Science.gov (United States)

    Chapelon, Jean-Yves; Rouvière, Olivier; Crouzet, Sébastien; Gelet, Albert

    2016-01-01

    The tremendous progress in engineering and computing power coupled with ultrasound transducer technology and imaging modalities over the past 20 years have encouraged a revival of clinical interest in ultrasound therapy, mainly in High-Intensity Focused Ultrasound (HIFU). So far, the most extensive results from HIFU obtained in urology involve transrectal prostate ablation, which appears to be an effective therapeutic alternative for patients with malignant prostate tumors. Prostate cancer (PCa) is one of the most frequently diagnosed cancers in men. Several treatment options with different therapeutic approaches exist, including HIFU for localized PCa that has been in use for over 15 years. Since the early 2000s, two systems have been marketed for this application, and other devices are currently in clinical trials. HIFU treatment can be used either alone or in combination with (before- or after-) external beam radiotherapy (EBRT) (before or after HIFU) and can be repeated multiple times. HIFU treatment is performed under real-time monitoring with ultrasound or guided by MRI. Two indications are validated today: Primary care treatment and EBRT failure. The results of HIFU for primary care treatment are similar to standard conformal EBRT, even though no randomized comparative studies have been performed and no 10-year follow up data is yet available for HIFU. Salvage HIFU after EBRT failure is increasing with oncological outcomes, similar to those achieved with surgery but with the advantage of fewer adverse effects. HIFU is an evolving technology perfectly adapted for focal treatment. Thus, HIFU focal therapy is another pathway that must be explored when considering the accuracy and reliability for PCa mapping techniques. HIFU would be particularly suited for such a therapy since it is clear that HIFU outcomes and toxicity are relative to the volume of prostate treated. PMID:26486330

  15. Ultrasound mediated gene transfection

    Science.gov (United States)

    Williamson, Rene G.; Apfel, Robert E.; Brandsma, Janet L.

    2002-05-01

    Gene therapy is a promising modality for the treatment of a variety of human diseases both inherited and acquired, such as cystic fibrosis and cancer. The lack of an effective, safe method for the delivery of foreign genes into the cells, a process known as transfection, limits this effort. Ultrasound mediated gene transfection is an attractive method for gene delivery since it is a noninvasive technique, does not introduce any viral particles into the host and can offer very good temporal and spatial control. Previous investigators have shown that sonication increases transfection efficiency with and without ultrasound contrast agents. The mechanism is believed to be via a cavitation process where collapsing bubble nuclei permeabilize the cell membrane leading to increased DNA transfer. The research is focused on the use of pulsed wave high frequency focused ultrasound to transfect DNA into mammalian cells in vitro and in vivo. A better understanding of the mechanism behind the transfection process is also sought. A summary of some in vitro results to date will be presented, which includes the design of a sonication chamber that allows us to model the in vivo case more accurately.

  16. Ultrasound diagnostics of thyroid diseases

    Energy Technology Data Exchange (ETDEWEB)

    Kharchenko, Vladimir P. [Russian Radiology Research Center, Moscow (Russian Federation); Kotlyarov, Peter M. [Russian Center of Roentgenradiology, Moscow (Russian Federation); Mogutov, Mikhail S.; Sencha, Alexander N.; Patrunov, Yury N.; Belyaev, Denis V. [Yaroslavl Railway Clinic (Russian Federation); Alexandrov, Yury K. [State Medical Academy, Yaroslavl (Russian Federation)

    2010-07-01

    This book is based on the authors' extensive practical experience in the use of modern ultrasound, and other radiological methods, in the diagnosis of thyroid diseases. The authors have analyzed more than 100,000 ultrasound examinations performed between 1995 and 2008 in patients with thyroid and parathyroid disease, as well as many thousands of diagnostic and therapeutic ultrasound-guided minimally invasive procedures. The opening chapters include discussion of current ultrasound techniques, pitfalls, and the specifics of ultrasound examination of the thyroid in children. Detailed attention is then devoted to findings in the normal thyroid and in the presence of diffuse and focal changes. Further chapters focus on such topics as ultrasound examination after thyroid surgery and ultrasound diagnosis of parathyroid disease, recurrent goiter, and neck masses. Ultrasound-guided minimally invasive techniques, such as fine-needle aspiration biopsy, percutaneous laser ablation, and ethanol and glucocorticoid injections, are considered in depth. This up-to-date and richly illustrated book will interest and assist specialists in ultrasound diagnostics, radiologists, endocrinologists, and neck surgeons. (orig.)

  17. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Color Doppler uses a computer to convert Doppler measurements into an array of colors to show the ... in some situations. Spectral Doppler displays blood flow measurements graphically, in terms of the distance traveled per ...

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... into an array of colors to show the speed and direction of blood flow through a blood ... sometimes seen in infections With knowledge about the speed and volume of blood flow gained from a ...

  19. PE-CMOS-based C-mode ultrasound: signal acquisition and time gating

    Science.gov (United States)

    Lo, Shih-Chung B.; Liu, Chu-Chuan; Freedman, Matthew T.; Mun, Seong-Ki; Kula, John; Lasser, Marvin E.; Lasser, Bob; Wang, Yue Joseph

    2009-02-01

    Two types of signal acquisition methods using CMOS sensor array coated with piezoelectric material (PE-CMOS) were studied. The laboratory projection-reflection ultrasound prototypes featuring a PE-CMOS ultrasound sensing array and an acoustic compound lens were employed to image pork bones with fractures in vitro. We found that the projection-reflection ultrasound prototypes are capable of revealing hairline bone fractures with skin in tact. However, the image characteristics generated from these C-scan prototypes are somewhat different because they were equipped with two different senor array models. The signal acquired by the first sensor model is based on an integrated signal (IS) at a given time interval. But the signal acquired by the second sensor model is based on peak signal (PS) with a time gating function controllable by the user. We found that both systems can detect bone fracture as small as 0.5mm shown as a strip of ultrasound signal. However, images obtained from the IS sensor show more speckles with a greater blooming effect on the fractures. On the other hand, images obtained from the PS sensor show less contrast with less speckles. When the beam position is slightly tilted from the normal direction, the blooming effect of the ultrasound image would become dark on the fracture region with both acquisition modes.

  20. Sub-Nyquist Sampling and Fourier Domain Beamforming in Volumetric Ultrasound Imaging.

    Science.gov (United States)

    Burshtein, Amir; Birk, Michael; Chernyakova, Tanya; Eilam, Alon; Kempinski, Arcady; Eldar, Yonina C

    2016-05-01

    A key step in ultrasound image formation is digital beamforming of signals sampled by several transducer elements placed upon an array. High-resolution digital beamforming introduces the demand for sampling rates significantly higher than the signals' Nyquist rate, which greatly increases the volume of data that must be transmitted from the system's front end. In 3-D ultrasound imaging, 2-D transducer arrays rather than 1-D arrays are used, and more scan lines are needed. This implies that the amount of sampled data is vastly increased with respect to 2-D imaging. In this work, we show that a considerable reduction in data rate can be achieved by applying the ideas of Xampling and frequency domain beamforming (FDBF), leading to a sub-Nyquist sampling rate, which uses only a portion of the bandwidth of the ultrasound signals to reconstruct the image. We extend previous work on FDBF for 2-D ultrasound imaging to accommodate the geometry imposed by volumetric scanning and a 2-D grid of transducer elements. High image quality from low-rate samples is demonstrated by simulation of a phantom image composed of several small reflectors. Our technique is then applied to raw data of a heart ventricle phantom obtained by a commercial 3-D ultrasound system. We show that by performing 3-D beamforming in the frequency domain, sub-Nyquist sampling and low processing rate are achievable, while maintaining adequate image quality.

  1. Small part ultrasound in childhood and adolescence

    Energy Technology Data Exchange (ETDEWEB)

    Wunsch, R., E-mail: R.Wunsch@kinderklinik-datteln.de [Department of Pediatric Radiology, Vestic Children' s Hospital Datteln, University of Witten/Herdecke, Dr.-Friedrich-Steiner-Strasse 5, D-45711 Datteln (Germany); Rohden, L. von, E-mail: l.vonrohden@gmx.de [Department of Pediatric Radiology, Otto-von-Guericke-University Magdeburg, Klinik f. Radiologie und Nuklearmedizin – Kinderradiologie, Leipziger Straße 44, D-39120 Magdeburg (Germany); Cleaveland, R. [Department of Pediatric Radiology, Vestic Children' s Hospital Datteln, University of Witten/Herdecke, Dr.-Friedrich-Steiner-Strasse 5, D-45711 Datteln (Germany); Aumann, V., E-mail: volker.aumann@med.ovgu.de [Department of Pediatric Haematology and Oncology, Otto-von-Guericke-University Magdeburg, Universitätskinderklinik (H 10), Pädiatrische Hämatologie und Onkologie, Leipziger Straße 44, D-39120 Magdeburg (Germany)

    2014-09-15

    Small-part sonography refers to the display of small, near-surface structures using high-frequency linear array transducers. Traditional applications for small part ultrasound imaging include visualization and differential diagnostic evaluation in unclear superficial bodily structures with solid, liquid and mixed texture, as well as similar structures in nearly superficial organs such as the thyroid glands and the testes. Furthermore indications in the head and neck regions are the assessment of the outer CSF spaces in infants, the sonography of the orbit, the sonography of the walls of the large neck vessels, the visualization of superficially situated lymph nodes and neoplasms. Clinical evidence concludes that sonography, having of all imaging modalities the highest spatial resolution in the millimeter- and micrometer range (100–1000 μm), can be considered the best suited technique for examining superficial pathological formations and near-surface organs. In addition, it delivers important information about characteristic, often pathognomonic tissue architecture in pathological processes.

  2. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    Energy Technology Data Exchange (ETDEWEB)

    Demi, Libertario, E-mail: l.demi@tue.nl; Sloun, Ruud J. G. van; Mischi, Massimo [Lab. of Biomedical Diagnostics, Dept. of Electrical Eng., Eindhoven University of Technology (Netherlands); Wijkstra, Hessel [Lab. of Biomedical Diagnostics, Dept. of Electrical Eng., Eindhoven University of Technology (Netherlands); Academic Medical Center, Urology Dept., University of Amsterdam (Netherlands)

    2015-10-28

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  3. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    International Nuclear Information System (INIS)

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO® UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work

  4. A Concept of Dark Age Interferometric Array (DAIA)

    Science.gov (United States)

    Yan, Jingye

    After the epoch of recombination the Universe remained in neutral state until the large scale formation of galaxies released a sufficient number of ionizing photons to lightning the universe. In this period, the only emission is from the 21cm wavelength neutral hydrogen that may be observed today at 0.5-30MHz after the red shift. However, due to the ionosphere block and human/industrial RFI in this band, to observe the space from ground and also in the LOE is not possible. The concept of Dark Age Interferometric Array (DAIA) is aimed to place a linear array of nano-satellite with low noise receivers at the 10-1000m wavelength band in a lunar orbit. The distances between the nano-satellites are designed to form 1D uniformly distributed base lines in the uv-plane. A full coverage is then obtained after half rotation of the array in the orbit. The measurements are taken in the far side of the moon in order to have the lowest RFI from the earth. The thinned synthetic aperture linear array composed of ~15 elements (one small mother satellite and 14 nano daughter satellites) with the longest baseline over 100km. There are 3 dipoles antennas on each satellite in perpendicular to each other. Each of the antenna connected with a low-noise and periodically calibrated digital receiver. The received signals from each element are all sent to the mother satellite and processed onboard to generate the visibility functions for image processing. The mission composed of a mother satellite and 14 daughter satellites. The mass of the mother is ~110kg, and the mass of each daughter is carrier plus an upper stage or Vega. The mother satellite and 14 daughter satellites are bound onto a single structure during launch. When they arrive at the lunar orbit, the mother will release the daughters one by one according to the designs of the element spacing of the array with a controlled period of time. During the operation, daughters receive synchronization clock and control signals from the

  5. A Concept of Dark Age Interferometric Array (DAIA)

    Science.gov (United States)

    Yan, Jingye

    After the epoch of recombination the Universe remained in neutral state until the large scale formation of galaxies released a sufficient number of ionizing photons to lightning the universe. In this period, the only emission is from the 21cm wavelength neutral hydrogen that may be observed today at 0.5-30MHz after the red shift. However, due to the ionosphere block and human/industrial RFI in this band, to observe the space from ground and also in the LOE is not possible. The concept of Dark Age Interferometric Array (DAIA) is aimed to place a linear array of nano-satellite with low noise receivers at the 10-1000m wavelength band in a lunar orbit. The distances between the nano-satellites are designed to form 1D uniformly distributed base lines in the uv-plane. A full coverage is then obtained after half rotation of the array in the orbit. The measurements are taken in the far side of the moon in order to have the lowest RFI from the earth. The thinned synthetic aperture linear array composed of ~15 elements (one small mother satellite and 14 nano daughter satellites) with the longest baseline over 100km. There are 3 dipoles antennas on each satellite in perpendicular to each other. Each of the antenna connected with a low-noise and periodically calibrated digital receiver. The received signals from each element are all sent to the mother satellite and processed onboard to generate the visibility functions for image processing. The mission composed of a mother satellite and 14 daughter satellites. The mass of the mother is ~110kg, and the mass of each daughter is <10kg. The complete set may be launched by CZ-2D carrier plus an upper stage or Vega. The mother satellite and 14 daughter satellites are bound onto a single structure during launch. When they arrive at the lunar orbit, the mother will release the daughters one by one according to the designs of the element spacing of the array with a controlled period of time. During the operation, daughters receive

  6. Muscles alive: ultrasound detects fibrillations.

    NARCIS (Netherlands)

    Pillen, S.; Nienhuis, M.; Dijk, J.P. van; Arts, I.M.P.; Alfen, N. van; Zwarts, M.J.

    2009-01-01

    OBJECTIVE: Muscle ultrasound is capable of visualizing muscle movements. Recent improvements in ultrasound technology have raised the question whether it is also possible to detect small-scale spontaneous muscle activity such as denervation. In this study we investigated the ability of dynamic muscl

  7. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... page How is the procedure performed? For most ultrasound exams, you will be positioned lying face-up on an examination table that can be ... either side or on occasion placed in a face down position to improve the quality ... (ultrasound technologist) or radiologist then places the transducer on ...

  8. Children's (Pediatric) Abdominal Ultrasound Imaging

    Science.gov (United States)

    ... page How is the procedure performed? For most ultrasound exams, you will be positioned lying face-up on an examination table that can be ... either side or on occasion placed in a face down position to improve the quality ... (ultrasound technologist) or radiologist then places the transducer on ...

  9. Temperature estimation with ultrasound

    Science.gov (United States)

    Daniels, Matthew

    Hepatocelluar carcinoma is the fastest growing type of cancer in the United States. In addition, the survival rate after one year is approximately zero without treatment. In many instances, patients with hepatocelluar carcinoma may not be suitable candidates for the primary treatment options, i.e. surgical resection or liver transplantation. This has led to the development of minimally invasive therapies focused on destroying hepatocelluar by thermal or chemical methods. The focus of this dissertation is on the development of ultrasound-based image-guided monitoring options for minimally invasive therapies such as radiofrequency ablation. Ultrasound-based temperature imaging relies on relating the gradient of locally estimated tissue displacements to a temperature change. First, a realistic Finite Element Analysis/ultrasound simulation of ablation was developed. This allowed evaluation of the ability of ultrasound-based temperature estimation algorithms to track temperatures for three different ablation scenarios in the liver. It was found that 2-Dimensional block matching and a 6 second time step was able to accurately track the temperature over a 12 minute ablation procedure. Next, a tissue-mimicking phantom was constructed to determine the accuracy of the temperature estimation method by comparing estimated temperatures to that measured using invasive fiber-optic temperature probes. The 2-Dimensional block matching was able to track the temperature accurately over the entire 8 minute heating procedure in the tissue-mimicking phantom. Finally, two separate in-vivo experiments were performed. The first experiment examined the ability of our algorithm to track frame-to-frame displacements when external motion due to respiration and the cardiac cycle were considered. It was determined that a frame rate between 13 frames per second and 33 frames per second was sufficient to track frame-to-frame displacements between respiratory cycles. The second experiment examined

  10. Environmental applications of ultrasound

    Science.gov (United States)

    Oxley, James Dean

    The application of ultrasound to environmental problems relies on the process of acoustic cavitation: the formation, growth, and implosive collapse of bubbles in a liquid. The collapse of such bubbles creates hot spots with temperatures as high as 5000 K, pressures up to 800 atm, and cooling rates in excess of 1010K/s. This thesis describes the use of ultrasound for the dissolution of gas into water, an investigation the sonochemistry of ionic liquids, and the sonochemical preparation of nanostructured materials for the catalytic hydrodehalogenation of organic halides. A variety of ultrasonic methods and configurations were designed and tested for the dispersion and dissolution of O2 in water. Ultrasonic methods examined include 20 kHz Ti horns, 336 to 1.41 MHz transducers, specially designed ultrasonic gas dispersion cell including the hollow horn extensions, Ti frits, and a modified 20 kHz cup horn. Most methods increased the dispersion rate when compared to non-ultrasonic control runs. Room-temperature ionic liquids were examined for their potential application as green solvents for sonochemical reactions. The effects of ultrasound on room-temperature ionic liquids were investigated using butylmethyl imidazolium chloride (BuMeImCl), butylmethyl imidazolium tetrafluoroborate (BuMeImBF 4), and decylmethyl imidazolium tetraphenylborate. Gas-chromatography mass-spectrometry head-gas analysis and multibubble sonoluminescence were used to show that room-temperature ionic liquids decomposed in the presence of ultrasound. As previously reported, molybdenum carbonyl and tungsten carbonyl were decomposed sonochemically in hexadecane to form porous aggregates of 2--3 nm high surface area Mo2C and W2C particles. The activity of these materials was studied for the catalytic hydrodehalogenation of aliphatic and aromatic halocarbons at low temperatures (T = 200--300°C). Both catalysts were selective, active, and stable for all substrates tested. The HDH of substrates bearing

  11. Diagnostic Ultrasound in Colorectal Cancer

    DEFF Research Database (Denmark)

    Rafaelsen, Søren Rafael

    2014-01-01

    in the liver metastases. In addition, we prospectively compared contrast-enhanced ultrasound with CT scan in the detection of liver metastases.Results By transrectal ultrasound of polyps using the new AWS technique, a sensitivity of 96% and a specificity of 88% was found for cancer, whereas digital exploration...... to neoadjuvant chemoradiation of advanced rectal cancer.IOUS is a safe method with a significantly higher sensitivity in the detection of liver metastases than preoperative ultrasound and surgical palpation. Patients with liver metastases, which harboured power Doppler signal centrally, more often had advanced...... of rectal cancer, especially in early tumours. Screening for colorectal cancer will give rise to the detection of a number of early tumours. Contrast-enhanced liver ultrasound and intraoperative ultrasound has additional space in the detection of liver metastases from colorectal cancer....

  12. Crystallization of glycine with ultrasound

    DEFF Research Database (Denmark)

    Louhi-Kultanen, Marjatta; Karjalainen, Milja; Rantanen, Jukka;

    2006-01-01

    Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound with an ultr......Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound...... with an ultrasound frequency of 20kHz at two temperature ranges 40-50 and 20-30 degrees C in a jacketed 250-ml cooling crystallizer equipped with a stirrer. The polymorph composition of the obtained crystals was analyzed with a temperature variable X-ray powder diffractometer (XRPD). XRPD results showed that...... ultrasound power. This study also showed, the higher the ultrasound amplitude the smaller the crystals obtained....

  13. Role of endoscopic ultrasound in diagnosis and therapy of pancreatic adenocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Joseph Boujaoude

    2007-01-01

    Since its advent more than 20 years ago, endoscopic ultrasound (EUS) has undergone evolution from an experimental to a diagnostic instrument and is now established as a therapeutic tool for endoscopists.Endoscopic ultrasound cannot accurately distinguish benign from malignant changes in the primary lesion or lymph node on imaging alone. With the introduction of the curved linear array echoendoscope in the 1990s,the indications for EUS have expanded. The curved linear array echoendoscope enables the visualization of a needle as it exits from the biopsy channel in the same plane of ultrasound imaging in real time. This allows the endoscopist to perform a whole range of interventional applications ranging from fine needle aspiration (FNA) of lesions surrounding the gastrointestinal tract to celiac plexus block and drainage of pancreatic pseudocyst. This article reviews the current role of EUS and EUS-FNA in diagnosis, staging and interventional application of solid pancreatic cancer.

  14. New technique for fabrication of high frequency piezoelectric Micromachined Ultrasound Transducers

    DEFF Research Database (Denmark)

    Pedersen, T; Thomsen, Erik Vilain; Zawada, T;

    2008-01-01

    A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate...

  15. The Edinburgh Pipe Phantom: characterising ultrasound scanners beyond 50 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Moran, C M [Medical Physics, University of Edinburgh, Edinburgh, EH16 4TJ (United Kingdom); Ellis, W; Janeczko, A; Pye, S D [Medical Physics Department, NHS Lothian University Hospitals Division, Royal Infirmary, Edinburgh EH16 4SA (United Kingdom); Bell, D, E-mail: carmel.moran@ed.ac.uk [Precision Acoustics Ltd, Hampton Farm Business Park, Dorset, DT2 8QH (United Kingdom)

    2011-02-01

    The ability to measure the imaging performance of pre-clinical and clinical ultrasound scanners is important but difficult to achieve objectively. The Edinburgh Pipe Phantom was originally developed to assess the technical performance of clinical scanners up to 15MHz. It comprises a series of anechoic cylinders with diameters 0.4 - 8mm embedded in agar-based tissue mimic. This design enables measurement of the characteristics (Resolution Integral R, Depth of Field L{sub R}, Characteristic Resolution D{sub R}) of grey-scale images with transducer centre frequencies from about 2.5 to 15MHz. We describe further development of the Edinburgh Pipe Phantom as a tool for characterising ultrasound scanners with centre frequencies up to at least 50MHz. This was achieved by moulding a series of anechoic pipe structures (diameters 0.045 - 1.5mm) into a block of agar-based tissue mimic. We report measurements of R, L{sub R} and D{sub R} for a series of 10 transducers (5 single element and 5 array transducers) designed for pre-clinical scanning, with centre frequencies in the range 15-55 MHz. Values of R ranged from 18-72 for single element transducers and 49-58 for linear array transducers. In conclusion, the pre-clinical pipe phantom was able to successfully determine the imaging characteristics of ultrasound probes up to 55MHz.

  16. Molecular Endoscopic Ultrasound for Diagnosis of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bournet, Barbara [Department of Gastroenterology, University Hospital Center Rangueil, 1 avenue Jean Poulhès, TSA 50032, 31059 Toulouse Cedex 9 (France); INSERM U1037, University Hospital Center Rangueil, Toulouse (France); Pointreau, Adeline; Delpu, Yannick; Selves, Janick; Torrisani, Jerome [INSERM U1037, University Hospital Center Rangueil, Toulouse (France); Buscail, Louis, E-mail: buscail.l@chu-toulouse.fr [Department of Gastroenterology, University Hospital Center Rangueil, 1 avenue Jean Poulhès, TSA 50032, 31059 Toulouse Cedex 9 (France); INSERM U1037, University Hospital Center Rangueil, Toulouse (France); Cordelier, Pierre [INSERM U1037, University Hospital Center Rangueil, Toulouse (France)

    2011-02-24

    Endoscopic ultrasound-guided fine needle aspiration-biopsy is a safe and effective technique in diagnosing and staging of pancreatic ductal adenocarcinoma. However its predictive negative value does not exceed 50% to 60%. Unfortunately, the majority of pancreatic cancer patients have a metastatic and/or a locally advanced disease (i.e., not eligible for curative resection) which explains the limited access to pancreatic tissue specimens. Endoscopic ultrasound-guided fine needle aspiration-biopsy is the most widely used approach for cytological and histological material sampling in these situations used in up to two thirds of patients with pancreatic cancer. Based on this unique material, we and others developed strategies to improve the differential diagnosis between carcinoma and inflammatory pancreatic lesions by analysis of KRAS oncogene mutation, microRNA expression and methylation, as well as mRNA expression using both qRT-PCR and Low Density Array Taqman analysis. Indeed, differentiating pancreatic cancer from pseudotumoral chronic pancreatitis remains very difficult in current clinical practice, and endoscopic ultrasound-guided fine needle aspiration-biopsy analysis proved to be very helpful. In this review, we will compile the clinical and molecular advantages of using endoscopic ultrasound-guided fine needle aspiration-biopsy in managing pancreatic cancer.

  17. Molecular Endoscopic Ultrasound for Diagnosis of Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Pierre Cordelier

    2011-02-01

    Full Text Available Endoscopic ultrasound-guided fine needle aspiration-biopsy is a safe and effective technique in diagnosing and staging of pancreatic ductal adenocarcinoma. However its predictive negative value does not exceed 50% to 60%. Unfortunately, the majority of pancreatic cancer patients have a metastatic and/or a locally advanced disease (i.e., not eligible for curative resection which explains the limited access to pancreatic tissue specimens. Endoscopic ultrasound-guided fine needle aspiration-biopsy is the most widely used approach for cytological and histological material sampling in these situations used in up to two thirds of patients with pancreatic cancer. Based on this unique material, we and others developed strategies to improve the differential diagnosis between carcinoma and inflammatory pancreatic lesions by analysis of KRAS oncogene mutation, microRNA expression and methylation, as well as mRNA expression using both qRT-PCR and Low Density Array Taqman analysis. Indeed, differentiating pancreatic cancer from pseudotumoral chronic pancreatitis remains very difficult in current clinical practice, and endoscopic ultrasound-guided fine needle aspiration-biopsy analysis proved to be very helpful. In this review, we will compile the clinical and molecular advantages of using endoscopic ultrasound-guided fine needle aspiration-biopsy in managing pancreatic cancer.

