WorldWideScience

Sample records for 30-mhz ultrasound array

  1. Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer.

    Science.gov (United States)

    Zemp, Roger J; Song, Liang; Bitton, Rachel; Shung, K Kirk; Wang, Lihong V

    2008-05-26

    We present a novel high-frequency photoacoustic microscopy system capable of imaging the microvasculature of living subjects in realtime to depths of a few mm. The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, and a shared-RAM multi-core-processor computer. Data acquisition, beamforming, scan conversion, and display are implemented in realtime at 50 frames per second. Clearly resolvable images of 6-microm-diameter carbon fibers are experimentally demonstrated at 80 microm separation distances. Realtime imaging performance is demonstrated on phantoms and in vivo with absorbing structures identified to depths of 2.5-3 mm. This work represents the first high-frequency realtime photoacoustic imaging system to our knowledge.

  2. High-frequency Ultrasound Doppler System for Biomedical Applications with a 30 MHz Linear Array

    Science.gov (United States)

    Xu, Xiaochen; Sun, Lei; Cannata, Jonathan M.; Yen, Jesse T.; Shung, K. Kirk

    2008-01-01

    In this paper, we report the development of the first high-frequency (HF) pulsed-wave Doppler system using a 30 MHz linear array transducer to assess the cardiovascular functions in small animal. This array based pulsed-wave Doppler system included a 16-channel HF analog beamformer, a HF pulsed-wave Doppler module, timing circuits, HF bipolar pulsers, and analog front-ends. The beamformed echoes acquired by the 16 channel analog beamformer, were directly fed to the HF pulsed-wave Doppler module. Then the in-phase and quadrature-phase (IQ) audio Doppler signals were digitized by either a sound card or a Gage digitizer and stored in a PC. The Doppler spectrogram was displayed on a PC in real time. The two-way beam-widths were determined to be 160 μm to 320 μm when the array was electronically focused at different focal points at depths from 5–10 mm. A micro flow phantom, consisting of a polyimide tube with inner diameter of 127 μm, and the wire phantom were used to evaluate and calibrate the system. The results show that the system is capable of detecting motion velocity of the wire phantom as low as 0.1 mm/s, and detecting blood-mimicking flow velocity in the 127 μm tube lower than 7 mm/s. The system was subsequently used to measure the blood flow in vivo in two mouse abdominal superficial vessels with diameters of approximately 200 μm, and a mouse aorta close to the heart. These results demonstrated that this system may become an indispensable part of the current HF array based imaging systems for small animal studies. PMID:17993243

  3. Mixed Frequency Ultrasound Phased Array

    Institute of Scientific and Technical Information of China (English)

    香勇; 霍健; 施克仁; 陈以方

    2004-01-01

    A mixed frequency ultrasonic phased array (MPA) was developed to improve the focus, in which the element excitation frequencies are not all the same as in a normal constant frequency phased array. A theoretical model of the mixed frequency phased array based on the interference principle was used to simulate the array's sound distribution. The pressure intensity in the array focal area was enhanced and the scanning area having effective contrast resolution was enlarged. The system is especially useful for high intensity focused ultrasound (HIFU) with more powerful energy and ultrasound imaging diagnostics with improved signal to noise ratios, improved beam forming and more uniform imaging quality.

  4. Phased array based ultrasound scanning system development

    Science.gov (United States)

    Sagdiev, R. K.; Denisov, E. S.; Evdokimov, Yu K.; Fazlyyyakhmatov, M. G.; Kashapov, N. F.

    2014-12-01

    Multichannel ultrasound scanning system based on phased arrays development is presented in this paper. Substantiation of system parameters is presented. The description of block diagram and hardware development is presented. The combination of the self-developed receiving and a transmitting units and commercially available FPGA unit and Personal Computer can solve our scientific goals, while providing a relatively low device cost.

  5. Passive cavitation imaging with ultrasound arrays.

    Science.gov (United States)

    Salgaonkar, Vasant A; Datta, Saurabh; Holland, Christy K; Mast, T Douglas

    2009-12-01

    A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh-Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed.

  6. Micromachined capacitive transducer arrays for intravascular ultrasound

    Science.gov (United States)

    Degertekin, F. Levent; Guldiken, R. Oytun; Karaman, Mustafa

    2005-01-01

    Intravascular ultrasound (IVUS) imaging has become an essential imaging modality for the effective diagnosis and treatment of cardiovascular diseases during the past decade enabled by innovative applications of piezoelectric transducer technology. The limitations in the manufacture and performance of the same piezoelectric transducers have also impeded the improvement of IVUS for emerging clinically important applications such as forward viewing arrays for guiding interventions and high resolution imaging of arterial structure such as vulnerable plaque and fibrous cap, and also implementation of techniques such as harmonic imaging of the tissue and of the contrast agents. Capacitive micromachined ultrasonic transducer (CMUT) technology shows great potential for transforming IVUS not only to satisfy these clinical needs but also to open up possibilities for low-cost imaging devices integrated to therapeutic tools. We have developed manufacturing processes with a maximum process temperature of 250°C to build CMUTs on the same silicon chip with integrated electronics. Using these processes we fabricated CMUT arrays suitable for forward viewing IVUS in the 10-20MHz range. We characterized these array elements in terms of pulse-echo response, radiation pattern measurements and demonstrated its volumetric imaging capabilities on various imaging targets.

  7. Multilayer Array Transducer for Nonlinear Ultrasound Imaging

    Science.gov (United States)

    Owen, Neil R.; Kaczkowski, Peter J.; Li, Tong; Gross, Dan; Postlewait, Steven M.; Curra, Francesco P.

    2011-09-01

    The properties of nonlinear acoustic wave propagation are known to be able to improve the resolution of ultrasound imaging, and could be used to dynamically estimate the physical properties of tissue. However, transducers capable of launching a wave that becomes nonlinear through propagation do not typically have the necessary bandwidth to detect the higher harmonics. Here we present the design and characterization of a novel multilayer transducer for high intensity transmit and broadband receive. The transmit layer was made from a narrow-band, high-power piezoceramic (PZT), with nominal frequency of 2.0 MHz, that was diced into an array of 32 elements. Each element was 0.300 mm wide and 6.3 mm in elevation, and with a pitch of 0.400 mm the overall aperture width was 12.7 mm. A quarter-wave matching layer was attached to the PZT substrate to improve transmit efficiency and bandwidth. The overlaid receive layer was made from polyvinylidene fluoride (PVDF) that had gold metalization on one side. A custom two-sided flex circuit routed electrical connections to the PZT elements and patterned the PVDF elements; the PZT and PVDF elements had identical apertures. A low viscosity and electrically nonconductive epoxy was used for all adhesion layers. Characterization of electrical parameters and acoustic output were performed per standard methods, where transmit and receive events were driven by a software-controlled ultrasound engine. Echo data, collected from ex vivo tissue and digitized at 45 MS/s, exhibited frequency content up to the 4th harmonic of the 2 MHz transmit frequency.

  8. Sub-array patterns of spherical-section phased array for high intensity focused ultrasound surgery

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaodong; WANG Xufei; LU Mingzhu; WAN Mingxi

    2005-01-01

    The sub-array field patterns of spherical-section phased array were implemented for noninvasive ultrasound surgery of liver-tumor. The sub-array approach included field calculation, pseudo-inverse method and genetic algorithm. The sub-arrays uncovered by ribs according to scanned images normally emitted ultrasound. The results from different sub-arrays demonstrated quite satisfied acoustic performances, which included qualified focus size and intensity level for ultrasound surgery with single-focus and multi-foci patterns. Moreover, the patterns could decrease power accumulation on the ribs, and avoid damaging normal tissues. Thus the sub-array method provides a promising tool for phased array ultrasound propagating through strong obstacles like human rib cage, and it may broaden the therapeutic area, make the surgery safer and more flexible.

  9. A High-Frequency High Frame Rate Duplex Ultrasound Linear Array Imaging System for Small Animal Imaging

    Science.gov (United States)

    Zhang, Lequan; Xu, Xiaochen; Hu, Changhong; Sun, Lei; Yen, Jesse T.; Cannata, Jonathan M.; Shung, K. Kirk

    2010-01-01

    High-frequency (HF) ultrasound imaging has been shown to be useful for non-invasively imaging anatomical structures of the eye and small animals in biological and pharmaceutical research, achieving superior spatial resolution. Cardiovascular research utilizing mice requires not only real-time B-scan imaging, but also ultrasound Doppler to evaluate both anatomy and blood flow of the mouse heart. This paper reports the development of a high frequency ultrasound duplex imaging system capable of both B-mode imaging and Doppler flow measurements, using a 64-element linear array. The system included a HF pulsed-wave Doppler module, a 32-channel HF B-mode imaging module, a PC with a 200 MS/s 14-bit A/D card, and real-time LabView software. A 50dB signal-to-noise ratio (SNR) and a depth of penetration of larger than 12 mm were achieved using a 35 MHz linear array with 50 μm pitch. The two-way beam widths were determined to be 165 μm to 260 μm and the clutter energy to total energy ratio (CTR) were 9.1 dB to 12 dB, when the array was electronically focused at different focal points at depths from 4.8 mm to 9.6 mm. The system is capable of acquiring real-time B-mode images at a rate greater than 400 frames per second (fps) for a 4.8 × 13 mm field of view, using a 30 MHz 64-element linear array with 100 μm pitch. Sample in vivo cardiac high frame rate images and duplex images of mouse hearts are shown to assess its current imaging capability and performance for small animals. PMID:20639149

  10. Non-Io decametric radiation from Jupiter at frequencies above 30 MHz

    Science.gov (United States)

    Barrow, C. H.; Desch, M. D.

    1980-01-01

    Jovian Non-Io decametric radio events extending to frequencies of 30 MHz and above have been found in the Meudon-Nancay observations during 1978 and 1979, in the Voyager 1 PRA observations during February and March, 1979 and in the University of Colorado Radio Astronomy Observatory catalogue for 1960 to 1975. These events, which appear to be mostly associated with the Jovian A-source, query the existence of a cut-off, a little below 30 MHz, for the Non-Io emission and suggest the possibility of a single mechanism for both the Io and the Non-Io radiation.

  11. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging.

    Science.gov (United States)

    Daoudi, K; van den Berg, P J; Rabot, O; Kohl, A; Tisserand, S; Brands, P; Steenbergen, W

    2014-10-20

    Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expensive systems, which limits their clinical application and makes the combination costly and impracticable. In this work we present and evaluate a compact and ergonomically designed handheld probe, connected to a portable ultrasound system for inexpensive, real-time dual-modality ultrasound/photoacoustic imaging. The probe integrates an ultrasound transducer array and a highly efficient diode stack laser emitting 130 ns pulses at 805 nm wavelength and a pulse energy of 0.56 mJ, with a high pulse repetition frequency of up to 10 kHz. The diodes are driven by a customized laser driver, which can be triggered externally with a high temporal stability necessary to synchronize the ultrasound detection and laser pulsing. The emitted beam is collimated with cylindrical micro-lenses and shaped using a diffractive optical element, delivering a homogenized rectangular light intensity distribution. The system performance was tested in vitro and in vivo by imaging a human finger joint.

  12. Error analysis of subaperture processing in 1-D ultrasound arrays.

    Science.gov (United States)

    Zhao, Kang-Qiao; Bjåstad, Tore Gruner; Kristoffersen, Kjell

    2015-04-01

    To simplify the medical ultrasound system and reduce the cost, several techniques have been proposed to reduce the interconnections between the ultrasound probe and the back-end console. Among them, subaperture processing (SAP) is the most straightforward approach and is widely used in commercial products. This paper reviews the most important error sources of SAP, such as static focusing, delay quantization, linear delay profile, and coarse apodization, and the impacts introduced by these errors are shown. We propose to use main lobe coherence loss as a simple classification of the quality of the beam profile for a given design. This figure-ofmerit (FoM) is evaluated by simulations with a 1-D ultrasound subaperture array setup. The analytical expressions and the coherence loss can work as a quick guideline in subaperture design by equalizing the merit degradations from different error sources, as well as minimizing the average or maximum loss over ranges. For the evaluated 1-D array example, a good balance between errors and cost was achieved using a subaperture size of 5 elements, focus at 40 mm range, and a delay quantization step corresponding to a phase of π/4.

  13. Ultrasound cylindrical phased array for transoesophageal thermal therapy: initial studies

    Energy Technology Data Exchange (ETDEWEB)

    Melodelima, David [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Lafon, Cyril [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Prat, Frederic [Centre Hospitalier Bicetre, 78 Avenue General Leclerc, 94275 Le Kremlin Bicetre (France); Birer, Alain [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Cathignol, Dominique [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France)

    2002-12-07

    This work was undertaken to investigate the feasibility of constructing a cylindrical phased array composed of 64 elements spread around the periphery (OD 10.6 mm) for transoesophageal ultrasound thermotherapy. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were successively excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. For these feasibility studies, we used a cylindrical prototype (OD 10.6 mm) composed of 16 elementary transducers distributed over a quarter of the cylinder, all operating at 4.55 MHz. The active part was mechanically reinforced by a rigid damper structure behind the transducers. It was shown that an ultrasound field similar to that emitted by a plane transducer could be generated. Ex vivo experiments on pig's liver demonstrated that the ultrasound beam could be accurately rotated to generate sector-based lesions to a suitable depth (up to 19 mm). Throughout these experiments, exposures lasting 20 s were delivered at an acoustic intensity of 17 W cm{sup -2}. By varying the power from exposure to exposure, the depth of the lesion at different angles could be controlled.

  14. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging

    National Research Council Canada - National Science Library

    Qiu, Yongqiang; Gigliotti, James V; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E M; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-01-01

    .... Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays...

  15. Breast ultrasound tomography with two parallel transducer arrays: preliminary clinical results

    Science.gov (United States)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Intrator, Miranda; Hanson, Kenneth; Epstein, Katherine; Sandoval, Daniel; Williamson, Michael

    2015-03-01

    Ultrasound tomography has great potential to provide quantitative estimations of physical properties of breast tumors for accurate characterization of breast cancer. We design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays. The distance of these two transducer arrays is adjustable for scanning breasts with different sizes. The ultrasound transducer arrays are translated vertically to scan the entire breast slice by slice and acquires ultrasound transmission and reflection data for whole-breast ultrasound imaging and tomographic reconstructions. We use the system to acquire patient data at the University of New Mexico Hospital for clinical studies. We present some preliminary imaging results of in vivo patient ultrasound data. Our preliminary clinical imaging results show promising of our breast ultrasound tomography system with two parallel transducer arrays for breast cancer imaging and characterization.

  16. Development of high frequency annular array ultrasound transducers

    Science.gov (United States)

    Gottlieb, Emanuel John

    The advantage of ultrasonic annular arrays over conventional single element transducers has been in the ability to transmit focus at multiple points throughout the depth of field, as well as receive dynamic focus. Today, annular, linear and multidimensional array imaging systems are not commercially available at frequencies greater than 20 MHz. The fabrication technology used to develop a high frequency (>50 MHz) annular array transducer is presented. A 9 mum P(VDF-TrFE) film was bonded to gold annuli electrodes on the top layer of a two sided polyimide flexible circuit. Each annulus was separated by a 30 mum kerf and had several electroplated micro vias that connected to electrode traces on the bottom side of the polyimide flexible circuit. The array's performance was evaluated by measuring the electrical impedance, pulse echo response and crosstalk measurement for each element in the array. In order to improve device sensitivity each element was electrically matched to an impedance magnitude of 50 O and 0° phase at resonance. The average round trip insertion loss measured for the array and compensated for diffraction effects was -33.5 dB. The measured average center frequency and bandwidth of an element was 55 MHz and 47 respectively. The measured crosstalk between adjacent elements remained below -29 dB at the center frequency in water. A vertical wire phantom was imaged using a single focus transmit beamformer and dynamic focusing receive beamformer. This image showed a significant improvement in lateral resolution over a range of 9 mm after the dynamic focusing receive algorithm was applied. These results correlated well with predictions from a Field II simulation. After beamforming the minimum lateral resolution (-6 dB) was 108 mum at the focus. Preliminary ultrasound B-mode images of the rabbit eye using this transducer were shown in conjunction with a multi-channel digital beamformer. A feasibility study of designing and fabricating tunable copolymer

  17. Adaptive lesion formation using dual mode ultrasound array system

    Science.gov (United States)

    Liu, Dalong; Casper, Andrew; Haritonova, Alyona; Ebbini, Emad S.

    2017-03-01

    We present the results from an ultrasound-guided focused ultrasound platform designed to perform real-time monitoring and control of lesion formation. Real-time signal processing of echogenicity changes during lesion formation allows for identification of signature events indicative of tissue damage. The detection of these events triggers the cessation or the reduction of the exposure (intensity and/or time) to prevent overexposure. A dual mode ultrasound array (DMUA) is used for forming single- and multiple-focus patterns in a variety of tissues. The DMUA approach allows for inherent registration between the therapeutic and imaging coordinate systems providing instantaneous, spatially-accurate feedback on lesion formation dynamics. The beamformed RF data has been shown to have high sensitivity and specificity to tissue changes during lesion formation, including in vivo. In particular, the beamformed echo data from the DMUA is very sensitive to cavitation activity in response to HIFU in a variety of modes, e.g. boiling cavitation. This form of feedback is characterized by sudden increase in echogenicity that could occur within milliseconds of the application of HIFU (see http://youtu.be/No2wh-ceTLs for an example). The real-time beamforming and signal processing allowing the adaptive control of lesion formation is enabled by a high performance GPU platform (response time within 10 msec). We present results from a series of experiments in bovine cardiac tissue demonstrating the robustness and increased speed of volumetric lesion formation for a range of clinically-relevant exposures. Gross histology demonstrate clearly that adaptive lesion formation results in tissue damage consistent with the size of the focal spot and the raster scan in 3 dimensions. In contrast, uncontrolled volumetric lesions exhibit significant pre-focal buildup due to excessive exposure from multiple full-exposure HIFU shots. Stopping or reducing the HIFU exposure upon the detection of such an

  18. I vivo three-dimensional photoacoustic imaging based on a clinicall matrix array ultrasound probe

    NARCIS (Netherlands)

    Wang, Y.; Erpelding, T.N.; Jankovic, L.; Guo, Z.; Robert, J.L.; David, G.; Wang, L.V.

    2011-01-01

    We present an integrated photoacoustic and ultrasonic three-dimensional (3D) volumetric imaging system based on a two-dimensional (2D) matrix array ultrasound probe. A wavelength-tunable dye laser pumpedby a Q-switched Nd:YAG laser serves as the light source and a modified commercial ultrasound imag

  19. Volumetric Ultrasound Imaging with Row-Column Addressed 2-D Arrays Using Spatial Matched Filter Beamforming

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann;

    2015-01-01

    For 3-D ultrasound imaging with row-column addressed 2-D arrays, the two orthogonal 1-D transmit and receive arrays are both used for one-way focusing in the lateral and elevation directions separately and since they are not in the same plane, the two-way focusing is the same as one-way focusing....

  20. Acoustical cross-talk in row–column addressed 2-D transducer arrays for ultrasound imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-01-01

    The acoustical cross-talk in row–column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, λ/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed...

  1. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging

    NARCIS (Netherlands)

    Daoudi, K.; Berg, van den P.J.; Rabot, O.; Kohl, A.; Tisserand, S.; Brands, P.J.; Steenbergen, W.

    2014-01-01

    Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expens

  2. 30 MHz radar observations of artificial E region field-aligned plasma irregularities

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2008-02-01

    Full Text Available Artificial E region field aligned irregularities (FAIs have been observed during heating experiments at the HAARP facility using a new 30 MHz coherent scatter radar imager deployed near Homer, Alaska. Irregularities were observed during brief experiments on three quiet days in July and August, 2007, when the daytime E region critical frequency was close to 3 MHz. Irregularities were consistently generated and detected during experiments with O-mode HF pumping on zenith with a 1-min on, 1-min off CW modulation. The scattering cross sections, rise, and fall times of the echoes were observed as well as their spectral properties. Results were found to be mainly in agreement with observations from other mid- and high-latitude sites with some discrepancies. Radar images of the irregularity-filled volume on one case exhibited clear variations in backscatter power and Doppler shift across the volume. The images furthermore show the emergence of a small irregularity-filled region to the south southwest of the main region in the approximate direction of magnetic zenith.

  3. 1D multi-element CMUT arrays for ultrasound thermal therapy

    Science.gov (United States)

    N'Djin, William Apoutou; Canney, Michael; Meynier, Cyril; Chavrier, Françoise; Lafon, Cyril; Nguyen-Dinh, An; Chapelon, Jean-Yves; Carpentier, Alexandre

    2017-03-01

    Interstitial therapeutic ultrasound devices are a promising technology for performing thermal ablation in a wide variety of organs. In this study, the use of Capacitive Micromachined Ultrasound Transducers (CMUTs) for interstitial heating applications was investigated. CMUTs exhibit potential advantages for use in therapeutic ultrasound applications in comparison to standard piezo ultrasound transducer technologies as they have good characteristics in terms of miniaturization (cell size: few dozens of microns), bandwidth (several MHz) and high electro-acoustic efficiency. Two designs of CMUT arrays were studied: (1) a 1D 128-element planar-CMUT array originally dedicated to abdominal ultrasound imaging purposes (5 MHz, element size: 0.3 × 8.0 mm2); (2) a 12-element linear-array, 32.4-mm long and 0.8-mm wide, developed specifically for minimally-invasive interstitial therapeutic applications (6 MHz, element size: 2.7 × 0.8 mm2). Simulations were performed to evaluate the ability to generate thermal lesions in soft tissues with: (1) 1 single linear array, (2) a combination of multiple linear arrays positioned on a cylindrical catheter. Experimental investigations performed with the CMUT imaging array showed the ability to generate surface acoustic intensities (Iac) up to 20 W.cm-2 and to generate intense centimetric thermal lesions in in-vitro turkey breast tissues. At 6 MHz, a single element was able to generate in water a maximum peak pressure of >0.5 MPa. In simulations, the ability to use various power levels and frequencies on independent elements, as well as combinations of multiple linear-arrays offered sufficient flexibility to achieve a wide variety of thermal ablation patterns in 3D. Simulated ablation volumes could be controlled to cover accurately non-symmetrical volumes of brain metastases. In conclusion, CMUT arrays show interesting characteristics, which may open new perspectives of spatial control for conformal interstitial thermal therapy with

  4. Predicting the sky from 30 MHz to 800 GHz: the extended Global Sky Model

    Science.gov (United States)

    Liu, Adrian

    We propose to construct the extended Global Sky Model (eGSM), a software package and associated data products that are capable of generating maps of the sky at any frequency within a broad range (30 MHz to 800 GHz). The eGSM is constructed from archival data, and its outputs will include not only "best estimate" sky maps, but also accurate error bars and the ability to generate random realizations of missing modes in the input data. Such views of the sky are crucial in the practice of precision cosmology, where our ability to constrain cosmological parameters and detect new phenomena (such as B-mode signatures from primordial gravitational waves, or spectral distortions of the Cosmic Microwave Background; CMB) rests crucially on our ability to remove systematic foreground contamination. Doing so requires empirical measurements of the foreground sky brightness (such as that arising from Galactic synchrotron radiation, among other sources), which are typically performed only at select narrow wavelength ranges. We aim to transcend traditional wavelength limits by optimally combining existing data to provide a comprehensive view of the foreground sky at any frequency within the broad range of 30 MHz to 800 GHz. Previous efforts to interpolate between multi-frequency maps resulted in the Global Sky Model (GSM) of de Oliveira-Costa et al. (2008), a software package that outputs foreground maps at any frequency of the user's choosing between 10 MHz and 100 GHz. However, the GSM has a number of shortcomings. First and foremost, the GSM does not include the latest archival data from the Planck satellite. Multi-frequency models depend crucially on data from Planck, WMAP, and COBE to provide high-frequency "anchor" maps. Another crucial shortcoming is the lack of error bars in the output maps. Finally, the GSM is only able to predict temperature (i.e., total intensity) maps, and not polarization information. With the recent release of Planck's polarized data products, the

  5. Diffraction and coherence in breast ultrasound tomography: a study with a toroidal array

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Simonetti, Francesco [IMPERIAL COLL.; Duric, Neb [KCI; Littrup, Peter [KCI

    2008-01-01

    Ultrasound is commonly used as an adjunct to mammography for diagnostic evaluation of suspicions arising from breast cancer screening. As an alternative to conventional sonography that uses hand-held transducers, toroidal array probes that encircle the breast immersed in a water bath have been investigated for ultrasound tomography. In this paper, two sets of experiments performed with a prototype ultrasound scanner on a phantom and a human breast in vivo are used to investigate the effects of diffraction and coherence in ultrasound tomography. Reconstructions obtained with transmission diffraction tomography (TDT) are compared with conventional reflection imaging and computerized ultrasound tomography showing a substantial improvement. The in vivo tests demonstrate that TDT can image the complex boundary of a cancer mass and suggest that it can reveal the anatomy of milk ducts and Cooper's ligaments.

  6. Acoustical cross-talk in row–column addressed 2-D transducer arrays for ultrasound imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-01-01

    The acoustical cross-talk in row–column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, λ/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed...... in the frequency-wavenumber domain. The sources of cross-talk are identified and predicted theoretically. The nearest neighbor cross-talk is 23.9±3.7 dB when the array is used as a 1-D array with the rows functioning as both transmitters and receivers. In the row–column configuration, with the columns transmitting...

  7. High-density flexible interconnect for two-dimensional ultrasound arrays.

    Science.gov (United States)

    Fiering, J O; Hultman, P; Lee, W; Light, E D; Smith, S W

    2000-01-01

    We present a method for fabricating flexible multilayer circuits for interconnection to 2-D array ultrasound transducers. In addition, we describe four 2-D arrays in which such flexible interconnect is implemented, including transthoracic arrays with 438 channels operating at up to 7 MHz and intracardiac catheter arrays with 70 channels operating at up to 7 MHz. We employ thin and thick film microfabrication techniques to batch produce the interconnect circuits with minimum dimensions of 12-mum lines, 40-mum vias, and 150-mum array pitch. The arrays show 50-Omega insertion loss of -60 to -84 dB and a fractional bandwidth of 27 to 67%. The arrays are used to obtain real time, in vivo volumetric scans.

  8. Simulation Based Investigation of Focusing Phased Array Ultrasound in Dissimilar Metal Welds

    Directory of Open Access Journals (Sweden)

    Hun-Hee Kim

    2016-02-01

    Full Text Available Flaws at dissimilar metal welds (DMWs, such as reactor coolant systems components, Control Rod Drive Mechanism (CRDM, Bottom Mounted Instrumentation (BMI etc., in nuclear power plants have been found. Notably, primary water stress corrosion cracking (PWSCC in the DMWs could cause significant reliability problems at nuclear power plants. Therefore, phased array ultrasound is widely used for inspecting surface break cracks and stress corrosion cracks in DMWs. However, inspection of DMWs using phased array ultrasound has a relatively low probability of detection of cracks, because the crystalline structure of welds causes distortion and splitting of the ultrasonic beams which propagates anisotropic medium. Therefore, advanced evaluation techniques of phased array ultrasound are needed for improvement in the probability of detection of flaws in DMWs. Thus, in this study, an investigation of focusing and steering phased array ultrasound in DMWs was carried out using a time reversal technique, and an adaptive focusing technique based on finite element method (FEM simulation. Also, evaluation of focusing performance of three different focusing techniques was performed by comparing amplitude of phased array ultrasonic signals scattered from the targeted flaw with three different time delays.

  9. Strategies for Ultrasound Imaging Using Two-Dimensional Arrays

    Science.gov (United States)

    Velichko, A.; Wilcox, P. D.

    2010-02-01

    2D arrays are able to `view' a given defect from a range of angles leading to the possibility of obtaining richer characterization detail than possible with 1D arrays. This has clear benefits as real defects and engineering structures are three-dimensional. This paper describes different approaches to optimize 2D array design. Results are shown that illustrate the application of the proposed techniques to modeling and experimental data.

  10. Synthetic Aperture Beamforming in Ultrasound using Moving Arrays

    DEFF Research Database (Denmark)

    Andresen, Henrik

    Medical ultrasound (US) is widely used because it allows cheap real-time imaging of soft tissue with no known side-effects or hazards to either patients or operating personnel. US has existed since the 1960s and was originally adapted from the concept of radar and sonar. The development in ultras......Medical ultrasound (US) is widely used because it allows cheap real-time imaging of soft tissue with no known side-effects or hazards to either patients or operating personnel. US has existed since the 1960s and was originally adapted from the concept of radar and sonar. The development...... in ultrasound has allowed the technology to evolve from a showing a simple echo along a line to fully visualize entire organs. The image changes significantly depending on the orientation of the transducer, making it more difficult to see exact features. This poses challenges since anatomy is three...... was missed and allows a more precise measurement of organ dimensions [2, 3, 4]. Conventional 3D ultrasound imaging is basically faced with two limitations. It is only able to have a single transmit focus point and each line in a 3D volume has to be created independently. This reduces image quality outside...

  11. Generation of Non-Inductive H-Mode Plasmas with 30 MHz Fast Wave Heating in NSTX-U

    Science.gov (United States)

    Taylor, G.; Bertelli, N.; Gerhardt, S. P.; Hosea, J. C.; Mueller, D.; Perkins, R. J.; Poli, F. M.; Wilson, J. R.; Raman, R.

    2016-10-01

    A Fusion Nuclear Science Facility based on a spherical tokamak must generate the plasma current (Ip) with little or no central solenoid field. The NSTX-U non-inductive (NI) plasma research program is addressing this goal by developing NI start-up, ramp-up and sustainment scenarios separately. 4 MW of 30 MHz fast wave power is predicted to ramp Ip to 400 kA, a level sufficient to avoid significant shine-through of 90 keV ions from neutral beam injection. In 2010, experiments in NSTX demonstrated that 1.4 MW of 30 MHz high-harmonic fast wave (HHFW) power could generate an Ip = 300 kA H-mode discharge with a NI Ip fraction, fNI, around 0.7 at the maximum axial toroidal field (BT(0)) in NSTX of 0.55 T. NSTX-U is a major upgrade of NSTX that will eventually allow the generation of plasmas with BT(0) up to 1 T. Full wave simulations of 30 MHz HHFW heating in NSTX-U predict reduced FW power loss in the plasma edge as BT(0) is increased. HHFW experiments this year aim to couple 3 - 4 MW of 30 MHz HHFW power into an Ip = 250 - 350 kA plasma with BT(0) up to 0.75 T to generate a fNI = 1 H-mode plasma. These experiments should benefit from the improved fast wave coupling predicted at higher BT(0) in NSTX-U. Work supported by USDOE Contract No. DE-AC02-09CH11466.

  12. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy

    Science.gov (United States)

    Hynynen, Kullervo; Jones, Ryan M.

    2016-09-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  13. A hemisphere array for non-invasive ultrasound brain therapy and surgery

    Science.gov (United States)

    Clement, G. T.; Sun, Jie; Giesecke, Tonia; Hynynen, Kullervo

    2000-12-01

    Ultrasound phased arrays may offer a method for non-invasive deep brain surgery through the skull. In this study a hemispherical phased array system is developed to test the feasibility of trans-skull surgery. The hemispherical shape is incorporated to maximize the penetration area on the skull surface, thus minimizing unwanted heating. Simulations of a 15 cm radius hemisphere divided into 11, 64, 228 and 512 elements are presented. It is determined that 64 elements are sufficient for correcting scattering and reflection caused by trans-skull propagation. An optimal operating frequency near 0.7 MHz is chosen for the array from numerical and experimental thermal gain measurements comparing the power between the transducer focus and the skull surface. A 0.665 MHz air-backed PZT array is constructed and evaluated. The array is used to focus ultrasound through an ex vivo human skull and the resulting fields are measured before and after phase correction of the transducer elements. Finally, to demonstrate the feasibility of trans-skull therapy, thermally induced lesions are produced through a human skull in fresh tissue placed at the ultrasound focus inside the skull.

  14. Control of the necrosed tissue volume during noninvasive ultrasound surgery using a 16-element phased array.

    Science.gov (United States)

    Fan, X; Hynynen, K

    1995-03-01

    Focused high-power ultrasound beams are well suited for noninvasive local destruction of deep target volumes. In order to avoid cavitation and to utilize only thermal tissue damage, high frequencies (1-5 MHz) are used in ultrasonic surgery. However, the focal spots generated by sharply focused transducers become so small that only small tumors can be treated in a reasonable time. Phased array ultrasound transducers can be employed to electronically scan a focal spot or to produce multiple foci in the desired region to increase the treated volume. In this article, theoretical and experimental studies of spherically curved square-element phased arrays for use in ultrasonic surgery were performed. The simulation results were compared with experimental results from a 16-element array. It was shown that the phased array could control the necrosed tissue volume by using closely spaced multiple foci. The phased array can also be used to enlarge a necrosed tissue volume in only one direction at a time, i.e., lateral or longitudinal. The spherically curved 16 square-element phased array can produce useful results by varying the phase and amplitude setting. Four focal points can be easily generated with a distance of two or four wavelengths between the two closest peaks. The maximum necrosed tissue volume generated by the array can be up to sixteen times the volume induced by a similar spherical transducer. Therefore the treatment time could be reduced compared with single transducer treatment.

