Sample records for 3-methylcholanthrene

  1. Metabolism of 3-methylcholanthrene by rat liver microsomes: a reinvestigation

    Energy Technology Data Exchange (ETDEWEB)

    Stoming, T.A. (Medical Coll., Augusta, GA); Bornstein, W.; Bresnick, E.


    Metabolites of 3-methylcholanthrene (3-MC) formed by rat liver microsomes were analyzed by high pressure liquid chromatography. The metabolic profile is significantly different from previous studies using thin layer chromatography. The major metabolites include 1- and 2-hydroxy-3-MC. Use of the high pressure liquid chromatographic system allows for the separation of at least seven new metabolites. The amounts of three of these new metabolites are substantially decreased when the potent epoxide hydrase inhibitor 3,3,3-trichloropropene oxide is added to the incubation system. These results then suggest the formation of epoxides of 3-methylcholanthrene other than the K-region oxide.

  2. Prevention of 3-methylcholanthrene-induced fibrosarcomas in rats pre-inoculated with endogenous rat retrovirus.


    Fish, D C; Demarais, J T; Djurickovic, D B; Huebner, R J


    Weanling Fischer 344 rats received a single intraperitoneal injection of a 1000-fold concentrated preparation of endogenous nontransforming rat retrovirus. Ten days later, the rats were each given a single subcutaneous injection of 3-methylcholanthrene. The rats inoculated with the endogenous rat retrovirus were significantly protected against the development of cancer, whereas uninoculated rats and rats given one of several murine retroviruses or baboon retrovirus were not protected.

  3. Regulation of nonmuscle myosin II during 3-methylcholanthrene induced dedifferentiation of C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sumit K.; Saha, Shekhar; Das, Provas; Das, Mahua R.; Jana, Siddhartha S., E-mail:


    3-Methylcholanthrene (3MC) induces tumor formation at the site of injection in the hind leg of mice within 110 days. Recent reports reveal that the transformation of normal muscle cells to atypical cells is one of the causes for tumor formation, however the molecular mechanism behind this process is not well understood. Here, we show in an in vitro study that 3MC induces fragmentation of multinucleate myotubes into viable mononucleates. These mononucleates form colonies when they are seeded into soft agar, indicative of cellular transformation. Immunoblot analysis reveals that phosphorylation of myosin regulatory light chain (RLC{sub 20}) is 5.6±0.5 fold reduced in 3MC treated myotubes in comparison to vehicle treated myotubes during the fragmentation of myotubes. In contrast, levels of myogenic factors such as MyoD, Myogenin and cell cycle regulators such as Cyclin D, Cyclin E1 remain unchanged as assessed by real-time PCR array and reverse transcriptase PCR analysis, respectively. Interestingly, addition of the myosin light chain kinase inhibitor, ML-7, enhances the fragmentation, whereas phosphatase inhibitor perturbs the 3MC induced fragmentation of myotubes. These results suggest that decrease in RLC{sub 20} phosphorylation may be associated with the fragmentation step of dedifferentiation. - Highlights: • 3-Methylcholanthrene induces fragmentation of C2C12-myotubes. • Dedifferentiation can be divided into two steps – fragmentation and proliferation. • Fragmentation is associated with rearrangement of nonmuscle myosin II. • Genes associated with differentiation and proliferation are not altered during fragmentation. • Phosphorylation of myosin regulatory light chain is reduced during fragmentation.

  4. Xenotropic type C virus expression in murine thymomas induced by radiation or 3-methylcholanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, A. (New York Univ. Medical Center, NY); Duran-Reynals, M.L.


    Thymic lymphoma incidence and thymic expression of MuLV with xenotropic infectivity was monitored in AKR, RF, and reciprocal F/sub 1/ mice of the AKR X RF cross after treatment with either ..gamma.. radiation or the chemical carcinogen 3-methylcholanthrene (MCA). These two inbred strains and the F/sub 1/ hybrids developed similary high incidences of thymoma, and lymphomatous cells from AKR mice and (ARK) X RF..integral..)F/sub 1/ mice were observed to be expressing MuLV with xenotropic host range. However, lymphoma cells from RF mice and (RF) X AKR..integral..)F/sub 1/ mice did not shed xenotropic MuLV. Thymic xenotropic virus expression was therefore not correlated with a high incidence of radiation or chemically induced thymoma, but rather appeared to be a phenotype genetically transmitted by AKR mice to F/sub 1/ mice of the AKR X RF cross as a dominant trait in induced thymomas. In addition, a maternal effect on thymic xenotropic virus expression in induced thymomas was observed by the comparison of reciprocal F/sub 1/ hybrids in this cross.

  5. Modifications of benzene myelotoxicity and metabolism by phenobarbital, SKF-252A and 3-methylcholanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.P.; Kempen, R.R.; Nash, J.B.; Ellis, S.


    It has recently been suggested that the primary myelotoxic species generated from benzene is not produced directly from the parent compound, but from phenol or an even later metabolite. Several compounds that alter the activities of microsomal oxidative and conjugating enzymes were studied for their effects on benzene's myelotoxicity and metabolism. Phenobarbital (PB) protected animals from leucopnia and increased both to total amount of phenol as well as the amount of unconjugated phenol excreted in the urine. SKF-525A had no effect on the leucopenia, whereas it reduced the conversion of benzene to phenol without changing the excretion of unconjugated phenol. 3-Methylcholanthrene also did not prevent the leucopenia, but it did increase the conversion of benzene to phenol and the amount of unconjugated phenol excreted during the first days of the experiment. These data indicate that the early phases of benzene's metabolism may be modulated by the drug pretreatments employed, but myelotoxicity was abated only by PB. We conclude that the marrow effect of benzene is due to a metabolic product other than phenol and, furthermore that the formation of this toxic principle is not strictly dependent on the rate of phenol production.

  6. Influences of 3-methylcholanthrene, phenobarbital and dexamethasone on xenobiotic metabolizing-related cytochrome P450 enzymes and steroidogenesis in human fetal adrenal cortical cells

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Min HUANG; Ren-xiu PENG; Jiang LE


    Aim: To explore the influence and possible mechanism of xenobiotics on adrenal steroidogenesis during fetal development. Methods: Primary human fetal adrenal cortical cells were prepared, cultured and treated with 3-methylcholanthrene, phenobarbital and dexamethasone. The activities of 7-ethoxyresorufin 0-dealkylase, benzphetamine, aminopyrine and erythromycin N-demethylases were measured by enzyme assays. At the same time, quantitative analysis of steroid hormones cortisol, aldosterone, testosterone and progesterone were carried out in cultural medium by radioimmunoassays. Results: The activities of benzphetamine and aminopyrine Ar-demethylase were increased in the cultural fetal adrenal cells treated with phenobarbital (0.25-1 mmol/L) for 24 h. Dexamethasone (25-100 μmol/L) also increased the activity of erythromycin W-demethylase. The activity of 7-ethoxyresorufin 0-dealkylase was undetected in the cells treated without and with 3-methylcholanthrene (0.5-2 μmol/L). Meanwhile, the contents of medium cortisol, aldosterone and progesterone were decreased after treatment with 3-methylcholanthrene. Cortisol, aldosterone and progesterone concentrations were also slightly decreased with phenobarbital. Dexamethasone enhanced the productions of cortisol and progesterone remarkably. The trend of testosterone concentration was uncertain after 3-methylcholanthrene, phenobarbital or dexamethasone treatment. Conclusion: 3-Methylcholanthrene, phenobarbital or dexamethasone could interfere with the synthesis of cortisol, aldosterone and progesterone in primary human fetal adrenal cortical cells, which likely act through xenobiotic metabolizing-related cytochrome P450 isoform activation.

  7. Induction of hepatic cytochrome P-450 activity in wild cotton rats (Sigmodon hispidus) by phenobarbital and 3-methylcholanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Elangbam, C.S.; Qualls, C.W.,Jr.; Bauduy, M. (Oklahoma State Univ., Stillwater (USA))


    Wild cotton rats (Sigmodon hispidus) are ubiquitous throughout the Southeast quadrant of the United States, easy to capture, have a generation interval of less than one year and a limited range of movement (less than one hectare). This species may prove to be an excellent model for monitoring environmental contamination. Traditionally, cytochrome P-450 inducing agents are grouped into two classes. One, represented by phenobarbital, induces P-450b and P-450e; the other, represented by 3-methylcholanthrene, induces P-450c and P-450d isoenzymes. The types and amounts of cytochrome P-450 vary among species, organs, health status, sex, and stress of the animal. If the levels of cytochrome P-450 of wild cotton rats are to be used in monitoring environmental pollution, it is necessary to characterize the inducibility and concentration of cytochrome P-450 in this species. This study was designed to determine the concentration and inducibility of cytochrome P-450 in the livers of cotton rats after intraperitoneal (ip) administration of phenobarbital and 3-methylcholanthrene.

  8. CD8+ T cells are crucial for the ability of congenic normal mice to reject highly immunogenic sarcomas induced in nude mice with 3-methylcholanthrene

    DEFF Research Database (Denmark)

    Boesen, M; Svane, I M; Engel, A M;


    An attempt was made to identify the selection pressures put upon a growing tumour by CD8+ T cells. To this end tumours induced with 3-methylcholanthrene in T cell-deficient nude mice and in congenic T cell-competent nu/+ mice were transplanted to nu/+ recipients. The rejection rate of the sarcomas...

  9. Expression of CYP2A3 mRNA and its regulation by 3-methylcholanthrene, pyrazole, and ß-ionone in rat tissues

    Directory of Open Access Journals (Sweden)

    A.B. Robottom-Ferreira


    Full Text Available Cytochrome P450 (CYP 2A enzymes are involved in the metabolism of numerous drugs and hormones and activate different carcinogens. Human CYP2A6, mouse CYP2A5 and rat CYP2A3 are orthologous enzymes that present high similarity in their amino acid sequence and share substrate specificities. However, different from the human and mouse enzyme, CYP2A3 is not expressed in the rat liver. There are limited data about expression of CYP2A3 in extrahepatic tissues and its regulation by typical CYP inducers. Therefore, the objective of the present study was to analyze CYP2A3 mRNA expression in different rat tissues by RT-PCR, and to study the influence of 3-methylcholanthrene, pyrazole and ß-ionone treatment on its expression. Male Wistar rats were divided into four groups of 5 rats each, and were treated ip for 4 days with 3-methylcholanthrene (25 mg/kg body weight, pyrazole (150 mg/kg body weight, ß-ionone (1 g/kg body weight, or vehicle. Total RNA was extracted from tissues and CYP2A3 mRNA levels were analyzed by semiquantitative RT-PCR. CYP2A3 mRNA was constitutively expressed in the esophagus, lung and nasal epithelium, but not along the intestine, liver, or kidney. CYP2A3 mRNA levels were increased in the esophagus by treatment with 3-methylcholanthrene and pyrazole (17- and 7-fold, respectively, in lung by pyrazole and ß-ionone (3- and 4-fold, respectively, although not statistically significant, in the distal part of the intestine and kidney by 3-methylcholanthrene and pyrazole, and in the proximal part of the intestine by pyrazole. CYP2A3 mRNA was not induced in nasal epithelium, liver or in the middle part of the intestine. These data show that, in the rat, CYP2A3 is constitutively expressed in several extrahepatic tissues and its regulation occurs through a complex mechanism that is essentially tissue specific.

  10. Highly selective bioactivation of 1- and 2-hydroxy-3-methylcholanthrene to mutagens by individual human and other mammalian sulphotransferases expressed in Salmonella typhimurium. (United States)

    Meinl, Walter; Tsoi, Carrie; Swedmark, Stellan; Tibbs, Zachary E; Falany, Charles N; Glatt, Hansruedi


    The benzylic alcohols 1- and 2-hydroxy-3-methylcholanthrene (OH-MC) are major primary metabolites of the carcinogen 3-methylcholanthrene (MC). We investigated them for mutagenicity in TA1538-derived Salmonella typhimurium strains expressing mammalian sulphotransferases (SULTs). 1-OH-MC was efficiently activated by human (h) SULT1B1 (2400 revertants/nmol), weakly activated by hSULT1C3 and hSULT2A1 (2-9 revertants/nmol), but not activated by the other hSULTs studied (1A2, 1A3, 1C2 and 1E1). Mouse, rat and dog SULT1B1 activated 1-OH-MC (8-100 revertants/nmol) with much lower efficiency than their human orthologue. The other isomer, 2-OH-MC, was activated to a potent mutagen by hSULT1A1 (4000-5400 revertants/nmol), weakly activated by hSULT1A2 or hSULT2A1 (1-12 revertants/nmol), but not activated by the other hSULTs. In contrast to their human orthologue, mouse, rat and dog SULT1A1 did not appreciably activate 2-OH-MC (mutagens extremely difficult, in particular as the critical form may even differ for positional isomers, such as 1- and 2-OH-MC. Moreover, the species-dependent differences will complicate the verification of in vitro results in animal studies.

  11. Basal and 3-methylcholanthrene-induced expression of cytochrome P450 1A, 1B and 1C genes in the Brazilian guppy, Poecilia vivipara. (United States)

    Dorrington, Tarquin; Zanette, Juliano; Zacchi, Flávia L; Stegeman, John J; Bainy, Afonso C D


    In fish there are four cytochrome P450 (CYP1) subfamilies: CYP1A, CYP1B, CYP1C, and CYP1D. Here we cloned Poecilia vivipara CYP1A, with an inferred amino acid sequence 91% identical to CYP1A from the killifish Fundulus heteroclitus, another member of the Cypriniformes, and an important model in ecotoxicology. In addition, we examined the expression of CYP1A, CYP1B1, and CYP1C1 by qPCR in liver, gill, and intestine of adult P. vivipara injected with 3-methylcholanthrene (3-MC) or held in clean water (control group) for 24h. All three tissues examined showed basal expression of the three CYP1 genes. CYP1A was most strongly expressed in the liver, while CYP1B1, and CYP1C1 were most strongly expressed in the gill and intestine respectively. 3-MC induced CYP1A, CYP1B1, and CYP1C1 significantly (20-120-fold) in the three organs, consistent with the regulation of CYP1A, CYP1B1 and CYP1C1 via the aryl hydrocarbon receptor. Validation of CYP1 gene biomarkers in fish collected from a contaminated urban mangrove environment was confirmed with significant induction of CYP1A and CYP1C1 in gills (10-15-fold) and CYP1B1 in liver (23-fold), relative to fish from a control site. The responsiveness of these CYP1 genes indicates P. vivipara is suitable as a model for environmental toxicology studies and environmental assessment in Brazil.

  12. 3-Methylcholanthrene, an AhR agonist, caused cell-cycle arrest by histone deacetylation through a RhoA-dependent recruitment of HDAC1 and pRb2 to E2F1 complex.

    Directory of Open Access Journals (Sweden)

    Chih-Cheng Chang

    Full Text Available We previously showed that treating vascular endothelial cells with 3-methylcholanthrene (3MC caused cell-cycle arrest in the Go/G1 phase; this resulted from the induction of p21 and p27 and a decreased level and activity of the cyclin-dependent kinase, Cdk2. We further investigated the molecular mechanisms that modulate cell-cycle regulatory proteins through the aryl-hydrocarbon receptor (AhR/Ras homolog gene family, member A (RhoA dependent epigenetic modification of histone. AhR/RhoA activation mediated by 3MC was essential for the upregulation of retinoblastoma 2 (pRb2 and histone deacetylase 1 (HDAC1, whereas their nuclear translocation was primarily modulated by RhoA activation. The combination of increased phosphatase and tensin homolog (PTEN activity and decreased phosphatidylinositide 3-kinase (PI3K activation by 3MC led to the inactivation of the Ras-cRaf pathway, which contributed to pRb2 hypophosphorylation. Increased HDAC1/pRb2 recruitment to the E2F1 complex decreased E2F1-transactivational activity and H3/H4 deacetylation, resulting in the downregulation of cell-cycle regulatory proteins (Cdk2/4 and Cyclin D3/E. Co-immunoprecipitation and electrophoretic mobility shift assay (EMSA results showed that simvastatin prevented the 3MC-increased binding activities of E2F1 proteins in their promoter regions. Additionally, RhoA inhibitors (statins reversed the effect of 3MC in inhibiting DNA synthesis by decreasing the nuclear translocation of pRb2/HDAC1, leading to a recovery of the levels of cell-cycle regulatory proteins. In summary, 3MC decreased cell proliferation by the epigenetic modification of histone through an AhR/RhoA-dependent mechanism that can be rescued by statins.

  13. 3-methylcholanthrene induces differential recruitment of aryl hydrocarbon receptor to human promoters

    DEFF Research Database (Denmark)

    Pansoy, Andrea; Ahmed, Shaimaa; Valen, Eivind;


    The aryl hydrocarbon receptor (AHR) is a ligand-activated protein that mediates the toxic actions of polycyclic aromatic and halogenated compounds. Identifying genes directly regulated by AHR is important in understanding the pathways regulated by this receptor. Here we used chromatin immunopreci......The aryl hydrocarbon receptor (AHR) is a ligand-activated protein that mediates the toxic actions of polycyclic aromatic and halogenated compounds. Identifying genes directly regulated by AHR is important in understanding the pathways regulated by this receptor. Here we used chromatin...