  18. Molecular Endoscopic Ultrasound for Diagnosis of Pancreatic Cancer

    International Nuclear Information System (INIS)

    Endoscopic ultrasound-guided fine needle aspiration-biopsy is a safe and effective technique in diagnosing and staging of pancreatic ductal adenocarcinoma. However its predictive negative value does not exceed 50% to 60%. Unfortunately, the majority of pancreatic cancer patients have a metastatic and/or a locally advanced disease (i.e., not eligible for curative resection) which explains the limited access to pancreatic tissue specimens. Endoscopic ultrasound-guided fine needle aspiration-biopsy is the most widely used approach for cytological and histological material sampling in these situations used in up to two thirds of patients with pancreatic cancer. Based on this unique material, we and others developed strategies to improve the differential diagnosis between carcinoma and inflammatory pancreatic lesions by analysis of KRAS oncogene mutation, microRNA expression and methylation, as well as mRNA expression using both qRT-PCR and Low Density Array Taqman analysis. Indeed, differentiating pancreatic cancer from pseudotumoral chronic pancreatitis remains very difficult in current clinical practice, and endoscopic ultrasound-guided fine needle aspiration-biopsy analysis proved to be very helpful. In this review, we will compile the clinical and molecular advantages of using endoscopic ultrasound-guided fine needle aspiration-biopsy in managing pancreatic cancer

  19. Aesthetic ultrasound therapy

    Science.gov (United States)

    Barthe, Peter G.; Slayton, Michael H.

    2012-10-01

    Ultrasound provides key benefits in aesthetic surgery compared to laser and RF based energy sources. We present results of research, development, pre-clinical and clinical studies, regulatory clearance and commercialization of a revolutionary non-invasive aesthetic ultrasound imaging and therapy system. Clinical applications for this platform include non-invasive face-lifts, brow-lifts, and neck-lifts achieved through fractionated treatment of the superficial musculoaponeurotic system (SMAS) and subcutaneous tissue. Treatment consists of placing a grid of micro-coagulative lesions on the order of 1 mm3 at depths in skin of 1 to 6 mm, source energy levels of 0.1 to 3 J, and spacing on the order of 1.5 mm, from 4 to 10 MHz dual-mode image/treat transducers. System details are described, as well as a regulatory pathway consisting of acoustic and bioheat simulations, source characterization (hydrophone, radiation force, and Schlieren), pre-clinical studies (porcine skin ex vivo, in vivo, and human cadaver), human safety studies (treat and resect) and efficacy trials which culminated in FDA clearance (2009) under a new device classification and world-wide usage. Clinical before and after photographs are presented which validate the clinical approach.

  20. Basics of biomedical ultrasound for engineers

    CERN Document Server

    Azhari, Haim

    2010-01-01

    "Basics of Biomedical Ultrasound for Engineers is a structured textbook for university engineering courses in biomedical ultrasound and for researchers in the field. This book offers a tool for building a solid understanding of biomedical ultrasound, and leads the novice through the field in a step-by-step manner. The book begins with the most basic definitions of waves, proceeds to ultrasounds in fluids, and then delves into solid ultrasounds, the most complicated kind of ultrasound. It encompasses a wide range of topics within biomedical ultrasound, from conceptual definitions of waves to the intricacies of focusing devices, transducers, and acoustic fields"--Provided by publisher.

  1. Reflections on ultrasound image analysis.

    Science.gov (United States)

    Alison Noble, J

    2016-10-01

    Ultrasound (US) image analysis has advanced considerably in twenty years. Progress in ultrasound image analysis has always been fundamental to the advancement of image-guided interventions research due to the real-time acquisition capability of ultrasound and this has remained true over the two decades. But in quantitative ultrasound image analysis - which takes US images and turns them into more meaningful clinical information - thinking has perhaps more fundamentally changed. From roots as a poor cousin to Computed Tomography (CT) and Magnetic Resonance (MR) image analysis, both of which have richer anatomical definition and thus were better suited to the earlier eras of medical image analysis which were dominated by model-based methods, ultrasound image analysis has now entered an exciting new era, assisted by advances in machine learning and the growing clinical and commercial interest in employing low-cost portable ultrasound devices outside traditional hospital-based clinical settings. This short article provides a perspective on this change, and highlights some challenges ahead and potential opportunities in ultrasound image analysis which may both have high impact on healthcare delivery worldwide in the future but may also, perhaps, take the subject further away from CT and MR image analysis research with time. PMID:27503078

  2. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  3. Reflections on ultrasound image analysis.

    Science.gov (United States)

    Alison Noble, J

    2016-10-01

    Ultrasound (US) image analysis has advanced considerably in twenty years. Progress in ultrasound image analysis has always been fundamental to the advancement of image-guided interventions research due to the real-time acquisition capability of ultrasound and this has remained true over the two decades. But in quantitative ultrasound image analysis - which takes US images and turns them into more meaningful clinical information - thinking has perhaps more fundamentally changed. From roots as a poor cousin to Computed Tomography (CT) and Magnetic Resonance (MR) image analysis, both of which have richer anatomical definition and thus were better suited to the earlier eras of medical image analysis which were dominated by model-based methods, ultrasound image analysis has now entered an exciting new era, assisted by advances in machine learning and the growing clinical and commercial interest in employing low-cost portable ultrasound devices outside traditional hospital-based clinical settings. This short article provides a perspective on this change, and highlights some challenges ahead and potential opportunities in ultrasound image analysis which may both have high impact on healthcare delivery worldwide in the future but may also, perhaps, take the subject further away from CT and MR image analysis research with time.

  4. Ultrasound call detection in capybara

    Directory of Open Access Journals (Sweden)

    Selene S.C. Nogueira

    2012-07-01

    Full Text Available The vocal repertoire of some animal species has been considered a non-invasive tool to predict distress reactivity. In rats ultrasound emissions were reported as distress indicator. Capybaras[ vocal repertoire was reported recently and seems to have ultrasound calls, but this has not yet been confirmed. Thus, in order to check if a poor state of welfare was linked to ultrasound calls in the capybara vocal repertoire, the aim of this study was to track the presence of ultrasound emissions in 11 animals under three conditions: 1 unrestrained; 2 intermediately restrained, and 3 highly restrained. The ultrasound track identified frequencies in the range of 31.8±3.5 kHz in adults and 33.2±8.5 kHz in juveniles. These ultrasound frequencies occurred only when animals were highly restrained, physically restrained or injured during handling. We concluded that these calls with ultrasound components are related to pain and restraint because they did not occur when animals were free of restraint. Thus we suggest that this vocalization may be used as an additional tool to assess capybaras[ welfare.

  5. High-frequency ultrasonic arrays for ocular imaging

    Science.gov (United States)

    Jaeger, M. D.; Kline-Schoder, R. J.; Douville, G. M.; Gagne, J. R.; Morrison, K. T.; Audette, W. E.; Kynor, D. B.

    2007-03-01

    High-resolution ultrasound imaging of the anterior portion of the eye has been shown to provide important information for sizing of intraocular lens implants, diagnosis of pathological conditions, and creation of detailed maps of corneal topography to guide refractive surgery. Current ultrasound imaging systems rely on mechanical scanning of a single acoustic element over the surface of the eye to create the three-dimensional information needed by clinicians. This mechanical scanning process is time-consuming and subject to errors caused by eye movement during the scanning period. This paper describes development of linear ultrasound imaging arrays intended to increase the speed of image acquisition and reduce problems associated with ocular motion. The arrays consist of a linear arrangement of high-frequency transducer elements designed to operate in the 50 - 75 MHz frequency range. The arrays are produced using single-crystal lithium niobate piezoelectric material, thin film electrodes, and epoxy-based acoustic layers. The array elements have been used to image steel test structures and bovine cornea.

  6. Recursive Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Gammelmark, Kim; Jensen, Jørgen Arendt

    1999-01-01

    This paper presents a new imaging method, applicable for both 2D and 3D imaging. It is based on Synthetic Transmit Aperture Focusing, but unlike previous approaches a new frame is created after every pulse emission. The elements from a linear transducer array emit pulses one after another. The sa...

  7. Are shoulder surgeons any good at diagnosing rotator cuff tears using ultrasound?: A comparative analysis of surgeon vs radiologist

    Directory of Open Access Journals (Sweden)

    Jeyam Muthu

    2008-01-01

    Full Text Available High-resolution ultrasound has gained increasing popularity as an aid in the diagnosis of rotator cuff pathology. With the advent of portable machines, ultrasound has become accessible to clinicians. Aim: This study was conducted to evaluate the accuracy and reliability of ultrasound in diagnosing rotator cuff tears by a shoulder surgeon and comparing their ability to that of a musculoskeletal radiologist. Materials and Methods: Seventy patients undergoing shoulder arthroscopy for rotator cuff pathology underwent preoperative ultrasonography (US. All patients were of similar demographics and pathology. The surgeon used a Sonosite Micromax portable ultrasound machine with a 10-MHz high frequency linear array transducer and the radiologist used a 9-12 MHz linear array probe on a Siemens Antares machine. Arthroscopic diagnosis was the reference standard to which ultrasound findings were compared. Results: The sensitivity in detecting full thickness tears was similar for both the surgeon (92% and the radiologist (94%. The radiologist had 100% sensitivity in diagnosing partial thickness tears, compared to 85.7% for the surgeon. The specificity for the surgeon was 94% and 85% for the radiologist. Discussion: Our study shows that the surgeons are capable of diagnosing rotator cuff tears with the use of high-resolution portable ultrasound in the outpatient setting. Conclusion: Office ultrasound, by a trained clinician, is a powerful diagnostic tool in diagnosing rotator cuff tears and can be used effectively in running one-stop shoulder clinics.

  8. Neuromuscular ultrasound of cranial nerves.

    Science.gov (United States)

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S

    2015-04-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  9. Ultrasound despeckling for contrast enhancement.

    Science.gov (United States)

    Tay, Peter C; Garson, Christopher D; Acton, Scott T; Hossack, John A

    2010-07-01

    Images produced by ultrasound systems are adversely hampered by a stochastic process known as speckle. A despeckling method based upon removing outlier is proposed. The method is developed to contrast enhance B-mode ultrasound images. The contrast enhancement is with respect to decreasing pixel variations in homogeneous regions while maintaining or improving differences in mean values of distinct regions. A comparison of the proposed despeckling filter is compared with the other well known despeckling filters. The evaluations of despeckling performance are based upon improvements to contrast enhancement, structural similarity, and segmentation results on a Field II simulated image and actual B-mode cardiac ultrasound images captured in vivo. PMID:20227984

  10. How to learn and to perform endoscopic ultrasound and endobronchial ultrasound for lung cancer staging

    DEFF Research Database (Denmark)

    Konge, Lars; Colella, Sara; Vilmann, Peter;

    2015-01-01

    The learning of transesophageal ultrasound guided fine needle aspiration (FNA) (endoscopic ultrasound-FNA), and endobronchial ultrasound guided transbronchial needle aspiration (endosonography) should be based on the following steps: Acquiring theoretical knowledge, training on simulators...

  11. Novel Ultrasound Tomograph for Anatomical Inspection

    Science.gov (United States)

    Rouyer, Julien; Lasaygues, Philippe; Mensah, Serge

    A device for ultrasound computed tomography (UCT) is introduced here. An half-ring transducer array was designed in conformity with the breast anatomy and the cancer growth region to perform an early detection. The array comprises 1,024 elements set in a 190-degree circular arc with a radius of 100 mm. The nominal frequency is 3 MHz with a 79% -6 dB bandwidth. The front-end electronics incorporate 32 independent transmit/receive parallel channels and a 32-to-1,024 multiplexer unit. The acquisition circuitries have a variable sampling frequency of up to 80 MHz and a precision of 12 bits. Arbitrary waveforms are synthesized to improve the signal-to-noise ratio and to increase the in-depth resolution. Tomographic acquisitions were realized in diffraction mode using a restricted aperture. The backscattered field was recorded in the case of a string phantom (0.08-mm diameter steel threads) and a breast-shaped phantom containing inclusions. Data were processed with dedicated correction tools processes such as pulse compression. Objects were reconstructed with the ellipsoidal back-projection method.

  12. The study of laser array generation of elastic shear wave and surface wave

    International Nuclear Information System (INIS)

    The principle of laser light generation of ultrasound is the result of the absorption of light energy by the sample medium that is converted into thermal stress. From literature survey, single laser-generated ultrasound has some limitations. First, the high energy from laser light may cause the ablation on the material surface. Second, the single laser beam generation method is hard to control the beam-width and focusing direction of ultrasound. Third, the single laser-generated ultrasound is unable to enhance the ultrasound signal. The optical fiber phased array generation of ultrasound offer the improvement of the control of the beam-width and focusing direction, and to increase the amplitude of the generated ultrasound in the thermoelastic range. This research investigated the directivity pattern from the in-phased laser array generation of shear wave and surface wave in comparison with old and improved theoretical model. The theoretical data which was filtered by the electronic instruments were compared with the literature data, also.

  13. Ultrasound of Sternal Fracture

    Directory of Open Access Journals (Sweden)

    Shadi Lahham

    2015-12-01

    Full Text Available A 61-year-old female was brought in by ambulance after being the restrained driver of a head-on motor vehicle collision at 40MPH. There was positive airbag deployment and intrusion from the other vehicle. During workup, the patient complained of midline chest pain, and left chest wall pain. The patient was not in acute respiratory distress, and had the following vital signs: temperature 37°C, heart rate 84, blood pressure of 150/64, respiratory rate 18, and oxygen saturation of 97% on two liters of oxygen. On physical exam, breath sounds were heard bilaterally, with no acute cardiopulmonary issues identified. A bruise was identified on the lower abdomen, which was thought to be a potential seatbelt sign. A focused assessment with sonography for trauma was negative, and an ultrasound of additional chest and mediastinal structures was performed for the chest tenderness.

  14. Stone fragmentation by ultrasound

    Indian Academy of Sciences (India)

    S K Shrivastava; Kailash

    2004-08-01

    The presence of kidney stone in the kidney causes discomfort to patients. Hence, removal of such stones is important which is commonly done these days, non-destructively, with lithotripters without surgery. Commercially, lithotripters like extra-corporeal shock wave lithotripters (ESWL) made by Siemens etc are in routine use. These methods are very cumbersome and expensive. Treatment of the patients also takes comparatively more time because of more number of sittings. Some delicate nerves and fibres in the surrounding areas of the stones present in the kidney are also damaged by high ultrasonic intensity used in such systems. In the present work, enhancement of the kidney stone fragmentation by using ultrasound is studied. The cavitation bubbles are found to implode faster, with more disintegration efficiency of the lithotripters, which give better treatment to the patients.

  15. Dielectric dispersion of water in the frequency range from 10 mHz to 30 MHz.

    Science.gov (United States)

    Batalioto, F; Duarte, A R; Barbero, G; Neto, A M F

    2010-03-18

    We investigate the dielectric dispersion of water, specially in the low-frequency range, by using the impedance spectroscopy technique. The frequency dependencies of the real R and imaginary chi parts of the impedance could not be explained by means of the usual description of the dielectric properties of the water as an insulating liquid containing ions. This is due to the incomplete knowledge of the parameters entering in the fundamental equations describing the evolution of the system, and on the mechanisms regulating the exchange of charge of the cell with the external circuit. We propose a simple description of our experimental data based on the model of Debye, by invoking a dc conductivity of the cell, related to the nonblocking character of the electrodes. A discussion on the electric circuits able to simulate the cell under investigation, based on bulk and surface elements, is also reported. We find that the simple circuit formed by a series of two parallels of resistance and capacitance is able to reproduce the experimental data concerning the real and imaginary part of the electrical impedance of the cell for frequency larger than 1 Hz. According to this description, one of the parallels takes into account the electrical properties of interface between the electrode and water, and the other of the bulk. For frequency lower than 1 Hz, a good agreement with the experimental data is obtained by simulating the electrical properties of the interface by means of the constant phase element. PMID:20178324

  16. Modelling of a novel high-impedance matching layer for high frequency (>30 MHz) ultrasonic transducers.

    Science.gov (United States)

    Qian, Y; Harris, N R

    2014-02-01

    This work describes a new approach to impedance matching for ultrasonic transducers. A single matching layer with high acoustic impedance of 16 MRayls is demonstrated to show a bandwidth of around 70%, compared with conventional single matching layer designs of around 50%. Although as a consequence of this improvement in bandwidth, there is a loss in sensitivity, this is found to be similar to an equivalent double matching layer design. Designs are calculated by using the KLM model and are then verified by FEA simulation, with very good agreement Considering the fabrication difficulties encountered in creating a high-frequency double matched design due to the requirement for materials with specific acoustic impedances, the need to accurately control the thickness of layers, and the relatively narrow bandwidths available for conventional single matched designs, the new approach shows advantages in that alternative (and perhaps more practical) materials become available, and offers a bandwidth close to that of a double layer design with the simplicity of a single layer design. The disadvantage is a trade-off in sensitivity. A typical example of a piezoceramic transducer matched to water can give a 70% fractional bandwidth (comparable to an ideal double matched design of 72%) with a 3dB penalty in insertion loss.

  17. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... Videos related to Children's (Pediatric) Ultrasound - Abdomen About this Site RadiologyInfo.org is produced by: Please note ... you can search the ACR-accredited facilities database . This website does not provide cost information. The costs ...

  18. Ultrasound-modulated bioluminescence tomography

    Science.gov (United States)

    Bal, Guillaume; Schotland, John C.

    2014-03-01

    We propose a method to reconstruct the density of a luminescent source in a highly scattering medium from ultrasound-modulated optical measurements. Our approach is based on the solution to a hybrid inverse source problem for the diffusion equation.

  19. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  20. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... over time. top of page What are the benefits vs. risks? Benefits Most ultrasound scanning is noninvasive (no needles or ... the possible charges you will incur. Web page review process: This Web page is reviewed regularly by ...

  1. The Belfast musculoskeletal ultrasound course.

    LENUS (Irish Health Repository)

    Taggart, Allister J

    2009-09-01

    To conduct a training course in musculoskeletal ultrasound (MSUS) for rheumatologists in Northern Ireland with the aim of equipping the participants with a basic knowledge of the theoretical and practical aspects of MSUS as they are applied to rheumatology.

  2. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... technique that allows the physician to see and evaluate blood flow through arteries and veins in the ... the procedure? Abdominal ultrasound imaging is performed to evaluate the: appendix stomach/ pylorus liver gallbladder spleen pancreas ...

  3. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... between the transducer and the skin that can block the sound waves from passing into your body. ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ...

  4. Ultrasound diagnostics of postpartum endometritis

    OpenAIRE

    Bratchikova О.А.; Chekhonatskaya M.L.; Yannaeva N.E.

    2014-01-01

    The purpose of the article is to present data on diagnostics of postpartum infectious diseases in women in childbirth. The aim of the conducted survey is to study modern ultrasound diagnostic methods of the given pathology.

  5. Ultrasound diagnostics of postpartum endometritis

    Directory of Open Access Journals (Sweden)

    Bratchikova О.А.

    2014-03-01

    Full Text Available The purpose of the article is to present data on diagnostics of postpartum infectious diseases in women in childbirth. The aim of the conducted survey is to study modern ultrasound diagnostic methods of the given pathology.

  6. Image processing in medical ultrasound

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian

    This Ph.D project addresses image processing in medical ultrasound and seeks to achieve two major scientific goals: First to develop an understanding of the most significant factors influencing image quality in medical ultrasound, and secondly to use this knowledge to develop image processing...... methods for enhancing the diagnostic value of medical ultrasound. The project is an industrial Ph.D project co-sponsored by BK Medical ApS., with the commercial goal to improve the image quality of BK Medicals scanners. Currently BK Medical employ a simple conventional delay-and-sum beamformer to generate......-time data acquisition system. The system were implemented using the commercial available 2202 ProFocus BK Medical ultrasound scanner equipped with a research interface and a standard PC. The main feature of the system is the possibility to acquire several seconds of interleaved data, switching between...

  7. Endoscopic ultrasound and pancreas divisum

    DEFF Research Database (Denmark)

    Rana, Surinder S; Gonen, Can; Vilmann, Peter

    2012-01-01

    cholangiopancreatography is the gold standard for its diagnosis, but is invasive and associated with significant adverse effects. Endoscopic ultrasound (EUS) allows the detailed evaluation of the pancreaticobiliary ductal system without injecting contrast in these ducts. Moreover, it provides detailed images...

  8. Numerical simulations of clinical focused ultrasound functional neurosurgery

    Science.gov (United States)

    Pulkkinen, Aki; Werner, Beat; Martin, Ernst; Hynynen, Kullervo

    2014-04-01

    A computational model utilizing grid and finite difference methods were developed to simulate focused ultrasound functional neurosurgery interventions. The model couples the propagation of ultrasound in fluids (soft tissues) and solids (skull) with acoustic and visco-elastic wave equations. The computational model was applied to simulate clinical focused ultrasound functional neurosurgery treatments performed in patients suffering from therapy resistant chronic neuropathic pain. Datasets of five patients were used to derive the treatment geometry. Eight sonications performed in the treatments were then simulated with the developed model. Computations were performed by driving the simulated phased array ultrasound transducer with the acoustic parameters used in the treatments. Resulting focal temperatures and size of the thermal foci were compared quantitatively, in addition to qualitative inspection of the simulated pressure and temperature fields. This study found that the computational model and the simulation parameters predicted an average of 24 ± 13% lower focal temperature elevations than observed in the treatments. The size of the simulated thermal focus was found to be 40 ± 13% smaller in the anterior-posterior direction and 22 ± 14% smaller in the inferior-superior direction than in the treatments. The location of the simulated thermal focus was off from the prescribed target by 0.3 ± 0.1 mm, while the peak focal temperature elevation observed in the measurements was off by 1.6 ± 0.6 mm. Although the results of the simulations suggest that there could be some inaccuracies in either the tissue parameters used, or in the simulation methods, the simulations were able to predict the focal spot locations and temperature elevations adequately for initial treatment planning performed to assess, for example, the feasibility of sonication. The accuracy of the simulations could be improved if more precise ultrasound tissue properties (especially of the

  9. Numerical simulations of clinical focused ultrasound functional neurosurgery

    International Nuclear Information System (INIS)

    A computational model utilizing grid and finite difference methods were developed to simulate focused ultrasound functional neurosurgery interventions. The model couples the propagation of ultrasound in fluids (soft tissues) and solids (skull) with acoustic and visco-elastic wave equations. The computational model was applied to simulate clinical focused ultrasound functional neurosurgery treatments performed in patients suffering from therapy resistant chronic neuropathic pain. Datasets of five patients were used to derive the treatment geometry. Eight sonications performed in the treatments were then simulated with the developed model. Computations were performed by driving the simulated phased array ultrasound transducer with the acoustic parameters used in the treatments. Resulting focal temperatures and size of the thermal foci were compared quantitatively, in addition to qualitative inspection of the simulated pressure and temperature fields. This study found that the computational model and the simulation parameters predicted an average of 24 ± 13% lower focal temperature elevations than observed in the treatments. The size of the simulated thermal focus was found to be 40 ± 13% smaller in the anterior–posterior direction and 22 ± 14% smaller in the inferior–superior direction than in the treatments. The location of the simulated thermal focus was off from the prescribed target by 0.3 ± 0.1 mm, while the peak focal temperature elevation observed in the measurements was off by 1.6 ± 0.6 mm. Although the results of the simulations suggest that there could be some inaccuracies in either the tissue parameters used, or in the simulation methods, the simulations were able to predict the focal spot locations and temperature elevations adequately for initial treatment planning performed to assess, for example, the feasibility of sonication. The accuracy of the simulations could be improved if more precise ultrasound tissue properties (especially of the

  10. Determination of lesion size by ultrasound during radiofrequency catheter ablation.

    Science.gov (United States)

    Awad, S; Eick, O

    2003-01-01

    The catheter tip temperature that is used to control the radiofrequency generator output poorly correlates to lesion size. We, therefore, evaluated lesions created in vitro using a B-mode ultrasound imaging device as a potential means to assess lesion generation during RF applications non-invasively. Porcine ventricular tissue was immersed in saline solution at 37 degrees C. The catheter was fixed in a holder and positioned in a parallel orientation to the tissue with an array transducer (7.5 MHz) app. 3 cm above the tissue. Lesions were produced either in a temperature controlled mode with a 4-mm tip catheter with different target temperatures (50, 60, 70 and 80 degrees C, 80 W maximum output) or in a power controlled mode (25, 50 and 75 W, 20 ml/min irrigation flow) using an irrigated tip catheter. Different contact forces (0.5 N, 1.0 N) were tested, and RF was delivered for 60 s. A total of 138 lesions was produced. Out of these, 128 could be identified on the ultrasound image. The lesion depth and volume was on average 4.1 +/- 1.6 mm and 52 +/- 53 mm3 as determined by ultrasound and 3.9 +/- 1.7 mm and 52 +/- 55 mm3 as measured thereafter, respectively. A linear correlation between the lesion size determined by ultrasound and that measured thereafter was demonstrated with a correlation coefficient of r = 0.87 for lesion depth and r = 0.93 for lesion volume. We conclude that lesions can be assessed by B-mode ultrasound imaging. PMID:12910859

  11. Despeckling of Medical Ultrasound Images

    OpenAIRE

    Michailovich, Oleg V.; Tannenbaum, Allen

    2006-01-01

    Speckle noise is an inherent property of medical ultrasound imaging, and it generally tends to reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging modality. As a result, speckle noise reduction is an important prerequisite, whenever ultrasound imaging is used for tissue characterization. Among the many methods that have been proposed to perform this task, there exists a class of approaches that use a multiplicative model of speckled image formation ...