  15. 2D sparse array transducer optimization for 3D ultrasound imaging

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Hoon; Park, Kwan Kyu [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-12-15

    A 3D ultrasound image is desired in many medical examinations. However, the implementation of a 2D array, which is needed for a 3D image, is challenging with respect to fabrication, interconnection and cabling. A 2D sparse array, which needs fewer elements than a dense array, is a realistic way to achieve 3D images. Because the number of ways the elements can be placed in an array is extremely large, a method for optimizing the array configuration is needed. Previous research placed the target point far from the transducer array, making it impossible to optimize the array in the operating range. In our study, we focused on optimizing a 2D sparse array transducer for 3D imaging by using a simulated annealing method. We compared the far-field optimization method with the near-field optimization method by analyzing a point-spread function (PSF). The resolution of the optimized sparse array is comparable to that of the dense array.

  16. Sound-speed tomography using first-arrival transmission ultrasound for a ring array

    Science.gov (United States)

    Quan, Youli; Huang, Lianjie

    2007-03-01

    Sound-speed tomography images can be used for cancer detection and diagnosis. Tumors have generally higher sound speeds than the surrounding tissue. Quality and resolution of tomography images are primarily determined by the insonification/illumination aperture of ultrasound and the capability of the tomography method for accurately handling heterogeneous nature of the breast. We investigate the capability of an efficient time-of-flight tomography method using transmission ultrasound from a ring array for reconstructing sound-speed images of the breast. The method uses first-arrival times of transmitted ultrasonic signals emerging from non-beamforming ultrasound transducers located around a ring. It properly accounts for ray bending within the breast by solving the eikonal equation using a finite-difference scheme. We test and validate the time-of-flight transmission tomography method using synthetic data for numerical breast phantoms containing various objects. In our simulation, the objects are immersed in water within a ring array. Two-dimensional synthetic data are generated using a finite-difference scheme to solve acoustic-wave equation in heterogeneous media. We study the reconstruction accuracy of the tomography method for objects with different sizes and shapes as well as different perturbations from the surrounding medium. In addition, we also address some specific data processing issues related to the tomography. Our tomography results demonstrate that the first-arrival transmission tomography method can accurately reconstruct objects larger than approximately five wavelengths of the incident ultrasound using a ring array.

  17. Decametric radio bursts associated with the 13 July 2004 CME event at frequencies 10-30 MHz

    Science.gov (United States)

    Boiko, A. I.; Melnik, V. N.; Konovalenko, A. A.; Abranin, E. P.; Dorovskyy, V. V.; Rucker, H. O.

    2012-03-01

    We report on the observations of solar type IV burst and its precursors on the 13 of July 2004 at frequencies 10-30 MHz. The radio telescope UTR-2 observational data compiled from SOHO, WIND, NDA, RHESSI, GOES data were used. The main properties (frequency drift rate, duration, flux) of type IV burst and its precursors, namely solar type III and type II bursts, are analysed. We consider the type IV burst connected with appearance of the coronal mass ejection, which occurrence coincides with the type IV burst beginning. Several physical characteristics of this CME were estimated.

  18. MRI-compatible ultrasound heating system with ring-shaped phased arrays for breast tumor thermal therapy.

    Science.gov (United States)

    Chen, Hung-Nien; Chen, Guan-Ming; Lin, Bo-Sian; Lien, Pi-Hsien; Chen, Yung-Yaw; Chen, Gin-Shin; Lin, Win-Li

    2013-01-01

    Therapeutic ultrasound transducers can carry out precise and efficient power deposition for tumor thermal therapy under the guidance of magnetic resonance imaging. For a better heating, organ-specific ultrasound transducers with precision location control system should be developed for tumors located at various organs. It is feasible to perform a better heating for breast tumor thermal therapy with a ring-shaped ultrasound phased-array transducer. In this study, we developed ring-shaped phased-array ultrasound transducers with 1.0 and 2.5 MHz and a precision location control system to drive the transducers to the desired location to sonicate the designated region. Both thermo-sensitive hydrogel phantom and ex vivo fresh pork were used to evaluate the heating performance of the transducers. The results showed that the ring-shaped phased array ultrasound transducers were very promising for breast tumor heating with the variation of heating patterns and without overheating the ribs.

  19. In vivo visualization of robotically implemented synthetic tracked aperture ultrasound (STRATUS) imaging system using curvilinear array

    Science.gov (United States)

    Zhang, Haichong K.; Aalamifar, Fereshteh; Boctor, Emad M.

    2016-04-01

    Synthetic aperture for ultrasound is a technique utilizing a wide aperture in both transmit and receive to enhance the ultrasound image quality. The limitation of synthetic aperture is the maximum available aperture size limit determined by the physical size of ultrasound probe. We propose Synthetic-Tracked Aperture Ultrasound (STRATUS) imaging system to overcome the limitation by extending the beamforming aperture size through ultrasound probe tracking. With a setup involving a robotic arm, the ultrasound probe is moved using the robotic arm, while the positions on a scanning trajectory are tracked in real-time. Data from each pose are synthesized to construct a high resolution image. In previous studies, we have demonstrated the feasibility through phantom experiments. However, various additional factors such as real-time data collection or motion artifacts should be taken into account when the in vivo target becomes the subject. In this work, we build a robot-based STRATUS imaging system with continuous data collection capability considering the practical implementation. A curvilinear array is used instead of a linear array to benefit from its wider capture angle. We scanned human forearms under two scenarios: one submerged the arm in the water tank under 10 cm depth, and the other directly scanned the arm from the surface. The image contrast improved 5.51 dB, and 9.96 dB for the underwater scan and the direct scan, respectively. The result indicates the practical feasibility of STRATUS imaging system, and the technique can be potentially applied to the wide range of human body.

  20. In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe

    Science.gov (United States)

    Wang, Yu; Erpelding, Todd N.; Jankovic, Ladislav; Guo, Zijian; Robert, Jean-Luc; David, Guillaume; Wang, Lihong V.

    2012-06-01

    We present an integrated photoacoustic and ultrasonic three-dimensional (3-D) volumetric imaging system based on a two-dimensional (2-D) matrix array ultrasound probe. A wavelength-tunable dye laser pumped by a Q-switched Nd:YAG laser serves as the light source and a modified commercial ultrasound imaging system (iU22, Philips Healthcare) with a 2-D array transducer (X7-2, Philips Healthcare) detects both the pulse-echo ultrasound and photoacoustic signals. A multichannel data acquisition system acquires the RF channel data. The imaging system enables rendering of co-registered 3-D ultrasound and photoacoustic images without mechanical scanning. The resolution along the azimuth, elevation, and axial direction are measured to be 0.69, 0.90 and 0.84 mm for photoacoustic imaging. In vivo 3-D photoacoustic mapping of the sentinel lymph node was demonstrated in a rat model using methylene blue dye. These results highlight the clinical potential of 3-D PA imaging for identification of sentinel lymph nodes for cancer staging in humans.

  1. Theoretical study of acoustic field patterns of 2-D ultrasound phased arrays for hyperthermia therapy

    Institute of Scientific and Technical Information of China (English)

    HUO Jian; ZHANG Wei; SHI Keren

    2005-01-01

    Acoustic field patterns of 2-D ultrasound phased arrays for the high intensity focused ultrasound (HIFU) hyperthermia therapy are studied, and controlling algorithms of field patterns are provided. The 2-D phased array using the conventional single-focus scanning pattern can exactly control the focal distance and the steering direction of the beam, but in general produce a single focus. Extremely high intensity levels will be needed when this pattern is used to treat large tumors. However, a direct synthesis method of the acoustic field based on the pseudo-inverse matrix can produce the multiple-focus field pattern. The rectangular radiator method of the acoustic field was used to simulate the single-focus scanning pattern and the multiple-focus pattern which are produced by a 2-D phased array consisting of 20×20 elements,and simulation results show that the 2-D array using the multiple-focus pattern can produce several foci with lower intensity levels simultaneously. Furthermore, the improved eigenvector algorithm was used to optimize the intensity gain of the multiple-focus pattern. It is shown to increase the power deposition in the target volume and eliminate the undesired interference.And the multiple-focus pattern also allows the complex excitation vector to be weighted to increase the array excitation efficiency, and therefore we can only control the phase distribution of the excitation vector to realize the phase-only multiple-focus pattern synthesis.

  2. Genomic SNP array as a gold standard for prenatal diagnosis of foetal ultrasound abnormalities

    Directory of Open Access Journals (Sweden)

    Srebniak Malgorzata I

    2012-03-01

    Full Text Available Abstract Background We have investigated whether replacing conventional karyotyping by SNP array analysis in cases of foetal ultrasound abnormalities would increase the diagnostic yield and speed of prenatal diagnosis in clinical practice. Findings/results From May 2009 till June 2011 we performed HumanCytoSNP-12 array (HCS (http://www.Illumina.com analysis in 207 cases of foetal structural abnormalities. HCS allows detecting unbalanced genomic abnormalities with a resolution of about 150/200 kb. All cases were selected by a clinical geneticist after excluding the most common aneuploidies by RAD (rapid aneuploidy detection. Pre-test genetic counselling was offered in all cases. In 24/207 (11,6% foetuses a clinically relevant genetic abnormality was detected. Only 8/24 abnormalities would have been detected if only routine karyotyping was performed. Submicroscopic abnormalities were found in 16/207 (7,7% cases. The array results were achieved within 1-2 weeks after amniocentesis. Conclusions Prenatal SNP array testing is faster than karyotyping and allows detecting much smaller aberrations (~0.15 Mb in addition to the microscopic unbalanced chromosome abnormalities detectable with karyotyping (~ > 5 Mb. Since karyotyping would have missed 66% (16/24 of genomic abnormalities in our cohort, we propose to perform genomic high resolution array testing assisted by pre-test counselling as a primary prenatal diagnostic test in cases of foetal ultrasound abnormalities.

  3. Phased Array Ultrasound: Initial Development of PAUT Inspection of Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Rairigh, Ryan

    2008-01-01

    This slide presentation reviews the development of Phased Array Ultrasound (PAUT) as a non-destructive examination method for Self Reacting Friction Stir Welds (SR-FSW). PAUT is the only NDE method which has been shown to detect detrimental levels of Residual Oxide Defect (ROD), which can result in significant decrease in weld strength. The presentation reviews the PAUT process, and shows the results in comparison with x-ray radiography.

  4. Validity and reliability of rectus femoris ultrasound measurements: Comparison of curved-array and linear-array transducers

    Directory of Open Access Journals (Sweden)

    Kendra Hammond, MD

    2014-11-01

    Full Text Available Muscle-mass loss augers increased morbidity and mortality in critically ill patients. Muscle-mass loss can be assessed by wide linear-array ultrasound transducers connected to cumbersome, expensive console units. Whether cheaper, hand-carried units equipped with curved-array transducers can be used as alternatives is unknown. Accordingly, our primary aim was to investigate in 15 nondisabled subjects the validity of measurements of rectus femoris cross-sectional area by using a curved-array transducer against a linear-array transducer—the reference-standard technique. In these subjects, we also determined the reliability of measurements obtained by a novice operator versus measurements obtained by an experienced operator. Lastly, the relationship between quadriceps strength and rectus area recorded by two experienced operators with a curved-array transducer was assessed in 17 patients with chronic obstructive pulmonary disease (COPD. In nondisabled subjects, the rectus cross-sectional area measured with the curved-array transducer by the novice and experienced operators was valid (intraclass correlation coefficient [ICC]: 0.98, typical percentage error [%TE]: 3.7% and reliable (ICC: 0.79, %TE: 9.7%. In the subjects with COPD, both reliability (ICC: 0.99 and repeatability (%TE: 7.6% and 9.8% were high. Rectus area was related to quadriceps strength in COPD for both experienced operators (coefficient of determination: 0.67 and 0.70. In conclusion, measurements of rectus femoris cross-sectional area recorded with a curved-array transducer connected to a hand-carried unit are valid, reliable, and reproducible, leading us to contend that this technique is suitable for cross-sectional and longitudinal studies.

  5. Localization of focused-ultrasound beams in a tissue phantom, using remote thermocouple arrays.

    Science.gov (United States)

    Hariharan, Prasanna; Dibaji, Seyed Ahmad Reza; Banerjee, Rupak K; Nagaraja, Srinidhi; Myers, Matthew R

    2014-12-01

    In focused-ultrasound procedures such as vessel cauterization or clot lysis, targeting accuracy is critical. To investigate the targeting accuracy of the focused-ultrasound systems, tissue phantoms embedded with thermocouples can be employed. This paper describes a method that utilizes an array of thermocouples to localize the focused ultrasound beam. All of the thermocouples are located away from the beam, so that thermocouple artifacts and sensor interference are minimized. Beam propagation and temperature rise in the phantom are simulated numerically, and an optimization routine calculates the beam location that produces the best agreement between the numerical temperature values and those measured with thermocouples. The accuracy of the method was examined as a function of the array characteristics, including the number of thermocouples in the array and their orientation. For exposures with a 3.3-MHz source, the remote-thermocouple technique was able to predict the focal position to within 0.06 mm. Once the focal location is determined using the localization method, temperatures at desired locations (including the focus) can be estimated from remote thermocouple measurements by curve fitting an analytical solution to the heat equation. Temperature increases in the focal plane were predicted to within 5% agreement with measured values using this method.

  6. Effects of Non-Elevation-Focalized Linear Array Transducer on Ultrasound Plane-Wave Imaging

    Directory of Open Access Journals (Sweden)

    Congzhi Wang

    2016-11-01

    Full Text Available Plane-wave ultrasound imaging (PWUS has become an important method of ultrasound imaging in recent years as its frame rate has exceeded 10,000 frames per second, allowing ultrasound to be used for two-dimensional shear wave detection and functional brain imaging. However, compared to the traditional focusing and scanning method, PWUS images always suffer from a degradation of lateral resolution and contrast. To improve the image quality of PWUS, many different beamforming algorithms have been proposed and verified. Yet the influence of transducer structure is rarely studied. For this paper, the influence of using an acoustic lens for PWUS was evaluated. Two linear array transducers were fabricated. One was not self-focalized in the elevation direction (non-elevation-focalized transducer, NEFT; the other one was a traditional elevation-focalized transducer (EFT. An initial simulation was conducted to show the influence of elevation focusing. Then the images obtained with NEFT on a standard ultrasound imaging phantom were compared with those obtained with EFT. It was demonstrated that, in a relatively deep region, the contrast of an NEFT image is better than that of an EFT image. These results indicate that a more sophisticated design of ultrasound transducer would further improve the image quality of PWUS.

  7. A flexible annular-array imaging platform for micro-ultrasound.

    Science.gov (United States)

    Qiu, Weibao; Yu, Yanyan; Chabok, Hamid Reza; Liu, Cheng; Tsang, Fu Keung; Zhou, Qifa; Shung, K Kirk; Zheng, Hairong; Sun, Lei

    2013-01-01

    Micro-ultrasound is an invaluable imaging tool for many clinical and preclinical applications requiring high resolution (approximately several tens of micrometers). Imaging systems for micro-ultrasound, including single-element imaging systems and linear-array imaging systems, have been developed extensively in recent years. Single-element systems are cheaper, but linear-array systems give much better image quality at a higher expense. Annular-array-based systems provide a third alternative, striking a balance between image quality and expense. This paper presents the development of a novel programmable and real-time annular-array imaging platform for micro-ultrasound. It supports multi-channel dynamic beamforming techniques for large-depth-of-field imaging. The major image processing algorithms were achieved by a novel field-programmable gate array technology for high speed and flexibility. Real-time imaging was achieved by fast processing algorithms and high-speed data transfer interface. The platform utilizes a printed circuit board scheme incorporating state-of-the-art electronics for compactness and cost effectiveness. Extensive tests including hardware, algorithms, wire phantom, and tissue mimicking phantom measurements were conducted to demonstrate good performance of the platform. The calculated contrast-to-noise ratio (CNR) of the tissue phantom measurements were higher than 1.2 in the range of 3.8 to 8.7 mm imaging depth. The platform supported more than 25 images per second for real-time image acquisition. The depth-of-field had about 2.5-fold improvement compared to single-element transducer imaging.

  8. Ultrasound array transmitter architecture with high timing resolution using embedded phase-locked loops.

    Science.gov (United States)

    Smith, Peter R; Cowell, David M J; Raiton, Benjamin; Ky, Chau Vo; Freear, Steven

    2012-01-01

    Coarse time quantization of delay profiles within ultrasound array systems can produce undesirable side lobes in the radiated beam profile. The severity of these side lobes is dependent upon the magnitude of phase quantization error--the deviation from ideal delay profiles to the achievable quantized case. This paper describes a method to improve interchannel delay accuracy without increasing system clock frequency by utilizing embedded phase-locked loop (PLL) components within commercial field-programmable gate arrays (FPGAs). Precise delays are achieved by shifting the relative phases of embedded PLL output clocks in 208-ps steps. The described architecture can achieve the necessary interelement timing resolution required for driving ultrasound arrays up to 50 MHz. The applicability of the proposed method at higher frequencies is demonstrated by extrapolating experimental results obtained using a 5-MHz array transducer. Results indicate an increase in transmit dynamic range (TDR) when using accurate delay profiles generated by the embedded-PLL method described, as opposed to using delay profiles quantized to the system clock.

  9. Optimization of acoustic emitted field of transducer array for ultrasound imaging.

    Science.gov (United States)

    He, Zhengyao

    2014-01-01

    A method is proposed to calculate the weight vector of a transducer array for ultrasound imaging to obtain a low-sidelobe transmitting beam pattern based on the near-field response vector. An optimization problem is established, and the second-order cone (SOC) algorithm is used to solve the problem to obtain the weight vector. The optimized acoustic emitted field of the transducer array is then calculated using the Field II program by applying the obtained weight vector to the array. The simulation results with a 64-element 26 MHz linear phased array show that the proposed method can be used to control the sidelobe of the near-field transmitting beam pattern of the transducer array and achieve a low-sidelobe level. The near-field sound pressure distribution of the transducer array using the proposed method focuses much better than that using the standard delay and sum (DAS) beamforming method. The sound energy is more concentrated using the proposed method.

  10. Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers.

    Science.gov (United States)

    Dausch, David E; Castellucci, John B; Chou, Derrick R; von Ramm, Olaf T

    2008-11-01

    Piezoelectric micromachined ultrasound transducers (pMUTs) are a new approach for the construction of 2-D arrays for forward-looking 3-D intravascular (IVUS) and intracardiac (ICE) imaging. Two-dimensional pMUT test arrays containing 25 elements (5 x 5 arrays) were bulk micromachined in silicon substrates. The devices consisted of lead zirconate titanate (PZT) thin film membranes formed by deep reactive ion etching of the silicon substrate. Element widths ranged from 50 to 200 microm with pitch from 100 to 300 mum. Acoustic transmit properties were measured in de-ionized water with a calibrated hydrophone placed at a range of 20 mm. Measured transmit frequencies for the pMUT elements ranged from 4 to 13 MHz, and mode of vibration differed for the various element sizes. Element capacitance varied from 30 to over 400 pF depending on element size and PZT thickness. Smaller element sizes generally produced higher acoustic transmit output as well as higher frequency than larger elements. Thicker PZT layers also produced higher transmit output per unit electric field applied. Due to flexure mode operation above the PZT coercive voltage, transmit output increased nonlinearly with increased drive voltage. The pMUT arrays were attached directly to the Duke University T5 Phased Array Scanner to produce real-time pulse-echo B-mode images with the 2-D pMUT arrays.

  11. Ultrasound

    Science.gov (United States)

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  12. Thin catheter bending in the direction perpendicular to ultrasound propagation using two-dimensional array transducer

    Science.gov (United States)

    Suzuki, Toshiya; Mochizuki, Takashi; Ushimizu, Hidetaka; Miyazawa, Shinya; Tsurui, Nobuhiro; Masuda, Kohji

    2017-07-01

    Although we have already experimented on the bending of a thin catheter with acoustic radiation force using a single transducer, it is necessary to develop a method of bending a catheter in an arbitrary direction because the installation position of ultrasound transducers on a body surface is limited for application to various shapes of in vivo blood vessels. Therefore, we examined the bending of a thin catheter in the direction perpendicular to ultrasound propagation using a two-dimensional array transducer (1 MHz), which realizes not only the temporospatial design but also the dynamic variation of acoustic fields. Forming two focal points with opposite phases, where the amplitudes of the two points instantaneously have the positive and negative relationship, we confirmed the bending of a thin catheter in the direction perpendicular to ultrasound propagation. We used a thin catheter (diameter, 200 µm length, 50 mm) to obtain the maximum displacement of 220 µm, where the displacement was proportional to the square of the maximum sound pressure and the duty ratio. From these results, the acoustic energy densities observed in front of and behind the catheter are dominant for the bending of the thin catheter independent of ultrasound propagation. We also found that the distance between two focal points may improve the bending performance without requiring a precise position setting.

  13. 3-D Ultrasound Imaging Performance of a Row-Column Addressed 2-D Array Transducer: A Measurement Study

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2013-01-01

    A real-time 3-D ultrasound measurement using only 32 elements and 32 emissions is presented. The imaging quality is compared to a conventionally fully addressed array using 1024 elements and 256 emissions. The main-lobe of the measured line spread function is almost identical, but the side-lobe l...... ultrasound probe made by Vermon S.A....... is 510% larger than when row-column addressing the array. The cyst radius needed to achieve -20 dB intensity in the cyst is 396% larger for the fully addressed array compared to the row-column addressed array. The measurements were made using the experimental ultrasound scanner SARUS and a 32x32 element...

  14. High-throughput fiber-array transvaginal ultrasound/photoacoustic probe for ovarian cancer imaging

    Science.gov (United States)

    Salehi, Hassan S.; Kumavor, Patrick D.; Alqasemi, Umar; Li, Hai; Wang, Tianheng; Zhu, Quing

    2014-03-01

    A high-throughput ultrasound/photoacoustic probe for delivering high contrast and signal-to-noise ratio images was designed, constructed, and tested. The probe consists of a transvaginal ultrasound array integrated with four 1mm-core optical fibers and a sheath. The sheath encases transducer and is lined with highly reflecting aluminum for high intensity light output and uniformity while at the same time remaining below the maximum permissible exposure (MPE) recommended by the American National Standards Institute (ANSI). The probe design was optimized by simulating the light fluence distribution in Zemax. The performance of the probe was evaluated by experimental measurements of the fluence and real-time imaging of polyethylene-tubing filled with blood. These results suggest that our probe has great potential for in vivo imaging and characterization of ovarian cancer.

  15. TOPICAL REVIEW: Capacitive micromachined ultrasonic transducer arrays for minimally invasive medical ultrasound

    Science.gov (United States)

    Chen, Jingkuang

    2010-02-01

    This paper reviews the minimally invasive capacitive micromachined ultrasonic transducer (CMUT) arrays for medical diagnosis and therapy. While piezoelectric transducers dominate today's medical ultrasound market, the capacitive micromachined ultrasonic transducer has recently emerged as a promising alternative which delivers a comparable device performance to its piezoelectric counterparts, is compatible with front-end circuit integration, allows high-density imager integration and is relative easy in miniaturization. Utilizing MEMS technology, the substrate of CMUT arrays can be micromachined into miniature platforms with various geometrical shapes, which include needles, three-dimensional prisms, as well as other flexible-substrate configurations. These arrays are useful for reaching deep inside the tissue or an organ with a minimally invasive approach. Due to the close proximity of the transducers to the target organ/tissue, a higher resolution/accuracy of diagnostic information can be achieved. In addition to pulse-echo and photoacoustic imaging, high-power CMUT devices capable of delivering ultrasounds with a pressure greater than 1.0 MPa have been monolithically integrated with imager CMUTs for image-guided therapy (IGT). Such miniature devices would facilitate diagnostic and therapy interventions not possible with conventional piezoelectric transducers.

  16. Piezoelectric Micromachined Ultrasound Transducer (PMUT Arrays for Integrated Sensing, Actuation and Imaging

    Directory of Open Access Journals (Sweden)

    Yongqiang Qiu

    2015-04-01

    Full Text Available Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs, diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.

  17. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging.

    Science.gov (United States)

    Qiu, Yongqiang; Gigliotti, James V; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E M; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-04-03

    Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.

  18. MR thermometry characterization of a hyperthermia ultrasound array designed using the k-space computational method

    Directory of Open Access Journals (Sweden)

    Lee Hotaik

    2006-10-01

    Full Text Available Abstract Background Ultrasound induced hyperthermia is a useful adjuvant to radiation therapy in the treatment of prostate cancer. A uniform thermal dose (43°C for 30 minutes is required within the targeted cancerous volume for effective therapy. This requires specific ultrasound phased array design and appropriate thermometry method. Inhomogeneous, acoustical, three-dimensional (3D prostate models and economical computational methods provide necessary tools to predict the appropriate shape of hyperthermia phased arrays for better focusing. This research utilizes the k-space computational method and a 3D human prostate model to design an intracavitary ultrasound probe for hyperthermia treatment of prostate cancer. Evaluation of the probe includes ex vivo and in vivo controlled hyperthermia experiments using the noninvasive magnetic resonance imaging (MRI thermometry. Methods A 3D acoustical prostate model was created using photographic data from the Visible Human Project®. The k-space computational method was used on this coarse grid and inhomogeneous tissue model to simulate the steady state pressure wavefield of the designed phased array using the linear acoustic wave equation. To ensure the uniformity and spread of the pressure in the length of the array, and the focusing capability in the width of the array, the equally-sized elements of the 4 × 20 elements phased array were 1 × 14 mm. A probe was constructed according to the design in simulation using lead zerconate titanate (PZT-8 ceramic and a Delrin® plastic housing. Noninvasive MRI thermometry and a switching feedback controller were used to accomplish ex vivo and in vivo hyperthermia evaluations of the probe. Results Both exposimetry and k-space simulation results demonstrated acceptable agreement within 9%. With a desired temperature plateau of 43.0°C, ex vivo and in vivo controlled hyperthermia experiments showed that the MRI temperature at the steady state was 42.9 ± 0.38

  19. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating

    Science.gov (United States)

    Payne, Allison; Vyas, Urvi; Todd, Nick; Bever, Joshua de; Christensen, Douglas A.; Parker, Dennis L.

    2011-01-01

    Purpose: This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. Methods: The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes’ bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Results: Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Conclusions: Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will

  20. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating.

    Science.gov (United States)

    Payne, Allison; Vyas, Urvi; Todd, Nick; de Bever, Joshua; Christensen, Douglas A; Parker, Dennis L

    2011-09-01

    This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes' bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will help to ensure patient safety during an MRg

  1. PMN-PT single crystal for endoscopic ultrasound 2D array application

    Science.gov (United States)

    Zhu, Yuhang; Liang, Huageng; Zhu, Benpeng; Zhou, Dan; Yang, Xiaofei

    2017-03-01

    Based on lead magnesium niobate-lead titanate single crystal, a 24 × 24 row-column addressing endoscopic two-dimensional array has been successfully fabricated using novel flanged electrodes and "semi-kerf" technologies. Each row/column array element was measured to have an electromechanical coupling coefficient of 0.81, a center frequency of 5MHz, and a fractional bandwidth of approximately 88% at -6 dB. Of particular significance was that the lead magnesium niobate-lead titanate element exhibits much higher sensitivity compared with lead zirconate titanate-based 2D arrays with similar operational frequency and element area. According to the Field II simulated results, although the obtained beamwidth at -6 dB was a little inferior to that of the fully sampled 24 × 24 two-dimensional array, it is believed that the beamwidth can be improved by appropriately increasing the element number. These results demonstrated that the lead magnesium niobate-lead titanate single-crystal 2D array is a promising candidate for real-time three-dimensional endoscopic ultrasound imaging.

  2. The feasibility of MRI-guided whole prostate ablation with a linear aperiodic intracavitary ultrasound phased array

    Energy Technology Data Exchange (ETDEWEB)

    Sokka, S.D. [MIT Harvard Division of Health Sciences and Technology, Boston, MA 02115 (United States); Brigham and Women' s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 (United States); Hynynen, K.H. [Brigham and Women' s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 (United States)

    2000-11-01

    Over the past decade, numerous minimally invasive thermal procedures have been investigated to treat benign prostate hyperplasia and prostate cancer. Of these methods, ultrasound has shown considerable promise due to its ability to produce more precise and deeper thermal foci. In this study, a linear, transrectal ultrasound phased array capable of ablating large tissue volumes was fabricated and evaluated. The device was designed to be compatible for use with MRI guidance and thermometry. The intracavitary applicator increases treatable tissue volume by using an ultrasonic motor to provide a mechanical rotation angle of up to 100 deg. to a 62-element 1D ultrasound array. An aperiodic array geometry was used to reduce grating lobes. In addition, a specially designed Kapton interconnect was used to reduce cable crosstalk and hence also improve the acoustic efficiency of the array. MRI-guided in vivo and ex vivo experiments were performed to verify the array's large-volume ablative capabilities. Ex vivo bovine experiments were performed to assess the focusing range of the applicator. The array generated foci in a 3 cm (2 to 5 cm from the array surface along the axis normal to the array) by 5.5 cm (along the long axis of the array) by 6 cm (along the transverse axis of the array at a depth of 4 cm) volume. In vivo rabbit thigh experiments were performed to evaluate the lesion-producing capabilities in perfused tissue. The array generated 3 cm x 2 cm x 2 cm lesions with 8 to 12 half-minute sonications equally spaced in the volume. The results indicate that transrectal ultrasound coagulation of the whole prostate is feasible with the developed device. (author)

  3. Non-invasive transcranial surgery with dual-mode ultrasound arrays

    Science.gov (United States)

    Haritonova, Alyona; Liu, Dalong; Wilken-Resman, Elias; Bayat, Mahdi; Wang, Xiao; Chen, Wei; Divani, Afshin; Ebbini, Emad

    2017-03-01

    We present the first transcranial mapping of temperature with Dual-Mode Ultrasound Arrays (DMUAs), with subsequent validation of transskull ultrasound therapy guidance and monitoring in a small rodent model. Experiments were conducted in sacrificed rats, utilizing the custom designed DMUA platform manufactured in our laboratory. First, careful examination of DMUA imaging through the skull was conducted, where a fine 50μm wire was embedded within the brain tissue. Second, anatomical landmarks were visualized by co-registering two volumes, volume of synthetic aperture (SA) images acquired with DMUA and a 9.4T MRI volume acquired in live rats prior to the sacrifice. Third, subtherapeutic shot delivery through the skull was tested, where a set of five varying intensity shots were deposited below the skull surface. Shot delivery and temperature monitoring were performed with DMUA, and compared with the thermocouple data acquired close to the therapeutic focus. This study was an exploratory effort to validate ultrasound therapy delivery and monitoring in transcranial applications with DMUAs. In conclusion, DMUAs offer a unique advantage by providing real-time feedback by means of temperature monitoring with a high degree of spatial localization.

  4. Realtime control of multiple-focus phased array heating patterns based on noninvasive ultrasound thermography.

    Science.gov (United States)

    Casper, Andrew; Liu, Dalong; Ebbini, Emad S

    2012-01-01

    A system for the realtime generation and control of multiple-focus ultrasound phased-array heating patterns is presented. The system employs a 1-MHz, 64-element array and driving electronics capable of fine spatial and temporal control of the heating pattern. The driver is integrated with a realtime 2-D temperature imaging system implemented on a commercial scanner. The coordinates of the temperature control points are defined on B-mode guidance images from the scanner, together with the temperature set points and controller parameters. The temperature at each point is controlled by an independent proportional, integral, and derivative controller that determines the focal intensity at that point. Optimal multiple-focus synthesis is applied to generate the desired heating pattern at the control points. The controller dynamically reallocates the power available among the foci from the shared power supply upon reaching the desired temperature at each control point. Furthermore, anti-windup compensation is implemented at each control point to improve the system dynamics. In vitro experiments in tissue-mimicking phantom demonstrate the robustness of the controllers for short (2-5 s) and longer multiple-focus high-intensity focused ultrasound exposures. Thermocouple measurements in the vicinity of the control points confirm the dynamics of the temperature variations obtained through noninvasive feedback.

  5. Interventional multispectral photoacoustic imaging with a clinical linear array ultrasound probe for guiding nerve blocks

    Science.gov (United States)

    Xia, Wenfeng; West, Simeon J.; Nikitichev, Daniil I.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.