  14. A synergistic effect of oestradiol and prolactin influencing the incidence of 3-methylcholanthrene induced cerivical carcinomas in mice. (United States)

    Forsberg, J G; Breistein, L S


    Castrated NMRI mice were laparotomized and a thread impregnated with beeswax-methylcholanthrene was inserted into the uterine cervix. Beginning on the day of operation and for a further 5 days the animals were injected with oestradiol, prolactin, oestradiol-prolactin, oestradiol-prolactin-progesterone, or the solvents for the hormones only. One group of animals were injected with oestradiol-prolactin for 6 days and later with progesterone every third day until death. The animals were killed one or 4 weeks after the operation. Among the one-week animals the number of cervices presenting epithelial downgrowths ("buds") into the stroma was higher after treatment with a combination of oestradiol and prolactin than after treatment with each hormone separately or among the controls. Four weeks after operation, the incidence of squamous cervical carcinomas was seen to be significantly higher among animals injected with both oestradiol and prolactin than in controls or in those injected with oestradiol or prolactin alone. Progesterone had no definite effect on the oestradiol-prolactin induced incidence. The mechanism behind the synergistic effect of prolactin and oestradiol is discussed.

  15. Demethylation of the pesticide methoxychlor in liver and intestine from untreated, methoxychlor-treated, and 3-methylcholanthrene-treated channel catfish (Ictalurus punctatus): evidence for roles of CYP1 and CYP3A family isozymes. (United States)

    Stuchal, Leah D; Kleinow, Kevin M; Stegeman, John J; James, Margaret O


    Exposure to the organochlorine pesticide methoxychlor (MXC) is associated with endocrine disruption in several species through biotransformation to mono-desmethyl-MXC (OH-MXC) and bis-desmethyl-MXC (HPTE), which interact with estrogen receptors. The biotransformation of [14C]methoxychlor was examined in channel catfish (Ictalurus punctatus), a freshwater species found in the southern United States. Hepatic microsomes formed OH-MXC and HPTE, assessed by comigration with authentic standards. The Km for OH-MXC formation by control liver microsomes was 3.8 +/- 1.3 microM (mean +/- S.D., n = 4), and Vmax was 131 +/- 53 pmol/min/mg protein. These values were similar to those of catfish pretreated with 2 mg/kg methoxychlor i.p. for 6 days (Km 3.3 +/- 0.8 microM and Vmax 99 +/- 17 pmol/min/mg) but less (p Methoxychlor pretreatment significantly reduced intestinal metabolite formation from 32 +/- 4 to 15 +/- 6 pmol/min/mg (mean +/- S.D., n = 4), whereas 3-MC treatment significantly increased OH-MXC production to 72 +/- 22 pmol/min/mg. Ketoconazole, clotrimazole, and alpha-naphthoflavone all decreased the production of OH-MXC in liver microsomes, whereas alpha-naphthoflavone stimulated HPTE formation, suggesting that CYP1 and CYP3 family isozymes demethylated methoxychlor. The results suggest that the formation of estrogenic metabolites from methoxychlor would be more rapid in catfish coexposed to CYP1 inducers.

  16. Biphenyl metabolism by rat liver microsomes. Regioselective effects of inducers, inhibitors, and solvents

    Energy Technology Data Exchange (ETDEWEB)

    Haugen, D.A.


    The effects of the inducers phenobarbital and 3-methylcholanthrene, the inhibitors 7,8-benzoflavone and 1-benzyl-imidazole, and the solvents methanol, acetone, and dimethyl sulfoxide on the 2-, 3-, and 4-hydroxylation of biphenyl and the O-de-ethylation of 7-ethoxycoumarin by rat liver microsomes were examined. Phenobarbital pretreatment primarily induced 2- and 3-hydroxylation, the latter most dramatically. 3-Methylcholanthrene pretreatment induced 2- and 3-hydroxylation to similar extents. The inhibitors and solvents had regioselective effects on biphenyl metabolism that were characteristic of the uninduced, phenobarbital-induced, and 3-methylcholanthrene-induced microsomes. The presence of multiple forms of cytochrome P-450 in uninduced microsomes is indicated by the regioselective effects of the solvents and the inhibitors. The 3-methylcholanthrene-dependent increases in 2- and 3-hydroxylation appear due to induction of a single form of cytochrome P-450, as indicated by similar dose-response relationships and similar changes in sensitivitty to the inhibitors. The phenobarbital-dependent increases in 2- and 3-hydroxylation appear due to the induction of two forms of cytochrome P-450, as indicated by different changes in sensitivity to the effects of dimethyl sulfoxide and 7,8-benzoflavone. The results indicate that examination of the regioselectivity of biphenyl metabolism is a useful approach for characterizing microsomal mono-oxygenases, and they suggest that the approach may also be useful in the characterization of purified mono-oxygenase systems. (JMT)

  17. Effects of Pristane on Cytochrome P450 Isozyme Expression in Rat Tissues

    Directory of Open Access Journals (Sweden)

    Marvin A. Cuchens


    Full Text Available Chemical carcinogenesis studies are powerful tools to obtain information on potential mechanisms of chemical factors for malignancies. In this study Western blot analyses, using monoclonal antibodies specific for three different cytochrome P450 (CYP isozymes (CYP1A1, CYP1A2 and CYP2B, were employed to examine the effect(s of 3-methylcholanthrene and/or pristane (2,6,10,14-tetramethylpentadecane on the basal and inducible levels of expression of CYP proteins within Copenhagen rat tissues. Pristane exposure led to tissue specific differences in the CYP isozymes expressed and elicited increased CYP protein expression over 3-methylcholanthrene induced levels in microsomes isolated from liver, Peyer's Patches, and thymus. Within the context of the chemical carcinogenesis model employed in this study, these observations correlated with the induction of B-cell malignancies by low doses of 3-methylcholanthrene and of thymic lymphomas by a high 3-methylcholanthrene dose. The data suggest that pristane treatment affects CYP isozyme expression. This pristane-mediated effect clearly could be a contributing factor in the chemical carcinogenesis of the previously observed lymphoid malignancies, and a possible basis for the tumor enhancing effects of pristane.


    Nuclear receptor agonists phenobarbital (PB), 3-methylcholanthrene (3MC), pregnenolone-16a-carbonitrile (PCN), 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153), and 2,2' ,4,4'-tetrabromodiphenyl ether (BDE 47) decrease serum thyroxine (T4) in rats. This decrease is thought to occur th...

  19. Some characteristics of two azoreductase systems in rat liver. Relevance to the activity of 2-[4'-di(2"-bromopropyl)-aminophenylazo]benzoic acid (CB10-252), a compound possessing latent cytotoxic activity

    DEFF Research Database (Denmark)


    monoxide, phenobarbitone (PB), or 3-methylcholanthrene (MC) pretreatment. Enhancement of the activity by ferrous ions and FAD indicated that at least part of the reduction system could involve a flavoprotein with FAD as the prosthetic group. The activity of CB10-252-azoreductase and methylred...

  20. The Metabolism of Tetralin in Fischer 344 Rats (United States)


    tissues from TMP exposed animals manifested the same pathologic changes as observed in tissues from animals acutely exposed to distillate fuels. Analysis...Pretreatment of rats with 3-methylcholanthrene causes an increase in hepatic and renal cytochrome P-448 levels (Casarett and Doull, 1980). Finally, SKF 525-A...Aromatic Hydrocarbons. Elsevier Science Publishing Company, Inc., New York, NY, 55, 202-203 and 232-239 (1960). Gram, T. E.: Extrahepatic metabolism of

  1. Acetaminophen structure-toxicity studies: In vivo covalent binding of a nonhepatotoxic analog, 3-hydroxyacetanilide

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, S.A.; Price, V.F.; Jollow, D.J. (Medical Univ. of South Carolina, Charleston (USA))


    High doses of 3-hydroxyacetanilide (3HAA), a structural isomer of acetaminophen, do not produce hepatocellular necrosis in normal male hamsters or in those sensitized to acetaminophen-induced liver damage by pretreatment with a combination of 3-methylcholanthrene, borneol, and diethyl maleate. Although 3HAA was not hepatotoxic, the administration of acetyl-labeled (3H or 14C)3HAA (400 mg/kg, ip) produced levels of covalently bound radiolabel that were similar to those observed after an equimolar, hepatotoxic dose of (G-3H)acetaminophen. The covalent nature of 3HAA binding was demonstrated by retention of the binding after repetitive organic solvent extraction following protease digestion. Hepatic and renal covalent binding after 3HAA was approximately linear with both dose and time. In addition, 3HAA produced only a modest depletion of hepatic glutathione, suggesting the lack of a glutathione threshold. 3-Methylcholanthrene pretreatment increased and pretreatment with cobalt chloride and piperonyl butoxide decreased the hepatic covalent binding of 3HAA, indicating the involvement of cytochrome P450 in the formation of the 3HAA reactive metabolite. The administration of multiple doses or a single dose of (ring-3H)3HAA to hamsters pretreated with a combination of 3-methylcholanthrene, borneol, and diethyl maleate produced hepatic levels of 3HAA covalent binding that were in excess of those observed after a single, hepatotoxic acetaminophen dose. These data suggest that the nature and/or the intracellular processing of the reactive metabolites of acetaminophen and 3HAA are different. These data also demonstrate that absolute levels of covalently bound xenobiotic metabolites cannot be utilized as absolute predictors of cytotoxic potential.

  2. Genotoxicity Assessment of Perfluorodecanoic Acid Using a Battery of In Vitro and In Vivo/in Vitro Assays. (United States)


    Molar MCA 3-Methylcholanthrene puci Microcurie pg Miv.rogram pUL Microliter ’UM Micromolar mg Milligram OTic min Minute copy ML Milliliter 11SPECTEO nun...the R-factor plasmid , pKM101, that further increases the sensitivity of these strains to some mutagens. The mechanism by which this plasmid increases...Sensitivity was demonstrated by inhibition of bacterial growtt in a zone imme4ia-ely sirrnunding the disk. pKM101 Plasmid R-factor: The presence of the

  3. Evidence for the involvement of cytochrome P-450 in reduction of benzo(a)pyrene 4,5-oxide by rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Kato, R.; Iwasaki, K.; Shiraga, T.; Noguchi, H.


    Benzo(a)pyrene 4,5-oxide is reduced to benzo(a)pyrene by microsomes in the presence of NADPH. Carbon monoxide and oxygen inhibit this reduction. The liver has highest activity which is almost lacking in new-born rats. Phenobarbital as well as 3-methylcholanthrene pretreatment increases the epoxide reduction. Additions of FMN or methylviologen stimulate the epoxide reduction; dimethylaniline N-oxide and cumene hydroperoxide are inhibitory. These results indicate that benzo(a)pyrene 4,5-oxide is reduced by the reduced form of cytochrome P-450.

  4. Antimutagenic activities of common vegetables and their chlorophyll content

    Energy Technology Data Exchange (ETDEWEB)

    Lai, C.N.; Butler, M.A.; Matney, T.S.


    Aqueous and acetone extractions of some common vegetables inhibited the activation of 3-methylcholanthrene and benzo(a)pyrene in the Ames Salmonella gene reversion mutagenesis/mammalian microsomal activation assay. The potency of the inhibitory activity was correlated with the chlorophyll content of the acetone extracts. The aqueous fractions contained sufficient histidine to interfere with the interpretation of the result. However, grouping the aqueous extracts from vegetables yielding low, medium, and high levels of histidine allowed comparison between antimutagenic activity and chlorophyll content. Increasing chlorophyll contents corresponded to increasing antimutagenic activities in all 3 groups. Sodium copper chlorophyllin demonstrated comparable inhibitory activity when compared at the same chlorophyll level.

  5. Mutagenicity of 3-chlorodibenzofuran and its metabolic activation

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Michi; Ando, Mitsuru (National Inst. for Environmental Studies, Ibaraki (Japan))


    3-Chlorodibenzofuran was the only markedly mutagenic isomer among the four monochlorodibenzofurans. Although it was mutagenic even in the absence of 9,000g supernatant fraction (S9) of rat liver, it was further activated by the addition of S9. Metabolic activation of this compound in mutagenicity was studied using liver S9s and cell fractions which were prepared from rats treated with two inducers. 1,1-Dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE) was used as an inducer of phenobarbital inducible cytochrome P-450, and {beta}-naphthoflavone ({beta}NF) was used as an inducer of 3-methylcholanthrene inducible cytochrome P-448. Mutagenicity was tested using Salmonella typhimurium tester strain TA98, because this strain is more sensitive to 3-chlorodibenzofuran than strain TA100. This experiment showed that 3-chlorodibenzofuran was activated most highly by {beta}NF-induced microsomes. However, it was also activated by the cytosolic fraction. This showed that 3-chlorodibenzofuran is activated not only by cytochrome P-448, which is induced by 3-methylcholanthrene type inducers, but also by the enzymes existing in normal rat liver. This result suggests a risk of manifestation of its toxicity to normal animals.

  6. Effect of inducers and inhibitors of glucuronidation on the biliary excretion and choleretic action of valproic acid in the rat. (United States)

    Watkins, J B; Klaassen, C D


    Valproic acid (VPA) induces an immediate choleresis in the rat which may be attributable to the osmotic properties of VPA-glucuronic acid conjugates in bile. The influence of inducers and inhibitors of glucuronidation of VPA on the biliary excretion and choleretic effect of VPA was studied. Hepatic UDP-glucuronyltransferase activity toward VPA was determined in vitro. Pretreatment with phenobarbital (75 mg/kg/day for 4 days) enhanced VPA glucuronidation; borneol (750 mg/kg) decreased VPA conjugation; 3-methylcholanthrene (20 mg/kg/day for 4 days) and galactosamine (600 mg/kg) had no effect on glucuronidation of VPA in vitro. Hepatic UDP-glucuronic acid content was decreased by borneol and galactosamine administration and was enhanced by phenobarbital and 3-methylcholanthrene pretreatment. The enzyme inducers increased the plasma disappearance of VPA in vivo but did not augment its biliary excretion or choleretic effect. Borneol and galactosamine, which inhibited the conjugation and plasma disappearance of VPA, decreased its biliary excretion and inhibited the VPA-induced increase in bile flow. Thus, the bile flow rate after VPA administration is closely related to the excretion of VPA-glucuronic acid. These data support the conclusion that the choleretic effect of VPA is due to the osmotic activity of VPA conjugates in bile.

  7. Role of cytochrome P sub 450 in the control of the production of erythropoietin

    Energy Technology Data Exchange (ETDEWEB)

    Fandrey, J.; Seydel, F.P.; Siegers, C.P.; Jelkmann, W. (Medical Univ. of Luebeck (West Germany))


    Effects of agents affecting cytochrome P{sub 450} were studied on the production of erythropoietin (Epo) in cultures of the human hepatoma cell line HepG2. Epo was measured by radioimmunoassay of the culture media after 24 h of incubation. The addition of phenobarbital or 3-methylcholanthrene, which induce cytochrome P{sub 450}, significantly enhanced the formation of Epo. Likewise, the thyroid hormones T{sub 3} and T{sub 4} stimulated the rate of the production of Epo. On the other hand, the formation of Epo was lowered following the addition of diethyl-dithiocarbamate or cysteamine chloride, which inhibit cytochrome P{sub 450}. These findings support the idea that O{sub 2} sensitive hemoproteins of the microsomal mixed-functional oxidases play a role in the control of the synthesis of Epo.

  8. Use of high pressure liquid chromatography to study chemically induced alterations in the pattern of benzo(a)pyrene metabolism. [Rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Freudenthal, R.I.; Leber, A.P.; Emmerling, D.; Clarke, P.


    The metabolism of radiolabeled benzo(a)pyrene (BP) by control, 3-methylcholanthrene (3-MC) induced and 1,1,1-trichloropropene-2,3-oxide (TCPO)-inhibited rat liver microsomes was measured using fluorescence, radiometric, and high-pressure liquid chromatographic (HPLC) assays. Significant differences in the total measurable metabolism of BP by the three microsomal enzyme incubations resulted from the use of the three assay procedures. Appreciable differences in the concentration of the metabolite fractions after 3-MC induction and TCPO inhibition are clearly demonstrated. NMR analysis revealed that while the 3-hydroxy-BP fraction is greater than 90 percent pure, the 9-hydroxy fraction contains a number of metabolites having essentially identical retention times.

  9. 7-Methylbenz(a)anthracene deoxyribonucleoside products isolated from DNA after metabolism of the carcinogen by rat liver microsomes in the presence of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.H.; Osborne, M.R.; King, H.W.S.; Brookes, P.