  12. Ultrasound Despeckling for Contrast Enhancement

    OpenAIRE

    Tay, Peter C.; Garson, Christopher D.; Acton, Scott T.; Hossack, John A.

    2010-01-01

    Images produced by ultrasound systems are adversely hampered by a stochastic process known as speckle. A despeckling method based upon removing outlier is proposed. The method is developed to contrast enhance B-mode ultrasound images. The contrast enhancement is with respect to decreasing pixel variations in homogeneous regions while maintaining or improving differences in mean values of distinct regions. A comparison of the proposed despeckling filter is compared with the other well known de...

  13. Ultrasound in evaluating ovarian reserve

    OpenAIRE

    Eman Ahmaed Shawky Sabek; Ola I. Saleh; Howida A. Ahmed

    2015-01-01

    The objective of this study was to compare the diagnostic accuracy of transvaginal ultrasound (TVS), as a less invasive technique instead of hormonal assay to evaluate the ovarian reserve. This study included fifty-five females with breast cancer and we compared the ovarian reserve for these patients by hormonal assay through measuring the serum AntiMullerian Hormone (AMH) level and follicular stimulating hormone (FSH) level before and after chemotherapy, and by transvaginal ultrasound throug...

  14. Compensated Row-Column Ultrasound Imaging System Using Fisher Tippett Multilayered Conditional Random Field Model.

    Directory of Open Access Journals (Sweden)

    Ibrahim Ben Daya

    Full Text Available 3-D ultrasound imaging offers unique opportunities in the field of non destructive testing that cannot be easily found in A-mode and B-mode images. To acquire a 3-D ultrasound image without a mechanically moving transducer, a 2-D array can be used. The row column technique is preferred over a fully addressed 2-D array as it requires a significantly lower number of interconnections. Recent advances in 3-D row-column ultrasound imaging systems were largely focused on sensor design. However, these imaging systems face three intrinsic challenges that cannot be addressed by improving sensor design alone: speckle noise, sparsity of data in the imaged volume, and the spatially dependent point spread function of the imaging system. In this paper, we propose a compensated row-column ultrasound image reconstruction system using Fisher-Tippett multilayered conditional random field model. Tests carried out on both simulated and real row-column ultrasound images show the effectiveness of our proposed system as opposed to other published systems. Visual assessment of the results show our proposed system's potential at preserving detail and reducing speckle. Quantitative analysis shows that our proposed system outperforms previously published systems when evaluated with metrics such as Peak Signal to Noise Ratio, Coefficient of Correlation, and Effective Number of Looks. These results show the potential of our proposed system as an effective tool for enhancing 3-D row-column imaging.

  15. Ultrasound in environmental engineering. Papers

    Energy Technology Data Exchange (ETDEWEB)

    Tiehm, A.; Neis, U. [eds.

    1999-07-01

    This book presents recent research and state-of-the-art information on the scientific basis, modes of use, and engineering developments of ultrasound application in the field of environmental protection. The information is loosely grouped into the following themes: ultrasound and sonochemistry, design of sonoreactors, applications in water, waste water and sludge treatment: aggregation of suspended particles, degradation of hazardous pollutants, disinfection, disintegration of biosolids. Ultrasound is generated and applied at frequencies from 20 kHz to several MHz. Reactor design, applied intensity, duration of sonication, and physico-chemical parameters of the sonicated media influence ultrasound effects. Thus, ultrasound, at a first glance, is a complex and probably confusing matter. This book has been compiled from presentations held at the first workshop 'Ultrasound in Environmental Engineering' on March 22nd and 23rd, 1999, at the Technical University of Hamburg-Harburg in cooperation with the German Association for the Water Environment (ATV) and the DECHEMA e.V. (orig.)

  16. Ultrasound-Mediated Polymeric Micelle Drug Delivery.

    Science.gov (United States)

    Xia, Hesheng; Zhao, Yue; Tong, Rui

    2016-01-01

    The synthesis of multi-functional nanocarriers and the design of new stimuli-responsive means are equally important for drug delivery. Ultrasound can be used as a remote, non-invasive and controllable trigger for the stimuli-responsive release of nanocarriers. Polymeric micelles are one kind of potential drug nanocarrier. By combining ultrasound and polymeric micelles, a new modality (i.e., ultrasound-mediated polymeric micelle drug delivery) has been developed and has recently received increasing attention. A major challenge remaining in developing ultrasound-responsive polymeric micelles is the improvement of the sensitivity or responsiveness of polymeric micelles to ultrasound. This chapter reviews the recent advance in this field. In order to understand the interaction mechanism between ultrasound stimulus and polymeric micelles, ultrasound effects, such as thermal effect, cavitation effect, ultrasound sonochemistry (including ultrasonic degradation, ultrasound-initiated polymerization, ultrasonic in-situ polymerization and ultrasound site-specific degradation), as well as basic micellar knowledge are introduced. Ultrasound-mediated polymeric micelle drug delivery has been classified into two main streams based on the different interaction mechanism between ultrasound and polymeric micelles; one is based on the ultrasound-induced physical disruption of the micelle and reversible release of payload. The other is based on micellar ultrasound mechanochemical disruption and irreversible release of payload.

  17. Ultrasound-guided removal of foreign bodies: personal experience.

    Science.gov (United States)

    Callegari, Leonardo; Leonardi, Anna; Bini, Amedeo; Sabato, Chiara; Nicotera, Paolo; Spano', Emanuela; Mariani, Davide; Genovese, Eugenio A; Fugazzola, Carlo

    2009-05-01

    Foreign bodies (FBs) retained in the soft tissues are a common reason for medical consultation, and usually consist of wooden or metal splinters or glass shards. Failure to remove foreign bodies is likely to give rise to acute or late complications, such as allergies, inflammation or infection, that may be severe. The surgical removal of an FB is invasive, costly and technically challenging. The procedure may fail in some cases and carries the risk of complications. Our study describes a technique for the ultrasound-guided removal of an FB, devised from our experience, and demonstrates its advantages over the standard surgical procedure. Sixty-two patients (43 males and 19 females aged from 9 to 65 years, median age 31 years) presented at our institution between October 2005 and June 2008 with suspected foreign bodies retained in the soft tissues of various body districts. Radiographic and/or ultrasound diagnosis was established by a radiologist expert in musculoskeletal sonography. The same radiologist helped by a nurse subsequently undertook the ultrasound-guided removal in the outpatient's clinic according to the technique described in the paper. ATL 5000 and PHILIPS iu22 ultrasound systems were used with high-frequency linear-array probes, sterile material, local anaesthetic (lidocaine 2%), scapels and surgical forceps. Antibiotic prophylaxis with amoxicillin and clavulanic acid were prescribed to all patients for 7 days after the procedure. Ninety-five FBs (39 glass, 35 metal, 17 vegetable, 2 plastic, 2 stone) were successfully removed under ultrasound guidance in all patients and the procedure took between 15 and 30 min. No complications arose either during or after the procedure. Seventy-five skin incisions were made and the wounds closed with Steri-Strips in 73/75 cases, whereas skin sutures were used in 2/75 cases. No complications arose either during or after the procedure. Ultrasound-guided removal of an FB retained in the soft tissues is a good

  18. Feasibility of Swept Synthetic Aperture Ultrasound Imaging.

    Science.gov (United States)

    Bottenus, Nick; Long, Will; Zhang, Haichong K; Jakovljevic, Marko; Bradway, David P; Boctor, Emad M; Trahey, Gregg E

    2016-07-01

    Ultrasound image quality is often inherently limited by the physical dimensions of the imaging transducer. We hypothesize that, by collecting synthetic aperture data sets over a range of aperture positions while precisely tracking the position and orientation of the transducer, we can synthesize large effective apertures to produce images with improved resolution and target detectability. We analyze the two largest limiting factors for coherent signal summation: aberration and mechanical uncertainty. Using an excised canine abdominal wall as a model phase screen, we experimentally observed an effective arrival time error ranging from 18.3 ns to 58 ns (root-mean-square error) across the swept positions. Through this clutter-generating tissue, we observed a 72.9% improvement in resolution with only a 3.75 dB increase in side lobe amplitude compared to the control case. We present a simulation model to study the effect of calibration and mechanical jitter errors on the synthesized point spread function. The relative effects of these errors in each imaging dimension are explored, showing the importance of orientation relative to the point spread function. We present a prototype device for performing swept synthetic aperture imaging using a conventional 1-D array transducer and ultrasound research scanner. Point target reconstruction error for a 44.2 degree sweep shows a reconstruction precision of 82.8 μm and 17.8 μm in the lateral and axial dimensions respectively, within the acceptable performance bounds of the simulation model. Improvements in resolution, contrast and contrast-to-noise ratio are demonstrated in vivo and in a fetal phantom. PMID:26863653

  19. High frequency measurements of the contact between machine elements using ultrasound

    Science.gov (United States)

    Quinn, A. M.; Drinkwater, B. W.; Dwyer-Joyce, R. S.

    2002-05-01

    This paper describes a study of the experimental interaction of ultrasound with real rough surfaces, and the modeled interaction of ultrasound with an infinite array of holes, using Finite Element Analysis, in an attempt to discover the limit of applicability of the quasi-static spring model. The relationship between reflected amplitude of the scattered wave, and the size of the hole acting as reflector, was found and used to create a finite element independent scatter model. This was compared to the quasi-static model and it was found that the two models diverge at a ka value of approximately 0.6.

  20. Ultrasound Research Scanner for Real-time Synthetic Aperture Data Acquisition

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Holm, Ole; Jensen, Lars Joost;

    2005-01-01

    Conventional ultrasound systems acquire ultrasound data sequentially one image line at a time. The architecture of these systems is therefore also sequential in nature and processes most of the data in a sequential pipeline. This often makes it difficult to implement radically different imaging...... is capable of performing real-time beamforming for conventional imaging methods using linear, phased, and convex arrays. Image acquisition modes can be intermixed, and this makes it possible to perform initial trials in a clinical environment with new imaging modalities for synthetic aperture imaging, 2D...

  1. PE-CMOS based C-scan ultrasound for foreign object detection in soft tissue.

    Science.gov (United States)

    Liu, Chu-Chuan; Lo, Shih-Chung Ben; Freedman, Matthew T; Lasser, Marvin E; Kula, John; Sarcone, Anita; Wang, Yue

    2010-01-01

    In this paper, we introduce a C-scan ultrasound prototype and three imaging modalities for the detection of foreign objects inserted in porcine soft tissue. The object materials include bamboo, plastics, glass and aluminum alloys. The images of foreign objects were acquired using the C-scan ultrasound, a portable B-scan ultrasound, film-based radiography, and computerized radiography. The C-scan ultrasound consists of a plane wave transducer, a compound acoustic lens system, and a newly developed ultrasound sensor array based on the complementary metal-oxide semiconductor coated with piezoelectric material (PE-CMOS). The contrast-to-noise ratio (CNR) of the images were analyzed to quantitatively evaluate the detectability using different imaging modalities. The experimental results indicate that the C-scan prototype has better CNR values in 4 out of 7 objects than other modalities. Specifically, the C-scan prototype provides more detail information of the soft tissues without the speckle artifacts that are commonly seen with conventional B-scan ultrasound, and has the same orientation as the standard radiographs but without ionizing radiation. PMID:20036873

  2. Transverse Oscillation Vector Velocity Estimation using a Phased Array Transducer

    DEFF Research Database (Denmark)

    Marcher, Jønne; Pihl, Michael Johannes; Seerup, Gert;

    2012-01-01

    The Transverse Oscillation method has shown its commercial feasibility, providing the user with 2D velocity information. Todays implementation on commercial ultrasound platforms only support linear array transducers and are limited in depth. Extending the implementation to a phased array transduc...... leaves room for optimization. Despite the bias, the method has shown to work and produce reliable results, and 2D velocity estimates are provided within the entire color-box down to a depth of more than 100 mm making vector velocity imaging possible in the entire heart....

  3. Ultrasound Review of Metastatic Lymphadenopathy

    Directory of Open Access Journals (Sweden)

    Sushil Ghanshyam Kachewar

    2013-04-01

    Full Text Available Metastatic Lymphadenopathy is a common occurrence now with the earlier detection possible due to advances in imaging sciences. Although, at times the site of original malignancy is known; there are instances when the primary source of malignancy remains unknown. Ultrasound has the potential to non invasively evaluate the affected lymph nodes. Hence we reviewed the ultrasound findings in all fine needle aspiration cytology proven cases of metastatic lymphadenopathy that presented in the imaging department in the last 12 months. Multiple criteria on Grey Scale ultrasound imaging and on Color Doppler ultrasound imaging were used to label metastatic lymphadenopathy. Round nodes without any matting, presence of intranodal necrosis, intranodal calcifications, increased vascularity and elevated Doppler Pulsatility and Resisitivity Indices were the hallmarks of metastatic lymphadenopathy which enabled correct diagnosis with a sensitivity of 85.25% and a sensitivity of 98.36 %. In our review, the most sensitive and specific criteria was the Roundness Index on Gray scale imaging and Resistance to Perfusion on Color Doppler imaging. This review shows how, ultrasound can satisfactorily diagnose metastatic lymphadenopathy and can therefore be used in the diagnosis as well as follow up of such cases. [Cukurova Med J 2013; 38(2.000: 196-201

  4. ROLE OF ULTRASOUND IN THYROID DISORDERS

    OpenAIRE

    Janani Parkkunam; Balasubramanian Thiagarajan

    2015-01-01

    Ultrasonography has established itself has a useful tool in evaluating and managing thyroid disorders. This article provides an overview of basic principles of ultrasound, how it is used in different thyroid disorders, different sonographic pattern of thyroid disorders, comparative features of malignant and benign nodule, ultrasound features of diffuse thyroid disorders and congenital thyroid disorders, ultrasound guided FNAC, advanced techniques of ultrasound in thyroid imaging.

  5. Microfocused ultrasound for facial rejuvenation: current perspectives

    OpenAIRE

    Day, Doris

    2014-01-01

    Doris Day Day Dermatology and Aesthetics, New York, NY, USA Abstract: In contrast with ultrasound imaging, therapeutic ultrasound uses high energy levels >5 W/cm2 and is tightly focused into a small point to rapidly heat and coagulate targeted tissues. The use of high intensity focused ultrasound has recently expanded from high-precision surgical procedures into the field of noninvasive cosmetic medicine. Microfocused ultrasound (MFU) differs from other energy technologies used for sk...

  6. Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow

    Science.gov (United States)

    Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.

    2016-01-01

    Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169

  7. Three-dimensional ultrasound palmprint recognition using curvature methods

    Science.gov (United States)

    Iula, Antonio; Nardiello, Donatella

    2016-05-01

    Palmprint recognition systems that use three-dimensional (3-D) information of the palm surface are the most recently explored techniques to overcome some two-dimensional palmprint difficulties. These techniques are based on light structural imaging. In this work, a 3-D ultrasound palmprint recognition system is proposed and evaluated. Volumetric images of a region of the human hand are obtained by moving an ultrasound linear array along its elevation direction and one by one acquiring a number of B-mode images, which are then grouped in a 3-D matrix. The acquisition time was contained in about 5 s. Much information that can be exploited for 3-D palmprint recognition is extracted from the ultrasound volumetric images, including palm curvature and other under-skin information as the depth of the various traits. The recognition procedure developed in this work is based on the analysis of the principal curvatures of palm surface, i.e., mean curvature image, Gaussian curvature image, and surface type. The proposed method is evaluated by performing verification and identification experiments. Preliminary results have shown that the proposed system exhibits an acceptable recognition rate. Further possible improvements of the proposed technique are finally highlighted and discussed.

  8. Axiom turkey genotyping array

    Science.gov (United States)

    The Axiom®Turkey Genotyping Array interrogates 643,845 probesets on the array, covering 643,845 SNPs. The array development was led by Dr. Julie Long of the USDA-ARS Beltsville Agricultural Research Center under a public-private partnership with Hendrix Genetics, Aviagen, and Affymetrix. The Turk...

  9. Ultrasound: From Earth to Space

    Science.gov (United States)

    Law, Jennifer; Macbeth, Paul. B.

    2011-01-01

    Ultrasonography is a versatile imaging modality that offers many advantages over radiography, computed tomography, and magnetic resonance imaging. On Earth, the use of ultrasound has become standard in many areas of medicine including diagnosis of medical and surgical diseases, management of obstetric and gynecologic conditions, assessment of critically ill patients, and procedural guidance. Advances in telecommunications have enabled remotely-guided ultrasonography for both geographically isolated populations and astronauts aboard the International Space Station. While ultrasound has traditionally been used in spaceflight to study anatomical and physiological adaptations to microgravity and evaluate countermeasures, recent years have seen a growth of applications adapted from terrestrial techniques. Terrestrial, remote, and space applications for ultrasound are reviewed in this paper. PMID:22399873

  10. Ultrasound: from Earth to space.

    Science.gov (United States)

    Law, Jennifer; Macbeth, Paul B

    2011-06-01

    Ultrasonography is a versatile imaging modality that offers many advantages over radiography, computed tomography, and magnetic resonance imaging. On Earth, the use of ultrasound has become standard in many areas of medicine including diagnosis of medical and surgical diseases, management of obstetric and gynecologic conditions, assessment of critically ill patients, and procedural guidance. Advances in telecommunications have enabled remotely-guided ultrasonography for both geographically isolated populations and astronauts aboard the International Space Station. While ultrasound has traditionally been used in spaceflight to study anatomical and physiological adaptations to microgravity and evaluate countermeasures, recent years have seen a growth of applications adapted from terrestrial techniques. Terrestrial, remote, and space applications for ultrasound are reviewed in this paper.

  11. Application of Ultrasound in Audiology

    OpenAIRE

    Farzad Rahimi

    1993-01-01

    Diagnostic ultrasound is a beneficial technique which can be used the audiologists based on essential instruction. Although there are a lot of barriers in relation to the size of the probe and the resolution of the pictures which are obtained, with this method some kind of information can be gained that is impossible to get by any other method. The ability of real- time A and B modes for direct visualization makes them useful tools to study the changes of the ear structures. Ultrasound system...

  12. Diagnostic Ophthalmic Ultrasound for Radiologists.

    Science.gov (United States)

    Kendall, Cynthia J; Prager, Thomas C; Cheng, Han; Gombos, Dan; Tang, Rosa A; Schiffman, Jade S

    2015-08-01

    Ophthalmic ultrasound is an invaluable tool that provides quick and noninvasive evaluation of the eye and the orbit. It not only allows the clinicians to view structures that may not be visible with routine ophthalmic equipment or neuroimaging techniques but also provides unique diagnostic information in various ophthalmic conditions. In this article, the basic principles of ophthalmic ultrasound and examination techniques are discussed. Its clinical application is illustrated through a variety of ocular pathologic abnormalities (eg, narrow angles, ciliary body tumor, detached retina, choroidal melanoma, and papilledema).

  13. Application of Ultrasound in Audiology

    Directory of Open Access Journals (Sweden)

    Farzad Rahimi

    1993-03-01

    Full Text Available Diagnostic ultrasound is a beneficial technique which can be used the audiologists based on essential instruction. Although there are a lot of barriers in relation to the size of the probe and the resolution of the pictures which are obtained, with this method some kind of information can be gained that is impossible to get by any other method. The ability of real- time A and B modes for direct visualization makes them useful tools to study the changes of the ear structures. Ultrasound system is a useful method to evaluate dizzy patients, which can be potentially used along with vestibular tests.

  14. Design and simulation of a tactile display based on a CMUT array

    Science.gov (United States)

    Chouvardas, Vasilios G.; Hatalis, Miltiadis K.; Miliou, Amalia N.

    2012-10-01

    In this article, we present the design of a tactile display based on a CMUT-phased array. The array implements a 'pixel' of the display and is used to focus airborne ultrasound energy on the skin surface. The pressure field, generated by the focused ultrasound waves, is used to excite the mechanoreceptors under the skin and transmit tactile information. The results of Finite Element Analysis (FEA) of the Capacitive Micromachined Ultrasonic Transducer (CMUT) and the CMUT-phased array for ultrasound emission are presented. The 3D models of the device and the array were developed using a commercial FEA package. Modelling and simulations were performed using the parameters from the POLYMUMPS surface micromachining technology from MEMSCAP. During the analysis of the phased array, several parameters were studied in order to determine their importance in the design of the tactile display. The output of the array is compared with the acoustic intensity thresholds in order to prove the feasibility of the design. Taking into account the density of the mechanoreceptors in the skin, we conclude that there should be at least one receptor under the excitation area formed on the skin.

  15. Virtual ultrasound sources in high-resolution ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    beamforming procedure for 3D ultrasound imaging. The position of the virtual source, and the created waveform are investigated with simulation, and with pulse-echo measurements. There is good agreement between the estimated wavefront and the theoretically tted one. Several examples of the use of virtual...

  16. Feasibility of noninvasive ultrasound delivery for tumor ablation and targeted drug delivery in the brain

    Science.gov (United States)

    Hynynen, Kullervo; McDannold, Nathan; Clement, Greg; White, Jason; Treat, Lisa; Yin, Xiangtao; Jolesz, Ferenc; Sheikov, Nickolai; Vykhodtseva, Natalia

    2005-04-01

    The objective of our research during the past few years has been to develop multichannel ultrasound phased arrays for noninvasive brain interventions. We have been successful in developing methods for correcting the skull induced beam distortions and thus, are able to produce sharp focusing through human skulls. This method is now being tested for thermal ablation of tumors, with results from animal studies demonstrating feasibility. In addition, the ability of ultrasound to open the blood-brain barrier (BBB) locally has been explored in animal models. The results suggest that the transcranial ultrasound exposures can induce BBB opening such that therapeutic agents can be localized in the brain. This tool is especially powerful since the beam can be guided by MR images, thus providing anatomical or functional targeting. This talk will review our current status in this research, which ultimately aims for the clinical use of this methodology.

  17. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    International Nuclear Information System (INIS)

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  18. [Abdominal ultrasound course an introduction to the ultrasound technique. Physical basis. Ultrasound language].

    Science.gov (United States)

    Segura-Grau, A; Sáez-Fernández, A; Rodríguez-Lorenzo, A; Díaz-Rodríguez, N

    2014-01-01

    Ultrasound is a non-invasive, accessible, and versatile diagnostic technique that uses high frequency ultrasound waves to define outline the organs of the human body, with no ionising radiation, in real time and with the capacity to visual several planes. The high diagnostic yield of the technique, together with its ease of uses plus the previously mentioned characteristics, has currently made it a routine method in daily medical practice. It is for this reason that the multidisciplinary character of this technique is being strengthened every day. To be able to perform the technique correctly requires knowledge of the physical basis of ultrasound, the method and the equipment, as well as of the human anatomy, in order to have the maximum information possible to avoid diagnostic errors due to poor interpretation or lack of information.

  19. Office-based ultrasound in sports medicine practice.

    Science.gov (United States)

    Coris, Eric E; Pescasio, Michele; Zwygart, Kira; Gonzalez, Eduardo; Farrar, Ted; Bryan, Sean; Konin, Jeff; McElroy, Tommy

    2011-01-01

    Increasing knowledge, interest, and visibility in the field of sports medicine has equipped clinicians in the field with a novel array of diagnostic and therapeutic options but has also provided a higher level of complexity in patient care. True understanding of the vast spectrum of radiographic technology available to the sports clinician has become more critical than ever. Advances particularly in the areas of magnetic resonance imaging, diagnostic office ultrasound, and 3-dimensional reconstruction computed tomography, as well as nuclear medicine, offer the clinician a myriad of diagnostic options in patient evaluation. As these advances accumulate, the challenge to optimize care, contain cost, and interpret the extensive data generated becomes even more difficult to manage. Improving technology, education, and application of office ultrasound offers an interesting new tool for the bedside evaluation in real time of dynamic motion and pathology of sports-related injuries. As studies continue to validate ultrasound's effectiveness in diagnosing injuries to the upper and lower extremities compared with more costly magnetic resonance imaging and more invasive exploratory surgery, its promise as a cost-effective diagnostic tool is growing. A particularly promising development in the care of sports injuries is the expansion of injection therapies, and in-office ultrasound provides assurance that prolotherapy, platelet-rich plasma, dry needling, corticosteroid, and viscosupplementation are delivered accurately and safely. Communication with patients continues to increase in complexity because a greater understanding of the presence of radiographic abnormalities irrelevant to the current complaint is gained. All the accumulated data must then be interpreted and communicated to the patient with a firm understanding of not only the patient history and physical examination but also the availability, indications, contraindications, sensitivity, specificity, and even the

  20. Ultrasound molecular imaging: Moving toward clinical translation

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Elkacem, Lotfi; Bachawal, Sunitha V.; Willmann, Jürgen K., E-mail: willmann@stanford.edu

    2015-09-15

    Highlights: • Ultrasound molecular imaging is a highly sensitive modality. • A clinical grade ultrasound contrast agent has entered first in human clinical trials. • Several new potential future clinical applications of ultrasound molecular imaging are being explored. - Abstract: Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging.