    2016-03-01

    Accurate identification of tissue structures such as nerves and blood vessels is critically important for interventional procedures such as nerve blocks. Ultrasound imaging is widely used as a guidance modality to visualize anatomical structures in real-time. However, identification of nerves and small blood vessels can be very challenging, and accidental intra-neural or intra-vascular injections can result in significant complications. Multi-spectral photoacoustic imaging can provide high sensitivity and specificity for discriminating hemoglobin- and lipid-rich tissues. However, conventional surface-illumination-based photoacoustic systems suffer from limited sensitivity at large depths. In this study, for the first time, an interventional multispectral photoacoustic imaging (IMPA) system was used to image nerves in a swine model in vivo. Pulsed excitation light with wavelengths in the ranges of 750 - 900 nm and 1150 - 1300 nm was delivered inside the body through an optical fiber positioned within the cannula of an injection needle. Ultrasound waves were received at the tissue surface using a clinical linear array imaging probe. Co-registered B-mode ultrasound images were acquired using the same imaging probe. Nerve identification was performed using a combination of B-mode ultrasound imaging and electrical stimulation. Using a linear model, spectral-unmixing of the photoacoustic data was performed to provide image contrast for oxygenated and de-oxygenated hemoglobin, water and lipids. Good correspondence between a known nerve location and a lipid-rich region in the photoacoustic images was observed. The results indicate that IMPA is a promising modality for guiding nerve blocks and other interventional procedures. Challenges involved with clinical translation are discussed.

  6. Highly precise acoustic calibration method of ring-shaped ultrasound transducer array for plane-wave-based ultrasound tomography

    Science.gov (United States)

    Terada, Takahide; Yamanaka, Kazuhiro; Suzuki, Atsuro; Tsubota, Yushi; Wu, Wenjing; Kawabata, Ken-ichi

    2017-07-01

    Ultrasound computed tomography (USCT) is promising for a non-invasive, painless, operator-independent and quantitative system for breast-cancer screening. Assembly error, production tolerance, and aging-degradation variations of the hardwire components, particularly of plane-wave-based USCT systems, may hamper cost effectiveness, precise imaging, and robust operation. The plane wave is transmitted from a ring-shaped transducer array for receiving the signal at a high signal-to-noise-ratio and fast aperture synthesis. There are four signal-delay components: response delays in the transmitters and receivers and propagation delays depending on the positions of the transducer elements and their directivity. We developed a highly precise calibration method for calibrating these delay components and evaluated it with our prototype plane-wave-based USCT system. Our calibration method was found to be effective in reducing delay errors. Gaps and curves were eliminated from the plane wave, and echo images of wires were sharpened in the entire imaging area.

  7. [Genetic algorithm application to multi-focus patterns of 256-element phased array for focused ultrasound surgery].

    Science.gov (United States)

    Xu, Feng; Wan, Mingxi; Lu, Mingzhu

    2008-10-01

    The genetic optimal algorithm and sound field calculation approach for the spherical-section phased array are presented in this paper. The in-house manufactured 256-element phased array focused ultrasound surgery system is briefly described. The on-axis single focus and off-axis single focus are simulated along with the axis-symmetric six-focus patter and the axis-asymmetric four-focus pattern using a 256-element phased array and the genetic optimal algorithm and sound field calculation approach. The experimental results of the described 256-element phased array focused ultrasound surgery system acting on organic glass and phantom are also analyzed. The results of the simulations and experiments confirm the applicability of the genetic algorithm and field calculation approaches in accurately steering three dimensional foci and focus.

  8. SUPER-RESOLUTION ULTRASOUND TOMOGRAPHY: A PRELIMINARY STUDY WITH A RING ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; SIMONETTI, FRANCESCO [NON LANL; DURIC, NEBOJSA [NON LANL; RAMA, OLSI [NON LANL

    2007-01-18

    Ultrasound tomography attempts to retrieve the structure of an objective by exploiting the interaction of acoustic waves with the object. A fundamental limit of ultrasound tomography is that features cannot be resolved if they are spaced less than {lambda}/2 apart, where {lambda} is wavelength of the probing wave, regardless of the degree of accuracy of the measurements. Therefore, since the attenuation of the probing wave with propagation distance increases as {lambda} decreases, resolution has to be traded against imaging depth. Recently, it has been shown that the {lambda}/2 limit is a consequence of the Born approximation (implicit in the imaging algorithms currently employed) which neglects the distortion of the probing wavefield as it travels through the medium to be imaged. On the other hand, such a distortion, which is due to the multiple scattering phenomenon, can encode unlimited resolution in the radiating component of the scattered field. Previously, a resolution better than {lambda}/3 has been reported in these proceedings [F. Simonetti, pp. 126 (2006)] in the case of elastic wave probing. In this paper, they demonstrate experimentally a resolution better than {lambda}/4 for objects immersed in a water bth probed by means of a ring array which excites and detects pressure waves in a full view configuration.

  9. Investigation of a spherical-section ultrasound phased array for hepatic ablation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A 3D ultrasound thermal model with a 3D finite element representation for modeling the thermal diffusion effects for hepatic ablation induced by spherical-section ultrasound phased array was developed. The model was first validated against available published measured data in rat liver. Using the validated model, effects of blood perfusion and heating schemes on lesion formation were studied for both single focus and split-focus intensity patterns. It was shown that for single focus sonication pattern the short-duration (~2 s) and high-intensity (~1250 W/cm2) heating scheme can completely reduce the cooling effect of the blood perfusion. The lesion shape and size were significantly altered by perfusion for split-focus pattern even with a rapid heating scheme when the focus spacing was larger than 2.4 mm. Underdosed areas might be present between two foci. Prolonging exposure time or shortening focus spacing can reduce the cool region between two foci. In addition, the influences of thermal and acoustic parameters were also studied. When the therapy depth is short (<5 cm), the lesion size monotonically increases with increasing attenuation coefficient that ranges from 5.4 to 11 Np/(m·MHz).

  10. SUPER-RESOLUTION ULTRASOUND TOMOGRAPHY: A PRELIMINARY STUDY WITH A RING ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; SIMONETTI, FRANCESCO [NON LANL; DURIC, NEBOJSA [NON LANL; RAMA, OLSI [NON LANL

    2007-01-18

    Ultrasound tomography attempts to retrieve the structure of an objective by exploiting the interaction of acoustic waves with the object. A fundamental limit of ultrasound tomography is that features cannot be resolved if they are spaced less than {lambda}/2 apart, where {lambda} is wavelength of the probing wave, regardless of the degree of accuracy of the measurements. Therefore, since the attenuation of the probing wave with propagation distance increases as {lambda} decreases, resolution has to be traded against imaging depth. Recently, it has been shown that the {lambda}/2 limit is a consequence of the Born approximation (implicit in the imaging algorithms currently employed) which neglects the distortion of the probing wavefield as it travels through the medium to be imaged. On the other hand, such a distortion, which is due to the multiple scattering phenomenon, can encode unlimited resolution in the radiating component of the scattered field. Previously, a resolution better than {lambda}/3 has been reported in these proceedings [F. Simonetti, pp. 126 (2006)] in the case of elastic wave probing. In this paper, they demonstrate experimentally a resolution better than {lambda}/4 for objects immersed in a water bth probed by means of a ring array which excites and detects pressure waves in a full view configuration.

  11. The utility of sparse 2D fully electronically steerable focused ultrasound phased arrays for thermal surgery: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Ellens, Nicholas; Pulkkinen, Aki; Song Junho; Hynynen, Kullervo, E-mail: nicholas.ellens@utoronto.ca [Department of Imaging Research, Sunnybrook Research Institute, Toronto (Canada)

    2011-08-07

    Sparse arrays are widely used in diagnostic ultrasound for their strong performance and relative technical simplicity. This simulation study assessed the efficacy of phased arrays of varied sparseness for thermal surgery, especially with regard to power consumption and near-field heating. It employs a linear ultrasound propagation model and a semi-analytical solution to the Pennes' bioheat transfer equation. The basic design had 4912 cylindrical transducers (500 kHz) arranged on a flat 12 cm disk (1.5 mm spacing). This array was compared to randomly-thinned sparse arrays with 75%, 50% and 25% populations. Temperature elevations of 60 and 70 deg. C were induced in sonication times of 5-20 s, at foci spanning depths of 50-150 mm and radii of 0-60 mm. The sparse arrays produced nearly indistinguishable focal patterns but, averaged across the foci, required 132%, 200% and 393% of the power of the full array, respectively, applied through fewer transducer elements. Comparable results were found at 1 MHz from equivalent arrays. Simulated lesions were formed (thermal dose {>=} 240 equivalent minutes at 43 deg. C (T{sub 43})) and 'transition' and 'unsafe' regions (both defined as 5 min < T{sub 43} < 240 min) were identified, the former immediately surrounding the lesion and the latter anywhere else. At a depth of 100 mm, sparse arrays were found to produce comparable lesions to the full array at the focus, but 'unsafe', over-heated near-field regions after some ablated lesion volume: about 12 mL for the 25% array, around 100 mL for the 50% array, while the 75% and full arrays produced 150 mL lesions safely.

  12. Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.

    Science.gov (United States)

    Bhuyan, Anshuman; Choe, Jung Woo; Lee, Byung Chul; Wygant, Ira O; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T

    2013-12-01

    Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 μm. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper.

  13. A new method for uniform local heating deep in body using ultrasound phased-array system

    Institute of Scientific and Technical Information of China (English)

    Zhang Chenxi; Bai Jingfeng; Chen Yazhu

    2008-01-01

    A new method for targeted heating of deep tissue was developed by using an ultrasound phased-array system which can generate various multiple foci patterns by electronically changing its amplitude or phase pattern. This method involves using a technique of combining switching and rotating of multiple foci patterns to create a uniform temperature over tissue volumes in various size. Using this method, the target tissue deep in the body can be heated to a specified temperature, which gives conditions for thermo-sensitive liposomes release. A simulation study for a 108-element, spherically sectioned array was performed to determine an optimal heating scheme from a set of multiple focus fields which were produced by inputting different combinations of phases and amplitudes. Comparisons of a static multiple foci field, the switched fields and the switched-rotated fields indicated that the technique of combining switching and rotating of multiple foci patterns has advantages of both lowering the peak temperature and evening the temperature distribution. The simulation results also show that the therapeutic heating zones in various size employing the combined method. These results offer significant data for designing thermotherapy equipment for tumor-specific drug release with thermo-sensitive liposomes.

  14. Chirp-coded excitation imaging with a high-frequency ultrasound annular array.

    Science.gov (United States)

    Mamou, Jonathan; Ketterling, Jeffrey A; Silverman, Ronald H

    2008-02-01

    High-frequency ultrasound (HFU, > 15 MHz) is an effective means of obtaining fine-resolution images of biological tissues for applications such as opthalmologic, dermatologic, and small animal imaging. HFU has two inherent drawbacks. First, HFU images have a limited depth of field (DOF) because of the short wavelength and the low fixed F-number of conventional HFU transducers. Second, HFU can be used to image only a few millimeters deep into a tissue because attenuation increases with frequency. In this study, a five-element annular array was used in conjunction with a synthetic-focusing algorithm to extend the DOF. The annular array had an aperture of 10 mm, a focal length of 31 mm, and a center frequency of 17 MHz. To increase penetration depth, 8-micros, chirp-coded signals were designed, input into an arbitrary waveform generator, and used to excite each array element. After data acquisition, the received signals were linearly filtered to restore axial resolution and increase the SNR. To compare the chirpcoded imaging method with conventional impulse imaging in terms of resolution, a 25-microm diameter wire was scanned and the -6-dB axial and lateral resolutions were computed at depths ranging from 20.5 to 40.5 mm. The results demonstrated that chirp-coded excitation did not degrade axial or lateral resolution. A tissue-mimicking phantom containing 10-microm glass beads was scanned, and backscattered signals were analyzed to evaluate SNR and penetration depth. Finally, ex vivo ophthalmic images were formed and chirpcoded images showed features that were not visible in conventional impulse images.

  15. Transparent Fabry-Perot polymer film ultrasound array for backward-mode photoacoustic imaging

    Science.gov (United States)

    Beard, Paul C.; Zhang, Edward Z. Y.; Cox, Benjamin T.

    2004-07-01

    A novel optical ultrasound sensor has been developed for backward-mode photoacoustic imaging. The sensor is based on a Fabry Perot polymer film interferometer, the mirrors of which are transparent to 1064nm, but highly reflective at 850nm. When illuminated by a CW interrogating laser source at the latter wavelength, the system acts as a resonant Fabry Perot (FP) sensing cavity, the reflected intensity output of which is dependent upon acoustically-induced changes in the optical thickness of the polymer film. By optically addressing different regions of the sensor, a notional ultrasound array of arbitrary aperture and dimensionality can be synthesised. The system was demonstrated in backward mode by transmitting 1064nm excitation laser pulses through the sensor into an Intralipid scattering solution (μa=0.03mm-1, μs'=1mm-1) containing various absorbing structures and detecting the resulting photoacoustic signals over a line. A 1D depth profile of a 1.3mm thick absorbing polymer sheet (´a=0.8mm-1) immersed to a depth of 12mm in the Intralipid solution was obtained by performing an 11mm linescan. In another experiment, a 3-layer structure consisting of 0.076mm thick line absorbers was immersed in Intralipid and a 2D image reconstructed from the detected photoacoustic signals using an inverse k-space reconstruction algorithm. Lateral resolution was 0.4mm and the vertical resolution 0.1mm. The ability of this system to map wideband photoacoustic signals with high sensitivity in backward mode may provide a useful tool for high resolution imaging of superficial tissue structures such as the skin microvasculature.

  16. Thermoacoustic range verification using a clinical ultrasound array provides perfectly co-registered overlay of the Bragg peak onto an ultrasound image

    Science.gov (United States)

    Patch, S. K.; Kireeff Covo, M.; Jackson, A.; Qadadha, Y. M.; Campbell, K. S.; Albright, R. A.; Bloemhard, P.; Donoghue, A. P.; Siero, C. R.; Gimpel, T. L.; Small, S. M.; Ninemire, B. F.; Johnson, M. B.; Phair, L.

    2016-08-01

    The potential of particle therapy due to focused dose deposition in the Bragg peak has not yet been fully realized due to inaccuracies in range verification. The purpose of this work was to correlate the Bragg peak location with target structure, by overlaying the location of the Bragg peak onto a standard ultrasound image. Pulsed delivery of 50 MeV protons was accomplished by a fast chopper installed between the ion source and the cyclotron inflector. The chopper limited the train of bunches so that 2 Gy were delivered in 2 μ \\text{s} . The ion pulse generated thermoacoustic pulses that were detected by a cardiac ultrasound array, which also produced a grayscale ultrasound image. A filtered backprojection algorithm focused the received signal to the Bragg peak location with perfect co-registration to the ultrasound images. Data was collected in a room temperature water bath and gelatin phantom with a cavity designed to mimic the intestine, in which gas pockets can displace the Bragg peak. Phantom experiments performed with the cavity both empty and filled with olive oil confirmed that displacement of the Bragg peak due to anatomical change could be detected. Thermoacoustic range measurements in the waterbath agreed with Monte Carlo simulation within 1.2 mm. In the phantom, thermoacoustic range estimates and first-order range estimates from CT images agreed to within 1.5 mm.

  17. Ultrasound

    Science.gov (United States)

    ... Saunders; 2014:chap 66. Cosgrove DO, Eckersley RJ, Harvey CJ, Lim A. Ultrasound. In: Adam A, Dixon AK, Gillard ... Northside Radiology Associates, Atlanta, GA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the ...

  18. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.

    Science.gov (United States)

    Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa

    2017-01-01

    In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d33>1000pC/N) and electromechanical coupling (k33>0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies.

  19. Light Focusing and Two-Dimensional Imaging Through Scattering Media using the Photoacoustic Transmission-Matrix with an Ultrasound Array

    CERN Document Server

    Chaigne, Thomas; Katz, Ori; Bossy, Emmanuel; Gigan, Sylvain

    2014-01-01

    We implement the photoacoustic transmission-matrix approach on a two-dimensional photoacoustic imaging system, using a 15 MHz linear ultrasound array. Using a black leaf skeleton as a complex absorbing structure, we demonstrate that the photoacoustic transmission-matrix approach allows to reveal structural features that are invisible in conventional photoacoustic images, as well as to selectively control light focusing on absorbing targets, leading to a local enhancement of the photoacoustic signal.

  20. X-ray-induced acoustic computed tomography with an ultrasound transducer ring-array

    Science.gov (United States)

    Tang, S.; Nguyen, D. H.; Zarafshani, A.; Ramseyer, C.; Zheng, B.; Liu, H.; Xiang, L.

    2017-03-01

    The objective of this study is to develop and test a unique X-ray-induced acoustic computed tomography system that combines the advantages of high X-ray imaging contrast and high ultrasonic spatial resolution. The system features a 5 MHz 128-element ultrasound transducer ring-array formed into a full circular aperture. A parallel data receiver, which consists of a dedicated 128-channel preamplifier and a 128-channel data acquisition module, provides full tomographic imaging at a speed of up to 25 frames per second. Details of the system design and calibration are presented, along with the characteristic results of the imaging resolution. The tomographic imaging performance is demonstrated through images of a phantom with a spatial resolution up to 138 μm. The study results indicate that this imaging device and the methodology provide a rapid and high resolution approach for the dynamic imaging of information, and it may have the potential for becoming a promising noninvasive imaging modality to be used in future applications.

  1. Reliability of Central Adiposity Assessments Using B-Mode Ultrasound: A Comparison of Linear and Curved Array Transducers.

    Science.gov (United States)

    Stoner, Lee; Geoffron, Morgane; Cornwall, Jon; Chinn, Victoria; Gram, Martin; Credeur, Daniel; Fryer, Simon

    2016-12-01

    Recently, it was reported that intra-abdominal thickness (IAT) assessments using ultrasound are most reliable if measured from the linea alba to the anterior vertebral column. These 2 anatomical sites can be simultaneously visualized using a linear array transducer. Linear array transducers have different operational characteristics when compared with conventional curved array transducers and are more reliable for some ultrasound-derived measures such as abdominal subcutaneous fat thickness. However, it is unknown whether linear array transducers facilitate more reliable IAT measurements than curved array transducers. The purpose of the current study was to (1) compare the reliability of linear and curved array transducer assessments of IAT and maximal abdominal ratio (MAR) and (2) use the findings to update central adiposity measurement guidelines. Fifteen healthy adults (mean [SD], 27 [10] years; 60% female) with a range of somatotypes (body mass index: mean [SD], 24 [4]; range, 19-33 kg/m; waist circumference: mean [SD], 75 [11]; range, 61-96 cm) were tested on 3 mornings under standardized conditions. Intra-abdominal thickness was assessed 2 cm above the umbilicus (transverse plane), measuring from linea alba to the anterior vertebral column. Maximal abdominal ratio was defined as the ratio of IAT to abdominal subcutaneous fat thickness. The IAT range was 25 to 87 mm, and the MAR range was 0.15 to 0.77. Between-day intraclass correlation coefficient values for IAT measurements made were comparable (0.96-0.97) for both transducers, as were MAR values (0.95). In conclusion, while both transducers provided equally reliable measurement of IAT, the use of a single linear array transducer simplifies the assessment of central adiposity.

  2. A 63 element 1.75 dimensional ultrasound phased array for the treatment of benign prostatic hyperplasia

    Directory of Open Access Journals (Sweden)

    Smith Nadine

    2005-06-01

    Full Text Available Abstract Background Prostate cancer and benign prostatic hyperplasia are very common diseases in older American men, thus having a reliable treatment modality for both diseases is of great importance. The currently used treating options, mainly surgical ones, have numerous complications, which include the many side effects that accompany such procedures, besides the invasive nature of such techniques. Focused ultrasound is a relatively new treating modality that is showing promising results in treating prostate cancer and benign prostatic hyperplasia. Thus this technique is gaining more attention in the past decade as a non-invasive method to treat both diseases. Methods In this paper, the design, construction and evaluation of a 1.75 dimensional ultrasound phased array to be used for treating prostate cancer and benign prostatic hyperplasia is presented. With this array, the position of the focus can be controlled by changing the electrical power and phase to the individual elements for electronically focusing and steering in a three dimensional volume. The array was designed with a maximum steering angle of ± 13.5° in the transverse direction and a maximum depth of penetration of 11 cm, which allows the treatment of large prostates. The transducer piezoelectric ceramic, matching layers and cable impedance have been designed for maximum power transfer to tissue. Results To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated field. Ex vivo experiments using bovine tissue were performed with various lesion sizes and indicated the capability of the transducer to ablate tissue using short sonications. Conclusion A 1.75 dimensional array, that overcame the drawbacks associated with one-dimensional arrays, has been designed, built and successfully tested. Design issues, such as cable and ceramic capacitances, were taken into account when designing this

  3. Dual-mode ultrasound arrays for image-guided targeting of atheromatous plaques

    Science.gov (United States)

    Ballard, John R.; Casper, Andrew J.; Liu, Dalong; Haritonova, Alyona; Shehata, Islam A.; Troutman, Mitchell; Ebbini, Emad S.

    2012-11-01

    A feasibility study was undertaken in order to investigate alternative noninvasive treatment options for atherosclerosis. In particular, the aim of this study was to investigate the potential use of Dual-Mode Ultrasound Arrays (DMUAs) for image guided treatment of atheromatous plaques. DMUAs offer a unique treatment paradigm for image-guided surgery allowing for robust image-based identification of tissue targets for localized application of HIFU. In this study we present imaging and therapeutic results form a 3.5 MHz, 64-element fenestrated prototype DMUA for targeting lesions in the femoral artery of familial hypercholesterolemic (FH) swine. Before treatment, diagnostic ultrasound was used to verify the presence of plaque in the femoral artery of the swine. Images obtained with the DMUA and a diagnostic (HST 15-8) transducer housed in the fenestration were analyzed and used for guidance in targeting of the plaque. Discrete therapeutic shots with an estimated focal intensity of 4000-5600 W/cm2 and 500-2000 msec duration were performed at several planes in the plaque. During therapy, pulsed HIFU was interleaved with single transmit focus imaging from the DMUA and M2D imaging from the diagnostic transducer for further analysis of lesion formation. After therapy, the swine's were recovered and later sacrificed after 4 and 7 days for histological analysis of lesion formation. At sacrifice, the lower half of the swine was perfused and the femoral artery with adjoining muscle was fixed and stained with H&E to characterize HIFU-induced lesions. Histology has confirmed that localized thermal lesion formation within the plaque was achieved according to the planned lesion maps. Furthermore, the damage was confined to the plaque tissue without damage to the intima. These results offer the promise of a new treatment potentially suited for vulnerable plaques. The results also provide the first real-time demonstration of DMUA technology in targeting fine tissue structures for

  4. First in vivo use of a capacitive micromachined ultrasound transducer array-based imaging and ablation catheter.

    Science.gov (United States)

    Stephens, Douglas N; Truong, Uyen T; Nikoozadeh, Amin; Oralkan, Omer; Seo, Chi Hyung; Cannata, Jonathan; Dentinger, Aaron; Thomenius, Kai; de la Rama, Alan; Nguyen, Tho; Lin, Feng; Khuri-Yakub, Pierre; Mahajan, Aman; Shivkumar, Kalyanam; O'Donnell, Matt; Sahn, David J

    2012-02-01

    The primary objective was to test in vivo for the first time the general operation of a new multifunctional intracardiac echocardiography (ICE) catheter constructed with a microlinear capacitive micromachined ultrasound transducer (ML-CMUT) imaging array. Secondarily, we examined the compatibility of this catheter with electroanatomic mapping (EAM) guidance and also as a radiofrequency ablation (RFA) catheter. Preliminary thermal strain imaging (TSI)-derived temperature data were obtained from within the endocardium simultaneously during RFA to show the feasibility of direct ablation guidance procedures. The new 9F forward-looking ICE catheter was constructed with 3 complementary technologies: a CMUT imaging array with a custom electronic array buffer, catheter surface electrodes for EAM guidance, and a special ablation tip, that permits simultaneous TSI and RFA. In vivo imaging studies of 5 anesthetized porcine models with 5 CMUT catheters were performed. The ML-CMUT ICE catheter provided high-resolution real-time wideband 2-dimensional (2D) images at greater than 8 MHz and is capable of both RFA and EAM guidance. Although the 24-element array aperture dimension is only 1.5 mm, the imaging depth of penetration is greater than 30 mm. The specially designed ultrasound-compatible metalized plastic tip allowed simultaneous imaging during ablation and direct acquisition of TSI data for tissue ablation temperatures. Postprocessing analysis showed a first-order correlation between TSI and temperature, permitting early development temperature-time relationships at specific myocardial ablation sites. Multifunctional forward-looking ML-CMUT ICE catheters, with simultaneous intracardiac guidance, ultrasound imaging, and RFA, may offer a new means to improve interventional ablation procedures.

  5. A fast and conformal heating scheme for producing large thermal lesions using a 2D ultrasound phased array.

    Science.gov (United States)

    Liu, Hao-Li; Lin, Win-Li; Chen, Yung-Yaw

    2007-02-01

    The treatment conformability and the total treatment time of large tumors are both important issues in ultrasound thermal therapy. Previous heating strategies all show their restrictions in achieving these two issues to satisfactory levels simultaneously. This work theoretically presents a new heating strategy which is capable of both increasing the treatment conformability and shortening the treatment time, when using a 2D ultrasound phased array transducer. To perform this, a set of the multiple-foci patterns (considered the basic heating units) were temporally switched to steer the beam at different focal planes with the lesion length being well-controlled. Then, to conformally cover an irregular target volume, the 2D phased array was laterally shifted by a positioning system to deposit a suitable heating unit to cover a subvolume part. Results demonstrated that the totally treatment time can be largely reduced. The heating rate can be increased up to 0.96 cm3/min compared to the previously reported 0.26 cm3/min. Also, the proposed scheme showed that the tumor regions can be completely treated with the normal tissue damage at satisfactory level. The feasibility of the proposed strategy for irregular tumor treatment was also demonstrated. This study offers useful information in large tumor treatment in ultrasound thermal therapy.

  6. Advanced 3-D Ultrasound Imaging: 3-D Synthetic Aperture Imaging using Fully Addressed and Row-Column Addressed 2-D Transducer Arrays

    DEFF Research Database (Denmark)

    Bouzari, Hamed

    with transducer arrays using this addressing scheme, when integrated into probe handles. For that reason, two in-house prototyped 62+62 row-column addressed 2-D array transducer probes were manufactured using capacitive micromachined ultrasonic transducer (CMUT) and piezoelectric transducer (PZT) technology...... in many clinical applications. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D ultrasound imaging. Two limiting factors have traditionally been the low image quality as well as low volume rate achievable with a 2-D transducer array using the conventional 3-D...... and measurements with the ultrasound research scanner SARUS and a 3.8 MHz 1024 element 2-D transducer array. In all investigations, 3-D synthetic aperture imaging achieved a better resolution, lower side-lobes, higher contrast, and better signal to noise ratio than parallel beamforming. This is achieved partly...

  7. Polymer waveguide Fabry-Perot resonator for high-frequency ultrasound detection.

    Science.gov (United States)

    Tadayon, Mohammad Amin; Baylor, Martha-Elizabeth; Ashkenazi, Shai

    2014-12-01

    Piezoelectric technology is the backbone of most medical ultrasound imaging arrays; however, signal transduction efficiency severely deteriorates in scaling the technology to element size smaller than 0.1 mm, often required for high-frequency operation (>20 MHz). Optical sensing and generation of ultrasound has been proposed and studied as an alternative technology for implementing sub-millimeter size arrays with element size down to 10 μm. The application of thin polymer film Fabry-Perot resonators has been demonstrated for high-frequency ultrasound detection; however, their sensitivity is limited by light diffraction loss. Here, we introduce a new method to increase the sensitivity of an optical ultrasound receiver by utilizing a waveguide between the mirrors of the Fabry-Perot resonator. This approach eliminates diffraction loss from the cavity, and therefore the finesse is only limited by mirror loss and absorption. By applying this method, we have achieved noise equivalent pressure of 178 Pa over a bandwidth of 30 MHz or 0.03 Pa/Hz1/2, which is about 20-fold better than a similar device without a waveguide. The finesse of the tested Fabry-Perot resonator was around 200. This result is 5 times higher than the finesse measured in the same device outside the waveguide region.

  8. An 11-channel radio frequency phased array coil for magnetic resonance guided high-intensity focused ultrasound of the breast.

    Science.gov (United States)

    Minalga, E; Payne, A; Merrill, R; Todd, N; Vijayakumar, S; Kholmovski, E; Parker, D L; Hadley, J R

    2013-01-01

    In this study, a radio frequency phased array coil was built to image the breast in conjunction with a magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) device designed specifically to treat the breast in a treatment cylinder with reduced water volume. The MRgHIFU breast coil was comprised of a 10-channel phased array coil placed around an MRgHIFU treatment cylinder where nearest-neighbor decoupling was achieved with capacitive decoupling in a shared leg. In addition a single loop coil was placed at the chest wall making a total of 11 channels. The radio frequency coil array design presented in this work was chosen based on ease of implementation, increased visualization into the treatment cylinder, image reconstruction speed, temporal resolution, and resulting signal-to-noise ratio profiles. This work presents a dedicated 11-channel coil for imaging of the breast tissue in the MRgHIFU setup without obstruction of the ultrasound beam and, specifically, compares its performance in signal-to-noise, overall imaging time, and temperature measurement accuracy to that of the standard single chest-loop coil typically used in breast MRgHIFU. Copyright © 2012 Wiley Periodicals, Inc.

  9. A Flexible Ultrasound Transducer Array with Micro-Machined Bulk PZT

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2015-01-01

    Full Text Available This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications.

  10. 64-element intraluminal ultrasound cylindrical phased array for transesophageal thermal ablation under fast MR temperature mapping: an ex vivo study.

    Science.gov (United States)

    Melodelima, D; Salomir, R; Mougenot, C; Moonen, C; Cathignol, D

    2006-08-01

    This work was undertaken to investigate the feasibility of using a cylindrical phased array for transoesophaeal thermal ablation under magnetic resonance (MR) imaging guidance. Sixty-four transducers (0.45 mm wide by 15 mm tall), operating at 4.6 MHz, were spread around the periphery of a 10.6-mm-diam cylinder. The head of the applicator was covered with a 65-microm thick latex balloon attached using watertight seals. This envelope was inflated with degassed water to provide acoustic coupling between the transducer and the tissues. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. Ex vivo experiments conducted on 47 samples of pig liver under MR temperature monitoring demonstrated the ability of this applicator to generate cylindrical or sector-based coagulation necroses at depths up to 19 mm with excellent angular precision by applying 20 W/cm2. MR thermometry was performed in "real-time" with segmented echo-planar imaging gradient echo sequences. The temporal resolution was approximately 3 s/ image. The average value for the temperature baseline in liver tissue close to the applicator was 0.3 degrees C (+/- 0.6 degrees C). The thermal dose delivered in tissues was computed on-line during temperature imaging. Excellent MR compatibility was demonstrated, all MR acquisitions were performed without susceptibility artifacts or radio-frequency interferences with the ultrasound device. Thermal lesions identified on post-treatment follow up showed good correlation with online MR thermometry data. The individual differences between measurements performed visually and using MRI thermal dose maps were about 11% of volume. This study demonstrated the feasibility of thermal ablation using a phased array intraluminal

  11. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping

    Science.gov (United States)

    Deng, Lulu; O'Reilly, Meaghan A.; Jones, Ryan M.; An, Ran; Hynynen, Kullervo

    2016-12-01

    Focused ultrasound (FUS) phased arrays show promise for non-invasive brain therapy. However, the majority of them are limited to a single transmit/receive frequency and therefore lack the versatility to expose and monitor the treatment volume. Multi-frequency arrays could offer variable transmit focal sizes under a fixed aperture, and detect different spectral content on receive for imaging purposes. Here, a three-frequency (306, 612, and 1224 kHz) sparse hemispherical ultrasound phased array (31.8 cm aperture; 128 transducer modules) was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. The array is able to perform effective electronic beam steering over a volume spanning (-40, 40) and (-30, 50) mm in the lateral and axial directions, respectively. The focal size at the geometric center is approximately 0.9 (2.1) mm, 1.7 (3.9) mm, and 3.1 (6.5) mm in lateral (axial) pressure full width at half maximum (FWHM) at 1224, 612, and 306 kHz, respectively. The array was also found capable of dual-frequency excitation and simultaneous multi-foci sonication, which enables the future exploration of more complex exposure strategies. Passive acoustic mapping of dilute microbubble clouds demonstrated that the point spread function of the receive array has a lateral (axial) intensity FWHM between 0.8-3.5 mm (1.7-11.7 mm) over a volume spanning (-25, 25) mm in both the lateral and axial directions, depending on the transmit/receive frequency combination and the imaging location. The device enabled both half and second harmonic imaging through the intact skull, which may be useful for improving the contrast-to-tissue ratio or imaging resolution, respectively. Preliminary in vivo experiments demonstrated the system’s ability to induce blood-brain barrier opening and simultaneously spatially map microbubble cavitation activity in a rat model. This work presents a tool to investigate optimal strategies for non

  12. Design of patient-specific focused ultrasound arrays for non-invasive brain therapy with increased trans-skull transmission and steering range

    Science.gov (United States)

    Hughes, Alec; Hynynen, Kullervo

    2017-09-01

    The use of a phased array of ultrasound transducer elements to sonicate through the skull has opened the way for new treatments and the delivery of therapeutics beyond the blood-brain barrier. The limited steering range of current clinical devices, particularly at higher frequencies, limits the regions of the brain that are considered treatable by ultrasound. A new array design is introduced that allows for high levels of beam steering and increased transmission throughout the brain. These improvements are achieved using concave transducers normal to the outer-skull surface in a patient-specific configuration to target within the skull, so that the far-field of each beam is within the brain. It is shown that by using pulsed ultrasound waves timed to arrive in-phase at the desired target, sufficient levels of acoustic energy are delivered for blood-brain barrier opening throughout the brain.