    Metabolism of 7-methylbenz(a)anthracene (7MeBA) by 3-methylcholanthrene-induced rat liver microsomes in the presence of added native or denatured DNA resulted in covalent binding of the hydrocarbon to the nucleic acid. Enzymatic degradation and column chromatographic fractionation showed that the hydrocarbon-deoxyribonucleoside products were separable from the products similarly obtained from DNA having 7MeBA bound following treatment of mouse embryo cells in culture with this hydrocarbon. Comparison of the microsome catalyzed hydrocarbon-deoxyribonucleoside products with those obtained by reaction with DNA of 7MeBA-5,6-oxide suggested that this K-region epoxide made a significant contribution to the liver microsome-induced DNA binding.

  10. Co-oxidation of carcinogenic polycyclic aromatic hydrocarbons with some biologically active compounds (BAC)

    Energy Technology Data Exchange (ETDEWEB)

    Gubergrits, M.Y.


    Oxidation of benzo(a)pyrene (BP) initiated by UV or gamma irradiation was promoted by benz(a)anthracene and 7,12-dimethylbenz(a)anthracene (DMBA) and inhibited by pyrene, dibenz(a,c)anthracene, and asymmetric benz(a)antharacene. The effects of these BAC commonly occurring together with BP in industrial wastes, increased with their concentrations. Phenol and 3-methylcholanthrene strongly promoted BP oxidation when present at low concentrations and inhibited it at high concentrations. Consistent promoting effect was also observed in BP co-oxidation with adipic acid, ..cap alpha..-naphthoflavon, and vitamin E, whereas succinic, azelaic, ferulic, gallic, and chlorogenic acids, rutin, and vitamin C acted as inhibitors. Most saturated dicarboxylic acids studied did not affect BP oxidation at 1:1 acid-BP molar ratio. The kinetics of 7,12-DMBA photooxidation inhibition by some metabolic intermediates, e.g., DMBA endo-peroxide, were also studied.

  11. The effects of the continuous administration of N,N-dimethyl-4-phenylazoaniline (DAB) on the activities and the inducibilities of some drug-metabolizing enzymes in rat liver

    DEFF Research Database (Denmark)


    of dye feeding on some of the enzyme activities in the two major liver lobes and differences were found. (3) The effect of phenobarbital (PB) pretreatment on the DAB-fed rats was studied at 4-week intervals. The activities of DAB-azoreductase and of nitroreductase increased throughout the whole period......-glucuronidase and arylsulphatase A were studied. Rapid decreases occurred in the activities of the first six enzymes, reaching minimal values at between 4 and 8 weeks. Activities then increased in all cases to control or nearly control levels. This rate of increase was least for cytochrome P-450. At 4 weeks azoreductase activity......, while the activities of the lysosomal enzymes were decreased. (4) After feeding DAB for 4 weeks the effect of PB and 3-methylcholanthrene (MC) on the activities of DAB-azoreductase, CB10-252-azoreductase and components of the azoreductases-cytochrome P-450, NADPH-cytochrome c reductase, the CO-CB10...

  12. Effects of some tobacco smoke constituents on foreign compound metabolism in the cat and the rat

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D.M.


    The effects of chronic nicotine administration on its own metabolism have been studied in the cat and the rat. Nicotine administration caused an increase in the in vitro metabolism in the liver of both species and in cat kidney. Cotinine production from nicotine was enhanced in both species by pretreatment with nicotine. The magnitude of the increase in enzyme activity was relatively small but of the same order as that produced, in the rat, by phenobarbital treatment. 3-methylcholanthrene pretreatment stimulated rat liver nicotine metabolism but was without effect on cotinine production. Chronic exposure of rats to relatively low levels of carbon monoxide inhibited the in vitro aryl hydrocarbon hydroxylase activity but did not affect nicotine metabolism. The data are discussed in relation to the observed enzyme inductive effects of tobacco smoke.

  13. Enhancement of 5-iododeoxyuridine-induced endogenous C-type virus activation by polycyclic hydrocarbons: apparent lack of parallelism between enhancement and carcinogenicity. (United States)

    Yoshikura, H; Zajdela, F; Perin, F; Perin-Roussel, O; Jacquignon, P; Latarjet, R


    When mouse MLg cells were treated with 3-methylcholanthrene or 7,12-dimethylbenz[alpha]anthracene in the presence of microsomal enzymes and NADPH after 5-iododeoxyuridine (IUDR) treatment, the induction rate of the endogenous C-type virus was increased fivefold to sixfold in comparison with the culture treated with IUDR only. In this reaction, both the microsomal enzymes and NADPH were indispensable. 7,8-Benzoflavone, an inhibitor of the metabolism of hydrocarbons in hamster embryo cultures, inhibited the reaction. For detecting the enhancing activity, the concentration of IUDR for the pretreatment, the concentration of the test products, and the duration of the treatment with the products were important factors. In screening 30 polycyclic hydrocarbons, we were unable to detect a correlation between the in vivo carcinogenicity in the skin and the enhancing activity in the conditions tested.

  14. Development of UDP-glucuronosyltransferase activity toward digitoxigenin-monodigitoxoside in neonatal rats. (United States)

    Watkins, J B; Klaassen, C D


    Glucuronidation is low or undetectable in embryonic and early fetal tissues and changes to adult levels at rates depending on the acceptor, tissue, and species. Because other data indicate there may be a specific UDP-glucuronosyltransferase (GT) in the liver of adult rats that glucuronidates digitoxigenin-monodigitoxoside (DIG), the development of GT activity in neonatal rats toward DIG was compared with that of other acceptors. Conjugation of p-nitrophenol and 1-naphthol was higher at birth and decreased to adult levels by 20 days of age. Glucuronidation of chloramphenicol, morphine, valproic acid, and bilirubin increased from birth to adult activity by 20 days of age. Conjugation of phenolphthalein, estrone, and diethylstilbestrol was low in 1-day-old rats and higher than adult in 20-day-old animals. In contrast, glucuronidation of DIG was barely detectable (9% of adult) in 20-day-old rats. The concentration of UDP-glucuronic acid was 50% of adult levels at birth and increased to adult values by 10 days of age. Administration of 3-methylcholanthrene on days 6 to 9 after birth significantly stimulated GT activity toward 1-naphthol, p-nitrophenol, and morphine, whereas phenobarbital precociously increased conjugation of chloramphenicol, valproic acid, morphine, and diethylstilbestrol. Pregnenolone-16 alpha-carbonitrile enhanced the development of GT activity toward morphine, chloramphenicol, valproic acid, bilirubin, diethylstilbestrol, and estrone. Glucuronidation of DIG was not increased after 3-methylcholanthrene or phenobarbital, but could be induced after pregnenolone-16 alpha-carbonitrile to 7% of adult values in 10-day-old rats.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Comparative study on glutathione transferases of rat brain and testis under the stress of phenobarbitol and β-methylcholanthrene

    Institute of Scientific and Technical Information of China (English)



    A comparative study was made on the tissue specific expression of glutathione transferases (GST) in brain and testis after exposure of rat to phenobarbitol (PB) and 3-methylcholanthrene (MC). Glutathione transferases, a family of multifunctional proteins are involved in intracellular transport processes and in detoxication of electrophilic xenobiotics by catalyzing reactions such as conjugation, isomerization, reduction and thiolysis. On purification, the yield of GST proteins by affinity chromatography was 39% in testis and 32% in brain. The affinity purified testis GSTs were resolved by chromatofocusing into six anionic and four cationic isozymes, and in brain glutathione transferases were resolved into four anionic and three cationic isozymes, suggesting the presence of multiple isozymes with Yc, Yb, Y3 and Yδ in both of them. In testis and brain, these isozymes at identical pI values showed variable functions with a battery of substrates and the cationic isozymes of brain and testis showed identical properties in CHP (cumene hydroperoxide) at pH values of above 7.0. Substrate specificity studies and immunoblot analysis of testis and brain proteins revealed that they play a predominant role in the detoxication of phenobarbitol or 3-methylcholanthrene. Expression of the isozymes in testis and brain on exposure to PB and MC indicated elevated subunit variation. In both testis and brain, Yδ ofπclass was expressed on PB treatment and Yc of α class and Y3 of μ class was expressed in MC treated testis and only Yc was predominantly expressed in MC treated brain. Thus these subunits expression is considered as markers for carcinogenesis and specific to chemical toxicity under phenobarbitol and 13-methylcholanthrene stress.

  16. Catechins in tea suppress the activity of cytochrome P450 1A1 through the aryl hydrocarbon receptor activation pathway in rat livers. (United States)

    Fukuda, Itsuko; Nishiumi, Shin; Mukai, Rie; Yoshida, Ken-ichi; Ashida, Hitoshi


    Polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) develop various adverse effects through activation of an aryl hydrocarbon receptor (AhR). The suppressive effects of brewed green tea and black tea on 3-methylcholanthrene (MC)-induced AhR activation and its downstream events were examined in the liver of rats. Ad-libitum drinking of green tea and black tea suppressed MC-induced AhR activation and elevation of ethoxyresorufin O-deethylase activity in the liver, whereas the teas themselves did not induce them. Tea showed a suppressive fashion on the expression of cytochrome P450 1A1 (CYP1A1). Tea suppressed the AhR activation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) ex vivo. A part of catechins and theaflavins was present in plasma and liver as conjugated and intact forms. The results of this study suggested that active component(s) of tea are incorporated in the liver and suppress the activity of CYP1As through the AhR activation pathway.

  17. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Han, Eun Hee [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Im, Ji Hye; Lee, Eun Ji; Jin, Sun Woo [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Hye Gwang, E-mail: [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)


    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Taken together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.

  18. [Effect evaluation of three cell culture models]. (United States)

    Wang, Aiguo; Xia, Tao; Yuan, Jing; Chen, Xuemin


    Primary rat hepatocytes were cultured using three kinds of models in vitro and the enzyme leakage, albumin secretion, and cytochrome P450 1A (CYP 1A) activity were observed. The results showed that the level of LDH in the medium decreased over time in the period of culture. However, on 5 days, LDH showed a significant increase in monolayer culture (MC) while after 8 days LDH was not detected in sandwich culture (SC). The levels of AST and ALT in the medium did not change significantly over the investigated time. The basic CYP 1A activity gradually decreased with time in MC and SC. The decline of CYP 1A in rat hepatocytes was faster in MC than that in SC. This effect was partially reversed by using cytochrome P450 (CYP450) inducers such as omeprazol and 3-methylcholanthrene (3-MC) and the CYP 1A induction was always higher in MC than that in SC. Basic CYP 1A activity in bioreactor was keeped over 2 weeks and the highest albumin production was observed in bioreactor, and next were SC and MC. In conclusion, our results clearly indicated that there have some advantages and disadvantages in each of models in which can address different questions in metabolism of toxicants and drugs.

  19. Qualitative study of three cell culture methods. (United States)

    Wang, Aiguo; Xia, Tao; Ran, Peng; Chen, Xuemin; Nuessler, Andreas K


    Primary rat hepatocytes were cultured using different in vitro models and the enzyme leakage, albumin secretion, and cytochrome P450 1A (CYP 1A) activity were observed. The results showed that the level of LDH was decreased over time in culture. However, on day 5, LDH showed a significant increase in monolayer culture (MC) while after day 8 no LDH was detectable in sandwich culture (SC). The levels of AST and ALT did not change significantly over the investigated time. The CYP 1A activity was gradually decreased in a time-dependent manner in MC and SC. The decline of CYP 1A was faster in MC than in SC. This effect was partially reversed by using cytochrome P450 (CYP450) inducer such as Omeprazol and 3-methylcholanthrene (3-MC) and the CYP 1A induction was always higher in MC than in SC. In bioreactor basic CYP 1A activity was preserved over 2 weeks and the highest albumin production was observed in bioreactor followed by SC and MC. Taken together, it was indicated each investigated model had its advantages and disadvantages. It was also underlined that various in vitro models may address different questions.

  20. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)


    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  1. A dual-functional fibrous scaffold enhances P450 activity of cultured primary rat hepatocytes. (United States)

    Chua, Kian-Ngiap; Tang, Yen-Ni; Quek, Chai-Hoon; Ramakrishna, Seeram; Leong, Kam W; Mao, Hai-Quan


    We have designed a novel dual-functional electrospun fibrous scaffold comprising two fiber mesh layers that were modified differently to induce two separate biological responses from hepatocytes. The first fiber layer was galactosylated on the surface to mediate hepatocyte attachment, while the second layer was loaded with 3-methylcholanthrene (3-Mc) to enhance cytochrome P450 activity of hepatocytes. Primary rat hepatocytes cultured on the galactosylated fibrous scaffolds loaded with different concentrations of 3-Mc were compared for their cell attachment efficiency, albumin secretion activity and cytochrome P450-dependent 7-ethoxycoumarin O-deethylase activity. This hybrid fibrous scaffold mediated hepatocyte attachment with slightly lower efficiency (76+/-2.3%) than a single-layer galactosylated fibrous scaffold (84+/-3.5%). More importantly, the cytochrome P450 activity of the hepatocytes cultured on the hybrid scaffold correlated well with the 3-Mc loading level. The results also showed that transfer of 3-Mc to hepatocytes through direct cell-fiber contact was the dominant transport route, with the induced cytochrome P450 activity being 1.9- to 4.8-fold higher than that of transfer of 3-Mc to hepatocytes via dissolution from fibers to medium. This study demonstrates the feasibility of creating multi-functional fibrous scaffolds that serve both as an adhesive substrate and as a delivery vehicle for bioactive molecules.

  2. Radiation carcinogenesis. Comprehensive final report, 16 May 1979-31 December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Warren, S; Brown, C E; Gates, O


    This abstract covers three main areas of investigation: mesothelioma induction by asbestos, radiation tumorigenesis and transplantable tumors. Canadian and Rhodesian asbestos fibers have been administered under anesthesia to rats by intratracheal, intrapleural and intraperitoneal injection. Additional groups were given 3-methylcholanthrene or x-radiation along with asbestos. A large series of mice also treated as above have displayed mesotheliomas. In addition, glass fiber injections and feeding of asbestos were done and have produced negative results to date. The carcinogenic effect of whole-body radiation on hemi-irradiated parabiont partners exposed to a single 1000 R dose of x-ray was evidenced by a significant increase in the incidence of malignant tumors in only six tissues: skin, supporting soft tissue, kidney, bone, pancreatic islets and ovary. In the male adrenal medulla and in the female breast genetic and parabiotic hormonal factors were judged to exert a significant effect. The occurrence of incisional (anastomotic) sarcomas in significant numbers in hemi-irradiated and parabiont control pairs suggests the operation of mechanical factors complicating the healing process, only slightly enhanced by radiation. One of the very valuable but unanticipated developments of the rat radiation program was the isolation of two transplantable endocrine tumors with strong hormonal potentials: an insulinoma of the pancreas and a pheochromocytoma of the adrenal medulla.

  3. Binding of benzo(a)pyrene to DNA by cytochrome P-450 catalyzed one-electron oxidation in rat liver microsomes and nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cavalieri, E.L.; Rogan, E.G.; Devanesan, P.D.; Cremonesi, P. (Univ. of Nebraska Medical Center, Omaha (USA)); Cerny, R.L.; Gross, M.L. (Univ. of Nebraska, Lincoln (USA)); Bodell, W.J. (Univ. of California, San Francisco (USA))


    To investigate whether cytochrome P-450 catalyzes the covalent binding of substrates to DNA by one-electron oxidation, the ability of both uninduced and 3-methylcholanthrene (MC) induced rat liver microsomes and nuclei to catalyze covalent binding of benzo(a)pyrene (BP) to DNA and formation of the labile adduct 7-(benzo(a)pyren-6-yl)guanine (BP-N7Gua) was investigated. In the various systems studied, 1-9 times more BP-N7Gua adduct was isolated than the total amount of stable BP adducts in the DNA. The specific cytochrome P-450 inhibitor 2-((4,6-dichloro-o-biphenyl)oxy)ethylamine hydrobromide (DPEA) reduced or eliminated BP metabolism, binding of BP to DNA, and formation of BP-N7Gua by cytochrome P-450 in both microsomes and nuclei. The effects of the antioxidants cysteine, glutathione, and p-methoxythiophenol were also investigated. This study represents the first demonstration of cytochrome P-450 mediating covalent binding of substrates to DNA via one-electron oxidation and suggests that this enzyme can catalyze peroxidase-type electron-transfer reactions.