  1. Effect of Ultrasound on Desorption Equilibrium

    Institute of Scientific and Technical Information of China (English)

    秦炜; 原永辉; 戴猷元

    2001-01-01

    Effects of ultrasound on intensification of separation process were investigated through the experiment of desorption equilibrium behavior. Tri-butyl phosphate (TBP) on NKA-X resin and phenol on a solvent impregnated resin, CL-TBP resin, were used for desorption processes. The desorption rate was measured with and without ultrasound. Desorption equilibrium was studied under various ultrasonic power densities or thermal infusion. Results showed that the desorption rate with ultrasound was much higher than that with normal thermal infusion. Both ultrasound and thermal infusion broke the desorption equilibrium existed at room temperature. However, after the systems were cooled down, the amount of solute desorbed in the liquid phase in the presence of ultrasound was much higher than that at the temperature corresponding to the same ultrasound power. It is proved that the initial desorption equilibrium was broken as a result of the spot energy effect of ultrasound.

  2. Enzyme extraction by ultrasound from sludge flocs

    Institute of Scientific and Technical Information of China (English)

    YU Guanghui; HE Pinjing; SHAO Liming; ZHU Yishu

    2009-01-01

    Enzymes play essential roles in the biological processes of sludge treatment. In this article, the ultrasound method to extract enzymes from sludge flocs was presented. Results showed that using ultrasound method at 20 kHz could extract more types of enzymes than that ultrasound at 40 kHz and ethylenediamine tetraacetic acid (EDTA) methods. The optimum parameters of ultrasound extraction at 20 kHz were duration of 10 min and power of 480 W. Under the condition, ultrasound could break the cells and extract both the extracellular and intercellular enzymes. Ultrasound power was apparently more susceptive to enzyme extraction than duration, suggesting that the control of power during ultrasound extraction was more important than that of duration. The Pearson correlation analysis between enzyme activities and cation contents revealed that the different types of enzymes had distinct cation binding characteristics.

  3. Computerized Ultrasound Risk Evaluation (CURE) System: Development of Combined Transmission and Reflection Ultrasound with New Reconstruction Algorithms for Breast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Littrup, P J; Duric, N; Azevedo, S; Chambers, D; Candy, J V; Johnson, S; Auner, G; Rather, J; Holsapple, E T

    2001-09-07

    Our Computerized Ultrasound Risk Evaluation (CURE) system has been developed to the engineering prototype stage and generated unique data sets of both transmission and reflection ultrasound (US). This paper will help define the clinical underpinnings of the developmental process and interpret the imaging results from a similar perspective. The CURE project was designed to incorporate numerous diagnostic parameters to improve upon two major areas of early breast cancer detection. CURE may provide improved tissue characterization of breast masses and reliable detection of abnormal microcalcifications found in some breast cancers and ductal carcinoma in situ (DCIS). Current breast US is limited to mass evaluation, whereas mammography also detects and guides biopsy of malignant calcifications. Screening with CURE remains a distant goal, but improved follow-up of mammographic abnormalities may represent a feasible breakthrough. Improved tissue characterization could result in reduction of the estimated one million benign biopsies each year in the United States, costing up to several billion dollars. Most breast calcifications are benign and comprise-80% of stereotactic biopsies guided by mammography. Ultrasound has the capability of finding some groups of calcifications, but further improvements in resolution should also address tissue characterization to define the soft tissue filling of ducts by DCIS. In this manner, CURE may be able to more accurately identify the malignant calcifications associated with progression of DCIS or early cancers. Currently, high-resolution US images of the breast are performed in the reflection mode at higher frequencies, which also limits depth of penetration. Reconstruction of reflection ultrasound images relies upon acoustic impedance differences in the tissue and includes only direct backscatter of the ultrasound signal. Resolution and tissue contrast of current US continues to improve with denser transducer arrays and image

  4. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... barium exams, CT scanning , and MRI are the methods of choice in such a setting. Large patients are more difficult to image by ultrasound because greater amounts of tissue attenuate (weaken) the sound waves as they pass deeper into the body. top of page This page was reviewed on June ...

  5. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... gallbladder spleen pancreas intestines kidneys bladder testicles ovaries uterus Abdominal ultrasound images can be used to help ... that is being examined to the transducer (the device used to examine the patient), as well ... is not a medical facility. Please contact your physician with specific medical ...

  6. Medical ultrasound education for bioengineers

    Science.gov (United States)

    Vaezy, Shahram

    2005-04-01

    The widespread adoption of ultrasound technologies in medicine has necessitated the development of educational programs to address the growing demand for trained expertise in both academia and industry. The demand has been especially great in the field of therapeutic ultrasound that has experienced a significant level of research and development activities in the past decade. The applications cover a wide range including cancer treatment, hemorrhage control, cardiac ablation, gene therapy, and cosmetic surgery. A comprehensive educational program in ultrasound is well suited for bioengineering departments at colleges and universities. Our educational program for students in Bioengineering at the University of Washington includes a year-long coursework covering theory and practice of ultrasound, conducting research projects, attending and presenting at weekly seminars on literature survey, presentations at scientific meetings, and attending specialized workshops offered by various institutions for specific topics. An important aspect of this training is its multi-disciplinary approach, encompassing science, engineering, and medicine. The students are required to build teams with expertise in these disciplines. Our experience shows that these students are well prepared for careers in academia, conducting cutting edge research, as well as industry, being involved in the transformation of research end-products to commercially viable technology.

  7. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... children. It is also valuable for evaluating the brain, spinal cord and hip joints in newborns and infants. Risks For standard diagnostic ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  8. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... torsion or twisting of a testicle limiting proper blood flow into it. top of page How should we prepare? Your child should be dressed in comfortable, loose-fitting clothing for an ultrasound exam. Other preparation depends on the type of examination. For some scans, your doctor may ...

  9. Vascular ultrasound for atherosclerosis imaging

    NARCIS (Netherlands)

    C.L. de Korte (Chris); H.H.G. Hansen (Hendrik); A.F.W. van der Steen (Anton)

    2011-01-01

    textabstractCardiovascular disease is a leading cause of death in the Western world. Therefore, detection and quantification of atherosclerotic disease is of paramount importance to monitor treatment and possible prevention of acute events. Vascular ultrasound is an excellent technique to assess the

  10. Ultrasound tomography of breast tissue

    Science.gov (United States)

    Duric, Nebojsa; Littrup, Peter J.; Holsapple, Earle; Babkin, Alex; Duncan, Robert; Kalinin, Arkady; Pevzner, Roman; Tokarev, Michael

    2003-05-01

    The Karmanos Cancer Institute is developing an ultrasound device for measuring and imaging acoustic parameters of human tissue. This paper discusses the experimental results relating to tomographic reconstructions of phantoms and tissue. The specimens were scanned by the prototype scanner at a frequency of 1.5 MHz using 2 microsecond pulses. The receivers and transmitters were positioned along a ring trajectory having a diameter of 20 cm. The ring plane is translated in the vertical direction allowing for 3-D reconstructions from stacked 2-D planes of data. All ultrasound scans were performed at 10 millimeter slice thickness to generate multiple tomographic images. In a previous SPIE paper we presented preliminary results of ultrasound tomographic reconstruction of formalin-fixed breast tissue. We now present new results from data acquired with the scanner. Images were constructed using both reflection-based and transmission based algorithms. The resulting images demonstrate the ability to detect sub-mm features and to measure acoustic properties such as sound speed. Comparison with conventional ultrasound indicates the potential for better margin definition and acoustic characterization of tissue.

  11. Ultrasound fields from triangular apertures

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1996-01-01

    The pulsed field from a triangular aperture mounted in an infinite, rigidbaffle is calculated. The approach of spatial impulse responses,as developed by Tupholme and Stepanishen, is used. By this both the emitted and received pulsed ultrasound field can be found for any transducerexcitation...

  12. Nonparametric estimation of ultrasound pulses

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Leeman, Sidney

    1994-01-01

    An algorithm for nonparametric estimation of 1D ultrasound pulses in echo sequences from human tissues is derived. The technique is a variation of the homomorphic filtering technique using the real cepstrum, and the underlying basis of the method is explained. The algorithm exploits a priori...

  13. Endoscopic ultrasound via the esophagus

    DEFF Research Database (Denmark)

    Bødtger, Uffe; Clementsen, Paul; Annema, Jouke;

    2010-01-01

    "endoscopic ultrasound (EUS) and lung cancer" in PubMed was conducted. Invasive procedures (mediastinoscopy, thoracoscopy/-tomy) are the gold standard. The specificity of EUS was between 97 and 100%, and sensitivity 90 to 92%. The sensitivity was lower in studies published before 2000, and in computed...

  14. Ultrasound Imaging and its modeling

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2002-01-01

    Modern medical ultrasound scanners are used for imaging nearly all soft tissue structures in the body. The anatomy can be studied from gray-scale B-mode images, where the reflectivity and scattering strength of the tissues are displayed. The imaging is performed in real time with 20 to 100 images...

  15. A Study of Laser-generated Ultrasound for Evaluation of Thickness Reduction in Piping System

    International Nuclear Information System (INIS)

    In carbon steel pipes of nuclear power plants, local wall thinning may result from erosion-corrosion or FAC(Flow Accelerated Corrosion) damage. Local wall thinning is one of the major causes for the structural fracture of these pipes. Therefore, assessment of local wall thinning due to corrosion is an important issue in nondestructive evaluation for the integrity of nuclear power plants. In this study, laser-generated ultrasound technique was employed to evaluate local wall thinning due to corrosion. Guided waves were generated in the thermoelastic regime using a Q-switched pulsed Nd:YAG laser with an linear array slit. Time-frequency analysis of ultrasonic waveforms using wavelet transform and FRT(Fast Fourier Transform) allowed the identification of generated guided wave modes by comparison with the theoretical dispersion curves. This study shows some experimental results about optimization of generating laser ultrasound using various linear array slits.

  16. Damage detection of carbon reinforced composites using nondestructive evaluation with ultrasound and electromagnetic methods

    Science.gov (United States)

    Savin, A.; Barsanescu, P. D.; Vizureanu, P.; Stanciu, M. D.; Curtu, I.; Iftimie, N.; Steigmann, R.

    2016-06-01

    CFRP have applications among most different domains due their low density, high elastic modulus and high ultimate strength along the carbon fibers direction, no fatigue and the expansion coefficient is small. This paper presents the behavior of carbon fiber woven-PPS composites at low velocity impacts. The transversal electrical conductivity is modified due to the plastic deformation following the impacts, and thus electromagnetic procedures can be used for assessment of CFRP using a high resolution sensor with metamaterials lens and comparing the results with those obtained from ultrasound testing with phased array sensor. The area of the delamination is overestimated when the method of phased array ultrasound is used and substantially underestimated by the electromagnetic testing. There were a good agreement between the simulations with finite element method and experimental measurements.

  17. Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... as the reference. A linear array transducer with 64 active elements is simulated by both Field II and Abersim. The excitation is a 2-cycle sine wave with a frequency of 5 MHz. The second harmonic field in the time domain is simulated using ASA. Pulse inversion is used in the Abersim simulation to remove...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...

  18. Driving Circuitry for Focused Ultrasound Noninvasive Surgery and Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Kullervo Hynynen

    2011-01-01

    Full Text Available Recent works on focused ultrasound (FUS have shown great promise for cancer therapy. Researchers are continuously trying to improve system performance, which is resulting in an increased complexity that is more apparent when using multi-element phased array systems. This has led to significant efforts to reduce system size and cost by relying on system integration. Although ideas from other fields such as microwave antenna phased arrays can be adopted in FUS, the application requirements differ significantly since the frequency range used in FUS is much lower. In this paper, we review recent efforts to design efficient power monitoring, phase shifting and output driving techniques used specifically for high intensity focused ultrasound (HIFU.

  19. Visualizing ultrasound through computational modeling

    Science.gov (United States)

    Guo, Theresa W.

    2004-01-01

    The Doppler Ultrasound Hematocrit Project (DHP) hopes to find non-invasive methods of determining a person s blood characteristics. Because of the limits of microgravity and the space travel environment, it is important to find non-invasive methods of evaluating the health of persons in space. Presently, there is no well developed method of determining blood composition non-invasively. This projects hopes to use ultrasound and Doppler signals to evaluate the characteristic of hematocrit, the percentage by volume of red blood cells within whole blood. These non-invasive techniques may also be developed to be used on earth for trauma patients where invasive measure might be detrimental. Computational modeling is a useful tool for collecting preliminary information and predictions for the laboratory research. We hope to find and develop a computer program that will be able to simulate the ultrasound signals the project will work with. Simulated models of test conditions will more easily show what might be expected from laboratory results thus help the research group make informed decisions before and during experimentation. There are several existing Matlab based computer programs available, designed to interpret and simulate ultrasound signals. These programs will be evaluated to find which is best suited for the project needs. The criteria of evaluation that will be used are 1) the program must be able to specify transducer properties and specify transmitting and receiving signals, 2) the program must be able to simulate ultrasound signals through different attenuating mediums, 3) the program must be able to process moving targets in order to simulate the Doppler effects that are associated with blood flow, 4) the program should be user friendly and adaptable to various models. After a computer program is chosen, two simulation models will be constructed. These models will simulate and interpret an RF data signal and a Doppler signal.

  20. Micromachining techniques in developing high-frequency piezoelectric composite ultrasonic array transducers.

    Science.gov (United States)

    Liu, Changgeng; Djuth, Frank T; Zhou, Qifa; Shung, K Kirk

    2013-12-01

    Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm(2) with a 16-μm kerf between elements. The active piezoelectric material is (1 - x) Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT)/epoxy 1-3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse-echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the -6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about -33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027

  1. Design and Implementation of High Frequency Ultrasound Pulsed-Wave Doppler Using FPGA

    OpenAIRE

    Hu, Chang-Hong; Zhou, Qifa; Shung, K. Kirk

    2008-01-01

    The development of a field-programmable gate array (FPGA)-based pulsed-wave Doppler processing approach in pure digital domain is reported in this paper. After the ultrasound signals are digitized, directional Doppler frequency shifts are obtained with a digital-down converter followed by a low-pass filter. A Doppler spectrum is then calculated using the complex fast Fourier transform core inside the FPGA. In this approach, a pulsed-wave Doppler implementation core with reconfigurable and rea...

  2. Optimization of ultrasound-assisted extraction of phenolic compounds from Cimicifugae rhizoma with response surface methodology

    OpenAIRE

    Liu, Lin; Shen, Bao-Jia; Xie, Dong-Hao; Cai, Bao-chang; Qin, Kun-Ming; Cai, Hao

    2015-01-01

    Background: Cimicifugae rhizoma was a Ranunculaceae herb belonging to the composite family, and the roots of C. rhizoma have been widely used in tradition Chinese medicine. Materials and Methods: Ultrasound-assisted extraction (UAE) of phenolic compounds from C. rhizoma. Caffeic acid (CA), isoferulic acid (IA), ferulic acid (FA), and total phenols were quantified by high-performance liquid chromatography-diode array detection and ultraviolet-visible spectrophotometer. Effects of several exper...

  3. Ultrasound-Assisted Extraction of Total Phenolic Compounds from Inula helenium

    OpenAIRE

    Jin Wang; Yong-Ming Zhao; Ya-Ting Tian; Chun-Lin Yan; Chun-Yan Guo

    2013-01-01

    Ultrasound-assisted extraction (UAE) of phenolic compounds from Inula helenium was studied. Effects of ethanol concentration, ultrasonic time, solid-liquid ratio, and number of extractions were investigated. An orthogonal array was constructed to optimize UAE process. The optimized extraction conditions were as follows: ethanol concentration, 30%; solid-liquid ratio, 1 : 20; number of extractions, 2 times; extraction time, 30 min. Under the optimal conditions, the yield of total phenolic comp...

  4. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  5. Pacific Array (Transportable Broadband Ocean Floor Array)

    Science.gov (United States)

    Kawakatsu, Hitoshi; Ekstrom, Goran; Evans, Rob; Forsyth, Don; Gaherty, Jim; Kennett, Brian; Montagner, Jean-Paul; Utada, Hisashi

    2016-04-01

    Based on recent developments on broadband ocean bottom seismometry, we propose a next generation large-scale array experiment in the ocean. Recent advances in ocean bottom broadband seismometry1, together with advances in the seismic analysis methodology, have enabled us to resolve the regional 1-D structure of the entire lithosphere/asthenosphere system, including seismic anisotropy (azimuthal, and hopefully radial), with deployments of ~15 broadband ocean bottom seismometers (BBOBSs). Having ~15 BBOBSs as an array unit for a 2-year deployment, and repeating such deployments in a leap-frog way or concurrently (an array of arrays) for a decade or so would enable us to cover a large portion of the Pacific basin. Such efforts, not only by giving regional constraints on the 1-D structure beneath Pacific ocean, but also by sharing waveform data for global scale waveform tomography, would drastically increase our knowledge of how plate tectonics works on this planet, as well as how it worked for the past 150 million years. International collaborations is essential: if three countries/institutions participate this endeavor together, Pacific Array may be accomplished within five-or-so years.

  6. Intra-operative ultrasound-guided needle localization for impalpable testicular lesions

    Energy Technology Data Exchange (ETDEWEB)

    Browne, R.F.J.; Jeffers, M.; McDermott, T.; Grainger, R.; Mulvin, D.; Gibney, R.G.; Torreggiani, W.C. E-mail: williammart@hotmail.com

    2003-07-01

    AIMS: To describe a new technique of intra-operative ultrasound-guided needle localization of impalpable intratesticular lesions. MATERIALS AND METHODS: Three patients with impalpable testicular lesions identified on ultrasound underwent needle localization under ultrasound guidance. The procedure was performed in the operating theatre under general anaesthetic using a 7.5-8 MHz linear array probe and a portable ultrasound machine. Under direct guidance, a 21 G needle was placed through the centre of the lesion allowing resection and immediate frozen section analysis. RESULTS: In two patients malignancy was confirmed and an orchidectomy was performed. In one patient a benign lesion was detected obviating the need for orchidectomy. CONCLUSION: Patients presenting with impalpable testicular lesions can pose a diagnostic dilemma and orchidectomy is often performed. We describe an ultrasound-guided intra-operative localization technique enabling direct pathological examination so surgical approach can be re-evaluated in the presence of a benign lesion. This is particularly important in the case of a solitary testicle in order to preserve testicular function.

  7. Telescope Array Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, H.; Yoshida, S. [Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522 (Japan); Yoshii, H. [Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577 (Japan); Tanaka, K. [Hiroshinma City University, 3-4-1 Ozuka-Higashi, Asa-Minami-ku, Hiroshima, 731-3194 (Japan); Cohen, F.; Fukushima, M.; Hayashida, N.; Hiyama, K.; Ikeda, D.; Kido, E.; Kondo, Y.; Nonaka, T.; Ohnishi, M.; Ohoka, H.; Ozawa, S.; Sagawa, H.; Sakurai, N.; Shibata, T.; Shimodaira, H.; Takeda, M. [ICRR, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8582 (Japan)] (and others)

    2008-01-15

    The TA observatory is a hybrid detector system consisting of both a surface detector array as well as a set of fluorescence detectors. The observatory will measure the energy spectrum, anisotropy and composition of ultra-high energy cosmic rays. The surface detectors are being deployed and the array should be complete by the end of February, 2007. We will soon be collecting hybrid data at the Telecope Array.

  8. Integrated avalanche photodiode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  9. Soleus muscle injury: sensitivity of ultrasound patterns

    International Nuclear Information System (INIS)

    To assess the sensitivity of ultrasound in detecting soleus muscle lesions diagnosed on magnetic resonance imaging (MRI) and to characterize their location, ultrasound pattern, and evolution. Ultrasound and MRI studies were performed between May 2009 and February 2013 on all patients who presented to the Medical Services Clinic of the Catalan Sport Council with the initial onset of sharp pain in the calf compatible with injury of the soleus muscle. An inter-observer ultrasound reliability study was also performed. A total of 55 cases of soleus injury were studied prospectively (22 with right leg involvement, 33 left) by ultrasound and MRI, which was utilized as the ''gold standard.'' In MRI studies, 24 cases (43.7 %) had myofascial injuries that were localized in the posterior aponeurosis (PMF) in 15 cases (27.3 %) and in the anterior aponeurosis (AMF) in 9 (16.4 %). Thirty-one cases (56.3 %) were musculotendinous injuries, with 9 cases (16.4 %) in the medial aponeurosis (MMT), 11 cases (20 %) in the lateral aponeurosis (LMT), and 11 cases (20 %) in the central tendon (CMT). In comparison to MRI, ultrasound was able to detect injury to the soleus in 27.2 % of cases. No injuries were detected by ultrasound alone. Posterior myofascial injuries were more likely to be detected by ultrasound than anterior myofascial injuries or all types of musculotendinous injuries. Ultrasound patterns for each type of injury were described. Ultrasound is not a sensitive technique for detecting and assessing soleus traumatic tears compared with MRI, although the sensitivity is enhanced by a thorough anatomically based ultrasound examination. Timing of the ultrasound examination may be of importance. Each type of soleus injury appears to have a characteristic ultrasound pattern based on a defect of connective expansions, the existence of small myofascial filiform collections, and the rarefaction of the fibrillar area. (orig.)

  10. Soleus muscle injury: sensitivity of ultrasound patterns

    Energy Technology Data Exchange (ETDEWEB)

    Balius, Ramon [Sport Catalan Council, Generalitat de Catalunya, Barcelona (Spain); Clinica CMI Diagonal, Barcelona (Spain); Rodas, Gil [F.C. Barcelona Medical Services, Barcelona (Spain); Pedret, Carles [Clinica CMI Diagonal, Barcelona (Spain); Clinica Mapfre de Medicina del Tenis, Sports Medicine and Imaging Department, Barcelona (Spain); Centre de Diagnostic per Imatge de Tarragona, Tarragona (Spain); Capdevila, Lluis [Universitat Autonoma de Barcelona, Laboratory of Sport Psychology, Barcelona (Spain); Alomar, Xavier [Clinica Creu Blanca, Barcelona (Spain); Bong, David A. [Instituto Poal de Reumatologia, Barcelona (Spain)

    2014-06-15

    To assess the sensitivity of ultrasound in detecting soleus muscle lesions diagnosed on magnetic resonance imaging (MRI) and to characterize their location, ultrasound pattern, and evolution. Ultrasound and MRI studies were performed between May 2009 and February 2013 on all patients who presented to the Medical Services Clinic of the Catalan Sport Council with the initial onset of sharp pain in the calf compatible with injury of the soleus muscle. An inter-observer ultrasound reliability study was also performed. A total of 55 cases of soleus injury were studied prospectively (22 with right leg involvement, 33 left) by ultrasound and MRI, which was utilized as the ''gold standard.'' In MRI studies, 24 cases (43.7 %) had myofascial injuries that were localized in the posterior aponeurosis (PMF) in 15 cases (27.3 %) and in the anterior aponeurosis (AMF) in 9 (16.4 %). Thirty-one cases (56.3 %) were musculotendinous injuries, with 9 cases (16.4 %) in the medial aponeurosis (MMT), 11 cases (20 %) in the lateral aponeurosis (LMT), and 11 cases (20 %) in the central tendon (CMT). In comparison to MRI, ultrasound was able to detect injury to the soleus in 27.2 % of cases. No injuries were detected by ultrasound alone. Posterior myofascial injuries were more likely to be detected by ultrasound than anterior myofascial injuries or all types of musculotendinous injuries. Ultrasound patterns for each type of injury were described. Ultrasound is not a sensitive technique for detecting and assessing soleus traumatic tears compared with MRI, although the sensitivity is enhanced by a thorough anatomically based ultrasound examination. Timing of the ultrasound examination may be of importance. Each type of soleus injury appears to have a characteristic ultrasound pattern based on a defect of connective expansions, the existence of small myofascial filiform collections, and the rarefaction of the fibrillar area. (orig.)

  11. Application of different spatial sampling patterns for sparse-array transducer design

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2000-01-01

    In the last years the efforts of many researchers have been focused ondeveloping 3D real-time scanners. The use of 2D phased-array transducers makes it possible to steer the ultrasonicbeam in all directions in the scanned volume. An unacceptably large amount oftransducer channels (more than $4000...... of the ultrasound fields show a decrease of the grating-lobe level of 10 dB for the diagonally optimized 2D array transducers compared to the the previuosly designed 2D arrays which didn't consider the diagonals....

  12. Pulse-Echo Phased Array Ultrasonic Inspection of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS)

    Science.gov (United States)

    Johnston, Pat H.

    2010-01-01

    A PRSEUS test article was subjected to controlled impact on the skin face followed by static and cyclic axial compressions. Phased array ultrasonic inspection was conducted before impact, and after each of the test conditions. A linear phased array probe with a manual X-Y scanner was used for interrogation. Ultrasound showed a delamination between the skin and stringer flange adjacent to the impact. As designed, the stitching in the flange arrested the lateral flaw formation. Subsequent ultrasonic data showed no delamination growth due to continued loading. Keywords: Phased Array, Ultrasonics, Composites, Out-of-Autoclave

  13. Lung ultrasound: Present and future

    Directory of Open Access Journals (Sweden)

    Ashish Saraogi

    2015-01-01

    Full Text Available The scope of lung ultrasound (LUS in emergency and critical care settings has been studied extensively. LUS is easily available at bedside, free of radiation hazard and real time. All these features make it useful in reducing need of bedside X-rays and CT scan of chest. LUS has been proven to be superior to the bedside chest X-ray and equal to chest CT in diagnosing many pleural and lung pathologies. The first International Consensus Conference on Lung Ultrasound (ICC-LUS has given recommendations for unified approach and language in major six areas of LUS. The LUS diagnosis is to be given after integration of findings of both lungs. The BLUE protocol is first LUS-based systematic approach in diagnosing pleural and lung pathologies. The protocol suggested in this article includes history and conventional clinical assessment along with LUS features.