  13. Development of Endoscopic Ultrasound Radial Arrays%环形内窥镜超声换能器的研制

    Institute of Scientific and Technical Information of China (English)

    陈燕; 周丹; 林国豪; 吴锦川; 戴吉岩; 罗豪甦; 陈王丽华

    2014-01-01

    本论文报道了当前环形内窥镜超声换能器的两种不同的制备方法以及其性能的表征。方法一为先采用切割薄片高性能压电PMN-PT单晶和其1~3复合材料制备平面阵列,然后将平面阵列卷曲成圆环形阵列。所制备的128阵元PMN-PT单晶阵列具有较宽带宽达78%,64阵元PMN-PT单晶/环氧1~3复合阵列带宽高达102%。方法二为旋转切割法,通过直接对带有匹配层和背衬材料的压电陶瓷管进行切割,制作不同尺寸及频率的环形超声内窥镜阵列。%We report the fabrication and characterization of endoscopic ultrasound radial arrays transducers for medical imaging by two different methods. The ifrst approach is cal ed wrapping method, high-performance PMN-PT single crystal and PMN-PT/epoxy 1-3 composite plates are used as active elements. After bonded with backing and matching layers and being cut into arrays, transducers are wrapped across a metal tube to form the radial arrays. The bandwidth of the 128-element PMN-PT single crystal radial array and 64-element PMN-PT/epoxy 1-3 composite radial array transducers can achieved 78%and 102%, respectively. In the second method, the PZT tube was selected to fabricate the 50-element 14 MHz and 100-element 3 MHz radial arrays by a rotate-and-dice method. The results show that these two methods are feasible to fabricate radial arrays for endoscopic applications.

  14. Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer

    Science.gov (United States)

    Iwasaki, Ryosuke; Takagi, Ryo; Nagaoka, Ryo; Jimbo, Hayato; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro

    2016-07-01

    Shear wave elastography (SWE) is expected to be a noninvasive monitoring method of high-intensity focused ultrasound (HIFU) treatment. However, conventional SWE techniques encounter difficulty in inducing shear waves with adequate displacements in deep tissue. To observe tissue coagulation at the HIFU focal depth via SWE, in this study, we propose using a two-dimensional-array therapeutic transducer for not only HIFU exposure but also creating shear sources. The results show that the reconstructed shear wave velocity maps detected the coagulated regions as the area of increased propagation velocity even in deep tissue. This suggests that “HIFU-push” shear elastography is a promising solution for the purpose of coagulation monitoring in deep tissue, because push beams irradiated by the HIFU transducer can naturally reach as deep as the tissue to be coagulated by the same transducer.

  15. Proportion-corrected scaled voxel models for Japanese children and their application to the numerical dosimetry of specific absorption rate for frequencies from 30 MHz to 3 GHz

    Science.gov (United States)

    Nagaoka, Tomoaki; Kunieda, Etsuo; Watanabe, Soichi

    2008-12-01

    The development of high-resolution anatomical voxel models of children is difficult given, inter alia, the ethical limitations on subjecting children to medical imaging. We instead used an existing voxel model of a Japanese adult and three-dimensional deformation to develop three voxel models that match the average body proportions of Japanese children at 3, 5 and 7 years old. The adult model was deformed to match the proportions of a child by using the measured dimensions of various body parts of children at 3, 5 and 7 years old and a free-form deformation technique. The three developed models represent average-size Japanese children of the respective ages. They consist of cubic voxels (2 mm on each side) and are segmented into 51 tissues and organs. We calculated the whole-body-averaged specific absorption rates (WBA-SARs) and tissue-averaged SARs for the child models for exposures to plane waves from 30 MHz to 3 GHz; these results were then compared with those for scaled down adult models. We also determined the incident electric-field strength required to produce the exposure equivalent to the ICNIRP basic restriction for general public exposure, i.e., a WBA-SAR of 0.08 W kg-1.

  16. A novel array processing method for precise depth detection of ultrasound point scatter

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Dalgarno, Paul A.; Greenaway, Alan H.;

    2016-01-01

    simulation software. A 7 MHz linear transducer is used to scan a single point scatterer phantom that can move in the axial direction. Individual beamformer outputs from 3 different foci are post-processed using the highly-dependent on focusing errors, metric of sharpness to estimate the position of the point...... scatter. A 37.8 μm uncertainty in depth estimation is achieved, which attains an almost 3-fold improvement compared to conventional ultrasound imaging axial resolution. Future work on the development of this algorithm requires experimental validation in tissue-like materials that provide strong...

  17. The concentric-ring array for ultrasound hyperthermia: combined mechanical and electrical scanning.

    Science.gov (United States)

    Ibbini, M S; Cain, C A

    1990-01-01

    While two-dimensional phased arrays can be electronically focused and steered in three dimensions without physically moving the applicator, they generally require a relatively large number of small transducer elements and, consequently, complex drive electronics. A configuration that does not require a large number of elements is that of a concentric-ring array. The field conjugation method can be used to produce a focal spot (or multiple spots) along the array axis. The resulting focal regions are very small and need to be steered transversely to heat tumours of typical size. However, steering the focused beam away from the array axis results in annular heating patterns which are often associated with undesired secondary foci (hot spots). In this paper, a method based on combining electrical and mechanical scanning using a concentric-ring applicator is presented. Advantages of the new method over the mechanically scanned fixed-focus transducers, currently in use, are pointed out. Computer simulations are conducted to investigate the possibility of heating different size tumours by appropriately combining the two scanning techniques. The bioheat transfer equation is solved numerically and temperature distributions associated with relevant heating patterns are presented and discussed. The simulations demonstrate the possibility of the combined technique to produce useful heating patterns which cannot be produced by either technique separately.

  18. Ultrasound pulse-echo measurements on rough surfaces with linear array transducers

    DEFF Research Database (Denmark)

    Sjøj, Sidsel M. N.; Blanco, Esther N.; Wilhjelm, Jens E.

    2012-01-01

    The echo from planar surfaces with rms roughness, Rq, in the range from 0-155 μm was measured with a clinical linear array transducer at different angles of incidence at 6 MHz and 12 MHz. The echo-pulse from the surfaces was isolated with an equal sized window and the power of the echo-pulse was ...

  19. Linear array transducer for high-power airborne ultrasound using flextensional structure

    Science.gov (United States)

    Yamamoto, Jun; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2015-07-01

    To change the direction of ultrasonic irradiation without moving a transducer, a high-power airborne ultrasonic transducer for a one-dimensional phased array system was designed and tested. A flextensional element transducer with higher-mode bending vibration was fabricated to obtain a high vibration amplitude over a wide aperture, where a phase-compensating stepped structure was employed. The width of the main lobe at half maximum and the sidelobe level were measured to be 14.3 deg and 0.78, respectively. The maximal sound pressure of 132 dB (0 dB re. 0.02 mPa) was obtained under the applied voltage of 4.0 V. The beam steering characteristics of a phased array using eight elements were compared with the simple theory.

  20. Comparison of 3-D Synthetic Aperture Phased-Array Ultrasound Imaging and Parallel Beamforming

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2014-01-01

    simulations and measurements with anultrasound research scanner and a commercially available 3.5-MHz 1024-element 2-D transducer array. To limit the probecable thickness, 256 active elements are used in transmit andreceive for both techniques. The two imaging techniques weredesigned for cardiac imaging, which......B cystic resolutionby up to 62%. The FWHM of the measured line spread func-tion (LSF) at 80mm depth showed a difference of 20% in favorof SAI. SAI reduced the cyst radius at 60mm depth by 39%in measurements. SAI improved the contrast-to-noise ratiomeasured on anechoic cysts embedded in a tissue...

  1. Ultrasound pregnancy

    Science.gov (United States)

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  2. 太阳射电30~65 MHz 波段模拟接收机的研制%Design of An Analog Receiver for Solar Radio Observation in the Frequency Range of 30MHz to 65MHz

    Institute of Scientific and Technical Information of China (English)

    郭少杰; 汪敏; 董亮; 施硕彪

    2015-01-01

    Solar radio radiations mainly come from the corona of the sun, and radio waves in different bands reflect activities in different layers of the corona.Observational studies about solar radio radiations are among the most important approaches to derive physical-parameter values of the corona ( e.g., temperature, density, and magnetic-field strength) .Decimeter waves come from a corona layer of heights approximately 1 to 2 times of the solar radius above the solar surface, which makes solar radio observations in decimeter waves particularly important in the coronal physics.For example, such studies can be used to monitor propagations of CME ( Coronal Mass Ejection) and shock waves in high layers of the corona, and to forecast space weather. Currently, there is a lack of solar radio observations in decimeter waves in China.It is urgent to build Chinese decimeter-wave solar radio telescopes and associated key equipments.A solar radio antenna array working in low-frequency bands has been built in the YNAO ( Yunnan Observatories) .The array consists of four antennas. It will work with the YNAO 10m solar radio telescope ( working in the frequency range of 625MHz to 1500MHz) and 11m solar radio telescope ( working in the frequency range of 70MHz to 700MHz) , achieving a complete wavelength coverage of coronal radio observation.In this paper we introduce our design of an analog receiver to be installed in the solar radio antenna array of the YNAO.The receiver is to monitor solar radio bursts in decimeter wavelengths corresponding to the frequency range of 30MHz to 65MHz.The analog receiver consists of Baluns, filters, and amplifiers for direct sampling.The performance parameters of the analog receiver meet the requirements for observations: The gain reaches 60dB, the dynamic range is about 33dB, the input third-order intercept point is about -24dBm, and the noise figure is about 4.3dB.We finally calculate the sensitivity limits of the solar radio antenna array with the

  3. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Phased arrays, ultrasonic imaging and nonlinear acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Ping Wu; Wennerstroem, Erik [Uppsala Univ. (Sweden). Signals and Systems

    2004-09-01

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2003/2004. After a short introduction a review of beam forming fundamentals required for proper understanding phased array operation is included. The factors that determine lateral resolution during ultrasonic imaging of flaws in solids are analyzed and results of simulations modelling contact inspection of copper are presented. In the second chapter an improved synthetic aperture imaging (SAI) technique is introduced. The proposed SAI technique is characterized by an enhanced lateral resolution compared with the previously proposed extended synthetic aperture focusing technique (ESAFT). The enhancement of imaging performance is achieved due to more realistic assumption concerning the probability density function of scatterers in the region of interest. The proposed technique takes the form of a two-step algorithm using the result obtained in the first step as a prior for the second step. Final chapter contains summary of our recent experimental and theoretical research on nonlinear ultrasonics of unbounded interfaces. A new theoretical model for rough interfaces is developed, and the experimental results from the copper specimens that mimic contact cracks of different types are presented. Derivation of the theory and selected measurement results are given in appendix.

  4. A novel strategy to increase heating efficiency in a split-focus ultrasound phased array.

    Science.gov (United States)

    Liu, Hao-Li; Shih, Tzu-Ching; Chen, Wen-Shiang; Ju, Kuen-Cheng

    2007-07-01

    Focus splitting using sector-based phased arrays increases the necrosed volume in a single sonication and reduces the total treatment time in the treatment of large tumors. However, split-focus sonication results in a lower energy density and worse focal-beam distortion, which limits its usefulness in practical treatments. Here, we propose a new heating strategy involving consecutive strongly focused and split-focus sonications to improve the heating efficiency. Theoretical predictions including linear and thermal-dose-dependent attenuation change were employed to investigate potential factors of this strategy, and ex vivo tissue experiments were conducted to confirm its effectiveness. Results showed that the thermal lesions produced by the proposed strategy could be increased when comparing with the previous reported strategies. The proposed heating strategy also induces a thermal lesion more rapidly, and exhibits higher robustness to various blood perfusion conditions, higher robustness to various power/heating time combinations, and superiority to generate deep-seated lesions through tissues with complex interfaces. Possible mechanisms include the optimization of the thermal conduction created by the strongly focused sonication and the temperature buildup gained from thermally induced tissue attenuation change based on the theoretical analysis. This may represent a useful technique for increasing the applicability of split-focus and multiple-focus sonication techniques, and solve the obstacles encountered when attempting to use these methods to shorten the total clinical treatment time.

  5. Feasibility of Concurrent Treatment with the Scanning Ultrasound Reflector Linear Array System (SURLAS) and the Helical Tomotherapy System

    Science.gov (United States)

    Peñagarícano, José A.; Moros, Eduardo; Novák, Petr; Yan, Yulong; Corry, Peter

    2010-01-01

    Purpose To evaluate the feasibility of concurrent treatment with the Scanning Ultrasound Reflector Linear Array System (SURLAS) and helical tomotherapy (HT) intensity modulated radiation therapy (IMRT). Methods The SURLAS was placed on a RANDO phantom simulating a patient with superficial or deep recurrent breast cancer. A Megavoltage CT (MVCT) of the phantom with and without the SURLAS was obtained in the HT system. MVCT images with the SURLAS were obtained for two configurations: i) with the SURLAS' long axis parallel and ii) perpendicular to the longitudinal axis of the phantom. The MVCT simulation data set was then transferred to a radiation therapy planning station. Organs at risk (OAR) were contoured including the lungs, heart, abdomen and spinal cord. The metallic parts of the SURLAS were contoured as well and constraints were assigned to completely or directionally block radiation through them. The MVCT-simulation data set and regions of interest (ROI) files were subsequently transferred to the HT planning station. Several HT plans were obtained with optimization parameters that are usually used in the clinic. For comparison purposes, planning was also performed without the SURLAS on the phantom. Results All plans with the SURLAS on the phantom showed adequate dose covering 95% of the planning target volume (PTV D95%), average dose and coefficient of variation of the planning target volume (PTV) dose distribution regardless of the SURLAS' orientation with respect to the RANDO phantom. Likewise, all OAR showed clinically acceptable dose values. Spatial dose distributions and dose-volume histogram (DVH) evaluation showed negligible plan degradation due to the presence of the SURLAS. Beam-on time varied depending on the selected optimization parameters. Conclusion From the perspective of the radiation dosage, concurrent treatment with the SURLAS and HT IMRT is feasible as demonstrated by the obtained clinically acceptable treatment plans. In addition, proper

  6. A 12b-control ultra-low-power low-noise SC-VGA for medical ultrasound probes

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2013-10-01

    Full Text Available This Letter presents a 12b-control ultra-low-power low-noise two-stage single-ended to differential switched-capacitor variable gain amplifier (SC-VGA for 2–6-MHz second harmonic cardiac imaging ultrasound probes in 0.18 μm complementary metal oxide semiconductor. The proposed SC-VGA consists of inverters and capacitor (CAP arrays. By adopting inverters instead of operational trans-conductance amplifiers (OTAs in traditional SC-amplifiers, both the power and noise are significantly improved. Each stage has a 6b binary-weighted CAP array, and in total the 12b CAP arrays achieve the dB-in-linear gain range from − 21 to 21 dB. The CAP array is divided between the upper 3b and lower 3b by a CAP to decrease the capacitance spread. The total power consumption is 150 μA at 1 V supply voltage, and the input referred noise is 6.5 nV/√HZ at 4 MHz. The second harmonic distortion (HD2 has the mean value − 77 dB at the 460 mV peak-to-peak output swing for 50 samples of Monte Carlo mismatch simulation with a 30 MHz sampling frequency.

  7. Development of a 64 channel ultrasonic high frequency linear array imaging system

    Science.gov (United States)

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M.; Yen, Jesse; Shung, K. Kirk

    2011-01-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20 MHz–120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom

  8. Development of a 64 channel ultrasonic high frequency linear array imaging system.

    Science.gov (United States)

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M; Yen, Jesse; Shung, K Kirk

    2011-12-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20-120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3 ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom images

  9. Duplex ultrasound

    Science.gov (United States)

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  10. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array

    Science.gov (United States)

    Acconcia, Christopher N.; Jones, Ryan M.; Goertz, David E.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2017-09-01

    It is well established that high intensity focused ultrasound can be used to disintegrate clots. This approach has the potential to rapidly and noninvasively resolve clot causing occlusions in cardiovascular diseases such as deep vein thrombosis (DVT). However, lack of an appropriate treatment monitoring tool is currently a limiting factor in its widespread adoption. Here we conduct cavitation imaging with a large aperture, sparse hemispherical receiver array during sonothrombolysis with multi-cycle burst exposures (0.1 or 1 ms burst lengths) at 1.51 MHz. It was found that bubble cloud generation on imaging correlated with the locations of clot degradation, as identified with high frequency (30 MHz) ultrasound following exposures. 3D images could be formed at integration times as short as 1 µs, revealing the initiation and rapid development of cavitation clouds. Equating to megahertz frame rates, this is an order of magnitude faster than any other imaging technique available for in vivo application. Collectively, these results suggest that the development of a device to perform DVT therapy procedures would benefit greatly from the integration of receivers tailored to bubble activity imaging.

  11. A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging.

    Science.gov (United States)

    Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao

    2013-01-01

    One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dBΩ and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/√Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system.

  12. Difficulties in the study of cosmic radio noise absorption at 30 MHz using riometer at low latitude station, Kolhapur (Lat-16.8°N, Long-74.25°E)

    Science.gov (United States)

    Nikte, S. S.; Sharma, A. K.; Nade, D. P.; Rokade, M. V.; Ghodpage, R. N.; Patil, P. T.; Bhonsle, R. V.

    2014-01-01

    A dual dipole antenna has been installed at low latitude station Kolhapur (Geographic 16.8°N, 74.25°E), Maharashtra, India for the study of cosmic radio noise absorption using Solid State Riometer (which operates at 30 MHz) during pre phase of 24th solar maxima. The aim for this type of study over Kolhapur was to know the response of lower (D region) ionosphere over low latitude by cosmic radio noise absorption using riometer technique during quite period as well as sudden ionospheric disturbances (SID). The observations are being taken for 3 years. Two different sites (˜40 km away from each other) were used for the installation of riometer equipment assuming minimum local noise. It is found that solar noise to cosmic radio noise hence resulting in signal saturation. The night time signal is relatively free of interference but sometimes local noise is responsible for spike-like signatures. Hence it is concluded that Kolhapur (a low latitude station) is not suitable for the study of cosmic radio noise absorption on 30 MHz with riometer and dual dipole antenna. Proper choice for operating frequency of riometer and antenna gain is suggested for low latitude use of this technique for ionospheric deviative and nondeviative absorption studies.

  13. Investigation of standing wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided Focused Ultrasound (MRgFUS) phased array: An experimental and simulation study

    OpenAIRE

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2011-01-01

    Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to stand...

  14. Focused ultrasound in ophthalmology

    Directory of Open Access Journals (Sweden)

    Silverman RH

    2016-09-01

    Full Text Available Ronald H Silverman1,2 1Department of Ophthalmology, Columbia University Medical Center, 2F.L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA Abstract: The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via cilio-destruction, tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. Keywords: ophthalmic ultrasound, ultrasound biomicroscopy (UBM, high-intensity focused ultrasound (HIFU, ultrafast imaging, Doppler imaging 

  15. Addressing the Limit of Detectability of Residual Oxide Discontinuities in Friction Stir Butt Welds of Aluminum using Phased Array Ultrasound

    Science.gov (United States)

    Johnston, P. H.

    2008-01-01

    This activity seeks to estimate a theoretical upper bound of detectability for a layer of oxide embedded in a friction stir weld in aluminum. The oxide is theoretically modeled as an ideal planar layer of aluminum oxide, oriented normal to an interrogating ultrasound beam. Experimentally-measured grain scattering level is used to represent the practical noise floor. Echoes from naturally-occurring oxides will necessarily fall below this theoretical limit, and must be above the measurement noise to be potentially detectable.

  16. The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array.

    Science.gov (United States)

    Yuldashev, Petr V; Shmeleva, Svetlana M; Ilyin, Sergey A; Sapozhnikov, Oleg A; Gavrilov, Leonid R; Khokhlova, Vera A

    2013-04-21

    The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high-intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field, and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low-power sonications. Intensity levels at the face of the array elements that corresponded to the formation of high-amplitude shock fronts in the focal region were determined as 10 W cm(-2) in the free field in water and 40 W cm(-2) in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue.

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... specific content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Obstetric Ultrasound Ultrasound - Prostate Kidney and ...

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements into an array of ...

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements into an array of ...

  20. Feasibility of vibro-acoustography with a quasi-2D ultrasound array transducer for detection and localizing of permanent prostate brachytherapy seeds: A pilot ex vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Mehrmohammadi, Mohammad; Kinnick, Randall R.; Fatemi, Mostafa, E-mail: fatemi.mostafa@mayo.edu [Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905 (United States); Alizad, Azra [Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905 and Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905 (United States); Davis, Brian J. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2014-09-15

    Purpose: Effective permanent prostate brachytherapy (PPB) requires precise placement of radioactive seeds in and around the prostate. The impetus for this research is to examine a new ultrasound-based imaging modality, vibro-acoustography (VA), which may serve to provide a high rate of PPB seed detection while also effecting enhanced prostate imaging. The authors investigate the ability of VA, implemented on a clinical ultrasound (US) scanner and equipped with a quasi-2D (Q2D) array US transducer, to detect and localize PPB seeds in excised prostate specimens. Methods: Nonradioactive brachytherapy seeds were implanted into four excised cadaver prostates. A clinical US scanner equipped with a Q2D array US transducer was customized to acquire both US and C-scan VA images at various depths. The VA images were then used to detect and localize the implanted seeds in prostate tissue. To validate the VA results, computed tomography (CT) images of the same tissue samples were obtained to serve as the reference by which to evaluate the performance of VA in PPB seed detection. Results: The results indicate that VA is capable of accurately identifying the presence and distribution of PPB seeds with a high imaging contrast. Moreover, a large ratio of the PPB seeds implanted into prostate tissue samples could be detected through acquired VA images. Using CT-based seed identification as the standard, VA was capable of detecting 74%–92% of the implanted seeds. Additionally, the angular independency of VA in detecting PPB seeds was demonstrated through a well-controlled phantom experiment. Conclusions: Q2DVA detected a substantial portion of the seeds by using a 2D array US transducer in excised prostate tissue specimens. While VA has inherent advantages associated with conventional US imaging, it has the additional advantage of permitting detection of PPB seeds independent of their orientation. These results suggest the potential of VA as a method for PPB imaging that

  1. Advantage of annular focus generation by sector-vortex array in cavitation-enhanced high-intensity focused ultrasound treatment

    Science.gov (United States)

    Jimbo, Hayato; Takagi, Ryo; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    High-intensity focused ultrasound (HIFU) is a noninvasive method for cancer treatment. One of the disadvantages of this method is that it has a long total treatment time because of the smallness of the treatment volume by a single exposure. To solve this problem, we have proposed a method of cavitation-enhanced heating, which utilized the heat generated by oscillating the cavitation bubbles, in combination with the method of lateral enlargement of a HIFU focal zone to minimize the surface volume ratio. In a previous study, focal spot scanning at multiple points was employed for the enlargement. This method involves nonlinear propagation and absorption due to the high spatial-peak temporal-peak (SPTP) intensity in addition to the cavitation-enhanced heating. However, it is difficult to predict the size and position of the coagulation volume because they are significantly affected by the nonlinear parameters of the tissue. In this study, a sector vortex method was employed to directly synthesize an annular focal pattern. Since this method can keep the SPTP intensity at a manageably low level, nonlinear propagation and absorption can be minimized. Experimental results demonstrate that the coagulation was generated only in the region where both the cavitation cloud and the heating ultrasound were matched. The proposed method will make the cavitation-enhanced HIFU treatment more accurate and predictable.

  2. Obstetrical Ultrasound

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Obstetric Ultrasound Obstetric ultrasound uses sound waves to produce pictures ... limitations of Obstetrical Ultrasound Imaging? What is Obstetrical Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  3. Prostate Ultrasound

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves ... the limitations of Prostate Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and ...

  4. Musculoskeletal Ultrasound

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Musculoskeletal Ultrasound imaging uses sound waves to produce ... Ultrasound Imaging of the Musculoskeletal System? What is Ultrasound Imaging of the Musculoskeletal System? Ultrasound is safe ...

  5. Ultrasound - Scrotum

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Scrotum Ultrasound imaging of the scrotum uses sound ... of Ultrasound Imaging of the Scrotum? What is Ultrasound Imaging of the Scrotum? Ultrasound imaging of the ...

  6. Ultrasound -- Vascular

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Vascular Vascular ultrasound uses sound waves to evaluate ... the limitations of Vascular Ultrasound? What is Vascular Ultrasound? Ultrasound is safe and painless, and produces pictures ...

  7. Hip Ultrasound

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Hip Ultrasound Hip ultrasound uses sound waves to produce pictures ... of Ultrasound Imaging of the Hip? What is Ultrasound Imaging of the Hip? Ultrasound images of the ...

  8. Ultrasound -- Vascular

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Ultrasound - Vascular Vascular ultrasound uses sound waves to evaluate the ... are the limitations of Vascular Ultrasound? What is Vascular Ultrasound? Ultrasound is safe and painless, and produces ...

  9. Reliability considerations of NDT by probability of detection (POD). Determination using ultrasound phased array. Results from a project in frame of the German nuclear safety research program

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Jochen H. [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren (IZEP), Saarbruecken (Germany); Dugan, Sandra; Juengert, Anne [Stuttgart Univ. (Germany). Materialpruefungsanstalt (MPA)

    2013-07-01

    Reliable assessment procedures are an important aspect of maintenance concepts. Non-destructive testing (NDT) methods are an essential part of a variety of maintenance plans. Fracture mechanical assessments require knowledge of flaw dimensions, loads and material parameters. NDT methods are able to acquire information on all of these areas. However, it has to be considered that the level of detail information depends on the case investigated and therefore on the applicable methods. Reliability aspects of NDT methods are of importance if quantitative information is required. Different design concepts e.g. the damage tolerance approach in aerospace already include reliability criteria of NDT methods applied in maintenance plans. NDT is also an essential part during construction and maintenance of nuclear power plants. In Germany, type and extent of inspection are specified in Safety Standards of the Nuclear Safety Standards Commission (KTA). Only certified inspections are allowed in the nuclear industry. The qualification of NDT is carried out in form of performance demonstrations of the inspection teams and the equipment, witnessed by an authorized inspector. The results of these tests are mainly statements regarding the detection capabilities of certain artificial flaws. In other countries, e.g. the U.S., additional blind tests on test blocks with hidden and unknown flaws may be required, in which a certain percentage of these flaws has to be detected. The knowledge of the probability of detection (POD) curves of specific flaws in specific testing conditions is often not present. This paper shows the results of a research project designed for POD determination of ultrasound phased array inspections of real and artificial cracks. The continuative objective of this project was to generate quantitative POD results. The distribution of the crack sizes of the specimens and the inspection planning is discussed, and results of the ultrasound inspections are presented. In

  10. Ultrasound skin tightening.

    Science.gov (United States)

    Minkis, Kira; Alam, Murad

    2014-01-01

    Ultrasound skin tightening is a noninvasive, nonablative method that allows for energy deposition into the deep dermal and subcutaneous tissue while avoiding epidermal heating. Ultrasound coagulation is confined to arrays of 1-mm(3) zones that include the superficial musculoaponeurotic system and connective tissue. This technology gained approval from the Food and Drug Administration as the first energy-based skin "lifting" device, specifically for lifting lax tissue on the neck, submentum, and eyebrows. Ultrasound has the unique advantage of direct visualization of treated structures during treatment. Ultrasound is a safe and efficacious treatment for mild skin tightening and lifting.

  11. Circumferential lesion formation around the pulmonary veins in the left atrium with focused ultrasound using a 2D-array endoesophageal device: a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Pichardo, Samuel; Hynynen, Kullervo [Imaging Research-Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Room C713, Toronto, ON M4N 3M5 (Canada)

    2007-08-21

    Atrial fibrillation (AF) is the most frequently sustained cardiac arrhythmia affecting humans. The electrical isolation by ablation of the pulmonary veins (PVs) in the left atrium (LA) of the heart has been proven as an effective cure of AF. The ablation consists mainly in the formation of a localized circumferential thermal coagulation of the cardiac tissue surrounding the PVs. In the present numerical study, the feasibility of producing the required circumferential lesion with an endoesophageal ultrasound probe is investigated. The probe operates at 1 MHz and consists of a 2D array with enough elements (114 x 20) to steer the acoustic field electronically in a volume comparable to the LA. Realistic anatomical conditions of the thorax were considered from the segmentation of histological images of the thorax. The cardiac muscle and the blood-filled cavities in the heart were identified and considered in the sound propagation and thermal models. The influence of different conditions of the thermal sinking in the LA chamber was also studied. The circumferential ablation of the PVs was achieved by the sum of individual lesions induced with the proposed device. Different scenarios of lesion formation were considered where ultrasound exposures (1, 2, 5 and 10 s) were combined with maximal peak temperatures (60, 70 and 80 {sup 0}C). The results of this numerical study allowed identifying the limits and best conditions for controlled lesion formation in the LA using the proposed device. A controlled situation for the lesion formation surrounding the PVs was obtained when the targets were located within a distance from the device in the range of 26 {+-} 7 mm. When combined with a maximal temperature of 70 {sup 0}C and an exposure time between 5 and 10 s, this distance ensured preservation of the esophageal structures, controlled lesion formation and delivery of an acoustic intensity at the transducer surface that is compatible with existing materials. With a peak

  12. Design of a phased array for the generation of adaptive radiation force along a path surrounding a breast lesion for dynamic ultrasound elastography imaging.

    Science.gov (United States)

    Ekeom, Didace; Hadj Henni, Anis; Cloutier, Guy

    2013-03-01

    This work demonstrates, with numerical simulations, the potential of an octagonal probe for the generation of radiation forces in a set of points following a path surrounding a breast lesion in the context of dynamic ultrasound elastography imaging. Because of the in-going wave adaptive focusing strategy, the proposed method is adapted to induce shear wave fronts to interact optimally with complex lesions. Transducer elements were based on 1-3 piezocomposite material. Three-dimensional simulations combining the finite element method and boundary element method with periodic boundary conditions in the elevation direction were used to predict acoustic wave radiation in a targeted region of interest. The coupling factor of the piezocomposite material and the radiated power of the transducer were optimized. The transducer's electrical impedance was targeted to 50 Ω. The probe was simulated by assembling the designed transducer elements to build an octagonal phased-array with 256 elements on each edge (for a total of 2048 elements). The central frequency is 4.54 MHz; simulated transducer elements are able to deliver enough power and can generate the radiation force with a relatively low level of voltage excitation. Using dynamic transmitter beamforming techniques, the radiation force along a path and resulting acoustic pattern in the breast were simulated assuming a linear isotropic medium. Magnitude and orientation of the acoustic intensity (radiation force) at any point of a generation path could be controlled for the case of an example representing a heterogeneous medium with an embedded soft mechanical inclusion.

  13. Prostate Ultrasound

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Prostate ultrasound, also called transrectal ultrasound, provides ...

  14. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Prostate Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and painless, and produces ... of page What are some common uses of the procedure? A transrectal ultrasound of the prostate gland ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... are the limitations of Pelvic Ultrasound Imaging? What is Pelvic Ultrasound Imaging? Ultrasound is safe and painless, ... through the blood vessels. top of page How is the procedure performed? Transabdominal: For most ultrasound exams, ...

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Ultrasound - Prostate Ultrasound of the prostate uses sound waves to produce pictures of a man’s prostate gland ... of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or sonography , ...

  17. Ultrasound - Breast

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Ultrasound - Breast Ultrasound imaging of the breast uses sound waves ... the Breast? What is Ultrasound Imaging of the Breast? Ultrasound is safe and painless, and produces pictures ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound - Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of the structures and ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to produce pictures of a man’s prostate ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  20. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Prostate Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and painless, and produces ... of page What are some common uses of the procedure? A transrectal ultrasound of the prostate gland ...