  4. Chemically-induced alteration of UDP-glucuronic acid concentration in rat liver. (United States)

    Watkins, J B; Klaassen, C D


    Since many xenobiotics alter hepatic UDP-glucuronosyltransferase activity, their effect on UDPGA concentration was determined. Rats were pretreated with: 1) microsomal enzyme inducers (7,8-benzoflavone, benzo(a)pyrene, butylated hydroxyanisole, isosafrole, 3-methylcholanthrene, phenobarbital, pregnenolone-16 alpha-carbonitrile (PCN), 2,3,7,8-tetrachlorodibenzo-p-dioxin, trans-stilbene oxide); 2) inhibitors of microsomal enzymes (cobaltous chloride, piperonyl butoxide, SKF 525-A, borneol, galactosamine); 3) hepatotoxins (allyl alcohol, aflatoxin B1, alpha-naphthylisothiocyanate, bromobenzene, cadmium chloride, carbon tetrachloride, 1,1-dichloroethylene), and 4) commonly used anesthetics (pentobarbital, urethane, diethyl ether, halothane, enflurane, methoxyflurane). Rats were decapitated before removal of the liver. All inducers except PCN and isosafrole increased UDPGA 36-85% above control. Mixed-function oxidase inhibitors had no effect whereas borneol and galactosamine reduced UDPGA 85-90%. Aflatoxin B1 and cadmium produced decreases of 59 and 25%, respectively. Hepatic UDPGA content was diminished 70-95% after exposure to the inhalation anesthetics, whereas the other anesthetics reduced UDPGA about 25%. Thus, numerous xenobiotics alter the concentration of UDPGA in rat liver, which may influence the rate of glucoronidation.

  5. A Microfabricated Platform for Generating Physiologically-Relevant Hepatocyte Zonation (United States)

    McCarty, William J.; Usta, O. Berk; Yarmush, Martin L.


    In vitro liver models have been important tools for more than 40 years for academic research and preclinical toxicity screening by the pharmaceutical industry. Hepatocytes, the highly metabolic parenchymal cells of the liver, are efficient at different metabolic chemistries depending on their relative spatial location along the sinusoid from the portal triad to the central vein. Although replicating hepatocyte metabolic zonation is vitally important for physiologically-relevant in vitro liver tissue and organ models, it is most often completely overlooked. Here, we demonstrate the creation of spatially-controlled zonation across multiple hepatocyte metabolism levels through the application of precise concentration gradients of exogenous hormone (insulin and glucagon) and chemical (3-methylcholanthrene) induction agents in a microfluidic device. Observed gradients in glycogen storage via periodic acid-Schiff staining, urea production via carbamoyl phosphatase synthetase I staining, and cell viability after exposure to allyl alcohol and acetaminophen demonstrated the in vitro creation of hepatocyte carbohydrate, nitrogen, alcohol degradation, and drug conjugation metabolic zonation. This type of advanced control system will be crucial for studies evaluating drug metabolism and toxicology using in vitro constructs.

  6. Blockade of the aryl hydrocarbon receptor pathway triggered by dioxin, polycyclic aromatic hydrocarbons and cigarette smoke by Phellinus linteus. (United States)

    Mukai, Mai; Kasai, Ayumi; Hiramatsu, Nobuhiko; Hayakawa, Kunihiro; Okamura, Maro; Tagawa, Yasuhiro; Yao, Jian; Nakamura, Tomoyuki; Kitamura, Masanori


    Environmental pollutants including halogenated and polycyclic aromatic hydrocarbons activate the aryl hydrocarbon receptor (AhR) and thereby cause a wide range of pathological changes. Development of AhR antagonists will be useful for prevention and treatment of diseases related to AhR activation. Towards this end, we aimed in the present study at seeking for potential inhibitors of the AhR pathway in mycelial extracts using the dioxin responsive element-based sensing via secreted alkaline phosphatase (DRESSA). Through the screening of 13 mycelia, extracts prepared from Phellinus linteus, Cordyceps militaris and Hericium erinaceum inhibited activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin, benzo[a]pyrene or 3-methylcholanthrene. Subsequent studies revealed that only Phellinus linteus suppressed activation of AhR and AhR-dependent gene expression triggered by all of these agonists. Cigarette smoke is known to contain a number of halogenated and polycyclic aromatic hydrocarbons. We found that Phellinus linteus has the potential to block activation of AhR and AhR-dependent gene expression triggered by cigarette smoke. Furthermore, the inhibitory effect of Phellinus linteus on the AhR pathway was independent of; 1) depression of AhR or AhR nuclear translocator, and 2) induction of AhR repressor. We conclude that Phellinus linteus contains potent inhibitor(s) of AhR activation and may be useful for prevention of pathologies associated with aberrant activation of AhR.

  7. Promoting Activity of Microcystins Extracted From Waterblooms in SHE Cell Transformation Assay

    Institute of Scientific and Technical Information of China (English)



    Microcystis aeruginosa is the dominant algae in most of the eutrophicated lakes in China.It can produce cyclic heptapeptides,Known as microcystins,which can cause liver damage in wild and comestic animals.In this paper,a two-stage transformation assay for demonstrating the carcinogenic effects of the algan toxins is reported.The cell strain used in this assay was derived from embryos of Syrian golden hamter and the algal toxins were extracted from Microcystis aeruginosa,termed microcystis raw toxic(MRT).To elucidate is prooting activity,the target cells were first exposed to a low dosage of 3-methylcholanthrene(MCA)and then to MRT.The results showed that MRT significantly enhanced the MCA-initiated cell transformation,and a dose-response reltionship was observed,but it failed to induce transformation of SHE cells not pretreated by MCA.These results suggest that the MRT play an important role in the malignant transformation of SHE cells.MRT may thus be a tumor promoter,and this transformation assay with SHE cells may be used to predict tumor prompting activity of environmental chemicals before long-term in vivo two-stage carcinogenesis experiments are carried out.

  8. Species difference among experimental rodents in the activity and induction of cytochrome P-450 isozymes for mutagenic activation of carcinogenic aromatic amines. (United States)

    Degawa, M; Agatsuma, T; Hashimoto, Y


    The expressions of hepatic microsomal cytochrome P-450 isozymes in male rats, mice, hamsters and guinea pigs were studied comparatively with or without an ip injection of a cytochrome P-450 inducer. The activity and quantity of microsomal cytochrome P-450 isozymes were determined respectively by a bacterial mutation assay with Salmonella typhimurium TA98 and immunochemical assays using monoclonal antibodies against rat cytochrome P-450 isozymes. 3-Methoxy-4-aminoazobenzene (3-MeO-AAB), 2-amino-3-methyl-9H-pyrido[2,3-b]indole acetate (MeA alpha C) and 3-methylcholanthrene were used as cytochrome P-450 inducers, and 7 carcinogenic aromatic amines including 3-MeO-AAB and MeA alpha C were used as substrates for the mutation assay. By means of these assays, we examined the species differences among rodents in the activity and induction rate of hepatic cytochrome P-450 isozymes responsible for the mutagenic activation of carcinogenic aromatic amines.

  9. Polyaromatic compounds alter placental protein synthesis in pregnant rats

    Energy Technology Data Exchange (ETDEWEB)

    Shiverick, K.T.; Ogilvie, S.; Medrano, T. (Univ. of Florida, Gainesville (United States))


    The administration of the polyaromatic compounds {beta}-naphthoflavone ({beta}NF) and 3-methylcholanthrene (3MC) to pregnant rats during mid-gestation has been shown to produce marked feto-placental growth retardation. This study examined secretory protein synthesis in placental tissue from rats following administration of {beta}NF on gestation days (gd) 11-14 or 3MC on gd 12-14. Explants of placental basal zone tissue were cultured for 24 hours in serum-free medium in the presence of ({sup 3}H)leucine. Secreted proteins were analyzed by two-dimensional SDS-polyacrylamide gel electrophoresis followed by either fluorography or immunostaining. Total incorporation of ({sup 3}H)leucine into secreted proteins was not altered in BZ explants from {beta}NF or 3MC-treated animals. However a selective decrease was observed in ({sup 3}H)leucine incorporation into a major complex of proteins with apparent molecular weight of 25-30,000 and isoelectric point between 5.3 to 5.7. This group of proteins has been further identified as being related to rat pituitary growth hormone (GH) using N-terminal amino acid microsequencing of individual spots from 2-D SDS-PA gels. This is the first report that synthesis of GH-related proteins by rat placenta is decreased following {beta}NF and 3MC administration, a change which may underlie the feto-placental growth retardation associated with these polyaromatic compounds.

  10. Influence of retinol on carcinogen-induced sister chromatid exchangers and chromosome aberrations in V79 cells

    Energy Technology Data Exchange (ETDEWEB)

    Qin, S.; Batt, T.; Huang, C.C.


    The influence of retinol (Rol) on sister chromatid exchangers (SCE) in V79 cells induced by six indirect and two direct carcinogens, and on chromosome aberration (CA) in V79 cells induced by four indirect carcinogens were studied. The indirect carcinogens used were aflatoxin B/sub 1/ (AFB), cyclophosphamide (CPP), benzo(a)anthracene (BA), benzo(a)pyrene (BP), 9,10-dimethyl-1,2-benz(a)anthracene (DMBA), and 3-methylcholanthrene (MCA). The two direct carcinogens were ethyl methane sulfonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Rol effectively inhibited SCE and CA induced by AFB and CPP in a dose-dependent manner, but it had no effect on SCE induced by BA, BP, DMBA, MCA, EMS, and MNNG. To the contrary, Rol had an enhancing effect on CA induced by BP and DMBA. The possibility that Rol exerts its anticarcinogenic effects by inhibiting certain forms of the cytochrome P-450 isoenzymes required for activation of precarcinogens, such as AFB and CPP but not those enzymes required by BA, BP, DMBA, and MCA, is discussed.

  11. Differential cumene hydroperoxide sensitivity of cytochrome P-450 enzymes IA1 and IIB1 determined by their way of membrane incorporation. (United States)

    Balvers, W G; Boersma, M G; Veeger, C; Rietjens, I M


    The cytochrome P-450-dependent O-dealkylation of alkoxyresorufins was used to study the effect of cumene hydroperoxide on cytochrome P-450 IIB1 and IA1 in microsomal and reconstituted systems. In liver microsomal systems from respectively phenobarbital and 3-methylcholanthrene pretreated male Wistar rats, cytochrome P-450 IIB1-dependent pentoxyresorufin-O-dealkylation appeared to be more sensitive to cumene hydroperoxide treatment than cytochrome P-450 IA1-dependent ethoxyresorufin-O-dealkylation. This phenomenon was also observed when the cumene hydroperoxide sensitivity of P-450 IIB1 and IA1 was studied in an isosafrole pretreated rat liver microsomal system. The decrease in alkoxy-O-dealkylating activities appeared to proceed by destruction of the cytochrome P-450 component of the enzyme system. Purification and reconstitution of the enzyme system components in a system in which the isolated proteins were not incorporated into a membrane resulted in the disappearance of the difference in sensitivity between the two P-450 enzymes. However, in a reconstituted system with membrane incorporated proteins, again cytochrome P-450 IIB1 expressed a higher sensitivity towards cumene hydroperoxide than cytochrome P-450 IA1. From this it was concluded that the differential cumene hydroperoxide sensitivity of cytochrome P-450 IIB1 and IA1 is not caused by an intrinsic difference in their sensitivity but by a differential effect of membrane incorporation on their cumene hydroperoxide sensitivity.

  12. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. (United States)

    O'Sullivan, Timothy; Saddawi-Konefka, Robert; Vermi, William; Koebel, Catherine M; Arthur, Cora; White, J Michael; Uppaluri, Ravi; Andrews, Daniel M; Ngiow, Shin Foong; Teng, Michele W L; Smyth, Mark J; Schreiber, Robert D; Bui, Jack D


    Cancer immunoediting is the process whereby immune cells protect against cancer formation by sculpting the immunogenicity of developing tumors. Although the full process depends on innate and adaptive immunity, it remains unclear whether innate immunity alone is capable of immunoediting. To determine whether the innate immune system can edit tumor cells in the absence of adaptive immunity, we compared the incidence and immunogenicity of 3'methylcholanthrene-induced sarcomas in syngeneic wild-type, RAG2(-/-), and RAG2(-/-)x γc(-/-) mice. We found that innate immune cells could manifest cancer immunoediting activity in the absence of adaptive immunity. This activity required natural killer (NK) cells and interferon γ (IFN-γ), which mediated the induction of M1 macrophages. M1 macrophages could be elicited by administration of CD40 agonists, thereby restoring editing activity in RAG2(-/-)x γc(-/-) mice. Our results suggest that in the absence of adaptive immunity, NK cell production of IFN-γ induces M1 macrophages, which act as important effectors during cancer immunoediting.

  13. A Novel Antihepatitis Drug, Bicyclol, Prevents Liver Carcinogenesis in Diethylnitrosamine-Initiated and Phenobarbital-Promoted Mice Tumor Model

    Directory of Open Access Journals (Sweden)

    Hua Sun


    Full Text Available Bicyclol, an antihepatitis drug developed by Chinese scientists, has been shown to prevent the malignant transformation induced by 3-methylcholanthrene and 12-O-tetradecanoylphorbol-13-acetate in WB-F344 rat liver epithelial cells. This study provides further evidence on its role as a chemopreventive agent in experimental mice with diethylnitrosamine- (DEN- initiated and phenobarbital- (PB- promoted liver carcinoma. Liver tissue and serum were collected. In the two-stage model of hepatocarcinogenesis in mice, oral administration of bicyclol (100, 200 mg/kg before DEN injection showed significant reduction in the incidence of hepatocellular foci, nodules, or carcinoma. Histopathological examination revealed that there was no hepatocellular carcinoma (HCC and hepatoma formation in the mice pretreated with bicyclol (200 mg/kg at week 20, while the mice treated with DEN/PB developed 33.3% HCC and 55.6% hepatoma. Furthermore, the serum levels of alanine aminotransferase (ALT, alkaline phosphatase (ALP, and α-fetal protein (AFP in serum significantly increased in the DEN/PB model group in comparison with the control group. Pretreatment with bicyclol showed a marked reduction in the above condition. Bicyclol also decreased the expression of AFP and proliferating cell nuclear antigen level in the liver tissue and attenuated the decrease in body weight. In this study, we also found that 10 weeks after stopping the administration of PB and drugs, the control and bicyclol-treated (200 mg/kg animals showed no HCC and hepatoma formation at the time of termination whereas DEN/PB-induced mice developed 100% hepatoma and 50% HCC. These results further indicate that bicyclol has the chemopreventive potential for liver carcinogenesis induced by carcinogens.

  14. Bromopropylate: induction of hepatic cytochromes P450 and absence of covalent binding to DNA in mouse liver. (United States)

    Thomas, H; Sagelsdorff, P; Molitor, E; Skripsky, T; Waechter, F


    Oral administration of benzilic acid ester-based acaricide bromopropylate at daily doses of 3, 15, 100, and 300 mg/kg body wt to young adult male Tif:MAGf mice for 14 days caused slightly increased liver weights in the high-dose group. A dose-dependent increase of the microsomal cytochrome P450 content was accompanied by elevated ethoxycoumarin O-deethylase, ethoxyresorufin O-deethylase, pentoxyresorufin O-depentylase, and total testosterone hydroxylase activities. When compared with mice treated in parallel with the model compounds for hepatic xenobiotic metabolizing enzyme induction, phenobarbitone, and 3-methylcholanthrene, the enzyme activity changes observed with bromopropylate largely equalled those expressed in phenobarbitone-treated mice. Immunochemical studies with monoclonal antibodies against rat liver cytochrome P450 isoenzymes of the gene families 1A, 2B, 3A, and 4A confirmed that bromopropylate is a phenobarbitone-type inducer in the mouse liver. Titration of liver microsomal suspensions with bromopropylate yielded Type I substrate binding spectra. The specific amplitude was increased 1.5-fold when microsomes from bromopropylate-treated mice (300 mg/kg body wt) were used instead of control microsomes, indicating the induction of cytochromes P450 catalyzing the oxidative metabolism of the test compound. Single oral administration of 300 mg/kg body wt [14C]bromopropylate to male mice, without or following pretreatment for 14 days with 300 mg/kg body wt unlabeled bromopropylate, gave no indication for DNA binding of the test compound in the liver. This excludes a genotoxic potential via covalent DNA modification. The results suggest that, in analogy to phenobarbitone, bromopropylate acts as a tumor promotor rather than a tumor initiator in the mouse liver.

  15. Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells. (United States)

    Tripathi, Vinay K; Kumar, Vivek; Singh, Abhishek K; Kashyap, Mahendra P; Jahan, Sadaf; Pandey, Ankita; Alam, Sarfaraz; Khan, Feroz; Khanna, Vinay K; Yadav, Sanjay; Lohani, Mohtshim; Pant, Aditya B


    The expression and metabolic profile of cytochrome P450s (CYPs) is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y) and glial (U373-MG) cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC), cyclophosphamide (CPA), ethanol and known neurotoxicant- monocrotophos (MCP), a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h) of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against xenobiotics.

  16. Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells.