  14. Singulation for imaging ring arrays of capacitive micromachined ultrasonic transducers

    International Nuclear Information System (INIS)

    Singulation of MEMS is a critical step in the transition from wafer-level to die-level devices. As is the case for capacitive micromachined ultrasound transducer (CMUT) ring arrays, an ideal singulation must protect the fragile membranes from the processing environment while maintaining a ring array geometry. The singulation process presented in this paper involves bonding a trench-patterned CMUT wafer onto a support wafer, deep reactive ion etching (DRIE) of the trenches, separating the CMUT wafer from the support wafer and de-tethering the CMUT device from the CMUT wafer. The CMUT arrays fabricated and singulated in this process were ring-shaped arrays, with inner and outer diameters of 5 mm and 10 mm, respectively. The fabricated CMUT ring arrays demonstrate the ability of this method to successfully and safely singulate the ring arrays and is applicable to any arbitrary 2D shaped MEMS device with uspended microstructures, taking advantage of the inherent planar attributes of DRIE. (technical note)

  15. A View on Despeckling in Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    S.Kalaivani Narayanan

    2009-09-01

    Full Text Available Ultrasound imaging is a widely used and safe medical diagnostic technique, due to its noninvasive nature, low cost and capability of forming real time imaging. However the usefulness of ultrasound imaging is degraded by the presence of signal dependant noise knownas speckle. The speckle pattern depends on the structure of the image tissue and various imaging parameters. There are two main purposes for speckle reduction in medical ultrasound imaging (1 to improve the human interpretation of ultrasound images (2 despeckling is the preprocessing step for many ultrasound image processing tasks such as segmentation and registration. A number of methods have been proposed for speckle reduction in ultrasoundimaging. While incorporating speckle reduction techniques as an aid for visual diagnosis, it has to keep in mind that certain speckle contains diagnostic information and should be retained. The objective of this paper is to give an overview about types of speckle reduction techniques in ultrasound imaging.

  16. Towards Dynamic Contrast Specific Ultrasound Tomography

    Science.gov (United States)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-10-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  17. Solar array deployment mechanism

    Science.gov (United States)

    Calassa, Mark C.; Kackley, Russell

    1995-05-01

    This paper describes a Solar Array Deployment Mechanism (SADM) used to deploy a rigid solar array panel on a commercial spacecraft. The application required a deployment mechanism design that was not only lightweight, but also could be produced and installed at the lowest possible cost. This paper covers design, test, and analysis of a mechanism that meets these requirements.

  18. Ultrasound: From Earth to Space

    OpenAIRE

    Law, Jennifer; Macbeth, Paul. B.

    2011-01-01

    Ultrasonography is a versatile imaging modality that offers many advantages over radiography, computed tomography, and magnetic resonance imaging. On Earth, the use of ultrasound has become standard in many areas of medicine including diagnosis of medical and surgical diseases, management of obstetric and gynecologic conditions, assessment of critically ill patients, and procedural guidance. Advances in telecommunications have enabled remotely-guided ultrasonography for both geographically is...

  19. Ultrasound evaluation of penile fractures

    OpenAIRE

    Kachewar, SG; Kulkarni, DS

    2011-01-01

    This short case report discusses the various aspects of penile fracture, which is a rare entity. Nevertheless, the incidence of penile fractures is on the rise due to the increased use of performance-enhancing drugs. An individual with a penile fracture should seek immediate medical referral. Prompt diagnosis and management is necessary to prevent undesirable after-effects as discussed. Emphasis is made on how imaging with ultrasound enables a quick and complete assessment of this mishap.

  20. Three-dimensional obstetric ultrasound.

    Science.gov (United States)

    Tache, Veronique; Tarsa, Maryam; Romine, Lorene; Pretorius, Dolores H

    2008-04-01

    Three-dimensional ultrasound has gained a significant popularity in obstetrical practice in recent years. The advantage of this modality in some cases is in question, however. This article provides a basic review of volume acquisition, mechanical positioning, and display modalities. Multiple uses of this technique in obstetrical care including first trimester applications and its utility in clarification of fetal anatomy such as brain, face, heart, and skeleton is discussed. PMID:18450140

  1. Ultrasound Current Source Density Imaging

    OpenAIRE

    Olafsson, Ragnar; Witte, Russell S.; Huang, Sheng-Wen; O’Donnell, Matthew

    2008-01-01

    Surgery to correct severe heart arrhythmias usually requires detailed maps of the cardiac activation wave prior to ablation. The pinpoint electrical mapping procedure is laborious and limited by its spatial resolution (5–10 mm). We propose ultrasound current source density imaging (UCSDI), a direct 3-D imaging technique that potentially facilitates existing mapping procedures with superior spatial resolution. The technique is based on a pressure-induced change in resistivity known as the acou...

  2. Venous catheterization with ultrasound navigation

    Energy Technology Data Exchange (ETDEWEB)

    Kasatkin, A. A., E-mail: ant-kasatkin@yandex.ru; Nigmatullina, A. R. [Izhevsk State Medical Academy, Kommunarov street, 281, Izhevsk, Russia, 426034 (Russian Federation); Urakov, A. L., E-mail: ant-kasatkin@yandex.ru [Institute of Mechanics Ural Branch of Russian Academy of Sciences, T.Baramzinoy street 34, Izhevsk, Russia, 426067, Izhevsk (Russian Federation); Izhevsk State Medical Academy, Kommunarov street, 281, Izhevsk, Russia, 426034 (Russian Federation)

    2015-11-17

    By ultrasound scanning it was determined that respiratory movements made by chest of healthy and sick person are accompanied by respiratory chest rise of internal jugular veins. During the exhalation of an individual diameter of his veins increases and during the breath it decreases down to the complete disappearing if their lumen. Change of the diameter of internal jugular veins in different phases can influence significantly the results of vein puncture and cauterization in patients. The purpose of this research is development of the method increasing the efficiency and safety of cannulation of internal jugular veins by the ultrasound visualization. We suggested the method of catheterization of internal jugular veins by the ultrasound navigation during the execution of which the puncture of venous wall by puncture needle and the following conduction of J-guide is carried out at the moment of patient’s exhalation. This method decreases the risk of complications development during catheterization of internal jugular vein due to exclusion of perforating wound of vein and subjacent tissues and anatomical structures.

  3. Ultrasound Techniques for Space Applications

    Science.gov (United States)

    Rooney, James A.

    1985-01-01

    Ultrasound has proven to be a safe non-invasive technique for imaging organs and measuring cardiovascular function. It has unique advantages for application to problems with man in space including evaluation of cardiovascular function both in serial studies and during critical operations. In addition, specialized instrumentation may be capable of detecting the onset of decompression sickness during EVA activities. A spatial location and three-dimensional reconstruction system is being developed to improve the accuracy and reproducibility for serial comparative ultrasound studies of cardiovascular function. The three-dimensional method permits the acquisition of ultrasonic images from many views that can be recombined into a single reconstruction of the heart or vasculature. In addition to conventional imaging and monitoring systems, it is sometimes necessary or desirable to develop instrumentation for special purposes. One example of this type of development is the design of a pulsed-Doppler system to monitor cerebral blood flow during critical operations such as re-entry. A second example is the design of a swept-frequency ultrasound system for the detection of bubbles in the circulatory system and/or soft tissues as an early indication of the onset of decompression sickness during EVA activities. This system exploits the resonant properties of bubbles and can detect both fundamental and second harmonic emissions from the insonified region.

  4. Ultrasound in evaluating ovarian reserve

    Directory of Open Access Journals (Sweden)

    Eman Ahmaed Shawky Sabek

    2015-12-01

    Full Text Available The objective of this study was to compare the diagnostic accuracy of transvaginal ultrasound (TVS, as a less invasive technique instead of hormonal assay to evaluate the ovarian reserve. This study included fifty-five females with breast cancer and we compared the ovarian reserve for these patients by hormonal assay through measuring the serum AntiMullerian Hormone (AMH level and follicular stimulating hormone (FSH level before and after chemotherapy, and by transvaginal ultrasound through the ovarian volume (OV calculation and counting the Antral follicles (AFC before and after chemotherapy treatment. There was decline in the AntiMullerian Hormone level after chemotherapy by 27 ± 11.19% and decrease in the Antral follicle counts by 21 ± 13.43%. In conclusion there was strong relation between AMH level and AFC which makes the use of transvaginal ultrasound is a reliable alternative method to the hormonal assay to detect the ovarian reserve.

  5. Colour Doppler ultrasound of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, C.J.; Sriprasad, S.; Sidhu, P.S. E-mail: paulsidhu@compuserve.com

    2003-07-01

    Because it is a superficial structure, the penis is ideally suited to ultrasound imaging. A number of disease processes, including Peyronie's disease, penile fractures and penile tumours, are clearly visualized with ultrasound. An assessment of priapism can also be made using spectral Doppler waveform technology. Furthermore, dynamic assessment of cavernosal arterial changes after pharmaco-stimulation allows diagnosis of arterial and venogenic causes for impotence. This pictorial review illustrates the range of diseases encountered with ultrasound of the penis.

  6. Application of ultrasound in periodontics: Part I

    OpenAIRE

    Bains, Vive K.; Mohan, Ranjana; Bains, Rhythm

    2008-01-01

    Ultrasonic is a branch of acoustics concerned with sound vibrations in frequency ranges above audible level. Ultrasound uses the transmission and reflection of acoustic energy. A pulse is propagated and its reflection is received, both by the transducer. For clinical purposes ultrasound is generated by transducers, which converts electrical energy into ultrasonic waves. This is usually achieved by magnetostriction or piezoelectricity. Primary effects of ultrasound are thermal, mechanical (cav...

  7. Contrast enhanced ultrasound of breast cancer

    OpenAIRE

    Cassano, E; Rizzo, S; Bozzini, A; S. Menna; Bellomi, M

    2006-01-01

    The importance of ultrasound examination in the diagnosis of breast cancer has been widely demonstrated. During the last few years, the introduction of ultrasound contrast media has been considered a promising tool for studying the vascular pattern of focal lesions within the breast. Our purpose was to assess whether contrast-enhanced (CE) ultrasound examination, performed using specific contrast imaging modes, can be helpful for detection and characterization of breast lesions, and for predi...

  8. A View on Despeckling in Ultrasound Imaging

    OpenAIRE

    S.Kalaivani Narayanan; R.S.D.Wahidabanu

    2009-01-01

    Ultrasound imaging is a widely used and safe medical diagnostic technique, due to its noninvasive nature, low cost and capability of forming real time imaging. However the usefulness of ultrasound imaging is degraded by the presence of signal dependant noise knownas speckle. The speckle pattern depends on the structure of the image tissue and various imaging parameters. There are two main purposes for speckle reduction in medical ultrasound imaging (1) to improve the human interpretation of u...

  9. [Ultrasound diagnosis in patients with renal colic].

    Science.gov (United States)

    Belyĭ, L E

    2009-01-01

    The paper is devoted to ultrasonography of the upper urinary tract with reference to ultrasound semiotics of its acute obstruction, detection of hydronephrotic transformation of the kidneys, and methods for optimization of ultrasound diagnosis of urodynamics. Merits and demerits of ultrasound technique for the diagnosis of renal colic are discussed. Major difficulties encountered in dopplerographic diagnosis of disturbed urine passage and renal hemodynamics are described.

  10. Ultrasound-Guided Fine Needle Aspiration Biopsy of the Thyroid

    Science.gov (United States)

    ... Index A-Z Ultrasound-Guided Fine Needle Aspiration Biopsy of the Thyroid An ultrasound-guided thyroid biopsy ... Thyroid? What is Ultrasound-Guided Fine Needle Aspiration Biopsy of the Thyroid? During a fine needle aspiration ...

  11. Micromachined electrode array

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat (Edgewood, NM); Wessendorf, Kurt O. (Albuquerque, NM)

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  12. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  13. Ultrasound-assisted dealumination of zeolite Y

    Indian Academy of Sciences (India)

    M Hosseini; M A Zanjanchi; B Ghalami-Choobar; H Golmojdeh

    2015-01-01

    We demonstrate a new procedure for dealumination of zeolite Y. The method employs a 28 KHz ultrasound bath and an ethanolic acetylacetone solution. Acetylacetone was used as chelating agent and ultrasound irradiation was used as extraction intensifier. Four types of samples, as-synthesized, ammoniumexchanged, acidic and neutralized zeolite were used for dealumination. Parts of the framework aluminumatoms are removed from their sites in the structure of zeolite Y upon the use of either acetylacetone on its own or simultaneous use of acetylacetone and ultrasound waves. Higher dealumination was observed for those samples subjected to both ultrasound irradiation and acetylacetone extraction.

  14. American Institute of Ultrasound in Medicine

    Science.gov (United States)

    ... Careers Related Sites Buyers Guide Sound Waves Newsletter Ultrasound Awareness (MUAM) Member Directory Accreditation Application Instructions Frequently Asked Questions Access Accreditation Account Accredited ...

  15. Spatial and Temporal Controlled Tissue Heating on a Modified Clinical Ultrasound Scanner for Generating Mild Hyperthermia in Tumors

    OpenAIRE

    Kruse, Dustin E.; Lai, Chun-Yen; Stephens, Douglas N.; Sutcliffe, Patrick; Paoli, Eric E.; Barnes, Stephen H.; Ferrara, Katherine W.

    2010-01-01

    A new system is presented for generating controlled tissue heating with a clinical ultrasound scanner, and initial in vitro and in vivo results are presented that demonstrate both transient and sustained heating in the mild-hyperthermia range of 37–42ºC. The system consists of a Siemens Antares™ ultrasound scanner, a custom dual-frequency 3-row transducer array and an external temperature feedback control system. The transducer has 2 outer rows that operate at 1.5 MHz for tissue heating and a...

  16. Ultrasound-intensified mineral carbonation

    International Nuclear Information System (INIS)

    Several aspects of ultrasound-assisted mineral carbonation were investigated in this work. The objectives were to intensify the CO2 sequestration process to improve reaction kinetics and maximal conversion. Stainless steel slags, derived from the Argon Oxygen Decarburization (AOD) and Continuous Casting/Ladle Metallurgy (CC/LM) refining steps, were used for assessing the technical feasibility of this concept, as they are potential carbon sinks and can benefit from reduction in alkalinity (pH) by mineral carbonation. Ultrasound was applied by use of an ultrasound horn into the reaction slurry, where mineral carbonation reaction took place at 50 °C for up to 4 h; comparison was made to solely mechanically mixed process. It was found that sonication increases the reaction rate after the initial stage, and permits achieving higher carbonate conversion and lower pH. AOD slag conversion increased from 30% to 49%, and pH decreased from 10.6 to 10.1; CC slag conversion increased from 61% to 73% and pH decreased from 10.8 to 9.9. The enhancement effect of ultrasound was attributed to the removal of passivating layers (precipitated calcium carbonate and depleted silica) that surround the unreacted particle core and inhibit mass transfer. Significant particle size reduction was observed for sonicated powders, compared to particle size growth in the case of stirring-only; D[4,3] values increased without sonication by 74% and 50%, and decreased with sonication by 64% and 52%, respectively for AOD and CC slags. Considerations on scale-up of this technology, particularly with regards to energy efficiency, are also discussed. Highlights: ► Ultrasound increased CaO, AOD and CC slags mineral carbonation rates and conversions. ► Enhancement effect linked to removal of mass transfer inhibiting passivating layers. ►Carbonated particle size grew with stirring-only, and decreased with sonication. ► Lower pH of slags with greater carbonation extent can reduce heavy metal leaching

  17. Minimum training requirement in ultrasound imaging of peripheral arterial disease

    DEFF Research Database (Denmark)

    Eiberg, J P; Hansen, M A; Grønvall Rasmussen, J B;

    2008-01-01

    To demonstrate the minimum training requirement when performing ultrasound of peripheral arterial disease.......To demonstrate the minimum training requirement when performing ultrasound of peripheral arterial disease....

  18. Prediction of Outcome after Femoropopliteal Balloon Angioplasty by Intervascular Ultrasound

    DEFF Research Database (Denmark)

    Schroeder, Torben Veith; Vogt, Katja; Just, S.;

    1997-01-01

    original, intravascular ultrasound, percutaneous transluminal angioplasty, peripheral arteries, plaquemorphology, prediction of outcome......original, intravascular ultrasound, percutaneous transluminal angioplasty, peripheral arteries, plaquemorphology, prediction of outcome...

  19. Introduction to adaptive arrays

    CERN Document Server

    Monzingo, Bob; Haupt, Randy

    2011-01-01

    This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems. With the number of applications of adaptive array sensor systems growing each year, this look at the principles and fundamental techniques that are critical to these systems is more important than ever before. Introduction to Adaptive Arrays, 2nd Edition is organized as a tutorial, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject. It is easy to read and easy to follow as fundamental concept

  20. Ultrasound settings significantly alter arterial lumen and wall thickness measurements

    Directory of Open Access Journals (Sweden)

    Green Daniel J

    2008-01-01

    Full Text Available Abstract Background Flow-mediated dilation (FMD and carotid intima-medial thickness (CIMT, measured by ultrasound, are widely used to test the efficacy of cardioprotective interventions. Although assessment methods vary, automated edge-detecting image analysis software is routinely used to measure changes in FMD and CIMT. We aimed to quantify the effect that commonly adjusted ultrasound settings have on arterial lumen and wall thickness measurements made with CIMT measurement software. Methods We constructed phantom arteries from a tissue-mimicking agar compound and scanned them in a water bath with a 10 MHz multi-frequency linear-array probe attached to a high-resolution ultrasound machine. B-mode images of the phantoms were recorded with dynamic range (DR and gain set at five decibel (dB increments from 40 dB to 60 dB and -10 dB to +10 dB respectively. Lumen diameter and wall-thickness were measured off-line using CIMT measurement software. Results Lumen measurements: there was a strong linear relationship between DR and gain and measured lumen diameter. For a given gain level, a 5 dB increase in DR reduced the measured lumen diameter by 0.02 ± 0.004 mm (p CIMT measurements: For a fixed gain level, a 5 dB increase in DR increased measured wall thickness by 0.003 ± 0.002 mm (p Conclusion DR, gain and probe distance significantly alter lumen diameter and CIMT measurements made using image analysis software. When CIMT and FMD are used to test the efficacy of cardioprotective interventions, the DR, gain and probe position used to record baseline scans should be documented and replicated in post-treatment scans in individual trial subjects. If more than one sonographer or imaging centre is used to collect data, the study protocol should document specific DR and gain settings to be used in all subjects.

  1. Surveillance of hemodialysis vascular access with ultrasound vector flow imaging

    Science.gov (United States)

    Brandt, Andreas H.; Olesen, Jacob B.; Hansen, Kristoffer L.; Rix, Marianne; Jensen, Jørgen A.; Nielsen, Michael B.

    2015-03-01

    The aim of this study was prospectively to monitor the volume flow in patients with arteriovenous fistula (AVF) with the angle independent ultrasound technique Vector Flow Imaging (VFI). Volume flow values were compared with Ultrasound dilution technique (UDT). Hemodialysis patients need a well-functioning vascular access with as few complications as possible and preferred vascular access is an AVF. Dysfunction due to stenosis is a common complication, and regular monitoring of volume flow is recommended to preserve AVF patency. UDT is considered the gold standard for volume flow surveillance, but VFI has proven to be more precise, when performing single repeated instantaneous measurements. Three patients with AVF were monitored with UDT and VFI monthly for five months. A commercial ultrasound scanner with a 9 MHz linear array transducer with integrated VFI was used to obtain data. UDT values were obtained with Transonic HD03 Flow-QC Hemodialysis Monitor. Three independent measurements at each scan session were obtained with UDT and VFI each month. Average deviation of volume flow between UDT and VFI was 25.7 % (Cl: 16.7% to 34.7%) (p= 0.73). The standard deviation for all patients, calculated from the mean variance of each individual scan sessions, was 199.8 ml/min for UDT and 47.6 ml/min for VFI (p = 0.002). VFI volume flow values were not significantly different from the corresponding estimates obtained using UDT, and VFI measurements were more precise than UDT. The study indicates that VFI can be used for surveillance of volume flow.

  2. P systems with array objects and array rewriting rules

    Institute of Scientific and Technical Information of China (English)

    K.G. Subramanian; R. Saravanan; M. Geethalakshmi; P. Helen Chandra; M. Margenstern

    2007-01-01

    Array P systems were introduced by Pǎun Gh. which is linking the two areas of membrane computing and picture grammars. Puzzle grammars were introduced by us for generating connected picture arrays in the two-dimensional plane, motivated by the problem of tiling the plane. On the other hand, incorporating into arrays the developmental type of generation used in the well-known biologically motivated L systems, Siromoney and Siromoney proposed a very general rectangular array generating model, called extended controlled tabled L array system (ECTLAS). In this paper we introduce two variations of the array P system, called BPG array P system and parallel array P system. The former has in the regions array objects and basic puzzle grammar rules (BPG), which are a specific kind of puzzle grammar rules. In the latter, the regions have rectangular array objects and tables of context-free rules. We examine these two types of P systems for their array generative power.

  3. Hot topics in biomedical ultrasound: ultrasound therapy and its integration with ultrasonic imaging

    Science.gov (United States)

    Everbach, E. Carr

    2005-09-01

    Since the development of biomedical ultrasound imaging from sonar after WWII, there has been a clear divide between ultrasonic imaging and ultrasound therapy. While imaging techniques are designed to cause as little change as possible in the tissues through which ultrasound propagates, ultrasound therapy typically relies upon heating or acoustic cavitation to produce a desirable therapeutic effect. Concerns over the increasingly high acoustic outputs of diagnostic ultrasound scanners prompted the adoption of the Mechanical Index (MI) and Thermal Index (TI) in the early 1990s. Therapeutic applications of ultrasound, meanwhile, have evolved from deep tissue heating in sports medicine to include targeted drug delivery, tumor and plaque ablation, cauterization via high intensity focused ultrasound (HIFU), and accelerated dissolution of blood clots. The integration of ultrasonic imaging and therapy in one device is just beginning, but the promise of improved patient outcomes is balanced by regulatory and practical impediments.

  4. Flexible retinal electrode array

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat (Albuquerque, NM); Wessendorf, Kurt O. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  5. Expandable LED array interconnect

    Science.gov (United States)

    Yuan, Thomas Cheng-Hsin; Keller, Bernd

    2011-03-01

    A light emitting device that can function as an array element in an expandable array of such devices. The light emitting device comprises a substrate that has a top surface and a plurality of edges. Input and output terminals are mounted to the top surface of the substrate. Both terminals comprise a plurality of contact pads disposed proximate to the edges of the substrate, allowing for easy access to both terminals from multiple edges of the substrate. A lighting element is mounted to the top surface of the substrate. The lighting element is connected between the input and output terminals. The contact pads provide multiple access points to the terminals which allow for greater flexibility in design when the devices are used as array elements in an expandable array.

  6. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  7. 3D Flow reconstruction using ultrasound PIV

    NARCIS (Netherlands)

    Poelma, C.; Mari, J.M.; Foin, N.; Tang, M.-X.; Krams, R.; Caro, C.G.; Weinberg, P.D.; Westerweel, J.

    2009-01-01

    Ultrasound particle image velocimetry (PIV) can be used to obtain velocity fields in non-transparent geometries and/or fluids. In the current study, we use this technique to document the flow in a curved tube, using ultrasound contrast bubbles as flow tracer particles. The performance of the techniq

  8. Ultrasound Elastography in Breast Cancer Diagnosis

    DEFF Research Database (Denmark)

    Carlsen, J.; Ewertsen, C; Sletting, S;

    2015-01-01

    Ultrasound elastography is an established method for characterization of focal lesions in the breast. Different techniques and analyses of the images may be used for the characterization. This article addresses the use of ultrasound elastography in breast cancer diagnosis. In the first part...

  9. Ultrasound induced by CW laser cavitation bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, N; Montero, P Rodriguez; Ramos-Garcia, R; Ramirez-San-Juan, J C; Padilla-Martinez, J P, E-mail: korneev@inaoep.mx [Instituto Nacional de Astrofisica, Optica y Electronica, Apt. Postal 51 y 216 CP72000, Puebla, Pue. (Mexico)

    2011-01-01

    The generation of ultrasound by a collapsing single cavitation bubble in a strongly absorbing liquid illuminated with a moderate power CW laser is described. The ultrasound shock wave is detected with hydrophone and interferometric device. To obtain a stronger pulse it is necessary to adjust a liquid absorption and a beam diameter. Their influence can be qualitatively understood with a simple model.

  10. Linear description of ultrasound imaging systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    These notes have been prepared for the international summer school on advanced ultrasound imaging sponsored by The Danish Research Academy. The notes should be read in conjunction with the notes prepared by Anderson and Trahey1. The intended audience is Ph.D. students working in medical ultrasound...