  1. Investigation of standing-wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided focused ultrasound (MRgFUS) phased array: an experimental and simulation study.

    Science.gov (United States)

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2012-02-01

    Standing-wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30-cm diameter with 15-cm radius of curvature, low-frequency (230 kHz), hemispherical transcranial magnetic resonance-guided focused ultrasound phased array. Experimental and simulation studies were conducted with changing aperture size and f -number configurations of the phased array and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and antinodes of standing wave produced by the small-aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing-wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number.

  2. Prostate Ultrasound

    Medline Plus

    Full Text Available ... are the limitations of Prostate Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe ... transducer into the body. top of page How is the procedure performed? In men, the prostate gland ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Pelvis Ultrasound imaging of the pelvis uses sound waves to produce pictures of the structures and organs ... of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or sonography , ...

  4. Prostate Ultrasound

    Medline Plus

    Full Text Available ... gel. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... to-use and less expensive than other imaging methods. Ultrasound imaging uses no ionizing radiation. Ultrasound scanning ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... a pelvic ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is a special ultrasound technique that ... and processes the sounds and creates graphs or color pictures that represent the flow of blood through ...

  6. Intravascular ultrasound

    Science.gov (United States)

    IVUS; Ultrasound - coronary artery; Endovascular ultrasound; Intravascular echocardiography ... A tiny ultrasound wand is attached to the top of a thin tube. This tube is called a catheter. The catheter ...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... three types of pelvic ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently ... pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... Obstetrical Ultrasound page for more information . Ultrasound examinations can help diagnose symptoms experienced by women such as: ...

  9. Simulation study of the effects of near- and far-field heating during focused ultrasound uterine fibroid ablation using an electronically focused phased array: A theoretical analysis of patient safety

    Energy Technology Data Exchange (ETDEWEB)

    Ellens, Nicholas, E-mail: nicholas.ellens@utoronto.ca; Hynynen, Kullervo [Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7 (Canada)

    2014-07-15

    Purpose: Assess the feasibility of using large-aperture, flat ultrasonic transducer arrays with 6500 small elements operating at 500 kHz without the use of any mechanical components for the thermal coagulation of uterine fibroids. This study examines the benefits and detriments of using a frequency that is significantly lower than that used in clinical systems (1–1.5 MHz). Methods: Ultrasound simulations were performed using the anatomies of five fibroid patients derived from 3D MRI. Using electronic steering solely, the ultrasound focus from a flat, 6500-element phased array was translated around the volume of the fibroids in various patterns to assess the feasibility of completing full treatments from fixed physical locations. Successive temperature maps were generated by numerically solving the bioheat equation. Using a thermal dose model, the bioeffects of these simulations were quantified and analyzed. Results: The simulations indicate that such an array could be used to perform fibroid treatments to 18 EM{sub 43} at an average rate of 90 ± 20 cm{sup 3}/h without physically moving the transducer array. On average, the maximum near-field thermal dose for each patient was below 4 EM{sub 43}. Fibroid tissue could be treated as close as 40 mm to the spine without reaching temperatures expected to cause pain or damage. Conclusions: Fibroids were successfully targeted and treated from a single transducer position to acceptable extents and without causing damage in the near- or far-field. Compared to clinical systems, treatment rates were good. The proposed treatment paradigm is a promising alternative to existing systems and warrants further investigation.

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: ...

  11. Ultrasound transmission attenuation tomography using energy-scaled amplitude ratios

    Science.gov (United States)

    Chen, Ting; Shin, Junseob; Huang, Lianjie

    2016-04-01

    Ultrasound attenuation of breast tumors is related to their types and pathological states, and can be used to detect and characterize breast cancer. Particularly, ultrasound scattering attenuation can infer the margin properties of breast tumors. Ultrasound attenuation tomography quantitatively reconstructs the attenuation properties of the breast. Our synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays records both ultrasound reflection and transmission signals. We develop an ultrasound attenuation tomography method using ultrasound energy-scaled amplitude decays of ultrasound transmission signals and conduct ultrasound attenuation tomography using a known sound-speed model. We apply our ultrasound transmission attenuation tomography method to a breast phantom dataset, and compare the ultrasound attenuation tomography results with conventional beamforming ultrasound images obtained using reflection signals. We show that ultrasound transmission attenuation tomography complements beamforming images in identifying breast lesions.

  12. Medical ultrasound systems.

    Science.gov (United States)

    Powers, Jeff; Kremkau, Frederick

    2011-08-06

    Medical ultrasound imaging has advanced dramatically since its introduction only a few decades ago. This paper provides a short historical background, and then briefly describes many of the system features and concepts required in a modern commercial ultrasound system. The topics addressed include array beam formation, steering and focusing; array and matrix transducers; echo image formation; tissue harmonic imaging; speckle reduction through frequency and spatial compounding, and image processing; tissue aberration; Doppler flow detection; and system architectures. It then describes some of the more practical aspects of ultrasound system design necessary to be taken into account for today's marketplace. It finally discusses the recent explosion of portable and handheld devices and their potential to expand the clinical footprint of ultrasound into regions of the world where medical care is practically non-existent. Throughout the article reference is made to ways in which ultrasound imaging has benefited from advances in the commercial electronics industry. It is meant to be an overview of the field as an introduction to other more detailed papers in this special issue.

  13. Design of High-speed Data Acquisition System of Ultrasound Phased Array%超声相控阵检测高速数据采集系统设计

    Institute of Scientific and Technical Information of China (English)

    沈祥华; 许药林; 徐大专

    2013-01-01

    提出了一种超声相控阵高速数据采集系统的设计方案,该方案基于ADC+ FPGA+ARM架构,实现多路高速数据的采集传输.重点研究了ADC、FPGA接口设计.采用AD9272作为相控阵模拟前端,实施前端模拟信号预处理及多路高速数据并行采集;采用Spartan-6XC6SLX150进行多路高速数据的实时传输转换,在FPGA内实现了32路600 M、DDR、串行LVDS数据高速接收恢复;最后通过上位机观测采集传输的超声相控阵回波信号.该设计充分利用当前高集成度芯片,为超声相控阵检测系统小型化的实现提供了参考.%This paper presents a design of high-speed data acquisition system of ultrasound phased array, which is based on the architecture of ADC + FPGA + ARM and is achieving the acquisition and transmission of multichannel high-speed data. This paper focuses on the design of the ADC、FPGA interface. It takes AD9272 as the analog front end of phased array to preprocess the front analog signals and acquire multi-channel highspeed data, and uses Spartan-6 XC6SLX150 to realize the real-time transmission and conversion of multiple high-speed data. The system can achieve the recovery of 32-channel 600 M、DDR、serial LVDS data in the FPGA. Finally, a host computer is used to observe the acquired and transmitted echo signals of ultrasound phased array. This design makes full use of highly integrated chips, providing a reference for the miniaturization of the ultrasonic phased array inspection system.

  14. Prostate Ultrasound

    Medline Plus

    Full Text Available ... as detailed as with the transrectal probe. An MRI of the pelvis may be obtained as an ... Benign Prostatic Hyperplasia (BPH) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related to Ultrasound - Prostate ...

  15. Prostate Ultrasound

    Medline Plus

    Full Text Available ... is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. ... other imaging methods. Ultrasound imaging uses no ionizing radiation. Ultrasound scanning may be able to give a ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... needles are used to extract a sample of cells from organs for laboratory testing. Doppler ultrasound images ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the procedure? In women, a pelvic ultrasound is most often performed to evaluate the: uterus cervix ovaries ... page How is the procedure performed? Transabdominal: For most ultrasound exams, you will be positioned lying face- ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... transducer into the body. Doppler ultrasound, a special application of ultrasound, measures the direction and speed of ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... menstrual problems Ultrasound exams also help identify: palpable masses such as ovarian cysts and uterine fibroids ovarian ... In children, pelvic ultrasound can help evaluate: pelvic masses pelvic pain ambiguous genitalia and anomalies of pelvic ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... bladder seminal vesicles prostate Transrectal ultrasound, a special study usually done to provide detailed evaluation of the ... time to the procedure. If a Doppler ultrasound study is performed, you may actually hear pulse-like ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? In women, a pelvic ultrasound is most ... child's favorite channel. top of page What does the equipment look like? Ultrasound scanners consist of a ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently used to evaluate the ... vaginal ( transvaginal , endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam may be part of ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently used to evaluate the ... vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam may be part of ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... 3-D ultrasound or sonohysterography for patients with infertility. In this setting, three-dimensional ultrasound provides information ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  5. Prostate Ultrasound

    Medline Plus

    Full Text Available ... 20 minutes. top of page What will I experience during and after the procedure? Ultrasound exams in ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ...

  7. Prostate Ultrasound

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Ultrasound is widely available, easy-to-use ... procedures such as needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... diagnose symptoms experienced by women such as: pelvic pain abnormal vaginal bleeding other menstrual problems Ultrasound exams ... pelvic ultrasound can help evaluate: pelvic masses pelvic pain ambiguous genitalia and anomalies of pelvic organs early ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Most ultrasound scanning is noninvasive (no needles or injections). Occasionally, an ultrasound exam may be temporarily uncomfortable, ... the following text box: Comment: E-mail: Area code: Phone no: Thank you! Images × Image Gallery Radiologist ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... investigation of the uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries ... abnormal uterine bleeding Some physicians also use 3-D ultrasound or sonohysterography for patients with infertility. Three- ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... For most ultrasound exams, you will be positioned lying face-up on an examination table that can ... ovaries. Transvaginal ultrasound is usually performed with you lying on your back, possibly with your feet in ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... investigation of the uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries ... abnormal uterine bleeding Some physicians also use 3-D ultrasound or sonohysterography for patients with infertility. In ...

  13. Endoscopic ultrasound

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007646.htm Endoscopic ultrasound To use the sharing features on this page, please enable JavaScript. Endoscopic ultrasound is a type of imaging test. It is ...

  14. Prostate Ultrasound

    Medline Plus

    Full Text Available ... evaluation with additional views or a special imaging technique. A follow-up examination may also be necessary ... to-use and less expensive than other imaging methods. Ultrasound imaging uses no ionizing radiation. Ultrasound scanning ...

  15. Prostate Ultrasound

    Medline Plus

    Full Text Available ... chest. To obtain high-quality images, an ultrasound transducer – a plastic cylinder about the size of a ... or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... by women such as: pelvic pain abnormal vaginal bleeding other menstrual problems Ultrasound exams also help identify: ... fibroids cancer, especially in patients with abnormal uterine bleeding Some physicians also use 3-D ultrasound or ...

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... time to the procedure. If a Doppler ultrasound study is performed, you may actually hear pulse-like ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... in x-rays ), thus there is no radiation exposure to the patient. Because ultrasound images are captured ... system disorders in both sexes without x-ray exposure. Risks For standard diagnostic ultrasound , there are no ...

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... needles are used to extract a sample of cells from organs for laboratory testing. Doppler ultrasound images ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  20. Prostate Ultrasound

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... Because ultrasound provides real-time images, it also can be used to guide procedures such as needle ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently used to evaluate the ... vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam may be part of ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Ultrasound is safe, noninvasive and does not use ionizing radiation. This procedure requires little to no special preparation. ... create an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and fluid aspiration. Pelvic ultrasound can help to identify and evaluate a variety of urinary and reproductive system disorders in both sexes without x-ray exposure. Risks For standard diagnostic ultrasound , there are no known ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? In women, a pelvic ultrasound is most ... child's favorite channel. top of page What does the equipment look like? Ultrasound scanners consist of a ...

  5. Prostate Ultrasound

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? Ultrasound exams in which the transducer ... a regular ultrasound imaging probe on the perineal skin of the patient, between the legs and behind ...

  6. Subharmonic contrast intravascular ultrasound for vasa vasorum imaging.

    Science.gov (United States)

    Goertz, David E; Frijlink, Martijn E; Tempel, Dennie; Bhagwandas, Vijay; Gisolf, Andries; Krams, Robert; de Jong, Nico; van der Steen, Antonius F W

    2007-12-01

    The feasibility of subharmonic contrast intravascular ultrasound (IVUS) imaging was investigated using a prototype nonlinear IVUS system and the commercial contrast agent Definity . The system employed a mechanically scanned commercial catheter with a custom transducer element fabricated to have sensitivity at both 15 and 30 MHz. Experiments were conducted at a fundamental frequency of 30 MHz (F30; 25% bandwidth), with on-axis pressures ranging from 0.12 to 0.79 MPa, as measured with a needle hydrophone. In vitro characterization experiments demonstrated the detection of 15 MHz subharmonic signals (SH15) when pressure levels reached 360 kPa. The formation of SH15 images was shown, with tissue signals suppressed to near the noise floor and contrast to tissue ratios were improved by up to 30 dB relative to F30. In vivo experiments were performed using the atherosclerotic rabbit aorta model. Following the bolus injection of contrast agent upstream of the imaging catheter, agent was detected within the aorta, vena cava and within the perivascular space. These results provide a first in vivo demonstration of subharmonic contrast IVUS and suggest its potential as a new technique for imaging vasa vasorum.

  7. Carotid Ultrasound

    Science.gov (United States)

    ... this page from the NHLBI on Twitter. Carotid Ultrasound Also known as carotid duplex. Carotid ultrasound is a painless imaging test that uses high- ... of your carotid arteries. This test uses an ultrasound machine, which includes a computer, a screen, and ...

  8. Modeling of ultrasound transducers

    DEFF Research Database (Denmark)

    Bæk, David

    deviation of 5.5 % to 11.0 %. Finite element modeling of piezoceramics in combination with Field II is addressed and reveals the influence of restricting the modeling of transducers to the one-dimensional case. An investigation on modeling capacitive micromachined ultrasonic transducers (CMUT)s with Field......This Ph.D. dissertation addresses ultrasound transducer modeling for medical ultrasound imaging and combines the modeling with the ultrasound simulation program Field II. The project firstly presents two new models for spatial impulse responses (SIR)s to a rectangular elevation focused transducer...... II is addressed. It is shown how a single circular CMUT cell can be well approximated with a simple square transducer encapsulating the cell, and how this influence the modeling of full array elements. An optimal cell discretization with Field II’s mathematical elements is addressed as well...

  9. Fabrication and performance of endoscopic ultrasound radial arrays based on PMN-PT single crystal/epoxy 1-3 composite.

    Science.gov (United States)

    Zhou, Dan; Cheung, Kwok Fung; Chen, Yan; Lau, Sien Ting; Zhou, Qifa; Shung, K Kirk; Luo, Hao Su; Dai, Jiyan; Chan, Helen Lai Wa

    2011-02-01

    In this paper, 0.7Pb(Mg(¹/₃)Nb(²/₃)O₃-0.3PbTiO₃ (PMN-PT) single crystal/epoxy 1/3 composite was used as the active material of the endoscopic ultrasonic radial array transducer, because this composite exhibited ultrahigh electromechanical coupling coefficient (k(t) = 0.81%), very low mechanical quality factor (Q(m) = 11) and relatively low acoustic impedance (Z(t) = 12 MRayls). A 6.91 MHz PMN-PT/epoxy 1/3 composite radial array transducer with 64 elements was tested in a pulseecho response measurement. The -6-dB bandwidth of the composite array transducer was 102%, which was ~30% larger than that of traditional lead zirconate titanate array transducer. The two-way insertion loss was found to be -32.3 dB. The obtained results show that this broadband array transducer is promising for acquiring high-resolution endoscopic ultrasonic images in many clinical applications.

  10. Thyroid ultrasound

    OpenAIRE

    Vikas Chaudhary; Shahina Bano

    2013-01-01

    Thyroid ultrasonography has established itself as a popular and useful tool in the evaluation and management of thyroid disorders. Advanced ultrasound techniques in thyroid imaging have not only fascinated the radiologists but also attracted the surgeons and endocrinologists who are using these techniques in their daily clinical and operative practice. This review provides an overview of indications for ultrasound in various thyroid diseases, describes characteristic ultrasound findings in th...

  11. Ultrasound physics.

    Science.gov (United States)

    Shriki, Jesse

    2014-01-01

    Bedside ultrasound has become an important modality for obtaining critical information in the acute care of patients. It is important to understand the physics of ultrasound in order to perform and interpret images at the bedside. The physics of both continuous wave and pulsed wave sound underlies diagnostic ultrasound. The instrumentation, including transducers and image processing, is important in the acquisition of appropriate sonographic images. Understanding how these concepts interplay with each other enables practitioners to obtain the best possible images.

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... medical test that helps physicians diagnose and treat medical conditions. There are three types of pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal / endovaginal ) ...

  13. Carotid Ultrasound Imaging

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Carotid Carotid ultrasound uses sound waves to produce ... limitations of Carotid Ultrasound Imaging? What is Carotid Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  14. General Ultrasound Imaging

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce pictures ... limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  15. Venous Ultrasound (Extremities)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Venous (Extremities) Venous ultrasound uses sound waves to ... limitations of Venous Ultrasound Imaging? What is Venous Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  16. Ultrasound Harmonic Classification of Microemboli

    NARCIS (Netherlands)

    P.C. Palanchon

    2004-01-01

    textabstractThe ultrasound community has experienced dramatic technical advances over the last decades, such as blood °ow measurements with elabo rate Doppler techniques or real time three-dimensional imaging with 2-D phased array transducers. This was partly ascribed to the advantages of ultraso

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Ultrasound - Prostate ... imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Prostate ultrasound, also ...

  18. Investigation of interstitial ultrasound ablation of spinal and paraspinal tumors: A patient-specific and parametric simulation study

    Science.gov (United States)

    Scott, Serena J.; Salgaonkar, Vasant; Prakash, Punit; Burdette, E. Clif; Diederich, Chris J.

    2017-03-01

    Preferential acoustic absorption and heating of bone can significantly impact interstitial ultrasound ablation of tumors within or bordering the spine. Furthermore, intervening cortical bone may provide acoustic and thermal insulation that can protect sensitive structures nearby, such as the spinal cord. The objectives of this study are firstly, to apply parametric and patient-specific models to theoretically assess the feasibility of interstitial ultrasound ablation of tumors within and near the spine, and secondly, to identify potential energy delivery strategies, safety criteria, advantages, and disadvantages of interstitial ultrasound in this setting. Transient biothermal models using previously validated approximations for power deposition within bone from interstitial sources were employed. Multilayered axisymmetric models were used to perform a parametric assessment of the impact of tumor dimensions, attenuation (dependent on residual bone content), perfusion, and maximum temperature thresholds on necessary treatment parameters and on treatment effectiveness. 3D patient-specific finite element models were generated based on segmented CT scans for nine representative patient cases selected to bracket a range of clinical interest, with tumors in or near the vertebrae, sacrum, and ilium. Tumors were 10-27 mm in diameter, 10-43 mm long, and 0-14 mm from the spinal canal. Paraspinal tumors, osteolytic vertebral tumors, and a mixed osteolytic/osteoblastic iliac bone tumor were considered. 7 MHz (1.5 mm OD) and 3.0 MHz (3.2 mm OD) applicators with an array of 1-4 tubular transducers (0.5 -1.5 cm long, 150-360° sector angles), were applied in various implant configurations. Variable thicknesses of bone insulating critical anatomy from the tumor and insulation of the spinal cord with injected carbon dioxide were also investigated for definition of safety margins and possible protection of critical structures. 6-44 mm diameter osteolytic tumors surrounded by bone and

  19. Cranial Ultrasound/Head Ultrasound

    Science.gov (United States)

    ... sickle cell disease. It is also used to measure conditions affecting blood flow to and within the brain, such as: Stenosis : ... saved. Doppler ultrasound, a special application of ultrasound, measures ... represent the flow of blood through the blood vessels. top of ...

  20. 2D SQIF arrays using 20 000 YBCO high R n Josephson junctions

    Science.gov (United States)

    Mitchell, E. E.; Hannam, K. E.; Lazar, J.; Leslie, K. E.; Lewis, C. J.; Grancea, A.; Keenan, S. T.; Lam, S. K. H.; Foley, C. P.

    2016-06-01

    Superconducting quantum interference filters (SQIFs) have been created using two dimensional arrays of YBCO step-edge Josephson junctions connected together in series and parallel configurations via superconducting loops with a range of loop areas and loop inductances. A SQIF response, as evidenced by a single large anti-peak at zero applied flux, is reported at 77 K for step-edge junction arrays with the junction number N = 1 000 up to 20 000. The SQIF sensitivity (slope of peak) increased linearly with N up to a maximum of 1530 V T-1. Array parameters related to geometry and average junction characteristics are investigated in order to understand and improve the SQIF performance in high temperature superconducting arrays. Initial investigations also focus on the effect of the SQUID inductance factor on the SQIF sensitivity by varying both the mean critical current and the mean inductance of the loops in the array. The RF response to a 30 MHz signal is demonstrated.

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries in planes that ... a special study usually done to provide detailed evaluation of the prostate gland, involves inserting a specialized ...

  2. Prostate Ultrasound

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  3. Prostate Ultrasound

    Medline Plus

    Full Text Available ... areas of the body while other areas, especially air-filled lungs, are poorly suited for ultrasound. For ... appearance, size or contour of organs, tissues, and vessels or to detect abnormal masses, such as tumors. ...

  4. Prostate Ultrasound

    Medline Plus

    Full Text Available ... the prostate is enlarged, also known as benign prostatic hyperplasia (BPH) , with measurements acquired as needed for any ... size with caption Related Articles and Media Benign Prostatic Hyperplasia (BPH) Prostate Cancer Ultrasound- and MRI-Guided Prostate ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ovaries. Transvaginal ultrasound also evaluates the myometrium (muscular walls of the uterus). Sonohysterography allows for a more ... needle insertion) is usually minimal because the rectal wall is relatively insensitive to the pain in the ...

  6. Prostate Ultrasound

    Medline Plus

    Full Text Available ... object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, ... of the pelvis may be obtained as an alternative imaging test, because it may be obtained with ...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... is safe, noninvasive and does not use ionizing radiation. This procedure requires little to no special preparation. ... an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is ...

  8. Prostate Ultrasound

    Medline Plus

    Full Text Available ... is safe, noninvasive, and does not use ionizing radiation. This procedure requires little to no special preparation. ... an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is ...

  9. Ultrasound -- Pelvis

    Science.gov (United States)

    ... help diagnose symptoms experienced by women such as: pelvic pain abnormal bleeding other menstrual problems and help identify: ... children, pelvic ultrasound can help evaluate: pelvic masses pelvic pain ambiguous genitalia and anomalies of pelvic organs early ...

  10. Prostate Ultrasound

    Medline Plus

    Full Text Available ... the returning echoes from the tissues in the body. The principles are similar to sonar used by boats and submarines. The ultrasound image is immediately visible on a video display screen ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the returning echoes from the tissues in the body. The principles are similar to sonar used by boats and submarines. The ultrasound image is immediately visible on a video display screen ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ... barium exams, CT scanning , and MRI are the methods of choice in such a setting. Large patients ...

  13. Prostate Ultrasound

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  15. Prostate Ultrasound

    Medline Plus

    Full Text Available ... patient consultation. View full size with caption Related Articles and Media Benign Prostatic Hyperplasia (BPH) (Enlargement of the Prostate) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ovarian cysts and uterine fibroids ovarian or uterine cancers A transvaginal ultrasound is usually performed to view ... detect: uterine anomalies uterine scars endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through the gel into the body. The transducer collects the sounds ...

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through the gel into the body. The transducer collects the sounds ...

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ovarian cysts and uterine fibroids ovarian or uterine cancers A transvaginal ultrasound is usually performed to view ... detect: uterine anomalies uterine scars endometrial polyps fibroids cancer, especially in patients with abnormal uterine bleeding Some ...

  20. Prostate Ultrasound

    Medline Plus

    Full Text Available ... uses sound waves to produce pictures of a man’s prostate gland and to help diagnose symptoms such ... also called transrectal ultrasound, provides images of a man's prostate gland and surrounding tissue. The exam typically ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... legs, neck and/or brain (in infants and children) or within various body organs such as the ... tumors other disorders of the urinary bladder In children, pelvic ultrasound can help evaluate: pelvic masses pelvic ...

  3. Prostate Ultrasound

    Medline Plus

    Full Text Available ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ... well on x-ray images. Ultrasound causes no health problems and may be repeated as often as ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound exams are also used to monitor the health and development of an embryo or fetus during ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ...

  5. Prostate Ultrasound

    Medline Plus

    Full Text Available ... physician during a routine physical exam or prostate cancer screening exam. an elevated blood test result. difficulty ... vessels or to detect abnormal masses, such as tumors. In an ultrasound examination, a transducer both sends ...

  6. Prostate Ultrasound

    Medline Plus

    Full Text Available ... of page How is the procedure performed? In men, the prostate gland is located directly in front ... What are the limitations of Prostate Ultrasound Imaging? Men who have had the tail end of their ...

  7. Prostate Ultrasound

    Science.gov (United States)

    ... prostate. help diagnose the cause of a man's infertility. A transrectal ultrasound of the prostate gland is ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  8. Prostate Ultrasound

    Medline Plus

    Full Text Available ... prostate. help diagnose the cause of a man's infertility. A transrectal ultrasound of the prostate gland is ... the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... areas of the body while other areas, especially air-filled lungs, are poorly suited for ultrasound. For ... make secure contact with the body and eliminate air pockets between the transducer and the skin that ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the object is as well as the object's size, shape and consistency (whether the object is solid ... ultrasound is used to detect changes in appearance, size or contour of organs, tissues, and vessels or ...

  11. Prostate Ultrasound

    Medline Plus

    Full Text Available ... an ultrasound transducer – a plastic cylinder about the size of a finger – is inserted short distance into ... the object is as well as the object's size, shape and consistency (whether the object is solid ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... are reviewed. top of page What will I experience during and after the procedure? For a transabdominal ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ... barium exams, CT scanning , and MRI are the methods of choice in such a setting. Large patients ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound exams are also used to monitor the health and development of an embryo or fetus during ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ...

  15. Prostate Ultrasound

    Medline Plus

    Full Text Available ... difficulty urinating or an elevated blood test result. It’s also used to investigate a nodule found during ... difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide procedures such ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the examination process. To ensure a smooth experience, it often helps to explain the procedure to the ... on the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from ...

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  18. Prostate Ultrasound

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a ...

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... to distract the child and make the time pass quickly. The ultrasound exam room may have a ... tissue attenuate (weaken) the sound waves as they pass deeper into the body. top of page Additional ...

  20. Prostate Ultrasound

    Medline Plus

    Full Text Available ... examinations do not use ionizing radiation (as used in x-rays ), thus there is no radiation exposure to the patient. Because ultrasound images are captured in real-time, they can show the structure and ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries in planes that ... a special study usually done to provide detailed evaluation of the prostate gland, involves inserting a specialized ...

  2. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... are also used to monitor the health and development of an embryo or fetus during pregnancy. See ... I prepare? You should wear comfortable, loose-fitting clothing for your ultrasound exam. You may need to ...

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... also used to guide procedures such as needle biopsies , in which needles are used to extract a ... gynecologic examination. For a transrectal exam: If no biopsy is required, transrectal ultrasound of the prostate is ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound exam room may have a television. Feel free to ask for your child's favorite channel. top ... be turned to either side to improve the quality of the images. After you are positioned on ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... small amount of gel is put on the skin to allow the sound waves to best travel ...

  6. Prostate Ultrasound

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... small amount of gel is put on the skin to allow the sound waves to best travel ...

  7. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... extract a sample of cells from organs for laboratory testing. Doppler ultrasound images can help the physician ... the returning sound waves), as well as the type of body structure and composition of body tissue ...

  8. Hip Ultrasound

    Science.gov (United States)

    ... be used in infants to check for developmental dysplasia of the hip. Ultrasound is safe, noninvasive, and does not use ... be used to check the hips for developmental dysplasia of the hip (DDH), which in infants can range from a ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... called color Doppler ultrasonography, is a special ultrasound technique that allows the physician to see and evaluate ... evaluation with additional views or a special imaging technique. A follow-up examination may also be necessary ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... are obtained from different orientations to get the best views of the uterus and ovaries. Transvaginal ultrasound ... over time. Follow-up examinations are sometimes the best way to see if treatment is working or ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  12. Prostate Ultrasound

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the ... probe through the gel into the body. The transducer collects the sounds that bounce back and a ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ...

  15. Prostate Ultrasound

    Medline Plus

    Full Text Available ... gel. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown. ... I prepare? You should wear comfortable, loose-fitting clothing for your ultrasound exam. You may need to ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown ... I prepare? You should wear comfortable, loose-fitting clothing for your ultrasound exam. You may need to ...

  18. Prostate Ultrasound

    Medline Plus

    Full Text Available ... gel. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2017 Radiological ...

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2017 Radiological ...

  20. Prostate Ultrasound

    Medline Plus

    Full Text Available ... physician during a routine physical exam or prostate cancer screening exam. an elevated blood test result. difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... in the abdomen, arms, legs, neck and/or brain (in infants and children) or within various body organs ... or uterine cancers A transvaginal ultrasound is usually performed to view ...

  2. Prostate Ultrasound

    Medline Plus

    Full Text Available ... uses sound waves to produce pictures of a man’s prostate gland and to help diagnose symptoms such ... also called transrectal ultrasound, provides images of a man's prostate gland and surrounding tissue. The exam typically ...

  3. Prostate Ultrasound

    Medline Plus

    Full Text Available ... a nodule found during a rectal exam, detect abnormalities, and determine whether the gland is enlarged. Ultrasound ... follow-up exam is done because a potential abnormality needs further evaluation with additional views or a ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries in planes that ... is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that ... as clots) narrowing of vessels tumors and congenital vascular malformations reduced or absent blood flow to various ...

  6. Prostate Ultrasound

    Medline Plus

    Full Text Available ... information you were looking for? Yes No Please type your comment or suggestion into the following text box: Comment: E-mail: ... Images related to Ultrasound - Prostate Sponsored by Please ...

  7. Prostate Ultrasound

    Medline Plus

    Full Text Available ... prostate is enlarged, also known as benign prostatic hyperplasia (BPH) , with measurements acquired as needed for any ... with caption Related Articles and Media Benign Prostatic Hyperplasia (BPH) Prostate Cancer Ultrasound- and MRI-Guided Prostate ...

  8. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... frequently used to evaluate the reproductive and urinary systems. Ultrasound is safe, noninvasive and does not use ... and evaluate a variety of urinary and reproductive system disorders in both sexes without x-ray exposure. ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... prior to the exam. Bringing books, small toys, music or games can help to distract the child ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  10. Ultrasound -- Pelvis

    Science.gov (United States)

    ... prior to the exam. Bringing books, small toys, music or games can help to distract the child ... modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... of urinary and reproductive system disorders in both sexes without x-ray exposure. Risks For standard diagnostic ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Sonohysterography Ultrasound - ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... a sample of cells from organs for laboratory testing. Doppler ultrasound images can help the physician to ... computer or television monitor. The image is created based on the amplitude (loudness), frequency (pitch) and time ...

  13. Prostate Ultrasound

    Medline Plus

    Full Text Available ... difficulty urinating or an elevated blood test result. It’s also used to investigate a nodule found during ... difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide procedures such ...

  14. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the examination process. To ensure a smooth experience, it often helps to explain the procedure to the ... on the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from ...

  15. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... patient consultation. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Sonohysterography Ultrasound - Abdomen Children's ( ...

  16. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the procedure. Ultrasound examinations are very sensitive to motion, and an active or crying child can prolong ... computer, which in turn creates a real-time picture on the monitor. One or more frames of ...

  17. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... extract a sample of cells from organs for laboratory testing. Doppler ultrasound images can help the physician ... The transducer sends out inaudible, high—frequency sound waves into the body and then listens for the ...

  18. Trauma Ultrasound.

    Science.gov (United States)

    Wongwaisayawan, Sirote; Suwannanon, Ruedeekorn; Prachanukool, Thidathit; Sricharoen, Pungkava; Saksobhavivat, Nitima; Kaewlai, Rathachai

    2015-10-01

    Ultrasound plays a pivotal role in the evaluation of acute trauma patients through the use of multi-site scanning encompassing abdominal, cardiothoracic, vascular and skeletal scans. In a high-speed polytrauma setting, because exsanguinations are the primary cause of trauma morbidity and mortality, ultrasound is used for quick and accurate detection of hemorrhages in the pericardial, pleural, and peritoneal cavities during the primary Advanced Trauma Life Support (ATLS) survey. Volume status can be assessed non-invasively with ultrasound of the inferior vena cava (IVC), which is a useful tool in the initial phase and follow-up evaluations. Pneumothorax can also be quickly detected with ultrasound. During the secondary survey and in patients sustaining low-speed or localized trauma, ultrasound can be used to help detect abdominal organ injuries. This is particularly helpful in patients in whom hemoperitoneum is not identified on an initial scan because findings of organ injuries will expedite the next test, often computed tomography (CT). Moreover, ultrasound can assist in detection of fractures easily obscured on radiography, such as rib and sternal fractures.