    Directory of Open Access Journals (Sweden)

    Vinay K Tripathi

    Full Text Available The expression and metabolic profile of cytochrome P450s (CYPs is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y and glial (U373-MG cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC, cyclophosphamide (CPA, ethanol and known neurotoxicant- monocrotophos (MCP, a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against

  17. Effect in the rat of the interaction of dichloromaleic acid and carbon tetrachloride on renal and hepatic function

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, W.R.; Davis, M.E.; Berndt, W.O. (Univ. of Nebraska Medical Center, Omaha (USA))


    Water purification generates a variety of chlorinated contaminants, one of which is dichloromaleic acid (DCMA). Exposure to this compound is likely to occur in combination with other drinking water pollutants, some of which are hepatotoxic. This study was designed to examine the interactive effects of carbon tetrachloride (CCl4), a known hepatotoxin, with DCMA on liver and kidney function in the Sprague-Dawley rat. Administration of a single dose of DCMA (200-400 mg/kg, ip) caused modest dose-dependent increases in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and plasma urea nitrogen, as well as a marked depletion of nonprotein sulfhydryls (NPSH) in the liver, but not the kidney, by 24 hr. Pretreatment with inducers (phenobarbital or 3-methylcholanthrene) or an inhibitor (SKF 525A) of cytochrome P-450 activity failed to alter the response observed with DCMA alone. Alterations in 24-hr urine volume, osmolality, and water consumption also were observed. DCMA-mediated changes in plasma urea nitrogen and NPSH were reduced in magnitude with coadministration of CCl4 (1 ml/kg, ip), while anticipated CCl4-induced increases in ALT and AST were reduced with coexposure to DCMA. Renal slice experiments indicated that DCMA-treated rats were less able to accumulate the organic anion p-aminohippurate (PAH), whereas DCMA had no effect on accumulation of the organic cation tetraethylammonium (TEA). The combination of CCl4 and DCMA produced only additive effects on organic ion accumulation. These results suggest hepatic interaction possibly related to the metabolism of CCl4 and DCMA, resulting in renal and hepatic toxicity diminished from that observed with exposure to either agent alone.

  18. Biliary excretion of acetaminophen-glutathione as an index of toxic activation of acetaminophen: effect of chemicals that alter acetaminophen hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Madhu, C.; Gregus, Z.; Klaassen, C.D.


    Acetaminophen (AA) is converted, presumably by cytochrome P-450, to an electrophile which is conjugated with glutathione (GS). AA-GS is excreted into bile, therefore the biliary excretion rate of AA-GS may reflect the rate of activation of AA in vivo. In order to test this hypothesis, the effect of agents capable of altering the activation of AA including cytochrome P-450 inducers and inhibitors, cobaltous chloride which decreases the amount of P-450, prostaglandin synthetase inhibitors (indomethacin and naproxen), antioxidants (butylated hydroxyanisole, alpha-tocopherol, ascorbic acid and ascorbic acid palmitate) and other chemicals known to decrease AA hepatotoxicity (dimethylsulfoxide and cysteamine), on the biliary excretion of AA-GS was studied in hamsters, the species most sensitive to AA-induced hepatotoxicity. The biliary excretion of AA-GS increased linearly up to 1 mmol/kg of AA i.v., but at higher dosages exhibited saturation kinetics. Dosages above 0.5 mmol/kg lowered hepatic GS concentration. Of the cytochrome P-450 inducers, 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin, increased the biliary excretion of AA-GS (2.9- and 3.2-fold, respectively) whereas ethanol and isoniazid did not affect it, and pregnenolone-16 alpha-carbonitrile tended to decrease it (43%). Phenobarbital tended to increase the biliary excretion of AA-GS, but not in a statistically significant manner. Several cytochrome P-450 inhibitors (metyrapone, 8-methoxypsoralen, 2-(4,6-dichloro-biphenyloxy) ethylamine, alpha-naphthoflavone and cimetidine) decreased the biliary excretion of AA-GS, although SKF 525-A and piperonyl butoxide did not. Cobaltous chloride decreased dramatically the biliary excretion of AA-GS.

  19. The effect of the bay-region 12-methyl group on the stereoselective metabolism at the K-region of 7,12-dimethylbenz[a]anthracene by rat liver microsomes. (United States)

    Yang, S K; Fu, P P


    The enantiomers of a trans-5,6-dihydrodiol formed in the metabolism of 7,12-dimethylbenz[a]anthracene by rat liver microsomes (microsomal fractions) were resolved by chiral stationary-phase high-performance liquid chromatography. The major 7,12-dimethylbenz[a]anthracene trans-5,6-dihydrodiol enantiomer and its hydrogenation product 5,6,8,9,10,11-hexahydro-trans-5,6-diol were found to have 5S,6S absolute configurations by the exciton chirality c.d. method. The R,R/S,S enantiomer ratios of 7,12-dimethylbenz[a]anthracene trans-5,6-dihydrodiol formed in the metabolism of 7,12-dimethylbenz[a]anthracene by liver microsomes from untreated, 3-methylcholanthrene-treated and phenobarbital-treated male Sprague-Dawley rats were found to be 11:89, 6:94, and 5:95 respectively. These findings and those reported previously on the metabolic formations of trans-5,6-dihydrodiols from 7-methylbenz[a]anthracene and 12-methylbenz[a]anthracene suggest that the 12-methyl group in 7,12-dimethylbenz[a]anthracene plays an important role in determining the stereoselective metabolism at the K-region 5,6-double bond. Furthermore, the finding that formation of 5S,6S-dihydrodiol as the predominant enantiomer was not significantly affected by the isoenzymic composition of cytochrome P-450 present in microsomes prepared from the livers of the rats pretreated with the different inducing agents indicates that the stereoselectivity depends on the substrate metabolized rather than on the precise nature of the metabolizing-enzyme system. PMID:6439187

  20. Metabolism of 4'-(9-acridinylamino)methanesulfon-m-anisidide by rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Shoemaker, D.D.; Cysyk, R.L.; Gormley, P.E.; DeSouza, J.J.; Malspeis, L.


    4'-(9-Acridinylamino)methanesulfon-m-anisidide (m-AMSA) is metabolized by a hepatic microsomal enzyme system composed of rat liver microsomes, a reduced nicotinamide adenine dinucleotide phosphate-generating system, cytosolic protein (or glutathione), and oxygen. Omission of any one of the components, or incubation under an atmosphere of CO or N/sub 2/, results in inhibition of the reaction. Also, the addition of inhibitors of microsomal metabolism (alpha-naphthoflavone, metyrapone, or SKF 525-A) decreases m-AMSA metabolism. Metabolism of m-AMSA is more rapid with microsomes prepared from rats pretreated with phenobarbital or 3-methylcholanthrene. Two microsomal oxidation products of m-AMSA were isolated and identified as N1'-methanesulfonyl-N4'-(9-acridinyl)-3'-methoxy-2',5'-cyclohex adiene-1', 4'-dimine (m-AQDI) and 3'-methoxy-4'-(9-acridinylamino-2',5'-cyclohexadien-1'-one (m-AQI). m-AQDI reacts with glutathione to form a product previously identified in in vivo studies as the principal rat biliary metabolite and which is not cytotoxic to cultured L1210 cells. Thus, the end result of the microsomal metabolism of m-AMSA is detoxification. However, the two primary oxidation products (m-AQDI and m-AQI) are considerably more cytotoxic to L1210 cells in vitro than is m-AMSA. The concentration of m-AMSA required to produce a 5-log kill is 1.0 microgram/ml compared to 0.01 microgram/ml for m-AQDI and m-AQI. These results indicate that m-AMSA might undergo bioactivation to form the active cytotoxic species of the drug.

  1. Estrogenic activity of styrene oligomers after metabolic activation by rat liver microsomes. (United States)

    Kitamura, Shigeyuki; Ohmegi, Motoko; Sanoh, Seigo; Sugihara, Kazumi; Yoshihara, Shin'ichi; Fujimoto, Nariaki; Ohta, Shigeru


    In this study we examined estrogenic activity of styrene oligomers after metabolic activation by rat liver microsomes. Trans-1,2-diphenylcyclobutane (TCB), cis-1,2-diphenylcyclobutane (CCB), 1,3-diphenylpropane, 2,4-diphenyl-1-butene, 2,4,6-triphenyl-1-hexene, and 1-alpha-phenyl-4ss-(1 -phenylethyl)tetralin were negative in the yeast estrogen screening assay and estrogen reporter assay using estrogen-responsive human breast cancer cell line MCF-7. However, TCB exhibited estrogenic activity after incubation with liver microsomes of phenobarbital-treated rats in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH). Minor activity was observed when liver microsomes of untreated or 3-methylcholanthrene-treated rats were used instead of those from phenobarbital-treated rats. CCB, 1,3-diphenylpropane, and 2,4-diphenyl-1-butene also exhibited estrogenic activity after metabolic activation by liver microsomes, but the activity was lower than that of TCB. 2,4,6-Triphenyl-1-hexene and 1-alpha-phenyl-4ss-(1 -phenylethyl)tetralin did not show estrogenic activity after such incubation. When TCB was incubated with liver microsomes of phenobarbital-treated rats in the presence of NADPH, three metabolites were detected by high-performance liquid chromatography (HPLC). One metabolite isolated by HPLC exhibited a significant estrogenic activity. The active metabolite was identified as trans-1-(4-hydroxyphenyl)-2-phenylcyclobutane by mass and nuclear magnetic resonance spectral analysis. These results suggest that the estrogenic activity of TCB was caused by the formation of the 4-hydroxylated metabolite. PMID:12611662

  2. Induction of UDP-glucuronosyltransferase activities in Gunn, heterozygous, and Wistar rat livers by pregnenolone-16 alpha-carbonitrile. (United States)

    Watkins, J B; Klaassen, C D


    The effect of pregnenolone-16 alpha-carbonitrile (PCN) on UDP-glucuronosyltransferase (UDP-GT) activity was comprehensively examined in Wistar (JJ), heterozygous (Jj) and Gunn (jj) rats with eleven different acceptors for glucuronic acid. UDP-GT activity after 3-methylcholanthrene (3-MC) and phenobarbital (PB) treatment was studied in additional rats for comparative purposes. Conjugation of group-1 aglycones (1-naphthol and p-nitrophenol) was much lower in Gunn than in Wistar rats. PCN did not alter UDP-GT conjugation of these acceptors. UDP-GT activity toward group-1 aglycones was increased by 3-MC in Wistar and heterozygous rats but was not enhanced in Gunn rats by any inducer. Activity toward group-2 aglycones (morphine, chloramphenicol, valproic acid) was similar in control rats of all genotypes. PCN increased chloramphenicol conjugation, whereas PB enhanced the glucuronidation of all group-2 aglycones in Wistar, heterozygous, and Gunn rats. Conjugation of group-3 acceptors (bilirubin and digitoxigenin monodigitoxoside, DIG) was deficient in Gunn rats and was not inducible. PCN increased glucuronidation of bilirubin and DIG in Wistar and heterozygous rats. The concentration of UDP-glucuronic acid (UDPGA) in liver was similar in control animals of all genotypes and was increased in rats treated with 3-MC. The other inducers did not affect hepatic UDPGA levels. Thus, 3-MC, PB, and PCN induce UDP-GT activities toward different groups of acceptors of glucuronic acid. The results support the hypothesis that PCN induces a form of UDP-GT that preferentially conjugates the group-3 acceptors, bilirubin and DIG.

  3. Embryonic turkey liver: activities of biotransformation enzymes and activation of DNA-reactive carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Perrone, Carmen E.; Duan, Jian Dong; Jeffrey, Alan M.; Williams, Gary M. [New York Medical College, Department of Pathology, Valhalla (United States); Ahr, Hans-Juergen; Schmidt, Ulrich [Bayer AG, Institute of Toxicology, Wuppertal (Germany); Enzmann, Harald H. [Federal Institute for Drugs and Medical Devices, Bonn (Germany)


    Avian embryos are a potential alternative model for chemical toxicity and carcinogenicity research. Because the toxic and carcinogenic effects of some chemicals depend on bioactivation, activities of biotransformation enzymes and formation of DNA adducts in embryonic turkey liver were examined. Biochemical analyses of 22-day in ovoturkey liver post-mitochondrial fractions revealed activities of the biotransformation enzymes 7-ethoxycoumarin de-ethylase (ECOD), 7-ethoxyresorufin de-ethylase (EROD), aldrin epoxidase (ALD), epoxide hydrolase (EH), glutathione S-transferase (GST), and UDP-glucuronyltransferase (GLUT). Following the administration of phenobarbital (24 mg/egg) on day 21, enzyme activities of ECOD, EROD, ALD, EH and GLUT, but not of GST, were increased by two-fold or higher levels by day 22. In contrast, acute administration of 3-methylcholanthrene (5 mg/egg) induced only ECOD and EROD activities. Bioactivation of structurally diverse pro-carcinogens was also examined using {sup 32}P-postlabeling for DNA adducts. In ovoexposure of turkey embryos on day 20 of gestation to 2-acetylaminofluorene (AAF), 4,4'-methylenebis(2-chloroaniline) (MOCA), benzo[a]pyrene (BaP), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) resulted in the formation of DNA adducts in livers collected by day 21. Some of the DNA adducts had {sup 32}P-postlabeling chromatographic migration patterns similar to DNA adducts found in livers from Fischer F344 rats exposed to the same pro-carcinogens. We conclude that 21-day embryonic turkey liver is capable of chemical biotransformation and activation of genotoxic carcinogens to form DNA adducts. Thus, turkey embryos could be utilized to investigate potential chemical toxicity and carcinogenicity. (orig.)

  4. Leflunomide Induces Pulmonary and Hepatic CYP1A Enzymes via Aryl Hydrocarbon Receptor. (United States)

    Patel, Ananddeep; Zhang, Shaojie; Paramahamsa, Maturu; Jiang, Weiwu; Wang, Lihua; Moorthy, Bhagavatula; Shivanna, Binoy


    Emerging evidence indicates that the aryl hydrocarbon receptor (AhR) plays a crucial role in normal physiologic homeostasis. Additionally, aberrant AhR signaling leads to several pathologic states in the lung and liver. Activation of AhR transcriptionally induces phase I (CYP1A) detoxifying enzymes. Although the effects of the classic AhR ligands such as 3-methylcholanthrene and dioxins on phase 1 enzymes are well studied in rodent lung, liver, and other organs, the toxicity profiles limit their use as therapeutic agents in humans. Hence, there is a need to identify and investigate nontoxic AhR ligands not only to understand the AhR biology but also to develop the AhR as a clinically relevant therapeutic target. Leflunomide is a Food and Drug Administration-approved drug in humans that is known to have AhR agonist activity in vitro. Whether it activates AhR and induces phase 1 enzymes in vivo is unknown. Therefore, we tested the hypothesis that leflunomide will induce pulmonary and hepatic CYP1A enzymes in C57BL/6J wild-type mice, but not in AhR-null mice. We performed real-time reverse-transcription polymerase chain reaction analyses for CYP1A1/2 mRNA expression, western blot assays for CYP1A1/2 protein expression, and ethoxyresorufinO-deethylase assay for CYP1A1 catalytic activity. Leflunomide increased CYP1A1/A2 mRNA, protein, and enzymatic activities in wild-type mice. In contrast, leflunomide failed to increase pulmonary and hepatic CYP1A enzymes in AhR-null mice. In conclusion, we provide evidence that leflunomide induces pulmonary and hepatic CYP1A enzymes via the AhR.

  5. Deletion of Forkhead Box M1 transcription factor from respiratory epithelial cells inhibits pulmonary tumorigenesis.

    Directory of Open Access Journals (Sweden)

    I-Ching Wang

    Full Text Available The Forkhead Box m1 (Foxm1 protein is induced in a majority of human non-small cell lung cancers and its expression is associated with poor prognosis. However, specific requirements for the Foxm1 in each cell type of the cancer lesion remain unknown. The present study provides the first genetic evidence that the Foxm1 expression in respiratory epithelial cells is essential for lung tumorigenesis. Using transgenic mice, we demonstrated that conditional deletion of Foxm1 from lung epithelial cells (epFoxm1(-/- mice prior to tumor initiation caused a striking reduction in the number and size of lung tumors, induced by either urethane or 3-methylcholanthrene (MCA/butylated hydroxytoluene (BHT. Decreased lung tumorigenesis in epFoxm1(-/- mice was associated with diminished proliferation of tumor cells and reduced expression of Topoisomerase-2alpha (TOPO-2alpha, a critical regulator of tumor cell proliferation. Depletion of Foxm1 mRNA in cultured lung adenocarcinoma cells significantly decreased TOPO-2alpha mRNA and protein levels. Moreover, Foxm1 directly bound to and induced transcription of the mouse TOPO-2alpha promoter region, indicating that TOPO-2alpha is a direct target of Foxm1 in lung tumor cells. Finally, we demonstrated that a conditional deletion of Foxm1 in pre-existing lung tumors dramatically reduced tumor growth in the lung. Expression of Foxm1 in respiratory epithelial cells is critical for lung cancer formation and TOPO-2alpha expression in vivo, suggesting that Foxm1 is a promising target for anti-tumor therapy.