  11. Analog gradient beamformer for a wireless ultrasound scanner

    Science.gov (United States)

    Di Ianni, Tommaso; Hemmsen, Martin Christian; Bagge, Jan; Jensen, Henrik; Vardi, Nitsan; Jensen, Jørgen Arendt

    2016-04-01

    This paper presents a novel beamformer architecture for a low-cost receiver front-end, and investigates if the image quality can be maintained. The system is oriented to the development of a hand-held wireless ultrasound probe based on Synthetic Aperture Sequential Beamforming, and has the advantage of effectively reducing circuit complexity and power dissipation. The array of transducers is divided into sub-apertures, in which the signals from the single channels are aligned through a network of cascaded gradient delays, and summed in the analog domain before A/D conversion. The delay values are quantized to simplify the shifting unit, and a single A/D converter is needed for each sub-aperture yielding a compact, low-power architecture that can be integrated in a single chip. A simulation study was performed using a 3:75MHz convex array, and the point spread function (PSF) for different configurations was evaluated in terms of lateral full-width-at-half-maximum (FWHM) and -20 dB cystic resolution (CR). Several setups were simulated varying the sub-aperture size N and the quantization step, and design constraints were obtained comparing the PSF to that of an ideal non-quantized system. The PSF is shown for N = 32 with a quantization step of 12 ns. For this configuration, the FWHM is degraded by 0.25% and the CR is 8.70% lower compared to the ideal situation. The results demonstrate that the gradient beamformer provides an adequate image quality, and open the way to a fully-integrated chip for a compact, low-cost, wireless ultrasound probe.

  12. [Lung ultrasound in the newborn].

    Science.gov (United States)

    Yousef, N

    2016-03-01

    Lung ultrasound (LU) is becoming a bedside point-of-care technique in critical care and emergency medicine as it is performed and immediately interpreted by the clinician. LU is quick, easy, relatively inexpensive, and provides accurate diagnostic information when compared with conventional lung imaging methods, such as CT scans and chest radiographs, with the additional advantage of being non-irradiating, adapted to bedside use, and easily repeatable with no side effects for the patient. LU is easy to learn, does not require sophisticated ultrasound machines or settings, and shows low intra- and interobserver variability when a standardized approach is used. A comprehensive and standardized ultrasound semiology has been described and validated in both adults and children. In summary, LU allows for quick easy recognition of a normally aerated lung in contrast to an interstitial or alveolar pattern. Recognition of these patterns may be even easier in neonates due to their small size and the absence of obesity and heavy musculature. Specific LU findings have been described for some types of neonatal lung injury, such as neonatal respiratory distress syndrome, transient tachypnea of the neonate, meconium aspiration syndrome, and neonatal pneumonia. In the newborn, LU has proved its usefulness in predicting the need for hospital admission and/or intubation based on simple LU patterns. A recently proposed LU score, adapted for the neonate, correlates well with oxygenation status, independently of gestational age and underlying respiratory condition. The score reliably predicts the need for surfactant treatment in preterm babies less than 34 weeks gestation treated with nasal CPAP from birth. LU is a promising tool with numerous potential applications that warrant future studies. However, like every technique, LU has its limitations and should not completely replace standard radiography. LU can nevertheless largely reduce exposure to ionizing radiation by limiting the

  13. Transverse Oscillations for Phased Array Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2010-01-01

    Medical ultrasound imaging is widely used to visualize blood flow in the human circulatory system. However, conventional methods are angle dependent. The Transverse Oscillation (TO) method is able to measure the lateral velocity component, and it has been demonstrated in in vivo measurements...... of superficial blood vessels. To broaden the usability of the method, it should be expanded to a phased array geometry enabling vector velocity imaging of the heart. Therefore, the scan depth has to be increased to 10-15 cm. This paper presents suitable pulse echo fields (PEF). Two lines are beamformed...

  14. Ultrasound in Acute Kidney Disease.

    Science.gov (United States)

    Meola, Mario; Nalesso, Federico; Petrucci, Ilaria; Samoni, Sara; Ronco, Claudio

    2016-01-01

    Kidneys' imaging provides useful information in acute kidney injury (AKI) diagnosis and management. Today, several imaging techniques give information on kidneys anatomy, urinary obstruction, differential diagnosis between AKI and chronic kidney disease (CKD), renal blood flow and glomerular filtration rate. Ultrasound is a safe, non-invasive and repeatable imaging technique so it is widely used in the first level work-up of AKI. The utility of contrast-enhanced computed tomography and magnetic resonance imaging in AKI or in AKI during CKD is limited because of renal toxicity associated with contrast agents used. PMID:27169556

  15. Nursing ultrasound examination in catheterization

    Directory of Open Access Journals (Sweden)

    Luca Romei

    2007-12-01

    Full Text Available Ultrasound (US examination of the bladder can precisely determine the bladder volume and is a useful tool in estimating the residual urine volume. Its application is consequently recommended as an alternative to catheterization for the determination of residual urine. Moreover it represents a simple, noninvasive method to predict the outcome of a voiding trial following acute urine retention based on intravesical prostatic protrusion and on the US pattern of the bladder content. In this article, the Authors review the implementation and results of a bladder US program developed for non-medical caregivers at one Emergency Department.

  16. Testicular neoplasm diagnosed by ultrasound.

    Science.gov (United States)

    Senay, B A; Stein, B S

    1986-06-01

    The diagnosis of testicular cancer is usually made by the findings of a testicular mass on physical examination. In rare cases a young man will present with retroperitoneal nodes and a normal testicular examination. In such cases a testicular ultrasound may localize the testis which harbors a subclinical neoplasm. In addition serum markers of B-HCG and AFP are essential. As a screening procedure a urine pregnancy test is helpful, since it can be obtained quickly while quantitative B-HCG and APF results are delayed. PMID:3523046

  17. A miniature real-time volumetric ultrasound imaging system

    Science.gov (United States)

    Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Nikoozadeh, Amin; Oralkan, Omer; Ergun, Arif S.; Karaman, Mustafa; Khuri-Yakub, Butrus T.

    2005-04-01

    Progress made in the development of a miniature real-time volumetric ultrasound imaging system is presented. This system is targeted for use in a 5-mm endoscopic channel and will provide real-time, 30-mm deep, volumetric images. It is being developed as a clinically useful device, to demonstrate a means of integrating the front-end electronics with the transducer array, and to demonstrate the advantages of the capacitive micromachined ultrasonic transducer (CMUT) technology for medical imaging. Presented here is the progress made towards the initial implementation of this system, which is based on a two-dimensional, 16x16 CMUT array. Each CMUT element is 250 um by 250 um and has a 5 MHz center frequency. The elements are connected to bond pads on the back side of the array with 400-um long through-wafer interconnects. The transducer array is flip-chip bonded to a custom-designed integrated circuit that comprises the front-end electronics. The result is that each transducer element is connected to a dedicated pulser and low-noise preamplifier. The pulser generates 25-V, 100-ns wide, unipolar pulses. The preamplifier has an approximate transimpedance gain of 500 kOhm and 3-dB bandwidth of 10 MHz. In the first implementation of the system, one element at a time can be selected for transmit and receive and thus synthetic aperture images can be generated. In future implementations, 16 channels will be active at a given time. These channels will connect to an FPGA-based data acquisition system for real-time image reconstruction.

  18. Fast Computation of Wideband Beam Pattern for Designing Large-Scale 2-D Arrays.

    Science.gov (United States)

    Chi, Cheng; Li, Zhaohui

    2016-06-01

    For real-time and high-resolution 3-D ultrasound imaging, the design of sparse distribution and weights of elements of a large-scale wideband 2-D array is needed to reduce hardware cost and achieve better directivity. However, due to the high time consumption of computing the wideband beam pattern, the design methods that need massive iterations have rarely been applied to design large-scale wideband 2-D arrays by directly computing the wideband beam pattern. In this paper, a fast method is proposed to realize the computation of a wideband beam pattern of arbitrary 2-D arrays in the far field in order to design large-scale wideband 2-D arrays. The proposed fast method exploits two important techniques: 1) nonuniform fast Fourier transform (FFT) and 2) short inverse FFT. Compared with the commonly used ultrasound simulator Field II, two orders of magnitude improvement in computation speed is achieved with comparable accuracy. The proposed fast method enables massive iterations of direct wideband beam pattern computation of arbitrary large-scale 2-D arrays. A design example in this paper demonstrates that the proposed fast method can help achieve better performance in designing large-scale wideband 2-D arrays. PMID:27046870

  19. Ultrasound for the Anesthesiologists: Present and Future

    Directory of Open Access Journals (Sweden)

    Abdullah S. Terkawi

    2013-01-01

    Full Text Available Ultrasound is a safe, portable, relatively inexpensive, and easily accessible imaging modality, making it a useful diagnostic and monitoring tool in medicine. Anesthesiologists encounter a variety of emergent situations and may benefit from the application of such a rapid and accurate diagnostic tool in their routine practice. This paper reviews current and potential applications of ultrasound in anesthesiology in order to encourage anesthesiologists to learn and use this useful tool as an adjunct to physical examination. Ultrasound-guided peripheral nerve blockade and vascular access represent the most popular ultrasound applications in anesthesiology. Ultrasound has recently started to substitute for CT scans and fluoroscopy in many pain treatment procedures. Although the application of airway ultrasound is still limited, it has a promising future. Lung ultrasound is a well-established field in point-of-care medicine, and it could have a great impact if utilized in our ORs, as it may help in rapid and accurate diagnosis in many emergent situations. Optic nerve sheath diameter (ONSD measurement and transcranial color coded duplex (TCCD are relatively new neuroimaging modalities, which assess intracranial pressure and cerebral blood flow. Gastric ultrasound can be used for assessment of gastric content and diagnosis of full stomach. Focused transthoracic (TTE and transesophageal (TEE echocardiography facilitate the assessment of left and right ventricular function, cardiac valve abnormalities, and volume status as well as guiding cardiac resuscitation. Thus, there are multiple potential areas where ultrasound can play a significant role in guiding otherwise blind and invasive interventions, diagnosing critical conditions, and assessing for possible anatomic variations that may lead to plan modification. We suggest that ultrasound training should be part of any anesthesiology training program curriculum.

  20. Quantitative Ultrasound for Staging of Hepatic Steatosis in Patients on Home Parenteral Nutrition Validated with Magnetic Resonance Spectroscopy: A Feasibility Study.

    Science.gov (United States)

    Weijers, Gerrit; Wanten, Geert; Thijssen, Johan M; van der Graaf, Marinette; de Korte, Chris L

    2016-03-01

    Patients on home parenteral nutrition are at risk for developing liver dysfunction, which is due partly to the accumulation of lipids in the liver (steatosis) and may progress to end-stage liver disease with overt liver failure. Therefore, a timely diagnosis with easy access to repeated assessment of the degree of liver steatosis is of great importance. A pilot study was performed in 14 patients on long-term home parenteral nutrition using the computer-aided ultrasound method. Ultrasound radio frequency data were acquired using a phased array transducer and were converted into conventional B-mode images. All patients were subjected to proton magnetic resonance spectroscopy measurement of liver fat content for reference. Computer-aided ultrasound parameters similar to those in a previous validation study in cows revealed significant correlations with fat content measured by magnetic resonance spectroscopy. The most significant parameters were the residual attenuation coefficient (R = 0.95, p ultrasound for staging of hepatic steatosis.

  1. Direct Digital Demultiplexing of Analog TDM Signals for Cable Reduction in Ultrasound Imaging Catheters.

    Science.gov (United States)

    Carpenter, Thomas M; Rashid, M Wasequr; Ghovanloo, Maysam; Cowell, David M J; Freear, Steven; Degertekin, F Levent

    2016-08-01

    In real-time catheter-based 3-D ultrasound imaging applications, gathering data from the transducer arrays is difficult, as there is a restriction on cable count due to the diameter of the catheter. Although area and power hungry multiplexing circuits integrated at the catheter tip are used in some applications, these are unsuitable for use in small sized catheters for applications, such as intracardiac imaging. Furthermore, the length requirement for catheters and limited power available to on-chip cable drivers leads to limited signal strength at the receiver end. In this paper, an alternative approach using analog time-division multiplexing (TDM) is presented, which addresses the cable restrictions of ultrasound catheters. A novel digital demultiplexing technique is also described, which allows for a reduction in the number of analog signal processing stages required. The TDM and digital demultiplexing schemes are demonstrated for an intracardiac imaging system that would operate in the 4- to 11-MHz range. A TDM integrated circuit (IC) with an 8:1 multiplexer is interfaced with a fast analog-to-digital converter (ADC) through a microcoaxial catheter cable bundle, and processed with a field-programmable gate array register-transfer level simulation. Input signals to the TDM IC are recovered with -40-dB crosstalk between the channels on the same microcoax, showing the feasibility of this system for ultrasound imaging applications. PMID:27116738

  2. Analysis of ultrasound pulse-echo images for characterization of muscle disease

    Science.gov (United States)

    Leeman, Sidney; Heckmatt, John Z.

    1996-04-01

    This study aims to extract quantifiable indices characterizing ultrasound propagation and scattering in skeletal muscle, from data acquired using a real-time linear array scanner in a paediatric muscle clinic, in order to establish early diagnosis of Duchenne muscular dystrophy in young children, as well as to chart the progressive severity of the disease. Approximately 40 patients with gait disorders, aged between 1 and 11 years, were scanned with a real-time linear array ultrasound scanner, at 5 MHz. A control group consisted of approximately 50 boys, in the same age range, with no evidence or history of muscle disease. Results show that ultrasound quantitative methods can provide a tight clustering of normal data, and also provide a basis for charting the degree of change in diseased muscle. The most significant (quantitative) parameters derive from the frequency of the attenuation and the muscle echogenicity. The approach provides a discrimination method that is more sensitive than visual assessment of the corresponding image by even an experienced observer. There are also indications that the need for traumatic muscle biopsy may be obviated in some cases.

  3. Direct Digital Demultiplexing of Analog TDM Signals for Cable Reduction in Ultrasound Imaging Catheters.

    Science.gov (United States)

    Carpenter, Thomas M; Rashid, M Wasequr; Ghovanloo, Maysam; Cowell, David M J; Freear, Steven; Degertekin, F Levent

    2016-08-01

    In real-time catheter-based 3-D ultrasound imaging applications, gathering data from the transducer arrays is difficult, as there is a restriction on cable count due to the diameter of the catheter. Although area and power hungry multiplexing circuits integrated at the catheter tip are used in some applications, these are unsuitable for use in small sized catheters for applications, such as intracardiac imaging. Furthermore, the length requirement for catheters and limited power available to on-chip cable drivers leads to limited signal strength at the receiver end. In this paper, an alternative approach using analog time-division multiplexing (TDM) is presented, which addresses the cable restrictions of ultrasound catheters. A novel digital demultiplexing technique is also described, which allows for a reduction in the number of analog signal processing stages required. The TDM and digital demultiplexing schemes are demonstrated for an intracardiac imaging system that would operate in the 4- to 11-MHz range. A TDM integrated circuit (IC) with an 8:1 multiplexer is interfaced with a fast analog-to-digital converter (ADC) through a microcoaxial catheter cable bundle, and processed with a field-programmable gate array register-transfer level simulation. Input signals to the TDM IC are recovered with -40-dB crosstalk between the channels on the same microcoax, showing the feasibility of this system for ultrasound imaging applications.

  4. Transducer combination for high-quality ultrasound tomography based on speed of sound imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Hun; Park, Kwan Kyu [Dept. of Mechanical Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-02-15

    The type of ultrasound transducer used influences the quality of a reconstructed ultrasound image. This study analyzed the effect of transducer type on ultrasound computed tomography (UCT) image quality. The UCT was modeled in an ultrasound simulator by using a 5 cm anatomy model and a ring-shape 5 MHz 128 transducer array, which considered attenuation, refraction, and reflection. Speed-of-sound images were reconstructed by the Radon transform as the UCT image modality. Acoustic impedance images were also reconstructed by the delayand-sum (DAS) method, which considered the speed of sound information. To determine the optimal combination of transducers in observation, point-source, flat, and focused transducers were tested in combination as trasmitters and receivers; UCT images were constructed from each combination. The combination of point-source/flat transducer as transmitting and receiving devices presented the best reconstructed image quality. In UCT implementation, the combination of a flat transducer for transmitting and a point transducer for receiving permitted acceptable image quality.

  5. Quality assurance in diagnostic ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, Outi, E-mail: outi.sipila@hus.fi [HUS Helsinki Medical Imaging Center, Helsinki University Central Hospital, P.O. Box 340, 00029 HUS (Finland); Mannila, Vilma, E-mail: vilma.mannila@hus.fi [HUS Helsinki Medical Imaging Center, Helsinki University Central Hospital, P.O. Box 340, 00029 HUS (Finland); Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki University (Finland); Vartiainen, Eija, E-mail: eija.vartiainen@hus.fi [HUS Helsinki Medical Imaging Center, Helsinki University Central Hospital, P.O. Box 750, 00029 HUS (Finland)

    2011-11-15

    Objective: To setup a practical ultrasound quality assurance protocol in a large radiological center, results from transducer tests, phantom measurements and visual checks for physical faults were compared. Materials and methods: Altogether 151 transducers from 54 ultrasound scanners, from seven different manufacturers, were tested with a Sonora FirstCall aPerio{sup TM} system (Sonora Medical Systems, Inc., Longmont, CO, USA) to detect non-functional elements. Phantom measurements using a CIRS General Purpose Phantom Model 040 (CIRS Tissue Simulation and Phantom Technology, VA, USA) were available for 135 transducers. The transducers and scanners were also checked visually for physical faults. The percentages of defective findings in these tests were computed. Results: Defective results in the FirstCall tests were found in 17% of the 151 transducers, and in 16% of the 135 transducers. Defective image quality resulted with 15% of the transducers, and 25% of the transducers had a physical flaw. In 16% of the scanners, a physical fault elsewhere than in the transducer was found. Seven percent of the transducers had a concurrent defective result both in the FirstCall test and in the phantom measurements, 8% in the FirstCall test and in the visual check, 4% in the phantom measurements and in the visual check, and 2% in all three tests. Conclusion: The tested methods produced partly complementary results and seemed all to be necessary. Thus a quality assurance protocol is forced to be rather labored, and therefore the benefits and costs must be closely followed.

  6. Educational ultrasound nondestructive testing laboratory.

    Science.gov (United States)

    Genis, Vladimir; Zagorski, Michael

    2008-09-01

    The ultrasound nondestructive evaluation (NDE) of materials course was developed for applied engineering technology students at Drexel University's Goodwin College of Professional Studies. This three-credit, hands-on laboratory course consists of two parts: the first part with an emphasis on the foundations of NDE, and the second part during which ultrasound NDE techniques are utilized in the evaluation of parts and materials. NDE applications are presented and applied through real-life problems, including calibration and use of the latest ultrasonic testing instrumentation. The students learn engineering and physical principles of measurements of sound velocity in different materials, attenuation coefficients, material thickness, and location and dimensions of discontinuities in various materials, such as holes, cracks, and flaws. The work in the laboratory enhances the fundamentals taught during classroom sessions. This course will ultimately result in improvements in the educational process ["The greater expectations," national panel report, http://www.greaterexpectations.org (last viewed February, 2008); R. M. Felder and R. Brent "The intellectual development of Science and Engineering Students. Part 2: Teaching to promote growth," J. Eng. Educ. 93, 279-291 (2004)] since industry is becoming increasingly reliant on the effective application of NDE technology and the demand on NDE specialists is increasing. NDE curriculum was designed to fulfill levels I and II NDE in theory and training requirements, according to American Society for Nondestructive Testing, OH, Recommended Practice No. SNT-TC-1A (2006).

  7. Three-dimensional Mid-air Acoustic Manipulation by Ultrasonic Phased Arrays

    CERN Document Server

    Ochiai, Yoichi; Rekimoto, Jun

    2013-01-01

    The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by oppose...

  8. Optimizing Chemical Sensor Array Sizes

    International Nuclear Information System (INIS)

    Optimal selection of array sensors for a chemical sensing application is a nontrivial task. It is commonly believed that ''more is better'' when choosing the number of sensors required to achieve good chemical selectivity. However, cost and system complexity issues point towards the choice of small arrays. A quantitative array optimization is carried out to explore the selectivity of arrays of partially-selective chemical sensors as a function of array size. It is shown that modest numbers (dozens) of target analytes are completely distinguished with a range of arrays sizes. However, the array selectivity and the robustness against sensor sensitivity variability are significantly degraded if the array size is increased above a certain number of sensors, so that relatively small arrays provide the best performance. The results also suggest that data analyses for very large arrays of partially-selective sensors will be optimized by separately anal yzing small sensor subsets

  9. Bedside gallbladder ultrasound for the primary care physician.

    Science.gov (United States)

    Tollefson, Brian J; Hoda, Nicholas E; Fromang, Graves; Stone, Mary

    2015-03-01

    Modern ultrasound machines are relatively inexpensive to own and simple to operate. Basic ultrasound exams can be easily learned and mastered. As with any clinical exam skill, practice makes perfect. Providers interested in learning ultrasound should seek hands-on guidance from an expert in the field. There are several quality hands-on ultrasound courses (http:// emergencyultrasound.com/) as well as free online videos (http:// emergency ultrasound teaching.com/index.html). The emergency ultrasound team at UMMC will be offering a hands-on ultrasound training course in the spring of 2015. Please contact Dr Brian Tollefson for specific dates and times of the course (btollefson@umc.edu).

  10. Imaging antenna arrays

    Science.gov (United States)

    Rutledge, D. B.; Muha, M. S.

    1982-01-01

    Many millimeter and far-infrared imaging systems are limited in sensitivity and speed because they depend on a single scanned element. Because of recent advances in planar detectors such as Schottky diodes, superconducting tunnel junctions, and microbolometers, an attractive approach to this problem is a planar antenna array with integrated detectors. A planar line antenna array and optical system for imaging has been developed. The significant advances are a 'reverse-microscope' optical configuration and a modified bow-tie antenna design. In the 'reverse-microscope' configuration, a lens is attached to the bottom of the substrate containing the antennas. Imaging is done through the substrate. This configuration eliminates the troublesome effects of substrate surface waves. The substrate lens has only a single refracting surface, making possible a virtually aplanatic system, with little spherical aberration or coma. The array is characterized by an optical transfer function that is easily measured. An array with 19 dB crosstalk levels between adjacent antennas has been tested and it was found that the array captured 50 percent of the available power. This imaging system was diffraction limited.

  11. Contrast-enhanced ultrasound of the spleen.

    Science.gov (United States)

    Omar, Asha; Freeman, Simon

    2016-02-01

    Abnormalities in the spleen are less common than in most other abdominal organs. However, they will be regularly encountered by ultrasound practitioners, who carefully evaluate the spleen in their abdominal ultrasound studies. Conventional grey scale and Doppler ultrasound are frequently unable to characterise focal splenic abnormalities; even when clinical and laboratory information is added to the ultrasound findings, it is often not possible to make a definite diagnosis. Contrast-enhanced ultrasound (CEUS) is easy to perform, inexpensive, safe and will usually provide valuable additional information about splenic abnormalities, allowing a definitive or short differential diagnosis to be made. It also identifies those lesions that may require further imaging or biopsy, from those that can be safely dismissed or followed with interval ultrasound imaging. CEUS is also indicated in confirming the nature of suspected accessory splenic tissue and in selected patients with abdominal trauma. This article describes the CEUS examination technique, summarises the indications for CEUS and provides guidance on interpretation of the CEUS findings in splenic ultrasound.

  12. FEL phased array configurations

    Science.gov (United States)

    Shellan, Jeffrey B.

    1986-01-01

    The advantages and disadvantages of various phased array and shared aperture concepts for FEL configurations are discussed. Consideration is given to the characteristics of intra- and inter-micropulse phasing; intra-macropulse phasing; an internal coupled resonator configuration; and an injection locked oscillator array. The use of a master oscillator power amplifier (MOPA) configuration with multiple or single master oscillators for FELs is examined. The venetian blind, rotating plate, single grating, and grating rhomb shared aperture concepts are analyzed. It is noted that the shared aperture approach using a grating rhomb and the MOPA concept with a single master oscillator and a coupled resonator are useful for FEL phased array configurations; and the MOPA concept is most applicable.

  13. Wireless Josephson Junction Arrays

    Science.gov (United States)

    Adams, Laura

    2015-03-01

    We report low temperature, microwave transmission measurements on a wireless two- dimensional network of Josephson junction arrays composed of superconductor-insulator -superconductor tunnel junctions. Unlike their biased counterparts, by removing all electrical contacts to the arrays and superfluous microwave components and interconnects in the transmission line, we observe new collective behavior in the transmission spectra. In particular we will show emergent behavior that systematically responds to changes in microwave power at fixed temperature. Likewise we will show the dynamic and collective response of the arrays while tuning the temperature at fixed microwave power. We discuss these spectra in terms of the Berezinskii-Kosterlitz-Thouless phase transition and Shapiro steps. We gratefully acknowledge the support Prof. Steven Anlage at the University of Maryland and Prof. Allen Goldman at the University of Minnesota. Physics and School of Engineering and Applied Sciences.

  14. Ultrasound

    Science.gov (United States)

    ... Collaboratives Launch Prematurity research centers What is team science? More than 75 years of solving problems March ... for your patients Medical resources Professional education Awards, scholarships & grants For policy makers Policies & positions State advocacy ...

  15. Compact beamforming in medical ultrasound scanners

    DEFF Research Database (Denmark)

    Tomov, Borislav Gueorguiev

    2003-01-01

    compact implementation of the beamformer compared to the case where conventional A/D conversion is used. The compact and economic beamforming is a key aspect in the progress of medical ultrasound imaging. Currently, 64 or 128 channels are widely used in scanners, top-of-the-range scanners have 256...... with an introduction into medical ultrasound, its basic principles, system evolution and its place among medical imaging techniques. Then, ultrasound acoustics is introduced, as a necessary base for understanding the concepts of acoustic focusing and beamforming, which follow. The necessary focusing information...