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... are the limitations of General Ultrasound Imaging? What is General Ultrasound Imaging? Ultrasound is safe and painless, ... through the blood vessels. top of page How is the procedure performed? For most ultrasound exams, you ...

  20. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... A-Z General Ultrasound Ultrasound imaging uses sound waves to produce pictures of the inside of the ... of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or sonography , ...

  1. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... of an ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is a special ultrasound technique that ... kidneys. There are three types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements ...

  2. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Index A-Z General Ultrasound Ultrasound imaging uses sound waves to produce pictures of the inside of ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  3. Quantitative Assessment of First Annular Pulley and Adjacent Tissues Using High-Frequency Ultrasound

    Science.gov (United States)

    Lin, Yi-Hsun; Yang, Tai-Hua; Wang, Shyh-Hau; Su, Fong-Chin

    2017-01-01

    Due to a lack of appropriate image resolution, most ultrasound scanners are unable to sensitively discern the pulley tissues. To extensively investigate the properties of the A1 pulley system and the surrounding tissues for assessing trigger finger, a 30 MHz ultrasound system was implemented to perform in vitro experiments using the hypodermis, A1 pulley, and superficial digital flexor tendon (SDFT) dissected from cadavers. Ultrasound signals were acquired from both the transverse and sagittal planes of each tissue sample. The quantitative ultrasonic parameters, including sound speed, attenuation coefficient, integrated backscatter (IB) and Nakagami parameter (m), were subsequently estimated to characterize the tissue properties. The results demonstrated that the acquired ultrasound images have high resolution and are able to sufficiently differentiate the variations of tissue textures. Moreover, the attenuation slope of the hypodermis is larger than those of the A1 pulley and SDFT. The IB of A1 pulley is about the same as that of the hypodermis, and is very different from SDFT. The m parameter of the A1 pulley is also very different from those of hypodermis and SDFT. This study demonstrated that high-frequency ultrasound images in conjunction with ultrasonic parameters are capable of characterizing the A1 pulley system and surrounding tissues. PMID:28067854

  4. Therapeutic ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Lawrence A [Center for Industrial and Medical Ultrasound, 1013 NE 40th Street, University of Washington, Seattle, WA 98105 (United States)

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  5. Non-linear Ultrasound Imaging

    DEFF Research Database (Denmark)

    Du, Yigang

    without iteration steps. The ASA is implemented in combination with Field II and extended to simulate the pulsed ultrasound fields. The simulated results from a linear array transducer are made by the ASA based on Field II, and by a released non-linear simulation program- Abersim, respectively....... The calculation speed of the ASA is increased approximately by a factor of 140. For the second harmonic point spread function the error of the full width is 1.5% at -6 dB and 6.4% at -12 dB compared to Abersim. To further investigate the linear and non-linear ultrasound fields, hydrophone measurements.......3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS...

  6. Three dimensional (3d) transverse oscillation vector velocity ultrasound imaging

    DEFF Research Database (Denmark)

    2013-01-01

    An ultrasound imaging system (300) includes a transducer array (302) with a two- dimensional array of transducer elements configured to transmit an ultrasound signal and receive echoes, transmit circuitry (304) configured to control the transducer array to transmit the ultrasound signal so...... as to traverse a field of view, and receive circuitry (306) configured to receive a two dimensional set of echoes produced in response to the ultrasound signal traversing structure in the field of view, wherein the structure includes flowing structures such as flowing blood cells, organ cells etc. A beamformer...... (312) configured to beamform the echoes, and a velocity processor (314) configured to separately determine a depth velocity component, a transverse velocity component and an elevation velocity component, wherein the velocity components are determined based on the same transmitted ultrasound signal...

  7. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    them: the use of sparse one- and two-dimensional arrays; the use of multiple elements in transmit to create virtual sources of ultrasound; the use of virtual sources of ultrasound to improve the resolution of the images in the elevation plane; the use of temporal and spatial encoding to increase...... imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...

  8. Prostate Ultrasound

    Medline Plus

    Full Text Available ... and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through ... during a single exam. The transducer sends out high-frequency sound waves (that the human ear cannot hear) ...

  9. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through ... during a single exam. The transducer sends out high-frequency sound waves (that the human ear cannot hear) ...

  10. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... and Resources RTAnswers.org Radiation Therapy for Gynecologic Cancers Radiation Therapy for Prostate Cancer top of page This page was reviewed on ... with caption Pediatric Content Some imaging tests and treatments have special pediatric ... Images related to Ultrasound - Pelvis Sponsored by Please ...

  11. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Ultrasound - Pelvis ... imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. There are three ...

  12. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  14. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm;

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological...

  15. Ultrasound imaging for quantitative measurement of immersed plastic waste particles

    NARCIS (Netherlands)

    Sanaee, S.A.; Bakker, M.C.M.

    2012-01-01

    Ultrasound imaging techniques are proposed for measuring the shape and thickness of immersed waste particles (10-20 mm size) using a linear sensor array from a fixed position. For these purposes both the front and back surface of a particle needs to be reconstructed. Raw ultrasound pulse-echo and pl

  16. Harmonic ultrasound imaging using synthetic aperture sequential beamforming

    DEFF Research Database (Denmark)

    2012-01-01

    A method includes generating an ultrasound image based on the harmonic components in the received echoes using multi-stage beam forming and data generated therefrom. An ultrasound imaging system (100, 200) includes a transducer array (108) including a plurality of transducer elements configured...... to emit ultrasound signals and receive echoes generated in response to the emitted ultrasound signals. The ultrasound imaging system further includes transmit circuitry (1 10) that generates a set of pulses that actuate a set of the plurality of transducer elements to emit ultrasound signals....... The ultrasound imaging system further includes receive circuitry (1 12), including a first beam former (122) configured to process the second harmonic signal components extracted from the received echo signals, generating intermediate scan lines. Memory (126) stores the generated intermediate scan lines...

  17. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... of page How is the procedure performed? For most ultrasound exams, you will be positioned lying face- ... Ultrasound examinations are painless and easily tolerated by most patients. Ultrasound exams in which the transducer is ...

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... data into 3-D images. A Doppler ultrasound study may be part of an ultrasound examination. Doppler ... usually stain or discolor clothing. In some ultrasound studies, the transducer is attached to a probe and ...

  20. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, ...

  1. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ...

  2. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... not stain or discolor clothing. In some ultrasound studies, the transducer is attached to a probe and ...

  3. Ultrasound guided supraclavicular block.

    LENUS (Irish Health Repository)

    Hanumanthaiah, Deepak

    2013-09-01

    Ultrasound guided regional anaesthesia is becoming increasingly popular. The supraclavicular block has been transformed by ultrasound guidance into a potentially safe superficial block. We reviewed the techniques of performing supraclavicular block with special focus on ultrasound guidance.

  4. Breast ultrasound.

    Science.gov (United States)

    Ueno, E

    1996-03-01

    In ultrasound, ultrasonic images are formed by means of echoes among tissues with different acoustic impedance. Acoustic impedance is the product of sound speed and bulk modulus. The bulk modulus expresses the elasticity of an object, and in the human body, the value is increased by conditions such as fibrosis and calcification. The sound speed is usually high in elastic tissues and low in water. In the body, it is lowest in the fatty tissue. Ultrasound echoes are strong on the surface of bones which are hard and have a high sound speed. In organs filled with air such as the lungs, the bulk modulus is low and the sound speed is extremely low at 340 m/s, which produce strong echoes (the sound speed in solid tissues is 1,530 m/s). Human tissue is constructed of units smaller than the ultrasonic beam, and it is necessary to understand back-scattering in order to understand the ultrasonic images of these tissues. When ultrasound passes through tissue, it is absorbed as thermal energy and attenuated. Fiber is a tissue with a high absorption and attenuation rate. When the rate increases, the posterior echoes are attenuated. However, in masses with a high water content such as cysts, the posterior echoes are accentuated. This phenomenon is an important, basic finding for determining the properties of tumors. Breast cancer can be classified into two types: stellate carcinoma and circumscribed carcinoma. Since stellate carcinoma is rich in fiber, the posterior echoes are attenuated or lacking. However, circumscribed carcinoma has a high cellularity and the posterior echoes are accentuated. The same tendency is also seen in benign tumors. In immature fibroadenomas, posterior echoes are accentuated, while in fibroadenomas with hyalinosis, the posterior echoes are attenuated. Therefore, if the fundamentals of this tissue characterization and the histological features are understood, reading of ultrasound becomes easy. Color Doppler has also been developed and has contributed

  5. Ultrasound of the Thyroid Gland

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Thyroid Thyroid ultrasound uses sound waves to produce ... of Ultrasound of the Thyroid? What is an Ultrasound of the Thyroid? Ultrasound is safe and painless, ...

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Conventional ultrasound displays the images in thin, ...

  7. Ultrasound-guided chest biopsies.

    Science.gov (United States)

    Middleton, William D; Teefey, Sharlene A; Dahiya, Nirvikar

    2006-12-01

    Pulmonary nodules that are surrounded by aerated lung cannot be visualized with sonography. Therefore, percutaneous biopsy must be guided with computed tomography or fluoroscopy. Although this restriction only applies to central lung nodules, it has permeated referral patterns for other thoracic lesions and has retarded the growth of ultrasound-guided interventions. Nevertheless, sonography is an extremely flexible modality that can expeditiously guide many biopsy procedures in the thorax. Peripheral pulmonary nodules can be successfully biopsied with success rates exceeding 90% and complications rates of less than 5%. Orienting the probe parallel to the intercostal space facilitates biopsies of peripheral pulmonary nodules. Anterior mediastinal masses that extend to the parasternal region are often easily approachable provided the internal mammary vessels, costal cartilage, and deep great vessels are identified and avoided. Superior mediastinal masses can be sampled from a suprasternal or supraclavicular approach. Phased array probes or tightly curved arrays may provide improved access for biopsies in this location. Posterior mediastinal masses are more difficult to biopsy with ultrasound guidance because of the overlying paraspinal muscles. However, when posterior mediastinal masses extend into the posterior medial pleural region, they can be biopsied with ultrasound guidance. Because many lung cancers metastasize to the supraclavicular nodes, it is important to evaluate the supraclavicular region when determining the best approach to obtain a tissue diagnosis. When abnormal supraclavicular nodes are present, they often are the easiest and safest lesions to biopsy.

  8. WE-AB-206-01: Diagnostic Ultrasound Imaging Quality Assurance.

    Science.gov (United States)

    Zagzebski, J

    2016-06-01

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging.

  9. Ultrasound in Space Medicine

    Science.gov (United States)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (1) Determine accuracy of ultrasound in novel clinical conditions. (2) Determine optimal training methodologies, (3) Determine microgravity associated changes and (4) Develop intuitive ultrasound catalog to enhance autonomous medical care. Also uses of Ultrasound technology in terrestrial applications are reviewed.

  10. Space-based Aperture Array For Ultra-Long Wavelength Radio Astronomy

    CERN Document Server

    Rajan, Raj Thilak; Bentum, Mark; Klein-Wolt, Marc; Belien, Frederik; Arts, Michel; Saks, Noah; van der Veen, Alle-Jan

    2015-01-01

    The past decade has seen the rise of various radio astronomy arrays, particularly for low-frequency observations below 100MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21cm line emission. However, Earth-based radio astronomy below frequencies of 30MHz is severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. Various studies in the past were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. We briefly present the achievable science cases, and dis...

  11. Experimental 3-D Vector Velocity Estimation with Row-Column Addressed Arrays

    DEFF Research Database (Denmark)

    Holbek, Simon; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2016-01-01

    Experimental 3-D vector flow estimates obtained with a 62+62 2-D row-column (RC) array with integrated apodization are presented. A transverse oscillation (TO) velocity estimator is implemented on a 3.0 MHz RC array, to yield realtime 3-D vector flow in a cross-sectional scan plane at 750 frames...... rates. The flow rate measured from five cycles is 2.3 mL/stroke ± 0.1 mL/stroke giving a negative 9.7% bias compared to the pump settings. It is concluded that 124 elements are sufficient to estimate 3-D vector flow, if they are positioned in a row-column wise manner....

  12. Optimal ultrasonic array focusing in attenuative media.

    Science.gov (United States)

    Ganguli, A; Gao, R X; Liang, K; Jundt, J

    2011-12-01

    This paper presents a parametric study on the efficiency of ultrasound focusing in an attenuative medium, using phased arrays. Specifically, an analytical model of ultrasound wave focusing in a homogeneous, isotropic and attenuative fluid with point sources is presented. Calculations based on the model have shown that in an attenuative medium, an optimum frequency exists for the best focusing performance for a particular size of aperture and focal distance. The effect of different f numbers on the focusing performance in the attenuative medium is further investigated. The information obtained from the analytical model provides insights into the design and installation of a phased transducer array for energy efficient wave focusing.

  13. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... are the limitations of Abdominal Ultrasound Imaging? What is Abdominal Ultrasound Imaging? Ultrasound is safe and painless, ... through the blood vessels. top of page How is the procedure performed? For most ultrasound exams, you ...

  14. Ultrasound of the Thyroid Gland

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Ultrasound - Thyroid Thyroid ultrasound uses sound waves to produce pictures ... the Thyroid? What is an Ultrasound of the Thyroid? Ultrasound is safe and painless, and produces pictures ...

  15. Ultrasound-Guided Breast Biopsy

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound-Guided Breast Biopsy An ultrasound-guided breast biopsy ... limitations of Ultrasound-Guided Breast Biopsy? What is Ultrasound-Guided Breast Biopsy? Lumps or abnormalities in the ...

  16. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? Abdominal ultrasound imaging is performed to evaluate ... for ultrasound examinations. top of page What does the ultrasound equipment look like? Ultrasound scanners consist of ...

  17. Ultrasound in Arthritis.

    Science.gov (United States)

    Sudoł-Szopińska, Iwona; Schueller-Weidekamm, Claudia; Plagou, Athena; Teh, James

    2017-09-01

    Ultrasound is currently performed in everyday rheumatologic practice. It is used for early diagnosis, to monitor treatment results, and to diagnose remission. The spectrum of pathologies seen in arthritis with ultrasound includes early inflammatory features and associated complications. This article discusses the spectrum of ultrasound features of arthritides seen in rheumatoid arthritis and other connective tissue diseases in adults, such as Sjögren syndrome, lupus erythematosus, dermatomyositis, polymyositis, and juvenile idiopathic arthritis. Ultrasound findings in spondyloarthritis, osteoarthritis, and crystal-induced diseases are presented. Ultrasound-guided interventions in patients with arthritis are listed, and the advantages and disadvantages of ultrasound are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... also used to: guide procedures such as needle biopsies , in which needles are used to sample cells ...

  19. Medical Ultrasound Imaging.

    Science.gov (United States)

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  20. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... may also be saved. Doppler ultrasound, a special application of ultrasound, measures the direction and speed of ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  1. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? Ultrasound examinations can help to diagnose a ... the scan begins. top of page What does the equipment look like? Ultrasound scanners consist of a ...

  2. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, ...

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... diagnose heart conditions, and assess damage after a heart attack. Ultrasound is safe, noninvasive, and does not use ... heart failure, and to assess damage after a heart attack. Ultrasound of the heart is commonly called an “ ...

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Us News Physician Resources Professions Site Index A-Z General Ultrasound Ultrasound imaging uses sound waves to ... type of examination you will have. For some scans your doctor may instruct you not to eat ...

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... and ovaries. top of page What will I experience during and after the procedure? Ultrasound examinations are ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Most ultrasound scanning is noninvasive (no needles ... procedures such as needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known ...

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... saved. Doppler ultrasound, a special application of ultrasound, measures the direction and speed of blood cells as ... tests, treatments and procedures may vary by geographic region. Discuss the fees associated with your prescribed procedure ...

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... help guide biopsies, diagnose heart conditions, and assess damage after a heart attack. Ultrasound is safe, noninvasive, ... a variety of conditions and to assess organ damage following illness. Ultrasound is used to help physicians ...

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Most ultrasound scanning is noninvasive (no needles or injections). Occasionally, an ultrasound exam may be temporarily uncomfortable, ... the following text box: Comment: E-mail: Area code: Phone no: Thank you! Images × Image Gallery General ...

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... attached to a probe and inserted into a natural opening in the body. These exams include: Transesophageal ... Imaging? Ultrasound waves are disrupted by air or gas; therefore ultrasound is not an ideal imaging technique ...

  11. Abdominal ultrasound (image)

    Science.gov (United States)

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X-ray, MRI, ... it has its place as a diagnostic tool. Ultrasound scans use high frequency sound waves to produce ...

  12. Prenatal ultrasound - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100197.htm Prenatal ultrasound - series—Procedure, part 1 To use the sharing ... Editorial team. Related MedlinePlus Health Topics Prenatal Testing Ultrasound A.D.A.M., Inc. is accredited by ...

  13. Transvaginal ultrasound (image)

    Science.gov (United States)

    Transvaginal ultrasound is a method of imaging the genital tract in females. A hand held probe is inserted directly ... vaginal cavity to scan the pelvic structures, while ultrasound pictures are viewed on a monitor. The test ...

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ...

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats ... of the reflected sound waves (called the Doppler effect). A computer collects and processes the sounds and ...

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2017 Radiological ...

  17. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... diagnose heart conditions, and assess damage after a heart attack. Ultrasound is safe, noninvasive, and does not use ... heart failure, and to assess damage after a heart attack. Ultrasound of the heart is commonly called an “ ...

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... information you were looking for? Yes No Please type your comment or suggestion into the following text box: Comment: ... Ultrasound Ultrasound - Prostate Biopsies - Overview Images related ...

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? Ultrasound examinations can help to diagnose a ... the scan begins. top of page What does the equipment look like? Ultrasound scanners consist of a ...

  20. Large area MEMS based ultrasound device for cancer detection

    Energy Technology Data Exchange (ETDEWEB)

    Wodnicki, Robert, E-mail: wodnicki@research.ge.com [GE Global Research, 1 Research Circle, Niskayuna, NY 12309 (United States); Thomenius, Kai [GE Global Research, 1 Research Circle, Niskayuna, NY 12309 (United States); Ming Hooi, Fong; Sinha, Sumedha P.; Carson, Paul L. [Radiology and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Lin Dersong; Zhuang Xuefeng; Khuri-Yakub, Pierre [Department of Electrical Engineering, Stanford University, Stanford, CA 94309 (United States); Woychik, Charles [GE Global Research, 1 Research Circle, Niskayuna, NY 12309 (United States)

    2011-08-21

    We present image results obtained using a prototype ultrasound array that demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micromachined Ultrasound Transducers (cMUTs) that have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 {mu}m and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to those of production PZT probes; however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.

  1. Harmonic Intravascular Ultrasound

    NARCIS (Netherlands)

    M.E. Frijlink (Martijn)

    2006-01-01

    textabstractMedical ultrasound is a popular imaging modality in cardiology. Harmonic Imaging is a technique that has been shown to increase the image quality of diagnostic ultrasound at frequencies below 10 MHz. However, Intravascular Ultrasound, which is a technique to acoustically investigate arte

  2. Ultrasound: Abdomen (For Parents)

    Science.gov (United States)

    ... for TV, Video Games, and the Internet Ultrasound: Abdomen KidsHealth > For Parents > Ultrasound: Abdomen Print A A A What's in this article? ... Child If You Have Questions en español Ultrasonido: abdomen What It Is An abdominal ultrasound is a ...

  3. Properties of Ultrasound Probes

    OpenAIRE

    Rusina, M.

    2015-01-01

    This work deals with the measurement properties of ultrasound probes. Ultrasound probes and their parameters significantly affect the quality of the final image. In this work there are described the possibility of measuring the spatial resolution, sensitivity of the probe and measuring the length of the dead zone. Ultrasound phantom ATS Multi Purpose Phantom Type 539 was used for measurements.

  4. Ultrasound: Bladder (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Ultrasound: Bladder KidsHealth > For Parents > Ultrasound: Bladder A A A What's in this article? ... español Ultrasonido: vejiga What It Is A bladder ultrasound is a safe and painless test that uses ...

  5. Harmonic Intravascular Ultrasound

    NARCIS (Netherlands)

    M.E. Frijlink (Martijn)

    2006-01-01

    textabstractMedical ultrasound is a popular imaging modality in cardiology. Harmonic Imaging is a technique that has been shown to increase the image quality of diagnostic ultrasound at frequencies below 10 MHz. However, Intravascular Ultrasound, which is a technique to acoustically investigate arte

  6. Ultrasound: Pelvis (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Ultrasound: Pelvis KidsHealth > For Parents > Ultrasound: Pelvis A A A What's in this article? ... español Ultrasonido: pelvis What It Is A pelvic ultrasound is a safe and painless test that uses ...

  7. Ultrasound: Infant Hip

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Ultrasound: Infant Hip KidsHealth > For Parents > Ultrasound: Infant Hip A A A What's in this ... en los lactantes What It Is A hip ultrasound is a safe and painless test that uses ...

  8. Ultrasound: Abdomen (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Ultrasound: Abdomen KidsHealth > For Parents > Ultrasound: Abdomen A A A What's in this article? ... español Ultrasonido: abdomen What It Is An abdominal ultrasound is a safe and painless test that uses ...

  9. Micromachined Integrated Transducers for Ultrasound Imaging

    DEFF Research Database (Denmark)

    la Cour, Mette Funding

    The purpose of this project is to develop capacitive micromachined ultrasonic transducers (CMUTs) for medical imaging. Medical ultrasound transducers used today are fabricated using piezoelectric materials and bulk processing. To fabricate transducers capable of delivering a higher imaging...... project and collaboration with a lot of partners to improve medical ultrasound imaging. The focus in this part of the project is to design, fabricate and characterize 1D CMUT arrays. Two versions of 1D transducers are made, one at Stanford University and one at DTU. Electrical and acoustical...... resolution it is however necessary to develop new fabrication methods that allows fabrication of transducer elements with smaller dimensions. By using microfabrication technology it is possible to push the dimensions down and provide higher design flexibility. This project is part of a large ultrasound...

  10. Breast ultrasound tomography with total-variation regularization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Li, Cuiping [KARMANOS CANCER INSTIT.; Duric, Neb [KARMANOS CANCER INSTIT

    2009-01-01

    Breast ultrasound tomography is a rapidly developing imaging modality that has the potential to impact breast cancer screening and diagnosis. A new ultrasound breast imaging device (CURE) with a ring array of transducers has been designed and built at Karmanos Cancer Institute, which acquires both reflection and transmission ultrasound signals. To extract the sound-speed information from the breast data acquired by CURE, we have developed an iterative sound-speed image reconstruction algorithm for breast ultrasound transmission tomography based on total-variation (TV) minimization. We investigate applicability of the TV tomography algorithm using in vivo ultrasound breast data from 61 patients, and compare the results with those obtained using the Tikhonov regularization method. We demonstrate that, compared to the Tikhonov regularization scheme, the TV regularization method significantly improves image quality, resulting in sound-speed tomography images with sharp (preserved) edges of abnormalities and few artifacts.

  11. TU-A-9A-06: Semi-Automatic Segmentation of Skin Cancer in High-Frequency Ultrasound Images: Initial Comparison with Histology

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Y [Univ. Alabama at Birmingham, Birmingham, AL (United States); Li, X [Medical College of Wisconsin, Milwaukee, WI (United States); Fishman, K [Sensus Healthcare, Boca Raton, FL (United States); Yang, X [Department of Radiation Oncology and Winship Cancer Institute, Emory Univ., Atlanta, GA (United States); Liu, T [Emory Univ, Atlanta, GA (United States)

    2014-06-15

    Purpose: In skin-cancer radiotherapy, the assessment of skin lesion is challenging, particularly with important features such as the depth and width hard to determine. The aim of this study is to develop interative segmentation method to delineate tumor boundary using high-frequency ultrasound images and to correlate the segmentation results with the histopathological tumor dimensions. Methods: We analyzed 6 patients who comprised a total of 10 skin lesions involving the face, scalp, and hand. The patient’s various skin lesions were scanned using a high-frequency ultrasound system (Episcan, LONGPORT, INC., PA, U.S.A), with a 30-MHz single-element transducer. The lateral resolution was 14.6 micron and the axial resolution was 3.85 micron for the ultrasound image. Semiautomatic image segmentation was performed to extract the cancer region, using a robust statistics driven active contour algorithm. The corresponding histology images were also obtained after tumor resection and served as the reference standards in this study. Results: Eight out of the 10 lesions are successfully segmented. The ultrasound tumor delineation correlates well with the histology assessment, in all the measurements such as depth, size, and shape. The depths measured by the ultrasound have an average of 9.3% difference comparing with that in the histology images. The remaining 2 cases suffered from the situation of mismatching between pathology and ultrasound images. Conclusion: High-frequency ultrasound is a noninvasive, accurate and easy-accessible modality to image skin cancer. Our segmentation method, combined with high-frequency ultrasound technology, provides a promising tool to estimate the extent of the tumor to guide the radiotherapy procedure and monitor treatment response.

  12. Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2008-01-01

    In this paper, the adaptive, minimum variance (MV) beamformer is applied to medical ultrasound imaging. The Significant resolution and contrast gain provided by the adaptive, minimum variance (MV) beamformer, introduces the possibility of plane wave (PW) ultrasound imaging. Data is obtained using...... Field H and a 7 MHz, 128-elements, linear array transducer with lambda/2-spacing. MV is compared to the conventional delay-and-sum (DS) beamformer with Boxcar and Hanning weights. Furthermore, the PW images are compared to the a conventional ultrasound image, obtained from a linear scan sequence...

  13. Measurement of a PAGAT gel dosimeter by ultrasound computed tomography

    Science.gov (United States)

    Khoei, S.; Trapp, J. V.; Langton, C. M.

    2013-06-01

    In this work we used a 3D quantitative CT ultrasound imaging system to characterise polymer gel dosimeters. The system comprised of two identical 5 MHz 128 element phased-array ultrasound transducers co-axially aligned and submerged in water as a coupling agent. Rotational and translational movement of the gel dosimeter sample between the transducers were performed using a robotic arm. Ultrasound signals were generated and received using an Olympus Omniscan unit. Dose sensitivity of attenuation and time of flight ultrasonic parameters were assessed using this system.

  14. Recent Experiences and Advances in Contrast-Enhanced Subharmonic Ultrasound

    Directory of Open Access Journals (Sweden)

    John R. Eisenbrey

    2015-01-01

    Full Text Available Nonlinear contrast-enhanced ultrasound imaging schemes strive to suppress tissue signals in order to better visualize nonlinear signals from blood-pooling ultrasound contrast agents. Because tissue does not generate a subharmonic response (i.e., signal at half the transmit frequency, subharmonic imaging has been proposed as a method for isolating ultrasound microbubble signals while suppressing surrounding tissue signals. In this paper, we summarize recent advances in the use of subharmonic imaging in vivo. These advances include the implementation of subharmonic imaging on linear and curvilinear arrays, intravascular probes, and three-dimensional probes for breast, renal, liver, plaque, and tumor imaging.

  15. Recent Experiences and Advances in Contrast-Enhanced Subharmonic Ultrasound.

    Science.gov (United States)

    Eisenbrey, John R; Sridharan, Anush; Liu, Ji-Bin; Forsberg, Flemming

    2015-01-01

    Nonlinear contrast-enhanced ultrasound imaging schemes strive to suppress tissue signals in order to better visualize nonlinear signals from blood-pooling ultrasound contrast agents. Because tissue does not generate a subharmonic response (i.e., signal at half the transmit frequency), subharmonic imaging has been proposed as a method for isolating ultrasound microbubble signals while suppressing surrounding tissue signals. In this paper, we summarize recent advances in the use of subharmonic imaging in vivo. These advances include the implementation of subharmonic imaging on linear and curvilinear arrays, intravascular probes, and three-dimensional probes for breast, renal, liver, plaque, and tumor imaging.

  16. In-vivo Convex Array Vector Flow Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Brandt, Andreas Hjelm; Nielsen, Michael Bachmann

    2014-01-01

    In-vivo VFI scans obtained from the abdomen of a human volunteer using a convex array transducers and trans- verse oscillation vector flow imaging (VFI) are presented. A 3 MHz BK Medical 8820e (Herlev, Denmark) 192-element convex array probe is used with the SARUS experimental ultrasound scanner....

  17. Transverse Oscillation Vector Velocity Estimation using a Phased Array Transducer

    DEFF Research Database (Denmark)

    Marcher, Jønne; Pihl, Michael Johannes; Seerup, Gert

    2012-01-01

    The Transverse Oscillation method has shown its commercial feasibility, providing the user with 2D velocity information. Todays implementation on commercial ultrasound platforms only support linear array transducers and are limited in depth. Extending the implementation to a phased array transducer...

  18. [The usefulness of high frequency ultrasonography in dermatological practice--ultrasound features of selected cutaneous lesions].

    Science.gov (United States)

    Szymańska, Elzbieta; Maj, Małgorzata; Majsterek, Magdalena; Litniewski, Jerzy; Nowicki, Andrzej; Rudnicka, Lidia

    2011-07-01

    Typical diagnostic process in dermatology includes clinical assessment, dermoscopic and histopathologic examination. Microsonography was initiated in seventies and much progress in the development of high-frequency scanners occurred since that time. The aim of the study was the assessment of high frequency ultrasonography in dermatologic diagnostics. Examination was performed with 30 MHz ultrasound transducer with 0,1 mm resolution and 7 mm penetration. We examined patients with benign and malignant neoplasms, cicatrical alopecia and morphea. Sonographically, the normal skin is composed of three layers: an epidermal entry echo, dermis and subcutaneous tissue. In healthy skin we can image small hypoechoic areas which correspond to hair folicules, vessels and sebaceous glands. Most of small skin neoplasmatic lesions were hypoechogenic and homogeneous on examination. Extensive lesions were multicomponent with normo-, hypo- and anechogenic structures. The assessment of lesion's boarders allows sometimes to conclude the invasiveness of the lesion. Areas of skin with clinically visible atrophy showed diffuse increasing of echogenicity. In early lesions, without accomplished fibrosis, diffuse decreasing of echogenicity can be observed, that is probably caused by inflammatory infiltration. In comparison to the healthy skin, the ultrasound scan of sclerotic skin shows a wide entry echo and highly reflective, thicker dermis as a result of the collagen fibers accumulation. Above data suggest that ultrasonographic examination may be a valuable dermatologic diagnostic tool that completes classical dermatologic diagnostics and helps to plan the treatment.

  19. Design and implementation of capacitive micromachined ultrasonic transducers for high intensity focused ultrasound

    OpenAIRE

    Yamaner, Yalçın Feysel; Yamaner, Yalcin Feysel

    2011-01-01

    High intensity focused ultrasound (HIFU) is a medical procedure for noninvasive treatment of cancers. High intensity focused ultrasound is used to heat and destroy the diseased tissue. Piezoelectricity has been the core mechanism for generation of ultrasound waves in the treatment. Focusing can be done by using spherically curved transducers or using a lens or electronically steering sound waves by using phased arrays. Current research in HIFU technology targets the development of MR-guided m...

  20. Space-based aperture array for ultra-long wavelength radio astronomy

    Science.gov (United States)

    Rajan, Raj Thilak; Boonstra, Albert-Jan; Bentum, Mark; Klein-Wolt, Marc; Belien, Frederik; Arts, Michel; Saks, Noah; van der Veen, Alle-Jan

    2016-02-01

    The past decade has seen the advent of various radio astronomy arrays, particularly for low-frequency observations below 100 MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21 cm line emission. However, Earth-based radio astronomy observations at frequencies below 30 MHz are severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10 MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. In the past, such space-based radio astronomy studies were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. Furthermore, successful space-based missions which mapped the sky in this frequency regime, such as the lunar orbiter RAE-2, were restricted by very poor spatial resolution. Recently concluded studies, such as DARIS (Disturbuted Aperture Array for Radio Astronomy In Space) have shown the ready feasibility of a 9 satellite constellation using off the shelf components. The aim of this article is to discuss the current trends and technologies towards the feasibility of a space-based aperture array for astronomical observations in the Ultra-Long Wavelength (ULW) regime of greater than 10 m i.e., below 30 MHz. We briefly present the achievable science cases, and discuss the system design for selected scenarios such as extra-galactic surveys. An extensive discussion is presented on various sub-systems of the potential satellite array, such as radio astronomical antenna design, the on-board signal processing, communication architectures and joint space-time estimation of the

  1. Observations of Rotating Radio Transients with the First Station of the Long Wavelength Array

    CERN Document Server

    Taylor, G B; McCrackan, M; McLaughlin, M A; Miller, R; Karako-Argaman, C; Dowell, J; Schinzel, F K

    2016-01-01

    Rotating Radio Transients (RRATs) are a subclass of pulsars first identified in 2006 that are detected only in searches for single pulses and not through their time averaged emission. Here, we present the results of observations of 19 RRATs using the first station of the Long Wavelength Array (LWA1) at frequencies between 30 MHz and 88 MHz. The RRATs observed here were first detected in higher frequency pulsar surveys. Of the 19 RRATs observed, 2 sources were detected and their dispersion measures, periods, pulse profiles, and flux densities are reported and compared to previous higher frequency measurements. We find a low detection rate (11%), which could be a combination of the lower sensitivity of LWA1 compared to the higher frequency telescopes, and the result of scattering by the interstellar medium or a spectral turnover.