  6. Leflunomide induces NAD(P)H quinone dehydrogenase 1 enzyme via the aryl hydrocarbon receptor in neonatal mice. (United States)

    Shrestha, Amrit Kumar; Patel, Ananddeep; Menon, Renuka T; Jiang, Weiwu; Wang, Lihua; Moorthy, Bhagavatula; Shivanna, Binoy


    Aryl hydrocarbon receptor (AhR) has been increasingly recognized to play a crucial role in normal physiological homeostasis. Additionally, disrupted AhR signaling leads to several pathological states in the lung and liver. AhR activation transcriptionally induces detoxifying enzymes such as cytochrome P450 (CYP) 1A and NAD(P)H quinone dehydrogenase 1 (NQO1). The toxicity profiles of the classical AhR ligands such as 3-methylcholanthrene and dioxins limit their use as a therapeutic agent in humans. Hence, there is a need to identify nontoxic AhR ligands to develop AhR as a clinically relevant druggable target. Recently, we demonstrated that leflunomide, a FDA approved drug, used to treat rheumatoid arthritis in humans, induces CYP1A enzymes in adult mice via the AhR. However, the mechanisms by which this drug induces NQO1 in vivo are unknown. Therefore, we tested the hypothesis that leflunomide will induce pulmonary and hepatic NQO1 enzyme in neonatal mice via AhR-dependent mechanism(s). Leflunomide elicited significant induction of pulmonary CYP1A1 and NQO1 expression in neonatal mice. Interestingly, the dose at which leflunomide increased NQO1 was significantly higher than that required to induce CYP1A1 enzyme. Likewise, it also enhanced hepatic CYP1A1, 1A2 and NQO1 expression in WT mice. In contrast, leflunomide failed to induce these enzymes in AhR-null mice. Our results indicate that leflunomide induces pulmonary and hepatic CYP1A and NQO1 enzymes via the AhR in neonatal mice. These findings have important implications to prevent and/or treat disorders such as bronchopulmonary dysplasia in human infants where AhR may play a crucial role in the disease pathogenesis.

  7. Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity. (United States)

    Watanabe, Yoko; Kojima, Hiroyuki; Takeuchi, Shinji; Uramaru, Naoto; Sanoh, Seigo; Sugihara, Kazumi; Kitamura, Shigeyuki; Ohta, Shigeru


    Benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is widely used as sunscreen for protection of human skin and hair from damage by ultraviolet (UV) radiation. In this study, we examined the metabolism of BP-3 by rat and human liver microsomes, and the estrogenic and anti-androgenic activities of the metabolites. When BP-3 was incubated with rat liver microsomes in the presence of NADPH, 2,4,5-trihydroxybenzophenone (2,4,5-triOH BP) and 3-hydroxylated BP-3 (3-OH BP-3) were newly identified as metabolites, together with previously detected metabolites 5-hydroxylated BP-3 (5-OH BP-3), a 4-desmethylated metabolite (2,4-diOH BP) and 2,3,4-trihydroxybenzophenone (2,3,4-triOH BP). In studies with recombinant rat cytochrome P450, 3-OH BP-3 and 2,4,5-triOH BP were mainly formed by CYP1A1. BP-3 was also metabolized by human liver microsomes and CYP isoforms. In estrogen reporter (ER) assays using estrogen-responsive CHO cells, 2,4-diOH BP exhibited stronger estrogenic activity, 2,3,4-triOH BP exhibited similar activity, and 5-OH BP-3, 2,4,5-triOH BP and 3-OH BP-3 showed lower activity as compared to BP-3. Structural requirements for activity were investigated in a series of 14 BP-3 derivatives. When BP-3 was incubated with liver microsomes from untreated rats or phenobarbital-, 3-methylcholanthrene-, or acetone-treated rats in the presence of NADPH, estrogenic activity was increased. However, liver microsomes from dexamethasone-treated rats showed decreased estrogenic activity due to formation of inactive 5-OH BP-3 and reduced formation of active 2,4-diOH BP. Anti-androgenic activity of BP-3 was decreased after incubation with liver microsomes.

  8. Aryl hydrocarbon receptors in osteoclast lineage cells are a negative regulator of bone mass.

    Directory of Open Access Journals (Sweden)

    Tai-yong Yu

    Full Text Available Aryl hydrocarbon receptors (AhRs play a critical role in various pathological and physiological processes. Although recent research has identified AhRs as a key contributor to bone metabolism following studies in systemic AhR knockout (KO or transgenic mice, the cellular and molecular mechanism(s in this process remain unclear. In this study, we explored the function of AhR in bone metabolism using AhR(RANKΔOc/ΔOc (RANK(Cre/+;AhR(flox/flox mice. We observed enhanced bone mass together with decreased resorption in both male and female 12 and 24-week-old AhR(RANKΔOc/ΔOc mice. Control mice treated with 3-methylcholanthrene (3MC, an AhR agonist, exhibited decreased bone mass and increased bone resorption, whereas AhR(CtskΔOc/ΔOc (Ctsk(Cre/+;AhR(flox/flox mice injected with 3MC appeared to have a normal bone phenotype. In vitro, bone marrow-derived macrophages (BMDMs from AhR(RANKΔOc/ΔOc mice exhibited impaired osteoclastogenesis and repressed differentiation with downregulated expression of B lymphocyte-induced maturation protein 1 (Blimp1, and cytochrome P450 genes Cyp1b1 and Cyp1a2. Collectively, our results not only demonstrated that AhR in osteoclast lineage cells is a physiologically relevant regulator of bone resorption, but also highlighted the need for further studies on the skeletal actions of AhR inhibitors in osteoclast lineage cells commonly associated with bone diseases, especially diseases linked to environmental pollutants known to induce bone loss.

  9. Hydration of arene and alkene oxides by epoxide hydrase in human liver microsomes. (United States)

    Kapitulnik, J; Levin, W; Morecki, R; Dansette, P M; Jerina, D M; Conney, A H


    The comparative hydration of styrene 7,8-oxide, octene 1,2-oxide, naphthalene 1,2-oxide, phenanthrene 9,10-oxide, benzo[a]anthracene 5,6-oxide, 3-methylcholanthrene 11,12-oxide, dibenzo[a,h]anthracene 5,6-oxide, and benzo[a, 7,8-, 9,10-, and 11,12-oxides to their respective dihydrodiols was investigated in microsomes from nine human autopsy livers. The substrate specificity of the epoxide hydrase in human liver microsomes was very similar to that of the epoxide hydrase in rat liver microsomes. Phenanthrene 9,10-oxide was the best substrate for the human and rat epoxide hydrases and dibenzo[a,h]anthracene 5,6-oxide and benzo[a-a)pyrene 11, 12-oxide were the poorest substrates. Plotting epoxide hydrase activity obtained with one substrate against epoxide hydrase activity for another substrate for each of the nine human livers revealed excellent correlations for all combinations of the 11 substrates studied (r = 0.87 to 0.99). The data suggest the presence in human liver of a single epoxide hydrase with broad substrate specificity. However, the results do not exclude the possible presence in human liver of several epoxide hydrases that are under similar regulatory control. These results suggest the need for further investigation to determine whether there is a safe epoxide of a drug whose in vivo metabolism is predictive of the capacity of different individuals to metabolize a wide variety of epoxides of drugs and environmental chemicals.

  10. Microfluidic geometric metering-based multi-reagent mixture generator for robust live cell screening array. (United States)

    Wang, Han; Kim, Jeongyun; Jayaraman, Arul; Han, Arum


    Microfluidic live cell arrays with integrated concentration gradient or mixture generators have been utilized in screening cellular responses to various biomolecular cues. Microfluidic network-based gradient generators that can create concentration gradients by repeatedly splitting and mixing different solutions using networks of serpentine channels are commonly used. However, in this method the generation of concentration gradients relies on the continuous flow of sample solutions at optimized flow rates, which poses challenges in maintaining the pressure and flow stability throughout the entire assay period. Here we present a microfluidic live cell screening array with an on-demand multi-reagent mixture generator where the mixing ratios, thus generated concentrations, are hard-wired into the chip itself through a geometric metering method. This platform showed significantly improved robustness and repeatability in generating concentration gradients of fluorescent dyes (average coefficient of variance C.V. = 9 %) compared to the conventional network-based gradient generators (average C.V. = 21 %). In studying the concentration dependent effects of the environmental toxicant 3-methylcholanthrene (3MC) on the activation of cytochrome P450 1A1 (Cyp 1A1) enzyme in H4IIE rat hepatoma cells, statistical variation of the Cyp 1A1 response was significantly lower (C.V. = 5 %) when using the developed mixture generator compared to that using the conventional gradient generator (C.V. = 12 %). Reduction in reagent consumption by 12-times was also achieved. This robust, accurate, and scalable multi-reagent mixture generator integrated with a cell culture array as a live cell assay platform can be readily implemented into various screening applications where repeatability, robustness, and low reagent consumptions over long periods of assay time are of importance.

  11. Sub-chronically exposing mice to a polycyclic aromatic hydrocarbon increases lipid accumulation in their livers. (United States)

    Jin, Yuanxiang; Miao, Wenyu; Lin, Xiaojian; Wu, Tao; Shen, Hangjie; Chen, Shan; Li, Yanhong; Pan, Qiaoqiao; Fu, Zhengwei


    The potential for exposing humans and wildlife to environmental polycyclic aromatic hydrocarbons (PAHs) has increased. Risk assessments describing how PAHs disturb lipid metabolism and induce hepatotoxicity have only received limited attention. In the present study, seven-week-old male ICR mice received intraperitoneal injections of 0, 0.01, 0.1 or 1mg/kg body weight 3-methylcholanthrene (3MC) per week for 10 weeks. A high-fat diet was provided during the exposure. Histopathological lipid accumulation and lipid metabolism-related genes were measured. We observed that sub-chronic 3MC exposure significantly increased lipid droplet and triacylglycerol (TG) levels in the livers. A low dose of 3MC activated the aryl hydrocarbon receptor, which negatively regulated lipid synthesis in the livers. The primary genes including acetyl-CoA carboxylase (Acc), fatty acid synthase (Fas) and stearoyl-CoA desaturase 1 (Scd1) decreased significantly when compared with those in the control group, indicating that de novo fatty acid synthesis in the hepatocytes was significantly inhibited by the sub-chronic 3MC exposure. However, the free fatty acid (FFA) synthesis in the adipose tissue was greatly enhanced by up-regulating the expression of peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element binding protein-1c (SREBP1C) and target genes including Acc, Fas and Scd1. The synthesized FFA was released into the blood and then transported into the liver by the up-regulation of Fat and Fatp2, which resulted in the gradual accumulation of lipids in the liver. In conclusion, histological examinations and molecular level analyses highlighted the development of lipid accumulation and confirmed that 3MC significantly impaired lipid metabolism in mice.

  12. Epithelial nuclear factor-κB signaling promotes lung carcinogenesis via recruitment of regulatory T lymphocytes. (United States)

    Zaynagetdinov, R; Stathopoulos, G T; Sherrill, T P; Cheng, D-S; McLoed, A G; Ausborn, J A; Polosukhin, V V; Connelly, L; Zhou, W; Fingleton, B; Peebles, R S; Prince, L S; Yull, F E; Blackwell, T S


    The mechanisms by which chronic inflammatory lung diseases, particularly chronic obstructive pulmonary disease, confer enhanced risk for lung cancer are not well-defined. To investigate whether nuclear factor (NF)-κB, a key mediator of immune and inflammatory responses, provides an interface between persistent lung inflammation and carcinogenesis, we utilized tetracycline-inducible transgenic mice expressing constitutively active IκB kinase β in airway epithelium (IKTA (IKKβ trans-activated) mice). Intraperitoneal injection of ethyl carbamate (urethane), or 3-methylcholanthrene (MCA) and butylated hydroxytoluene (BHT) was used to induce lung tumorigenesis. Doxycycline-treated IKTA mice developed chronic airway inflammation and markedly increased numbers of lung tumors in response to urethane, even when transgene expression (and therefore epithelial NF-κB activation) was begun after exposure to carcinogen. Studies using a separate tumor initiator/promoter model (MCA+BHT) indicated that NF-κB functions as an independent tumor promoter. Enhanced tumor formation in IKTA mice was preceded by increased proliferation and reduced apoptosis of alveolar epithelium, resulting in increased formation of premalignant lesions. Investigation of inflammatory cells in lungs of IKTA mice revealed a substantial increase in macrophages and lymphocytes, including functional CD4+/CD25+/FoxP3+ regulatory T lymphocytes (Tregs). Importantly, Treg depletion using repetitive injections of anti-CD25 antibodies limited excessive tumor formation in IKTA mice. At 6 weeks following urethane injection, antibody-mediated Treg depletion in IKTA mice reduced the number of premalignant lesions in the lungs in association with an increase in CD8 lymphocytes. Thus, persistent NF-κB signaling in airway epithelium facilitates carcinogenesis by sculpting the immune/inflammatory environment in the lungs.

  13. The effect of inducing agents on the metabolism of trypanocidal diamidines by isolated rat hepatocytes. (United States)

    Atsriku, C; Watson, D G; Grant, M H; Skellern, G G


    This study has investigated the effect of phenobarbitone (PB), 3-methylcholanthrene (3-MC), and deltamethrin (DM) on the metabolism of two trypanocidal diamidines; pentamidine isethionate and diminazene aceturate in freshly isolated Sprague-Dawley rat hepatocytes. There were significant increases in the total cytochrome p450 content of hepatocytes obtained from rats pre-treated with PB and 3-MC, whereas pre-treatment with DM did not produce any significant induction of cytochrome p450. However, pre-treatment of rats with each of the three agents led to inhibition of pentamidine metabolism following a 3h incubation of pentamidine (100 microM) with freshly isolated rat hepatocytes (5 x 10(6) cells ml(-1)). Pre-treatment with 3-MC caused the highest inhibitory effect on pentamidine metabolism (8-fold inhibition), compared with PB (4.8-fold) and DM (2.2-fold). Six previously reported phase I metabolites of pentamidine were identified in cells from all the pre-treated animals as well as controls. When compared to the control group, there were significant differences between the profiles of the three major metabolites of pentamidine, 1,5-di(4'-amidinophenoxy)-2-pentanol, 1,5-di(4'-amidinophenoxy)-3-pentanol and 5-(4'-amidinophenoxy) pentanoic acid, in hepatocytes from the DM and 3-MC pre-treated rats, whereas no significant differences were observed in the cells from the PB pre-treated group. In contrast, diminazene was not metabolised with the same experimental conditions. Differences in the metabolic profiles of pentamidine and its metabolites as a result of concomitant exposure to environmental xenobiotics could have important toxicological and pharmacological implications for patients that receive the drug.

  14. Caffeine promotes anti-tumor immune response during tumor initiation: Involvement of the adenosine A2A receptor. (United States)

    Eini, Hadar; Frishman, Valeria; Yulzari, Robert; Kachko, Leonid; Lewis, Eli C; Chaimovitz, Cidio; Douvdevani, Amos


    Epidemiologic studies depict a negative correlation between caffeine consumption and incidence of tumors in humans. The main pharmacological effects of caffeine are mediated by antagonism of the adenosine receptor, A2AR. Here, we examine whether the targeting of A2AR by caffeine plays a role in anti-tumor immunity. In particular, the effects of caffeine are studied in wild-type and A2AR knockout (A2AR(-/-)) mice. Tumor induction was achieved using the carcinogen 3-methylcholanthrene (3-MCA). Alternatively, tumor cells, comprised of 3-MCA-induced transformed cells or B16 melanoma cells, were inoculated into animal footpads. Cytokine release was determined in a mixed lymphocyte tumor reaction (MLTR). According to our findings, caffeine-consuming mice (0.1% in water) developed tumors at a lower rate compared to water-consuming mice (14% vs. 53%, respectively, p=0.0286, n=15/group). Within the caffeine-consuming mice, tumor-free mice displayed signs of autoimmune alopecia and pronounced leukocyte recruitment intocarcinogen injection sites. Similarly, A2AR(-/-) mice exhibited reduced rates of 3-MCA-induced tumors. In tumor inoculation studies, caffeine treatment resulted in inhibition of tumor growth and elevation in proinflammatory cytokine release over water-consuming mice, as depicted by MLTR. Addition of the adenosine receptor agonist, NECA, to MLTR resulted in a sharp decrease in IFNγ levels; this was reversed by the highly selective A2AR antagonist, ZM241385. Thus, immune response modulation through either caffeine or genetic deletion of A2AR leads to a Th1 immune profile and suppression of carcinogen-induced tumorigenesis. Taken together, our data suggest that the use of pharmacologic A2AR antagonists may hold therapeutic potential in diminishing the rate of cancer development.