  16. Therapeutic ultrasound and effectiveness in knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Emine Ganidagli

    2013-04-01

    Full Text Available In Turkey, ultrasound is one of the most commonly used methods for physical therapy of knee osteoarthritis. Therapeutic ultrasound affects the cells and tissues by thermal and nonthermal ways. As well as being used as an agent for deep heating, it has effects like stimulation of tissue regeneration, soft tissue repair, regulation of blood flow in chronic ischemic tissues, protein synthesis and bone repair.In this manuscript, detailed technical information on ultrasound is given and studies on knee osteoarthritis in recent years are reviewed. [Archives Medical Review Journal 2013; 22(2.000: 170-183

  17. Ultrasound Elastography in Breast Cancer Diagnosis.

    Science.gov (United States)

    Carlsen, J; Ewertsen, C; Sletting, S; Vejborg, I; Schäfer, F K W; Cosgrove, D; Bachmann Nielsen, M

    2015-12-01

    Ultrasound elastography is an established method for characterization of focal lesions in the breast. Different techniques and analyses of the images may be used for the characterization. This article addresses the use of ultrasound elastography in breast cancer diagnosis. In the first part of the article the techniques behind both strain- and shear-wave-elastography are explained and followed by a section on how to obtain adequate elastography images and measurements. In the second part of the article the application of elastography as an adjunct to B-mode ultrasound in clinical practice is described, and the potential diagnostic gains and limitations of elastography are discussed. PMID:26274379

  18. Contrast-enhanced harmonic endoscopic ultrasound

    DEFF Research Database (Denmark)

    Săftoiu, A; Dietrich, C F; Vilmann, P

    2012-01-01

    Second-generation intravenous blood-pool ultrasound contrast agents are increasingly used in endoscopic ultrasound (EUS) for characterization of microvascularization, differential diagnosis of benign and malignant focal lesions, and improving staging and guidance of therapeutic procedures. Although...... contrast-enhanced harmonic EUS based on a very low mechanical index (0.08 - 0.12). Quantification techniques based on dynamic contrast-enhanced ultrasound have been recommended for perfusion imaging and monitoring of anti-angiogenic treatment, mainly based on time-intensity curve analysis. Most...

  19. Ultrasound-Assisted Extraction of Total Phenolic Compounds from Inula helenium

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2013-01-01

    Full Text Available Ultrasound-assisted extraction (UAE of phenolic compounds from Inula helenium was studied. Effects of ethanol concentration, ultrasonic time, solid-liquid ratio, and number of extractions were investigated. An orthogonal array was constructed to optimize UAE process. The optimized extraction conditions were as follows: ethanol concentration, 30%; solid-liquid ratio, 1 : 20; number of extractions, 2 times; extraction time, 30 min. Under the optimal conditions, the yield of total phenolic compounds and chlorogenic acid was 6.13±0.58 and 1.32±0.17 mg/g, respectively. The results showed that high amounts of phenolic compounds can be extracted from I. helenium by ultrasound-assisted extraction technology.

  20. Medical ultrasound imaging method combining minimum variance beamforming and general coherence factor

    Institute of Scientific and Technical Information of China (English)

    WU Wentao; PU Jie; LU Yi

    2012-01-01

    In medical ultrasound imaging field, in order to obtain high resolution and correct the phase errors induced by the velocity in-homogeneity of the tissue, a high-resolution medical ultrasound imaging method combining minimum variance beamforming and general coherence factor was presented. First, the data from the elements is delayed for focusing; then the multi-channel data is used for minimum variance beamforming; at the same time, the data is transformed from array space to beam space to calculate the general coherence factor; in the end, the general coherence factor is used to weight the results of minimum variance beamforming. The medical images are gotten by the imaging system. Experiments based on point object and anechoic cyst object are used to verify the proposed method. The results show the proposed method in the aspects of resolution, contrast and robustness is better than minimum variance beamforming and conventional beamforming.

  1. An optimized ultrasound digital beamformer with dynamic focusing implemented on FPGA.

    Science.gov (United States)

    Almekkawy, Mohamed; Xu, Jingwei; Chirala, Mohan

    2014-01-01

    We present a resource-optimized dynamic digital beamformer for an ultrasound system based on a field-programmable gate array (FPGA). A comprehensive 64-channel receive beamformer with full dynamic focusing is embedded in the Altera Arria V FPGA chip. To improve spatial and contrast resolution, full dynamic beamforming is implemented by a novel method with resource optimization. This was conceived using the implementation of the delay summation through a bulk (coarse) delay and fractional (fine) delay. The sampling frequency is 40 MHz and the beamformer includes a 240 MHz polyphase filter that enhances the temporal resolution of the system while relaxing the Analog-to-Digital converter (ADC) bandwidth requirement. The results indicate that our 64-channel dynamic beamformer architecture is amenable for a low power FPGA-based implementation in a portable ultrasound system. PMID:25570695

  2. FTIR spectral imaging as a probe of ultrasound effect on cells in vitro

    CERN Document Server

    Di Giambattista, L; Udroiu, I; Pozzi, D; Cinque, G; Frogley, M D; Giansanti, A; Castellano, A Congiu

    2010-01-01

    Safe and efficient intracellular delivery of genes or drugs is critically important in targeted cancer treatment and gene therapy applications. Ultrasound (US) has been demonstrated to alter the cell membrane permeability due to a biophysical mechanism (Sonoporation) and exploited as a promising non-invasive gene transfer method. The sonoporation process could induce the formation of transient pores without significantly affecting cell viability. This research is aimed at investigating some bioeffects due to Therapeutic Ultrasound (pulsed-1 MHz) which could allow to enhance drugs or genes delivery in a non tumoral cell line. We have used the NIH-3T3 cell line as model system and exposed it to US at two different distances from the source; the effects of this pulsed ultrasonic wave on cells were assessed by Fourier transform infrared (FT-IR) spectroscopic imaging analysis. This technique combined with a focal plane array (FPA) detector has been widely used to study the general biochemical changes in vitro; mor...

  3. High Resolution Depth-Resolved Imaging From Multi-Focal Images for Medical Ultrasound

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Dalgarno, Paul A.; Greenaway, Alan H.;

    2015-01-01

    in-focus images. The technique is derived from biological microscopy and is validated here with simulated ultrasound data. A linear array probe is used to scan a point scatterer phantom that moves in depth with a controlled step. From the beamformed responses of each scatterer position the image......An ultrasound imaging technique providing subdiffraction limit axial resolution for point sources is proposed. It is based on simultaneously acquired multi-focal images of the same object, and on the image metric of sharpness. The sharpness is extracted by image data and presents higher values for...... sharpness is assessed. Values from all positions plotted together form a curve that peaks at the receive focus, which is set during the beamforming. Selection of three different receive foci for each acquired dataset will result in the generation of three overlapping sharpness curves. A set of three...

  4. Doppler ultrasound for diagnosis of soft tissue sarcoma: efficacy of ultrasound-based screening score

    Directory of Open Access Journals (Sweden)

    Nagano Satoshi

    2015-06-01

    Full Text Available Background. The utility of ultrasound imaging in the screening of soft-part tumours (SPTs has been reported. We classified SPTs according to their blood flow pattern on Doppler ultrasound and re-evaluated the efficacy of this imaging modality as a screening method. Additionally, we combined Doppler ultrasound with several values to improve the diagnostic efficacy and to establish a new diagnostic tool.

  5. Conventional ultrasound and contrast-enhanced ultrasound in evaluating the severity of Crohn’s disease

    OpenAIRE

    Liu, Chang; Xu, Xiao-rong; Xu, Hui-Xiong; Liu, Zhan-Ju; Zhang, Yi-feng; Sun, Li-ping; Xu, Jun-Mei; Liu, Lin-Na; Guo, Le-Hang; Bo, Xiao-Wan

    2015-01-01

    Objective: To evaluate the value of conventional ultrasound and contrast-enhanced ultrasound (CEUS) in determining the severity of active Crohn’s disease. Methods: Thirty-seven patients who were considered to be in active period of Crohn’s disease were included. Conventional ultrasound was employed to measure the thicknesses of interior, exterior and the whole bowel walls. Qualitative and quantitative CEUS analysis of the interior, exterior and the whole intestinal walls were also performed. ...

  6. The Submillimeter Array

    CERN Document Server

    Ho, P T P; Lo, K Y; Ho, Paul T.P.; Moran, James M.; Lo, Kwok Yung

    2004-01-01

    The Submillimeter Array (SMA), a collaborative project of the Smithsonian Astrophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), has begun operation on Mauna Kea in Hawaii. A total of eight 6-m telescopes comprise the array, which will cover the frequency range of 180-900 GHz. All eight telescopes have been deployed and are operational. First scientific results utilizing the three receiver bands at 230, 345, and 690 GHz have been obtained and are presented in the accompanying papers.

  7. Photovoltaic array performance model.

    Energy Technology Data Exchange (ETDEWEB)

    Kratochvil, Jay A.; Boyson, William Earl; King, David L.

    2004-08-01

    This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

  8. Soldered solar arrays

    Science.gov (United States)

    Allen, H. C.

    1982-06-01

    The ability of soldered interconnects to withstand a combination of long life and severe environmental conditions was investigated. Improvements in joint life from the use of solder mixes appropriate to low temperature conditons were studied. Solder samples were placed in a 150 C oven for 5 weeks (= 12 yr at 80 C, or 24 at 70 C according to Arrhenius's rule). Conventional and high solder melting point array samples underwent 1000 thermal cycles between -186 and 100 C. Results show that conventional and lead rich soldered arrays can survive 10 yr geostationary orbit missions.

  9. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  10. [Renal ultrasound in fat necrosis].

    Science.gov (United States)

    Tizki, S; Lasry, F; Elftoiki, F Z; Hadj Khalifa, H; Itri, M; Khadir, K; Benchikhi, H

    2013-07-01

    Subcutaneous fat necrosis is an uncommon disease that may be complicated with potentially fatal hypercalcemia or with nephrocalcinosis. We report on the case of a patient with a history of significant perinatal asphyxia, hospitalized for a urinary tract infection. Lesions of subcutaneous fat necrosis were noted, with asymptomatic hypercalcemia at 3.9mmol/L. A renal ultrasound was performed and showed echogenic medullary pyramids bilaterally, consistent with nephrocalcinosis and left nephrolithiasis. The treatment of hypercalcemia included hyperhydration, a diuretic and corticosteroids. Progression was characterized by the total regression of skin lesions and normalization of serum calcium. Hypercalcemia is a rare complication of subcutaneous fat necrosis. It develops within days to weeks after the appearance of skin lesions. Nephrocalcinosis appears after several weeks or months. Hypercalcemia must be treated in due time to avoid the impact on the kidney. PMID:23726682

  11. Simulator training for endobronchial ultrasound

    DEFF Research Database (Denmark)

    Konge, Lars; Clementsen, Paul Frost; Ringsted, Charlotte;

    2015-01-01

    Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is very operator dependent and has a long learning curve. Simulation-based training might shorten the learning curve, and an assessment tool with solid validity evidence could ensure basic competency before unsupervised...... performance.A total of 16 respiratory physicians, without EBUS experience, were randomised to either virtual-reality simulator training or traditional apprenticeship training on patients, and then each physician performed EBUS-TBNA procedures on three patients. Three blinded, independent assessor assessed...... the video recordings of the procedures using a newly developed EBUS assessment tool (EBUSAT).The internal consistency was high (Cronbach's α=0.95); the generalisability coefficient was good (0.86), and the tool had discriminatory ability (ptrained novices were...

  12. Ultrasound diagnosis on the goiter

    Energy Technology Data Exchange (ETDEWEB)

    Igl, W.; Fink, V.; Leisner, B.; Gebauer, A.

    1981-03-04

    Sonography of the thyroid means facilitation to the differential diagnosis of the goiter, and if combined with the nuclear-medical methods, its accuracy is even increased. Cysts, thyreoditis de Quervain, morbus Basedow, and autonomous adenoma can be assumed due to the areals with low echo in the sonogram and they can be differentiated by the scintigram. In the case of iodine-free areals which can be manifested by fluorescence scintiscanning and normal echo pattern of the thyroid below a malignoma has to be suspected. The volume can be determined with an accuracy of +-10% by ultrasound, without needing long time. Knowing the thickness of the thyroid at places of increased storage in the scintigram, an impulse-thickness-quotient can be calculated which permits, in most cases, to diagnose an autonomous adenoma at a regional increased storage without suppression test.

  13. A numerical study of transcranial focused ultrasound beam propagation at low frequency

    International Nuclear Information System (INIS)

    The feasibility of transcranial ultrasound focusing with a non-moving phased array and without skull-specific aberration correction was investigated using computer simulations. Three cadaver skull CT image data sets were incorporated into an acoustic wave transmission model to simulate transskull ultrasound wave propagation. Using a 0.25 MHz hemispherical array (125 mm radius of curvature, 250 mm diameter, 24 255 elements), the simulated beams could be focused and steered with transducer element driving phases and amplitude adjusted for focal beam steering in water (water-path). A total of 82 foci, spanning wide ranges of distance in the three orthogonal dimensions, were simulated to test the focal beam steering capability inside the three skulls. The acoustic pressure distribution in a volume of 20 x 20 x 20 mm3 centred at each focus was calculated with a 0.5 mm spacing in each axis. Clearly defined foci were retained through the skulls (skull-path) in most cases. The skull-path foci were on average 1.6 ± 0.8 mm shifted from their intended locations. The -3 dB skull-path beam width and length were on average 4.3 ± 1.0 mm and 7.7 ± 1.8 mm, respectively. The skull-path sidelobe levels ranged from 25% to 55% of the peak pressure values. The skull-path peak pressure levels were about 10%-40% of their water-path counterparts. Focusing low-frequency beam through skull without skull-specific aberration correction is possible. This method may be useful for applying ultrasound to disrupt the blood-brain barrier for targeted delivery of therapeutic or diagnostic agents, or to induce microbubbles, or for other uses of ultrasound in brain where the required power levels are low and the sharp focusing is not needed

  14. Ultrasound temporal-spatial phase-interference in complex composite media; a comparison of experimental measurement and simulation prediction.

    Science.gov (United States)

    Al-Qahtani, Saeed M; Langton, Christian M

    2016-09-01

    The propagation of ultrasound through solid:liquid complex composite media such as cancellous bone suffers from a lack of a comprehensive understanding of the dependence upon density and structure. Assuming that a propagating ultrasound wave may be considered as an array of parallel sonic rays, we may determine the transit time of each by the relative proportion of the two constituents. A transit time spectrum (TTS) describes the proportion of sonic rays having a particular transit time between the minimum (tmin) and maximum (tmax) values; representing, for example, entire bone tissue and marrow respectively in the case of cancellous bone. Langton has proposed that the primary ultrasound attenuation mechanism in such media is phase-interference. The phase-interference of two or more ultrasound pulses detected at a phase-sensitive transducer has both temporal and spatial components. The temporal component is primarily dependent upon the transit time difference (dt) between the pulses and the propagating pulse-length (PL). The spatial component is primarily dependent upon the lateral separation (ds) of the detectedpulses of differing transit time and the lateral dimension of the ultrasound receive transducer aperture (dL). The aim of the paper was to explore these temporal and spatial dependencies through a comparison of experimental measurement and computer simulation in solid:liquid models of varying temporal and spatial complexity. Transmission measurements at nominal ultrasound frequencies of 1MHz and 5MHz were performed, thereby investigating the dependency upon period. The results demonstrated an overall agreement between experimental measurement and computer simulation of 87±16% and 85±12% for temporal and spatial components respectively. It is envisaged that a comprehensive understanding of ultrasound propagation through complex structures such as cancellous bone could provide an improved non-invasive tool for osteoporosis assessment.

  15. Despeckling of medical ultrasound images.

    Science.gov (United States)

    Michailovich, Oleg V; Tannenbaum, Allen

    2006-01-01

    Speckle noise is an inherent property of medical ultrasound imaging, and it generally tends to reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging modality. As a result, speckle noise reduction is an important prerequisite, whenever ultrasound imaging is used for tissue characterization. Among the many methods that have been proposed to perform this task, there exists a class of approaches that use a multiplicative model of speckled image formation and take advantage of the logarithmical transformation in order to convert multiplicative speckle noise into additive noise. The common assumption made in a dominant number of such studies is that the samples of the additive noise are mutually uncorrelated and obey a Gaussian distribution. The present study shows conceptually and experimentally that this assumption is oversimplified and unnatural. Moreover, it may lead to inadequate performance of the speckle reduction methods. The study introduces a simple preprocessing procedure, which modifies the acquired radio-frequency images (without affecting the anatomical information they contain), so that the noise in the log-transformation domain becomes very close in its behavior to a white Gaussian noise. As a result, the preprocessing allows filtering methods based on assuming the noise to be white and Gaussian, to perform in nearly optimal conditions. The study evaluates performances of three different, nonlinear filters--wavelet denoising, total variation filtering, and anisotropic diffusion--and demonstrates that, in all these cases, the proposed preprocessing significantly improves the quality of resultant images. Our numerical tests include a series of computer-simulated and in vivo experiments. PMID:16471433

  16. Applications of ultrasound in electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Silva Martinez, Susana

    1997-10-01

    The effect of the ultrasound on electrochemical processes has been investigated employing a microelectrode within the cavitating media. Transient mass transport was strongly enhanced in the presence of ultrasound. High rates of mass transfer of up to 1.5 cm s-1 were observed. These high rates of mass transfer were attributed to two cavitation processes. First, bubble collapse at or near the solid-liquid interface with the consequent formation of a high speed liquid microjet directed at the electrode surface. Second, bubble motion near or within the diffusion layer or the electrode. Single current transients were also recorded at high time resolution. These single current transients were attributed to the short-time perturbation of the diffusion field of the microelectrode due to impacts of cavitation bubble collapse followed by a long time relaxation of the diffusion field back to the steady state. The influence of the ultrasonic source to electrode separation, temperature of the bulk solution, electrode potential and electrode size on the magnitude of current transients was also studied. All of these parameters affected markedly the magnitude of the current transients recorded at microelectrode in the presence of ultrasound. An alternative approach is presented to characterise fast heterogeneous electron transfer reactions employing ultrasound as a mass transport enhancement tool. Two innovative techniques, sampled-current voltammetry and sampled-mean current voltammetry, were developed during the course of this thesis. The technique of sample-current voltammetry reported values of the standard rate constant of heterogeneous electron transfer of up to 1.2 cm s-1 in the presence of ultrasound. This technique focuses on the electrochemical phenomena under investigation at the point of impact of the ultrasonic event, produced by asymmetric cavitation bubble collapse near the electrode surface. Bubble dynamics were also examined under the experimental conditions

  17. Array Theory and Nial

    DEFF Research Database (Denmark)

    Falster, Peter; Jenkins, Michael

    1999-01-01

    This report is the result of collaboration between the authors during the first 8 months of 1999 when M. Jenkins was visiting professor at DTU. The report documents the development of a tool for the investigation of array theory concepts and in particular presents various approaches to choose pri...

  18. The Murchison Widefield Array

    NARCIS (Netherlands)

    Mitchell, Daniel A.; Greenhill, Lincoln J.; Ord, Stephen M.; Bernardi, Gianni

    2010-01-01

    It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imagin

  19. Cantilever array sensors

    Directory of Open Access Journals (Sweden)

    Hans Peter Lang

    2005-04-01

    Full Text Available Miniaturized microfabricated sensors have enormous potential in gas detection, biochemical analysis, medical applications, quality and process control, and product authenticity issues. Here, we highlight an ultrasensitive mechanical way of converting (bio-chemical or physical processes into a recordable signal using microfabricated cantilever arrays.

  20. Bandwidth Reconfigurable Metamaterial Arrays

    Directory of Open Access Journals (Sweden)

    Nathanael J. Smith

    2014-01-01

    Full Text Available Metamaterial structures provide innovative ways to manipulate electromagnetic wave responses to realize new applications. This paper presents a conformal wideband metamaterial array that achieves as much as 10 : 1 continuous bandwidth. This was done by using interelement coupling to concurrently achieve significant wave slow-down and cancel the inductance stemming from the ground plane. The corresponding equivalent circuit of the resulting array is the same as that of classic metamaterial structures. In this paper, we present a wideband Marchand-type balun with validation measurements demonstrating the metamaterial (MTM array’s bandwidth from 280 MHz to 2800 MHz. Bandwidth reconfiguration of this class of array is then demonstrated achieving a variety of band-pass or band-rejection responses within its original bandwidth. In contrast with previous bandwidth and frequency response reconfigurations, our approach does not change the aperture’s or ground plane’s geometry, nor does it introduce external filtering structures. Instead, the new responses are realized by making simple circuit changes into the balanced feed integrated with the wideband MTM array. A variety of circuit changes can be employed using MEMS switches or variable lumped loads within the feed and 5 example band-pass and band-rejection responses are presented. These demonstrate the potential of the MTM array’s reconfiguration to address a variety of responses.

  1. Preoperative ultrasound mapping of the saphenous vein

    DEFF Research Database (Denmark)

    Levi, Niels; Schroeder, T

    1997-01-01

    A prospective series of 92 patients had their greater saphenous vein assessed with duplex ultrasound scanning prior to planned infrainguinal bypass procedures. Sixteen (17%) bypass procedures thrombosed within the first week postoperatively. A naturally occurring optimal vein diameter was...

  2. Ultrasound-guided percutaneous thoracoabdominal biopsy.

    Science.gov (United States)

    Ojalehto, M; Tikkakoski, T; Rissanen, T; Apaja-Sarkkinen, M

    2002-03-01

    This review will discuss the benefits and disadvantages of ultrasound-guided percutaneous fine-needle aspiration and cutting needle biopsies. Clinical efficacy, cost-effectiveness, some controversies and safety will be reviewed. PMID:12010294

  3. Ultrasound, normal placenta - Braxton Hicks (image)

    Science.gov (United States)

    ... performed at 17 weeks gestation. It shows the placenta during a normal (Braxton Hicks) contraction. Throughout the ... contracts to facilitate better blood flow through the placenta and the fetus. In this ultrasound, the placenta ...

  4. Legacy HMSRP Hawaiian Monk Seal Ultrasound Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ultrasounds measuring the condition of juvenile seals at Laysan Island during 2009-2010, collected when seals were handled as part of the De-Worming Project

  5. Endoscopic ultrasound guided radiofrequency ablation in pancreas

    DEFF Research Database (Denmark)

    Seicean, Andrada; Tefas, Cristian; Ungureanu, Bogdan;

    2014-01-01

    Radiofrequency ablation of the pancreas represents a more effective tumor-destruction method compared to other ablation techniques. The endoscopic ultrasound guided radiofrequency ablation is indicated for locally advanced, non-metastatic pancreatic adenocarcinoma, without the need of general...

  6. Ultrasound-induced encapsulated microbubble phenomena

    NARCIS (Netherlands)

    Postema, Michiel; Wamel, van Annemieke; Lancée, Charles T.; Jong, de Nico

    2004-01-01

    When encapsulated microbubbles are subjected to high-amplitude ultrasound, the following phenomena have been reported: oscillation, translation, coalescence, fragmentation, sonic cracking and jetting. In this paper, we explain these phenomena, based on theories that were validated for relatively big

  7. Nucleic acid delivery with microbubbles and ultrasound.

    Science.gov (United States)

    Rychak, Joshua J; Klibanov, Alexander L

    2014-06-01

    Nucleic acid-based therapy is a growing field of drug delivery research. Although ultrasound has been suggested to enhance transfection decades ago, it took a combination of ultrasound with nucleic acid carrier systems (microbubbles, liposomes, polyplexes, and viral carriers) to achieve reasonable nucleic acid delivery efficacy. Microbubbles serve as foci for local deposition of ultrasound energy near the target cell, and greatly enhance sonoporation. The major advantage of this approach is in the minimal transfection in the non-insonated non-target tissues. Microbubbles can be simply co-administered with the nucleic acid carrier or can be modified to carry nucleic acid themselves. Liposomes with embedded gas or gas precursor particles can also be used to carry nucleic acid, release and deliver it by the ultrasound trigger. Successful testing in a wide variety of animal models (myocardium, solid tumors, skeletal muscle, and pancreas) proves the potential usefulness of this technique for nucleic acid drug delivery. PMID:24486388

  8. Whole breast tissue characterization with ultrasound tomography

    Science.gov (United States)

    Duric, Neb; Littrup, Peter; Li, Cuiping; Roy, Olivier; Schmidt, Steve; Seamans, John; Wallen, Andrea; Bey-Knight, Lisa

    2015-03-01

    A number of clinical trials have shown that screening ultrasound, supplemental to mammography, detects additional cancers in women with dense breasts. However, labor intensity, operator dependence and high recall rates have limited adoption. This paper describes the use of ultrasound tomography for whole-breast tissue stiffness measurements as a first step toward addressing the issue of high recall rates. The validation of the technique using an anthropomorphic phantom is described. In-vivo applications are demonstrated on 13 breast masses, indicating that lesion stiffness correlates with lesion type as expected. Comparison of lesion stiffness measurements with standard elastography was available for 11 masses and showed a strong correlation between the 2 measures. It is concluded that ultrasound tomography can map out the 3 dimensional distribution of tissue stiffness over the whole breast. Such a capability is well suited for screening where additional characterization may improve the specificity of screening ultrasound, thereby lowering barriers to acceptance.

  9. Remote television viewing: an ultrasound teaching device.

    Science.gov (United States)

    Raskin, M M; Vining, P E

    1979-07-01

    Remote viewing of ultrasound scans facilitates assessment of a student's technique while minimizing anxiety for both him and the patient. This method may also be effective for the busy physician who must monitor several procedures at the same time.