  2. Automatic Ultrasound Scanning

    DEFF Research Database (Denmark)

    Moshavegh, Ramin

    Medical ultrasound has been a widely used imaging modality in healthcare platforms for examination, diagnostic purposes, and for real-time guidance during surgery. However, despite the recent advances, medical ultrasound remains the most operator-dependent imaging modality, as it heavily relies...... on the user adjustments on the scanner interface to optimize the scan settings. This explains the huge interest in the subject of this PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been to develop automated techniques to minimize the unnecessary settings...... on the scanners, and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new quantitative measures. Thus, four major issues concerning automation of the medical ultrasound are addressed in this PhD project. They touch upon gain adjustments in ultrasound, automatic synthetic aperture image...

  3. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  4. Ultrasound-Guided Breast Biopsy

    Science.gov (United States)

    ... Professions Site Index A-Z Ultrasound-Guided Breast Biopsy An ultrasound-guided breast biopsy uses sound waves ... Guided Breast Biopsy? What is Ultrasound-Guided Breast Biopsy? Lumps or abnormalities in the breast are often ...

  5. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... located within a child's abdomen. A Doppler ultrasound study may be part of a child's abdominal ultrasound ... pain from the procedure. If a Doppler ultrasound study is performed, your child may actually hear pulse- ...

  6. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? Abdominal ultrasound imaging is performed to evaluate ... for ultrasound examinations. top of page What does the equipment look like? Ultrasound scanners consist of a ...

  7. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) Ultrasound - Abdomen Children’s (pediatric) ultrasound imaging of ... 30 minutes. top of page What will my child experience during and after the procedure? Ultrasound examinations ...

  8. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ...

  9. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... pain from the procedure. If a Doppler ultrasound study is performed, your child may actually hear pulse- ...

  10. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... child's abdominal ultrasound examination. Doppler ultrasound , also called color Doppler ultrasonography, is a special ultrasound technique that ... and processes the sounds and creates graphs or color pictures that represent the flow of blood through ...

  11. Ultrasound- and MRI-Guided Prostate Biopsy

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound- and MRI-Guided Prostate Biopsy Ultrasound- and MRI- ... Ultrasound-and MRI-guided Prostate Biopsy? What is Ultrasound- and MRI-guided Prostate Biopsy? Ultrasound- and MRI- ...

  12. Ultrasound contrast agents for ultrasound molecular imaging.

    Science.gov (United States)

    Tranquart, F; Arditi, M; Bettinger, T; Frinking, P; Hyvelin, J M; Nunn, A; Pochon, S; Tardy, I

    2014-11-01

    Ultrasound is a real-time imaging technique which is widely used in many clinical applications for its capacity to provide anatomic information with high spatial and temporal resolution. The advent of ultrasound contrast agents in combination with contrast-specific imaging modes has given access to perfusion assessments at an organ level, leading to an improved diagnostic accuracy. More recently, the development of biologically-targeted ultrasound contrast agents has expanded the role of ultrasound even further into molecular imaging applications. Ultrasound molecular imaging can be used to visualize the expression of intravascular markers, and to assess their local presence over time and/or during therapeutic treatment. Major applications are in the field of inflammation and neoangiogenesis due to the strictly intravascular presence of microbubbles. Various technologies have been investigated for attaching the targeting moiety to the shell from simple biotin-avidin constructs to more elaborated insertion within the shell through attachment to PEG residues. This important improvement has allowed a clinical translation of initial pre-clinical investigations, opening the way for an early detection and an accurate characterization of lesions in patients. The combination of anatomic, functional and molecular information/data provided by contrast ultrasound is a powerful tool which is still in its infancy due to the lack of agents suitable for clinical use. The advantages of ultrasound techniques combined with the molecular signature of lesions will represent a significant advance in imaging in the field of personalized medicine. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... Appendicitis Images related to Children's (Pediatric) Ultrasound - Abdomen Videos related to Children's (Pediatric) Ultrasound - Abdomen Sponsored by Please note RadiologyInfo. ...

  14. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Children's (pediatric) abdominal ultrasound imaging produces pictures ...

  15. New piezoelectric transducers for therapeutic ultrasound.

    Science.gov (United States)

    Chapelon, J Y; Cathignol, D; Cain, C; Ebbini, E; Kluiwstra, J U; Sapozhnikov, O A; Fleury, G; Berriet, R; Chupin, L; Guey, J L

    2000-01-01

    Therapeutic ultrasound (US) has been of increasing interest during the past few years. However, the development of this technique depends on the availability of high-performance transducers. These transducers have to be optimised for focusing and steering high-power ultrasonic energy within the target volume. Recently developed high-power 1-3 piezocomposite materials bring to therapeutic US the exceptional electroacoustical properties of piezocomposite technology: these are high efficiency, large bandwidth, predictable beam pattern, more flexibility in terms of shaping and definition of sampling in annular arrays, linear arrays or matrix arrays. The construction and evaluation of several prototypes illustrates the benefit of this new approach that opens the way to further progress in therapeutic US.

  16. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    . This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array......Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  17. Membrane design of an all-optical ultrasound receiver

    NARCIS (Netherlands)

    Leinders, S.M.; Dongen, K.W.A. van; Jong, N. de; Verweij, M.D.; Westerveld, W.J.; Urbach, H.P.; Neer, P.L.M.J. van; Pozo Torres, J.M.

    2013-01-01

    Ultrasound sensors such as piezoelectric transducers and CMUTs are successfully used for medical imaging. However, especially wiring of individual elements is difficult in the fabrication of small piezoelectric arrays, used in, e.g. the field of intravascular imaging. As an alternative, we designed

  18. Modeling of higher harmonics formation in medical ultrasound systems

    DEFF Research Database (Denmark)

    Taylor, Louise Kold; Schlaikjer, Malene; Jensen, Jørgen Arendt

    2002-01-01

    , and nonlinear distortion is accounted for by the lossless Burgers' Equation. This method has no plane-wave approximation and the full eects of diraction, attenuation, and nonlinear wave propagation can be observed under electronic focusing of array transducers in medical ultrasound systems. A single example...

  19. Incremental Volume Rendering Algorithm for Interactive 3D Ultrasound Imaging

    Science.gov (United States)

    1991-02-01

    hidden surface removal, such effects as cutaway viewing of the 17 Rat -cache (16 samples organized as 4-ary tree) embedded in an array,1,f -f I I I I I I...70. [Stick84] Stickels, K. R., and Wann, L.S. (1984). "An Analysis of Three- Dimensional Reconstructive Echocardiography ." Ultrasound in Med. & Biol

  20. [Modeling and simulation of responses from ultrasonic linear phased array].

    Science.gov (United States)

    He, Wenjing; Zhu, Yuanzhong; Wang, Yufeng; He, Lingli; Lai, Siyu

    2012-10-01

    Phased array transducers are very attractive because the beam generated by the arrays can be electronically focused and steered. The present work characterizes far-field 2D properties of phased array system by functions that are deduced from rectangle source, rectangle line array and phased array based on point source. Results are presented for the distribution of ultrasound intensity on plane xoz and on x-axis by simulation using numerical calculation. It is shown that the shape of response of rectangle line array is modulated by the single array element. It is also demonstrated that the delay time of phased array is the key to steer the beam, sacrificing the value of main lobe and increasing the number of side lobes.

  1. Ultrasound skin imaging.

    Science.gov (United States)

    Alfageme Roldán, F

    2014-12-01

    The interaction of high-frequency ultrasound waves with the skin provides the basis for noninvasive, fast, and accessible diagnostic imaging. This tool is increasingly used in skin cancer and inflammatory conditions as well as in cosmetic dermatology. This article reviews the basic principles of skin ultrasound and its applications in the different areas of dermatology.

  2. Medical ultrasound imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2007-01-01

    The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy...

  3. Exploiting Ultrasound Harmonics

    NARCIS (Netherlands)

    G.M. Matte (Guillaume)

    2010-01-01

    textabstractUltrasound imaging is an inexpensive method which provides an accurate diagnosis tool. This thesis provides elements to characterise the acoustic pressure generated by ultrasound transducers as well as signal processing method that could improve modern echography. The first measurement

  4. Exploiting Ultrasound Harmonics

    NARCIS (Netherlands)

    G.M. Matte (Guillaume)

    2010-01-01

    textabstractUltrasound imaging is an inexpensive method which provides an accurate diagnosis tool. This thesis provides elements to characterise the acoustic pressure generated by ultrasound transducers as well as signal processing method that could improve modern echography. The first measurement

  5. Filter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  6. Ultrasound specific similarity measures for three-dimensional mosaicing

    Science.gov (United States)

    Wachinger, Christian; Navab, Nassir

    2008-03-01

    The introduction of 2D array ultrasound transducers enables the instantaneous acquisition of ultrasound volumes in the clinical practice. The next step coming along is the combination of several scans to create compounded volumes that provide an extended field-of-view, so called mosaics. The correct alignment of multiple images, which is a complex task, forms the basis of mosaicing. Especially the simultaneous intensity-based registration has many properties making it a good choice for ultrasound mosaicing in comparison to the pairwise one. Fundamental for each registration approach is a suitable similarity measure. So far, only standard measures like SSD, NNC, CR, and MI were used for mosaicing, which implicitly assume an additive Gaussian distributed noise. For ultrasound images, which are degraded by speckle patterns, alternative noise models based on multiplicative Rayleigh distributed noise were proposed in the field of motion estimation. Setting these models into the maximum likelihood estimation framework, which enables the mathematical modeling of the registration process, led us to ultrasound specific bivariate similarity measures. Subsequently, we used an extension of the maximum likelihood estimation framework, which we developed in a previous work, to also derive multivariate measures. They allow us to perform ultrasound specific simultaneous registration for mosaicing. These measures have a higher potential than afore mentioned standard measures since they are specifically designed to cope with problems arising from the inherent contamination of ultrasound images by speckle patterns. The results of the experiments that we conducted on a typical mosaicing scenario with only partly overlapping images confirm this assumption.

  7. MO-AB-210-02: Ultrasound Imaging and Therapy-Hands On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sammet, S. [University of Chicago Medical Center (United States)

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  8. MO-AB-210-01: Ultrasound Imaging and Therapy-Hands On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z. [University of Chicago (United States)

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  9. Laser induced ultrasonic phased array using Full Matrix Capture data acquisition and Total Focusing Method

    OpenAIRE

    Stratoudaki, Theodosia; Clark, Matt; Wilcox, Paul

    2015-01-01

    Laser based ultrasound is a technique where a short pulsed laser is used to generate ultrasound and optical interferometry is used in order to detect the signal. Since both generation and detection of ultrasound is based on optical means, the technique is broadband, non-contact, and couplant free, suitable for large stand-off distances, inspection of components of complex geometries and hazardous environments. A data collection method (Full Matrix Capture) developed for ultrasonic arrays, is ...

  10. Silicon photonic micro-ring resonators to sense strain and ultrasound

    NARCIS (Netherlands)

    Westerveld, W.J.

    2014-01-01

    We demonstrated that photonic micro-ring resonators can be used in micro-machined ultrasound microphones. This might cause a breakthrough in array transducers for ultrasonography; first because optical multiplexing allows array interrogation via one optical fiber and second because the silicon-on-in

  11. Tissue Harmonic Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Joachim; Jensen, Jørgen Arendt

    2014-01-01

    , and data were recorded with and without pulse inversion for tissue harmonic imaging. Data were acquired using a Sound Technol- ogy 192 element convex array transducer from both a wire phantom and a tissue mimicking phantom to investigate spatial resolution and pen- etration. In-vivo scans were also......Synthetic aperture sequential beamforming (SASB) and tissue har- monic imaging (THI) are combined to improve the image quality of medical ultrasound imaging. The technique is evaluated in a compar- ative study against dynamic receive focusing (DRF). The objective is to investigate if SASB combined...... with THI improves the image qual- ity compared to DRF-THI. The major benet of SASB is a reduced bandwidth between the probe and processing unit. A BK Medical 2202 Ultraview ultrasound scanner was used to acquire beamformed RF data for oine evaluation. The acquisition was made interleaved between methods...

  12. High-Frequency, Low-Intensity Pulsed Ultrasound Enhances Alveolar Bone Healing of Extraction Sockets in Rats: A Pilot Study.

    Science.gov (United States)

    Kang, Kyung Lhi; Kim, Eun-Cheol; Park, Joon Bong; Heo, Jung Sun; Choi, Yumi

    2016-02-01

    Most studies of the beneficial effects of low-intensity pulsed ultrasound (LIPUS) on bone healing have used frequencies between 1.0 and 1.5 MHz. However, after consideration of ultrasound wave characteristics and depth of target tissue, higher-frequency LIPUS may have been more effective on superficially positioned alveolar bone. We investigated this hypothesis by applying LIPUS (frequency, 3.0 MHz; intensity, 30 mW/cm(2)) on shaved right cheeks over alveolar bones of tooth extraction sockets in rats for 10 min/d for 2 wk after tooth extraction; the control group (left cheek of the same rats) did not receive LIPUS treatment. Compared with the control group, the LIPUS group manifested more new bone growth inside the sockets on histomorphometric analysis (maximal difference = 2.5-fold on the seventh day after extraction) and higher expressions of osteogenesis-related mRNAs and proteins than the control group did. These findings indicate that 3.0-MHz LIPUS could enhance alveolar bone formation and calcification in rats.

  13. Assessment of the Kinetic Trajectory of the Median Nerve in the Wrist by High-Frequency Ultrasound

    Directory of Open Access Journals (Sweden)

    Yi-Hsun Lin

    2014-04-01

    Full Text Available Carpal tunnel syndrome (CTS is typically diagnosed by physical examination or nerve conduction measurements. With these diagnostics however it is difficult to obtain anatomical information in the carpal tunnel. To further improve the diagnosis of CTS, an attempt using 30 MHz high-frequency ultrasound to noninvasively detect the local anatomical structures and the kinetic trajectory of the median nerve (MN in the wrist was explored. Measurements were performed on the right wrist of 14 asymptomatic volunteers. The kinetic trajectory of the MN corresponding to flexion (from 0° to 90° and extension (from 90° to 0° movements of the fingers were detected by a cross correlation-based motion tracking technique. The average displacements of the MN according to finger movements were measured to be 3.74 and 2.04 mm for male and female subjects, respectively. Moreover, the kinetic trajectory of the MN in both the ulnar-palmar and total directions generally follows a sigmoidal curve tendency. This study has verified that the use of high-frequency ultrasound imaging and a motion tracking technique to sensitively detect the displacement and kinetic trajectory of the MN for the assessment of CTS patients is feasible.

  14. Bedside ocular ultrasound.

    Science.gov (United States)

    Roque, Pedro J; Hatch, Nicholas; Barr, Laurel; Wu, Teresa S

    2014-04-01

    Many ocular emergencies are difficult to diagnose in the emergency setting with conventional physical examination tools. Additionally, persistent efforts to re-examine the eye may be deleterious to a patient's overall condition. Ultrasound is an important tool because it affords physicians a rapid, portable, accurate, and dynamic tool for evaluation of a variety of ocular and orbital diseases. The importance of understanding orbital anatomy, with attention to the firm attachment points of the various layers of the eye, cannot be understated. This article describes the relevant eye anatomy, delves into the ultrasound technique, and illustrates a variety of orbital pathologies detectable by bedside ultrasound.

  15. Hepatic applications of endoscopic ultrasound

    DEFF Research Database (Denmark)

    Srinivasan, Indu; Tang, Shou-Jiang; Vilmann, Andreas S

    2015-01-01

    The diagnosis and staging of various gastrointestinal malignancies have been made possible with the use of endoscopic ultrasound, which is a relatively safe procedure. The field of endoscopic ultrasound is fast expanding due to advancements in therapeutic endoscopic ultrasound. Though various...... of endoscopic ultrasound, thus not only providing an overview of utilization of endoscopic ultrasound in various liver conditions but also speculating its future role....

  16. Ultrasound beamforming using compressed data.

    Science.gov (United States)

    Li, Yen-Feng; Li, Pai-Chi

    2012-05-01

    The rapid advancements in electronics technologies have made software-based beamformers for ultrasound array imaging feasible, thus facilitating the rapid development of high-performance and potentially low-cost systems. However, one challenge to realizing a fully software-based system is transferring data from the analog front end to the software back end at rates of up to a few gigabits per second. This study investigated the use of data compression to reduce the data transfer requirements and optimize the associated trade-off with beamforming quality. JPEG and JPEG2000 compression techniques were adopted. The acoustic data of a line phantom were acquired with a 128-channel array transducer at a center frequency of 3.5 MHz, and the acoustic data of a cyst phantom were acquired with a 64-channel array transducer at a center frequency of 3.33 MHz. The receive-channel data associated with each transmit event are separated into 8 × 8 blocks and several tiles before JPEG and JPEG2000 data compression is applied, respectively. In one scheme, the compression was applied to raw RF data, while in another only the amplitude of baseband data was compressed. The maximum compression ratio of RF data compression to produce an average error of lower than 5 dB was 15 with JPEG compression and 20 with JPEG2000 compression. The image quality is higher with baseband amplitude data compression than with RF data compression; although the maximum overall compression ratio (compared with the original RF data size), which was limited by the data size of uncompressed phase data, was lower than 12, the average error in this case was lower than 1 dB when the compression ratio was lower than 8.

  17. Ultrasound transducer assembly and method for manufacturing an ultrasound transducer assembly

    NARCIS (Netherlands)

    Dekker, R.; Henneken, V.A.; Louwerse, M.C.; Raganato, M.F.

    2015-01-01

    The present invention relates to an ultrasound transducer assembly (10), in particular for intravascular ultrasound systems. The ultrasound transducer assembly comprises at least one silicon substrate element (30) including an ultrasound transducer element (14) for emitting and receiving ultrasound

  18. Ultrasound transducer assembly and method for manufacturing an ultrasound transducer assembly

    NARCIS (Netherlands)

    Dekker, R.; Henneken, V.A.; Louwerse, M.C.; Raganato, M.F.

    2015-01-01

    The present invention relates to an ultrasound transducer assembly (10), in particular for intravascular ultrasound systems. The ultrasound transducer assembly comprises at least one silicon substrate element (30) including an ultrasound transducer element (14) for emitting and receiving ultrasound

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. ... extremely safe and does not use any ionizing radiation. Ultrasound scanning gives a clear picture of soft ...

  20. Pelvic ultrasound - abdominal

    Science.gov (United States)

    ... tubes Abnormal vaginal bleeding Menstrual problems Problems becoming pregnant (infertility) Normal pregnancy Ectopic pregnancy , a pregnancy that occurs outside the uterus Pelvic pain Pelvic ultrasound is also used during ...

  1. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... biopsies , in which needles are used to sample cells from an abnormal area for laboratory testing. image the breasts and guide biopsy of breast cancer ( see the Ultrasound-Guided Breast Biopsy page . diagnose ...

  2. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... the best way to see if treatment is working or if a finding is stable or changed over time. top of page What are the benefits vs. risks? Benefits Most ultrasound scanning is noninvasive ( ...

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... is safe, noninvasive, and does not use ionizing radiation. This procedure requires little to no special preparation. ... an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is ...

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... the returning echoes from the tissues in the body. The principles are similar to sonar used by boats and submarines. The ultrasound image is immediately visible on a video display screen ...

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ... barium exams, CT scanning , and MRI are the methods of choice in such a setting. Large patients ...

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... image the breasts and guide biopsy of breast cancer ( see the Ultrasound-Guided Breast Biopsy page . diagnose ... are sometimes the best way to see if treatment is working or if a finding is stable ...

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through the gel into the body. The transducer collects the sounds ...

  8. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... General ultrasound procedure View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. ...

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... image the breasts and guide biopsy of breast cancer ( see the Ultrasound-Guided Breast Biopsy page . diagnose ... blood flow (such as clots) narrowing of vessels tumors and congenital vascular malformations reduced or absent blood ...

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... areas of the body while other areas, especially air-filled lungs, are poorly suited for ultrasound. top ... make secure contact with the body and eliminate air pockets between the transducer and the skin that ...

  12. Ultrasound Modulated Bioluminescence Tomography

    CERN Document Server

    Bal, Guillaume

    2013-01-01

    We propose a method to reconstruct the density of a luminescent source in a highly-scattering medium from ultrasound modulated optical measurements. Our approach is based on the solution to a hybrid inverse source problem for the diffusion equation.

  13. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... the object is as well as the object's size, shape and consistency (whether the object is solid ... ultrasound is used to detect changes in appearance, size or contour of organs, tissues, and vessels or ...

  14. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ... barium exams, CT scanning , and MRI are the methods of choice in such a setting. Large patients ...

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... is used to help diagnose the causes of pain, swelling and infection in the body’s internal organs ... used to help physicians evaluate symptoms such as: pain swelling infection Ultrasound is a useful way of ...

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... small amount of gel is put on the skin to allow the sound waves to best travel ...

  17. Ultrasound in pregnancy (image)

    Science.gov (United States)

    The ultrasound has become a standard procedure used during pregnancy. It can demonstrate fetal growth and can detect increasing ... abnormalities, hydrocephalus, anencephaly, club feet, and other ... does not produce ionizing radiation and is considered ...

  18. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... biopsies , in which needles are used to sample cells from an abnormal area for laboratory testing. image ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  19. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... called color Doppler ultrasonography, is a special ultrasound technique that allows the physician to see and evaluate ... a blood vessel. Power Doppler is a newer technique that is more sensitive than color Doppler and ...

  20. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ... the transducer (the device placed on the patient's skin to send and receive the returning sound waves), ...

  1. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the ... probe through the gel into the body. The transducer collects the sounds that bounce back and a ...

  2. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... organs and to examine a baby in pregnant women and the brain and hips in infants. It’s ... Transvaginal ultrasound. The transducer is inserted into a woman's vagina to view the uterus and ovaries. top ...

  3. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown. ... I prepare? You should wear comfortable, loose-fitting clothing for your ultrasound exam. You may need to ...

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... an abnormal area for laboratory testing. image the breasts and guide biopsy of breast cancer ( see the Ultrasound-Guided Breast Biopsy page . diagnose a variety of heart conditions, ...

  5. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... biopsies , in which needles are used to sample cells from an abnormal area for laboratory testing. image ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  6. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... biopsies , in which needles are used to sample cells from an abnormal area for laboratory testing. image the breasts and guide biopsy of breast cancer ( see the Ultrasound-Guided Breast Biopsy page . diagnose ...

  7. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... time, rather than as a color picture. It can also convert blood flow information into a distinctive ...

  8. Thyroid and parathyroid ultrasound.

    Science.gov (United States)

    Ghervan, Cristina

    2011-03-01

    Thyroid ultrasound is easy to perform due to the superficial location of the thyroid gland, but appropriate equipment is mandatory with a linear high frequency transducer (7.5 - 12) MHz. Some pathological aspects of the thyroid gland are easily diagnosed by ultrasound, like the enlargement of the thyroid volume (goiter) or the presence of nodules and cysts; while other aspects are more difficult and need more experience (diffuse changes in the structure, echogenicity and vascularization of the parenchyma, differential diagnosis of malignant nodules). Ultrasound has become the diagnostic procedure of choice in guidelines for the management of thyroid nodules; most structural abnormalities of the thyroid need evaluation and monitoring but not intervention. A good knowledge of the normal appearance of the thyroid gland is compulsory for an accurate ultrasound diagnosis.

  9. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that ... speed and direction of blood flow through a blood vessel. Power Doppler is a newer technique that is ...

  10. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... whether the object is solid or filled with fluid). In medicine, ultrasound is used to detect changes ... As the sound waves bounce off internal organs, fluids and tissues, the sensitive receiver in the transducer ...

  11. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound procedure View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Angioplasty and Vascular Stenting ...

  12. Tunable microbubble generator using electrolysis and ultrasound

    Science.gov (United States)

    Achaoui, Younes; Metwally, Khaled; Fouan, Damien; Hammadi, Zoubida; Morin, Roger; Debieu, Eric; Payan, Cédric; Mensah, Serge

    2017-01-01

    This letter reports on a method for producing on demand calibrated bubbles in a non-chemically controlled solution using localized micro-electrolysis and ultrasound. Implementing a feedback loop in the process leads to a point source of stable mono-dispersed microbubbles. This approach overcomes the inertial constraints encountered in microfluidics with the possibility to produce from a single to an array of calibrated bubbles. Moreover, this method avoids the use of additional surfactant that may modify the composition of the host fluid. It impacts across a broad range of scientific domains from bioengineering, sensing to environment.

  13. Tunable microbubble generator using electrolysis and ultrasound

    Directory of Open Access Journals (Sweden)

    Younes Achaoui

    2017-01-01

    Full Text Available This letter reports on a method for producing on demand calibrated bubbles in a non-chemically controlled solution using localized micro-electrolysis and ultrasound. Implementing a feedback loop in the process leads to a point source of stable mono-dispersed microbubbles. This approach overcomes the inertial constraints encountered in microfluidics with the possibility to produce from a single to an array of calibrated bubbles. Moreover, this method avoids the use of additional surfactant that may modify the composition of the host fluid. It impacts across a broad range of scientific domains from bioengineering, sensing to environment.

  14. Clinical Utility of Endoscopic Ultrasound in Solid Pancreatic Mass Lesions Deemed Resectable by Computer Tomography

    Directory of Open Access Journals (Sweden)

    Mark A Virtue

    2008-03-01

    Full Text Available Context Appropriate surgical exploration and resection of pancreatic carcinoma depends on accurate preoperative evaluation. Objective Determine the accuracy of endoscopic ultrasound in predicting the need for surgical exploration in patients with solid pancreatic masses deemed by computer tomography to be resectable without venous grafting (absence of distant metastatic disease or major vascular involvement. Patients All patients between March 2000 and November 2003 with focal pancreatic mass lesions deemed to be surgically resectable by computer tomography. Fortynine patients participated (29 males, 20 females; age range: 40-86 years. Intervention Preoperative linear-array endoscopic ultrasound. Main outcome measure Surgical pathology compared to computer tomography and endoscopic ultrasound results. Results Out of the 49 patients, 33 (67.3% had pancreatic neoplasms and 16 (32.7% had chronic pancreatitis. Endoscopic ultrasound correctly diagnosed all 16 patients with chronic pancreatitis. Endoscopic ultrasound correctly identified 18 (54.5% of those with neoplasms as having unresectable disease while 6 (18.2% patients were appropriately identified as resectable by endoscopic ultrasound. The remaining 9 patients (27.3% were deemed resectable by endoscopic ultrasound, but were unresectable at the time of surgery. None of the patients were falsely designated as unresectable by endoscopic ultrasound. Conclusion Endoscopic ultrasound is an important compliment to computed tomography in predicting resectability and in avoiding nontherapeutic laparotomy of solid pancreatic neoplasms. Moreover, endoscopic ultrasound classification did not discourage surgery of resectable pancreatic masses.

  15. Science with a lunar low-frequency array: from the dark ages of the Universe to nearby exoplanets

    CERN Document Server

    Jester, Sebastian

    2009-01-01

    Low-frequency radio astronomy is limited by severe ionospheric distortions below 50 MHz and complete reflection of radio waves below 10-30 MHz. Shielding of man-made interference from long-range radio broadcasts, strong natural radio emission from the Earth's aurora, and the need for setting up a large distributed antenna array make the lunar far side a supreme location for a low-frequency radio array. A number of new scientific drivers for such an array, such as the study of the dark ages and epoch of reionization, exoplanets, and ultra-high energy cosmic rays, have emerged and need to be studied in greater detail. Here we review the scientific potential and requirements of these and other new scientific drivers and discuss the constraints for various lunar surface arrays. In particular we describe observability constraints imposed by the interstellar and interplanetary medium, calculate the achievable resolution, sensitivity, and confusion limit of a dipole array using general scaling laws, and apply them t...

  16. Lead-Free Intravascular Ultrasound Transducer Using BZT-50BCT Ceramics

    Science.gov (United States)

    Yan, Xingwei; Lam, Kwok Ho; Li, Xiang; Chen, Ruimin; Ren, Wei; Ren, Xiaobing; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper reports the fabrication and evaluation of a high-frequency ultrasonic transducer based on a new lead-free piezoelectric material for intravascular imaging application. Lead-free 0.5Ba(Zr0.2Ti0.8)O3−0.5(Ba0.7Ca0.3)TiO3 (BZT-50BCT) ceramic with a high dielectric constant (~2800) was employed to develop a high-frequency (~30 MHz) needle-type ultrasonic transducer. With superior piezoelectric performance (piezoelectric coefficient d33 ~ 600 pC/N), the lead-free transducer was found to exhibit a −6-dB bandwidth of 53% with an insertion loss of 18.7 dB. In vitro intravascular ultrasound (IVUS) imaging of a human cadaver coronary artery was performed to demonstrate the potential of the lead-free transducer for biomedical imaging applications. This is the first time that a lead-free transducer has been used for IVUS imaging application. The experimental results suggest that the BZT-50BCT ceramic is a promising lead-free piezoelectric material for high-frequency intravascular imaging applications. PMID:25004492

  17. Ultrasound in trauma.

    Science.gov (United States)

    Rippey, James C R; Royse, Alistair G

    2009-09-01

    Point-of-care ultrasound is well suited for use in the emergency setting for assessment of the trauma patient. Currently, portable ultrasound machines with high-resolution imaging capability allow trauma patients to be imaged in the pre-hospital setting, emergency departments and operating theatres. In major trauma, ultrasound is used to diagnose life-threatening conditions and to prioritise and guide appropriate interventions. Assessment of the basic haemodynamic state is a very important part of ultrasound use in trauma, but is discussed in more detail elsewhere. Focussed assessment with sonography for Trauma (FAST) rapidly assesses for haemoperitoneum and haemopericardium, and the Extended FAST examination (EFAST) explores for haemothorax, pneumothorax and intravascular filling status. In regional trauma, ultrasound can be used to detect fractures, many vascular injuries, musculoskeletal injuries, testicular injuries and can assess foetal viability in pregnant trauma patients. Ultrasound can also be used at the bedside to guide procedures in trauma, including nerve blocks and vascular access. Importantly, these examinations are being performed by the treating physician in real time, allowing for immediate changes to management of the patient. Controversy remains in determining the best training to ensure competence in this user-dependent imaging modality.

  18. [Ultrasound findings in rhabdomyolysis].

    Science.gov (United States)

    Carrillo-Esper, Raúl; Galván-Talamantes, Yazmin; Meza-Ayala, Cynthia Margarita; Cruz-Santana, Julio Alberto; Bonilla-Reséndiz, Luis Ignacio

    Rhabdomyolysis is defined as skeletal muscle necrosis. Ultrasound assessment has recently become a useful tool for the diagnosis and monitoring of muscle diseases, including rhabdomyolysis. A case is presented on the ultrasound findings in a patient with rhabdomyolysis. To highlight the importance of ultrasound as an essential part in the diagnosis in rhabdomyolysis, to describe the ultrasound findings, and review the literature. A 30 year-old with post-traumatic rhabdomyolysis of both thighs. Ultrasound was performed using a Philips Sparq model with a high-frequency linear transducer (5-10MHz), in low-dimensional scanning mode (2D), in longitudinal and transverse sections at the level of both thighs. The images obtained showed disorganisation of the orientation of the muscle fibres, ground glass image, thickening of the muscular fascia, and the presence of anechoic areas. Ultrasound is a useful tool in the evaluation of rhabdomyolysis. Copyright © 2015 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  19. Coded ultrasound for blood flow estimation using subband processing

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Nielsen, Michael bachmann

    2007-01-01

    This paper further investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband...... was carried out using an experimental ultrasound scanner and a commercial linear array 7 MHz transducer. A circulating flow rig was scanned with a beam-to-flow angle of 60 degrees. The flow in the rig was laminar and had a parabolic flow-profile with a peak velocity of 0.09 m/s. The mean relative standard...

  20. Adaptive Receive and Transmit Apodization for Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Austeng, Andreas; Synnevåg, Johan-Fredrik

    2009-01-01

    This paper suggests a framework for utilizing adaptive, data-dependent apodization weights on both the receiving and transmitting aperture for Synthetic Aperture (SA) ultrasound imaging. The suggested approach is based on the Minimum Variance (MV) beamformer and consists of two steps. A set...... emission images before summation. The method is investigated using simulated SA ultrasound data obtained using Field II. Data of 13 point targets distributed at depths from 40 mm to 70 mm, and a 5.5 MHz, 64-element linear array transducer have been used. The investigation has shown that the introduction...