  15. Regulation of FoxO transcription factors by environmental NO(x). Influence of metal ions and polycyclic aromatic hydrocarbons; Regulation von FoxO-Transkriptionsfaktoren durch Umweltnoxen. Einfluss von Metallionen und polyzyklischen aromatischen Kohlenwasserstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Eckers, Anna


    FoxO transcription factors are crucial modulators of various cellular processes, controlling the expression of target genes such as those coding for manganese superoxide dismutase (MnSOD) and selenoprotein P (SeP), thereby supporting defense against oxidative stress. Environmental stimuli such as heavy metal ions and polycyclic aromatic hydrocarbons (PAH) modulate signaling pathways both by interaction with proteins or by inducing the generation of reactive oxygen species (ROS). Exposure of hepatoma cells to nickel ions at subcytotoxic doses did not translate into modulation of FoxO activity despite an activation of the Ser/Thr-kinase Akt. The cellular response to nickel ions under these conditions is most likely independent of the formation of ROS, since there were no increased levels of glutathione disulfide detectable. FoxO activity was then found to be modulated in response to exposure of cells to PAH or the tryptophan photoproduct FICZ. Both PAH and FICZ caused an increased activity of a FoxO-responsive promoter construct as well as of glucose 6-phosphatase promoter activity. In contrast, the activities of promoters of genes coding for MnSOD or SeP were decreased in response to exposure to the PAH 3-methylcholanthrene (3-MC). In line with the promoter effects, 3-MC also decreased steady-state levels of SeP mRNA. The response of the SeP promoter to 3-MC was abrogated by point mutations introduced at the two identified FoxO binding elements of the SeP promoter, implying that interaction of FoxO proteins with these sites is essential for the downregulation of promoter activity. In addition to FoxO activity being modulated by xenobiotics, it was then demonstrated that FoxO expression was also modulated by exposure of cells to PAH or FICZ. FoxO4 mRNA levels were downregulated in hepatoma cells exposed to 3-MC or FICZ. Similarly, insulin treatment caused a downregulation of mRNA levels of FoxO 1a, 3a and 4 in hepatoma cells. (orig.)

  16. Role of tumor suppressor genes in transplacental lung carcinogenesis. (United States)

    Rollins, L A; Leone-Kabler, S; O'Sullivan, M G; Miller, M S


    Most human cancers involve multiple genetic changes, including activation of oncogenes such as Ki-ras-2 (Kras2) and inactivation of any one of a number of tumor suppressor genes such as p53 and members of the retinoblastoma (Rb) regulatory axis. As part of an ongoing project to determine how in utero exposure to chemical carcinogens affects the molecular pathogenesis of murine lung tumors, the p53 and p16Cdkn2a genes were analyzed by using paraffin-embedded lung tissues from mice treated transplacentally with 3-methylcholanthrene. Single-strand conformation polymorphism analysis of exons 5-8 of the p53 gene, as well as their flanking introns, demonstrated an absence of mutations at this gene locus. However, a genetic polymorphism was identified at nt 708 in intron 4 of the DBA/2 strain of mice 5 bp downstream of a 3' branching-point splice signal. Analysis of exons 1 and 2 of the Cdkn2a gene by single-strand conformation polymorphism and sequence analyses revealed mutations in exon 2 in 7% of the tumors examined. Tumor 23-1 exhibited a CAC-->TAC transition at nt 301 (His74-->Tyr74), and tumor 36-1 exhibited a GGG-->GAG transition at nucleotide 350 (Gly90-->Glu90). Northern blot analysis of 14 of the larger tumors showed a marked decrease in the levels of Rb RNA expression. Immunohistochemical analysis revealed a spectrum of pRb expression, with the smaller adenomas showing moderate numbers of nuclei with heterogeneous staining for pRb in contrast with a highly reduced or near-complete absence of expression in the nuclei of larger tumors with features of adenocarcinomas. The low incidence of mutations at tumor suppressor loci suggested that inactivation of tumor suppressor genes was a late event in murine lung tumor pathogenesis. The identification of both mutations at the Cdkn2a gene locus and reduced levels of Rb expression combined with previous studies demonstrating a high incidence of mutated Kras2 alleles in these tumors implies that alterations of the Rb

  17. Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoko, E-mail: [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan); Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Kojima, Hiroyuki; Takeuchi, Shinji [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Uramaru, Naoto [Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Sanoh, Seigo [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan); Sugihara, Kazumi [Faculty of Pharmaceutical Science, Hiroshima International University, Koshingai 5-1-1, Kure, Hiroshima 737-0112 (Japan); Kitamura, Shigeyuki [Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Ohta, Shigeru [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan)


    Benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is widely used as sunscreen for protection of human skin and hair from damage by ultraviolet (UV) radiation. In this study, we examined the metabolism of BP-3 by rat and human liver microsomes, and the estrogenic and anti-androgenic activities of the metabolites. When BP-3 was incubated with rat liver microsomes in the presence of NADPH, 2,4,5-trihydroxybenzophenone (2,4,5-triOH BP) and 3-hydroxylated BP-3 (3-OH BP-3) were newly identified as metabolites, together with previously detected metabolites 5-hydroxylated BP-3 (5-OH BP-3), a 4-desmethylated metabolite (2,4-diOH BP) and 2,3,4-trihydroxybenzophenone (2,3,4-triOH BP). In studies with recombinant rat cytochrome P450, 3-OH BP-3 and 2,4,5-triOH BP were mainly formed by CYP1A1. BP-3 was also metabolized by human liver microsomes and CYP isoforms. In estrogen reporter (ER) assays using estrogen-responsive CHO cells, 2,4-diOH BP exhibited stronger estrogenic activity, 2,3,4-triOH BP exhibited similar activity, and 5-OH BP-3, 2,4,5-triOH BP and 3-OH BP-3 showed lower activity as compared to BP-3. Structural requirements for activity were investigated in a series of 14 BP-3 derivatives. When BP-3 was incubated with liver microsomes from untreated rats or phenobarbital-, 3-methylcholanthrene-, or acetone-treated rats in the presence of NADPH, estrogenic activity was increased. However, liver microsomes from dexamethasone-treated rats showed decreased estrogenic activity due to formation of inactive 5-OH BP-3 and reduced formation of active 2,4-diOH BP. Anti-androgenic activity of BP-3 was decreased after incubation with liver microsomes. - Highlights: • Metabolic modification of the endocrine-disrupting activity of BP-3 was examined. • 2,4,5-TriOH BP and 3-OH BP-3 were identified as new BP-3 metabolites. • 2,4-DiOH BP and 2,3,4-triOH BP exhibited high or similar estrogenic activities. • Estrogenic activity of BP-3 was enhanced by incubation with rat liver

  18. Transcriptomic analysis of pathways regulated by toll-like receptor 4 in a murine model of chronic pulmonary inflammation and carcinogenesis

    Directory of Open Access Journals (Sweden)

    Grissom Sherry F


    Full Text Available Abstract Background Therapeutic strategies exist for human pulmonary neoplasia, however due to the heterogeneity of the disease, most are not very effective. The innate immunity gene, toll-like receptor 4 (TLR4, protects against chronic pulmonary inflammation and tumorigenesis in mice, but the mechanism is unclear. This study was designed to identify TLR4-mediated gene expression pathways that may be used as prognostic indicators of susceptibility to lung tumorigenesis in mice and provide insight into the mechanism. Methods Whole lung mRNA was isolated from C.C3H-Tlr4Lps-d (BALBLps-d; Tlr4 mutant and BALB/c (Tlr4 normal mice following butylated hydroxytoluene (BHT-treatment (four weekly ip. injections; 150-200 mg/kg/each; "promotion". mRNA from micro-dissected tumors (adenomas and adjacent uninvolved tissue from both strains were also compared 27 wks after a single carcinogen injection (3-methylcholanthrene (MCA, 10 μg/g; "control" or followed by BHT (6 weekly ip. injections; 125-200 mg/kg/each; "progression". Bronchoalveolar lavage fluid was analyzed for inflammatory cell content and total protein determination, a marker of lung hyperpermeability; inflammation was also assessed using immunohistochemical staining for macrophages (F4/80 and lymphocytes (CD3 in mice bearing tumors (progression. Results During promotion, the majority of genes identified in the BALBLps-d compared to BALB/c mice (P Ereg, secreted phosphoprotein 1(Spp1, which can lead to cell growth and eventual tumor development. Inflammation was significantly higher in BALBLps-d compared to BALB/c mice during progression, similar to the observed response during tumor promotion in these strains. Increases in genes involved in signaling through the EGFR pathway (e.g. Ereg, Spp1 were also observed during progression in addition to continued inflammation, chemotactic, and immune response gene expression in the BALBLps-d versus BALB/c mice (P Conclusion This transcriptomic study

  19. Effect of hepatic cytochrome P450 (P450) oxidoreductase deficiency on 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-DNA adduct formation in P450 reductase conditional null mice. (United States)

    Arlt, Volker M; Singh, Rajinder; Stiborová, Marie; Gamboa da Costa, Gonçalo; Frei, Eva; Evans, James D; Farmer, Peter B; Wolf, C Roland; Henderson, Colin J; Phillips, David H


    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), formed during the cooking of foods, induces colon cancer in rodents. PhIP is metabolically activated by cytochromes P450 (P450s). To evaluate the role of hepatic P450s in the bioactivation of PhIP, we used Reductase Conditional Null (RCN) mice, in which cytochrome P450 oxidoreductase (POR), the unique electron donor to P450s, can be specifically deleted in hepatocytes by pretreatment with 3-methylcholanthrene (3-MC), resulting in the loss of essentially all hepatic P450 function. RCN mice were treated orally with 50 mg/kg b.wt. PhIP daily for 5 days, with and without 3-MC pretreatment. PhIP-DNA adducts (i.e., N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine [dG-C8-PhIP]), measured by liquid chromatography-tandem mass spectrometry, were highest in colon (1362 adducts/10(8) deoxynucleosides), whereas adduct levels in liver were ∼3.5-fold lower. Whereas no differences in PhIP-DNA adduct levels were found in livers with active POR versus inactivated POR, adduct levels were on average ∼2-fold lower in extrahepatic tissues of mice lacking hepatic POR. Hepatic microsomes from RCN mice with or without 3-MC pretreatment were also incubated with PhIP and DNA in vitro. PhIP-DNA adduct formation was ∼8-fold lower with hepatic microsomes from POR-inactivated mice than with those with active POR. Most of the hepatic microsomal activation of PhIP in vitro was attributable to CYP1A. Our results show that PhIP-DNA adduct formation in colon involves hepatic N-oxidation, circulation of activated metabolites via the bloodstream to extrahepatic tissues, and further activation, resulting in the formation of dG-C8-PhIP. Besides hepatic P450s, PhIP may be metabolically activated mainly by a non-P450 pathway in liver.

  20. UVA Photoirradiation of Oxygenated Benz[a]anthracene and 3-Methylcholanthene - Generation of Singlet Oxygen and Induction of Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Diógenes Herreño Sáenz


    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are widespread genotoxic environmental pollutants and potentially pose a health risk to humans. Although the biological and toxicological activities, including metabolism, mutagenicity, and carcinogenicity, of PAHs have been thoroughly studied, their phototoxicity and photo-induced biological activity have not been well examined. We have long been interested in phototoxicity of PAHs and their derivatives induced by irradiation with UV light. In this paper we report the photoirradiation of a series of oxygenated benz[a]anthracene (BA and 3-methylcholanthene (3-MC by UVA light in the presence of a lipid, methyl linoleate. The studied PAHs include 2-hydroxy-BA (2-OH-BA, 3-hydroxy-BA (3-OH-BA, 5-hydroxymethyl-BA (5-CH2OH-BA, 7-hydroxymethyl-BA (7-CH2OH-BA, 12-hydroxymethyl-BA (12-CH2OH-BA, 7-hydroxymethyl-12-methyl-BA (7-CH2OH-12-MBA, 5-formyl-BA (5-CHO-BA, BA 5,6-cis-dihydrodiol (BA 5,6-cis-diol, 1-hydroxy-3- methylcholanthene (1-OH-3-MC, 1-keto-3-methylcholanthene (1-keto-3-MC, and 3-MC 1,2-diol. The results indicate that upon photoirradiation by UVA at 7 and 21 J/cm2, respectively all these compounds induced lipid peroxidation and exhibited a relationship between the dose of the light and the level of lipid peroxidation induced. To determine whether or not photoirradiation of these compounds by UVA light produces ROS, an ESR spin-trap technique was employed to provide direct evidence. Photoirradiation of 3-keto-3-MC by UVA (at 389 nm in the presence of 2,2,6,6-tetramethylpiperidine (TEMP, a specific probe for singlet oxygen, resulted in the formation of TEMPO, indicating that singlet oxygen was generated. These overall results suggest that UVA photoirradiation of oxygenated BA and 3-methylcholanthrene generates singlet oxygen, one of the reactive oxygen species (ROS, which induce lipid peroxidation.

  1. Application of the improved BALB/c 3T3 cell transformation assay to the examination of the initiating and promoting activities of chemicals: the second interlaboratory collaborative study by the non-genotoxic carcinogen study group of Japan. (United States)

    Tsuchiya, Toshiyuki; Umeda, Makoto; Tanaka, Noriho; Sakai, Ayako; Nishiyama, Hiroshi; Yoshimura, Isao; Ajimi, Syozo; Asada, Shin; Asakura, Masumi; Baba, Hiroshi; Dewa, Yasuaki; Ebe, Youji; Fushiwaki, Yuichi; Hagiwara, Yuji; Hamada, Shuichi; Hamamura, Tetsuo; Iwase, Yumiko; Kajiwara, Yoshitsugu; Kasahara, Yasushi; Kato, Yukihiko; Kawabata, Masayoshi; Kitada, Emiko; Kaneko, Kazuko; Kizaki, Yuko; Kubo, Kinya; Miura, Daisaku; Mashiko, Kaori; Mizuhashi, Fukutaro; Muramatsu, Dai; Nakajima, Madoka; Nakamura, Tetsu; Oishi, Hidetoshi; Sasaki, Toshiaki; Shimada, Sawako; Takahashi, Chitose; Takeda, Yuko; Wakuri, Sinobu; Yajima, Nobuhiro; Yajima, Satoshi; Yatsushiro, Tomoko


    The Non-genotoxic Carcinogen Study Group in the Environmental Mutagen Society of Japan organised the second step of the inter-laboratory collaborative study on one-stage and two-stage cell transformation assays employing BALB/c 3T3 cells, with the objective of confirming whether the respective laboratories could independently produce results relevant to initiation or promotion. The method was modified to use a medium consisting of DMEM/F12 supplemented with 2% fetal bovine serum and a mixture of insulin, transferrin, ethanolamine and sodium selenite, at the stationary phase of cell growth. Seventeen laboratories collaborated in this study, and each chemical was tested by three to five laboratories. Comparison between the one-stage and two-stage assays revealed that the latter method would be beneficial in the screening of chemicals. In the test for initiating activity with the two-stage assay (post-treated with 0.1microg/ml 12-O-tetradecanoylphorbol-13-acetate), the relevant test laboratories all obtained positive results for benzo[a]pyrene and methylmethane sulphonate, and negative results for phenanthrene. Of those laboratories assigned phenacetin for the initiation phase, two returned positive results and two returned negative results, where the latter laboratories tested up to one dose lower than the maximum dose used by the former laboratories. In the exploration of promoting activity with the twostage assay (pretreated with 0.2microg/ml 3-methylcholanthrene), the relevant test laboratories obtained positive results for mezerein, sodium orthovanadate and TGF-beta1, and negative results for anthralin, phenacetin and phorbol. Two results returned for phorbol 12,13-didecanoate were positive, but one result was negative - again, the maximum dose to achieve the latter result was lower than that which produced the former results. These results suggest that this modified assay method is relevant, reproducible and transferable, provided that dosing issues, such as the

  2. Murine atrial HL-1 cell line is a reliable model to study drug metabolizing enzymes in the heart. (United States)

    Elshenawy, Osama H; Anwar-Mohamed, Anwar; Abdelhamid, Ghada; El-Kadi, Ayman O S


    HL-1 cells are currently the only cells that spontaneously contract while maintaining a differentiated cardiac phenotype. Thus, our objective was to examine murine HL-1 cells as a new in vitro model to study drug metabolizing enzymes. We examined the expression of cytochrome P450s (Cyps), phase II enzymes, and nuclear receptors and compared their levels to mice hearts. Our results demonstrated that except for Cyp4a12 and Cyp4a14 all Cyps, phase II enzymes: glutathione-S-transferases (Gsts), heme oxygenase-1 (HO-1), and NAD(P)H: quinone oxidoreductase (Nqo1), nuclear receptors: aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), and peroxisome proliferator activated receptor (PPAR-alpha) were all constitutively expressed in HL-1 cells. Cyp2b19, Cyp2c29, Cyp2c38, Cyp2c40, and Cyp4f16 mRNA levels were higher in HL-1 cells compared to mice hearts. Cyp2b9, Cyp2c44, Cyp2j9, Cyp2j11, Cyp2j13, Cyp4f13, Cyp4f15 mRNA levels were expressed to the same extent to that of mice hearts. Cyp1a1, Cyp1a2, Cyp1b1, Cyp2b10, Cyp2d10, Cyp2d22, Cyp2e1, Cyp2j5, Cyp2j6, Cyp3a11, Cyp4a10, and Cyp4f18 mRNA levels were lower in HL-1 cells compared to mice hearts. Moreover, 3-methylcholanthrene induced Cyp1a1 while fenofibrate induced Cyp2j9 and Cyp4f13 mRNA levels in HL-1 cells. Examining the metabolism of arachidonic acid (AA) by HL-1 cells, our results demonstrated that HL-1 cells metabolize AA to epoxyeicosatrienoic acids, dihydroxyeicosatrienoic acids, and 20-hydroxyeicosatetraenoic acids. In conclusion, HL-1 cells provide a valuable in vitro model to study the role of Cyps and their associated AA metabolites in addition to phase II enzymes in cardiovascular disease states.