  10. Estimation of blood velocities using ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    Ultrasound systems are especially useful in estimating blood velocities in the human body because they are noninvasive and can display an estimate in real time. This book offers a comprehensive treatment of this relatively new, important technology. The book begins with an introduction to ultraso......Ultrasound systems are especially useful in estimating blood velocities in the human body because they are noninvasive and can display an estimate in real time. This book offers a comprehensive treatment of this relatively new, important technology. The book begins with an introduction...... to ultrasound, flow physics, and the circulatory system. Next, the interaction of ultrasound with blood is discussed. The special contribution of the book lies in the remaining chapters, which offer a lucid, thorough description of continuous and pulsed wave systems, the latest systems for doing color flow...

  11. Waveguide piezoelectric micromachined ultrasonic transducer array for short-range pulse-echo imaging

    Science.gov (United States)

    Lu, Y.; Tang, H.; Wang, Q.; Fung, S.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.

    2015-05-01

    This paper presents an 8 × 24 element, 100 μm-pitch, 20 MHz ultrasound imager based on a piezoelectric micromachined ultrasonic transducer (PMUT) array having integrated acoustic waveguides. The 70 μm diameter, 220 μm long waveguides function both to direct acoustic waves and to confine acoustic energy, and also to provide mechanical protection for the PMUT array used for surface-imaging applications such as an ultrasonic fingerprint sensor. The imager consists of a PMUT array bonded with a CMOS ASIC using wafer-level conductive eutectic bonding. This construction allows each PMUT in the array to have a dedicated front-end receive amplifier, which together with on-chip analog multiplexing enables individual pixel read-out with high signal-to-noise ratio through minimized parasitic capacitance between the PMUT and the front-end amplifier. Finite element method simulations demonstrate that the waveguides preserve the pressure amplitude of acoustic pulses over distances of 600 μm. Moreover, the waveguide design demonstrated here enables pixel-by-pixel readout of the ultrasound image due to improved directivity of the PMUT by directing acoustic waves and creating a pressure field with greater spatial uniformity at the end of the waveguide. Pulse-echo imaging experiments conducted using a one-dimensional steel grating demonstrate the array's ability to form a two-dimensional image of a target.

  12. FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging.

    Science.gov (United States)

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2012-07-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models. PMID:22828830

  13. FPGA-Based Reconfigurable Processor for Ultrafast Interlaced Ultrasound and Photoacoustic Imaging

    Science.gov (United States)

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2016-01-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models. PMID:22828830

  14. Correlations among carcass traits taken by ultrasound and after slaughter in Mediterranean (Bubalus bubalis young bulls

    Directory of Open Access Journals (Sweden)

    R.S. Bonilha Pinheiro

    2010-02-01

    Full Text Available The objective of this work was to estimate the correlations among measurements taken in vivo with ultrasound equipment with some carcass traits measured after slaughter. Twenty eight Mediterranean bulls, with average shrunk body weight of 330 kg and 14 months of age, were fed by 120 days with high concentrate diets. The shrunk body weight, the ribeye area (REAU, the back fat thickness (FTU over the Longissimus dorsi muscle between 12ª and 13ª ribs and rump fat (EGP8U, were measured at 28 days intervals. Real-time ultrasound equipment Piemedical Scanner 200 VET, with 18 cm linear array transducer was utilized. After the slaughter, the hot carcass weight (PCQ and the kidney, pelvic and inguinal fat (GRPI were weighted and the dressing percentage (DP calculated. After 24 hours of cooling the ribeye area (REAC, backfat thickness (FTC and rump fat (EGP8C were measured. Both the REAC, FTC and EGP8C were underestimated by ultrasound measurements. The Pearson correlation coefficients for ribeye area, backfat thickness and rump fat measured in the carcass and with ultrasound, were 0.96, 0.99 and 0.91, respectively. The coefficient between DP and REAU was 0.47; 0.45 between DP and REAC, 0.56 between DP and FTU and 0.58 between DP and FTC. DP presented a 0.59 correlation coefficient with EGP8U. The Spearman correlation was estimated between REAU and REAC, FTU and FTC, EGP8U and EGP8C, and the values were 0.96, 0.99 and 0.91 , respectively. The ultrasound measures could be used to estimate carcass traits in buffaloes with good accuracy.

  15. Cerebral ultrasound images in prenatal cytomegalovirus infection.

    Science.gov (United States)

    Tomà, P; Magnano, G M; Mezzano, P; Lazzini, F; Bonacci, W; Serra, G

    1989-01-01

    A male newborn with prenatal cytomegalovirus infection was referred for cranial ultrasound. The cranial ultrasound demonstrated areas of increased echogenicity in the thalamic and gray nuclei resembling "a branched candlestick". Doppler technique located the "branched candlestick" along the thalamostriate arteries. This image is particularly interesting because to our knowledge it has never before been described in congenital cytomegalovirus infection, but only in congenital rubella. PMID:2550848

  16. Twofold processing for denoising ultrasound medical images

    OpenAIRE

    P.V.V.Kishore; Kumar, K. V. V.; kumar, D. Anil; M.V.D.Prasad; Goutham, E. N. D.; Rahul, R.; Krishna, C. B. S. Vamsi; Sandeep, Y.

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing s...

  17. Development of High Frequency Miniature Ultrasound Transducers

    OpenAIRE

    Manh, Tung

    2013-01-01

    Small, high frequency (≥ 10MHz) broadband ultrasound transducers are required in modern medical imaging systems to provide short range, high resolution images for studying of microstructures in soft tissues, such as the composition of small tumors or a vessel wall. The manufacturing of these probes using conventional methods, i.e. lapping and dicing, becomes difficult and expensive for high frequency applications and there is a need to produce small ultrasound transducers with low cost and hi...

  18. Ultrasound assisted biogas production from landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Oz, Nilgün Ayman, E-mail: nilgunayman@comu.edu.tr; Yarimtepe, Canan Can

    2014-07-15

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  19. 3D Flow reconstruction using ultrasound PIV

    OpenAIRE

    Poelma, C.; Mari, J. M.; Foin, N.; Tang, M.-X.; Krams, R; Caro, C.G.; Weinberg, P.D.; Westerweel, J.

    2009-01-01

    Ultrasound particle image velocimetry (PIV) can be used to obtain velocity fields in non-transparent geometries and/or fluids. In the current study, we use this technique to document the flow in a curved tube, using ultrasound contrast bubbles as flow tracer particles. The performance of the technique is first tested in a straight tube, with both steady laminar and pulsatile flows. Both experiments confirm that the technique is capable of reliable measurements. A number of adaptations are int...

  20. Application of ultrasound in periodontics: Part II

    OpenAIRE

    Bains, Vivek K.; Mohan, Ranjana; Bains, Rhythm

    2008-01-01

    Ultrasound offers great potential in development of a noninvasive periodontal assessment tool that would offer great yield real time information, regarding clinical features such as pocket depth, attachment level, tissue thickness, histological change, calculus, bone morphology, as well as evaluation of tooth structure for fracture cracks. In therapeutics, ultrasonic instrumentation is proven effective and efficient in treating periodontal disease. When used properly, ultrasound-based instrum...

  1. Application of Ultrasound in Food Drying

    OpenAIRE

    Senem Tüfekçi; Sami Gökhan Özkal

    2015-01-01

    Drying has a privileged position in all food preservation methods by reducing of existing water content in food not allowing spoilage, providing a precise and cheap preservation opportunity. Sound waves with frequencies above human hearing are called as ultrasound. Ultrasound which is applied prior to drying as pretreatment or simultaneously is effective on drying performance of products. It is known that diffusion of water increased and total process time shortened in processes that ultrason...

  2. Detection Performance Theory for Ultrasound Imaging Systems

    OpenAIRE

    Zemp, Roger J.; Parry, Mark D.; Abbey, Craig K.; Insana, Michael F.

    2005-01-01

    A rigorous statistical theory for characterizing the performance of medical ultrasound systems for lesion detection tasks is developed. A design strategy for optimizing ultrasound systems should be to adjust parameters for maximum information content, which is obtained by maximizing the ideal observer performance. Then, given the radio-frequency data, image and signal processing algorithms are designed to extract as much diagnostically relevant information as possible. In this paper, closed-f...

  3. Atmospheric freeze drying assisted by power ultrasound

    OpenAIRE

    Santacatalina Bonet, Juan Vicente; Carcel Carrión, Juan Andrés; García Pérez, José Vicente; Mulet Pons, Antonio; Simal, S.

    2012-01-01

    [EN] Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that pur...

  4. Epithelioma of Malherbe: new ultrasound patterns

    OpenAIRE

    Amantea Ada; Panetta Chiara; Drusco Alessandra; Elia Fulvia; Solivetti Francesco M; Di Carlo Aldo

    2010-01-01

    Abstract Backround Calcifying epithelioma of Malherbe, or Pilomatricoma, is considered an uncommon cutaneous neoplasia, normally occurring in children as a solitary, firm, asymptomatic, hard, subcutaneous, slowly growing nodule on the face, neck, or proximal upper extremity. In literature, two Pilomatricoma ultrasound patterns are described: the totally calcified nodule and the hypoechoic nodule with internal calcific foci. High frequency ultrasound has not yet been applied for routine diagno...

  5. A brief history of ultrasound in rheumatology

    DEFF Research Database (Denmark)

    D'Agostino, Maria Antonietta; Terslev, Lene

    2014-01-01

    Musculoskeletal ultrasound is an evolving technique widely used in rheumatology thanks to the numerous advances and the improved work on standardisation. This article deals with the new developments in terms of technology and validation.......Musculoskeletal ultrasound is an evolving technique widely used in rheumatology thanks to the numerous advances and the improved work on standardisation. This article deals with the new developments in terms of technology and validation....

  6. Ultrasound contrast agents : optical and acoustical characterization

    OpenAIRE

    Sijl, Jeroen

    2009-01-01

    This thesis describes the characterization of the dynamics and the acoustic responses of single BR14 (Bracco Research S.A., Geneva, Switzerland) ultra- sound contrast agent microbubbles under the in°uence of ultrasound. In Ch. 2 of this thesis we investigate the small amplitude behavior of isolated microbubbles acoustically. To ensure that the measured acoustic response orig- inates from one bubble only, it requires the isolation of a single microbubble within an ultrasound beam. Furthermore ...

  7. Reconstructions in ultrasound modulated optical tomography

    KAUST Repository

    Allmaras, Moritz

    2011-01-01

    We introduce a mathematical model for ultrasound modulated optical tomography and present a simple reconstruction scheme for recovering the spatially varying optical absorption coefficient from scanning measurements with narrowly focused ultrasound signals. Computational results for this model show that the reconstruction of sharp features of the absorption coefficient is possible. A formal linearization of the model leads to an equation with a Fredholm operator, which explains the stability observed in our numerical experiments. © de Gruyter 2011.

  8. Practical sonochemistry power ultrasound uses and applications

    CERN Document Server

    Mason, T J

    2002-01-01

    This updated version of Practical Sonochemistry for advanced students and teachers in chemistry and chemical engineering conveys the increasing growth in applications and equipment to power ultrasound. Equipment now on the market offers a wider range of frequencies with more reproducible experimentation and a variety of scale-up systems. The book provides detailed descriptions of newer ultrasonic equipment and its applications, and practical laboratory uses of ultrasound technology for industrial scale performance.Modern exercises familiarise readers with recent sonochemical operations

  9. The Allen Telescope Array

    Science.gov (United States)

    Bower, Geoffrey C.; Allen Telescope Array Team

    2010-01-01

    The ATA is a 42-element centimeter wavelength array located in Hat Creek, California and jointly operated by UC Berkeley Radio Astronomy Laboratory and the SETI Institute. Since the ATA dedication in Fall 2007, activities have been focused on commissioning the array, retrofitting a handful of components including the feed, developing an operations model, creation of pipeline processing for correlator imaging data, early science observations, and launching of the major surveys for which the telescope was built. The retrofit of the feed improves feed mechanical robustness as well as high frequency performance. Science programs launched include imaging radio transient and static sky surveys (ATATS and PiGSS), commensal SETI and transient surveys of the Galactic Center, targeted SETI observations of nearby stars, the Fly's Eye transient survey, broadband spectra of nearby star-forming galaxies, polarimetric observations of bright radio sources, observations of hydrogen in nearby galaxies and galaxy groups, molecular line observations in the Galaxy, and observations of Jupiter and the Moon. The baseline Square Kilometer Array (SKA) design, a large-N-small-diameter (LNSD) array with wide-band single-pixel feeds and an offset Gregorian antenna, bears a strong resemblance to the ATA. Additional ATA contributions to the SKA include configuration studies for LNSD arrays, the use of fiber optics for broadband data transmission, the use of flexible FPGA-based digital electronics, passive cooling of antennas, and implementation of commensal observing modes. The ATA is currently used for exploration of calibration and imaging algorithms necessary for the SKA. I will summarize current technical status and performance, the results from early science and surveys, and ATA contributions to SKA development.

  10. INTRAOPERATIVE ULTRASOUND FOR HEPATIC NEOPLASM DURING SURGERY

    Institute of Scientific and Technical Information of China (English)

    于健春; 钟守先

    1999-01-01

    Objective. The purpose of this study was to determine the impact of intraoperative ultrasound(IOUS) on the management of patients with neoplasms of the liver. ethods. Forty-nlne patients operated on for liver or other pathologic processes were examined intraoperatively with .5.0 MHz special ultrasound transducers during surgical exploration of the abdomen. Subjects were evaluated because of known or suspected disease of the liver. Preoperative imaging studies izmluded percutaneotts ultrasound (n=49),magnetic resonance imaging(n= ll),and computed tomography(n=34). Intraoparative evaluation on all patients included inspection, bimanual palpation,and ultrasonography.Comparison between preoperative imagings and IOUS were analysed. Results. Sensitivity for detection of hepatic neoplasms showed in intraoperative ultrasound, percutaneotts ultrasound,magnetic resonance imaging and computed tomography as 100%(23/23),74%(17/23),74%(14/19) and 75 % (6/8). Specificity showed 100% (26/26), 100% (26/26), 93 % (14/15) and 67 (2/3). In seveaa patlents(14%) ,the neoplasms were not found by inspection ,bimanual palpation,and identified only by IOUS. Conclusums. Intraoparative ultrasound is the most sensitive and specific method for detection and surgery of liver neoplasms,especially the occult neoplasms and small size lesion(<2cm).

  11. Ultrasound-mediated gastrointestinal drug delivery.

    Science.gov (United States)

    Schoellhammer, Carl M; Schroeder, Avi; Maa, Ruby; Lauwers, Gregory Yves; Swiston, Albert; Zervas, Michael; Barman, Ross; DiCiccio, Angela M; Brugge, William R; Anderson, Daniel G; Blankschtein, Daniel; Langer, Robert; Traverso, Giovanni

    2015-10-21

    There is a significant clinical need for rapid and efficient delivery of drugs directly to the site of diseased tissues for the treatment of gastrointestinal (GI) pathologies, in particular, Crohn's and ulcerative colitis. However, complex therapeutic molecules cannot easily be delivered through the GI tract because of physiologic and structural barriers. We report the use of ultrasound as a modality for enhanced drug delivery to the GI tract, with an emphasis on rectal delivery. Ultrasound increased the absorption of model therapeutics inulin, hydrocortisone, and mesalamine two- to tenfold in ex vivo tissue, depending on location in the GI tract. In pigs, ultrasound induced transient cavitation with negligible heating, leading to an order of magnitude enhancement in the delivery of mesalamine, as well as successful systemic delivery of a macromolecule, insulin, with the expected hypoglycemic response. In a rodent model of chemically induced acute colitis, the addition of ultrasound to a daily mesalamine enema (compared to enema alone) resulted in superior clinical and histological scores of disease activity. In both animal models, ultrasound treatment was well tolerated and resulted in minimal tissue disruption, and in mice, there was no significant effect on histology, fecal score, or tissue inflammatory cytokine levels. The use of ultrasound to enhance GI drug delivery is safe in animals and could augment the efficacy of GI therapies and broaden the scope of agents that could be delivered locally and systemically through the GI tract for chronic conditions such as inflammatory bowel disease.

  12. Intravascular ultrasound imaging following balloon angioplasty.

    Science.gov (United States)

    Tobis, J M; Mahon, D J; Moriuchi, M; Honye, J; McRae, M

    1991-01-01

    Despite its long history and reliability, contrast angiography has several inherent limitations. Because it is a two-dimensional projection image of the lumen contour, the wall thickness cannot be measured and the plaque itself is not visualized. This results in an underestimation of the amount of atherosclerotic disease by angiography. An assessment of atherosclerosis could be improved by an imaging modality: (1) that has an inherent larger magnification than angiography and (2) that directly visualizes the plaque. Intravascular ultrasound fulfils these criteria. This presentation will provide evidence that intravascular ultrasound may prove complimentary or even superior to angiography as an imaging modality. Intravascular ultrasound demonstrates excellent representations of lumen and plaque morphology of in vitro specimens compared with histology. There is very close intraobserver and interobserver variability of measurements made from intravascular ultrasound images. Phantom studies of stenoses in a tube model demonstrate that angiography can misrepresent the severity of stenosis when the lumen contour is irregular and not a typical ellipse, whereas intravascular ultrasound reproduces the cross-sectional morphology more accurately since it images the artery from within. In vitro studies of the atherosclerotic plaque tissue characteristics compare closely with the echo representation of fibrosis, calcification, and lipid material. In addition, in vitro studies of balloon angioplasty demonstrate that intravascular ultrasound accurately represents the changes in the structure of artery segments following balloon dilatation. PMID:1833473

  13. Ultrasound detection of nonpalpable mammographically occult malignancy

    International Nuclear Information System (INIS)

    To evaluate the prevalence of occult malignancy with screening breast ultrasound. All ultrasound-guided core needle breast biopsies performed between January 1, 1999, and June 30, 2001, were retrospectively reviewed. Lesions were identified during screening breast ultrasound in high-risk women with no mammographic or palpable abnormality in either breast, a unilateral mammographic or palpable abnormality in the contralateral breast, or a unilateral mammographic or palpable abnormality in a different quadrant of the same breast. All ultrasound-detected lesions were histologically verified. Six hundred and fifty-two women with a mean age of 49 years underwent 698 biopsies during the study period. Three hundred and forty-nine of these lesions were detected at screening breast ultrasound. Out of 349, 11 (3.2%) had a mammographically and clinically occult malignancy. Nine cancers were found in women with no mammographic or palpable abnormality. Two cancers were found in the same breast as the mammographic or palpable abnormality. None were found in the breast contralateral to a palpable or mammographic abnormality. Screening breast ultrasound of high-risk women has a similar detection rate for occult carcinoma as screening mammography, but has a low positive predictive value in cases where biopsy is performed. (author)

  14. [Ultrasound in oncology: screening and staging].

    Science.gov (United States)

    Delorme, S

    2012-03-01

    This is a review on the role of ultrasound for early detection and staging of cancer. In breast cancer screening ultrasound serves to clarify mammographically unclear lesions and is a primary screening tool for hereditary breast cancer. Renal neoplasms are commonly diagnosed as incidental sonographic findings and in this case are more often in a curable stage than symptomatic neoplasms. In chronic hepatitis or liver cirrhosis the annual incidence of hepatocellular cancer is more than 2% and ultrasound is used as a screening tool with 60% sensitivity and 97% specificity. According to the literature the sensitivity of native ultrasound for detecting metastases is 60% and the sensitivity of contrast-enhanced ultrasound (CEUS) is 79% or higher, i.e comparable with the sensitivity of contrast-enhanced computed tomography (CT) or magnetic resonance imaging (MRI). Its role in staging is, however, limited as CT and MRI are necessary for local staging of the primary tumor and also include the liver. In the differential diagnosis of liver lesions the specificity of CEUS ranges from 82% to 99% depending on the lesion entity and is thereby comparable to contrast-enhanced CT. For staging of cervical lymph node metastases ultrasound is preferable to CT or MRI as the sensitivity lies between 79% and 90% and specificity is reported to be 90%. PMID:22354462

  15. Epithelioma of Malherbe: new ultrasound patterns

    Directory of Open Access Journals (Sweden)

    Amantea Ada

    2010-05-01

    Full Text Available Abstract Backround Calcifying epithelioma of Malherbe, or Pilomatricoma, is considered an uncommon cutaneous neoplasia, normally occurring in children as a solitary, firm, asymptomatic, hard, subcutaneous, slowly growing nodule on the face, neck, or proximal upper extremity. In literature, two Pilomatricoma ultrasound patterns are described: the totally calcified nodule and the hypoechoic nodule with internal calcific foci. High frequency ultrasound has not yet been applied for routine diagnosis of Pilomatricoma. The aim of the study was to retrospectively identify specific ultrasound features. Methods We retrieved 124 histologically Pilomatricoma cases: 28 patients with 32 lesions were preoperatively evaluated with ultrasound. Results 22/32 have shown a solid formation, hypoechoic, with a sharp outline. Of these 22, 10 lesions were completely calcifying and 12 partially calcified. In 3/32 lesions with uncertain diagnosis, ultrasounds showed a complex/mixed pattern with pseudo-fluid areas and microspots. 7/32 lesions with US different diagnosis included 3 complex lesions, 2 cystic lesions and 2 solid nodular lesions. Conclusion In addition to well-known ultrasound patterns (completely calcified and partially calcified we identified three new, not yet described, patterns that constitute the 31% of the cases: complex, pseudocistyc and pseudotumoral.

  16. INTRAOPERATIVE ULTRASOUND FOR HEPATIC NEOPLASM DURING SURGERY

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Objective.Th purpose of this study was to determine the impact of intraoperative ultrasound(IOUS)on the management of patients with neoplasms of the liver.Methods.Forty-nine patients operated on for liver or other pathologic processes were examined intraopertively with 5.0 MHz special ultrasound transducers during surgical exploration of the abdomen.Subjects were evaluated because of known or suspected disease of the liver.Preoperative imaging studies included percutaneous ultrasound(n=49),magnetic resonance imaging(n=11),and computed tomography(n=34).Intraoperative evaluation on all patients included inspection,bimanual palpation,and ultrasnography.Comparison between preoperative imagings and IOUS were analysed.Results.Sensitivity for detection of hepatic neoplasms showed in intraoperative ultrasound,percutaneous ultrasound,magnetic resonance imaging andcomputed tomography as 100%(23/23),74%(17/23),74%(14/19) and 75%(6/8).Specificity showed 100%(26/26),100%(26/26),93%(14/15) and 67(2/3).In seven patients(14%),the neoplasms were not found by inspection,bimanual palpation,and identified only by IOUS.Conclusions.Intraoperative ultrasound is the most sensitive and specific method for detection and surgery of liver neoplasms,especially the occult neoplasms and small size lesion(<2cm).

  17. The effects of transducer geometry on artifacts common to diagnostic bone imaging with conventional medical ultrasound.

    Science.gov (United States)

    Mauldin, F William; Owen, Kevin; Tiouririne, Mohamed; Hossack, John A

    2012-06-01

    The portability, low cost, and non-ionizing radiation associated with medical ultrasound suggest that it has potential as a superior alternative to X-ray for bone imaging. However, when conventional ultrasound imaging systems are used for bone imaging, clinical acceptance is frequently limited by artifacts derived from reflections occurring away from the main axis of the acoustic beam. In this paper, the physical source of off-axis artifacts and the effect of transducer geometry on these artifacts are investigated in simulation and experimental studies. In agreement with diffraction theory, the sampled linear-array geometry possessed increased off-axis energy compared with single-element piston geometry, and therefore, exhibited greater levels of artifact signal. Simulation and experimental results demonstrated that the linear-array geometry exhibited increased artifact signal when the center frequency increased, when energy off-axis to the main acoustic beam (i.e., grating lobes) was perpendicularly incident upon off-axis surfaces, and when off-axis surfaces were specular rather than diffusive. The simulation model used to simulate specular reflections was validated experimentally and a correlation coefficient of 0.97 between experimental and simulated peak reflection contrast was observed. In ex vivo experiments, the piston geometry yielded 4 and 6.2 dB average contrast improvement compared with the linear array when imaging the spinous process and interlaminar space of an animal spine, respectively. This work indicates that off-axis reflections are a major source of ultrasound image artifacts, particularly in environments comprising specular reflecting (i.e., bone or bone-like) objects. Transducer geometries with reduced sensitivity to off-axis surface reflections, such as a piston transducer geometry, yield significant reductions in image artifact.

  18. Towards Truly Boolean Arrays in Data-Parallel Array Processing

    NARCIS (Netherlands)

    C. Grelck; H. Luyat

    2013-01-01

    We investigate several dense bit-wise implementations of Boolean arrays in the context of the functional data-parallel array programming language SAC. A particular problem arises in compiler or directive based parallelisation as the scheduling of loops over Boolean arrays is unaware of the restricte

  19. Concurrent array-based queue

    Energy Technology Data Exchange (ETDEWEB)

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-01-06

    According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.

  20. Spatial Encoding Using a Code Division Technique for Fast Ultrasound Imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2008-01-01

    This paper describes a method for spatial encoding in synthetic transmit aperture ultrasound imaging. This allows several ultrasonic sources to be active simultaneously. The method is based on transmitting pseudo-random sequences to spatially encode the transmitters. The data can be decoded after...... the underlying theory and to test the feasibility in a physical system. The method has been evaluated in simulations using Field II in which the point-spread functions were simulated for different depths for a 7 MHz linear array transducer. A signal-to-noise ratio (SNR) simulation also was included in the study...