  1. Projection-reflection ultrasound images using PE-CMOS sensor: a preliminary bone fracture study

    Science.gov (United States)

    Lo, Shih-Chung B.; Liu, Chu-Chuan; Freedman, Matthew T.; Mun, Seong-Ki; Kula, John; Lasser, Marvin E.; Lasser, Bob; Wang, Yue Joseph

    2008-03-01

    In this study, we investigated the characteristics of the ultrasound reflective image obtained by a CMOS sensor array coated with piezoelectric material (PE-CMOS). The laboratory projection-reflection ultrasound prototype consists of five major components: an unfocused ultrasound transducer, an acoustic beam splitter, an acoustic compound lens, a PE-CMOS ultrasound sensing array (Model I400, Imperium Inc. Silver Spring, MD), and a readout circuit system. The prototype can image strong reflective materials such as bone and metal. We found this projection-reflection ultrasound prototype is able to reveal hairline bone fractures with and without intact skin and tissue. When compared, the image generated from a conventional B-scan ultrasound on the same bone fracture is less observable. When it is observable with the B-scan system, the fracture or crack on the surface only show one single spot of echo due to its scan geometry. The corresponding image produced from the projection-reflection ultrasound system shows a bright blooming strip on the image clearly indicating the fracture on the surface of the solid material. Speckles of the bone structure are also observed in the new ultrasound prototype. A theoretical analysis is provided to link the signals as well as speckles detected in both systems.

  2. Ultrasound- and MRI-Guided Prostate Biopsy

    Science.gov (United States)

    ... Index A-Z Ultrasound- and MRI-Guided Prostate Biopsy Ultrasound- and MRI-guided prostate biopsy uses imaging ... Biopsy? What is Ultrasound- and MRI-guided Prostate Biopsy? Ultrasound- and MRI-guided prostate biopsies are performed ...

  3. Global Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthy, Sriram; Daily, Jeffrey A.; Vishnu, Abhinav; Palmer, Bruce J.

    2015-11-01

    Global Arrays (GA) is a distributed-memory programming model that allows for shared-memory-style programming combined with one-sided communication, to create a set of tools that combine high performance with ease-of-use. GA exposes a relatively straightforward programming abstraction, while supporting fully-distributed data structures, locality of reference, and high-performance communication. GA was originally formulated in the early 1990’s to provide a communication layer for the Northwest Chemistry (NWChem) suite of chemistry modeling codes that was being developed concurrently.

  4. Orbiting low frequency array for radio astronomy

    NARCIS (Netherlands)

    Rajan, Rai Thilak; Rajan, Raj; Engelen, Steven; Bentum, Marinus Jan; Verhoeven, Chris

    2011-01-01

    Recently new and interesting science drivers have emerged for very low frequency radio astronomy from 0.3 MHz to 30 MHz. However Earth bound radio observations at these wavelengths are severely hampered by ionospheric distortions, man made interference, solar flares and even complete reflection belo

  5. Orbiting low frequency array for radio astronomy

    NARCIS (Netherlands)

    Rajan, Rai Thilak; Engelen, Steven; Bentum, Mark; Verhoeven, Chris

    2011-01-01

    Recently new and interesting science drivers have emerged for very low frequency radio astronomy from 0.3 MHz to 30 MHz. However Earth bound radio observations at these wavelengths are severely hampered by ionospheric distortions, man made interference, solar flares and even complete reflection belo

  6. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... children. Except for traumatic injury, appendicitis is the most common reason for emergency abdominal surgery. Ultrasound imaging ... of page How is the procedure performed? For most ultrasound exams, you will be positioned lying face- ...

  7. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... your child’s abdomen. Ultrasound does not use ionizing radiation, has no known harmful effects, and is particularly ... an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays ), thus there is ...

  8. Ultrasound physics in a nutshell.

    Science.gov (United States)

    Coltrera, Marc D

    2010-12-01

    This content presents to the neophyte ultrasonographer the essential nutshell of information needed to properly interpret ultrasound images. Basic concepts of physics related to ultrasound are supported with formulas and related to clinical use.

  9. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... may also be saved. Doppler ultrasound, a special application of ultrasound, measures the direction and speed of ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  10. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... is a safe, noninvasive test that uses sound waves to produce a clear picture of the internal ... of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or sonography , ...

  11. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... Us News Physician Resources Professions Site Index A-Z Children's (Pediatric) Ultrasound - Abdomen Children’s (pediatric) ultrasound imaging ... depends on the type of examination. For some scans, your doctor may ask you to withhold food ...

  12. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... minutes. top of page What will my child experience during and after the procedure? Ultrasound examinations are ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of ...

  13. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Children's (Pediatric) Ultrasound - Abdomen Children’s (pediatric) ultrasound imaging of the abdomen is a safe, noninvasive test that uses sound ...

  14. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Most ultrasound scanning is noninvasive (no needles ... cord and hip joints in newborns and infants. Risks For standard diagnostic ultrasound , there are no known ...

  15. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... abdomen is a safe, noninvasive test that uses sound waves to produce a clear picture of the ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  16. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... Most ultrasound scanning is noninvasive (no needles or injections). Occasionally, an ultrasound exam may be temporarily uncomfortable, ... the following text box: Comment: E-mail: Area code: Phone no: Thank you! Images × Image Gallery Pediatric ...

  17. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... collects the sounds that bounce back and a computer then uses those sound waves to create an ... located within a child's abdomen. A Doppler ultrasound study may be part of a child's abdominal ultrasound ...

  18. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... be guided by ultrasound, are used to sample cells from organs for laboratory testing help detect the ... in which needles are used to extract sample cells from an abnormal area for laboratory testing. Ultrasound ...

  19. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... requested the exam. Usually, the referring physician or health care provider will share the results with you. ...

  20. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2017 Radiological ...

  1. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... be guided by ultrasound, are used to sample cells from organs for laboratory testing help detect the ... in which needles are used to extract sample cells from an abnormal area for laboratory testing. Ultrasound ...

  2. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ... kidneys bladder testicles ovaries uterus Abdominal ultrasound images can be used to help diagnose appendicitis in children. ...

  3. Children's (Pediatric) Abdominal Ultrasound Imaging

    Medline Plus

    Full Text Available ... or kidneys. top of page What are some common uses of the procedure? Abdominal ultrasound imaging is ... Except for traumatic injury, appendicitis is the most common reason for emergency abdominal surgery. Ultrasound imaging can ...

  4. Ultrasound Beamforming Methods for Large Coherent Apertures

    Science.gov (United States)

    Bottenus, Nick

    This dissertation investigates the use of large coherent ultrasound apertures to improve diagnostic image quality for deep clinical targets. The current generation of ultrasound scanners restrict aperture size and geometry based on hardware limitations and field of view requirements at the expense of image quality. This work posits that, without these restrictions, ultrasound could be used for higher quality non-invasive imaging. To support this claim, an experimental device was constructed to acquire in vivo liver images with a synthetic aperture spanning at least 35 degrees at a radius of 10.2 cm with a scan time under one second. Using a 2.5 MHz commercial matrix array with the device, a lateral resolution of 0.45 mm at a depth of 11.6 cm was achieved, surpassing the capabilities of existing commercial systems. This work formed the basis for an in-depth investigation of the clinical promise of large aperture imaging. Ex vivo study of volumetric imaging through the human abdominal wall demonstrated the ability of large apertures to improve target detectability at depth by significantly increasing lateral resolution, even in the presence of tissue-induced aberration and reverberation. For various abdominal wall samples studied, full-width at half-maximum resolution was increased by 1.6 to 4.3 times using a 6.4 cm swept synthetic aperture compared to conventional imaging. Harmonic plane wave imaging was shown to limit the impact of reverberation clutter from the tissue layer and produce images with the highest target detectability, up to a 45.9% improvement in contrast-to-noise ratio (CNR) over fundamental imaging. This study was corroborated by simulation of a 10 cm concave matrix array imaging through an abdominal wall based on the Visible Human Project data set. The large aperture data were processed in several ways, including in their entirety as a fully populated large array as well as mimicking the swept synthetic aperture configuration. Image quality

  5. Robotic inspection of fiber reinforced composites using phased array UT

    Science.gov (United States)

    Stetson, Jeffrey T.; De Odorico, Walter

    2014-02-01

    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  6. Screen printed thick film based pMUT arrays

    DEFF Research Database (Denmark)

    Hedegaard, Tobias; Pedersen, T; Thomsen, Erik Vilain;

    2008-01-01

    This article reports on the fabrication and characterization of lambda-pitched piezoelectric micromachined ultrasound transducer (pMUT) arrays fabricated using a unique process combining conventional silicon technology and low cost screen printing of thick film PZT. The pMUTs are designed as 8...

  7. Ultrasound cleaning of microfilters

    DEFF Research Database (Denmark)

    Hald, Jens; Bjørnø, Irina; Jensen, Leif Bjørnø

    1999-01-01

    The aim of the present work is to develop, design, and manufacture a high-power ultrasound transducer module to be used for preventing the blocking of plastic-based microfilters by organic materials, and possibly to prolong the lifetime of the filters in industry using the cavitation on the surface...... suitable for cleaning of microfilters without damaging the filter structure. The filter surface was studied using an optical microscope before and after the experiment. When high-power ultrasound (max. 75 W/cm2) was applied to the surface of some microfilters, no visible damage was found, while others...... filters were damaged. The results of the laboratory experiments formed background for the final design of an ultrasound transducer module for use by foodstuff filtration plants. [This work was financed by the EU Project WAMBIO PL96-3257 (FAIR Programme).]...

  8. Ultrasound applications in electrodiagnosis.

    Science.gov (United States)

    Boon, Andrea J; Smith, Jay; Harper, C Michel

    2012-01-01

    This review article discusses the current scope of high-resolution diagnostic ultrasound in the diagnosis of neuromuscular disease, both as a complementary tool to electrodiagnosis and in some cases as a stand-alone imaging modality. Indications, limitations, potential for research, and training and credentialing are discussed. Indications include needle guidance for nerve conduction studies and needle electromyography, diagnosis of nerve entrapment, diagnostic muscle imaging via grayscale analysis, and dynamic real-time imaging, including sonopalpation, to provide additional diagnostic information. The role of neuromuscular ultrasound in research is discussed, including the need to evaluate the sensitivity, specificity, positive and negative predictive value, and cost-effectiveness of these techniques when they are used alone or in combination. Training and credentialing are reviewed, specifically noting the challenge of the lack of formal training programs and the relatively long, flat learning curve of diagnostic ultrasound.

  9. An integrated ultrasound-guided high intensity focused ultrasound system for in-vivo experiment

    Science.gov (United States)

    Liu, Dalong; Ebbini, Emad S.

    2017-03-01

    We present the system architecture of an integrated Ultrasound-guided High Intensity Focused Ultrasound (USgHIFU) system for image-guided surgery and temperature tracking in vivo. The system is capable of operating with multiple frontends. Current implementation has a SonixRP for imaging and a custom designed dual mode ultrasound array (DMUA) system (32Tx/32Rx) for imaging/therapy. The highlights of the system include a fully-programmable, multiple data stream capable data processing engine, and an arbitrarily programmable high power array driver that is able to synthesize complex beam patterns in space and time. The data processing engine features a pipeline-style design that can be programmed on-the-fly by re-arranging the pre-verified GPU-accelerated high performance pipeline blocks, which cover an extensive range from basic functions such as filtering to specialized processing like speckle tracking. Furthermore, the pipeline design also has the option of bringing in MATLAB (Mathworks, Natick, MA, US) as part of the processing chain, thus vastly increase the capability of the system. By properly balancing the processing load between GPU-enabled routine and MATLAB script. This allows one to achieve a high degree of flexibility while meeting real-time constraints. Results are presented from in vivo rat experiment. Where low dose of therapeutic ultrasound was delivered into the hind limb of the Copenhagen rats using DMUA and temperature was tracked using a linear probe (HST, Ultrasonix). The data is processed in realtime with MATLAB in the loop to perform temperature regularization. Results show that we can reliably track the low temperature heating in the presence of motion artifacts (respiration and pulsation).

  10. Developing an emergency ultrasound app

    DEFF Research Database (Denmark)

    Foss, K. T.; Subhi, Y.; Aagaard, R.

    2015-01-01

    Focused emergency ultrasound is rapidly evolving as a clinical skill for bedside examination by physicians at all levels of education. Ultrasound is highly operator-dependent and relevant training is essential to ensure appropriate use. When supplementing hands-on focused ultrasound courses, e-le...

  11. Modeling of higher harmonics formation in medical ultrasound systems

    DEFF Research Database (Denmark)

    Taylor, Louise Kold; Schlaikjer, Malene; Jensen, Jørgen Arendt

    2002-01-01

    The pressure eld emitted from multi-element medical ultrasound transducers can be simulated with Field II in the linear regime. By expanding this program's application to the nonlinear regime, beamforming schemes can be studied under strong focusing and high pressure levels as well, providing...... a valuable tool for simulating ultrasound harmonic imaging. An extended version of Field II is obtained by means of operator splitting. The pressure eld is calculated by propagation of the eld from the transducer through a number of planes. Every plane serves as a virtual aperture for the next plane......, and nonlinear distortion is accounted for by the lossless Burgers' Equation. This method has no plane-wave approximation and the full eects of diraction, attenuation, and nonlinear wave propagation can be observed under electronic focusing of array transducers in medical ultrasound systems. A single example...

  12. Instrumentation in ultrasound cardiography

    Directory of Open Access Journals (Sweden)

    Swamy VMK

    1979-01-01

    Full Text Available Cardiac ultrasound/Echocardiography is a. simple, safe and non-invasive method for detecting heart diseases. When combined with ECG, X-ray and isotopic studies, ultrasound provides signifi-cant diagnostic information not previously available. M-Mode technique gives a unidimensional representation of movements of various structures of the heart whereas stop-action imaging or real time imaging gives a clear two-dimensional view of the various sections of the heart, thus permitting a comparison of anatomical juxta-positioning and continuity.

  13. [WHEN ULTRASOUND MEETS THE INTERNIST].

    Science.gov (United States)

    Katz, David; Dadon, Ziv; Zalut, Todd; Avraham Alpert, Evan

    2017-06-01

    Point-of-care ultrasound (POCUS) is an important modality with many advantages. At the Shaare Zedek Medical Centre, we developed a case-based course to teach POCUS to internal medicine residents and attendings. The topics include: "Introduction to Point-of-Care Ultrasound", "Focused Assessment with Sonography of Trauma", "Basic Cardiac, Pulmonary and Vascular Ultrasound", "Rapid Ultrasound in Shock" and "Ultrasound Guided Central Lines". The use of POCUS should aid in rapid diagnosis, decrease complications associated with bed-side procedures, and ultimately improve patient care.

  14. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    Science.gov (United States)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  15. Cardiological Ultrasound Imaging

    NARCIS (Netherlands)

    Thijssen, J.M.; Korte, C.L. de

    2014-01-01

    This review paper is intended for the interested outsider of the field of echocardiography and it presents a short introduction into the numerous ultrasound (US) methods and techniques for anatomical and functional diagnosis of the heart. The basic techniques are generally used for some time already

  16. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through ... during a single exam. The transducer sends out high-frequency sound waves (that the human ear cannot hear) ...

  17. Recursive ultrasound imaging

    DEFF Research Database (Denmark)

    2000-01-01

    A method and an apparatus for recursive ultrasound imaging is presented. The method uses a Synthetic Transmit Aperture, but unlike previous approaches a new frame is created at every pulse emission. In receive, parallel beam forming is implemented. The beam formed RF data is added to the previously...

  18. [Ultrasound guided percutaneous nephrolithotripsy].

    Science.gov (United States)

    Guliev, B G

    2014-01-01

    The study was aimed to the evaluation of the effectiveness and results of ultrasound guided percutaneous nephrolithotripsy (PNL) for the treatment of patients with large stones in renal pelvis. The results of PNL in 138 patients who underwent surgery for kidney stones from 2011 to 2013 were analyzed. Seventy patients (Group 1) underwent surgery with combined ultrasound and radiological guidance, and 68 patients (Group 2)--only with ultrasound guidance. The study included patients with large renal pelvic stones larger than 2.2 cm, requiring the formation of a single laparoscopic approach. Using the comparative analysis, the timing of surgery, the number of intra- and postoperative complications, blood loss and length of stay were evaluated. Percutaneous access was successfully performed in all patients. Postoperative complications (exacerbation of chronic pyelonephritis, gross hematuria) were observed in 14.3% of patients in Group 1 and in 14.7% of patients in Group 2. Bleeding requiring blood transfusion, and injuries of adjacent organs were not registered. Efficacy of PNL in the Group 1 was 95.7%; 3 (4.3%) patients required additional interventions. In Group 2, the effectiveness of PNL was 94.1%, 4 (5.9%) patients additionally underwent extracorporeal lithotripsy. There were no significant differences in the effectiveness of PNL, the volume of blood loss and duration of hospitalization. Ultrasound guided PNL can be performed in large pelvic stones and sufficient expansion of renal cavities, thus reducing radiation exposure of patients and medical staff.

  19. Recursive ultrasound imaging

    DEFF Research Database (Denmark)

    2000-01-01

    A method and an apparatus for recursive ultrasound imaging is presented. The method uses a Synthetic Transmit Aperture, but unlike previous approaches a new frame is created at every pulse emission. In receive, parallel beam forming is implemented. The beam formed RF data is added to the previously...

  20. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z General Ultrasound ... procedure requires little to no special preparation. Your doctor will instruct you on how to prepare, including ...

  1. Ultrasound: Infant Hip

    Science.gov (United States)

    ... ultrasound when they suspect a problem called developmental dysplasia of the hip (DDH) . DDH is a hip deformity that can ... THIS TOPIC X-Ray Exam: Leg Length Developmental Dysplasia of the Hip X-Ray Exam: Hip Contact Us Print Resources ...

  2. General Ultrasound Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  3. Ultrasound of the scrotum.

    Science.gov (United States)

    Dudiak, C M; Venta, L A; Olson, M C; Posniak, H V; Salomon, C G

    1992-01-01

    High-resolution real time ultrasound of the scrotum, including gray-scale and color Doppler sonography is presented. The normal anatomy of the scrotum with sonographic correlation is reviewed. The sonographic features of scrotal pathology, including congenital, neoplastic, inflammatory, and traumatic conditions are presented.

  4. General Ultrasound Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  5. Combined photoacoustic and ultrasound biomicroscopy.

    Science.gov (United States)

    Harrison, Tyler; Ranasinghesagara, Janaka C; Lu, Huihong; Mathewson, Kory; Walsh, Andrew; Zemp, Roger J

    2009-11-23

    We report on the development of an imaging system capable of combined ultrasound and photoacoustic imaging based on a fast-scanning single-element 25-MHz ultrasound transducer and a unique light-delivery system. The system is capable of 20 ultrasound frames per second and slower photoacoustic frame rates limited by laser pulse-repetition rates. Laser and ultrasound pulses are interlaced for co-registration of photoacoustic and ultrasound images. In vivo imaging of a human finger permits ultrasonic visualization of vessel structures and speckle changes indicative of blood flow, while overlaid photoacoustic images highlight some small vessels that are not clear from the ultrasound scan. Photoacoustic images provide optical absorption contrast co-registered in the structural and blood-flow context of ultrasound with high-spatial resolution and may prove important for clinical diagnostics and basic science of the microvasculature.

  6. Propagation of Signals in the Frequency Band Between 30 MHz and 100 MHz.

    Science.gov (United States)

    1985-09-01

    meteorological properties (Bean and Dutton, 1966). In a typical strong ducting situation, dry, warm air will move in over a cold ocean, thus producing not only...include free space losses, ionospheric absorption losses. - and pround losses (ti va et a 1 1978). Using globa ! data on the probability .* of foEs

  7. Modelling of a novel high-impedance matching layer for high frequency (>30 MHz) ultrasonic transducers.

    Science.gov (United States)

    Qian, Y; Harris, N R

    2014-02-01

    This work describes a new approach to impedance matching for ultrasonic transducers. A single matching layer with high acoustic impedance of 16 MRayls is demonstrated to show a bandwidth of around 70%, compared with conventional single matching layer designs of around 50%. Although as a consequence of this improvement in bandwidth, there is a loss in sensitivity, this is found to be similar to an equivalent double matching layer design. Designs are calculated by using the KLM model and are then verified by FEA simulation, with very good agreement Considering the fabrication difficulties encountered in creating a high-frequency double matched design due to the requirement for materials with specific acoustic impedances, the need to accurately control the thickness of layers, and the relatively narrow bandwidths available for conventional single matched designs, the new approach shows advantages in that alternative (and perhaps more practical) materials become available, and offers a bandwidth close to that of a double layer design with the simplicity of a single layer design. The disadvantage is a trade-off in sensitivity. A typical example of a piezoceramic transducer matched to water can give a 70% fractional bandwidth (comparable to an ideal double matched design of 72%) with a 3dB penalty in insertion loss.

  8. Creating a collimated ultrasound beam in highly attenuating fluids.

    Science.gov (United States)

    Raeymaekers, Bart; Pantea, Cristian; Sinha, Dipen N

    2012-04-01

    We have devised a method, based on a parametric array concept, to create a low-frequency (300-500 kHz) collimated ultrasound beam in fluids highly attenuating to sound. This collimated beam serves as the basis for designing an ultrasound visualization system that can be used in the oil exploration industry for down-hole imaging in drilling fluids. We present the results of two different approaches to generating a collimated beam in three types of highly attenuating drilling mud. In the first approach, the drilling mud itself was used as a nonlinear mixing medium to create a parametric array. However, the short absorption length in mud limits the mixing length and, consequently, the resulting beam is weak and broad. In the second improved approach, the beam generation process was confined to a separate "frequency mixing tube" that contained an acoustically non-linear, low attenuation medium (e.g., water) that allowed establishing a usable parametric array in the mixing tube. A low-frequency collimated beam was thus created prior to its propagation into the drilling fluid. Using the latter technique, the penetration depth of the low frequency ultrasound beam in the drilling fluid was significantly extended. We also present measurements of acoustic nonlinearity in various types of drilling mud.

  9. Musculoskeletal ultrasound in rheumatology in Korea: targeted ultrasound initiative survey.

    Science.gov (United States)

    Kang, Taeyoung; Wakefield, Richard J; Emery, Paul

    2016-04-01

    In collaboration with the Targeted Ultrasound Initiative (TUI), to conduct the first study in Korea to investigate current practices in ultrasound use among Korean rheumatologists. We translated the TUI Global Survey into Korean and added questions to better understand the specific challenges facing rheumatologists in Korea. To target as many rheumatologists in Korea as possible, we created an on-line version of this survey, which was conducted from March to April 2013. Rheumatologists are in charge of ultrasound in many Korean hospitals. Rheumatologists in hospitals and private clinics use ultrasound to examine between one and five patients daily; they use ultrasound for diagnosis more than monitoring and receive compensation of about US$30-50 per patient. There are marked differences in the rates of ultrasound usage between rheumatologists who work in private practice compared with tertiary hospitals. Korean rheumatologists not currently using ultrasound in their practice appear eager to do so. This survey provides important insights into the current status of ultrasound in rheumatology in Korea and highlights several priorities; specifically, greater provision of formal training, standardization of reporting and accrual of greater experience among ultrasound users. If these needs are addressed, all rheumatology departments in Korea are likely to use ultrasound or have access to it in the future. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  10. Estimation of liquid volume fraction using ultrasound transit time spectroscopy

    Science.gov (United States)

    Al-Qahtani, Saeed M.; Langton, Christian M.

    2016-12-01

    It has recently been proposed that the propagation of an ultrasound wave through complex structures, consisting of two-materials of differing ultrasound velocity, may be considered as an array of parallel ‘sonic rays’, the transit time of each determined by their relative proportion; being a minimum (t min) in entire higher velocity material, and a maximum (t max) in entire lower velocity material. An ultrasound transit time spectrum (UTTS) describes the proportion of sonic rays at an individual transit time. It has previously been demonstrated that the solid volume fraction of a solid:liquid composite, specifically acrylic step-wedges immersed in water, may be reliably estimated from the UTTS. The aim of this research was to investigate the hypothesis that the volume fraction of a two-component liquid mixture, of unequal ultrasound velocity, may also be estimated by UTTS. A through-transmission technique incorporating two 1 MHz ultrasound transducers within a horizontally-aligned cylindrical tube-housing was utilised, the proportion of silicone oil to water being varied from 0% to 100%. The liquid volume fraction was estimated from the UTTS at each composition, the coefficient of determination (R 2%) being 98.9  ±  0.7%. The analysis incorporated a novel signal amplitude normalisation technique to compensate for absorption within the silicone oil. It is therefore envisaged that the parallel sonic ray concept and the derived UTTS may be further applied to the quantification of liquid mixture composition assessment.

  11. Ultrasound and ultrasound-related techniques in endocrine diseases.

    Science.gov (United States)

    Trimboli, Pierpaolo; Dietrich, Christoph F; David, Emanuele; Mastroeni, Giampiero; Ventura Spagnolo, Orazio; Sidhu, Paul S; Letizia, Claudio; Messineo, Daniela; D'Ambrosio, Ferdinando; Radzina, Maija; Cantisani, Vito

    2017-09-05

    Ultrasound examination has become essential to evaluate morphology and size of several endocrine glands and detect the presence of lesions within these organs. Nevertheless, with the recent advances of ultrasound technology, we have opportunity to correlate the echostructure of thyroid, ovary, testis, parathyroids, etc. to their function. Thus, the ultrasound systems are in-office essential instruments for many clinical specialists. Herein we presented the most updated information about the use of ultrasound in specific endocrine-related issues, such as thyroid, parathyroid, adrenal gland, and testicle.

  12. All-optical pulse-echo ultrasound probe for intravascular imaging (Conference Presentation)

    Science.gov (United States)

    Colchester, Richard J.; Noimark, Sacha; Mosse, Charles A.; Zhang, Edward Z.; Beard, Paul C.; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2016-02-01

    High frequency ultrasound probes such as intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE) catheters can be invaluable for guiding minimally invasive medical procedures in cardiology such as coronary stent placement and ablation. With current-generation ultrasound probes, ultrasound is generated and received electrically. The complexities involved with fabricating these electrical probes can result in high costs that limit their clinical applicability. Additionally, it can be challenging to achieve wide transmission bandwidths and adequate wideband reception sensitivity with small piezoelectric elements. Optical methods for transmitting and receiving ultrasound are emerging as alternatives to their electrical counterparts. They offer several distinguishing advantages, including the potential to generate and detect the broadband ultrasound fields (tens of MHz) required for high resolution imaging. In this study, we developed a miniature, side-looking, pulse-echo ultrasound probe for intravascular imaging, with fibre-optic transmission and reception. The axial resolution was better than 70 microns, and the imaging depth in tissue was greater than 1 cm. Ultrasound transmission was performed by photoacoustic excitation of a carbon nanotube/polydimethylsiloxane composite material; ultrasound reception, with a fibre-optic Fabry-Perot cavity. Ex vivo tissue studies, which included healthy swine tissue and diseased human tissue, demonstrated the strong potential of this technique. To our knowledge, this is the first study to achieve an all-optical pulse-echo ultrasound probe for intravascular imaging. The potential for performing all-optical B-mode imaging (2D and 3D) with virtual arrays of transmit/receive elements, and hybrid imaging with pulse-echo ultrasound and photoacoustic sensing are discussed.

  13. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data. The talk will demonstrate the many benefits...... of SA imaging. Due to the complete data set, it is possible to have both dynamic transmit and receive focusing to improve contrast and resolution. It is also possible to improve penetration depth by employing codes during ultrasound transmission. Data sets for vector flow imaging can be acquired using...

  14. Ultrasound-Assisted Freezing

    Science.gov (United States)

    Delgado, A. E.; Sun, Da-Wen

    Freezing is a well-known preservation method widely used in the food industry. The advantages of freezing are to a certain degree counterbalanced by the risk of damage caused by the formation and size of ice crystals. Over recent years new approaches have been developed to improve and control the crystallization process, and among these approaches sonocrystallization has proved to be very useful, since it can enhance both the nucleation rate and the crystal growth rate. Although ultrasound has been successfully used for many years in the evaluation of various aspects of foods and in medical applications, the use of power ultrasound to directly improve processes and products is less popular in food manufacturing. Foodstuffs are very complex materials, and research is needed in order to define the specific sound parameters that aid the freezing process and that can later be used for the scale-up and production of commercial frozen food products.

  15. General Ultrasound Imaging

    Medline Plus

    Full Text Available ... Color Doppler uses a computer to convert Doppler measurements into an array of colors to show the ... in some situations. Spectral Doppler displays blood flow measurements graphically, in terms of the distance traveled per ...

  16. Ultrasound speckle tracking for radial, longitudinal and circumferential strain estimation of the carotid artery--an in vitro validation via sonomicrometry using clinical and high-frequency ultrasound.

    Science.gov (United States)

    Larsson, Matilda; Heyde, Brecht; Kremer, Florence; Brodin, Lars-Åke; D'hooge, Jan

    2015-02-01

    Ultrasound speckle tracking for carotid strain assessment has in the past decade gained interest in studies of arterial stiffness and cardiovascular diseases. The aim of this study was to validate and directly contrast carotid strain assessment by speckle tracking applied on clinical and high-frequency ultrasound images in vitro. Four polyvinyl alcohol phantoms mimicking the carotid artery were constructed with different mechanical properties and connected to a pump generating carotid flow profiles. Gray-scale ultrasound long- and short-axis images of the phantoms were obtained using a standard clinical ultrasound system, Vivid 7 (GE Healthcare, Horten, Norway) and a high-frequency ultrasound system, Vevo 2100 (FUJIFILM, VisualSonics, Toronto, Canada) with linear-array transducers (12L/MS250). Radial, longitudinal and circumferential strains were estimated using an in-house speckle tracking algorithm and compared with reference strain acquired by sonomicrometry. Overall, the estimated strain corresponded well with the reference strain. The correlation between estimated peak strain in clinical ultrasound images and reference strain was 0.91 (pspeckle tracking demonstrates that carotid strain assessment by ultrasound speckle tracking is feasible. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Artifacts in diagnostic ultrasound

    OpenAIRE

    Hindi A; Peterson C; Barr RG

    2013-01-01

    Ammar Hindi,1 Cynthia Peterson,2 Richard G Barr3,41Department of Radiology, University Hospitals of Cleveland, Cleveland, Ohio, USA; 2Department of Allied Health, Kent State University, Salem, OH, USA; 3Department of Radiology, Northeastern Ohio Medical University, Rootstown, OH, USA; 4Radiology Consultants, Youngstown, OH, USAAbstract: Ultrasound artifacts are encountered daily in clinical practice and may be a source of confusion on interpretation. Some artifacts arise secondary to improper...

  18. Musculoskeletal infections: ultrasound appearances

    Energy Technology Data Exchange (ETDEWEB)

    Chau, C.L.F. [Department of Radiology, North District Hospital, NTEC, Fanling, NT, Hong Kong (China)]. E-mail: c8681@yahoo.com; Griffith, J.F. [Department of Diagnostic Radiology and Organ Imaging, Prince of Wales Hospital, NTEC, Shatin, NT, Hong Kong (China)

    2005-02-01

    Musculoskeletal infections are commonly encountered in clinical practice. This review will discuss the ultrasound appearances of a variety of musculoskeletal infections such as cellulitis, infective tenosynovitis, pyomyositis, soft-tissue abscesses, septic arthritis, acute and chronic osteomyelitis, and post-operative infection. The peculiar sonographic features of less common musculoskeletal infections, such as necrotizing fasciitis, and rice body formation in atypical mycobacterial tenosynovitis, and bursitis will also be presented.

  19. Ultrasound Imaging Initiative

    Science.gov (United States)

    2003-01-01

    texture mapping hardware," IEEE Tranactions on Information Technology in Biomedicine, Submitted. [14] C.R. Castro Pareja , J.M. Jagadeesh and R. Shekhar...modulation in real-time three-dimensional sparse synthetic aperture ultrasound imaging systems "* Carlos R. Castro Pareja , Masters of Science, The Ohio...C.R. Castro Pareja , "An architecture for real-time image registration," M.S. Thesis, The Ohio State University, March 2002. 14. C.R. Castro Pareja , R

  20. Pleural ultrasound for clinicians.

    Science.gov (United States)

    Porcel, J M

    2016-11-01

    Pleural ultrasonography is useful for identifying and characterising pleural effusions, solid pleural lesions (nodules, masses, swellings) and pneumothorax. Pleural ultrasonography is also considered the standard care for guiding interventionist procedures on the pleura at the patient's bedside (thoracentesis, drainage tubes, pleural biopsies and pleuroscopy). Hospitals should promote the acquisition of portable ultrasound equipment to increase the patient's safety. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.