  3. Chemopreventive effects of Cuminum cyminum in chemically induced forestomach and uterine cervix tumors in murine model systems. (United States)

    Gagandeep; Dhanalakshmi, Sivanandhan; Méndiz, Ester; Rao, Agra Ramesha; Kale, Raosaheb Kathalupant


    Lately, a strong correlation has been established between diet and cancer. For ages, cumin has been a part of the diet. It is a popular spice regularly used as a flavoring agent in a number of ethnic cousins. In the present study, cancer chemopreventive potentials of different doses of a cumin seed-mixed diet were evaluated against benzo(a)pyrene [B(a)P]-induced forestomach tumorigenesis and 3-methylcholanthrene (MCA)-induced uterine cervix tumorigenesis. Results showed a significant inhibition of stomach tumor burden (tumors per mouse) by cumin. Tumor burden was 7.33 +/- 2.10 in the B(a)P-treated control group, whereas it reduced to 3.10 +/- 0.57 (P < 0.001) by a 2.5% dose and 3.11 +/- 0.60 (P <0.001) by a 5% dose of cumin seeds. Cervical carcinoma incidence, compared with the MCA-treated control group (66.67%), reduced to 27.27% (P < 0.05) by a diet of 5% cumin seeds and to 12.50% (P < 0.05) by a diet of 7.5% cumin seeds. The effect of 2.5 and 5% cumin seed-mixed diets was also examined on carcinogen/xenobiotic metabolizing phase I and phase II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase (LDH), and lipid peroxidation in the liver of Swiss albino mice. Levels of cytochrome P-450 (cyt P-450) and cytochrome b5 (cyt b(5)) were significantly augmented (P < 0.05) by the 2.5% dose of cumin seed diet. The levels of cyt P-450 reductase and cyt b(5) reductase were increased (significance level being from P < 0.05 to P < 0.01) by both doses of cumin. Among the phase II enzymes, glutathione S-transferase specific activity increased (P < 0.005) by the 5% dose, whereas that of DT-diaphorase increased significantly (P < 0.05) by both doses used (2.5 and 5%). In the antioxidant system, significant elevation of the specific activities of superoxide dismutase (P < 0.01) and catalase (P < 0.05) was observed with the 5% dose of cumin. The activities of glutathione peroxidase and glutathione reductase remained unaltered by both doses of cumin. The level

  4. Molecular pathogenesis of transplacentally induced mouse lung tumors. (United States)

    Miller, M S; Leone-Kabler, S; Rollins, L A; Wessner, L L; Fan, M; Schaeffer, D O; McEntee, M F; O'Sullivan, M G


    Previous studies from this and other laboratories have shown that treatment of pregnant mice with 3-methylcholanthrene (MC) caused lung tumors in the offspring, the incidence of which correlated with fetal inducibility of Cyp1a1. Analysis of paraffin-embedded lung tissue for Ki-ras-2 mutations indicated that 79% of the lesions examined contained point mutations in codons 12 and 13 of the Ki-ras-2 gene locus, the majority of which (84%) were G-->T transversions. The mutational spectrum was dependent on the tumor stage, as both the incidence of mutation and type of mutation produced correlated with malignant progression of the tumor. Mutations occurred in 60% of the hyperplasias, 80% of the adenomas, and 100% of the adenocarcinomas. In the tumors with mutations, GLY12-->CYS12 transversions occurred in 100% of the hyperplasias, 42% of the adenomas, and 14% of the adenocarcinomas. GLY12-->VAL12 transversions were not observed in hyperplasias and occurred in 42% of the adenomas and 57% of the adenocarcinomas. The remaining ASP12 and ARG13 mutations occurred only in adenomas (17%) and adenocarcinomas (29%). The tumors were also analyzed for alterations in the structure or function of the tumor suppressor genes Rb, p53, and Cdkn2a. No mutations were observed in exons 5-8 of the p53 gene. SSCP analysis demonstrated that 2 of 15 lung tumors contained shifted bands at the Cdkn2a gene locus. Sequence analysis had identified these as mutations in exon 2, with a CAC-->TAC transition at base 301 (HIS74-->TYR74) in tumor 23-1 and GGG-->GAG transition at base 350 (GLY90-->GLU90) in tumor 36-1. Northern blot analysis of the larger tumors revealed that 14 of 14 of these large lung tumors exhibited markedly decreased expression of Rb gene transcripts. These results were confirmed by immunohistochemistry. The larger tumors, which exhibited features of adenocarcinomas, showed a marked reduction or almost complete absence of nuclear pRb staining compared with smaller adenomas and normal

  5. Final report of the cosmetic ingredient review expert panel on the safety assessment of Polyisobutene and Hydrogenated Polyisobutene as used in cosmetics. (United States)


    controls. Neither Polyisobutene nor Hydrogenated Polyisobutene were ocular irritants, nor were they dermal irritants or sensitizers. Polyisobutene was not comedogenic in a rabbit ear study. Polyisobutene did not induce transformation in the Syrian hamster embryo (SHE) cell transformation assay, but did enhance 3-methylcholanthrene-induced transformation of C3H/10T1/2 cells. In a carcinogenicity study in mice, Polyisobutene was not carcinogenic, nor did it promote the carcinogenicity of 7,12-dimethylbenz(alpha)anthracene. Clinical patch tests uncovered no evidence of dermal irritation and repeat-insult patch tests with a product containing 4% Hydrogenated Polyisobutene or 1.44% Hydrogenated Polyisobutene found no reactions greater than slight erythema. These products also were not phototoxic or photoallergenic. The product containing 4% Hydrogenated Polyisobutene was not an ocular irritant in a clinical test. The Cosmetic Ingredient Review (CIR) Expert Panel recognized that there are data gaps regarding use and concentration of these ingredients. However, the overall information available on the types of products in which these ingredients are used and at what concentrations indicate a pattern of use, which was considered by the Expert Panel in assessing safety. Although there is an absence of dermal absorption data for Polyisobutene and Hydrogenated Polyisobutene, the available octanol water partition coefficient data and the low solubility in water suggest very slow absorption, so additional data are not needed. Gastrointestinal absorption is also not a major concern due to the low solubility of these chemicals. Although one in vitro study did report that Polyisobutene did promote cellular transformation, a mouse study did not find evidence of tumor promotion. Because lifetime exposure studies using rats and dogs exposed to Polybutene failed to demonstrate any carcinogenic or tumor promotion effect, and a three-generation reproductive/developmental toxicity study produced

  6. Metabolism of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline in human hepatocytes: 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid is a major detoxification pathway catalyzed by cytochrome P450 1A2. (United States)

    Langouët, S; Welti, D H; Kerriguy, N; Fay, L B; Huynh-Ba, T; Markovic, J; Guengerich, F P; Guillouzo, A; Turesky, R J


    Metabolic pathways of the mutagen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) remain incompletely characterized in humans. In this study, the metabolism of MeIQx was investigated in primary human hepatocytes. Six metabolites were characterized by UV and mass spectroscopy. Novel metabolites were additionally characterized by 1H NMR spectroscopy. The carcinogenic metabolite, 2-(hydroxyamino)-3,8-dimethylimidazo[4,5-f]quinoxaline, which is formed by cytochrome P450 1A2 (P450 1A2), was found to be transformed into the N(2)-glucuronide conjugate, N(2)-(beta-1-glucosiduronyl)-2-(hydroxyamino)-3,8-dimethylimidazo[4,5-f]quinoxaline. The phase II conjugates N(2)-(3,8-dimethylimidazo[4,5-f]quinoxalin-2-yl)sulfamic acid and N(2)-(beta-1-glucosiduronyl)-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, as well as the 7-oxo derivatives of MeIQx and N-desmethyl-MeIQx, 2-amino-3,8-dimethyl-6-hydro-7H-imidazo[4,5-f]quinoxalin-7-one (7-oxo-MeIQx), and 2-amino-6-hydro-8-methyl-7H-imidazo[4,5-f]quinoxalin-7-one (N-desmethyl-7-oxo-MeIQx), thought to be formed exclusively by the intestinal flora, were also identified. A novel metabolite was characterized as 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid (IQx-8-COOH), and it was the predominant metabolite formed in hepatocytes exposed to MeIQx at levels approaching human exposure. IQx-8-COOH formation is catalyzed by P450 1A2. This metabolite is a detoxication product and does not induce umuC gene expression in Salmonella typhimurium strain NM2009. IQx-8-COOH is also the principal oxidation product of MeIQx excreted in human urine [Turesky, R., et al. (1998) Chem. Res. Toxicol. 11, 217-225]. Thus, P450 1A2 is involved in both the metabolic activation and detoxication of this procarcinogen in humans. Analogous metabolism experiments were conducted with hepatocytes of untreated rats and rats pretreated with the P450 inducer 3-methylcholanthrene. Unlike human hepatocytes, the rat cell preparations did not produce IQx-8

  7. High hydrostatic pressure influences the in vitro response to xenobiotics in Dicentrarchus labrax liver

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, Benjamin; Mignolet, Eric; Debier, Cathy [Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 2, B-1348 Louvain-la-Neuve (Belgium); Calderon, Pedro Buc [Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B-1200 Woluwé-Saint-Lambert (Belgium); Thomé, Jean Pierre [Laboratoire d’Ecologie Animale et Ecotoxicologie, Université de Liège, Allée du 6 août 15, B-4000 Liège (Belgium); Rees, Jean François, E-mail: [Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 2, B-1348 Louvain-la-Neuve (Belgium)


    Highlights: • The methodology of precision-cut liver slices was applied to the European seabass. • Liver slices remained viable and functional in short-term co-exposure studies. • CYP1A induction was blocked in slices exposed to an AhR agonist at high pressure. • HSP70 induction was lower in slices exposed to an AhR agonist at high pressure. • Oxidative stress responses to tBHP were less pronounced at high pressure. - Abstract: Hydrostatic pressure (HP) increases by about 1 atmosphere (0.1 MPa) for each ten-meter depth increase in the water column. This thermodynamical parameter could well influence the response to and effects of xenobiotics in the deep-sea biota, but this possibility remains largely overlooked. To grasp the extent of HP adaptation in deep-sea fish, comparative studies with living cells of surface species exposed to chemicals at high HP are required. We initially conducted experiments with precision-cut liver slices of a deep-sea fish (Coryphaenoides rupestris), co-exposed for 15 h to the aryl hydrocarbon receptor (AhR) agonist 3-methylcholanthrene at HP levels representative of the surface (0.1 MPa) and deep-sea (5–15 MPa; i.e., 500–1500 m depth) environments. The transcript levels of a suite of stress-responsive genes, such as the AhR battery CYP1A, were subsequently measured (Lemaire et al., 2012; Environ. Sci. Technol. 46, 10310–10316). Strikingly, the AhR agonist-mediated increase of CYP1A mRNA content was pressure-dependently reduced in C. rupestris. Here, the same co-exposure scenario was applied for 6 or 15 h to liver slices of a surface fish, Dicentrarchus labrax, a coastal species presumably not adapted to high HP. Precision-cut liver slices of D. labrax were also used in 1 h co-exposure studies with the pro-oxidant tert-butylhydroperoxide (tBHP) as to investigate the pressure-dependence of the oxidative stress response (i.e., reactive oxygen production, glutathione and lipid peroxidation status). Liver cells remained

  8. Novel Functional Association of Serine Palmitoyltransferase Subunit 1-A Peptide in Sphingolipid Metabolism with Cytochrome P4501A1 Transactivation and Proliferative Capacity of the Human Glioma LN18 Brain Tumor Cell Line

    Directory of Open Access Journals (Sweden)

    J. Stewart


    Full Text Available Some chemical modulators of cytochrome P4501A1, Cyp1A1, expression also perturb the activity of serine palmitoyltransferase, SPT, a heterodimeric protein responsible for catalyzing the first reaction in sphingolipid biosynthesis. The effect of altered SPT activity on Cyp1A1 expression has generally been attributed to changes in the composition of bioactive sphingolipids, generated downstream in the SPT metabolic pathway, but the precise mechanism remains poorly defined. A generally accepted model for chemical-induced transactivation of the Cyp1A1 gene involves intracellular signaling mediated by proteins including the arylhydrocarbon receptor, AhR, whose interaction with the 90 kilo Dalton heat shock protein, Hsp90, is essential for maintaining a high affinity ligandbinding receptor conformation. Because ligand-induced Cyp1A1 expression is important in the bioactivation of environmentally relevant compounds to genotoxic derivatives capable of perturbing cellular processes, binding to Hsp90 represents an important regulatory point in the cytotoxicity process. In the present study, based on evidence that indicates subunit 1 of serine palmitoyltransferase, SPT1, interacts with Hsp90, both ligand-induced Cyp1A1 transactivation and capacity for proliferation were evaluated using the wild type Glioma LN18 human brain cancer cell line and its recombinant counterparts expressing green fluorescent SPT1 fusion proteins. Exposure to the prototypical Cyp1A1 inducer, 3-methylcholanthrene, 3-MC, resulted in the translocation of SPT1 from a primarily cytoplasmic domain to sites of focal adhesion complexes. Immunolabel for Hsp90, which was dispersed throughout the cell, became primarily cytoplasmic, while the distribution of AhR remained unaffected. When compared to the wild type, cells transfected with recombinant SPT1-GFP vectors had significantly attenuated levels of 3-MC-induced Cyp1A1 mRNA, as determined by quantitative reverse transcription PCR. Although

  9. Amended final report on the safety assessment of glyceryl dilaurate, glyceryl diarachidate, glyceryl dibehenate, glyceryl dierucate, glyceryl dihydroxystearate, glyceryl diisopalmitate, glyceryl diisostearate, glyceryl dilinoleate, glyceryl dimyristate, glyceryl dioleate, glyceryl diricinoleate, glyceryl dipalmitate, glyceryl dipalmitoleate, glyceryl distearate, glyceryl palmitate lactate, glyceryl stearate citrate, glyceryl stearate lactate, and glyceryl stearate succinate. (United States)


    irritation in a single insult patch test, but mild skin irritation reactions to a foundation containing the same concentration were observed. A trade mixture containing an unspecified concentration of Glyceryl Dibehenate did not induce irritation or significant cutaneous intolerance in a 48-h occlusive patch test. In maximization tests, neither an eye shadow nor a foundation containing 1.5% Glyceryl Dilaurate was a skin sensitizer. Sensitization was not induced in subjects patch tested with 50% w/w Glyceryl Dioleate in a repeated insult, occlusive patch test. Glyceryl Palmitate Lactate (50% w/v) did not induce skin irritation or sensitization in subjects patch tested in a repeat-insult patch test. Phototoxicity or photoallergenicity was not induced in healthy volunteers tested with a lipstick containing 1.0% Glyceryl Rosinate. Two diacylglycerols, 1-oleoyl-2-acetoyl-sn-glycerol and 1,2-dipalmitoyl-sn-glycerol, did not alter cell proliferation (as determined by DNA synthesis) in normal human dermal fibroblasts in vitro at doses up to 10 microg/ml. In the absence of initiation, Glyceryl Distearate induced a moderate hyperplastic response in randomly bred mice of a tumor-resistant strain, and with 9,10-dimethyl-1,2-benzanthracene (DMBA) initiation, an increase in the total cell count was observed. In a glyceryl monoester study, a single application of DMBA to the skin followed by 5% Glyceryl Stearate twice weekly produced no tumors, but slight epidermal hyperplasia at the site of application. Glyceryl Dioleate induced transformation in 3-methylcholanthrene-initiated BALB/3T3 A31-1-1 cloned cells in vitro. A tumor-promoting dosing regimen that consisted of multiple applications of 10 mumol of a 1,2-diacylglycerol (sn-1,2-didecanoylglycerol) to female mice twice daily for 1 week caused more than a 60% decrease in protein kinase C (PKC) activity and marked epidermal hyperplasia. Applications of 10 micromol sn-1,2-didecanoylglycerol twice weekly for 1 week caused a decrease in